Sample records for five-axis machine tool

  1. Three-dimensional tool radius compensation for multi-axis peripheral milling

    NASA Astrophysics Data System (ADS)

    Chen, Youdong; Wang, Tianmiao

    2013-05-01

    Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUT® with different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of three- to five-axis machine tools as a general form.

  2. Critical Technology Assessment of Five Axis Simultaneous Control Machine Tools

    DTIC Science & Technology

    2009-07-01

    assessment, BIS specifically examined: • The application of Export Control Classification Numbers ( ECCN ) 2B001.b.2 and 2B001.c.2 controls and related...availability of certain five axis simultaneous control mills, mill/turns, and machining centers controlled by ECCN 2B001.b.2 (but not grinders controlled by... ECCN 2B001.c.2) exists to China and Taiwan, which both have an indigenous capability to produce five axis simultaneous control machine tools with

  3. A Study on Micro-Machining Technology for the Machining of NiTi: Five-Axis Micro-Milling and Micro Deep-Hole Drilling

    NASA Astrophysics Data System (ADS)

    Biermann, D.; Kahleyss, F.; Krebs, E.; Upmeier, T.

    2011-07-01

    Micro-sized applications are gaining more and more relevance for NiTi-based shape memory alloys (SMA). Different types of micro-machining offer unique possibilities for the manufacturing of NiTi components. The advantage of machining is the low thermal influence on the workpiece. This is important, because the phase transformation temperatures of NiTi SMAs can be changed and the components may need extensive post manufacturing. The article offers a simulation-based approach to optimize five-axis micro-milling processes with respect to the special material properties of NiTi SMA. Especially, the influence of the various tool inclination angles is considered for introducing an intelligent tool inclination optimization algorithm. Furthermore, aspects of micro deep-hole drilling of SMAs are discussed. Tools with diameters as small as 0.5 mm are used. The possible length-to-diameter ratio reaches up to 50. This process offers new possibilities in the manufacturing of microstents. The study concentrates on the influence of the cutting speed, the feed and the tool design on the tool wear and the quality of the drilled holes.

  4. Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool

    NASA Astrophysics Data System (ADS)

    Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo

    2017-05-01

    Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.

  5. Method and apparatus for characterizing and enhancing the dynamic performance of machine tools

    DOEpatents

    Barkman, William E; Babelay, Jr., Edwin F

    2013-12-17

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.

  6. Modeling and simulation of five-axis virtual machine based on NX

    NASA Astrophysics Data System (ADS)

    Li, Xiaoda; Zhan, Xianghui

    2018-04-01

    Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.

  7. Linear positioning laser calibration setup of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Sui, Xiulin; Yang, Congjing

    2002-10-01

    The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.

  8. Precision tool holder with flexure-adjustable, three degrees of freedom for a four-axis lathe

    DOEpatents

    Bono, Matthew J [Pleasanton, CA; Hibbard, Robin L [Livermore, CA

    2008-03-04

    A precision tool holder for precisely positioning a single point cutting tool on 4-axis lathe, such that the center of the radius of the tool nose is aligned with the B-axis of the machine tool, so as to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-.mu.m accuracy on a four-axis lathe. The device is designed to fit on a commercial diamond turning machine and can adjust the cutting tool position in three orthogonal directions with sub-micrometer resolution. In particular, the tool holder adjusts the tool position using three flexure-based mechanisms, with two flexure mechanisms adjusting the lateral position of the tool to align the tool with the B-axis, and a third flexure mechanism adjusting the height of the tool. Preferably, the flexures are driven by manual micrometer adjusters. In this manner, this tool holder simplifies the process of setting a tool with sub-.mu.m accuracy, to substantially reduce the time required to set the tool.

  9. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    DOEpatents

    Williams, R.R.

    1980-09-03

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrificial pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational axis of the workpiece a distance equal to the radius of the cylinder.

  10. An open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and industrial CAM software.

    PubMed

    Lu, Li; Liu, Shusheng; Shi, Shenggen; Yang, Jianzhong

    2011-10-01

    China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.

  11. Modeling of Geometric Error in Linear Guide Way to Improved the vertical three-axis CNC Milling machine’s accuracy

    NASA Astrophysics Data System (ADS)

    Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna

    2018-03-01

    The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.

  12. A Flexure-Based Tool Holder for Sub-(micro)m Positioning of a Single Point Cutting Tool on a Four-axis Lathe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bono, M J; Hibbard, R L

    2005-12-05

    A tool holder was designed to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-{micro}m accuracy on a four-axis lathe. A four-axis lathe incorporates a rotary table that allows the cutting tool to swivel with respect to the workpiece to enable the machining of complex workpiece forms, and accurately machining complex meso-scale parts often requires that the cutting tool be aligned precisely along the axis of rotation of the rotary table. The tool holder designed in this study has greatly simplified the process of setting the tool in the correct location with sub-{micro}m precision. The toolmore » holder adjusts the tool position using flexures that were designed using finite element analyses. Two flexures adjust the lateral position of the tool to align the center of the nose of the tool with the axis of rotation of the B-axis, and another flexure adjusts the height of the tool. The flexures are driven by manual micrometer adjusters, each of which provides a minimum increment of motion of 20 nm. This tool holder has simplified the process of setting a tool with sub-{micro}m accuracy, and it has significantly reduced the time required to set a tool.« less

  13. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    DOEpatents

    Williams, Richard R.

    1982-01-01

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrifical pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational aixs of the workpiece a distance equal to the radius of the cylinder.

  14. Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating

    NASA Astrophysics Data System (ADS)

    Chen, Liangji; Guo, Guangsong; Li, Huiying

    2017-07-01

    NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.

  15. Tube Alinement for Machining

    NASA Technical Reports Server (NTRS)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  16. Solution of task related to control of swiss-type automatic lathe to get planes parallel to part axis

    NASA Astrophysics Data System (ADS)

    Tabekina, N. A.; Chepchurov, M. S.; Evtushenko, E. I.; Dmitrievsky, B. S.

    2018-05-01

    The work solves the problem of automation of machining process namely turning to produce parts having the planes parallel to an axis of rotation of part without using special tools. According to the results, the availability of the equipment of a high speed electromechanical drive to control the operative movements of lathe machine will enable one to get the planes parallel to the part axis. The method of getting planes parallel to the part axis is based on the mathematical model, which is presented as functional dependency between the conveying velocity of the driven element and the time. It describes the operative movements of lathe machine all over the tool path. Using the model of movement of the tool, it has been found that the conveying velocity varies from the maximum to zero value. It will allow one to carry out the reverse of the drive. The scheme of tool placement regarding the workpiece has been proposed for unidirectional movement of the driven element at high conveying velocity. The control method of CNC machines can be used for getting geometrically complex parts on the lathe without using special milling tools.

  17. Electrical contact tool set station

    DOEpatents

    Byers, M.E.

    1988-02-22

    An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.

  18. Method and apparatus for manufacturing high-accuracy radio telescope reflector panels

    NASA Astrophysics Data System (ADS)

    Bosma, Marinus B.

    1998-07-01

    This article covers the manufacturing of aluminum reflector panels for submillimeter radio astronomy. The first part involves the general construction and application of a machine custom designed and built to do this. The second is a discussion of the software and execution of method to actually produce the reflectors for the Smithsonian Astrophysical Observatories Submillimeter Array (SMA). The reflective surface of each panel is contoured both radially and circularly by oscillating a platen supporting the panel about a fixed axis relative to a tool which is fixed during platen oscillation. The tool is repositionable between oscillations along an x axis to achieve the radial contour and along a z axis to achieve the desired parabolic or spherical contour. Contrary to the normal contouring of such a surface with a 5- axis CNC machine, tool positioning along either axis is independent of tool location along the other axis, simplifying the machine structure as well as its computerized operation. A unique hinge is provided to restrain the platen in a radial direction while allowing floating action of the platen on an air cushion during its oscillation. These techniques and the equipment are documented in U.S. Patent No. 5477602.

  19. Defining and Testing the Influence of Servo System Response on Machine Tool Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J

    2004-03-24

    Compliance can be defined as the measurement of displacement per unit of force applied e.g. nano-meters per Newton (m/N). Compliance is the reciprocal of stiffness. High stiffness means low compliance and visa versa. It is an important factor in machine tool characteristics because it reflects the ability of the machine axis to maintain a desired position as it encounters a force or torque. Static compliance is a measurement made with a constant force applied e.g. the average depth of cut. Dynamic compliance is a measurement made as a function of frequency, e.g. a fast too servo (FTS) that applies amore » varying cutting force or load, interrupted cuts and external disturbances such as ground vibrations or air conditioning induced forces on the machine. Compliance can be defined for both a linear and rotary axis of a machine tool. However, to properly define compliance for a rotary axis, the axis must allow a commanded angular position. Note that this excludes velocity only axes. In this paper, several factors are discussed that affect compliance but emphasis is placed on how the machine servo system plays a key role in compliance at low to mid frequency regions. The paper discusses several techniques for measuring compliance and provides examples of results from these measurements.« less

  20. Ion beam figuring of highly steep mirrors with a 5-axis hybrid machine tool

    NASA Astrophysics Data System (ADS)

    Yin, Xiaolin; Tang, Wa; Hu, Haixiang; Zeng, Xuefeng; Wang, Dekang; Xue, Donglin; Zhang, Feng; Deng, Weijie; Zhang, Xuejun

    2018-02-01

    Ion beam figuring (IBF) is an advanced and deterministic method for optical mirror surface processing. The removal function of IBF varies with the different incident angles of ion beam. Therefore, for the curved surface especially the highly steep one, the Ion Beam Source (IBS) should be equipped with 5-axis machining capability to remove the material along the normal direction of the mirror surface, so as to ensure the stability of the removal function. Based on the 3-RPS parallel mechanism and two dimensional displacement platform, a new type of 5-axis hybrid machine tool for IBF is presented. With the hybrid machine tool, the figuring process of a highly steep fused silica spherical mirror is introduced. The R/# of the mirror is 0.96 and the aperture is 104mm. The figuring result shows that, PV value of the mirror surface error is converged from 121.1nm to32.3nm, and RMS value 23.6nm to 3.4nm.

  1. Method and apparatus for characterizing and enhancing the functional performance of machine tools

    DOEpatents

    Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

    2013-04-30

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

  2. AN EIGHT WEEK SEMINAR IN AN INTRODUCTION TO NUMERICAL CONTROL ON TWO- AND THREE-AXIS MACHINE TOOLS FOR VOCATIONAL AND TECHNICAL MACHINE TOOL INSTRUCTORS. FINAL REPORT.

    ERIC Educational Resources Information Center

    BOLDT, MILTON; POKORNY, HARRY

    THIRTY-THREE MACHINE SHOP INSTRUCTORS FROM 17 STATES PARTICIPATED IN AN 8-WEEK SEMINAR TO DEVELOP THE SKILLS AND KNOWLEDGE ESSENTIAL FOR TEACHING THE OPERATION OF NUMERICALLY CONTROLLED MACHINE TOOLS. THE SEMINAR WAS GIVEN FROM JUNE 20 TO AUGUST 12, 1966, WITH COLLEGE CREDIT AVAILABLE THROUGH STOUT STATE UNIVERSITY. THE PARTICIPANTS COMPLETED AN…

  3. Computer Aided Simulation Machining Programming In 5-Axis Nc Milling Of Impeller Leaf

    NASA Astrophysics Data System (ADS)

    Huran, Liu

    At present, cad/cam (computer-aided design and manufacture) have fine wider and wider application in mechanical industry. For the complex surfaces, the traditional machine tool can no longer satisfy the requirement of such complex task. Only by the help of cad/cam can fulfill the requirement. The machining of the vane surface of the impeller leaf has been considered as the hardest challenge. Because of their complex shape, the 5-axis cnc machine tool is needed for the machining of such parts. The material is hard to cut, the requirement for the surface finish and clearance is very high, so that the manufacture quality of impeller leaf represent the level of 5-axis machining. This paper opened a new field in machining the complicated surface, based on a relatively more rigid mathematical basis. The theory presented here is relatively more systematical. Since the lack of theoretical guidance, in the former research, people have to try in machining many times. Such case will be changed. The movement of the cutter determined by this method is definite, and the residual is the smallest while the times of travel is the fewest. The criterion is simple and the calculation is easy.

  4. Horizontal-axis clothes washer market poised for expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, K.L.

    1994-12-31

    The availability of energy- and water-efficient horizontal-axis washing machines in the North American market is growing, as US and European manufacturers position for an expected long-term market shift toward horizontal-axis (H-axis) technology. Four of the five major producers of washing machines in the US are developing or considering new H-axis models. New entrants, including US-based Staber Industries and several European manufacturers, are also expected to compete in this market. The intensified interest in H-axis technology is partly driven by speculation that new US energy efficiency standards, to be proposed in 1996 and implemented in 1999, will effectively mandate H-axis machines.more » H-axis washers typically use one-third to two-thirds less energy, water, and detergent than vertical-axis machines. Some models also reduce the energy needed to dry the laundry, since their higher spin speeds extract more water than is typical with vertical-axis designs. H-axis washing machines are the focus of two broadly-based efforts to support coordinated research and incentive programs by electric, gas, and water utilities: The High-Efficiency Laundry Metering/Marketing Analysis (THELMA), and the Consortium for Energy Efficiency (CEE) High-Efficiency Clothes Washer Initiative. These efforts may help to pave the way for new types of marketing partnerships among utilities and other parties that could help to speed adoption of H-axis washers.« less

  5. Machine tool locator

    DOEpatents

    Hanlon, John A.; Gill, Timothy J.

    2001-01-01

    Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

  6. Transformer and Meter Tester

    NASA Technical Reports Server (NTRS)

    Stoms, R. M.

    1984-01-01

    Numerically-controlled 5-axis machine tool uses transformer and meter to determine and indicate whether tool is in home position, but lacks built-in test mode to check them. Tester makes possible test, and repair of components at machine rather then replace them when operation seems suspect.

  7. Slide system for machine tools

    DOEpatents

    Douglass, S.S.; Green, W.L.

    1980-06-12

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  8. Slide system for machine tools

    DOEpatents

    Douglass, Spivey S.; Green, Walter L.

    1982-01-01

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  9. 3D Laser Processing : The Renault Rl5

    NASA Astrophysics Data System (ADS)

    Rolland, Olivier C.; Meyer, Bernard D.

    1986-11-01

    The RL5, a five-axis robot, is designed to steer a powerful laser beam on 3 dimensional (3D) trajectories with a great accuracy. Cutting and welding with a CO2 laser beam, drilling with a YAG laser beam are some applications of this machine which can be integrated in a production line. Easy management and modifications of trajectories, obtained either in a teaching mode or by a CAD-CAM system, give the laser tool its main interest : flexibility.

  10. High-precision micro/nano-scale machining system

    DOEpatents

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  11. Positional reference system for ultraprecision machining

    DOEpatents

    Arnold, Jones B.; Burleson, Robert R.; Pardue, Robert M.

    1982-01-01

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  12. Positional reference system for ultraprecision machining

    DOEpatents

    Arnold, J.B.; Burleson, R.R.; Pardue, R.M.

    1980-09-12

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  13. Rapid fabrication of miniature lens arrays by four-axis single point diamond machining

    PubMed Central

    McCall, Brian; Tkaczyk, Tomasz S.

    2013-01-01

    A novel method for fabricating lens arrays and other non-rotationally symmetric free-form optics is presented. This is a diamond machining technique using 4 controlled axes of motion – X, Y, Z, and C. As in 3-axis diamond micro-milling, a diamond ball endmill is mounted to the work spindle of a 4-axis ultra-precision computer numerical control (CNC) machine. Unlike 3-axis micro-milling, the C-axis is used to hold the cutting edge of the tool in contact with the lens surface for the entire cut. This allows the feed rates to be doubled compared to the current state of the art of micro-milling while producing an optically smooth surface with very low surface form error and exceptionally low radius error. PMID:23481813

  14. A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes.

    PubMed

    Vogl, Gregory W; Weiss, Brian A; Donmez, M Alkan

    2015-01-01

    A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a 'sensor box' to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality.

  15. A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes

    PubMed Central

    Vogl, Gregory W.; Weiss, Brian A.; Donmez, M. Alkan

    2017-01-01

    A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a ‘sensor box’ to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality. PMID:28691039

  16. Quick-Turn Finite Element Analysis for Plug-and-Play Satellite Structures

    DTIC Science & Technology

    2007-03-01

    produced from 0.375 inch round stock and turned on a machine lathe to achieve the shoulder feature and drilled to make it hollow. Figure 3.1...component, a linear taper was machined from the connection shoulder to the solar panel connecting fork. The part was then turned using the machine lathe ...utilizing a modern five-axis Computer Numerical Code ( CNC ) machine mill, the process time could be reduced by as much as seventy-five percent and the

  17. Free-form machining for micro-imaging systems

    NASA Astrophysics Data System (ADS)

    Barkman, Michael L.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.

    2008-02-01

    While mechanical ruling and single point diamond turning has been a mainstay of optical fabrication for many years, many types of micro-optical devices and structures are not conducive to simple diamond turning or ruling, such as, for example, microlens arrays, and optical surfaces with non-radial symmetry. More recent developments in machining technology have enabled significant expansion of fabrication capabilities. Modern machine tools can generate complex three-dimensional structures with optical quality surface finish, and fabricate structures across a dynamic range of dimensions not achievable with lithographic techniques. In particular, five-axis free-form micromachining offers a great deal of promise for realization of essentially arbitrary surface structures, including surfaces not realizable through binary or analog lithographic techniques. Furthermore, these machines can generate geometric features with optical finish on scales ranging from centimeters to micrometers with accuracies of 10s of nanometers. In this paper, we discuss techniques and applications of free-form surface machining of micro-optical elements. Aspects of diamond machine tool design to realize desired surface geometries in specific materials are discussed. Examples are presented, including fabrication of aspheric lens arrays in germanium for compact infrared imaging systems. Using special custom kinematic mounting equipment and the additional axes of the machine, the lenses were turned with surface finish better than 2 nm RMS and center to center positioning accuracy of +/-0.5 μm.

  18. Improving Energy Efficiency in CNC Machining

    NASA Astrophysics Data System (ADS)

    Pavanaskar, Sushrut S.

    We present our work on analyzing and improving the energy efficiency of multi-axis CNC milling process. Due to the differences in energy consumption behavior, we treat 3- and 5-axis CNC machines separately in our work. For 3-axis CNC machines, we first propose an energy model that estimates the energy requirement for machining a component on a specified 3-axis CNC milling machine. Our model makes machine-specific predictions of energy requirements while also considering the geometric aspects of the machining toolpath. Our model - and the associated software tool - facilitate direct comparison of various alternative toolpath strategies based on their energy-consumption performance. Further, we identify key factors in toolpath planning that affect energy consumption in CNC machining. We then use this knowledge to propose and demonstrate a novel toolpath planning strategy that may be used to generate new toolpaths that are inherently energy-efficient, inspired by research on digital micrography -- a form of computational art. For 5-axis CNC machines, the process planning problem consists of several sub-problems that researchers have traditionally solved separately to obtain an approximate solution. After illustrating the need to solve all sub-problems simultaneously for a truly optimal solution, we propose a unified formulation based on configuration space theory. We apply our formulation to solve a problem variant that retains key characteristics of the full problem but has lower dimensionality, allowing visualization in 2D. Given the complexity of the full 5-axis toolpath planning problem, our unified formulation represents an important step towards obtaining a truly optimal solution. With this work on the two types of CNC machines, we demonstrate that without changing the current infrastructure or business practices, machine-specific, geometry-based, customized toolpath planning can save energy in CNC machining.

  19. A new optimization tool path planning for 3-axis end milling of free-form surfaces based on efficient machining intervals

    NASA Astrophysics Data System (ADS)

    Vu, Duy-Duc; Monies, Frédéric; Rubio, Walter

    2018-05-01

    A large number of studies, based on 3-axis end milling of free-form surfaces, seek to optimize tool path planning. Approaches try to optimize the machining time by reducing the total tool path length while respecting the criterion of the maximum scallop height. Theoretically, the tool path trajectories that remove the most material follow the directions in which the machined width is the largest. The free-form surface is often considered as a single machining area. Therefore, the optimization on the entire surface is limited. Indeed, it is difficult to define tool trajectories with optimal feed directions which generate largest machined widths. Another limiting point of previous approaches for effectively reduce machining time is the inadequate choice of the tool. Researchers use generally a spherical tool on the entire surface. However, the gains proposed by these different methods developed with these tools lead to relatively small time savings. Therefore, this study proposes a new method, using toroidal milling tools, for generating toolpaths in different regions on the machining surface. The surface is divided into several regions based on machining intervals. These intervals ensure that the effective radius of the tool, at each cutter-contact points on the surface, is always greater than the radius of the tool in an optimized feed direction. A parallel plane strategy is then used on the sub-surfaces with an optimal specific feed direction for each sub-surface. This method allows one to mill the entire surface with efficiency greater than with the use of a spherical tool. The proposed method is calculated and modeled using Maple software to find optimal regions and feed directions in each region. This new method is tested on a free-form surface. A comparison is made with a spherical cutter to show the significant gains obtained with a toroidal milling cutter. Comparisons with CAM software and experimental validations are also done. The results show the efficiency of the method.

  20. Design and Development of an Automatic Tool Changer for an Articulated Robot Arm

    NASA Astrophysics Data System (ADS)

    Ambrosio, H.; Karamanoglu, M.

    2014-07-01

    In the creative industries, the length of time between the ideation stage and the making of physical objects is decreasing due to the use of CAD/CAM systems and adicitive manufacturing. Natural anisotropic materials, such as solid wood can also be transformed using CAD/CAM systems, but only with subtractive processes such as machining with CNC routers. Whilst some 3 axis CNC routing machines are affordable to buy and widely available, more flexible 5 axis routing machines still present themselves as a too big investment for small companies. Small refurbished articulated robots can be a cheaper alternative but they require a light end-effector. This paper presents a new lightweight tool changer that converts a small 3kg payload 6 DOF robot into a robot apprentice able to machine wood and similar soft materials.

  1. Comparison between laser interferometric and calibrated artifacts for the geometric test of machine tools

    NASA Astrophysics Data System (ADS)

    Sousa, Andre R.; Schneider, Carlos A.

    2001-09-01

    A touch probe is used on a 3-axis vertical machine center to check against a hole plate, calibrated on a coordinate measuring machine (CMM). By comparing the results obtained from the machine tool and CMM, the main machine tool error components are measured, attesting the machine accuracy. The error values can b used also t update the error compensation table at the CNC, enhancing the machine accuracy. The method is easy to us, has a lower cost than classical test techniques, and preliminary results have shown that its uncertainty is comparable to well established techniques. In this paper the method is compared with the laser interferometric system, regarding reliability, cost and time efficiency.

  2. CFD Aided Design and Production of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Kaplan, Alper; Cetinturk, Huseyin; Demirel, Gizem; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    Hydraulic turbines are turbo machines which produce electricity from hydraulic energy. Francis type turbines are the most common one in use today. The design of these turbines requires high engineering effort since each turbine is tailor made due to different head and discharge. Therefore each component of the turbine is designed specifically. During the last decades, Computational Fluid Dynamics (CFD) has become very useful tool to predict hydraulic machinery performance and save time and money for designers. This paper describes a design methodology to optimize a Francis turbine by integrating theoretical and experimental fundamentals of hydraulic machines and commercial CFD codes. Specific turbines are designed and manufactured with the help of a collaborative CFD/CAD/CAM methodology based on computational fluid dynamics and five-axis machining for hydraulic electric power plants. The details are presented in this study. This study is financially supported by Turkish Ministry of Development.

  3. The dynamic analysis of drum roll lathe for machining of rollers

    NASA Astrophysics Data System (ADS)

    Qiao, Zheng; Wu, Dongxu; Wang, Bo; Li, Guo; Wang, Huiming; Ding, Fei

    2014-08-01

    An ultra-precision machine tool for machining of the roller has been designed and assembled, and due to the obvious impact which dynamic characteristic of machine tool has on the quality of microstructures on the roller surface, the dynamic characteristic of the existing machine tool is analyzed in this paper, so is the influence of circumstance that a large scale and slender roller is fixed in the machine on dynamic characteristic of the machine tool. At first, finite element model of the machine tool is built and simplified, and based on that, the paper carries on with the finite element mode analysis and gets the natural frequency and shaking type of four steps of the machine tool. According to the above model analysis results, the weak stiffness systems of machine tool can be further improved and the reasonable bandwidth of control system of the machine tool can be designed. In the end, considering the shock which is caused by Z axis as a result of fast positioning frequently to feeding system and cutting tool, transient analysis is conducted by means of ANSYS analysis in this paper. Based on the results of transient analysis, the vibration regularity of key components of machine tool and its impact on cutting process are explored respectively.

  4. Double diameter boring tool

    DOEpatents

    Ashbaugh, F.A.; Murry, K.R.

    1986-02-10

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  5. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  6. Double diameter boring tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashbaugh, F.A.; Murry, K.R.

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to themore » axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.« less

  7. Omega-X micromachining system

    DOEpatents

    Miller, Donald M.

    1978-01-01

    A micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nonometers (nm) and surface waviness of no more than 0.8 nm RMS. The omega axis, named for the angular measurement of the rotation of an eccentric mechanism supporting one end of a tool bar, enables the pulse increments of the tool toward the workpiece to be as little as 0 to 4.4 nm. A dedicated computer coordinates motion in the two axes to produce the workpiece contour. Inertia is reduced by reducing the mass pulsed toward the workpiece to about one-fifth of its former value. The tool system includes calibration instruments to calibrate the micromachining tool system. Backlash is reduced and flexing decreased by using a rotary table and servomotor to pulse the tool in the omega-axis instead of a ball screw mechanism. A thermally-stabilized spindle rotates the workpiece and is driven by a motor not mounted on the micromachining tool base through a torque-smoothing pulley and vibrationless rotary coupling. Abbe offset errors are almost eliminated by tool setting and calibration at spindle center height. Tool contour and workpiece contour are gaged on the machine; this enables the source of machining errors to be determined more readily, because the workpiece is gaged before its shape can be changed by removal from the machine.

  8. Diamond Machining of an Off-Axis Biconic Aspherical Mirror

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond G.; Preuss, Werner; Sohn, Alex; MacKenty, John

    2009-01-01

    Two diamond-machining methods have been developed as part of an effort to design and fabricate an off-axis, biconic ellipsoidal, concave aluminum mirror for an infrared spectrometer at the Kitt Peak National Observatory. Beyond this initial application, the methods can be expected to enable satisfaction of requirements for future instrument mirrors having increasingly complex (including asymmetrical), precise shapes that, heretofore, could not readily be fabricated by diamond machining or, in some cases, could not be fabricated at all. In the initial application, the mirror is prescribed, in terms of Cartesian coordinates x and y, by aperture dimensions of 94 by 76 mm, placements of -2 mm off axis in x and 227 mm off axis in y, an x radius of curvature of 377 mm, a y radius of curvature of 407 mm, an x conic constant of 0.078, and a y conic constant of 0.127. The aspect ratio of the mirror blank is about 6. One common, "diamond machining" process uses single-point diamond turning (SPDT). However, it is impossible to generate the required off-axis, biconic ellipsoidal shape by conventional SPDT because (1) rotational symmetry is an essential element of conventional SPDT and (2) the present off-axis biconic mirror shape lacks rotational symmetry. Following conventional practice, it would be necessary to make this mirror from a glass blank by computer-controlled polishing, which costs more than diamond machining and yields a mirror that is more difficult to mount to a metal bench. One of the two present diamond machining methods involves the use of an SPDT machine equipped with a fast tool servo (FTS). The SPDT machine is programmed to follow the rotationally symmetric asphere that best fits the desired off-axis, biconic ellipsoidal surface. The FTS is actuated in synchronism with the rotation of the SPDT machine to generate the difference between the desired surface and the best-fit rotationally symmetric asphere. In order to minimize the required stroke of the FTS, the blanks were positioned at a large off-axis distance and angle, and the axis of the FTS was not parallel to the axis of the spindle of the SPDT machine. The spindle was rotated at a speed of 120 rpm, and the maximum FTS speed was 8.2 mm/s.

  9. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, Thomas A.; Yetter, Harold H.

    1986-01-01

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  10. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, T.A.; Yetter, H.H.

    1985-01-30

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  11. Technology of machine tools. Volume 4. Machine tool controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.

  12. Technology of machine tools. Volume 3. Machine tool mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tlusty, J.

    1980-10-01

    The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.

  13. Technology of machine tools. Volume 5. Machine tool accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocken, R.J.

    1980-10-01

    The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.

  14. Interpolator for numerically controlled machine tools

    DOEpatents

    Bowers, Gary L.; Davenport, Clyde M.; Stephens, Albert E.

    1976-01-01

    A digital differential analyzer circuit is provided that depending on the embodiment chosen can carry out linear, parabolic, circular or cubic interpolation. In the embodiment for parabolic interpolations, the circuit provides pulse trains for the X and Y slide motors of a two-axis machine to effect tool motion along a parabolic path. The pulse trains are generated by the circuit in such a way that parabolic tool motion is obtained from information contained in only one block of binary input data. A part contour may be approximated by one or more parabolic arcs. Acceleration and initial velocity values from a data block are set in fixed bit size registers for each axis separately but simultaneously and the values are integrated to obtain the movement along the respective axis as a function of time. Integration is performed by continual addition at a specified rate of an integrand value stored in one register to the remainder temporarily stored in another identical size register. Overflows from the addition process are indicative of the integral. The overflow output pulses from the second integration may be applied to motors which position the respective machine slides according to a parabolic motion in time to produce a parabolic machine tool motion in space. An additional register for each axis is provided in the circuit to allow "floating" of the radix points of the integrand registers and the velocity increment to improve position accuracy and to reduce errors encountered when the acceleration integrand magnitudes are small when compared to the velocity integrands. A divider circuit is provided in the output of the circuit to smooth the output pulse spacing and prevent motor stall, because the overflow pulses produced in the binary addition process are spaced unevenly in time. The divider has the effect of passing only every nth motor drive pulse, with n being specifiable. The circuit inputs (integrands, rates, etc.) are scaled to give exactly n times the desired number of pulses out, in order to compensate for the divider.

  15. OPMILL - MICRO COMPUTER PROGRAMMING ENVIRONMENT FOR CNC MILLING MACHINES THREE AXIS EQUATION PLOTTING CAPABILITIES

    NASA Technical Reports Server (NTRS)

    Ray, R. B.

    1994-01-01

    OPMILL is a computer operating system for a Kearney and Trecker milling machine that provides a fast and easy way to program machine part manufacture with an IBM compatible PC. The program gives the machinist an "equation plotter" feature which plots any set of equations that define axis moves (up to three axes simultaneously) and converts those equations to a machine milling program that will move a cutter along a defined path. Other supported functions include: drill with peck, bolt circle, tap, mill arc, quarter circle, circle, circle 2 pass, frame, frame 2 pass, rotary frame, pocket, loop and repeat, and copy blocks. The system includes a tool manager that can handle up to 25 tools and automatically adjusts tool length for each tool. It will display all tool information and stop the milling machine at the appropriate time. Information for the program is entered via a series of menus and compiled to the Kearney and Trecker format. The program can then be loaded into the milling machine, the tool path graphically displayed, and tool change information or the program in Kearney and Trecker format viewed. The program has a complete file handling utility that allows the user to load the program into memory from the hard disk, save the program to the disk with comments, view directories, merge a program on the disk with one in memory, save a portion of a program in memory, and change directories. OPMILL was developed on an IBM PS/2 running DOS 3.3 with 1 MB of RAM. OPMILL was written for an IBM PC or compatible 8088 or 80286 machine connected via an RS-232 port to a Kearney and Trecker Data Mill 700/C Control milling machine. It requires a "D:" drive (fixed-disk or virtual), a browse or text display utility, and an EGA or better display. Users wishing to modify and recompile the source code will also need Turbo BASIC, Turbo C, and Crescent Software's QuickPak for Turbo BASIC. IBM PC and IBM PS/2 are registered trademarks of International Business Machines. Turbo BASIC and Turbo C are trademarks of Borland International.

  16. Sine-Bar Attachment For Machine Tools

    NASA Technical Reports Server (NTRS)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  17. Technology of machine tools. Volume 2. Machine tool systems management and utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, A.R.

    1980-10-01

    The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.

  18. Overview of the Machine-Tool Task Force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, G.P.

    1981-06-08

    The Machine Tool Task Force, (MTTF) surveyed the state of the art of machine tool technology for material removal for two and one-half years. This overview gives a brief summary of the approach, specific subjects covered, principal conclusions and some of the key recommendations aimed at improving the technology and advancing the productivity of machine tools. The Task Force consisted of 123 experts from the US and other countries. Their findings are documented in a five-volume report, Technology of Machine Tools.

  19. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    NASA Astrophysics Data System (ADS)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  20. Laser Measurements Based for Volumetric Accuracy Improvement of Multi-axis Systems

    NASA Astrophysics Data System (ADS)

    Vladimir, Sokolov; Konstantin, Basalaev

    The paper describes a new developed approach to CNC-controlled multi-axis systems geometric errors compensation based on optimal error correction strategy. Multi-axis CNC-controlled systems - machine-tools and CMM's are the basis of modern engineering industry. Similar design principles of both technological and measurement equipment allow usage of similar approaches to precision management. The approach based on geometric errors compensation are widely used at present time. The paper describes a system for compensation of geometric errors of multi-axis equipment based on the new approach. The hardware basis of the developed system is a multi-function laser interferometer. The principles of system's implementation, results of measurements and system's functioning simulation are described. The effectiveness of application of described principles to multi-axis equipment of different sizes and purposes for different machining directions and zones within workspace is presented. The concepts of optimal correction strategy is introduced and dynamic accuracy control is proposed.

  1. Volumetric Verification of Multiaxis Machine Tool Using Laser Tracker

    PubMed Central

    Aguilar, Juan José

    2014-01-01

    This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space. PMID:25202744

  2. Research on the magnetorheological finishing of large aperture off-axis aspheric optical surfaces for zinc sulfide

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Huang, Wen; Zheng, Yongcheng; Ji, Fang; Xu, Min; Duan, Zhixin; Luo, Qing; Liu, Qian; Xiao, Hong

    2016-03-01

    Zinc sulfide is a kind of typical infrared optical material, commonly produced using single point diamond turning (SPDT). SPDT can efficiently produce zinc sulfide aspheric surfaces with micro-roughness and acceptable figure error. However the tool marks left by the diamond turning process cause high micro-roughness that degrades the optical performance when used in the visible region of the spectrum. Magnetorheological finishing (MRF) is a deterministic, sub-aperture polishing technology that is very helpful in improving both surface micro-roughness and surface figure.This paper mainly investigates the MRF technology of large aperture off-axis aspheric optical surfaces for zinc sulfide. The topological structure and coordinate transformation of a MRF machine tool PKC1200Q2 are analyzed and its kinematics is calculated, then the post-processing algorithm model of MRF for an optical lens is established. By taking the post-processing of off-axis aspheric surfacefor example, a post-processing algorithm that can be used for a raster tool path is deduced and the errors produced by the approximate treatment are analyzed. A polishing algorithm of trajectory planning and dwell time based on matrix equation and optimization theory is presented in this paper. Adopting this algorithm an experiment is performed to machining a large-aperture off-axis aspheric surface on the MRF machine developed by ourselves. After several times' polishing, the figure accuracy PV is proved from 3.3λ to 2.0λ and RMS from 0.451λ to 0.327λ. This algorithm is used to polish the other shapes including spheres, aspheres and prisms.

  3. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    NASA Astrophysics Data System (ADS)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  4. The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping

    NASA Astrophysics Data System (ADS)

    Vopát, Tomáš; Peterka, Jozef; Kováč, Martin

    2014-12-01

    The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life) of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.

  5. Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn

    1987-01-01

    Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively loose tolerances) indicate an accuracy only 3 or 4 times that achieved by conventional two-axis contouring (10 AM as opposed to 3 pm rms) The successful completion of these projects demonstrates the successful application of three-axis contouring with the LOG. Toroidal cutters have also solved many of the drawbacks of spherical wheels. Work remains to be done in improving machine response and decreasing the contribution of backlash errors.

  6. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Berg, D. E.

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.

  7. X-Z-Theta cutting method

    DOEpatents

    Bieg, Lothar F.

    1993-01-12

    A method for machining a workpiece. The method includes the use of a rotary cutting tool mounted on the end of a movable arm. The arm is adapted to move in a plane perpendicular to the axis of rotation of the cutting tool. The cutting tool has cutting teeth to cut chips of material off of the workpiece in a predetermined size and shape to facilitate better removal of the chips from the workpiece. The teeth can be of different type and length to permit the tool to both rough cut and finish cut the workpiece during machining. The total depth of cut is divided by the number of tool teeth, so that the longest tool always performs the finishing cut.

  8. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    PubMed Central

    Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu

    2014-01-01

    The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features. PMID:24473281

  9. Technology of machine tools. Volume 1. Executive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, G.P.

    1980-10-01

    The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.

  10. Investigation of roughing machining simulation by using visual basic programming in NX CAM system

    NASA Astrophysics Data System (ADS)

    Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed

    2018-03-01

    This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.

  11. Modeling and analysis of dynamic characteristics of carrier system of machining center in MSC.Adams

    NASA Astrophysics Data System (ADS)

    Grinek, A. V.; Rybina, A. V.; Boychuk, I. P.; Dantsevich, I. M.; Hurtasenko, A. V.

    2018-03-01

    The simulation model with the help of vibration analysis was developed in MSC.Adams/Vibration and experimental research of the dynamic characteristics of a five-axis machining center was carried out. The amplitude-frequency characteristics, resonant frequencies in various directions are investigated. Dynamic and static rigidity, damping intensity and the coefficient of dynamism of the center are determined.

  12. Research on the EDM Technology for Micro-holes at Complex Spatial Locations

    NASA Astrophysics Data System (ADS)

    Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.

    2017-12-01

    For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.

  13. Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel

    NASA Astrophysics Data System (ADS)

    Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.

    2018-01-01

    Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.

  14. An Open-Access Educational Tool for Teaching Motion Dynamics in Multi-Axis Servomotor Control

    ERIC Educational Resources Information Center

    Rivera-Guillen, J. R.; de Jesus Rangel-Magdaleno, J.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R. A.; Guevara-Gonzalez, R. G.

    2012-01-01

    Servomotors are widely used in computerized numerically controlled (CNC) machines, hence motion control is a major topic covered in undergraduate/graduate engineering courses. Despite the fact that several syllabi include the motion dynamics topic in their courses, there are neither suitable tools available for designing and simulating multi-axis…

  15. Wear of Cutting Tool with Excel Geometry in Turning Process of Hardened Steel

    NASA Astrophysics Data System (ADS)

    Samardžiová, Michaela

    2016-09-01

    This paper deals with hard turning using a cutting tool with Xcel geometry. This is one of the new geometries, and there is not any information about Xcel wear in comparison to the conventional geometry. It is already known from cutting tools producers that using the Xcel geometry leads to higher quality of machined surface, perticularly surface roughness. It is possible to achieve more than 4 times lower Ra and Rz values after turning than after using conventional geometry with radius. The workpiece material was 100Cr6 hardened steel with hardness of 60 ± 1 HRC. The machine used for the experiment was a lathe with counter spindle DMG CTX alpha 500, which is located in the Centre of Excellence of 5-axis Machining at the Faculty of Materials Science and Technology in Trnava. The cutting tools made by CBN were obtained from Sandvik COROMANT Company. The aim of this paper is to investigate the cutting tool wear in hard turning process by the Xcel cutting tool geometry.

  16. A method which can enhance the optical-centering accuracy

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-min; Zhang, Xue-jun; Dai, Yi-dan; Yu, Tao; Duan, Jia-you; Li, Hua

    2014-09-01

    Optical alignment machining is an effective method to ensure the co-axiality of optical system. The co-axiality accuracy is determined by optical-centering accuracy of single optical unit, which is determined by the rotating accuracy of lathe and the optical-centering judgment accuracy. When the rotating accuracy of 0.2um can be achieved, the leading error can be ignored. An axis-determination tool which is based on the principle of auto-collimation can be used to determine the only position of centerscope is designed. The only position is the position where the optical axis of centerscope is coincided with the rotating axis of the lathe. Also a new optical-centering judgment method is presented. A system which includes the axis-determination tool and the new optical-centering judgment method can enhance the optical-centering accuracy to 0.003mm.

  17. User's manual for tooth contact analysis of face-milled spiral bevel gears with given machine-tool settings

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Zhang, YI; Chen, Jui-Sheng

    1991-01-01

    Research was performed to develop a computer program that will: (1) simulate the meshing and bearing contact for face milled spiral beval gears with given machine tool settings; and (2) to obtain the output, some of the data is required for hydrodynamic analysis. It is assumed that the machine tool settings and the blank data will be taken from the Gleason summaries. The theoretical aspects of the program are based on 'Local Synthesis and Tooth Contact Analysis of Face Mill Milled Spiral Bevel Gears'. The difference between the computer programs developed herein and the other one is as follows: (1) the mean contact point of tooth surfaces for gears with given machine tool settings must be determined iteratively, while parameters (H and V) are changed (H represents displacement along the pinion axis, V represents the gear displacement that is perpendicular to the plane drawn through the axes of the pinion and the gear of their initial positions), this means that when V differs from zero, the axis of the pionion and the gear are crossed but not intersected; (2) in addition to the regular output data (transmission errors and bearing contact), the new computer program provides information about the contacting force for each contact point and the sliding and the so-called rolling velocity. The following topics are covered: (1) instructions for the users as to how to insert the input data; (2) explanations regarding the output data; (3) numerical example; and (4) listing of the program.

  18. A novel AFM-based 5-axis nanoscale machine tool for fabrication of nanostructures on a micro ball

    NASA Astrophysics Data System (ADS)

    Geng, Yanquan; Wang, Yuzhang; Yan, Yongda; Zhao, Xuesen

    2017-11-01

    This paper presents a novel atomic force microscopy (AFM)-based 5-axis nanoscale machine tool developed to fabricate nanostructures on different annuli of the micro ball. Different nanostructures can be obtained by combining the scratching trajectory of the AFM tip with the movement of the high precision air-bearing spindle. The center of the micro ball is aligned to be coincided with the gyration center of the high precision to guarantee the machining process during the rotating of the air-bearing spindle. Processing on different annuli of the micro ball is achieved by controlling the distance between the center of the micro ball and the rotation center of the AFM head. Nanostructures including square cavities, circular cavities, triangular cavities, and an annular nanochannel are machined successfully on the three different circumferences of a micro ball with a diameter of 1500 μm. Moreover, the influences of the error motions of the high precision air-bearing spindle and the eccentric between the micro ball and the gyration center of the high precision air-bearing spindle on the processing position error on the micro ball are also investigated. This proposed machining method has the potential to prepare the inertial confinement fusion target with the expected dimension defects, which would advance the application of the AFM tip-based nanomachining approach.

  19. How DARHT Works - the World's Most Powerful X-ray Machine

    ScienceCinema

    None

    2018-06-01

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.

  20. A new measuring method for motion accuracy of 3-axis NC equipments based on composite trajectory of circle and non-circle

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Du, Zhengchun; Yang, Jiangguo; Hong, Maisheng

    2011-12-01

    Geometric motion error measurement has been considered as an important task for accuracy enhancement and quality assurance of NC machine tools and CMMs. In consideration of the disadvantages of traditional measuring methods,a new measuring method for motion accuracy of 3-axis NC equipments based on composite trajectory including circle and non-circle(straight line and/or polygonal line) is proposed. The principles and techniques of the new measuring method are discussed in detail. 8 feasible measuring strategies based on different measuring groupings are summarized and optimized. The experiment of the most preferable strategy is carried out on the 3-axis CNC vertical machining center Cincinnati 750 Arrow by using cross grid encoder. The whole measuring time of 21 error components of the new method is cut down to 1-2 h because of easy installation, adjustment, operation and the characteristics of non-contact measurement. Result shows that the new method is suitable for `on machine" measurement and has good prospects of wide application.

  1. System technology for laser-assisted milling with tool integrated optics

    NASA Astrophysics Data System (ADS)

    Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian

    2013-02-01

    High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.

  2. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  3. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C [Cambridge, MA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.

    2009-08-18

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. One or more position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  4. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    NASA Astrophysics Data System (ADS)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  5. Development of sacrificial support fixture using deflection analysis

    NASA Astrophysics Data System (ADS)

    Ramteke, Ashwini M.; Ashtankar, Kishor M.

    2018-04-01

    Sacrificial support fixtures are the structures used to hold the part during machining while rotating the part about the fourth axis of CNC machining. In Four axis CNC machining part is held in a indexer which is rotated about the fourth axis of rotation. So using traditional fixturing devices to hold the part during machining such as jigs, v blocks and clamping plates needs a several set ups, manufacturing time which increase the cost associated with it. Since the part is rotated about the axis of rotation in four axis CNC machining so using traditional fixturing devices to hold the part while machining we need to reorient the fixture each time for particular orientation of part about the axis of rotation. So our proposed methodology of fixture design eliminates the cost associate with the complicated fixture design for customized parts which in turn reduces the time of manufacturing of the fixtures. But while designing the layout of the fixtures it is found out that the machining the part using four axis CNC machining the accurate machining of the part is directly proportional to the deflection produced in a part. So to machine an accurate part the deflection produced in a part should be minimum. We assume that the deflection produced in a part is a result of the deflection produced in a sacrificial support fixture while machining. So this paper provides the study of the deflection checking in a part machined using sacrificial support fixture by using FEA analysis.

  6. New method to control form and texture on industrially-sized lenses

    NASA Astrophysics Data System (ADS)

    Walker, D. D.

    2003-05-01

    Summary This paper provides a progress-report on the development of the Precessions polishing process. This is a new small-tool polishing technique for producing aspheric forms and correcting spherical forms. Precessions polishing has been developed by Zeeko Ltd in collaboration with the Optical Science Laboratory at University College London and Loh Optikmaschinen. The Zeeko/Loh All machine (see figure below) has a capacity of 200mm diameter, and is targeted at industrial lenses and mirrors. The baseline of the PrecessionsTM process is a sub-diameter physical tool working the surface with a polishing slurry. Position and orientation of the tooling is controlled by a 7-axis CNC polishing machine that has been custom-designed for the purpose. The tool comprises an inflated, bulged, rubber-membrane (the 'bonnet'), covered with one of the usual proprietary flexible polishing surfaces familiar to opticians. The membrane moulds itself around the local asphere, keeping good contact everywhere. It is spun about its axis to give high removal-rates, and attacks the surface of the part working on the side of the bulged surface, rather than the classical pole-down configuration. The contact area and polishing pressure can be varied independently by changing the degree to which the bonnet is compressed, and the internal fluid pressure. The rotation axis is precessed around the local normal to the part, and this averages surface texture and achieves a near-Gaussian tool removal-profile (Influence function'). For axially-symmetric parts, the part is rotated and the tool moved radially, thereby creating a spiral tool-path. An off- line software application analyses i) the surface error-profile, and ii) experimental data on the tool influence functions for different spot-sizes. An iterative numerical optimisation method is then used to compute the dwell-time and spot- size for each zone of the spiral on the surface, to rectify the form error.

  7. Design and optimize of 3-axis filament winding machine

    NASA Astrophysics Data System (ADS)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  8. Micro-CT Evaluation of Ceramic Inlays: Comparison of the Marginal and Internal Fit of Five and Three Axis CAM Systems with a Heat Press Technique.

    PubMed

    Alajaji, Norah K; Bardwell, David; Finkelman, Matthew; Ali, Ala

    2017-02-01

    To evaluate the marginal and internal adaptation of CAD/CAM lithium-disilicate inlay restorations fabricated by two milling systems (Five and Three-axis), and a traditional heat-press technique. Fifteen premolar teeth with an MOD cavity preparation were fabricated. Lithium-disilicate inlay restorations were obtained by three fabrication techniques and fitted to their dies (n = 15/gp) as follows: Group-1, three-axis milling system, Group-2, five-axis milling system, Group-3, conventional heat-press technique. Gaps were evaluated by X-ray microtomography. Marginal gap (MG), occlusal-marginal gap (OMG), proximal-marginal gap (PMG), gingival-marginal gap (GMG), absolute marginal discrepancy (AMD), axial-internal gap (AIG), and occlusal-internal gap (OIG) were evaluated at 120 different points per inlay. Data were analyzed using repeated measures ANOVA. Pairwise comparisons were conducted for post-hoc testes and the Bonferroni correction was used to adjust for multiple comparisons (α = 0.007). The heat-press group demonstrated significantly smaller mean-values amongst all outcomes compared with CAD/CAM groups except for GMG, where there was no statistically significant difference between groups in the ANOVA (p = 0.042). Within the CAD/CAM groups, the five-axis group showed significantly lower OMG mean-value compared with the three-axis group p < 0.001, and lower AIG mean-value compared with the three-axis group p < 0.001. There was no significant difference between the five-axis and the three-axis groups' AMD, MG, PMG, and OIG locations. Different fabrication techniques affected the marginal and internal adaptation of ceramic inlay restorations. The heat-press group showed the best marginal and internal adaptation results; however, in every group, all samples were within the clinically acceptable MG limit (100 μm). The marginal fit and internal adaptation of inlay ceramic restorations fabricated by a five-axis milling system have not been tested or compared with those fabricated by three-axis machines and the conventional heat-press method. The preferred method of inlay fabrication, whether in the lab or chair side, may be influenced by the results of this study and could affect future clinical decision-making. (J Esthet Restor Dent 29:49-58, 2017). © 2016 Wiley Periodicals, Inc.

  9. Analysis of machining accuracy during free form surface milling simulation for different milling strategies

    NASA Astrophysics Data System (ADS)

    Matras, A.; Kowalczyk, R.

    2014-11-01

    The analysis results of machining accuracy after the free form surface milling simulations (based on machining EN AW- 7075 alloys) for different machining strategies (Level Z, Radial, Square, Circular) are presented in the work. Particular milling simulations were performed using CAD/CAM Esprit software. The accuracy of obtained allowance is defined as a difference between the theoretical surface of work piece element (the surface designed in CAD software) and the machined surface after a milling simulation. The difference between two surfaces describes a value of roughness, which is as the result of tool shape mapping on the machined surface. Accuracy of the left allowance notifies in direct way a surface quality after the finish machining. Described methodology of usage CAD/CAM software can to let improve a time design of machining process for a free form surface milling by a 5-axis CNC milling machine with omitting to perform the item on a milling machine in order to measure the machining accuracy for the selected strategies and cutting data.

  10. Fabrication of micro-lens array on convex surface by meaning of micro-milling

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin

    2014-08-01

    In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.

  11. Ultra-high surface speed for metal removal, artillery shell

    NASA Astrophysics Data System (ADS)

    Pugh, R. F.; Walsh, M. R.; Pohl, R. F.

    1981-07-01

    Four types of steel (AISI 1340, 4140, 4340, and HF-1) which are commonly used in large caliber projectile manufacture were machined with five types of tools at different hardness ranges representing the as-forged and the heat-treated condition. Results show that machining speeds can be increased significantly over current practice using the present available tooling.

  12. Personal manufacturing systems

    NASA Astrophysics Data System (ADS)

    Bailey, P.

    1992-04-01

    Personal Manufacturing Systems are the missing link in the automation of the design-to- manufacture process. A PMS will act as a CAD peripheral, closing the loop around the designer enabling him to directly produce models, short production runs or soft tooling with as little fuss as he might otherwise plot a drawing. Whereas conventional 5-axis CNC machines are based on orthogonal axes and simple incremental movements, the PMS is based on a geodetic structure and complex co-ordinated 'spline' movements. The software employs a novel 3D pixel technique for give itself 'spatial awareness' and an expert system to determine the optimum machining conditions. A completely automatic machining strategy can then be determined.

  13. Ion beam figuring of high-slope surfaces based on figure error compensation algorithm.

    PubMed

    Dai, Yifan; Liao, Wenlin; Zhou, Lin; Chen, Shanyong; Xie, Xuhui

    2010-12-01

    In a deterministic figuring process, it is critical to guarantee high stability of the removal function as well as the accuracy of the dwell time solution, which directly influence the convergence of the figuring process. Hence, when figuring steep optics, the ion beam is required to keep a perpendicular incidence, and a five-axis figuring machine is typically utilized. In this paper, however, a method for high-precision figuring of high-slope optics is proposed with a linear three-axis machine, allowing for inclined beam incidence. First, the changing rule of the removal function and the normal removal rate with the incidence angle is analyzed according to the removal characteristics of ion beam figuring (IBF). Then, we propose to reduce the influence of varying removal function and projection distortion on the dwell time solution by means of figure error compensation. Consequently, the incident ion beam is allowed to keep parallel to the optical axis. Simulations and experiments are given to verify the removal analysis. Finally, a figuring experiment is conducted on a linear three-axis IBF machine, which proves the validity of the method for high-slope surfaces. It takes two iterations and about 9 min to successfully figure a fused silica sample, whose aperture is 21.3 mm and radius of curvature is 16 mm. The root-mean-square figure error of the convex surface is reduced from 13.13 to 5.86 nm.

  14. Fabrication and correction of freeform surface based on Zernike polynomials by slow tool servo

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan-Chieh; Hsu, Ming-Ying; Peng, Wei-Jei; Hsu, Wei-Yao

    2017-10-01

    Recently, freeform surface widely using to the optical system; because it is have advance of optical image and freedom available to improve the optical performance. For freeform optical fabrication by integrating freeform optical design, precision freeform manufacture, metrology freeform optics and freeform compensate method, to modify the form deviation of surface, due to production process of freeform lens ,compared and provides more flexibilities and better performance. This paper focuses on the fabrication and correction of the free-form surface. In this study, optical freeform surface using multi-axis ultra-precision manufacturing could be upgrading the quality of freeform. It is a machine equipped with a positioning C-axis and has the CXZ machining function which is also called slow tool servo (STS) function. The freeform compensate method of Zernike polynomials results successfully verified; it is correction the form deviation of freeform surface. Finally, the freeform surface are measured experimentally by Ultrahigh Accurate 3D Profilometer (UA3P), compensate the freeform form error with Zernike polynomial fitting to improve the form accuracy of freeform.

  15. Machinability of IPS Empress 2 framework ceramic.

    PubMed

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.

  16. Methods for the Precise Locating and Forming of Arrays of Curved Features into a Workpiece

    DOEpatents

    Gill, David Dennis; Keeler, Gordon A.; Serkland, Darwin K.; Mukherjee, Sayan D.

    2008-10-14

    Methods for manufacturing high precision arrays of curved features (e.g. lenses) in the surface of a workpiece are described utilizing orthogonal sets of inter-fitting locating grooves to mate a workpiece to a workpiece holder mounted to the spindle face of a rotating machine tool. The matching inter-fitting groove sets in the workpiece and the chuck allow precisely and non-kinematically indexing the workpiece to locations defined in two orthogonal directions perpendicular to the turning axis of the machine tool. At each location on the workpiece a curved feature can then be on-center machined to create arrays of curved features on the workpiece. The averaging effect of the corresponding sets of inter-fitting grooves provide for precise repeatability in determining, the relative locations of the centers of each of the curved features in an array of curved features.

  17. Proceedings of the IMOG (Interagency Manufacturing Operations Group) Numerical Systems Group. 62nd Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, G.J.

    1993-10-01

    This document contains the proceedings of the 62nd Interagency Manufacturing Operations Group (IMOG) Numerical Systems Group. Included are the minutes of the 61st meeting and the agenda for the 62nd meeting. Presentations at the meeting are provided in the appendices to this document. Presentations were: 1992 NSG Annual Report to IMOG Steering Committee; Charter for the IMOG Numerical Systems Group; Y-12 Coordinate Measuring Machine Training Project; IBH NC Controller; Automatically Programmed Metrology Update; Certification of Anvil-5000 for Production Use at the Y-12 Plant; Accord Project; Sandia National Laboratories {open_quotes}Accord{close_quotes}; Demo/Anvil Tool Path Generation 5-Axis; Demo/Video Machine/Robot Animation Dynamics; Demo/Certification ofmore » Anvil Tool Path Generation; Tour of the M-60 Inspection Machine; Distributed Numerical Control Certification; Spline Usage Method; Y-12 NC Engineering Status; and Y-12 Manufacturing CAD Systems.« less

  18. A new milling machine for computer-aided, in-office restorations.

    PubMed

    Kurbad, Andreas

    Chairside computer-aided design/computer-aided manufacturing (CAD/CAM) technology requires an effective technical basis to obtain dental restorations with optimal marginal accuracy, esthetics, and longevity in as short a timeframe as possible. This article describes a compact, 5-axis milling machine based on an innovative milling technology (5XT - five-axis turn-milling technique), which is capable of achieving high-precision milling results within a very short processing time. Furthermore, the device's compact dimensioning and state-of-the-art mode of operation facilitate its use in the dental office. This model is also an option to be considered for use in smaller dental laboratories, especially as the open input format enables it to be quickly and simply integrated into digital processing systems already in use. The possibility of using ceramic and polymer materials with varying properties enables the manufacture of restorations covering all conceivable indications in the field of fixed dental prosthetics.

  19. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  20. Bench Work and Support Operations, Machine Shop Work--Intermediate: 9555.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline has been prepared as a guide to assist the instructor to plan systematically and to present meaningful lessons programmed to meet the necessary training needed by the machine shop student who has completed an introductory course in machine tool technology. The five blocks of instruction contained in this outline are designed to…

  1. Development and Implementation of a Simplified Tool Measuring System

    NASA Astrophysics Data System (ADS)

    Chen, Jenn-Yih; Lee, Bean-Yin; Lee, Kuang-Chyi; Chen, Zhao-Kai

    2010-01-01

    This paper presents a simplified system for measuring geometric profiles of end mills. Firstly, a CCD camera was used to capture images of cutting tools. Then, an image acquisition card with the encoding function was adopted to convert the source of image into an USB port of a PC, and the image could be shown on a monitor. In addition, two linear scales were mounted on the X-Y table for positioning and measuring purposes. The signals of the linear scales were transmitted into a 4-axis quadrature encoder with 4-channel counter card for position monitoring. The C++ Builder was utilized for designing the user friendly human machine interface of the measuring system of tools. There is a cross line on the image of the interface to show a coordinate for the position measurement. Finally, a well-known tool measuring and inspection machine was employed for the measuring standard. This study compares the difference of the measuring results by using the machine and the proposed system. Experimental results show that the percentage of measuring error is acceptable for some geometric parameters of the square or ball nose end mills. Therefore, the results demonstrate the effectiveness of the presented approach.

  2. Deployment and evaluation of a dual-sensor autofocusing method for on-machine measurement of patterns of small holes on freeform surfaces.

    PubMed

    Chen, Xiaomei; Longstaff, Andrew; Fletcher, Simon; Myers, Alan

    2014-04-01

    This paper presents and evaluates an active dual-sensor autofocusing system that combines an optical vision sensor and a tactile probe for autofocusing on arrays of small holes on freeform surfaces. The system has been tested on a two-axis test rig and then integrated onto a three-axis computer numerical control (CNC) milling machine, where the aim is to rapidly and controllably measure the hole position errors while the part is still on the machine. The principle of operation is for the tactile probe to locate the nominal positions of holes, and the optical vision sensor follows to focus and capture the images of the holes. The images are then processed to provide hole position measurement. In this paper, the autofocusing deviations are analyzed. First, the deviations caused by the geometric errors of the axes on which the dual-sensor unit is deployed are estimated to be 11 μm when deployed on a test rig and 7 μm on the CNC machine tool. Subsequently, the autofocusing deviations caused by the interaction of the tactile probe, surface, and small hole are mathematically analyzed and evaluated. The deviations are a result of the tactile probe radius, the curvatures at the positions where small holes are drilled on the freeform surface, and the effect of the position error of the hole on focusing. An example case study is provided for the measurement of a pattern of small holes on an elliptical cylinder on the two machines. The absolute sum of the autofocusing deviations is 118 μm on the test rig and 144 μm on the machine tool. This is much less than the 500 μm depth of field of the optical microscope. Therefore, the method is capable of capturing a group of clear images of the small holes on this workpiece for either implementation.

  3. SU-E-T-473: A Patient-Specific QC Paradigm Based On Trajectory Log Files and DICOM Plan Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMarco, J; McCloskey, S; Low, D

    Purpose: To evaluate a remote QC tool for monitoring treatment machine parameters and treatment workflow. Methods: The Varian TrueBeamTM linear accelerator is a digital machine that records machine axis parameters and MLC leaf positions as a function of delivered monitor unit or control point. This information is saved to a binary trajectory log file for every treatment or imaging field in the patient treatment session. A MATLAB analysis routine was developed to parse the trajectory log files for a given patient, compare the expected versus actual machine and MLC positions as well as perform a cross-comparison with the DICOM-RT planmore » file exported from the treatment planning system. The parsing routine sorts the trajectory log files based on the time and date stamp and generates a sequential report file listing treatment parameters and provides a match relative to the DICOM-RT plan file. Results: The trajectory log parsing-routine was compared against a standard record and verify listing for patients undergoing initial IMRT dosimetry verification and weekly and final chart QC. The complete treatment course was independently verified for 10 patients of varying treatment site and a total of 1267 treatment fields were evaluated including pre-treatment imaging fields where applicable. In the context of IMRT plan verification, eight prostate SBRT plans with 4-arcs per plan were evaluated based on expected versus actual machine axis parameters. The average value for the maximum RMS MLC error was 0.067±0.001mm and 0.066±0.002mm for leaf bank A and B respectively. Conclusion: A real-time QC analysis program was tested using trajectory log files and DICOM-RT plan files. The parsing routine is efficient and able to evaluate all relevant machine axis parameters during a patient treatment course including MLC leaf positions and table positions at time of image acquisition and during treatment.« less

  4. How to Anchor Machinery in Your School Shop

    ERIC Educational Resources Information Center

    Walker, John R.

    1978-01-01

    An industrial arts teacher explains the need to mount school shop machinery securely and describes methods of mounting permanently or temporarily. Reasons for anchoring machine tools are safety, accuracy of operation, and the prevention of damage to the machine. Five figures illustrate anchoring and leveling. (MF)

  5. Filament winding technique, experiment and simulation analysis on tubular structure

    NASA Astrophysics Data System (ADS)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  6. Geometrical accuracy of metallic objects produced with additive or subtractive manufacturing: A comparative in vitro study.

    PubMed

    Braian, Michael; Jönsson, David; Kevci, Mir; Wennerberg, Ann

    2018-07-01

    To evaluate the accuracy and precision of objects produced by additive manufacturing systems (AM) for use in dentistry and to compare with subtractive manufacturing systems (SM). Ten specimens of two geometrical objects were produced by five different AM machines and one SM machine. Object A mimics an inlay-shaped object, while object B imitates a four-unit bridge model. All the objects were sorted into different measurement dimensions (x, y, z), linear distances, angles and corner radius. None of the additive manufacturing or subtractive manufacturing groups presented a perfect match to the CAD file with regard to all parameters included in the present study. Considering linear measurements, the precision for subtractive manufacturing group was consistent in all axes for object A, presenting results of <0.050mm. The additive manufacturing groups had consistent precision in the x-axis and y-axis but not in the z-axis. With regard to corner radius measurements, the SM group had the best overall accuracy and precision for both objects A and B when compared to the AM groups. Within the limitations of this in vitro study, the conclusion can be made that subtractive manufacturing presented overall precision on all measurements below 0.050mm. The AM machines also presented fairly good precision, <0.150mm, on all axes except for the z-axis. Knowledge regarding accuracy and precision for different production techniques utilized in dentistry is of great clinical importance. The dental community has moved from casting to milling and additive techniques are now being implemented. Thus all these production techniques need to be tested, compared and validated. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  7. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  8. Springback effects during single point incremental forming: Optimization of the tool path

    NASA Astrophysics Data System (ADS)

    Giraud-Moreau, Laurence; Belchior, Jérémy; Lafon, Pascal; Lotoing, Lionel; Cherouat, Abel; Courtielle, Eric; Guines, Dominique; Maurine, Patrick

    2018-05-01

    Incremental sheet forming is an emerging process to manufacture sheet metal parts. This process is more flexible than conventional one and well suited for small batch production or prototyping. During the process, the sheet metal blank is clamped by a blank-holder and a small-size smooth-end hemispherical tool moves along a user-specified path to deform the sheet incrementally. Classical three-axis CNC milling machines, dedicated structure or serial robots can be used to perform the forming operation. Whatever the considered machine, large deviations between the theoretical shape and the real shape can be observed after the part unclamping. These deviations are due to both the lack of stiffness of the machine and residual stresses in the part at the end of the forming stage. In this paper, an optimization strategy of the tool path is proposed in order to minimize the elastic springback induced by residual stresses after unclamping. A finite element model of the SPIF process allowing the shape prediction of the formed part with a good accuracy is defined. This model, based on appropriated assumptions, leads to calculation times which remain compatible with an optimization procedure. The proposed optimization method is based on an iterative correction of the tool path. The efficiency of the method is shown by an improvement of the final shape.

  9. Means and method of balancing multi-cylinder reciprocating machines

    DOEpatents

    Corey, John A.; Walsh, Michael M.

    1985-01-01

    A virtual balancing axis arrangement is described for multi-cylinder reciprocating piston machines for effectively balancing out imbalanced forces and minimizing residual imbalance moments acting on the crankshaft of such machines without requiring the use of additional parallel-arrayed balancing shafts or complex and expensive gear arrangements. The novel virtual balancing axis arrangement is capable of being designed into multi-cylinder reciprocating piston and crankshaft machines for substantially reducing vibrations induced during operation of such machines with only minimal number of additional component parts. Some of the required component parts may be available from parts already required for operation of auxiliary equipment, such as oil and water pumps used in certain types of reciprocating piston and crankshaft machine so that by appropriate location and dimensioning in accordance with the teachings of the invention, the virtual balancing axis arrangement can be built into the machine at little or no additional cost.

  10. A Five-Factor Model framework for understanding childhood personality disorder antecedents.

    PubMed

    De Clercq, Barbara; De Fruyt, Filip

    2012-12-01

    The present contribution reviews evidence that supports the relevance of childhood antecedents of personality disorders, and advocates that the validity of a Five-Factor Model framework for describing general trait differences in childhood can be extended towards the field of developmental personality difficulties. In addition, we suggest that several traditional childhood Axis I conditions include a substantial trait component that may be responsible for the recurring finding that childhood Axis I disorders are predictive for adult Axis II disorders. Given the valuable information provided by a trait assessment, we further propose to integrate dimensional personality and personality pathology measures as standard tools in mental health assessments at a young age. © 2012 The Authors. Journal of Personality © 2012, Wiley Periodicals, Inc.

  11. Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant

    NASA Astrophysics Data System (ADS)

    Schopf, C.; Rascher, R.

    2016-11-01

    The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.

  12. FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.

    PubMed

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used.

  13. TU-FG-201-05: Varian MPC as a Statistical Process Control Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, A; Rowbottom, C

    Purpose: Quality assurance in radiotherapy requires the measurement of various machine parameters to ensure they remain within permitted values over time. In Truebeam release 2.0 the Machine Performance Check (MPC) was released allowing beam output and machine axis movements to be assessed in a single test. We aim to evaluate the Varian Machine Performance Check (MPC) as a tool for Statistical Process Control (SPC). Methods: Varian’s MPC tool was used on three Truebeam and one EDGE linac for a period of approximately one year. MPC was commissioned against independent systems. After this period the data were reviewed to determine whethermore » or not the MPC was useful as a process control tool. Analyses on individual tests were analysed using Shewhart control plots, using Matlab for analysis. Principal component analysis was used to determine if a multivariate model was of any benefit in analysing the data. Results: Control charts were found to be useful to detect beam output changes, worn T-nuts and jaw calibration issues. Upper and lower control limits were defined at the 95% level. Multivariate SPC was performed using Principal Component Analysis. We found little evidence of clustering beyond that which might be naively expected such as beam uniformity and beam output. Whilst this makes multivariate analysis of little use it suggests that each test is giving independent information. Conclusion: The variety of independent parameters tested in MPC makes it a sensitive tool for routine machine QA. We have determined that using control charts in our QA programme would rapidly detect changes in machine performance. The use of control charts allows large quantities of tests to be performed on all linacs without visual inspection of all results. The use of control limits alerts users when data are inconsistent with previous measurements before they become out of specification. A. Carver has received a speaker’s honorarium from Varian.« less

  14. Robotic inspection of fiber reinforced composites using phased array UT

    NASA Astrophysics Data System (ADS)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  15. Strategies for single-point diamond machining a large format germanium blazed immersion grating

    NASA Astrophysics Data System (ADS)

    Montesanti, R. C.; Little, S. L.; Kuzmenko, P. J.; Bixler, J. V.; Jackson, J. L.; Lown, J. G.; Priest, R. E.; Yoxall, B. E.

    2016-07-01

    A large format germanium immersion grating was flycut with a single-point diamond tool on the Precision Engineering Research Lathe (PERL) at the Lawrence Livermore National Laboratory (LLNL) in November - December 2015. The grating, referred to as 002u, has an area of 59 mm x 67 mm (along-groove and cross-groove directions), line pitch of 88 line/mm, and blaze angle of 32 degree. Based on total groove length, the 002u grating is five times larger than the previous largest grating (ZnSe) cut on PERL, and forty-five times larger than the previous largest germanium grating cut on PERL. The key risks associated with cutting the 002u grating were tool wear and keeping the PERL machine running uninterrupted in a stable machining environment. This paper presents the strategies employed to mitigate these risks, introduces pre-machining of the as-etched grating substrate to produce a smooth, flat, damage-free surface into which the grooves are cut, and reports on trade-offs that drove decisions and experimental results.

  16. Development of large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Baldwin, D. H.; Kennard, J.

    1985-01-01

    A program to develop large, horizontal-axis wind turbines is discussed. The program is directed toward developing the technology for safe, reliable, environmentally acceptable large wind turbines that can generate a significant amount of electricity at costs competitive with those of conventional electricity-generating systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Several ongoing projects in large-wind-turbine development are directed toward meeting the technology requirements for utility applications. The machines based on first-generation technology (Mod-OA and Mod-1) successfully completed their planned periods of experimental operation in June, 1982. The second-generation machines (Mod-2) are in operation at selected utility sites. A third-generation machine (Mod-5) is under contract. Erection and initial operation of the Mod-5 in Hawaii should take place in 1986. Each successive generation of technology increased reliability and energy capture while reducing the cost of electricity. These advances are being made by gaining a better understanding of the system-design drivers, improving the analytical design tools, verifying design methods with operating field data, and incorporating new technology and innovative designs. Information is given on the results from the first- and second-generation machines (Mod-OA, - 1, and -2), the status of the Department of Interior, and the status of the third-generation wind turbine (Mod-5).

  17. An experimental investigation on orthogonal cutting of hybrid CFRP/Ti stacks

    NASA Astrophysics Data System (ADS)

    Xu, Jinyang; El Mansori, Mohamed

    2016-10-01

    Hybrid CFRP/Ti stack has been widely used in the modern aerospace industry owing to its superior mechanical/physical properties and excellent structural functions. Several applications require mechanical machining of these hybrid composite stacks in order to achieve dimensional accuracy and assembly performance. However, machining of such composite-to-metal alliance is usually an extremely challenging task in the manufacturing sectors due to the disparate natures of each stacked constituent and their respective poor machinability. Special issues may arise from the high force/heat generation, severe subsurface damage and rapid tool wear. To study the fundamental mechanisms controlling the bi-material machining, this paper presented an experimental study on orthogonal cutting of hybrid CFRP/Ti stack by using superior polycrystalline diamond (PCD) tipped tools. The utilized cutting parameters for hybrid CFRP/Ti machining were rigorously adopted through a compromise selection due to the disparate machinability behaviors of the CFRP laminate and Ti alloy. The key cutting responses in terms of cutting force generation, machined surface quality and tool wear mechanism were precisely addressed. The experimental results highlighted the involved five stages of CFRP/Ti cutting and the predominant crater wear and edge fracture failure governing the PCD cutting process.

  18. FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts

    PubMed Central

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used. PMID:22319304

  19. Evaluating the accuracy of tooth color measurement by combining the Munsell color system and dental colorimeter.

    PubMed

    Chang, Jiun-Yao; Chen, Wen-Cheng; Huang, Ta-Ko; Wang, Jen-Chyan; Fu, Po-Sung; Chen, Jeng-Huey; Hung, Chun-Cheng

    2012-09-01

    As we pay increasing attention to dental aesthetics, tooth color matching has become an important part of daily dental practice. This aim of this study was to develop a method to enhance the accuracy of a tooth color matching machine. The Munsell color tabs in the range of natural human teeth were measured using a tooth color measuring machine (ShadeEye NCC). The machine's accuracy was analyzed using an analysis of variance test and a Tukey post-hoc test. When matching the Munsell color tabs with the ShadeEye NCC colorimeter, settings of Chroma greater than 6 and Value less than 4 showed unacceptable clinical results. When the CIELAB mode was used, the a* value (which represents the red-green axis in the Commission Internationale de l'Eclairage color space) made no significant difference (p=0.84), the L* value (which represents the lightness) resulted in a negative correlation, and the b* value (which represents the yellow-blue axis) resulted in a positive correlation with ΔE. When the Munsell color tabs and the Vitapan were measured in the same mode and compared, the inaccuracies showed that the Vitapan was not a proper tool for evaluating the stability and accuracy of ShadeEye NCC. By knowing the limitations of the machine, we evaluated the data using the Munsell color tabs; shade beyond the acceptable range should be reevaluated using a visual shade matching method, or if measured by another machine, this shade range should be covered to obtain more accurate results. Copyright © 2012. Published by Elsevier B.V.

  20. Influence of tumor location on the intensity-modulated radiation therapy plan of helical tomotherapy.

    PubMed

    Xu, Yingjie; Yan, Hui; Hu, Zhihui; Ma, Pan; Men, Kuo; Huang, Peng; Ren, Wenting; Dai, Jianrong; Li, Yexiong

    2017-01-01

    Given the design of the Helical TomoTherapy device, the patient's central axis is routinely aligned with the machine's rotational axis to prevent the patient's body from colliding with the machine walls. However, for treatment of tumors located away from the patient's central axis, this position may not be optimal as the adequate radiation dose may not reach the affected site. Our study aimed to investigate the influence of tumor location on dose quality and delivery efficiency of tomotherapy plans. A phantom and 15 patients were selected for this study. Two plans, A and B, were implemented for each case. In plan A, the patient's central axis was aligned with the machine's rotational axis, whereas in plan B, the center of the planning target volume (PTV) was aligned with the machine's rotational axis. Both plans were optimized with the same planning parameters, and the dose quality of the plans was evaluated using dosimetrics. The delivery efficiency was determined from delivery time and monitor units (MUs). A paired t-test or nonparametric Wilcoxon signed-rank test was performed for statistical comparison. In the phantom study, the median delivery times were 358 and 336 seconds for plans A and B, respectively, and this difference was significant (p = 0.005). In the patient study, the median delivery times were 348 and 317 seconds for plans A and B, respectively, and this difference was also significant (p = 0.001). The dose qualities of both plans for each patient were nearly identical. No significant differences were found in the conformal index, heterogeneity index, and mean dose delivered to normal tissue between the plans. Both phantom and patient studies showed that for normal-sized patients, the delivery time reduced as the distance between the PTV and the patient's central axis increased when the PTV center was aligned with the machine axis. In conclusion, aligning the PTV center with the machine's rotational axis by shifting the patient during tomotherapy reduces the delivery time without compromising the dose quality of intensity-modulated radiation therapy. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  1. Vibration Damping Analysis of Lightweight Structures in Machine Tools

    PubMed Central

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2017-01-01

    The dynamic behaviour of a machine tool (MT) directly influences the machining performance. The adoption of lightweight structures may reduce the effects of undesired vibrations and increase the workpiece quality. This paper aims to present and compare a set of hybrid materials that may be excellent candidates to fabricate the MT moving parts. The selected materials have high dynamic characteristics and capacity to dampen mechanical vibrations. In this way, starting from the kinematic model of a milling machine, this study evaluates a number of prototypes made of Al foam sandwiches (AFS), Al corrugated sandwiches (ACS) and composite materials reinforced by carbon fibres (CFRP). These prototypes represented the Z-axis ram of a commercial milling machine. The static and dynamical properties have been analysed by using both finite element (FE) simulations and experimental tests. The obtained results show that the proposed structures may be a valid alternative to the conventional materials of MT moving parts, increasing machining performance. In particular, the AFS prototype highlighted a damping ratio that is 20 times greater than a conventional ram (e.g., steel). Its application is particularly suitable to minimize unwanted oscillations during high-speed finishing operations. The results also show that the CFRP structure guarantees high stiffness with a weight reduced by 48.5%, suggesting effective applications in roughing operations, saving MT energy consumption. The ACS structure has a good trade-off between stiffness and damping and may represent a further alternative, if correctly evaluated. PMID:28772653

  2. Full Dynamic Reactions in the Basic Shaft Bearings of Big Band Saw Machines

    NASA Astrophysics Data System (ADS)

    Marinov, Boycho

    2013-03-01

    The band saws machines are a certain class woodworking machines for longitudinal or transversal cutting as well as for curvilinear wood cutting. These machines saw the wood through a band-saw blade and two feeding wheels. These wheels usually are very large and they are produced with inaccuracies. The centre of mass of the disc is displaced from the axis of rotation of the distance e (eccentricity) and the axis of the disk makes an angle with the axis of rotation. In this paper, the dy- namic reactions in the bearings of the basic shaft, which drives the band saw machines, are analyzed. These reactions are caused by the external loading and the kinematics and the mass characteristics of the rotating disk. The expressions for the full dynamic reactions are obtained. These expressions allow the parameters of the machines to be chosen in such a way that the loading in the shaft and the bearings to be minimal.

  3. Support Vector Machines Model of Computed Tomography for Assessing Lymph Node Metastasis in Esophageal Cancer with Neoadjuvant Chemotherapy.

    PubMed

    Wang, Zhi-Long; Zhou, Zhi-Guo; Chen, Ying; Li, Xiao-Ting; Sun, Ying-Shi

    The aim of this study was to diagnose lymph node metastasis of esophageal cancer by support vector machines model based on computed tomography. A total of 131 esophageal cancer patients with preoperative chemotherapy and radical surgery were included. Various indicators (tumor thickness, tumor length, tumor CT value, total number of lymph nodes, and long axis and short axis sizes of largest lymph node) on CT images before and after neoadjuvant chemotherapy were recorded. A support vector machines model based on these CT indicators was built to predict lymph node metastasis. Support vector machines model diagnosed lymph node metastasis better than preoperative short axis size of largest lymph node on CT. The area under the receiver operating characteristic curves were 0.887 and 0.705, respectively. The support vector machine model of CT images can help diagnose lymph node metastasis in esophageal cancer with preoperative chemotherapy.

  4. SU-G-TeP2-04: Comprehensive Machine Isocenter Evaluation with Separation of Gantry, Collimator, and Table Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, S; Clements, C; Hyer, D

    2016-06-15

    Purpose: To develop and demonstrate application of a method that characterizes deviation of linac x-ray beams from the centroid of the volumetric radiation isocenter as a function of gantry, collimator, and table variables. Methods: A set of Winston-Lutz ball-bearing images was used to determine the gantry radiation isocenter as the midrange of deviation values resulting from gantry and collimator rotation. Also determined were displacement of table axis from gantry isocenter and recommended table axis adjustment. The method, previously reported, has been extended to include the effect of collimator walkout by obtaining measurements with 0 and 180 degree collimator rotation formore » each gantry angle. Twelve images were used to characterize the volumetric isocenter for the full range of available gantry, collimator, and table rotations. Results: Three Varian True Beam, two Elekta Infinity and four Versa HD linacs at five institutions were tested using identical methodology. Varian linacs exhibited substantially less deviation due to head sag than Elekta linacs (0.4 mm vs. 1.2 mm on average). One linac from each manufacturer had additional isocenter deviation of 0.3 to 0.4 mm due to jaw instability with gantry and collimator rotation. For all linacs, the achievable isocenter tolerance was dependent on adjustment of collimator position offset, transverse position steering, and alignment of the table axis with gantry isocenter, facilitated by these test results. The pattern and magnitude of table axis wobble vs. table angle was reproducible and unique to each machine. Conclusion: This new method provides a comprehensive set of isocenter deviation values including all variables. It effectively facilitates minimization of deviation between beam center and target (ball-bearing) position. This method was used to quantify the effect of jaw instability on isocenter deviation and to identify the offending jaw. The test is suitable for incorporation into a routine machine QA program. Software development was performed by Radiological Imaging Technology, Inc.« less

  5. DUV-microscope objectives: technology driver that forces the production to switch from the micrometer scale to the nanometer scale

    NASA Astrophysics Data System (ADS)

    Sure, Thomas; Bauer, Tobias; Heil, Joachim; Wesner, Joachim

    2005-10-01

    Cemented doublets and triplets can not be used for objectives working at wavelengths of 248 nm and shorter, because the optical cement can not withstand the high photon energies. It will be shown that high NA deep UV objectives can be designed and built successfully with the help of air spaced doublets. Assuring Strehl ratios above 95% enforces very tight tolerances. For example the distance error of the lens vertex to its mount has to be less than 1 μm. This calls for a new manufacturing precision never realized before in series production. We show how a white light Mirau interferometer can be used to measure lens vertex positions with an accuracy of 200 nm. We also demonstrate how the fine-tuning process can be optimized by using a "simulated star test", where the point-spread function is calculated in real time with a FFT-algorithm from the optical path difference data, acquired by a Twyman-Green interferometer. To realize the required precision, today various measurement techniques and production processes are used. Picking up the subgroups on different machining tools and measurement systems will loosen the accuracy. Here, we present the concept and the layout of a new manufacturing tool where we implemented the different measurement techniques needed in one CNC machining center. This tool is able to 1) adjust automatically the optical axis of the subgroups related to the machining axis better than 0.5 μm with the help of the stick-slip effect where a mechanical impulse is transferred by an electromagnetically driven hammer, 2) measure the lens vertex relative to the shoulder of the mount with an accuracy of 250 nm and 3) do all steps which are necessary to process the lens mount within the accuracies described above.

  6. Simulating The Technological Movements Of The Equipment Used For Manufacturing Prosthetic Devices Using 3D Models

    NASA Astrophysics Data System (ADS)

    Chicea, Anca-Lucia

    2015-09-01

    The paper presents the process of building geometric and kinematic models of a technological equipment used in the process of manufacturing devices. First, the process of building the model for a six axes industrial robot is presented. In the second part of the paper, the process of building the model for a five-axis CNC milling machining center is also shown. Both models can be used for accurate cutting processes simulation of complex parts, such as prosthetic devices.

  7. Diamond fly cutting of aluminum thermal infrared flat mirrors for the OSIRIS-REx Thermal Emission Spectrometer (OTES) instrument

    NASA Astrophysics Data System (ADS)

    Groppi, Christopher E.; Underhill, Matthew; Farkas, Zoltan; Pelham, Daniel

    2016-07-01

    We present the fabrication and measurement of monolithic aluminum flat mirrors designed to operate in the thermal infrared for the OSIRIS-Rex Thermal Emission Spectrometer (OTES) space instrument. The mirrors were cut using a conventional fly cutter with a large radius diamond cutting tool on a high precision Kern Evo 3-axis CNC milling machine. The mirrors were measured to have less than 150 angstroms RMS surface error.

  8. Review on CNC-Rapid Prototyping

    NASA Astrophysics Data System (ADS)

    Z, M. Nafis O.; Y, Nafrizuan M.; A, Munira M.; J, Kartina

    2012-09-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  9. Prediction and Optimization of Phase Transformation Region After Spot Continual Induction Hardening Process Using Response Surface Method

    NASA Astrophysics Data System (ADS)

    Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Chen, Xuliang; Wang, Zhou

    2017-09-01

    The spot continual induction hardening (SCIH) process, which is a modified induction hardening, can be assembled to a five-axis cooperating computer numerical control machine tool to strengthen more than one small area or relatively large area on complicated component surface. In this study, a response surface method was presented to optimize phase transformation region after the SCIH process. The effects of five process parameters including feed velocity, input power, gap, curvature and flow rate on temperature, microstructure, microhardness and phase transformation geometry were investigated. Central composition design, a second-order response surface design, was employed to systematically estimate the empirical models of temperature and phase transformation geometry. The analysis results indicated that feed velocity has a dominant effect on the uniformity of microstructure and microhardness, domain size, oxidized track width, phase transformation width and height in the SCIH process while curvature has the largest effect on center temperature in the design space. The optimum operating conditions with 0.817, 0.845 and 0.773 of desirability values are expected to be able to minimize ratio (tempering region) and maximize phase transformation width for concave, flat and convex surface workpieces, respectively. The verification result indicated that the process parameters obtained by the model were reliable.

  10. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    NASA Astrophysics Data System (ADS)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-12-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  11. Novel method for fabrication of monolithic multi-cavity molds and wafer optics

    NASA Astrophysics Data System (ADS)

    Wielandts, Marc; Wielandts, Remi

    2015-10-01

    One lens at a time on axis diamond turning or grinding of lens arrays with a large number of lenses is conventionally impractical because of the difficulties to shift and balance the substrate for each lens position. A novel method for automatic indexing was developed. This method uses an innovative mechatronics tooling (patent pending) that allows dynamic indexing at constant work spindle speed for maximum productivity and thermal stability of the work spindle while the balancing condition is maintained. In this paper we shall compare the machining capabilities of this method to free-form machining techniques, discuss about the main issues, present the concept and design of the working prototype and specific test bed, and present the results of the first cutting tests.

  12. Simultaneous Independent Control of Tool Axial Force and Temperature in Friction Stir Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Kenneth A.; Grant, Glenn J.; Darsell, Jens T.

    Maintaining consistent tool depth relative to the part surface is a critical requirement for many Friction stir processing (FSP) applications. Force control is often used with the goal of obtaining a constant weld depth. When force control is used, if weld temperature decreases, flow stress increases and the tool is pushed up. If weld temperature increases, flow stress decreases and the tool dives. These variations in tool depth and weld temperature cause various types of weld defects. Robust temperature control for FSP maintains a commanded temperature through control of the spindle axis only. Robust temperature control and force control aremore » completely decoupled in control logic and machine motion. This results in stable temperature, force and tool depth despite the presence of geometric and thermal disturbances. Performance of this control method is presented for various weld paths and alloy systems.« less

  13. Horizontal EDNA miner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Justice, J.C.; Delli-Gatti, F.A.

    1985-12-03

    A mining machine is utilized for making original generally horizontal bores in coal seams, and for enlarging preexisting bores. A single cutting head is mounted for rotation about a first horizontal axis generally perpendicular to the dimension of elongation of the horizontal bore, and is pivotal about a second horizontal axis, parallel to the first axis, to change its cutting, vertical position within the bore. A non-rotatable body member, with side wall supports, is mounted posteriorly of the cutting head, and includes a conveyor mechanism and a power mechanism operatively connected to it. The machine can be sumped into amore » bore and then the cutting head rotated about the second axis to change the vertical position thereof, and then moved rearwardly, any cut material being continuously conveyed to the bore mouth by the conveyor mechanism. The amount of vertical movement during the pivoting action about the second axis is controlled in response to the automatic sensing of the thickness of the coal seam in which the machine operates.« less

  14. Influence of Moisture Content and Compression Axis on Physico-mechanical Properties of Shorea robusta Seeds

    NASA Astrophysics Data System (ADS)

    Shashikumar, C.; Pradhan, R. C.; Mishra, S.

    2018-06-01

    Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.

  15. Influence of Moisture Content and Compression Axis on Physico-mechanical Properties of Shorea robusta Seeds

    NASA Astrophysics Data System (ADS)

    Shashikumar, C.; Pradhan, R. C.; Mishra, S.

    2018-02-01

    Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Z; Tang, X; Song, Y

    Purpose: To investigate the long term stability and viability of using EPID-based daily output QA via in-house and vendor driven protocol, to replace conventional QA tools and improve QA efficiency. Methods: Two Varian TrueBeam machines (TB1&TB2) equipped with electronic portal imaging devices (EPID) were employed in this study. Both machines were calibrated per TG-51 and used clinically since Oct 2014. Daily output measurement for 6/15 MV beams were obtained using SunNuclear DailyQA3 device as part of morning QA. In addition, in-house protocol was implemented for EPID output measurement (10×10 cm fields, 100 MU, 100cm SID, output defined over an ROImore » of 2×2 cm around central axis). Moreover, the Varian Machine Performance Check (MPC) was used on both machines to measure machine output. The EPID and DailyQA3 based measurements of the relative machine output were compared and cross-correlated with monthly machine output as measured by an A12 Exradin 0.65cc Ion Chamber (IC) serving as ground truth. The results were correlated using Pearson test. Results: The correlations among DailyQA3, in-house EPID and Varian MPC output measurements, with the IC for 6/15 MV were similar for TB1 (0.83–0.95) and TB2 (0.55–0.67). The machine output for the 6/15MV beams on both machines showed a similar trend, namely an increase over time as indicated by all measurements, requiring a machine recalibration after 6 months. This drift is due to a known issue with pressurized monitor chamber which tends to leak over time. MPC failed occasionally but passed when repeated. Conclusion: The results indicate that the use of EPID for daily output measurements has the potential to become a viable and efficient tool for daily routine LINAC QA, thus eliminating weather (T,P) and human setup variability and increasing efficiency of the QA process.« less

  17. Diagnostic Machine Learning Models for Acute Abdominal Pain: Towards an e-Learning Tool for Medical Students.

    PubMed

    Khumrin, Piyapong; Ryan, Anna; Judd, Terry; Verspoor, Karin

    2017-01-01

    Computer-aided learning systems (e-learning systems) can help medical students gain more experience with diagnostic reasoning and decision making. Within this context, providing feedback that matches students' needs (i.e. personalised feedback) is both critical and challenging. In this paper, we describe the development of a machine learning model to support medical students' diagnostic decisions. Machine learning models were trained on 208 clinical cases presenting with abdominal pain, to predict five diagnoses. We assessed which of these models are likely to be most effective for use in an e-learning tool that allows students to interact with a virtual patient. The broader goal is to utilise these models to generate personalised feedback based on the specific patient information requested by students and their active diagnostic hypotheses.

  18. Application of reverse engineering in the production of individual dental abutments.

    NASA Astrophysics Data System (ADS)

    Yunusov, A. V.; Kashapov, R. N.; Kashapov, L. N.; Statsenko, E. O.

    2017-09-01

    The purpose of the research is to develop a method of manufacturing individual dental abutments for a variety of dental implants. System of industrial X-ray microtomography Phoenix V|tome|X S 240 has been applied for creation of highly accurate model of the dental abutment. Scanning of dental abutment and the optimization of model was produced. The program of milling the individual abutment with a standard conical neck of hexagon was produced for the five-axis milling machine imes - icore 450i from the materials titanium and zirconium oxide.

  19. High-precision processing and detection of the high-caliber off-axis aspheric mirror

    NASA Astrophysics Data System (ADS)

    Dai, Chen; Li, Ang; Xu, Lingdi; Zhang, Yingjie

    2017-10-01

    To achieve the efficient, controllable, digital processing and high-precision detection of the high-caliber off-axis aspheric mirror, meeting the high-level development needs of the modern high-resolution, large field of space optical remote sensing camera, we carried out the research on high precision machining and testing technology of off-axis aspheric mirror. First, we forming the off-axis aspheric sample with diameter of 574mm × 302mm by milling it with milling machine, and then the intelligent robot equipment was used for off-axis aspheric high precision polishing. Surface detection of the sample will be proceed with the off-axis aspheric contact contour detection technology and offaxis non-spherical surface interference detection technology after its fine polishing using ion beam equipment. The final surface accuracy RMS is 12nm.

  20. Robotic System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A complicated design project, successfully carried out by New York manufacturing consultant with help from NERAC, Inc., resulted in new type robotic system being marketed for industrial use. Consultant Robert Price, operating at E.S.I, Inc. in Albany, NY, sought help from NERAC to develop an automated tool for deburring the inside of 8 inch breech ring assemblies for howitzers produced by Watervliet Arsenal. NERAC conducted a search of the NASA data base and six others. From information supplied, Price designed a system consisting of a standard industrial robot arm, with a specially engineered six-axis deburring tool fitted to it. A microcomputer and computer program direct the tool on its path through the breech ring. E.S.I. markets the system to aerospace and metal cutting industries for deburring, drilling, routing and refining machined parts.

  1. Robotic Manufacturing of 18-ft (5.5m) Diameter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket

    NASA Technical Reports Server (NTRS)

    Jones, Ronald E.; Carter, Robert W.

    2012-01-01

    The Ares I rocket was the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's Constellation program. A series of full-scale Ares I development articles were constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7- axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This paper will focus on the friction stir welding of 18-ft (5.5m) diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome and two common bulkhead manufacturing development articles.

  2. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  3. Power-Factor and Torque Calculation under Consideration of Cross Saturation of the Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong T; Burress, Timothy A; Tolbert, Leon M

    2009-01-01

    This paper introduces a new method for calculating the power factor and output torque by considering the cross saturation between direct-axis (d-axis) and quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux atmore » high speed, which was developed for the traction motor of a hybrid electric vehicle. The conventional two-axis IPMSM model was modified to include the cross-saturation effect by adding the cross-coupled inductance terms Ldq and Lqd. By the advantage of the excited structure of the experimental IPMSM, the analyzing works were performed under two conditions, the highest and lowest excited conditions. Therefore, it is possible to investigate the cross-saturation effect when a machine has higher magnetic flux from its rotor. The following is a summary of conclusions that may be drawn from this work: (1) Considering cross saturation of an IPMSM offers more accurate expected values of motor parameters in output torque calculation, especially when negative d-axis current is high; (2) A less saturated synchronous machine could be more affected by the cross-coupled saturation effect; (3) Both cross-coupled inductances, L{sub qd} and L{sub dq}, are mainly governed by d-axis current rather than q-axis current; (4) The modified torque equation, can be used for the dynamic model of an IPMSM for developing a better control model or control strategy; and (5) It is possible that the brushless field excitation structure has a common magnetic flux path on both d- and q-axis, and as a result, the reluctance torque of the machine could be reduced.« less

  4. Electromagnetic variable degrees of freedom actuator systems and methods

    DOEpatents

    Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.

    2009-02-17

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  5. A Comparative Study with RapidMiner and WEKA Tools over some Classification Techniques for SMS Spam

    NASA Astrophysics Data System (ADS)

    Foozy, Cik Feresa Mohd; Ahmad, Rabiah; Faizal Abdollah, M. A.; Chai Wen, Chuah

    2017-08-01

    SMS Spamming is a serious attack that can manipulate the use of the SMS by spreading the advertisement in bulk. By sending the unwanted SMS that contain advertisement can make the users feeling disturb and this against the privacy of the mobile users. To overcome these issues, many studies have proposed to detect SMS Spam by using data mining tools. This paper will do a comparative study using five machine learning techniques such as Naïve Bayes, K-NN (K-Nearest Neighbour Algorithm), Decision Tree, Random Forest and Decision Stumps to observe the accuracy result between RapidMiner and WEKA for dataset SMS Spam UCI Machine Learning repository.

  6. A new wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.

    1975-01-01

    It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.

  7. Computerized Manufacturing Automation. Employment, Education, and the Workplace. Summary.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    The application of programmable automation (PA) offers new opportunities to enhance and streamline manufacturing processes. Five PA technologies are examined in this report: computer-aided design, robots, numerically controlled machine tools, flexible manufacturing systems, and computer-integrated manufacturing. Each technology is in a relatively…

  8. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    NASA Astrophysics Data System (ADS)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  9. New Single Piece Blast Hardware design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Andri; Steinzig, Michael Louis; Aragon, Daniel Adrian

    W, Q and PF engineers and machinists designed and fabricated, on the new Mazak i300, the first Single Piece Blast Hardware (unclassified design shown) reducing fabrication and inspection time by over 50%. The first DU Single Piece is completed and will be used for Hydro Test 3680. Past hydro tests used a twopiece assembly due to a lack of equipment capable of machining the complex saddle shape in a single piece. The i300 provides turning and milling 5-axis machining on one machine. The milling head on the i300 can machine past 90 relative to the spindle axis. This makes itmore » possible to machine the complex saddle surface on a single piece. Going to a single piece eliminates tolerance problems, such as tilting and eccentricity, that typically occurred when assembling the two pieces together« less

  10. Turbo test rig with hydroinertia air bearings for a palmtop gas turbine

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Isomura, Kousuke; Togo, Shin-ichi; Esashi, Masayoshi

    2004-11-01

    This paper describes a turbo test rig to test the compressor of a palmtop gas turbine generator at low temperature (<100 °C). Impellers are 10 mm in diameter and have three-dimensional blades machined using a five-axis NC milling machine. Hydroinertia bearings are employed in both radial and axial directions. The performance of the compressor was measured at 50% (435 000 rpm) and 60% (530 000 rpm) of the rated rotational speed (870 000 rpm) by driving a turbine using compressed air at room temperature. The measured pressure ratio is lower than the predicted value. This could be mainly because impeller tip clearance was larger than the designed value. The measured adiabatic efficiency is unrealistically high due to heat dissipation from compressed air. During acceleration toward the rated rotational speed, a shaft crashed to the bearing at 566 000 rpm due to whirl. At that time, the whirl ratio was 8.

  11. USSR Report Machine Tools and Metalworking Equipment

    DTIC Science & Technology

    1986-02-13

    greater part of the meat-milk and food industry, particularly, to bread-making, canning and confectionery industries. One can- not do without assembling...competitiveness in the foreign market . An analysis of the national economic development plan for 1984 and the first four years of the current five

  12. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes

    PubMed Central

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-01

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes. PMID:26751451

  13. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes.

    PubMed

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-07

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.

  14. Development of Friction Stir Welding Technologies for In-Space Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhurst, William R.; Cox, Chase D.; Gibson, Brian T.

    Friction stir welding (FSW) has emerged as an attractive process for fabricating aerospace vehicles. Current FSW state-of-the-art uses large machines that are not portable. However, there is a growing need for fabrication and repair operations associated with in-space manufacturing. This need stems from a desire for prolonged missions and travel beyond low-earth orbit. To address this need, research and development is presented regarding two enabling technologies. The first is a self-adjusting and aligning (SAA) FSW tool that drastically reduces the axial force that has historically been quite large. The SAA-FSW tool is a bobbin style tool that floats freely, withoutmore » any external actuators, along its vertical axis to adjust and align with the workpiece s position and orientation. Successful butt welding of 1/8 in. (3.175 mm) thick aluminum 1100 was achieved in conjunction with a drastic reduction and near elimination of the axial process force. Along with the SAA-FSW, an innovative in-process monitor technique is presented in which a magnetoelastic force rate-of-change sensor is employed. The sensor consists of a magnetized FSW tool that is used to induce a voltage in a coil surrounding the tool when changes to the process forces occur. The sensor was able to detect 1/16 in. (1.5875 mm) diameter voids. It is concluded that these technologies could be applied toward the development of a portable FSW machine for use in space.« less

  15. Development of Friction Stir Welding Technologies for In-Space Manufacturing

    DOE PAGES

    Longhurst, William R.; Cox, Chase D.; Gibson, Brian T.; ...

    2016-08-26

    Friction stir welding (FSW) has emerged as an attractive process for fabricating aerospace vehicles. Current FSW state-of-the-art uses large machines that are not portable. However, there is a growing need for fabrication and repair operations associated with in-space manufacturing. This need stems from a desire for prolonged missions and travel beyond low-earth orbit. To address this need, research and development is presented regarding two enabling technologies. The first is a self-adjusting and aligning (SAA) FSW tool that drastically reduces the axial force that has historically been quite large. The SAA-FSW tool is a bobbin style tool that floats freely, withoutmore » any external actuators, along its vertical axis to adjust and align with the workpiece s position and orientation. Successful butt welding of 1/8 in. (3.175 mm) thick aluminum 1100 was achieved in conjunction with a drastic reduction and near elimination of the axial process force. Along with the SAA-FSW, an innovative in-process monitor technique is presented in which a magnetoelastic force rate-of-change sensor is employed. The sensor consists of a magnetized FSW tool that is used to induce a voltage in a coil surrounding the tool when changes to the process forces occur. The sensor was able to detect 1/16 in. (1.5875 mm) diameter voids. It is concluded that these technologies could be applied toward the development of a portable FSW machine for use in space.« less

  16. Applied Physics Modules Selected for Manufacturing and Metal Technologies.

    ERIC Educational Resources Information Center

    Waring, Gene

    Designed for individualized use in an applied physics course in postsecondary vocational-technical education, this series of eighteen learning modules is equivalent to the content of two quarters of a five-credit hour class in manufacturing engineering technology, machine tool and design technology, welding technology, and industrial plastics…

  17. Linear and angular retroreflecting interferometric alignment target

    DOEpatents

    Maxey, L. Curtis

    2001-01-01

    The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.

  18. Aerodynamic potpourri

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1981-01-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  19. Comparative hybrid and digital simulation studies of the behaviour of a wind generator equipped with a static frequency converter

    NASA Astrophysics Data System (ADS)

    Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.

    1988-01-01

    This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.

  20. A consideration of the operation of automatic production machines.

    PubMed

    Hoshi, Toshiro; Sugimoto, Noboru

    2015-01-01

    At worksites, various automatic production machines are in use to release workers from muscular labor or labor in the detrimental environment. On the other hand, a large number of industrial accidents have been caused by automatic production machines. In view of this, this paper considers the operation of automatic production machines from the viewpoint of accident prevention, and points out two types of machine operation - operation for which quick performance is required (operation that is not permitted to be delayed) - and operation for which composed performance is required (operation that is not permitted to be performed in haste). These operations are distinguished by operation buttons of suitable colors and shapes. This paper shows that these characteristics are evaluated as "asymmetric on the time-axis". Here, in order for workers to accept the risk of automatic production machines, it is preconditioned in general that harm should be sufficiently small or avoidance of harm is easy. In this connection, this paper shows the possibility of facilitating the acceptance of the risk of automatic production machines by enhancing the asymmetric on the time-axis.

  1. Double diameter boring tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashbaugh, F.N.; Murry, K.R.

    A method of boring two concentric holes of different depths is described utilizing an elongated boring tool having a tool axis of rotation, a longitudinally disposed tool centerline axis, and first and second transverse cutting edges at one end thereof extending across the boring tool, the second cutting edge being longitudinally rearwardly recessed with respect to the first cutting edge. The method consists of inserting the boring tool into an adjustable boring head, adjusting a distance B between the tool centerline axis and the tool axis of rotation such that the tool axis of rotation intersects a first boring areamore » of the first cutting edge; and boring the concentric holes having respectively larger and smaller diameters.« less

  2. Axis: Generating Explanations at Scale with Learnersourcing and Machine Learning

    ERIC Educational Resources Information Center

    Williams, Joseph Jay; Kim, Juho; Rafferty, Anna; Heffernan, Neil; Maldonado, Samuel; Gajos, Krzysztof Z.; Lasecki, Walter S.; Heffernan, Neil

    2016-01-01

    While explanations may help people learn by providing information about why an answer is correct, many problems on online platforms lack high-quality explanations. This paper presents AXIS (Adaptive eXplanation Improvement System), a system for obtaining explanations. AXIS asks learners to generate, revise, and evaluate explanations as they solve…

  3. NASA Tech Briefs, October 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Insect-Inspired Optical-Flow Navigation Sensors; Chemical Sensors Based on Optical Ring Resonators; A Broad-Band Phase-Contrast Wave-Front Sensor; Progress in Insect-Inspired Optical Navigation Sensors; Portable Airborne Laser System Measures Forest-Canopy Height; Deployable Wide-Aperture Array Antennas; Faster Evolution of More Multifunctional Logic Circuits; Video-Camera-Based Position-Measuring System; N-Type delta Doping of High-Purity Silicon Imaging Arrays; Avionics System Architecture Tool; Updated Chemical Kinetics and Sensitivity Analysis Code; Predicting Flutter and Forced Response in Turbomachinery; Upgrades of Two Computer Codes for Analysis of Turbomachinery; Program Facilitates CMMI Appraisals; Grid Visualization Tool; Program Computes Sound Pressures at Rocket Launches; Solar-System Ephemeris Toolbox; Data-Acquisition Software for PSP/TSP Wind-Tunnel Cameras; Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating; Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts; Making Activated Carbon for Storing Gas; System Regulates the Water Contents of Fuel-Cell Streams; Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig; Modifications of Fabrication of Vibratory Microgyroscopes; Chamber for Growing and Observing Fungi; Electroporation System for Sterilizing Water; Thermoelectric Air/Soil Energy-Harvesting Device; Flexible Metal-Fabric Radiators; Actuated Hybrid Mirror Telescope; Optical Design of an Optical Communications Terminal; Algorithm for Identifying Erroneous Rain-Gauge Readings; Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads; Lightweight Thermal Insulation for a Liquid-Oxygen Tank; Stellar Gyroscope for Determining Attitude of a Spacecraft; and Lifting Mechanism for the Mars Explorer Rover.

  4. System and method for incremental forming

    DOEpatents

    Beltran, Michael; Cao, Jian; Roth, John T.

    2015-12-29

    A system includes a frame configured to hold a workpiece and first and second tool positioning assemblies configured to be opposed to each other on opposite sides of the workpiece. The first and second tool positioning assemblies each include a toolholder configured to secure a tool to the tool positioning assembly, a first axis assembly, a second axis assembly, and a third axis assembly. The first, second, and third axis assemblies are each configured to articulate the toolholder along a respective axis. Each axis assembly includes first and second guides extending generally parallel to the corresponding axis and disposed on opposing sides of the toolholder with respect to the corresponding axis. Each axis assembly includes first and second carriages articulable along the first and second guides of the axis assembly, respectively, in the direction of the corresponding axis.

  5. Multi-winding homopolar electric machine

    DOEpatents

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  6. An investigation of chatter and tool wear when machining titanium

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1974-01-01

    The low thermal conductivity of titanium, together with the low contact area between chip and tool and the unusually high chip velocities, gives rise to high tool tip temperatures and accelerated tool wear. Machining speeds have to be considerably reduced to avoid these high temperatures with a consequential loss of productivity. Restoring this lost productivity involves increasing other machining variables, such as feed and depth-of-cut, and can lead to another machining problem commonly known as chatter. This work is to acquaint users with these problems, to examine the variables that may be encountered when machining a material like titanium, and to advise the machine tool user on how to maximize the output from the machines and tooling available to him. Recommendations are made on ways of improving tolerances, reducing machine tool instability or chatter, and improving productivity. New tool materials, tool coatings, and coolants are reviewed and their relevance examined when machining titanium.

  7. Sub-cell turning to accomplish micron-level alignment of precision assemblies

    NASA Astrophysics Data System (ADS)

    Kumler, James J.; Buss, Christian

    2017-08-01

    Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.

  8. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    NASA Astrophysics Data System (ADS)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  9. Study of Various Slanted Air-Gap Structures of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, Leon M; Lee, Seong T

    2010-01-01

    This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as amore » result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).« less

  10. Study on Parallel 2-DOF Rotation Machanism in Radar

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Hu, Xuelong; Liu, Lei; Yu, Yunfei

    The spherical parallel machine has become the world's academic and industrial focus of the field in recent years due to its simple and economical manufacture as well as its structural compactness especially suitable for areas where space gesture changes. This paper dwells upon its present research and development home and abroad. The newer machine (RGRR-II) can rotate around the axis z within 360° and the axis y1 from -90° to +90°. It has the advantages such as less moving parts (only 3 parts), larger ratio of work space to machine size, zero mechanic coupling, no singularity. Constructing rotation machine with spherical parallel 2-DOF rotation join (RGRR-II) may realize semispherical movement with zero dead point and extent the range. Control card (PA8000NT Series CNC) is installed in the computer. The card can run the corresponding software which realizes radar movement control. The machine meets the need of radars in plane and satellite which require larger detection range, lighter weight and compacter structure.

  11. A One-Axis-Controlled Magnetic Bearing and Its Performance

    NASA Astrophysics Data System (ADS)

    Li, Lichuan; Shinshi, Tadahiko; Kuroki, Jiro; Shimokohbe, Akira

    Magnetic bearings (MBs) are complex machines in which sensors and controllers must be used to stabilize the rotor. A standard MB requires active control of five motion axes, imposing significant complexity and high cost. In this paper we report a very simple MB and its experimental testing. In this MB, the rotor is stabilized by active control of only one motion axis. The other four motion axes are passively stabilized by permanent magnets and appropriate magnetic circuit design. In rotor radial translational motion, which is passively stabilized, a resonant frequency of 205Hz is achieved for a rotor mass of 11.5×10-3kg. This MB features virtually zero control current and zero rotor iron loss (hysteresis and eddy current losses). Although the rotational speed and accuracy are limited by the resonance of passively stabilized axes, the MB is still suitable for applications where cost is critical but performance is not, such as cooling fans and auxiliary support for aerodynamic bearings.

  12. The determination of the direction of the optic axis of uniaxial crystalline materials

    NASA Technical Reports Server (NTRS)

    Lock, J. A.; Schock, H. J.; Regan, C. A.

    1986-01-01

    The birefringence of crystalline substances in general, and of sapphire in particular, is described. A test is described whose purpose is to determine the direction of the optic axis of a cylindrically machined single crystal of sapphire. This test was performed on the NASA Lewis sapphire cylinder and it was found that the optic axis made an angle of 18 deg with the axis of symmetry of the cylinder.

  13. Torque ripple reduction in electric machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Patel Bhageerath; Huh, Kum-Kang; El-Refaie, Ayman Mohamed Fawzi

    An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machinemore » is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator.« less

  14. Study on super-long deep-hole drilling of titanium alloy.

    PubMed

    Liu, Zhanfeng; Liu, Yanshu; Han, Xiaolan; Zheng, Wencui

    2018-01-01

    In this study, the super-long deep-hole drilling of a titanium alloy was investigated. According to material properties of the titanium alloy, an experimental approach was designed to study three issues discovered during the drilling process: the hole-axis deflection, chip morphology, and tool wear. Based on the results of drilling experiments, crucial parameters for the super-long deep-hole drilling of titanium alloys were obtained, and the influences of these parameters on quality of the alloy's machining were also evaluated. Our results suggest that the developed drilling process is an effective method to overcome the challenge of super-long deep-hole drilling on difficult-to-cut materials.

  15. Comparison study on disturbance estimation techniques in precise slow motion control

    NASA Astrophysics Data System (ADS)

    Fan, S.; Nagamune, R.; Altintas, Y.; Fan, D.; Zhang, Z.

    2010-08-01

    Precise low speed motion control is important for the industrial applications of both micro-milling machine tool feed drives and electro-optical tracking servo systems. It calls for precise position and instantaneous velocity measurement and disturbance, which involves direct drive motor force ripple, guide way friction and cutting force etc., estimation. This paper presents a comparison study on dynamic response and noise rejection performance of three existing disturbance estimation techniques, including the time-delayed estimators, the state augmented Kalman Filters and the conventional disturbance observers. The design technique essentials of these three disturbance estimators are introduced. For designing time-delayed estimators, it is proposed to substitute Kalman Filter for Luenberger state observer to improve noise suppression performance. The results show that the noise rejection performances of the state augmented Kalman Filters and the time-delayed estimators are much better than the conventional disturbance observers. These two estimators can give not only the estimation of the disturbance but also the low noise level estimations of position and instantaneous velocity. The bandwidth of the state augmented Kalman Filters is wider than the time-delayed estimators. In addition, the state augmented Kalman Filters can give unbiased estimations of the slow varying disturbance and the instantaneous velocity, while the time-delayed estimators can not. The simulation and experiment conducted on X axis of a 2.5-axis prototype micro milling machine are provided.

  16. Automated Slicing for a Multi-Axis Metal Deposition System (Preprint)

    DTIC Science & Technology

    2006-09-01

    experimented with different materials like H13 tool steel to build the part. Following the same slicing and scanning toolpath result, there is a geometric...and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly computationally...geometry reasoning and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly

  17. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  18. [Research on infrared safety protection system for machine tool].

    PubMed

    Zhang, Shuan-Ji; Zhang, Zhi-Ling; Yan, Hui-Ying; Wang, Song-De

    2008-04-01

    In order to ensure personal safety and prevent injury accident in machine tool operation, an infrared machine tool safety system was designed with infrared transmitting-receiving module, memory self-locked relay and voice recording-playing module. When the operator does not enter the danger area, the system has no response. Once the operator's whole or part of body enters the danger area and shades the infrared beam, the system will alarm and output an control signal to the machine tool executive element, and at the same time, the system makes the machine tool emergency stop to prevent equipment damaged and person injured. The system has a module framework, and has many advantages including safety, reliability, common use, circuit simplicity, maintenance convenience, low power consumption, low costs, working stability, easy debugging, vibration resistance and interference resistance. It is suitable for being installed and used in different machine tools such as punch machine, pour plastic machine, digital control machine, armor plate cutting machine, pipe bending machine, oil pressure machine etc.

  19. Evaluation of machine learning tools for inspection of steam generator tube structures using pulsed eddy current

    NASA Astrophysics Data System (ADS)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2017-02-01

    Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.

  20. Development of An Assessment Test for An Anesthetic Machine.

    PubMed

    Tiviraj, Supinya; Yokubol, Bencharatana; Amornyotin, Somchai

    2016-05-01

    The study is aimed to develop and assess the quality of an evaluation form used to evaluate the nurse anesthetic trainees' skills in undertaking a pre-use check of an anesthetic machine. An evaluation form comprising 25 items was developed, informed by the guidelines published by national anesthesiologist societies and refined to reflect the anesthetic machine used in our institution. The item-checking included the cylinder supplies and medical gas pipelines, vaporizer back bar, ventilator anesthetic breathing system, scavenging system and emergency back-up equipment. The authors sought the opinions of five experienced anesthetic trainers to judge the validity of the content. The authors measured its inter-rater reliability when used by two achievement scores evaluating the performance of 36 nurse anesthetic trainees undertaking 15-minute anesthetic machine checks and test-retest the reliability correlation scores between the two performances in the seven days interval. The five experienced anesthesiologists agreed that the evaluation form accurately reflected the objectives of anesthetic machine checking, equating to an index of congruency of 1.00. The inter-rater reliability of the independent assessors scoring was 0.977 (p = 0.01) and the test-retest reliability was 0.883 (p = 0.01). An evaluation form proved to be a reliable and effective tool for assessing the anesthetic nurse trainees' checking of an anesthetic machine before the use. This evaluation form was brief clear and practical to use, and should help to improve anesthetic nurse education and the patient safety.

  1. Machine tool task force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, G.P.

    1980-10-22

    The Machine Tool Task Force (MTTF) is a multidisciplined team of international experts, whose mission was to investigate the state of the art of machine tool technology, to identify promising future directions of that technology for both the US government and private industry, and to disseminate the findings of its research in a conference and through the publication of a final report. MTTF was a two and one-half year effort that involved the participation of 122 experts in the specialized technologies of machine tools and in the management of machine tool operations. The scope of the MTTF was limited tomore » cutting-type or material-removal-type machine tools, because they represent the major share and value of all machine tools now installed or being built. The activities of the MTTF and the technical, commercial and economic signifiance of recommended activities for improving machine tool technology are discussed. (LCL)« less

  2. Towards a generalized energy prediction model for machine tools

    PubMed Central

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan

    2017-01-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687

  3. Towards a generalized energy prediction model for machine tools.

    PubMed

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan

    2017-04-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.

  4. Mississippi Curriculum Framework for Machine Tool Operation/Machine Shop and Tool and Die Making Technology Cluster (Program CIP: 48.0507--Tool and Die Maker/Technologist) (Program CIP: 48.0503--Machine Shop Assistant). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the machine tool operation/machine tool and tool and die making technology programs cluster. Presented in the introductory section are a framework of courses and programs, description of the…

  5. Chip breaking system for automated machine tool

    DOEpatents

    Arehart, Theodore A.; Carey, Donald O.

    1987-01-01

    The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.

  6. Preliminary Development of Real Time Usage-Phase Monitoring System for CNC Machine Tools with a Case Study on CNC Machine VMC 250

    NASA Astrophysics Data System (ADS)

    Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah

    2018-03-01

    The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.

  7. NASA's National Center for Advanced Manufacturing

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University, Tennessee Technological University, Texas A&M University, and Virginia Polytechnic Institute and State University provided wide-ranging engineering research, new degree/curriculum programs, and a web-based lecture series. NCAM has fostered an important presence and leadership role within the national manufacturing community. Its progressive influence can be seen in government, industry and academia, and in national associations, professional organizations, conferences, workshops, and forums.

  8. Research on the tool holder mode in high speed machining

    NASA Astrophysics Data System (ADS)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  9. Direction of spin axis and spin rate of the pitched baseball.

    PubMed

    Jinji, Tsutomu; Sakurai, Shinji

    2006-07-01

    In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice.

  10. Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents.

    PubMed

    Mourão-Miranda, Janaina; Oliveira, Leticia; Ladouceur, Cecile D; Marquand, Andre; Brammer, Michael; Birmaher, Boris; Axelson, David; Phillips, Mary L

    2012-01-01

    There are no known biological measures that accurately predict future development of psychiatric disorders in individual at-risk adolescents. We investigated whether machine learning and fMRI could help to: 1. differentiate healthy adolescents genetically at-risk for bipolar disorder and other Axis I psychiatric disorders from healthy adolescents at low risk of developing these disorders; 2. identify those healthy genetically at-risk adolescents who were most likely to develop future Axis I disorders. 16 healthy offspring genetically at risk for bipolar disorder and other Axis I disorders by virtue of having a parent with bipolar disorder and 16 healthy, age- and gender-matched low-risk offspring of healthy parents with no history of psychiatric disorders (12-17 year-olds) performed two emotional face gender-labeling tasks (happy/neutral; fearful/neutral) during fMRI. We used Gaussian Process Classifiers (GPC), a machine learning approach that assigns a predictive probability of group membership to an individual person, to differentiate groups and to identify those at-risk adolescents most likely to develop future Axis I disorders. Using GPC, activity to neutral faces presented during the happy experiment accurately and significantly differentiated groups, achieving 75% accuracy (sensitivity = 75%, specificity = 75%). Furthermore, predictive probabilities were significantly higher for those at-risk adolescents who subsequently developed an Axis I disorder than for those at-risk adolescents remaining healthy at follow-up. We show that a combination of two promising techniques, machine learning and neuroimaging, not only discriminates healthy low-risk from healthy adolescents genetically at-risk for Axis I disorders, but may ultimately help to predict which at-risk adolescents subsequently develop these disorders.

  11. Micro electrical discharge milling using deionized water as a dielectric fluid

    NASA Astrophysics Data System (ADS)

    Chung, Do Kwan; Kim, Bo Hyun; Chu, Chong Nam

    2007-05-01

    In electrical discharge machining, dielectric fluid is an important factor affecting machining characteristics. Generally, kerosene and deionized water have been used as dielectric fluids. In micro electrical discharge milling, which uses a micro electrode as a tool, the wear of the tool electrode decreases the machining accuracy. However, the use of deionized water instead of kerosene can reduce the tool wear and increase the machining speed. This paper investigates micro electrical discharge milling using deionized water. Deionized water with high resistivity was used to minimize the machining gap. Machining characteristics such as the tool wear, machining gap and machining rate were investigated according to resistivity of deionized water. As the resistivity of deionized water decreased, the tool wear was reduced, but the machining gap increased due to electrochemical dissolution. Micro hemispheres were machined for the purpose of investigating machining efficiency between dielectric fluids, kerosene and deionized water.

  12. Estimation of tool wear compensation during micro-electro-discharge machining of silicon using process simulation

    NASA Astrophysics Data System (ADS)

    Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.

    2010-02-01

    A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.

  13. Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion

    PubMed Central

    Bone, Daniel; Bishop, Somer; Black, Matthew P.; Goodwin, Matthew S.; Lord, Catherine; Narayanan, Shrikanth S.

    2016-01-01

    Background Machine learning (ML) provides novel opportunities for human behavior research and clinical translation, yet its application can have noted pitfalls (Bone et al., 2015). In this work, we fastidiously utilize ML to derive autism spectrum disorder (ASD) instrument algorithms in an attempt to improve upon widely-used ASD screening and diagnostic tools. Methods The data consisted of Autism Diagnostic Interview-Revised (ADI-R) and Social Responsiveness Scale (SRS) scores for 1,264 verbal individuals with ASD and 462 verbal individuals with non-ASD developmental or psychiatric disorders (DD), split at age 10. Algorithms were created via a robust ML classifier, support vector machine (SVM), while targeting best-estimate clinical diagnosis of ASD vs. non-ASD. Parameter settings were tuned in multiple levels of cross-validation. Results The created algorithms were more effective (higher performing) than current algorithms, were tunable (sensitivity and specificity can be differentially weighted), and were more efficient (achieving near-peak performance with five or fewer codes). Results from ML-based fusion of ADI-R and SRS are reported. We present a screener algorithm for below (above) age 10 that reached 89.2% (86.7%) sensitivity and 59.0% (53.4%) specificity with only five behavioral codes. Conclusions ML is useful for creating robust, customizable instrument algorithms. In a unique dataset comprised of controls with other difficulties, our findings highlight limitations of current caregiver-report instruments and indicate possible avenues for improving ASD screening and diagnostic tools. PMID:27090613

  14. Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion.

    PubMed

    Bone, Daniel; Bishop, Somer L; Black, Matthew P; Goodwin, Matthew S; Lord, Catherine; Narayanan, Shrikanth S

    2016-08-01

    Machine learning (ML) provides novel opportunities for human behavior research and clinical translation, yet its application can have noted pitfalls (Bone et al., 2015). In this work, we fastidiously utilize ML to derive autism spectrum disorder (ASD) instrument algorithms in an attempt to improve upon widely used ASD screening and diagnostic tools. The data consisted of Autism Diagnostic Interview-Revised (ADI-R) and Social Responsiveness Scale (SRS) scores for 1,264 verbal individuals with ASD and 462 verbal individuals with non-ASD developmental or psychiatric disorders, split at age 10. Algorithms were created via a robust ML classifier, support vector machine, while targeting best-estimate clinical diagnosis of ASD versus non-ASD. Parameter settings were tuned in multiple levels of cross-validation. The created algorithms were more effective (higher performing) than the current algorithms, were tunable (sensitivity and specificity can be differentially weighted), and were more efficient (achieving near-peak performance with five or fewer codes). Results from ML-based fusion of ADI-R and SRS are reported. We present a screener algorithm for below (above) age 10 that reached 89.2% (86.7%) sensitivity and 59.0% (53.4%) specificity with only five behavioral codes. ML is useful for creating robust, customizable instrument algorithms. In a unique dataset comprised of controls with other difficulties, our findings highlight the limitations of current caregiver-report instruments and indicate possible avenues for improving ASD screening and diagnostic tools. © 2016 Association for Child and Adolescent Mental Health.

  15. Nanocomposites for Machining Tools

    PubMed Central

    Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2017-01-01

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926

  16. Comparison of five-axis milling and rapid prototyping for implant surgical templates.

    PubMed

    Park, Ji-Man; Yi, Tae-Kyoung; Koak, Jai-Young; Kim, Seong-Kyoon; Park, Eun-Jin; Heo, Seong-Joo

    2014-01-01

    This study aims to compare and evaluate the accuracy of surgical templates fabricated using coordinate synchronization processing with five-axis milling and design-related processing with rapid prototyping (RP). Master phantoms with 10 embedded gutta-percha cylinders hidden under artificial gingiva were fabricated and imaged using cone beam computed tomography. Vectors of the hidden cylinders were extracted and transferred to those of the planned implants through reverse engineering using virtual planning software. An RP-produced template was fabricated by stereolithography in photopolymer at the RP center according to planned data. Metal sleeves were bonded after holes were bored (group RP). For the milled template, milling coordinates were synchronized using the conversion process for the coordinate synchronization platform located on the model's bottom. Metal bushings were set on holes milled on the five-axis milling machine, on which the model was fixed through the coordinate synchronization plate, and the framework was constructed on the model using orthodontic resin (group CS). A computed tomography image was taken with templates firmly fixed on models using anchor pins (RP) or anchor screws (CS). The accuracy was analyzed via reverse engineering. Differences between the two groups were compared by repeated measures two-factor analysis. From the reverse-engineered image of the template on the experimental model, RP-produced templates showed significantly larger deviations than did milled surgical guides. Maximum deviations of the group RP were 1.58 mm (horizontal), 1.68 mm (vertical), and 8.51 degrees (angular); those of the group CS were 0.68 mm (horizontal), 0.41 mm (vertical), and 3.23 degrees (angular). A comparison of milling and RP template production methods showed that a vector-milled surgical guide had significantly smaller deviations than did an RP-produced template. The accuracy of computer-guided milled surgical templates was within the safety margin of previous studies.

  17. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  18. Methods, systems and apparatus for synchronous current regulation of a five-phase machine

    DOEpatents

    Gallegos-Lopez, Gabriel; Perisic, Milun

    2012-10-09

    Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.

  19. Machine tools and fixtures: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    As part of NASA's Technology Utilizations Program, a compilation was made of technological developments regarding machine tools, jigs, and fixtures that have been produced, modified, or adapted to meet requirements of the aerospace program. The compilation is divided into three sections that include: (1) a variety of machine tool applications that offer easier and more efficient production techniques; (2) methods, techniques, and hardware that aid in the setup, alignment, and control of machines and machine tools to further quality assurance in finished products: and (3) jigs, fixtures, and adapters that are ancillary to basic machine tools and aid in realizing their greatest potential.

  20. Results of a utility survey of the status of large wind turbine development

    NASA Technical Reports Server (NTRS)

    Watts, A.; Quraeshi, S.; Rowley, L. P.

    1979-01-01

    Wind energy conversion systems were surveyed from a utility viewpoint to establish the state of the art with regard to: (1) availability of the type of machines; (2) quality of power generation; (3) suitability for electrical grid; (4) reliability; and (5) economics. Of the 23 designs discussed, 7 have vertical axis wind turbines, 9 have upwind horizontal axis turbines, and 7 have downwind horizontal axis turbines.

  1. Mars vertical axis wind machines. The design of a Darreus and a Giromill for use on Mars

    NASA Astrophysics Data System (ADS)

    Brach, David; Dube, John; Kelly, Jon; Peterson, Joanna; Bollig, John; Gohr, Lisa; Mahoney, Kamin; Polidori, Dave

    1992-05-01

    This report contains the design of both a Darrieus and a Giromill for use on Mars. The report has been organized so that the interested reader may read only about one machine without having to read the entire report. Where components for the two machines differ greatly, separate sections have been allotted for each machine. Each section is complete; therefore, no relevant information is missed by reading only the section for the machine of interest. Also, when components for both machines are similar, both machines have been combined into one section. This is done so that the reader interested in both machines need not read the same information twice.

  2. Mars vertical axis wind machines. The design of a Darreus and a Giromill for use on Mars

    NASA Technical Reports Server (NTRS)

    Brach, David; Dube, John; Kelly, Jon; Peterson, Joanna; Bollig, John; Gohr, Lisa; Mahoney, Kamin; Polidori, Dave

    1992-01-01

    This report contains the design of both a Darrieus and a Giromill for use on Mars. The report has been organized so that the interested reader may read only about one machine without having to read the entire report. Where components for the two machines differ greatly, separate sections have been allotted for each machine. Each section is complete; therefore, no relevant information is missed by reading only the section for the machine of interest. Also, when components for both machines are similar, both machines have been combined into one section. This is done so that the reader interested in both machines need not read the same information twice.

  3. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  4. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  5. A method to identify the main mode of machine tool under operating conditions

    NASA Astrophysics Data System (ADS)

    Wang, Daming; Pan, Yabing

    2017-04-01

    The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.

  6. The research on visual industrial robot which adopts fuzzy PID control algorithm

    NASA Astrophysics Data System (ADS)

    Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye

    2017-03-01

    The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.

  7. Standardized Curriculum for Machine Tool Operation/Machine Shop.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…

  8. 76 FR 27668 - ASC Machine Tools, Inc., Spokane Valley, WA; Notice of Negative Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... workers of ASC Machine Tools, Inc., Spokane Valley, Washington. Signed in Washington, DC, on this 2nd day...

  9. Theoretical and experimental investigation of design for multioptical-axis freeform progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Xiang, HuaZhong; Chen, JiaBi; Zhu, TianFen; Wei, YeFei; Fu, DongXiang

    2015-11-01

    A freeform progressive addition lens (PAL) provides a good solution to correct presbyopia and prevent juvenile myopia by distributing pupils' optical powers of distance zone, near zone, and intermediate zone and is more widely adopted in the present optometric study. However, there is still a lack of a single-optical-axis system for the design of a PAL. This paper focuses on the research for an approach for designing a freeform PAL. A multioptical-axis system based on real viewing conditions using the eyes is employed for the representation of the freeform surface. We filled small pupils in the intermediate zone as a progressive corridor and the distance- and near-vision portions were defined as the standard spherical surfaces delimited by quadratic curves. Three freeform PALs with a spherical surface as the front side and a freeform surface as the backside were designed. We demonstrate the fabrication and measurement technologies for the PAL surface using computer numerical control machine tools from Schneider Smart and a Visionix VM-2000 Lens Power Mapper. Surface power and astigmatic values were obtained. Preliminary results showed that the approach for the design and fabrication is helpful to advance the design procedure optimization and mass production of PALs in optometry.

  10. Structural changes of bacteriophage [phi]29 upon DNA packaging and release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Y.; Morais, M.C.; Battisti, A.J.

    2008-04-24

    Cryo-electron microscopy three-dimensional reconstructions have been made of mature and of emptied bacteriophage {phi}29 particles without making symmetry assumptions. Comparisons of these structures with each other and with the {phi}29 prohead indicate how conformational changes might initiate successive steps of assembly and infection. The 12 adsorption capable 'appendages' were found to have a structure homologous to the bacteriophage P22 tailspikes. Two of the appendages are extended radially outwards, away from the long axis of the virus, whereas the others are around and parallel to the phage axis. The appendage orientations are correlated with the symmetry-mismatched positions of the five-fold relatedmore » head fibers, suggesting a mechanism for partial cell wall digestion upon rotation of the head about the tail when initiating infection. The narrow end of the head-tail connector is expanded in the mature virus. Gene product 3, bound to the 5-foot ends of the genome, appears to be positioned within the expanded connector, which may potentiate the release of DNA-packaging machine components, creating a binding site for attachment of the tail.« less

  11. Tool setting device

    DOEpatents

    Brown, Raymond J.

    1977-01-01

    The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.

  12. Machinability of Green Powder Metallurgy Components: Part I. Characterization of the Influence of Tool Wear

    NASA Astrophysics Data System (ADS)

    Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig

    2007-06-01

    The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.

  13. EQUIPMENT FOR SPARK-ASSISTED MACHINING (OBORUDOVANIE DLYA ELEKTROISKROVOI OBRABOTKI),

    DTIC Science & Technology

    MACHINE TOOLS, * ELECTROEROSIVE MACHINING), MACHINE TOOL INDUSTRY, ELECTROFORMING, ELECTRODES, ELECTROLYTIC CAPACITORS, ELECTRIC DISCHARGES, TOLERANCES(MECHANICS), SURFACE ROUGHNESS, DIES, MOLDINGS, SYNTHETIC FIBERS, USSR

  14. Multiaxis Computer Numerical Control Internship Report

    ERIC Educational Resources Information Center

    Rouse, Sharon M.

    2012-01-01

    (Purpose) The purpose of this paper was to examine the issues associated with bringing new technology into the classroom, in particular, the vocational/technical classroom. (Methodology) A new Haas 5 axis vertical Computer Numerical Control machining center was purchased to update the CNC machining curriculum at a community college and the process…

  15. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  16. Novel tool wear monitoring method in milling difficult-to-machine materials using cutting chip formation

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Guo, Y.; Wang, B.

    2017-05-01

    The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.

  17. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 13: Laser Machining, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  18. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 3: Machining, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  19. Plan for conducting an international machine tool task force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, G.P.; McClure, E.R.; Schuman, J.F.

    1978-08-28

    The basic objectives of the Machine Tool Task Force (MTTF) are to characterize and summarize the state of the art of cutting machine tool technology and to identify promising areas of future R and D. These goals will be accomplished with a series of multidisciplinary teams of prominent experts and individuals experienced in the specialized technologies of machine tools or in the management of machine tool operations. Experts will be drawn from all areas of the machine tool community: machine tool users or buyer organizations, builders, and R and D establishments including universities and government laboratories, both domestic and foreign.more » A plan for accomplishing this task is presented. The area of machine tool technology has been divided into about two dozen technology subjects on which teams of one or more experts will work. These teams are, in turn, organized into four principal working groups dealing, respectively, with machine tool accuracy, mechanics, control, and management systems/utilization. Details are presented on specific subjects to be covered, the organization of the Task Force and its four working groups, and the basic approach to determining the state of the art of technology and the future directions of this technology. The planned review procedure, the potential benefits, our management approach, and the schedule, as well as the key participating personnel and their background are discussed. The initial meeting of MTTF members will be held at a plenary session on October 16 and 17, 1978, in Scottsdale, AZ. The MTTF study will culminate in a conference on September 1, 1980, in Chicago, IL, immediately preceeding the 1980 International Machine Tool Show. At this time, our results will be released to the public; a series of reports will be published in late 1980.« less

  20. Methods, systems and apparatus for optimization of third harmonic current injection in a multi-phase machine

    DOEpatents

    Gallegos-Lopez, Gabriel

    2012-10-02

    Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.

  1. Multiple-Valued Programmable Logic Array Minimization by Simulated Annealing

    DTIC Science & Technology

    1992-02-10

    time is controllable, allowing one to tradeoff time for minimalit ’. It has been incorporated in the HAMLET PLA minimization tool. AcOSSIOn P? DTTC TAB C...specified along the horizontal axis. Each slice represents one temperature. The slice in the very front represents the highest and starting ...rectangle with a pair of adjacent 2’s in between. This func- tion can yield five product terms by a sequence of reshape moves starting from four

  2. Selected aspects of microelectronics technology and applications: Numerically controlled machine tools. Technology trends series no. 2

    NASA Astrophysics Data System (ADS)

    Sigurdson, J.; Tagerud, J.

    1986-05-01

    A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.

  3. Effects of machining parameters on tool life and its optimization in turning mild steel with brazed carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Mukherjee, S.

    2016-09-01

    One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.

  4. Highly Productive Tools For Turning And Milling

    NASA Astrophysics Data System (ADS)

    Vasilko, Karol

    2015-12-01

    Beside cutting speed, shift is another important parameter of machining. Its considerable influence is shown mainly in the workpiece machined surface microgeometry. In practice, mainly its combination with the radius of cutting tool tip rounding is used. Options to further increase machining productivity and machined surface quality are hidden in this approach. The paper presents variations of the design of productive cutting tools for lathe work and milling on the base of the use of the laws of the relationship among the highest reached uneveness of machined surface, tool tip radius and shift.

  5. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, L.F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method are disclosed which includes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy. 5 figs.

  6. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, Lothar F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method which iudes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy.

  7. Dovetail spoke internal permanent magnet machine

    DOEpatents

    Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY

    2011-08-23

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.

  8. The in-situ 3D measurement system combined with CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Jiang, Hongzhi; Li, Xudong; Sui, Shaochun; Tang, Limin; Liang, Xiaoyue; Diao, Xiaochun; Dai, Jiliang

    2013-06-01

    With the development of manufacturing industry, the in-situ 3D measurement for the machining workpieces in CNC machine tools is regarded as the new trend of efficient measurement. We introduce a 3D measurement system based on the stereovision and phase-shifting method combined with CNC machine tools, which can measure 3D profile of the machining workpieces between the key machining processes. The measurement system utilizes the method of high dynamic range fringe acquisition to solve the problem of saturation induced by specular lights reflected from shiny surfaces such as aluminum alloy workpiece or titanium alloy workpiece. We measured two workpieces of aluminum alloy on the CNC machine tools to demonstrate the effectiveness of the developed measurement system.

  9. Alignment of x-ray tube focal spots for spectral measurement.

    PubMed

    Nishizawa, K; Maekoshi, H; Kamiya, Y; Kobayashi, Y; Ohara, K; Sakuma, S

    1982-01-01

    A general method to align a diagnostic x-ray machine for x-ray spectrum measurement purpose was theoretically and experimentally investigated by means of the optical alignment of focal pinhole images. Focal pinhole images were obtained by using a multi-pinholed lead plate. the vertical plane, including the central axis and tube axis, was decided upon by observing the symmetry of focal images. the central axis was designated as a line through the center of focus parallel to the target surface lying in the vertical plane. A method to determine the manipulation of the central axis in any direction is presented.

  10. Identification of Tool Wear when Machining of Austenitic Steels and Titatium by Miniature Machining

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Kameník, Roman; Varga, Daniel; Martinček, Juraj; Sadilek, Marek

    2016-12-01

    Application of miniature machining is currently rapidly increasing mainly in biomedical industry and machining of hard-to-machine materials. Machinability of materials with increased level of toughness depends on factors that are important in the final state of surface integrity. Because of this, it is necessary to achieve high precision (varying in microns) in miniature machining. If we want to guarantee machining high precision, it is necessary to analyse tool wear intensity in direct interaction with given machined materials. During long-term cutting process, different cutting wedge deformations occur, leading in most cases to a rapid wear and destruction of the cutting wedge. This article deal with experimental monitoring of tool wear intensity during miniature machining.

  11. Surface dimpling on rotating work piece using rotation cutting tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupledmore » to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.« less

  12. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 9: Tool and Die, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  13. Graphite fiber reinforced structure for supporting machine tools

    DOEpatents

    Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.

    1978-01-01

    Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.

  14. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearingmore » compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.« less

  15. Traceability of On-Machine Tool Measurement: A Review.

    PubMed

    Mutilba, Unai; Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor; Yagüe-Fabra, Jose A

    2017-07-11

    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand.

  16. Identification of Technological Parameters of Ni-Alloys When Machining by Monolithic Ceramic Milling Tool

    NASA Astrophysics Data System (ADS)

    Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej

    2017-12-01

    The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.

  17. Experimental Investigation of Minimum Quantity Lubrication in Meso-scale Milling with Varying Tool Diameter

    NASA Astrophysics Data System (ADS)

    Yusof, M. Q. M.; Harun, H. N. S. B.; Bahar, R.

    2018-01-01

    Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind.

  18. Automatic feed system for ultrasonic machining

    DOEpatents

    Calkins, Noel C.

    1994-01-01

    Method and apparatus for ultrasonic machining in which feeding of a tool assembly holding a machining tool toward a workpiece is accomplished automatically. In ultrasonic machining, a tool located just above a workpiece and vibrating in a vertical direction imparts vertical movement to particles of abrasive material which then remove material from the workpiece. The tool does not contact the workpiece. Apparatus for moving the tool assembly vertically is provided such that it operates with a relatively small amount of friction. Adjustable counterbalance means is provided which allows the tool to be immobilized in its vertical travel. A downward force, termed overbalance force, is applied to the tool assembly. The overbalance force causes the tool to move toward the workpiece as material is removed from the workpiece.

  19. Development of an Empirical Model for Optimization of Machining Parameters to Minimize Power Consumption

    NASA Astrophysics Data System (ADS)

    Kant Garg, Girish; Garg, Suman; Sangwan, K. S.

    2018-04-01

    The manufacturing sector consumes huge energy demand and the machine tools used in this sector have very less energy efficiency. Selection of the optimum machining parameters for machine tools is significant for energy saving and for reduction of environmental emission. In this work an empirical model is developed to minimize the power consumption using response surface methodology. The experiments are performed on a lathe machine tool during the turning of AISI 6061 Aluminum with coated tungsten inserts. The relationship between the power consumption and machining parameters is adequately modeled. This model is used for formulation of minimum power consumption criterion as a function of optimal machining parameters using desirability function approach. The influence of machining parameters on the energy consumption has been found using the analysis of variance. The validation of the developed empirical model is proved using the confirmation experiments. The results indicate that the developed model is effective and has potential to be adopted by the industry for minimum power consumption of machine tools.

  20. Chatter active control in a lathe machine using magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Nosouhi, R.; Behbahani, S.

    2011-01-01

    This paper analyzes the chatter phenomena in lathe machines. Chatter is one of the main causes of inaccuracy, reduction of life cycle of the machine and tool wear in machine tools. This phenomenon limits the depth of cut as a function of the cutting speed, which consequently reduces the material removal rate and machining efficiency. Chatter control is therefore important since it increases the stability region in machining and increases the critical depth of cut in machining case. To control the chatter in lathe machines, a magnetostrictive actuator is used. The materials with magnetostriction properties are kind of smart materials of which their length changes as a result of applying an exterior magnetic field, which make them suitable for control applications. It is assumed that the actuator applies the proper force exactly at the point where the machining force is applied on the tool. In this paper the chatter stability lobes is excelled as a result of applying a PID controller on the magnetostrictive actuator equipped-tool in turning.

  1. Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools

    NASA Astrophysics Data System (ADS)

    Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.

    2017-12-01

    In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.

  2. Nanometric edge profile measurement of cutting tools on a diamond turning machine

    NASA Astrophysics Data System (ADS)

    Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei

    2008-10-01

    Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.

  3. Theoretical and experimental research on machine tool servo system for ultra-precision position compensation on CNC lathe

    NASA Astrophysics Data System (ADS)

    Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang

    2010-08-01

    The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.

  4. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 6: Welding, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  5. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 12: Instrumentation, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  6. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 1: Executive Summary, of a 15-Volume Set of Skills Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…

  7. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 15: Administrative Information, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…

  8. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 5: Mold Making, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational speciality areas within the U.S. machine tool and metals-related…

  9. OptiCentric lathe centering machine

    NASA Astrophysics Data System (ADS)

    Buß, C.; Heinisch, J.

    2013-09-01

    High precision optics depend on precisely aligned lenses. The shift and tilt of individual lenses as well as the air gap between elements require accuracies in the single micron regime. These accuracies are hard to meet with traditional assembly methods. Instead, lathe centering can be used to machine the mount with respect to the optical axis. Using a diamond turning process, all relevant errors of single mounted lenses can be corrected in one post-machining step. Building on the OptiCentric® and OptiSurf® measurement systems, Trioptics has developed their first lathe centering machines. The machine and specific design elements of the setup will be shown. For example, the machine can be used to turn optics for i-line steppers with highest precision.

  10. The Factory of the Future

    NASA Technical Reports Server (NTRS)

    Byman, J. E.

    1985-01-01

    A brief history of aircraft production techniques is given. A flexible machining cell is then described. It is a computer controlled system capable of performing 4-axis machining part cleaning, dimensional inspection and materials handling functions in an unmanned environment. The cell was designed to: allow processing of similar and dissimilar parts in random order without disrupting production; allow serial (one-shipset-at-a-time) manufacturing; reduce work-in-process inventory; maximize machine utilization through remote set-up; maximize throughput and minimize labor.

  11. Hardware Photos: Image Showing JWST Engineering Demonstration Mirror, Mounted Ready for Machining at AXYS and Image Showing HIP Can Containing Light Mirrors 1 and 2 Ready for Mirror Fabrication

    NASA Technical Reports Server (NTRS)

    OKeefe, Sean

    2004-01-01

    The images in this viewgraph presentation have the following captions: 1) EDU mirror after being sawed in half; 2) EDU Delivered to Axsys; 3) Be EDU Blank Received and Machining Started; 4) Loaded HIP can for flight PM segments 1 and 2; 5) Flight Blanks 1 and 2 Loaded into HIP Can at Brush-Wellman; 6) EDU in Machining at Axsys.

  12. Friction Stir Welding Development at NASA, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Gentz, Steve (Technical Monitor)

    2001-01-01

    Friction stir welding (FSW) is a solid state process that pan be used to join materials without melting. The process was invented by The Welding Institute (TWI), Cambridge, England. Friction stir welding exhibits several advantages over fusion welding in that it produces welds with fewer defects and higher joint efficiency and is capable of joining alloys that are generally considered non-weldable with a fusion weld process. In 1994, NASA-Marshall began collaborating with TWI to transform FSW from a laboratory curiosity to a viable metal joining process suitable for manufacturing hardware. While teamed with TWI, NASA-Marshall began its own FSW research and development effort to investigate possible aerospace applications for the FSW process. The work involved nearly all aspects of FSW development, including process modeling, scale-up issues, applications to advanced materials and development of tooling to use FSW on components of the Space Shuttle with particular emphasis on aluminum tanks. The friction stir welding process involves spinning a pin-tool at an appropriate speed, plunging it into the base metal pieces to be joined, and then translating it along the joint of the work pieces. In aluminum alloys the rotating speed typically ranges from 200 to 400 revolutions per minute and the translation speed is approximately two to five inches per minute. The pin-tool is inserted at a small lead angle from the axis normal to the work piece and requires significant loading along the axis of the tool. An anvil or reaction structure is required behind the welded material to react the load along the axis of the pin tool. The process requires no external heat input, filler material, protective shielding gas or inert atmosphere typical of fusion weld processes. The FSW solid-state weld process has resulted in aluminum welds with significantly higher strengths, higher joint efficiencies and fewer defects than fusion welds used to join similar alloys.

  13. Investigations of Effect of Rotary EDM Electrode on Machining Performance of Al6061 Alloy

    NASA Astrophysics Data System (ADS)

    Robinson Smart, D. S.; Jenish Smart, Joses; Periasamy, C.; Ratna Kumar, P. S. Samuel

    2018-04-01

    Electric Discharge Machining is an essential process which is being used for machining desired shape using electrical discharges which creates sparks. There will be electrodes subjected to electric voltage and which are separated by a dielectric liquid. Removing of material will be due to the continuous and rapid current discharges between two electrodes.. The spark is very carefully controlled and localized so that it only affects the surface of the material. Usually in order to prevent the defects which are arising due to the conventional machining, the Electric Discharge Machining (EDM) machining is preferred. Also intricate and complicated shapes can be machined effectively by use of Electric Discharge Machining (EDM). The EDM process usually does not affect the heat treat below the surface. This research work focus on the design and fabrication of rotary EDM tool for machining Al6061alloy and investigation of effect of rotary tool on surface finish, material removal rate and tool wear rate. Also the effect of machining parameters of EDM such as pulse on & off time, current on material Removal Rate (MRR), Surface Roughness (SR) and Electrode wear rate (EWR) have studied. Al6061 alloy can be used for marine and offshore applications by reinforcing some other elements. The investigations have revealed that MRR (material removal rate), surface roughness (Ra) have been improved with the reduction in the tool wear rate (TWR) when the tool is rotating instead of stationary. It was clear that as rotary speed of the tool is increasing the material removal rate is increasing with the reduction of surface finish and tool wear rate.

  14. Study of tapping process of carbon fiber reinforced plastic composites/AA7075 stacks

    NASA Astrophysics Data System (ADS)

    D'Orazio, Alessio; Mehtedi, Mohamad El; Forcellese, Archimede; Nardinocchi, Alessia; Simoncini, Michela

    2018-05-01

    The present investigation aims at studying the tapping process of a three-layer stack constituted by two CFRP layers and a core plate in AA7075 aluminum alloy. The CFRP laminates were obtained by a pre-impregnated woven sample made up of T700 carbon fibers and a thermoset epoxy matrix. Tapping experiments were performed on a 5-axis machining center instrumented with a dynamometer to measure thrust force generated during process. A high-speed steel tool, coated with nanocomposite TiAlN, was used. According to the tool manufacturer recommendations, rotational speed and feed rate were 800 rpm and 1000 mm/min, respectively. Similar thrust force time history responses were obtained by tapping different holes, even though the vertical force increases with number of threaded holes. Furthermore, a quantitative evaluation of delamination at the periphery of entry holes was carried out. The delamination at the entry hole strongly increases with number of threaded holes.

  15. Application of dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations- A case study

    NASA Astrophysics Data System (ADS)

    Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT

    2018-02-01

    Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).

  16. Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants

    PubMed Central

    2013-01-01

    Background Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining. High-toughness bioceramics can only be machined by grinding and polishing processes. The aim of this study was to develop an automated process chain for the manufacturing of an all-ceramic knee implant. Methods A five-axis machining process was developed for all-ceramic implant components. These components were used in an investigation of the influence of surface conformity on wear behavior under simplified knee joint motion. Results The implant components showed considerably reduced wear compared to conventional material combinations. Contact area resulting from a variety of component surface shapes, with a variety of levels of surface conformity, greatly influenced wear rate. Conclusions It is possible to realize an all-ceramic knee endoprosthesis device, with a precise and affordable manufacturing process. The shape accuracy of the component surfaces, as specified by the design and achieved during the manufacturing process, has a substantial influence on the wear behavior of the prosthesis. This result, if corroborated by results with a greater sample size, is likely to influence the design parameters of such devices. PMID:23988155

  17. Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants.

    PubMed

    Turger, Anke; Köhler, Jens; Denkena, Berend; Correa, Tomas A; Becher, Christoph; Hurschler, Christof

    2013-08-29

    Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining. High-toughness bioceramics can only be machined by grinding and polishing processes. The aim of this study was to develop an automated process chain for the manufacturing of an all-ceramic knee implant. A five-axis machining process was developed for all-ceramic implant components. These components were used in an investigation of the influence of surface conformity on wear behavior under simplified knee joint motion. The implant components showed considerably reduced wear compared to conventional material combinations. Contact area resulting from a variety of component surface shapes, with a variety of levels of surface conformity, greatly influenced wear rate. It is possible to realize an all-ceramic knee endoprosthesis device, with a precise and affordable manufacturing process. The shape accuracy of the component surfaces, as specified by the design and achieved during the manufacturing process, has a substantial influence on the wear behavior of the prosthesis. This result, if corroborated by results with a greater sample size, is likely to influence the design parameters of such devices.

  18. Probing Nucleation and Growth Behavior of Twisted Kebabs from Shish Scaffold in Sheared Polyethylene Melts by in situ X-ray Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keum,J.; Burger, C.; Zuo, F.

    2007-01-01

    By utilizing synchrotron rheo-WAXD (wide-angle X-ray diffraction) and rheo-SAXS (small-angle X-ray scattering) techniques, the nucleation and growth behavior of twisted kebabs from the shear-induced shish scaffold in entangled high-density polyethylene (HDPE) melts were investigated. The evolution of the (110) reflection intensity in WAXD at the early stages of crystallization could be described by a simplified Avrami equation, while the corresponding long period of kebabs determined by SAXS was found to decrease with time. The combined SAXS and WAXD results indicate that the kebab growth in sheared HDPE melts consists of two-dimensional geometry with thermal (sporadic) nucleation. The WAXD data clearlymore » exhibited the transformations of (110) reflection from equatorial 2-arc to off-axis 4-arc and of (200) reflection from off-axis 4-arc to meridional 2-arc, which can be explained by the rotation of crystallographic a-axis around the b-axis during twisted kebab growth. This observation is also consistent with the orientation mode changes from 'Keller/Machin II' to 'intermediate' and then to 'Keller/Machin I'.« less

  19. Measurement of W + bb and a search for MSSM Higgs bosons with the CMS detector at the LHC

    NASA Astrophysics Data System (ADS)

    O'Connor, Alexander Pinpin

    Tooling used to cure composite laminates in the aerospace and automotive industries must provide a dimensionally stable geometry throughout the thermal cycle applied during the part curing process. This requires that the Coefficient of Thermal Expansion (CTE) of the tooling materials match that of the composite being cured. The traditional tooling material for production applications is a nickel alloy. Poor machinability and high material costs increase the expense of metallic tooling made from nickel alloys such as 'Invar 36' or 'Invar 42'. Currently, metallic tooling is unable to meet the needs of applications requiring rapid affordable tooling solutions. In applications where the tooling is not required to have the durability provided by metals, such as for small area repair, an opportunity exists for non-metallic tooling materials like graphite, carbon foams, composites, or ceramics and machinable glasses. Nevertheless, efficient machining of brittle, non-metallic materials is challenging due to low ductility, porosity, and high hardness. The machining of a layup tool comprises a large portion of the final cost. Achieving maximum process economy requires optimization of the machining process in the given tooling material. Therefore, machinability of the tooling material is a critical aspect of the overall cost of the tool. In this work, three commercially available, brittle/porous, non-metallic candidate tooling materials were selected, namely: (AAC) Autoclaved Aerated Concrete, CB1100 ceramic block and Cfoam carbon foam. Machining tests were conducted in order to evaluate the machinability of these materials using end milling. Chip formation, cutting forces, cutting tool wear, machining induced damage, surface quality and surface integrity were investigated using High Speed Steel (HSS), carbide, diamond abrasive and Polycrystalline Diamond (PCD) cutting tools. Cutting forces were found to be random in magnitude, which was a result of material porosity. The abrasive nature of Cfoam produced rapid tool wear when using HSS and PCD type cutting tools. However, tool wear was not significant in AAC or CB1100 regardless of the type of cutting edge. Machining induced damage was observed in the form of macro-scale chipping and fracture in combination with micro-scale cracking. Transverse rupture test results revealed significant reductions in residual strength and damage tolerance in CB1100. In contrast, AAC and Cfoam showed no correlation between machining induced damage and a reduction in surface integrity. Cutting forces in machining were modeled for all materials. Cutting force regression models were developed based on Design of Experiment and Analysis of Variance. A mechanistic cutting force model was proposed based upon conventional end milling force models and statistical distributions of material porosity. In order to validate the model, predicted cutting forces were compared to experimental results. Predicted cutting forces agreed well with experimental measurements. Furthermore, over the range of cutting conditions tested, the proposed model was shown to have comparable predictive accuracy to empirically produced regression models; greatly reducing the number of cutting tests required to simulate cutting forces. Further, this work demonstrates a key adaptation of metallic cutting force models to brittle porous material; a vital step in the research into the machining of these materials using end milling.

  20. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, Melvin; Cottingham, James G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.

  1. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, M.; Cottingham, J.G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines is disclosed having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped. 6 figs.

  2. High speed turning of compacted graphite iron using controlled modulation

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging class of industrial machining applications. This study's approach is by series of high speed turning tests of CGI with CBN tools, comparing conventional machining to MAM for similar parameters otherwise, by tool wear measurements and machinability observations.

  3. Interferometric correction system for a numerically controlled machine

    DOEpatents

    Burleson, Robert R.

    1978-01-01

    An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.

  4. Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks.

    PubMed

    Hsieh, Chung-Ho; Lu, Ruey-Hwa; Lee, Nai-Hsin; Chiu, Wen-Ta; Hsu, Min-Huei; Li, Yu-Chuan Jack

    2011-01-01

    Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to construct models including random forest, support vector machines, artificial neural networks, and logistic regression. Twenty-five percent of the data set was withheld to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate performance, which was compared with that of the Alvarado score. Data from a total of 180 patients were collected, 135 used for training and 45 for testing. The mean age of patients was 39.4 years (range, 16-85). Final diagnosis revealed 115 patients with and 65 without appendicitis. The AUC of random forest, support vector machines, artificial neural networks, logistic regression, and Alvarado was 0.98, 0.96, 0.91, 0.87, and 0.77, respectively. The sensitivity, specificity, positive, and negative predictive values of random forest were 94%, 100%, 100%, and 87%, respectively. Random forest performed better than artificial neural networks, logistic regression, and Alvarado. We demonstrated that random forest can predict acute appendicitis with good accuracy and, deployed appropriately, can be an effective tool in clinical decision making. Copyright © 2011 Mosby, Inc. All rights reserved.

  5. Diamond turning machine controller implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, themore » control computer hardware and software, are discussed in detail below.« less

  6. Traceability of On-Machine Tool Measurement: A Review

    PubMed Central

    Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor

    2017-01-01

    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand. PMID:28696358

  7. Department of Defense Tri-Service Precision Machine-Tool Program. Quarterly report, February--April 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-06-01

    Following a planning period during which the Lawrence Livermore Laboratory and the Department of Defense managing sponsor, the USAF Materials Laboratory, agreed on work statements, the Department of Defense Tri-Service Precision Machine-Tool Program began in February 1978. Milestones scheduled for the first quarter have been met. Tasks and manpower requirements for two basic projects, precision-machining commercialization (PMC) and a machine-tool task force (MTTF), were defined. Progress by PMC includes: (1) documentation of existing precision machine-tool technology by initiation and compilation of a bibliography containing several hundred entries: (2) identification of the problems and needs of precision turning-machine builders and ofmore » precision turning-machine users interested in developing high-precision machining capability; and (3) organization of the schedule and content of the first seminar, to be held in October 1978, which will bring together representatives from the machine-tool and optics communities to address the problems and begin the process of high-precision machining commercialization. Progress by MTTF includes: (1) planning for the organization of a team effort of approximately 60 to 80 international experts to contribute in various ways to project objectives, namely, to summarize state-of-the-art cutting-machine-tool technology and to identify areas where future R and D should prove technically and economically profitable; (2) preparation of a comprehensive plan to achieve those objectives; and (3) preliminary arrangements for a plenary session, also in October, when the task force will meet to formalize the details for implementing the plan.« less

  8. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment.

    PubMed

    Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning

    2018-03-19

    Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.

  9. An iterative learning control method with application for CNC machine tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.I.; Kim, S.

    1996-01-01

    A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one ofmore » the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.« less

  10. The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel

    NASA Astrophysics Data System (ADS)

    Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.

    2018-01-01

    Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

  11. Mississippi Curriculum Framework for Machine Tool Operation/Machine Shop (Program CIP: 48.0503--Machine Shop Assistant). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for machine tool operation/machine shop I and II. Presented first are a…

  12. High speed internal permanent magnet machine and method of manufacturing the same

    DOEpatents

    Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY

    2011-09-13

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple permanent magnets for generating a magnetic field, which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed between the stacks. The rotor assembly also includes multiple bottom wedges disposed on the bottom structures of the shaft and configured to hold the multiple stacks and the multiple permanent magnets.

  13. ECCENTRIC ROLLING OF POWDER AND BONDING AGENT INTO SPHERICAL PELLETS

    DOEpatents

    Patton, G. Jr.; Zirinsky, S.

    1961-06-01

    A machine is described for pelletizing powder and bonding agent into spherical pellets of high density and uniform size. In this device, the material to be compacted is added to a flat circular pan which is moved in a circular orbit in a horizontal plane about an axis displaced from that of the pan's central axis without rotating the pan about its central axis. This movement causes the material contained therein to roll around the outside wall of the container and build up pellets of uniform shape, size, and density.

  14. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  15. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 8: Sheet Metal & Composites, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  16. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 4: Manufacturing Engineering Technology, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  17. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 14: Automated Equipment Technician (CIM), of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  18. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 10: Computer-Aided Drafting & Design, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  19. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  20. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 2: Career Development, General Education and Remediation, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  1. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 7: Industrial Maintenance Technology, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  2. Development of a sugar-binding residue prediction system from protein sequences using support vector machine.

    PubMed

    Banno, Masaki; Komiyama, Yusuke; Cao, Wei; Oku, Yuya; Ueki, Kokoro; Sumikoshi, Kazuya; Nakamura, Shugo; Terada, Tohru; Shimizu, Kentaro

    2017-02-01

    Several methods have been proposed for protein-sugar binding site prediction using machine learning algorithms. However, they are not effective to learn various properties of binding site residues caused by various interactions between proteins and sugars. In this study, we classified sugars into acidic and nonacidic sugars and showed that their binding sites have different amino acid occurrence frequencies. By using this result, we developed sugar-binding residue predictors dedicated to the two classes of sugars: an acid sugar binding predictor and a nonacidic sugar binding predictor. We also developed a combination predictor which combines the results of the two predictors. We showed that when a sugar is known to be an acidic sugar, the acidic sugar binding predictor achieves the best performance, and showed that when a sugar is known to be a nonacidic sugar or is not known to be either of the two classes, the combination predictor achieves the best performance. Our method uses only amino acid sequences for prediction. Support vector machine was used as a machine learning algorithm and the position-specific scoring matrix created by the position-specific iterative basic local alignment search tool was used as the feature vector. We evaluated the performance of the predictors using five-fold cross-validation. We have launched our system, as an open source freeware tool on the GitHub repository (https://doi.org/10.5281/zenodo.61513). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Applying Computerized-Scoring Models of Written Biological Explanations across Courses and Colleges: Prospects and Limitations

    PubMed Central

    Ha, Minsu; Nehm, Ross H.; Urban-Lurain, Mark; Merrill, John E.

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students’ written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored student responses are needed to build scoring models suitable for cross-institutional application? 3) What factors limit computer-scoring efficacy, and how can these factors be mitigated? To answer these questions, two biology experts scored a corpus of 2556 short-answer explanations (from biology majors and nonmajors) at two universities for the presence or absence of five key concepts of evolution. Human- and computer-generated scores were compared using kappa agreement statistics. We found that machine-learning software was capable in most cases of accurately evaluating the degree of scientific sophistication in undergraduate majors’ and nonmajors’ written explanations of evolutionary change. In cases in which the software did not perform at the benchmark of “near-perfect” agreement (kappa > 0.80), we located the causes of poor performance and identified a series of strategies for their mitigation. Machine-learning software holds promise as an assessment tool for use in undergraduate biology education, but like most assessment tools, it is also characterized by limitations. PMID:22135372

  4. Applying computerized-scoring models of written biological explanations across courses and colleges: prospects and limitations.

    PubMed

    Ha, Minsu; Nehm, Ross H; Urban-Lurain, Mark; Merrill, John E

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students' written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored student responses are needed to build scoring models suitable for cross-institutional application? 3) What factors limit computer-scoring efficacy, and how can these factors be mitigated? To answer these questions, two biology experts scored a corpus of 2556 short-answer explanations (from biology majors and nonmajors) at two universities for the presence or absence of five key concepts of evolution. Human- and computer-generated scores were compared using kappa agreement statistics. We found that machine-learning software was capable in most cases of accurately evaluating the degree of scientific sophistication in undergraduate majors' and nonmajors' written explanations of evolutionary change. In cases in which the software did not perform at the benchmark of "near-perfect" agreement (kappa > 0.80), we located the causes of poor performance and identified a series of strategies for their mitigation. Machine-learning software holds promise as an assessment tool for use in undergraduate biology education, but like most assessment tools, it is also characterized by limitations.

  5. A Real-Time Tool Positioning Sensor for Machine-Tools

    PubMed Central

    Ruiz, Antonio Ramon Jimenez; Rosas, Jorge Guevara; Granja, Fernando Seco; Honorato, Jose Carlos Prieto; Taboada, Jose Juan Esteve; Serrano, Vicente Mico; Jimenez, Teresa Molina

    2009-01-01

    In machining, natural oscillations, and elastic, gravitational or temperature deformations, are still a problem to guarantee the quality of fabricated parts. In this paper we present an optical measurement system designed to track and localize in 3D a reference retro-reflector close to the machine-tool's drill. The complete system and its components are described in detail. Several tests, some static (including impacts and rotations) and others dynamic (by executing linear and circular trajectories), were performed on two different machine tools. It has been integrated, for the first time, a laser tracking system into the position control loop of a machine-tool. Results indicate that oscillations and deformations close to the tool can be estimated with micrometric resolution and a bandwidth from 0 to more than 100 Hz. Therefore this sensor opens the possibility for on-line compensation of oscillations and deformations. PMID:22408472

  6. Machinability of hypereutectic silicon-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Akasawa, T.

    1999-08-01

    The machinability of high-silicon aluminum alloys made by a P/M process and by casting was compared. The cutting test was conducted by turning on lathes with the use of cemented carbide tools. The tool wear by machining the P/M alloy was far smaller than the tool wear by machining the cast alloy. The roughness of the machined surface of the P/M alloy is far better than that of the cast alloy, and the turning speed did not affect it greatly at higher speeds. The P/M alloy produced long chips, so the disposal can cause trouble. The size effect of silicon grains on the machinability is discussed.

  7. Apparatus for electrical-assisted incremental forming and process thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, John; Cao, Jian

    A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less

  8. Reversible micromachining locator

    DOEpatents

    Salzer, Leander J.; Foreman, Larry R.

    2002-01-01

    A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.

  9. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    PubMed

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  10. Articulated, Performance-Based Instruction Objectives Guide for Machine Shop Technology.

    ERIC Educational Resources Information Center

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 21 units of instruction for two years of machine shop. The objectives of the program are to provide the student with the basic terminology and fundamental knowledge and skills in machining (year 1) and to teach him/her to set up and operate machine tools and make or repair metal parts, tools, and machines (year 2).…

  11. MATC Machine Shop '84: Specific Skill Needs Assessment for Machine Shops in the Milwaukee Area.

    ERIC Educational Resources Information Center

    Roberts, Keith J.

    Building on previous research on the future skill needs of workers in southeastern Wisconsin, a study was conducted at Milwaukee Area Technical College (MATC) to gather information on the machine tool industry in the Milwaukee area. Interviews were conducted by MATC Machine Shop and Tool and Die faculty with representatives from 135 machine shops,…

  12. A Review on High-Speed Machining of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Rahman, Mustafizur; Wang, Zhi-Gang; Wong, Yoke-San

    Titanium alloys have been widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. However, it is very difficult to machine them due to their poor machinability. When machining titanium alloys with conventional tools, the tool wear rate progresses rapidly, and it is generally difficult to achieve a cutting speed of over 60m/min. Other types of tool materials, including ceramic, diamond, and cubic boron nitride (CBN), are highly reactive with titanium alloys at higher temperature. However, binder-less CBN (BCBN) tools, which do not have any binder, sintering agent or catalyst, have a remarkably longer tool life than conventional CBN inserts even at high cutting speeds. In order to get deeper understanding of high speed machining (HSM) of titanium alloys, the generation of mathematical models is essential. The models are also needed to predict the machining parameters for HSM. This paper aims to give an overview of recent developments in machining and HSM of titanium alloys, geometrical modeling of HSM, and cutting force models for HSM of titanium alloys.

  13. Experimental and numerical investigations on the temperature distribution in PVD AlTiN coated and uncoated Al2O3/TiCN mixed ceramic cutting tools in hard turning of AISI 52100 steel

    NASA Astrophysics Data System (ADS)

    Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman

    2018-03-01

    Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.

  14. Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul

    2017-12-01

    Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.

  15. 75 FR 65516 - ASC Machine Tools, Inc., Spokane Valley, WA; Notice of Affirmative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... cut metal, including assembled equipment, component parts of equipment, and spare parts. The negative...

  16. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    DOEpatents

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  17. Tool feed influence on the machinability of CO(2) laser optics.

    PubMed

    Arnold, J B; Steger, P J; Saito, T T

    1975-08-01

    Influence of tool feed on reflectivity of diamond-machined surfaces was evaluated using materials (gold, silver, and copper) from which CO(2) laser optics are primarily produced. Fifteen specimens were machined by holding all machining parameters constant, except tool feed. Tool feed was allowed to vary by controlled amounts from one evaluation zone (or part) to another. Past experience has verified that the quality of a diamond-machined surface is not a function of the cutting velocity; therefore, this experiment was conducted on the basis that a variation in cutting velocity was not an influencing factor on the diamondturning process. Inspection results of the specimens indicated that tool feeds significantly higher than 5.1 micro/rev (200 microin./rev) produced detrimental effects on the machined surfaces. In some cases, at feeds as high as 13 microm/rev (500 microin./rev), visible scoring was evident. Those surfaces produced with tool feeds less than 5.1 microm/rev had little difference in reflectivity. Measurements indicat d that their reflectivity existed in a range from 96.7% to 99.3% at 10.6 microm.

  18. Satisloh centering technology developments past to present

    NASA Astrophysics Data System (ADS)

    Leitz, Ernst Michael; Moos, Steffen

    2015-10-01

    The centering of an optical lens is the grinding of its edge profile or contour in relationship to its optical axis. This is required to ensure that the lens vertex and radial centers are accurately positioned within an optical system. Centering influences the imaging performance and contrast of an optical system. Historically, lens centering has been a purely manual process. Along its 62 years of assembling centering machines, Satisloh introduced several technological milestones to improve the accuracy and quality of this process. During this time more than 2.500 centering machines were assembled. The development went from bell clamping and diamond grinding to Laser alignment, exchange chuckor -spindle systems, to multi axis CNC machines with integrated metrology and automatic loading systems. With the new centering machine C300, several improvements for the clamping and grinding process were introduced. These improvements include a user friendly software to support the operator, a coolant manifold and "force grinding" technology to ensure excellent grinding quality and process stability. They also include an air bearing directly driven centering spindle to provide a large working range of lenses made of all optical materials and diameters from below 10 mm to 300 mm. The clamping force can be programmed between 7 N and 1200 N to safely center lenses made of delicate materials. The smaller C50 centering machine for lenses below 50 mm diameter is available with an optional CNC loading system for automated production.

  19. Diamond Smoothing Tools

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.

  20. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2011-06-14

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  1. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2012-02-21

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  2. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  3. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  4. Controlling the type and the form of chip when machining steel

    NASA Astrophysics Data System (ADS)

    Gruby, S. V.; Lasukov, A. A.; Nekrasov, R. Yu; Politsinsky, E. V.; Arkhipova, D. A.

    2016-08-01

    The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface.

  5. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    PubMed Central

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-01-01

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322

  6. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    PubMed

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  7. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    NASA Astrophysics Data System (ADS)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  8. On the application of photogrammetry to the fitting of jawbone-anchored bridges.

    PubMed

    Strid, K G

    1985-01-01

    Misfit between a jawbone-anchored bridge and the abutments in the patient's jaw may result in, for example, fixture fracture. To achieve improved alignment, the bridge base could be prepared in a numerically-controlled tooling machine using measured abutment coordinates as primary data. For each abutment, the measured values must comprise the coordinates of a reference surface as well as the spatial orientation of the fixture/abutment longitudinal axis. Stereophotogrammetry was assumed to be the measuring method of choice. To assess its potentials, a lower-jaw model with accurately positioned signals was stereophotographed and the films were measured in a stereocomparator. Model-space coordinates, computed from the image coordinates, were compared to the known signal coordinates. The root-mean-square error in position was determined to 0.03-0.08 mm, the maximum individual error amounting to 0.12 mm, whereas the r. m. s. error in axis direction was found to be 0.5-1.5 degrees with a maximum individual error of 1.8 degrees. These errors are of the same order as can be achieved by careful impression techniques. The method could be useful, but because of its complexity, stereophotogrammetry is not recommended as a standard procedure.

  9. Active magnetic bearing control loop modeling for a finite element rotordynamics code

    NASA Technical Reports Server (NTRS)

    Genta, Giancarlo; Delprete, Cristiana; Carabelli, Stefano

    1994-01-01

    A mathematical model of an active electromagnetic bearing which includes the actuator, the sensor and the control system is developed and implemented in a specialized finite element code for rotordynamic analysis. The element formulation and its incorporation in the model of the machine are described in detail. A solution procedure, based on a modal approach in which the number of retained modes is controlled by the user, is then shown together with other procedures for computing the steady-state response to both static and unbalance forces. An example of application shows the numerical results obtained on a model of an electric motor suspended on a five active-axis magnetic suspension. The comparison of some of these results with the experimental characteristics of the actual system shows the ability of the present model to predict its performance.

  10. The U.S. Machine Tool Industry and the Defense Industrial Base

    DTIC Science & Technology

    1983-01-01

    GOLD, Director, Research Program in Industrial Economics , Case Western Reserve University HAMILTON HERMAN, Management Consultant NATHANIEL S. HOWE...Traditional U.S. Machine Tool Industry ........ 8 Technological Trends Shaping the Industry ........ 18 Economic Trends .................................. 23...sustained economic recovery and aggressive steps by both government and industry, an effectively com- petitive domestic machine tool industry can emerge

  11. PCD tool wear and its monitoring in machining tungsten

    NASA Astrophysics Data System (ADS)

    Wang, Lijiang; Zhang, Zhenlie; Sun, Qi; Liu, Pin

    The views of Chinese and foreign researchers are quite different as to whether or not polycrystalline diamond (PCD) tools can machine tungsten that is used in the aerospace and electronic industries. A study is presented that shows the possibility of machining tungsten, and a new method is developed for monitoring the tool wear in production.

  12. Machine and Woodworking Tool Safety. Module SH-24. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on machine and woodworking tool safety is one of 50 modules concerned with job safety and health. This module discusses specific practices and precautions concerned with the efficient operation and use of most machine and woodworking tools in use today. Following the introduction, 13 objectives (each keyed to a page in the…

  13. Machinability of titanium metal matrix composites (Ti-MMCs)

    NASA Astrophysics Data System (ADS)

    Aramesh, Maryam

    Titanium metal matrix composites (Ti-MMCs), as a new generation of materials, have various potential applications in aerospace and automotive industries. The presence of ceramic particles enhances the physical and mechanical properties of the alloy matrix. However, the hard and abrasive nature of these particles causes various issues in the field of their machinability. Severe tool wear and short tool life are the most important drawbacks of machining this class of materials. There is very limited work in the literature regarding the machinability of this class of materials especially in the area of tool life estimation and tool wear. By far, polycrystalline diamond (PCD) tools appear to be the best choice for machining MMCs from researchers' point of view. However, due to their high cost, economical alternatives are sought. Cubic boron nitride (CBN) inserts, as the second hardest available tools, show superior characteristics such as great wear resistance, high hardness at elevated temperatures, a low coefficient of friction and a high melting point. Yet, so far CBN tools have not been studied during machining of Ti-MMCs. In this study, a comprehensive study has been performed to explore the tool wear mechanisms of CBN inserts during turning of Ti-MMCs. The unique morphology of the worn faces of the tools was investigated for the first time, which led to new insights in the identification of chemical wear mechanisms during machining of Ti-MMCs. Utilizing the full tool life capacity of cutting tools is also very crucial, due to the considerable costs associated with suboptimal replacement of tools. This strongly motivates development of a reliable model for tool life estimation under any cutting conditions. In this study, a novel model based on the survival analysis methodology is developed to estimate the progressive states of tool wear under any cutting conditions during machining of Ti-MMCs. This statistical model takes into account the machining time in addition to the effect of cutting parameters. Thus, promising results were obtained which showed a very good agreement with the experimental results. Moreover, a more advanced model was constructed, by adding the tool wear as another variable to the previous model. Therefore, a new model was proposed for estimating the remaining life of worn inserts under different cutting conditions, using the current tool wear data as an input. The results of this model were validated with the experimental results. The estimated results were well consistent with the results obtained from the experiments.

  14. Operating System For Numerically Controlled Milling Machine

    NASA Technical Reports Server (NTRS)

    Ray, R. B.

    1992-01-01

    OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.

  15. UIVerify: A Web-Based Tool for Verification and Automatic Generation of User Interfaces

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar; Degani, Asaf; Heymann, Michael

    2004-01-01

    In this poster, we describe a web-based tool for verification and automatic generation of user interfaces. The verification component of the tool accepts as input a model of a machine and a model of its interface, and checks that the interface is adequate (correct). The generation component of the tool accepts a model of a given machine and the user's task, and then generates a correct and succinct interface. This write-up will demonstrate the usefulness of the tool by verifying the correctness of a user interface to a flight-control system. The poster will include two more examples of using the tool: verification of the interface to an espresso machine, and automatic generation of a succinct interface to a large hypothetical machine.

  16. USSR Report, Machine Tools and Metalworking Equipment, No. 6

    DTIC Science & Technology

    1983-05-18

    production output per machine tool at a tool plant average 2-3 times the figures for tool shops. This is explained by the well-known advantages of...specialized production. Specifically, the advantages of standardization and unification of machine- attachment design can be fully exploited in...lemiiiiä IS MVCti\\e UtiUzation °f appropriate special equipmeT ters)! million thread-cutting dies, and 2.3 million milling cut- The advantages of

  17. [Present-day metal-cutting tools and working conditions].

    PubMed

    Kondratiuk, V P

    1990-01-01

    Polyfunctional machine-tools of a processing centre type are characterized by a set of hygienic advantages as compared to universal machine-tools. But low degree of mechanization and automation of some auxiliary processes, and constructional defects which decrease the ergonomic characteristics of the tools, involve labour intensity in multi-machine processing. The article specifies techniques of allowable noise level assessment, and proposes hygienic recommendations, some of which have been introduced into practice.

  18. Normal contour error measurement on-machine and compensation method for polishing complex surface by MRF

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Jihong; Wang, Baorui; Zheng, Yongcheng

    2016-10-01

    The Magnetorheological finishing (MRF) process, based on the dwell time method with the constant normal spacing for flexible polishing, would bring out the normal contour error in the fine polishing complex surface such as aspheric surface. The normal contour error would change the ribbon's shape and removal characteristics of consistency for MRF. Based on continuously scanning the normal spacing between the workpiece and the finder by the laser range finder, the novel method was put forward to measure the normal contour errors while polishing complex surface on the machining track. The normal contour errors was measured dynamically, by which the workpiece's clamping precision, multi-axis machining NC program and the dynamic performance of the MRF machine were achieved for the verification and security check of the MRF process. The unit for measuring the normal contour errors of complex surface on-machine was designed. Based on the measurement unit's results as feedback to adjust the parameters of the feed forward control and the multi-axis machining, the optimized servo control method was presented to compensate the normal contour errors. The experiment for polishing 180mm × 180mm aspherical workpiece of fused silica by MRF was set up to validate the method. The results show that the normal contour error was controlled in less than 10um. And the PV value of the polished surface accuracy was improved from 0.95λ to 0.09λ under the conditions of the same process parameters. The technology in the paper has been being applied in the PKC600-Q1 MRF machine developed by the China Academe of Engineering Physics for engineering application since 2014. It is being used in the national huge optical engineering for processing the ultra-precision optical parts.

  19. Study of Tool Wear Mechanisms and Mathematical Modeling of Flank Wear During Machining of Ti Alloy (Ti6Al4V)

    NASA Astrophysics Data System (ADS)

    Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.

    2015-07-01

    Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.

  20. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.

    PubMed

    Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence

    2017-10-25

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.

  1. Method for machining steel with diamond tools

    DOEpatents

    Casstevens, J.M.

    1984-01-01

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  2. Method for machining steel with diamond tools

    DOEpatents

    Casstevens, John M.

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  3. Influence of Cutting Parameters and Tool Wear on the Surface Integrity of Cobalt-Based Stellite 6 Alloy When Machined Under a Dry Cutting Environment

    NASA Astrophysics Data System (ADS)

    Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander

    2017-01-01

    The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.

  4. Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools

    NASA Astrophysics Data System (ADS)

    Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu

    2018-03-01

    Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.

  5. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    ERIC Educational Resources Information Center

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  6. JPRS Report, China.

    DTIC Science & Technology

    1989-01-30

    absolutely forbid the dealing of retaliatory blows to those of the masses who give their opinions. Fifth, on the basis of their analyses they pass on...Timber Artificial Board Cement Plate Glass Power Equipment Machine Tool Precision Machine Tool Large Machine Tool Automobile Truck Tractor Small...the State Bureau of Building Materials Industry said that the industry must manufacture more varieties of high quality cement, glass , pottery, and

  7. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence

    NASA Astrophysics Data System (ADS)

    Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire

    2017-11-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.

  8. Deceleration system for kinematic linkages of positioning

    NASA Astrophysics Data System (ADS)

    Stan, G.

    2017-08-01

    Flexible automation is used more and more in various production processes, so that both machining itself on CNC machine tools and workpiece handling means are performed through programming the needed working cycle. In order to obtain a successful precise positioning, each motion degree needs a certain deceleration before stopping at a programmed point. The increase of motion speed of moving elements within the manipulators structure depends directly on deceleration duty quality before the programmed stop. Proportional valves as well as servo-valves that can perform hydraulic decelerations are well known, but they feature several disadvantages, such as: high price, severe conditions for oil filtering and low reliability under industrial conditions. This work presents a new deceleration system that allows adjustment of deceleration slope according to actual conditions: inertial mass, speed etc. The new solution of hydraulic decelerator allows its integration to a position loop or its usage in case of positioning large elements that only perform fixed cycles. The results being obtained on the positioning accuracy of a linear axis using the new solution of the hydraulic decelerator are presented, too. The price of the new deceleration system is much lower compared to the price of proportional valves or servo-valves.

  9. Applying Semantic Web technologies to improve the retrieval, credibility and use of health-related web resources.

    PubMed

    Mayer, Miguel A; Karampiperis, Pythagoras; Kukurikos, Antonis; Karkaletsis, Vangelis; Stamatakis, Kostas; Villarroel, Dagmar; Leis, Angela

    2011-06-01

    The number of health-related websites is increasing day-by-day; however, their quality is variable and difficult to assess. Various "trust marks" and filtering portals have been created in order to assist consumers in retrieving quality medical information. Consumers are using search engines as the main tool to get health information; however, the major problem is that the meaning of the web content is not machine-readable in the sense that computers cannot understand words and sentences as humans can. In addition, trust marks are invisible to search engines, thus limiting their usefulness in practice. During the last five years there have been different attempts to use Semantic Web tools to label health-related web resources to help internet users identify trustworthy resources. This paper discusses how Semantic Web technologies can be applied in practice to generate machine-readable labels and display their content, as well as to empower end-users by providing them with the infrastructure for expressing and sharing their opinions on the quality of health-related web resources.

  10. Artificial Neural Networks as an Architectural Design Tool-Generating New Detail Forms Based On the Roman Corinthian Order Capital

    NASA Astrophysics Data System (ADS)

    Radziszewski, Kacper

    2017-10-01

    The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital. During the experiment, as an input training data set, five local geometry parameters combined has given the best results: Theta, Pi, Rho in spherical coordinate system based on the capital volume centroid, followed by Z value of the Cartesian coordinate system and a distance from vertical planes created based on the capital symmetry. Additionally during the experiment, artificial neural network hidden layers optimal count and structure was found, giving results of the error below 0.2% for the mentioned before input parameters. Once successfully trained artificial network, was able to mimic the details composition on any other geometry type given. Despite of calculating the transformed geometry locally and separately for each of the thousands of surface points, system could create visually attractive and diverse, complex patterns. Designed tool, based on the supervised learning method of machine learning, gives possibility of generating new architectural forms- free of the designer’s imagination bounds. Implementing the infinitely broad computational methods of machine learning, or Artificial Intelligence in general, not only could accelerate and simplify the design process, but give an opportunity to explore never seen before, unpredictable forms or everyday architectural practice solutions.

  11. Successful fabrication of a convex platform PMMA cell-counting slide using a high-precision perpendicular dual-spindle CNC machine tool

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Tong; Chang, Chih-Hsien

    2013-12-01

    This study presents a novel approach to the fabrication of a biomedical-mold for producing convex platform PMMA (poly-methyl-meth-acrylate) slides for counting cells. These slides allow for the microscopic examination of urine sediment cells. Manufacturing of such slides incorporates three important procedures: (1) the development of a tabletop high-precision dual-spindle CNC (computerized numerical control) machine tool; (2) the formation of a boron-doped polycrystalline composite diamond (BD-PCD) wheel-tool on the machine tool developed in procedure (1); and (3) the cutting of a multi-groove-biomedical-mold array using the formed diamond wheel-tool in situ on the developed machine. The machine incorporates a hybrid working platform providing wheel-tool thinning using spark erosion to cut, polish, and deburr microgrooves on NAK80 steel directly. With consideration given for the electrical conductive properties of BD-PCD, the diamond wheel-tool is thinned to a thickness of 5 µm by rotary wire electrical discharge machining. The thinned wheel-tool can grind microgrooves 10 µm wide. An embedded design, which inserts a close fitting precision core into the biomedical-mold to create step-difference (concave inward) of 50 µm in height between the core and the mold, is also proposed and realized. The perpendicular dual-spindles and precision rotary stage are features that allow for biomedical-mold machining without the necessity of uploading and repositioning materials until all tasks are completed. A PMMA biomedical-slide with a plurality of juxtaposed counting chambers is formed and its usefulness verified.

  12. Power-Factor Calculation under Consideration of Cross Saturation of the Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong T; Burress, Timothy A; Hsu, John S

    2009-01-01

    This paper introduces a new method for calculating the power factor with consideration of the cross saturation between the direct-axis (d-axis) and the quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross-saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux at highmore » speed, which was developed for the traction motor of a hybrid electric vehicle.« less

  13. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2010-01-12

    A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  14. Effects of Process Parameters on Ultrasonic Micro-Hole Drilling in Glass and Ruby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schorderet, Alain; Deghilage, Emmanuel; Agbeviade, Kossi

    2011-05-04

    Brittle materials such as ceramics, glasses and oxide single crystals find increasing applications in advanced micro-engineering products. Machining small features in such materials represents a manufacturing challenge. Ultrasonic drilling constitutes a promising technique for realizing simple micro-holes of high diameter-to-depth ratio. The process involves impacting abrasive particles in suspension in a liquid slurry between tool and work piece. Among the process performance criteria, the drilling time (productivity) is one of the most important quantities to evaluate the suitability of the process for industrial applications.This paper summarizes recent results pertaining to the ultrasonic micro-drilling process obtained with a semi-industrial 3-axis machine.more » The workpiece is vibrated at 40 kHz frequency with an amplitude of several micrometers. A voice-coil actuator and a control loop based on the drilling force impose the tool feed. In addition, the tool is rotated at a prescribed speed to improve the drilling speed as well as the hole geometry. Typically, a WC wire serves as tool to bore 200 {mu}m diameter micro-holes of 300 to 1,000 {mu}m depth in glass and ruby. The abrasive slurry contains B4C particles of 1 {mu}m to 5 {mu}m diameter in various concentrations.This paper discusses, on the basis of the experimental results, the influence of several parameters on the drilling time. First, the results show that the control strategy based on the drilling force allows to reach higher feed rates (avoiding tool breakage). Typically, a 8 um/s feed rate is achieved with glass and 0.9 {mu}m/s with ruby. Tool rotation, even for values as low as 50 rpm, increases productivity and improves holes geometry. Drilling with 1 {mu}m and 5 {mu}m B4C particles yields similar productivity results. Our future research will focus on using the presented results to develop a model that can serve to optimize the process for different applications.« less

  15. Miniaturized multiwavelength digital holography sensor for extensive in-machine tool measurement

    NASA Astrophysics Data System (ADS)

    Seyler, Tobias; Fratz, Markus; Beckmann, Tobias; Bertz, Alexander; Carl, Daniel

    2017-06-01

    In this paper we present a miniaturized digital holographic sensor (HoloCut) for operation inside a machine tool. With state-of-the-art 3D measurement systems, short-range structures such as tool marks cannot be resolved inside a machine tool chamber. Up to now, measurements had to be conducted outside the machine tool and thus processing data are generated offline. The sensor presented here uses digital multiwavelength holography to get 3D-shape-information of the machined sample. By using three wavelengths, we get a large artificial wavelength with a large unambiguous measurement range of 0.5mm and achieve micron repeatability even in the presence of laser speckles on rough surfaces. In addition, a digital refocusing algorithm based on phase noise is implemented to extend the measurement range beyond the limits of the artificial wavelength and geometrical depth-of-focus. With complex wave field propagation, the focus plane can be shifted after the camera images have been taken and a sharp image with extended depth of focus is constructed consequently. With 20mm x 20mm field of view the sensor enables measurement of both macro- and micro-structure (such as tool marks) with an axial resolution of 1 µm, lateral resolution of 7 µm and consequently allows processing data to be generated online which in turn qualifies it as a machine tool control. To make HoloCut compact enough for operation inside a machining center, the beams are arranged in two planes: The beams are split into reference beam and object beam in the bottom plane and combined onto the camera in the top plane later on. Using a mechanical standard interface according to DIN 69893 and having a very compact size of 235mm x 140mm x 215mm (WxHxD) and a weight of 7.5 kg, HoloCut can be easily integrated into different machine tools and extends no more in height than a typical processing tool.

  16. Adjustable mounting device for high-volume production of beam-shaping systems for high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian

    2015-02-01

    In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.

  17. Improved equivalent magnetic network modeling for analyzing working points of PMs in interior permanent magnet machine

    NASA Astrophysics Data System (ADS)

    Guo, Liyan; Xia, Changliang; Wang, Huimin; Wang, Zhiqiang; Shi, Tingna

    2018-05-01

    As is well known, the armature current will be ahead of the back electromotive force (back-EMF) under load condition of the interior permanent magnet (PM) machine. This kind of advanced armature current will produce a demagnetizing field, which may make irreversible demagnetization appeared in PMs easily. To estimate the working points of PMs more accurately and take demagnetization under consideration in the early design stage of a machine, an improved equivalent magnetic network model is established in this paper. Each PM under each magnetic pole is segmented, and the networks in the rotor pole shoe are refined, which makes a more precise model of the flux path in the rotor pole shoe possible. The working point of each PM under each magnetic pole can be calculated accurately by the established improved equivalent magnetic network model. Meanwhile, the calculated results are compared with those calculated by FEM. And the effects of d-axis component and q-axis component of armature current, air-gap length and flux barrier size on working points of PMs are analyzed by the improved equivalent magnetic network model.

  18. Automatic discrimination between safe and unsafe swallowing using a reputation-based classifier

    PubMed Central

    2011-01-01

    Background Swallowing accelerometry has been suggested as a potential non-invasive tool for bedside dysphagia screening. Various vibratory signal features and complementary measurement modalities have been put forth in the literature for the potential discrimination between safe and unsafe swallowing. To date, automatic classification of swallowing accelerometry has exclusively involved a single-axis of vibration although a second axis is known to contain additional information about the nature of the swallow. Furthermore, the only published attempt at automatic classification in adult patients has been based on a small sample of swallowing vibrations. Methods In this paper, a large corpus of dual-axis accelerometric signals were collected from 30 older adults (aged 65.47 ± 13.4 years, 15 male) referred to videofluoroscopic examination on the suspicion of dysphagia. We invoked a reputation-based classifier combination to automatically categorize the dual-axis accelerometric signals into safe and unsafe swallows, as labeled via videofluoroscopic review. From these participants, a total of 224 swallowing samples were obtained, 164 of which were labeled as unsafe swallows (swallows where the bolus entered the airway) and 60 as safe swallows. Three separate support vector machine (SVM) classifiers and eight different features were selected for classification. Results With selected time, frequency and information theoretic features, the reputation-based algorithm distinguished between safe and unsafe swallowing with promising accuracy (80.48 ± 5.0%), high sensitivity (97.1 ± 2%) and modest specificity (64 ± 8.8%). Interpretation of the most discriminatory features revealed that in general, unsafe swallows had lower mean vibration amplitude and faster autocorrelation decay, suggestive of decreased hyoid excursion and compromised coordination, respectively. Further, owing to its performance-based weighting of component classifiers, the static reputation-based algorithm outperformed the democratic majority voting algorithm on this clinical data set. Conclusion Given its computational efficiency and high sensitivity, reputation-based classification of dual-axis accelerometry ought to be considered in future developments of a point-of-care swallow assessment where clinical informatics are desired. PMID:22085802

  19. A study on the effect of tool electrode thickness on MRR, and TWR in electrical discharge turning process

    NASA Astrophysics Data System (ADS)

    Gohil, Vikas; Puri, YM

    2018-04-01

    Turning by electrical discharge machining (EDM) is an emerging area of research. Generally, wire-EDM is used in EDM turning because it is not concerned with electrode tooling cost. In EDM turning wire electrode leaves cusps on the machined surface because of its small diameters and wire breakage which greatly affect the surface finish of the machined part. Moreover, one of the limitations of the process is low machining speed as compared to constituent processes. In this study, conventional EDM was employed for turning purpose in order to generate free-form cylindrical geometries on difficult-to-cut materials. Therefore, a specially designed turning spindle was mounted on a conventional die-sinking EDM machine to rotate the work piece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating work piece; thus, a mirror image of the tool is formed on the circumference of the work piece. In this way, an axisymmetric work piece can be made with small tools. The developed process is termed as the electrical discharge turning (EDT). In the experiments, the effect of machining parameters, such as pulse-on time, peak current, gap voltage and tool thickness on the MRR, and TWR were investigated and practical machining was carried out by turning of SS-304 stainless steel work piece.

  20. Recent developments in turning hardened steels - A review

    NASA Astrophysics Data System (ADS)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  1. Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Bajikar, Sateesh S.; Scott, Michael A.; Adcock, Edward E.

    2011-01-01

    This miniature or micro-sized semiconductor sensor design provides direct, nonintrusive measurement of skin friction or wall shear stress in fluid flow situations in a two-axis configuration. The sensor is fabricated by microelectromechanical system (MEMS) technology, enabling small size and multiple, low-cost reproductions. The sensors may be fabricated by bonding a sensing element wafer to a fluid-coupling element wafer. Using this layered machine structure provides a truly three-dimensional device.

  2. A Guide for Industrial Mobilization

    DTIC Science & Technology

    1989-03-01

    packages; and cient, increased production controls may be needed. These actions include: i. Releasing machine tool trigger or- ders and increasing buys...710). the Department of Defense to maintain facili- 4. The National Defense Act authorizes: ties, machine tools , production equipment, and skilled...Defense Industrial Reserve Act pro- Room 3876, U.S. Departm nt of Commerce vides for the reserve of machine tools and other Washington, D.C. 20230 or

  3. Coupling for joining a ball nut to a machine tool carriage

    DOEpatents

    Gerth, Howard L.

    1979-01-01

    The present invention relates to an improved coupling for joining a lead screw ball nut to a machine tool carriage. The ball nut is coupled to the machine tool carriage by a plurality of laterally flexible bolts which function as hinges during the rotation of the lead screw for substantially reducing lateral carriage movement due to wobble in the lead screw.

  4. A Guide for Planning Facilities for Occupational Preparation Programs in the Machine Trades. Interim Report. Research 24.

    ERIC Educational Resources Information Center

    Larson, Milton E.

    This guide is designed for use by any person or groups of persons responsible for planning occupational programs in the machine trades. Its major purpose is to elicit the necessary information for the writing of educational specifications for facilities to house needed vocational programs in machine tool operation, machine shop, and tool and die…

  5. 76 FR 11361 - Defense Federal Acquisition Regulation Supplement; Preservation of Tooling for Major Defense...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... tooling, but should include ``all property, i.e., special test equipment, ground support equipment, machine tools and machines and other intangibles to maintain capability.'' Response: DoD is fully...

  6. Agile Machining and Inspection Non-Nuclear Report (NNR) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarus, Lloyd

    This report is a high level summary of the eight major projects funded by the Agile Machining and Inspection Non-Nuclear Readiness (NNR) project (FY06.0422.3.04.R1). The largest project of the group is the Rapid Response project in which the six major sub categories are summarized. This project focused on the operations of the machining departments that will comprise Special Applications Machining (SAM) in the Kansas City Responsive Infrastructure Manufacturing & Sourcing (KCRIMS) project. This project was aimed at upgrading older machine tools, developing new inspection tools, eliminating Classified Removable Electronic Media (CREM) in the handling of classified Numerical Control (NC) programsmore » by installing the CRONOS network, and developing methods to automatically load Coordinated-Measuring Machine (CMM) inspection data into bomb books and product score cards. Finally, the project personnel leaned perations of some of the machine tool cells, and now have the model to continue this activity.« less

  7. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, Carl J.

    1985-01-01

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: A tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  8. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, C.J.

    1981-10-21

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: a tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  9. “Investigations on the machinability of Waspaloy under dry environment”

    NASA Astrophysics Data System (ADS)

    Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.

    2016-09-01

    Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process

  10. Open architecture CNC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tal, J.; Lopez, A.; Edwards, J.M.

    1995-04-01

    In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool inmore » a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.« less

  11. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part

    PubMed Central

    Fox-Rabinovich, German; Wagg, Terry

    2017-01-01

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405

  12. JPRS Report, Science & Technology, Europe & Latin America.

    DTIC Science & Technology

    1988-01-22

    Rex Malik; ZERO UN INFORMATIQUE, 31 Aug 87) 25 FACTORY AUTOMATION, ROBOTICS West Europe Seeks To Halt Japanese Inroads in Machine Tool Sector...aircraft. 25048 CSO: 3698/A014 26 FACTORY AUTOMATION, ROBOTICS vrEST EUROpE WEST EUROPE SEEKS TO HALT JAPANESE INROADS IN MACHINE TOOL SECTOR...Trumpf, by the same journalist; first paragraph is L’USINE NOUVELLE introduction] [Excerpts] European machine - tool builders are stepping up mutual

  13. Translations on North Korea No. 622

    DTIC Science & Technology

    1978-10-13

    Pyongyang Power Station 5 July Electric Factory Hamhung Machine Tool Factory Kosan Plastic Pipe Factory Sog’wangea Plastic Pipe Factory 8...August Factory Double Chollima Hamhung Disabled Veterans’ Plastic Goods Factory Mangyongdae Machine Tool Factory Kangso Coal Mine Tongdaewon Garment...21 Jul 78 p 4) innovating in machine tool production (NC 21 Jul 78 p 2) in 40 days of the 蔴 days of combat" raised coal production 10 percent

  14. Pellet to Part Manufacturing System for CNCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roschli, Alex C.; Love, Lonnie J.; Post, Brian K.

    Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.

  15. A Comparative Study of Teacher Education Institutions and Machine Tool Manufacturers to Determine Course Content for a Machine Tool Maintenance Course in the Woodworking Area.

    ERIC Educational Resources Information Center

    Polette, Douglas Lee

    To determine what type of maintenance training the prospective industrial arts teacher should receive in the woodworking area and how this information should be taught, a research instrument was constructed using information obtained from a review of relevant literature. Specific data on machine tool maintenance was gathered by the use of two…

  16. Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process

    NASA Astrophysics Data System (ADS)

    Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.

    2018-03-01

    In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.

  17. 12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), OSTER MANUFACTURING CO. PIPE MASTER (R), AND OLDMAN KINK, A SHOP-MADE WELDING STRENGTH TESTER (L, BACKGROUND). VIEW NORTHEAST - Oldman Boiler Works, Office/Machine Shop, 32 Illinois Street, Buffalo, Erie County, NY

  18. Process Damping and Cutting Tool Geometry in Machining

    NASA Astrophysics Data System (ADS)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  19. Large robotized turning centers described

    NASA Astrophysics Data System (ADS)

    Kirsanov, V. V.; Tsarenko, V. I.

    1985-09-01

    The introduction of numerical control (NC) machine tools has made it possible to automate machining in series and small series production. The organization of automated production sections merged NC machine tools with automated transport systems. However, both the one and the other require the presence of an operative at the machine for low skilled operations. Industrial robots perform a number of auxiliary operations, such as equipment loading-unloading and control, changing cutting and auxiliary tools, controlling workpieces and parts, and cleaning of location surfaces. When used with a group of equipment they perform transfer operations between the machine tools. Industrial robots eliminate the need for workers to form auxiliary operations. This underscores the importance of developing robotized manufacturing centers providing for minimal human participation in production and creating conditions for two and three shift operation of equipment. Work carried out at several robotized manufacturing centers for series and small series production is described.

  20. Large Wind Turbine Design Characteristics and R and D Requirements

    NASA Technical Reports Server (NTRS)

    Lieblein, S. (Editor)

    1979-01-01

    Detailed technical presentations on large wind turbine research and development activities sponsored by public and private organizations are presented. Both horizontal and vertical axis machines are considered with emphasis on their structural design.

  1. Tool simplifies machining of pipe ends for precision welding

    NASA Technical Reports Server (NTRS)

    Matus, S. T.

    1969-01-01

    Single tool prepares a pipe end for precision welding by simultaneously performing internal machining, end facing, and bevel cutting to specification standards. The machining operation requires only one milling adjustment, can be performed quickly, and produces the high quality pipe-end configurations required to ensure precision-welded joints.

  2. Machine Translation and Other Translation Technologies.

    ERIC Educational Resources Information Center

    Melby, Alan

    1996-01-01

    Examines the application of linguistic theory to machine translation and translator tools, discusses the use of machine translation and translator tools in the real world of translation, and addresses the impact of translation technology on conceptions of language and other issues. Findings indicate that the human mind is flexible and linguistic…

  3. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  4. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  5. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  6. Optical alignment of electrodes on electrical discharge machines

    NASA Technical Reports Server (NTRS)

    Boissevain, A. G.; Nelson, B. W.

    1972-01-01

    Shadowgraph system projects magnified image on screen so that alignment of small electrodes mounted on electrical discharge machines can be corrected and verified. Technique may be adapted to other machine tool equipment where physical contact cannot be made during inspection and access to tool limits conventional runout checking procedures.

  7. Application de la methode de la reponse frequentielle a l'arret "SSFR", sur une machine synchrone a poles saillants de grande puissance

    NASA Astrophysics Data System (ADS)

    Belqorchi, Abdelghafour

    Forty years after Watson and Manchur conducted the Stand-Still Frequency Response (SSFR) test on a large turbogenerator, the applicability of this technic on a powerful salient pole synchronous generator has yet to be confirmed. The scientific literature on the subject is rare and very few have attempted to compare SSFR parameter results with those deduced by classical tests. The validity of SSFR on large salient pole machines has still to be proven. The present work aims in participating to fill this knowledge gap. It can be used to build a database of measurements highly needed to draw the validity of the technic. Also, the author hopes to demonstrate the potential of SSFR model to represent the machine, not only in cases of weak disturbances but also strong ones such as instantaneous three-phase short-circuit faults. The difficulties raised by previous searchers are: The lack of accuracy in very low frequency measurements; The difficulty in rotor positioning, according to d and q axes, in case of salient pole machines; The measurement current level influence on magnetizing inductances, in axes-d and; The rotation impact on damper circuits for some rotors design. Aware of the above difficulties, the author conducted an SSFR test on a large salient pole machine (285 MVA). The generator under test has laminated non isolated rotor and an integral slot number. The damper windings in adjacent poles are connected together, via the polar core and the rotor rim. Finally, the damping circuit is unaffected by rotation. To improve the measurement accuracy, in very low frequencies, the most precise frequency response analyser available on the market was used. Besides, the frequency responses of the signals conditioning modules (i.e., isolation, amplification...) were accounted for to correct the four measured SSFR transfer functions. Immunization against noise and use of instrumentation in their optimum range, were other technics rigorously applied. Magnetizing inductances, being influenced by the measurement current magnitude, the latter was maintained constant in the range 1mHz-20Hz. Other problems such as the rotation impact on damper circuits or the difficulty of rotor positioning are eliminated or attenuated by the intrinsic characteristics of the machine. Regarding the data analysis, the Maximum Likelihood Estimation (MLE) method was used to determine the third and second order equivalent circuit from SSFR measurements. In d-axis, the approaches of adjustment to two and three transfer functions (Ld(s), sG(s) and Lafo(s)) were explored. The second order model, derived from (Ld( s) and G(s)), was used to deduce the machine standard parameters. The latter were compared with the values given by the manufacturer and by conventional on-site tests: Instantaneous three-phase short-circuit, Dalton-Cameron and the d-axis transient time constant at open stator (T'do). The comparison showed the good accuracy of SSFR values. Subsequently, a machine model was built in EMTP-RV based on SSFR standard parameters. The model was able to reproduce stator and rotor currents measured during instantaneous three-phase short-circuit test. Some adjustments, to SSFR parameters, were needed to reproduce stator voltage and rotor current acquired during load rejection d-axis test. It is worthwhile noting that the load rejection d-axis test, recently added to IEEE 115-2009 annex, must be modified to take into account the saturation and excitation impedance impact on deduced parameters. Regarding this issue, some suggestions are proposed by the author. The obtained SSFR results, contribute to raise confidence on SSFR application on large salient pole machines. In addition, it shows the aptitude of the SSFR model to represent the machine in both cases of weak and strong disturbances, at least on machines similar the one studied. Index Terms: Salient pole, frequency response, SSFR, equivalent circuit, operational inductance.

  8. The Science of and Advanced Technology for Cost-Effective Manufacture of High Precision Engineering Products. Volume 4. Thermal Effects on the Accuracy of Numerically Controlled Machine Tools.

    DTIC Science & Technology

    1985-10-01

    83K0385 FINAL REPORT D Vol. 4 00 THERMAL EFFECTS ON THE ACCURACY OF LD NUME" 1ICALLY CONTROLLED MACHINE TOOLS PREPARED BY I Raghunath Venugopal and M...OF NUMERICALLY CONTROLLED MACHINE TOOLS 12 PERSONAL AJ’HOR(S) Venunorial, Raghunath and M. M. Barash 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF...TOOLS Prepared by Raghunath Venugopal and M. M. Barash Accesion For Unannounced 0 Justification ........................................... October 1085

  9. Speed-Selector Guard For Machine Tool

    NASA Technical Reports Server (NTRS)

    Shakhshir, Roda J.; Valentine, Richard L.

    1992-01-01

    Simple guardplate prevents accidental reversal of direction of rotation or sudden change of speed of lathe, milling machine, or other machine tool. Custom-made for specific machine and control settings. Allows control lever to be placed at only one setting. Operator uses handle to slide guard to engage or disengage control lever. Protects personnel from injury and equipment from damage occurring if speed- or direction-control lever inadvertently placed in wrong position.

  10. Effect of High-speed Milling tool path strategies on the surface roughness of Stavax ESR mold insert machining

    NASA Astrophysics Data System (ADS)

    Mebrahitom, A.; Rizuan, D.; Azmir, M.; Nassif, M.

    2016-02-01

    High speed milling is one of the recent technologies used to produce mould inserts due to the need for high surface finish. It is a faster machining process where it uses a small side step and a small down step combined with very high spindle speed and feed rate. In order to effectively use the HSM capabilities, optimizing the tool path strategies and machining parameters is an important issue. In this paper, six different tool path strategies have been investigated on the surface finish and machining time of a rectangular cavities of ESR Stavax material. CAD/CAM application of CATIA V5 machining module for pocket milling of the cavities was used for process planning.

  11. Research of a smart cutting tool based on MEMS strain gauge

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.

    2018-03-01

    Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.

  12. Latest results and developments from the Hybrid Illinois Device for Research and Applications

    NASA Astrophysics Data System (ADS)

    Rizkallah, Rabel; Andruczyk, Daniel; Jeckell, Zachary Jon; Shone, Andrew John; Johnson, Daniel Scott; Allain, Jean Paul; Curreli, Davide; Ruzic, David N.; The Hidra Team

    2017-10-01

    The Hybrid Illinois Device for Research and Applications (HIDRA) is a five-period, l = 2, m = 5, toroidal fusion device operated at the University of Illinois at Urbana-Champaign (UIUC). It has a major radius R0 = 0.72 m and minor radius a = 0.19 m. Initial heating is achieved with 2.45 GHz electron cyclotron resonance heating (ECRH) at an on-axis magnetic field of B0 = 0.087 T which can go as high as B0 = 0.5 T. HIDRA will mainly be used as a classical stellarator, but can also run as a tokamak. This allows for both steady-state and transient regime operations. Experiments on HIDRA will primarily tackle the issue of plasma-material interactions (PMI) in fusion, and focus on developing innovative plasma facing component (PFC) technologies. Currently, research on flowing liquid lithium PFCs meant to be tested inside the machine in real-time operation, is being carried on. The first experiments run on HIDRA started in early 2016 in the low field region. Now, HIDRA is also capable of running in the high field zone, allowing for more interesting experiments and meaningful outcomes. Here, we present some of the initial results coming from the machine.

  13. New tool holder design for cryogenic machining of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Bellin, Marco; Sartori, Stefano; Ghiotti, Andrea; Bruschi, Stefania

    2017-10-01

    The renewed demand of increasing the machinability of the Ti6Al4V titanium alloy to produce biomedical and aerospace parts working at high temperature has recently led to the application of low-temperature coolants instead of conventional cutting fluids to increase both the tool life and the machined surface integrity. In particular, the liquid nitrogen directed to the tool rake face has shown a great capability of reducing the temperature at the chip-tool interface, as well as the chemical interaction between the tool coating and the titanium to be machined, therefore limiting the tool crater wear, and improving, at the same time, the chip breakability. Furthermore, the nitrogen is a safe, non-harmful, non-corrosive, odorless, recyclable, non-polluting and abundant gas, characteristics that further qualify it as an environmental friendly coolant to be applied to machining processes. However, the behavior of the system composed by the tool and the tool holder, exposed to the cryogenics temperatures may represent a critical issue in order to obtain components within the required geometrical tolerances. On this basis, the paper aims at presenting the design of an innovative tool holder installed on a CNC lathe, which includes the cryogenic coolant provision system, and which is able to hinder the part possible distortions due to the liquid nitrogen adduction by stabilizing its dimensions through the use of heating cartridges and appropriate sensors to monitor the temperature evolution of the tool holder.

  14. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    PubMed

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  15. 75 FR 34077 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on Five Petitions to List Seven...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ...) Habitat requirements for feeding, breeding, and sheltering; (b) Genetics and taxonomy; (c) Historical and...), cattle (Bos taurus), goats (Capra hircus), and axis deer (Axis axis), is considered one of the primary...

  16. Machine tools error characterization and compensation by on-line measurement of artifact

    NASA Astrophysics Data System (ADS)

    Wahid Khan, Abdul; Chen, Wuyi; Wu, Lili

    2009-11-01

    Most manufacturing machine tools are utilized for mass production or batch production with high accuracy at a deterministic manufacturing principle. Volumetric accuracy of machine tools depends on the positional accuracy of the cutting tool, probe or end effector related to the workpiece in the workspace volume. In this research paper, a methodology is presented for volumetric calibration of machine tools by on-line measurement of an artifact or an object of a similar type. The machine tool geometric error characterization was carried out through a standard or an artifact, having similar geometry to the mass production or batch production product. The artifact was measured at an arbitrary position in the volumetric workspace with a calibrated Renishaw touch trigger probe system. Positional errors were stored into a computer for compensation purpose, to further run the manufacturing batch through compensated codes. This methodology was found quite effective to manufacture high precision components with more dimensional accuracy and reliability. Calibration by on-line measurement gives the advantage to improve the manufacturing process by use of deterministic manufacturing principle and found efficient and economical but limited to the workspace or envelop surface of the measured artifact's geometry or the profile.

  17. Multi-category micro-milling tool wear monitoring with continuous hidden Markov models

    NASA Astrophysics Data System (ADS)

    Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon

    2009-02-01

    In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.

  18. 76 FR 5832 - International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,554] International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA, San Jose, CA; Notice of... determination of the TAA petition filed on behalf of workers at International Business Machines (IBM), Software...

  19. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.

    2017-05-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.

  20. Production Engineering Program to Develop Improved Mass-Production Process for M42/M46 Grenade Bodies

    DTIC Science & Technology

    1978-03-01

    J16 Photograph 3 Knurling Tool Installed in Machine . . ....... 16 Photograph 4 Shrapnel Pattern Being Knurled Into M42 Grenade Cylinder...body Fenn mill embossing rolls. Roehlen was awarded a cuxiu**L am’i labricated a knurling tool for use in the modified Tesker thread-rolling machine ...automatic grinding machine . IKratz-Wilde was not successful in developing tooling to produce domes to the inertia-welded assembly design. (See Figure

  1. Integrated model reference adaptive control and time-varying angular rate estimation for micro-machined gyroscopes

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; Sue, Chung-Yang

    2010-02-01

    Owing to the imposed but undesired accelerations such as quadrature error and cross-axis perturbation, the micro-machined gyroscope would not be unconditionally retained at resonant mode. Once the preset resonance is not sustained, the performance of the micro-gyroscope is accordingly degraded. In this article, a direct model reference adaptive control loop which is integrated with a modified disturbance estimating observer (MDEO) is proposed to guarantee the resonant oscillations at drive mode and counterbalance the undesired disturbance mainly caused by quadrature error and cross-axis perturbation. The parameters of controller are on-line innovated by the dynamic error between the MDEO output and expected response. In addition, Lyapunov stability theory is employed to examine the stability of the closed-loop control system. Finally, the efficacy of numerical evaluation on the exerted time-varying angular rate, which is to be detected and measured by the gyroscope, is verified by intensive simulations.

  2. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  3. The Oregon State University wind studies. [economic feasibility of windpowered generators

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1973-01-01

    The economic feasibility of commercial use of wind generated power in selected areas of Oregon is assessed. A number of machines for generating power have been examined. These include the Savonius rotor, translators, conventional wind turbines, the circulation controlled rotor and the vertical axis winged turbine. Of these machines, the conventional wind turbine and the vertical axis winged turbine show the greatest promise on the basis of the power developed per unit of rotor blade area. Attention has been focused on the structural and fatigue analysis of rotors since the economics of rotary winged, wind generated power depends upon low cost, long lifetime rotors. Analysis of energy storage systems and tower design has also been undertaken. An economic means of energy storage has not been found to date. Tower design studies have produced cost estimates that are in general agreement with the cost of the updated Putnam 110-foot tower.

  4. Leveraging metal matrix composites to reduce costs in space mechanisms

    NASA Technical Reports Server (NTRS)

    Nye, Ted; Claridge, Rex; Walker, Jim

    1994-01-01

    Advanced metal matrix composites may be one of the most promising technologies for reducing cost in structural components without compromise to strength or stiffness. A microlight 12.50 N (2.81 lb), two-axis, solar array drive assembly (SADA) was made for the Advanced Materials Applications to Space Structures (AMASS) Program flight experiment. The SADA had both its inner and outer axis housings fabricated from silicon carbide particulate reinforced alumimun. Two versions of the housings were made. The first was machined from a solid billet of material. The second was plaster cast to a near net shape that required minimal finish machining. Both manufacturing methods were compared upon completion. Results showed a cost savings with the cast housing was possible for quantities greater than one and probable for quantities greater than two. For quantities approaching ten, casting resulted in a reduction factor of almost three in the cost per part.

  5. Tool path strategy and cutting process monitoring in intelligent machining

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  6. ORACLE (Oversight of Resources and Capability for Logistics Effectiveness) and Requirements Forecasting. Volume 3. Predicting the Peacetime Spares Requirements.

    DTIC Science & Technology

    1988-05-01

    Shearing Machines WR/MMI DG 3446 Forging Machinery and Hammers WR/MMI DG 3447 Wire and Metal Ribbon Forming Machines WR/MMI DG 3448 Riveting Machines ...R/MN1I DG 3449 Miscellaneous Secondary Metal Forming & Cutting WR/MMI DG Machinery 3450 Machine Tools, Portable WR/MMI DG 3455 Cutting Tools for...Secondary Metalworking Machinery WR/MMI DG WR 3465 Production Jigs, Fixtures and Templates WR/MMI DG WR 3470 Machine Shop Sets, Kits, and Outfits WR/MMI DG

  7. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  8. Material Choice for spindle of machine tools

    NASA Astrophysics Data System (ADS)

    Gouasmi, S.; Merzoug, B.; Abba, G.; Kherredine, L.

    2012-02-01

    The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.

  9. MISR Center Block Time Tool

    Atmospheric Science Data Center

    2013-04-01

      MISR Center Block Time Tool The misr_time tool calculates the block center times for MISR Level 1B2 files. This is ... version of the IDL package or by using the IDL Virtual Machine application. The IDL Virtual Machine is bundled with IDL and is ...

  10. Electric power from vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  11. Unsteady Gas Dynamics Problems Related to Flight Vehicles

    DTIC Science & Technology

    1979-05-01

    vertical-axis wind turbines typified by the Darrieus machine (see Cha’. !. Ref. R9 and R10). When cUL.figured in the zero-bending- moment Tropeq.-!n...Performance Data for the Darrieus Wind Turbine with NASA 0012 Blades," Sandia Labs Energy Report, SAND 76-0130, May 1976. R11. Steele, C.R., "Application of...aspect!ratio wings proved often to be unfavorable. Improved steady and unsteady theories were published for the loading of vertical-axis wind turbines

  12. Study on electroplating technology of diamond tools for machining hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue

    2016-10-01

    With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.

  13. Measured impacts of high efficiency domestic clothes washers in a community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, J.; Rizy, T.

    1998-07-01

    The US market for domestic clothes washers is currently dominated by conventional vertical-axis washers that typically require approximately 40 gallons of water for each wash load. Although the current market for high efficiency clothes washers that use much less water and energy is quite small, it is growing slowly as manufacturers make machines based on tumble action, horizontal-axis designs available and as information about the performance and benefits of such machines is developed and made available to consumers. To help build awareness of these benefits and to accelerate markets for high efficiency washers, the Department of Energy (DOE), under itsmore » ENERGY STAR{reg_sign} Program and in cooperation with a major manufacturers of high efficiency washers, conducted a field evaluation of high efficiency washers using Bern, Kansas as a test bed. Baseline washing machine performance data as well as consumer washing behavior were obtained from data collected on the existing machines of more than 100 participants in this instrumented study. Following a 2-month initial study period, all conventional machines were replaced by high efficiency, tumble-action washers, and the study continued for 3 months. Based on measured data from over 20,000 loads of laundry, the impact of the washer replacement on (1) individual customers` energy and water consumption, (2) customers` laundry habits and perceptions, and (3) the community`s water supply and waste water systems were determined. The study, its findings, and how information from the experiment was used to improve national awareness of high efficiency clothes washer benefits are described in this paper.« less

  14. Method and apparatus for suppressing regenerative instability and related chatter in machine tools

    DOEpatents

    Segalman, Daniel J.; Redmond, James M.

    2001-01-01

    Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.

  15. Method and apparatus for suppressing regenerative instability and related chatter in machine tools

    DOEpatents

    Segalman, Daniel J.; Redmond, James M.

    1999-01-01

    Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.

  16. Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance

    NASA Astrophysics Data System (ADS)

    Doetz, M.; Dambon, O.; Klocke, F.; Bulla, B.; Schottka, K.; Robertson, D. J.

    2017-10-01

    Ultra-precision diamond turning enables the manufacturing of parts with mirror-like surfaces and highest form accuracies out of non-ferrous, a few crystalline and plastic materials. Furthermore, an ultrasonic assistance has the ability to push these boundaries and enables the machining of materials like steel, which is not possible in a conventional way due to the excessive tool wear caused by the affinity of carbon to iron. Usually monocrystalline diamonds tools are applied due to their unsurpassed cutting edge properties. New cutting tool material developments have shown that it is possible to produce tools made of nano-polycrystalline diamonds with cutting edges equivalent to monocrystalline diamonds. In nano-polycrystalline diamonds ultra-fine grains of a few tens of nanometers are firmly and directly bonded together creating an unisotropic structure. The properties of this material are described to be isotropic, harder and tougher than those of the monocrystalline diamonds, which are unisotropic. This publication will present machining results from the newest investigations of the process potential of this new polycrystalline cutting material. In order to provide a baseline with which to characterize the cutting material cutting experiments on different conventional machinable materials like Cooper or Aluminum are performed. The results provide information on the roughness and the topography of the surface focusing on the comparison to the results while machining with monocrystalline diamond. Furthermore, the cutting material is tested in machining steel with ultrasonic assistance with a focus on tool life time and surface roughness. An outlook on the machinability of other materials will be given.

  17. Impact resistance of materials for guards on cutting machine tools--requirements in future European safety standards.

    PubMed

    Mewes, D; Trapp, R P

    2000-01-01

    Guards on machine tools are meant to protect operators from injuries caused by tools, workpieces, and fragments hurled out of the machine's working zone. This article presents the impact resistance requirements, which guards according to European safety standards for machine tools must satisfy. Based upon these standards the impact resistance of different guard materials was determined using cylindrical steel projectiles. Polycarbonate proves to be a suitable material for vision panels because of its high energy absorption capacity. The impact resistance of 8-mm thick polycarbonate is roughly equal to that of a 3-mm thick steel sheet Fe P01. The limited ageing stability, however, makes it necessary to protect polycarbonate against cooling lubricants by means of additional panes on both sides.

  18. Quantitative Evaluation of Heavy Duty Machine Tools Remanufacturing Based on Modified Catastrophe Progression Method

    NASA Astrophysics Data System (ADS)

    shunhe, Li; jianhua, Rao; lin, Gui; weimin, Zhang; degang, Liu

    2017-11-01

    The result of remanufacturing evaluation is the basis for judging whether the heavy duty machine tool can remanufacture in the EOL stage of the machine tool lifecycle management.The objectivity and accuracy of evaluation is the key to the evaluation method.In this paper, the catastrophe progression method is introduced into the quantitative evaluation of heavy duty machine tools’ remanufacturing,and the results are modified by the comprehensive adjustment method,which makes the evaluation results accord with the standard of human conventional thinking.Using the catastrophe progression method to establish the heavy duty machine tools’ quantitative evaluation model,to evaluate the retired TK6916 type CNC floor milling-boring machine’s remanufacturing.The evaluation process is simple,high quantification,the result is objective.

  19. Research on the technique of large-aperture off-axis parabolic surface processing using tri-station machine and its applicability.

    PubMed

    Zhang, Xin; Luo, Xiao; Hu, Haixiang; Zhang, Xuejun

    2015-09-01

    In order to process large-aperture aspherical mirrors, we designed and constructed a tri-station machine processing center with a three station device, which bears vectored feed motion of up to 10 axes. Based on this processing center, an aspherical mirror-processing model is proposed, in which each station implements traversal processing of large-aperture aspherical mirrors using only two axes, while the stations are switchable, thus lowering cost and enhancing processing efficiency. The applicability of the tri-station machine is also analyzed. At the same time, a simple and efficient zero-calibration method for processing is proposed. To validate the processing model, using our processing center, we processed an off-axis parabolic SiC mirror with an aperture diameter of 1450 mm. The experimental results indicate that, with a one-step iterative process, the peak to valley (PV) and root mean square (RMS) of the mirror converged from 3.441 and 0.5203 μm to 2.637 and 0.2962 μm, respectively, where the RMS reduced by 43%. The validity and high accuracy of the model are thereby demonstrated.

  20. Fast in-situ tool inspection based on inverse fringe projection and compact sensor heads

    NASA Astrophysics Data System (ADS)

    Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard

    2016-11-01

    Inspection of machine elements is an important task in production processes in order to ensure the quality of produced parts and to gather feedback for the continuous improvement process. A new measuring system is presented, which is capable of performing the inspection of critical tool geometries, such as gearing elements, inside the forming machine. To meet the constraints on sensor head size and inspection time imposed by the limited space inside the machine and the cycle time of the process, the measuring device employs a combination of endoscopy techniques with the fringe projection principle. Compact gradient index lenses enable a compact design of the sensor head, which is connected to a CMOS camera and a flexible micro-mirror based projector via flexible fiber bundles. Using common fringe projection patterns, the system achieves measuring times of less than five seconds. To further reduce the time required for inspection, the generation of inverse fringe projection patterns has been implemented for the system. Inverse fringe projection speeds up the inspection process by employing object-adapted patterns, which enable the detection of geometry deviations in a single image. Two different approaches to generate object adapted patterns are presented. The first approach uses a reference measurement of a manufactured tool master to generate the inverse pattern. The second approach is based on a virtual master geometry in the form of a CAD file and a ray-tracing model of the measuring system. Virtual modeling of the measuring device and inspection setup allows for geometric tolerancing for free-form surfaces by the tool designer in the CAD-file. A new approach is presented, which uses virtual tolerance specifications and additional simulation steps to enable fast checking of metric tolerances. Following the description of the pattern generation process, the image processing steps required for inspection are demonstrated on captures of gearing geometries.

  1. A two-dimensional matrix correction for off-axis portal dose prediction errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Daniel W.; Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263; Kumaraswamy, Lalith

    2013-05-15

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axismore » prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in the 1D correction case, the 2D algorithm leaves the portal dosimetry process virtually unchanged in the central portion of the detector, and thus these correction algorithms are not needed for centrally located fields of moderate size (at least, in the case of 6 MV beam energy).Conclusion: The 2D correction improves the portal dosimetry results for those fields for which the 1D correction proves insufficient, especially in the inplane, off-axis regions of the detector. This 2D correction neglects the relatively smaller discrepancies that may be caused by backscatter from nonuniform machine components downstream from the detecting layer.« less

  2. A tool for developing an automatic insect identification system based on wing outlines

    PubMed Central

    Yang, He-Ping; Ma, Chun-Sen; Wen, Hui; Zhan, Qing-Bin; Wang, Xin-Li

    2015-01-01

    For some insect groups, wing outline is an important character for species identification. We have constructed a program as the integral part of an automated system to identify insects based on wing outlines (DAIIS). This program includes two main functions: (1) outline digitization and Elliptic Fourier transformation and (2) classifier model training by pattern recognition of support vector machines and model validation. To demonstrate the utility of this program, a sample of 120 owlflies (Neuroptera: Ascalaphidae) was split into training and validation sets. After training, the sample was sorted into seven species using this tool. In five repeated experiments, the mean accuracy for identification of each species ranged from 90% to 98%. The accuracy increased to 99% when the samples were first divided into two groups based on features of their compound eyes. DAIIS can therefore be a useful tool for developing a system of automated insect identification. PMID:26251292

  3. Tool calibration system for micromachining system

    DOEpatents

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  4. Understanding error generation in fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  5. Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.

    PubMed

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2013-08-16

    A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.

  6. Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer

    PubMed Central

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2013-01-01

    A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work. PMID:23959243

  7. HUMAN ENGINEERING FOR AN EFFECTIVE AIR-NAVIGATION AND TRAFFIC-CONTROL SYSTEM, AND APPENDIXES 1 THRU 3

    DTIC Science & Technology

    1951-03-14

    human "We have been very much occupied In perfect. engineering to the improvement of the air-navigation ing the machines and the tools which the...a man-machine system which will ever, if he were only considered as an instrument, yield optimal results in the way of efficiency and a tool , a motor...operation of machines and equipment and system development, which will permit tools , the emphasis has been upon the adjustment of an orderly and

  8. Machine Tool Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course to prepare machine tool, drill press, grinding machine, lathe, mill, and/or power saw operators. The listing is divided into six sections, with each one outlining the tasks required to perform the duties that have been identified for the given occupation.…

  9. Report of Survey Conducted at Bell Helicopter Textron, Inc., Fort Worth, Texas

    DTIC Science & Technology

    1988-10-01

    19 Automated Tape Laying ......................................................................... 20 Filam... automated tape laying for the lower wing skin of the V-22 aircraft. BHTI uses a 10-axis higersoll tape laying machine (TLM) which has up to a +30

  10. Orion Heat Shield

    NASA Image and Video Library

    2015-03-09

    THE ORION HEAT SHIELD THAT SUCCESSFULLY SURVIVED A HIGH-VELOCITY REENTRY DURING ITS DEC. 5 FLIGHT TEST, IS CONTINUING ITS JOURNEY, NOW AT MARSHALL. IT ARRIVED ON MONDAY, MARCH 9 AND WILL BE INSTALLED IN THE BUILDING 4705 7-AXIS MILLING AND MACHINING CENTER.

  11. Simulated Single Tooth Bending of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert, F.; Burke, Christopher

    2012-01-01

    Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.

  12. Machine vision application in animal trajectory tracking.

    PubMed

    Koniar, Dušan; Hargaš, Libor; Loncová, Zuzana; Duchoň, František; Beňo, Peter

    2016-04-01

    This article was motivated by the doctors' demand to make a technical support in pathologies of gastrointestinal tract research [10], which would be based on machine vision tools. Proposed solution should be less expensive alternative to already existing RF (radio frequency) methods. The objective of whole experiment was to evaluate the amount of animal motion dependent on degree of pathology (gastric ulcer). In the theoretical part of the article, several methods of animal trajectory tracking are presented: two differential methods based on background subtraction, the thresholding methods based on global and local threshold and the last method used for animal tracking was the color matching with a chosen template containing a searched spectrum of colors. The methods were tested offline on five video samples. Each sample contained situation with moving guinea pig locked in a cage under various lighting conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Laser assisted machining: a state of art review

    NASA Astrophysics Data System (ADS)

    Punugupati, Gurabvaiah; Kandi, Kishore Kumar; Bose, P. S. C.; Rao, C. S. P.

    2016-09-01

    Difficult-to-cut materials have increasing demand in aerospace and automobile industries due to their high yield stress, high strength to weight ratio, high toughness, high wear resistance, high creep, high corrosion resistivity, ability to retain high strength at high temperature, etc. The machinability of these advanced materials, using conventional methods of machining is typical due to the high temperature and pressure at the cutting zone and tool and properties such as low thermal conductivity, high cutting forces and cutting temperatures makes the materials difficult to machine. Laser assisted machining (LAM) is a new and innovative technique for machining the difficult-to-cut materials. This paper deals with a review on the advances in lasers, tools and the mechanism of machining using LAM and their effects.

  14. Automated inspection and precision grinding of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Frint, Harold

    1987-01-01

    The results are presented of a four phase MM&T program to define, develop, and evaluate an improved inspection system for spiral bevel gears. The improved method utilizes a multi-axis coordinate measuring machine which maps the working flank of the tooth and compares it to nominal reference values stored in the machine's computer. A unique feature of the system is that corrective grinding machine settings can be automatically calculated and printed out when necessary to correct an errant tooth profile. This new method eliminates most of the subjective decision making involved in the present method, which compares contact patterns obtained when the gear set is run under light load in a rolling test machine. It produces a higher quality gear with significant inspection time and cost savings.

  15. Enhanced automated spiral bevel gear inspection

    NASA Technical Reports Server (NTRS)

    Frint, Harold K.; Glasow, Warren

    1992-01-01

    Presented here are the results of a manufacturing and technology program to define, develop, and evaluate an enhanced inspection system for spiral bevel gears. The method uses a multi-axis coordinate measuring machine which maps the working surface of the tooth and compares it with nominal reference values stored in the machine's computer. The enhanced technique features a means for automatically calculating corrective grinding machine settings, involving both first and second order changes, to control the tooth profile to within specified tolerance limits. This enhanced method eliminates the subjective decision making involved in the tooth patterning method, still in use today, which compares contract patterns obtained when the gear is set to run under light load in a rolling test machine. It produces a higher quality gear with significant inspection time and cost savings.

  16. Developing Parametric Models for the Assembly of Machine Fixtures for Virtual Multiaxial CNC Machining Centers

    NASA Astrophysics Data System (ADS)

    Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.

    2018-01-01

    This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.

  17. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  18. High Strength P/M Gears for Vehicle Transmissions - Phase 2

    DTIC Science & Technology

    2008-08-15

    and while it was considered amenable to standard work material transfer ("blue steel" chutes for example) from other P/M processing equipment, no...depend of the machine design but should be kept to a minimum in order to minimize part transfer times. Position control of the linear axis is...Establish design of ausform gear finishing machine for P/M gears: The "Focus" part identified in phase I (New Process Planet gear P/N 17864, component

  19. State-of-the-Art in Improved Parts Programming for Numerically Controlled Machines

    DTIC Science & Technology

    1976-10-01

    than expected let sizes for IIC. Cincinnati lilbcron, Inc., has built a $1.25 million Computer Ilumerical Control ( CNC ) 1,4nufacturing Center to "rw’ t...point-to- point user. Lathe and other turning operations are essentially two-axis opera- tions, and there has been some dissatisfaction over APT’s...a.particular machi-ne (50)." "Software is the key to CNC , the costs of which are easily overlooked. The cost of software development is growing in relation to

  20. Development and Psychometric Validation of the Dementia Attitudes Scale

    PubMed Central

    O'Connor, Melissa L.; McFadden, Susan H.

    2010-01-01

    This study employed qualitative construct mapping and factor analysis to construct a scale to measure attitudes toward dementia. Five family caregivers, five professionals, and five college students participated in structured interviews. Qualitative analysis of the interviews led to a 46-item scale, which was reduced to 20 items following principal axis factoring with two different samples: college students (N = 302) and certified nursing assistant students (N = 145). Confirmatory factor analysis was then conducted with another sample of college students (N = 157). The final scale, titled the Dementia Attitudes Scale (DAS), essentially had a two-factor structure; the factors were labeled “dementia knowledge” and “social comfort.” Total-scale Cronbach's alphas ranged 0.83–0.85. Evidence for convergent validity was promising, as the DAS correlated significantly with scales that measured ageism and attitudes toward disabilities (range of correlations = 0.44–0.55; mean correlation = 0.50). These findings demonstrate the reliability and validity of the DAS, supporting its use as a research tool.

  1. A Catalog of Performance Objectives, Performance Conditions, and Performance Guides for Machine Tool Operations.

    ERIC Educational Resources Information Center

    Stadt, Ronald; And Others

    This catalog provides performance objectives, tasks, standards, and performance guides associated with current occupational information relating to the job content of machinists, specifically tool grinder operators, production lathe operators, and production screw machine operators. The catalog is comprised of 262 performance objectives, tool and…

  2. Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods.

    PubMed

    Skrobala, A; Adamczyk, S; Kruszyna-Mochalska, M; Skórska, M; Konefał, A; Suchorska, W; Zaleska, K; Kowalik, A; Jackowiak, W; Malicki, J

    2017-08-01

    During radiotherapy, leakage from the machine head and collimator expose patients to out-of-field irradiation doses, which may cause secondary cancers. To quantify the risks of secondary cancers due to out-of-field doses, it is first necessary to measure these doses. Since most dosimeters are energy-dependent, it is essential to first determine the type of photon energy spectrum in the out-of-field area. The aim of this study was to determine the mean photon energy values for the out-of-field photon energy spectrum for a 6 MV photon beam using the GEANT 4-Monte Carlo method. A specially-designed large water phantom was simulated with a static field at gantry 0°. The source-to-surface distance was 92cm for an open field size of 10×10cm2. The photon energy spectra were calculated at five unique positions (at depths of 0.5, 1.6, 4, 6, 8, and 10cm) along the central beam axis and at six different off-axis distances. Monte Carlo simulations showed that mean radiation energy levels drop rapidly beyond the edge of the 6 MV photon beam field: at a distance of 10cm, the mean energy level is close to 0.3MeV versus 1.5MeV at the central beam axis. In some cases, the energy level actually increased even as the distance from the field edge increased: at a depth of 1.6cm and 15cm off-axis, the mean energy level was 0.205MeV versus 0.252MeV at 20cm off-axis. The out-of-field energy spectra and dose distribution data obtained in this study with Monte Carlo methods can be used to calibrate dosimeters to measure out-of-field radiation from 6MV photons. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  3. Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based hastelloy - 276

    NASA Astrophysics Data System (ADS)

    Khidhir, Basim A.; Mohamed, Bashir

    2011-02-01

    Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.

  4. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  5. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  6. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation.

    PubMed

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.

  7. The Impact Of Surface Shape Of Chip-Breaker On Machined Surface

    NASA Astrophysics Data System (ADS)

    Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David

    2015-12-01

    Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.

  8. Multi-Cultural Competency-Based Vocational Curricula. Machine Trades. Multi-Cultural Competency-Based Vocational/Technical Curricula Series.

    ERIC Educational Resources Information Center

    Hepburn, Larry; Shin, Masako

    This document, one of eight in a multi-cultural competency-based vocational/technical curricula series, is on machine trades. This program is designed to run 36 weeks and cover 6 instructional areas: use of measuring tools; benchwork/tool bit grinding; lathe work; milling work; precision grinding; and combination machine work. A duty-task index…

  9. Optimizing the way kinematical feed chains with great distance between slides are chosen for CNC machine tools

    NASA Astrophysics Data System (ADS)

    Lucian, P.; Gheorghe, S.

    2017-08-01

    This paper presents a new method, based on FRISCO formula, for optimizing the choice of the best control system for kinematical feed chains with great distance between slides used in computer numerical controlled machine tools. Such machines are usually, but not limited to, used for machining large and complex parts (mostly in the aviation industry) or complex casting molds. For such machine tools the kinematic feed chains are arranged in a dual-parallel drive structure that allows the mobile element to be moved by the two kinematical branches and their related control systems. Such an arrangement allows for high speed and high rigidity (a critical requirement for precision machining) during the machining process. A significant issue for such an arrangement it’s the ability of the two parallel control systems to follow the same trajectory accurately in order to address this issue it is necessary to achieve synchronous motion control for the two kinematical branches ensuring that the correct perpendicular position it’s kept by the mobile element during its motion on the two slides.

  10. Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718

    NASA Astrophysics Data System (ADS)

    Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol

    2017-12-01

    Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.

  11. A consideration of the operation of automatic production machines

    PubMed Central

    HOSHI, Toshiro; SUGIMOTO, Noboru

    2015-01-01

    At worksites, various automatic production machines are in use to release workers from muscular labor or labor in the detrimental environment. On the other hand, a large number of industrial accidents have been caused by automatic production machines. In view of this, this paper considers the operation of automatic production machines from the viewpoint of accident prevention, and points out two types of machine operation − operation for which quick performance is required (operation that is not permitted to be delayed) − and operation for which composed performance is required (operation that is not permitted to be performed in haste). These operations are distinguished by operation buttons of suitable colors and shapes. This paper shows that these characteristics are evaluated as “asymmetric on the time-axis”. Here, in order for workers to accept the risk of automatic production machines, it is preconditioned in general that harm should be sufficiently small or avoidance of harm is easy. In this connection, this paper shows the possibility of facilitating the acceptance of the risk of automatic production machines by enhancing the asymmetric on the time-axis. PMID:25739898

  12. Machine learning and data science in soft materials engineering

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  13. Machine learning and data science in soft materials engineering.

    PubMed

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  14. Computer Simulation Of An In-Process Surface Finish Sensor.

    NASA Astrophysics Data System (ADS)

    Rakels, Jan H.

    1987-01-01

    It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. Furthermore, these optical instruments can be easily retrofitted on existing machine-tools. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been developed which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces during machining. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned and ground surfaces is straightforward, and indeed the calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real machine-tool behaviour into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation. The main aim of this program is to construct an atlas, which maps known machine-tool errors versus optical diffraction patterns. This atlas can then be used for machine-tool condition diagnostics. It has been found that optical monitoring is very sensitive to minor defects. Therefore machine-tool detoriation can be detected before it is detrimental.

  15. Investigation of tool wear and surface roughness on machining of titanium alloy with MT-CVD cutting tool

    NASA Astrophysics Data System (ADS)

    Maity, Kalipada; Pradhan, Swastik

    2018-04-01

    In this study, machining of titanium alloy (grade 5) is carried out using MT-CVD coated cutting tool. Titanium alloys possess superior strength-to-weight ratio with good corrosion resistance. Most of the industries used titanium alloy for the manufacturing of various types of lightweight components. The parts made from Ti-6Al-4V largely used in aerospace, biomedical, automotive and marine sectors. The conventional machining of this material is very difficult, due to low thermal conductivity and high chemical reactivity properties. To achieve a good surface finish with minimum tool wear of cutting tool, the machining is carried out using MT-CVD coated cutting tool. The experiment is carried out using of Taguchi L27 array layout with three cutting variables and levels. To find out the optimum parametric setting desirability function analysis (DFA) approach is used. The analysis of variance is studied to know the percentage contribution of each cutting variables. The optimum parametric setting results calculated from DFA were validated through the confirmation test.

  16. Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning

    NASA Astrophysics Data System (ADS)

    Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.

    2018-01-01

    Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.

  17. A defect-driven diagnostic method for machine tool spindles

    PubMed Central

    Vogl, Gregory W.; Donmez, M. Alkan

    2016-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition. PMID:28065985

  18. Disc-geometry homopolar synchronous machine

    NASA Astrophysics Data System (ADS)

    Evans, P. D.; Eastham, J. F.

    1980-09-01

    Results of an experimental and theoretical investigation of a disc-geometry homopolar synchronous machine with field excitation on the primary side are presented. The unlaminated mild-steel rotor contains no windings and is brushless. The prototype machine produces approximately 7.5 kW of mechanical output at 3000 rev/min, with a product of power factor and efficiency greater than 0.7. The construction of the stator core is unusual and incorporates both laminated and unlaminated portions. The magnetic circuit is also arranged to minimize the axial force between the stator and rotor. A novel rotor design which achieves a reduced quadrature-axis reactance is shown experimentally to be superior to the conventional homopolar rotor.

  19. Ultra-Compact Transputer-Based Controller for High-Level, Multi-Axis Coordination

    NASA Technical Reports Server (NTRS)

    Zenowich, Brian; Crowell, Adam; Townsend, William T.

    2013-01-01

    The design of machines that rely on arrays of servomotors such as robotic arms, orbital platforms, and combinations of both, imposes a heavy computational burden to coordinate their actions to perform coherent tasks. For example, the robotic equivalent of a person tracing a straight line in space requires enormously complex kinematics calculations, and complexity increases with the number of servo nodes. A new high-level architecture for coordinated servo-machine control enables a practical, distributed transputer alternative to conventional central processor electronics. The solution is inherently scalable, dramatically reduces bulkiness and number of conductor runs throughout the machine, requires only a fraction of the power, and is designed for cooling in a vacuum.

  20. Diamond Turning Of Infra-Red Components

    NASA Astrophysics Data System (ADS)

    Hodgson, B.; Lettington, A. H.; Stillwell, P. F. T. C.

    1986-05-01

    Single point diamond machining of infra-red optical components such as aluminium mirrors, germanium lenses and zinc sulphide domes is potentially the most cost effective method for their manufacture since components may be machined from the blanks to a high surface finish, requiring no subsequent polishing, in a few minutes. Machines for the production of flat surfaces are well established. Diamond turning lathes for curved surfaces however require a high capital investment which can be justified only for research purposes or high volume production. The present paper describes the development of a low cost production machine based on a Bryant Symons diamond turning lathe which is able to machine spherical components to the required form and finish. It employs two horizontal spindles one for the workpiece the other for the tool. The machined radius of curvature is set by the alignment of the axes and the radius of the tool motion, as in conventional generation. The diamond tool is always normal to the workpiece and does not need to be accurately profiled. There are two variants of this basic machine. For machining hemispherical domes the axes are at right angles while for lenses with positive or negative curvature these axes are adjustable. An aspherical machine is under development, based on the all mechanical spherical machine, but in which a ± 2 mm aspherecity may be imposed on the best fit sphere by moving the work spindle under numerical control.

  1. Robot based deposition of WC-Co HVOF coatings on HSS cutting tools as a substitution for solid cemented carbide cutting tools

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.

    2017-03-01

    Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means of wet abrasive jet machining.

  2. Multi-parameters monitoring during traditional Chinese medicine concentration process with near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Liu, Ronghua; Sun, Qiaofeng; Hu, Tian; Li, Lian; Nie, Lei; Wang, Jiayue; Zhou, Wanhui; Zang, Hengchang

    2018-03-01

    As a powerful process analytical technology (PAT) tool, near infrared (NIR) spectroscopy has been widely used in real-time monitoring. In this study, NIR spectroscopy was applied to monitor multi-parameters of traditional Chinese medicine (TCM) Shenzhiling oral liquid during the concentration process to guarantee the quality of products. Five lab scale batches were employed to construct quantitative models to determine five chemical ingredients and physical change (samples density) during concentration process. The paeoniflorin, albiflorin, liquiritin and samples density were modeled by partial least square regression (PLSR), while the content of the glycyrrhizic acid and cinnamic acid were modeled by support vector machine regression (SVMR). Standard normal variate (SNV) and/or Savitzkye-Golay (SG) smoothing with derivative methods were adopted for spectra pretreatment. Variable selection methods including correlation coefficient (CC), competitive adaptive reweighted sampling (CARS) and interval partial least squares regression (iPLS) were performed for optimizing the models. The results indicated that NIR spectroscopy was an effective tool to successfully monitoring the concentration process of Shenzhiling oral liquid.

  3. Comparison of Artificial Immune System and Particle Swarm Optimization Techniques for Error Optimization of Machine Vision Based Tool Movements

    NASA Astrophysics Data System (ADS)

    Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod

    2015-10-01

    In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.

  4. Accuracy of five implant impression technique: effect of splinting materials and methods

    PubMed Central

    Cho, Sung-Bum

    2011-01-01

    PURPOSE The aim of this study was to evaluate the effect of dimensional stability of splinting material on the accuracy of master casts. MATERIALS AND METHODS A stainless steel metal model with 6 implants embedded was used as a master model. Implant level impressions were made after square impression copings were splinted using 5 different techniques as follows. (1) Splinted with autopolymerizing resin and sectioned, reconnected to compensate polymerization shrinkage before the impression procedure. (2) Splinted with autopolymerizing resin just before impression procedure. (3) Primary impression made with impression plaster and secondary impression were made over with polyether impression material. (4) Splinted with impression plaster. (5) Splinted with VPS bite registration material. From master model, 5 impressions and 5 experimental casts, total 25 casts were made for each of 5 splinting methods. The distortion values of each splinting methods were measured using coordinate measuring machine, capable of recordings in the x-, y-, z-axes. A one-way analysis of variance (ANOVA) at a confidence level of 95% was used to evaluate the data and Tukey's studentized range test was used to determine significant differences between the groups. RESULTS Group 1 showed best accuracy followed by Group 3 & 4. Group 2 and 5 showed relatively larger distortion value than other groups. No significant difference was found between group 3, 4, 5 in x-axis, group 2, 3, 4 in y-axis and group 1, 3, 4, 5 in z-axis (P<.0001). CONCLUSION Both Splinting impression copings with autopolymerizing resin following compensation of polymerization shrinkage and splinting method with impression plaster can enhance the accuracy of master cast and impression plaster can be used simple and effective splinting material for implant impression procedure. PMID:22259700

  5. Computer-aided design/computer-aided manufacturing skull base drill.

    PubMed

    Couldwell, William T; MacDonald, Joel D; Thomas, Charles L; Hansen, Bradley C; Lapalikar, Aniruddha; Thakkar, Bharat; Balaji, Alagar K

    2017-05-01

    The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.

  6. Toward transient finite element simulation of thermal deformation of machine tools in real-time

    NASA Astrophysics Data System (ADS)

    Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg

    2018-01-01

    Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.

  7. CNC water-jet machining and cutting center

    NASA Astrophysics Data System (ADS)

    Bartlett, D. C.

    1991-09-01

    Computer Numerical Control (CNC) water-jet machining was investigated to determine the potential applications and cost-effectiveness that would result by establishing this capability in the engineering shops of Allied-Signal Inc., Kansas City Division (KCD). Both conductive and nonconductive samples were machined at KCD on conventional machining equipment (a three-axis conversational programmed mill and a wire electrical discharge machine) and on two current-technology water-jet machines at outside vendors. These samples were then inspected, photographed, and evaluated. The current-technology water-jet machines were not as accurate as the conventional equipment. The resolution of the water-jet equipment was only +/- 0.005 inch, as compared to +/- 0.0002 inch for the conventional equipment. The principal use for CNC water-jet machining would be as follows: Contouring to near finished shape those items made from 300 and 400 series stainless steels, titanium, Inconel, aluminum, glass, or any material whose fabrication tolerance is less than the machine resolution of +/- 0.005 inch; and contouring to finished shape those items made from Kevlar, rubber, fiberglass, foam, aluminum, or any material whose fabrication specifications allow the use of a machine with +/- 0.005 inch tolerance. Additional applications are possible because there is minimal force generated on the material being cut and because the water-jet cuts without generating dust.

  8. Howitzer Ammunition System Procurement (HASP).

    DTIC Science & Technology

    1991-07-01

    machine tools , etc.) * Most critical part of base to reassemble. IPP * Industry to plan round-specific...beyond allowed tolerances. - Conducting tolerance studies and funding machining studies at sul’on "’actors. " Facility development was controlled by the...Manufacturing Balimoy Mfg. of Venice, Inc. Action Manufacturing Co. Lanson Industries Inc. Hercules Aerospace Company CIMA Machine & Tool Co., Inc. Talley Defense Systems Tracor Aerospace Inc. BMY E49030APPBMAC

  9. 49 CFR 1242.28 - Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Roadway machines, small tools and supplies, and snow removal (accounts XX-19-36 to XX-19-38, inclusive). 1242.28 Section 1242.28 Transportation Other... PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Way and Structures § 1242.28 Roadway machines, small...

  10. Machine Tool Technology. Automatic Screw Machine Troubleshooting & Set-Up Training Outlines [and] Basic Operator's Skills Set List.

    ERIC Educational Resources Information Center

    Anoka-Hennepin Technical Coll., Minneapolis, MN.

    This set of two training outlines and one basic skills set list are designed for a machine tool technology program developed during a project to retrain defense industry workers at risk of job loss or dislocation because of conversion of the defense industry. The first troubleshooting training outline lists the categories of problems that develop…

  11. Translations on USSR Resources, Number 767.

    DTIC Science & Technology

    1978-01-19

    photography and so on). The amount of data obtained as a result of additional surveys makes it possible to evaluate the intensity and configuration...machine tools , chemical products, refrigerators, as well as potatoes and products of livestock breeding. The Kazakh SSR made an enormous leap in its...of the fuel and water power resources of Georgia, Azerbaydzhan and Armenia. Petroleum, transport and electrical machine building, machine tool

  12. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, R.L.; Stewart, D.D.; Evans, C.J.

    1992-04-14

    An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.

  13. Lathe tool bit and holder for machining fiberglass materials

    NASA Technical Reports Server (NTRS)

    Winn, L. E. (Inventor)

    1972-01-01

    A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.

  14. Safety issues in high speed machining

    NASA Astrophysics Data System (ADS)

    1994-05-01

    There are several risks related to High-Speed Milling, but they have not been systematically determined or studied so far. Increased loads by high centrifugal forces may result in dramatic hazards. Flying tools or fragments from a tool with high kinetic energy may damage surrounding people, machines and devices. In the project, mechanical risks were evaluated, theoretic values for kinetic energies of rotating tools were calculated, possible damages of the flying objects were determined and terms to eliminate the risks were considered. The noise levels of the High-Speed Machining center owned by the Helsinki University of Technology (HUT) and the Technical Research Center of Finland (VTT) in practical machining situation were measured and the results were compared to those after basic preventive measures were taken.

  15. Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2009-01-01

    Utilizing a Compact Color Microscope Imaging System (CCMIS), a unique algorithm has been developed that combines human intelligence along with machine vision techniques to produce an autonomous microscope tool for biomedical, industrial, and space applications. This technique is based on an adaptive, morphological, feature-based mapping function comprising 24 mutually inclusive feature metrics that are used to determine the metrics for complex cell/objects derived from color image analysis. Some of the features include: Area (total numbers of non-background pixels inside and including the perimeter), Bounding Box (smallest rectangle that bounds and object), centerX (x-coordinate of intensity-weighted, center-of-mass of an entire object or multi-object blob), centerY (y-coordinate of intensity-weighted, center-of-mass, of an entire object or multi-object blob), Circumference (a measure of circumference that takes into account whether neighboring pixels are diagonal, which is a longer distance than horizontally or vertically joined pixels), . Elongation (measure of particle elongation given as a number between 0 and 1. If equal to 1, the particle bounding box is square. As the elongation decreases from 1, the particle becomes more elongated), . Ext_vector (extremal vector), . Major Axis (the length of a major axis of a smallest ellipse encompassing an object), . Minor Axis (the length of a minor axis of a smallest ellipse encompassing an object), . Partial (indicates if the particle extends beyond the field of view), . Perimeter Points (points that make up a particle perimeter), . Roundness [(4(pi) x area)/perimeter(squared)) the result is a measure of object roundness, or compactness, given as a value between 0 and 1. The greater the ratio, the rounder the object.], . Thin in center (determines if an object becomes thin in the center, (figure-eight-shaped), . Theta (orientation of the major axis), . Smoothness and color metrics for each component (red, green, blue) the minimum, maximum, average, and standard deviation within the particle are tracked. These metrics can be used for autonomous analysis of color images from a microscope, video camera, or digital, still image. It can also automatically identify tumor morphology of stained images and has been used to detect stained cell phenomena (see figure).

  16. Machine Shop Lathes.

    ERIC Educational Resources Information Center

    Dunn, James

    This guide, the second in a series of five machine shop curriculum manuals, was designed for use in machine shop courses in Oklahoma. The purpose of the manual is to equip students with basic knowledge and skills that will enable them to enter the machine trade at the machine-operator level. The curriculum is designed so that it can be used in…

  17. Finding the optical axis of a distant object using an optical alignment system based on a holographic marker

    NASA Astrophysics Data System (ADS)

    Zhuk, D. I.; Denisyuk, I. Yu.; Gutner, I. E.

    2015-07-01

    A way to construct a holographic indicator of the position of the central axis of a distant object based on recording a transmission hologram in a layer of photosensitive material and forming a remote real image before a light source is considered. A light source with a holographically formed marker designed for visual guidance to the object axis; it can be used to simplify aircraft landing on a glide path, preliminary visual alignment of large coaxial details of various machines, etc. Specific features of the scheme of recording a holographic marker and the reconstruction of its image are considered. The possibility of forming a remote holographic image marker, which can be aligned with a simultaneously operating reference laser system for determining the direction to an object and its optical axis, has been demonstrated experimentally.

  18. Machinability of Stellite 6 hardfacing

    NASA Astrophysics Data System (ADS)

    Benghersallah, M.; Boulanouar, L.; Le Coz, G.; Devillez, A.; Dudzinski, D.

    2010-06-01

    This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  19. Investigation of Machine-ability of Inconel 800 in EDM with Coated Electrode

    NASA Astrophysics Data System (ADS)

    Karunakaran, K.; Chandrasekaran, M.

    2017-03-01

    The Inconel 800 is a high temperature application alloy which is classified as a nickel based super alloy. It has wide scope in aerospace engineering, gas Turbine etc. The machine-ability studies were found limited on this material. Hence This research focuses on machine-ability studies on EDM of Inconel 800 with Silver Coated Electrolyte Copper Electrode. The purpose of coating on electrode is to reduce tool wear. The factors pulse on Time, Pulse off Time and Peck Current were considered to observe the responses of surface roughness, material removal rate, tool wear rate. Taguchi Full Factorial Design is employed for Design the experiment. Some specific findings were reported and the percentage of contribution of each parameter was furnished

  20. Finite Element Simulation of Machining of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-05-01

    Titanium and its alloys are an important class of materials, especially for aerospace applications, due to their excellent combination of strength and fracture toughness as well as low density. However, these materials are generally regarded as difficult to machine because of their low thermal conductivity and high chemical reactivity with cutting tool materials. Moreover, the low thermal conductivity of Titanium inhibits dissipation of heat within the workpiece causing an higher temperature at the cutting edge and generating for higher cutting speed a rapid chipping at the cutting edge which leads to catastrophic failure. In addition, chip morphology significantly influences the thermo-mechanical behaviour at the workpiece/tool interface, which also affects the tool life. In this paper a finite element analysis of machining of TiAl6V4 is presented. In particular, cutting force, chip morphology and segmentation are taken into account due to their predominant roles to determine machinability and tool wear during the machining of these alloys. Results in terms of residual stresses are also presented. Moreover, the numerical results are compared with experimental ones.

  1. Forces acting between polishing tool and workpiece surface in magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Schinhaerl, Markus; Vogt, Christian; Geiss, Andreas; Stamp, Richard; Sperber, Peter; Smith, Lyndon; Smith, Gordon; Rascher, Rolf

    2008-08-01

    Magnetorheological finishing is a computer-controlled polishing technique that is used mainly in the field of high-quality optical lens production. The process is based on the use of a magnetorheological polishing fluid that is able, in a reversible manner, to change its viscosity from a liquid state to a solid state under the control of a magnetic field. This outstanding characteristic facilitates rapid control (in milliseconds) of the yield stress, and thus the pressure applied to the workpiece surface to be polished. A three-axis dynamometer was used to measure the forces acting between the magnetorheological fluid and the workpiece surface during determination of the material removal characteristic of the polishing tool (influence function). The results of a testing series using a QED Q22-X MRF polishing machine with a 50 mm wheel assembly show that the normal forces range from about 2 to 20 N. Knowledge of the forces is essential, especially when thin workpieces are to be polished and distortion becomes significant. This paper discusses, and gives examples of, the variation in the parameters experienced during a programme of experiments, and provides examples of the value of this work.

  2. Five Papers on Human-Machine Interaction.

    ERIC Educational Resources Information Center

    Norman, Donald A.

    Different aspects of human-machine interaction are discussed in the five brief papers that comprise this report. The first paper, "Some Observations on Mental Models," discusses the role of a person's mental model in the interaction with systems. The second paper, "A Psychologist Views Human Processing: Human Errors and Other…

  3. Automated assembly of fast-axis collimation (FAC) lenses for diode laser bar modules

    NASA Astrophysics Data System (ADS)

    Miesner, Jörn; Timmermann, Andre; Meinschien, Jens; Neumann, Bernhard; Wright, Steve; Tekin, Tolga; Schröder, Henning; Westphalen, Thomas; Frischkorn, Felix

    2009-02-01

    Laser diodes and diode laser bars are key components in high power semiconductor lasers and solid state laser systems. During manufacture, the assembly of the fast axis collimation (FAC) lens is a crucial step. The goal of our activities is to design an automated assembly system for high volume production. In this paper the results of an intermediate milestone will be reported: a demonstration system was designed, realized and tested to prove the feasibility of all of the system components and process features. The demonstration system consists of a high precision handling system, metrology for process feedback, a powerful digital image processing system and tooling for glue dispensing, UV curing and laser operation. The system components as well as their interaction with each other were tested in an experimental system in order to glean design knowledge for the fully automated assembly system. The adjustment of the FAC lens is performed by a series of predefined steps monitored by two cameras concurrently imaging the far field and the near field intensity distributions. Feedback from these cameras processed by a powerful and efficient image processing algorithm control a five axis precision motion system to optimize the fast axis collimation of the laser beam. Automated cementing of the FAC to the diode bar completes the process. The presentation will show the system concept, the algorithm of the adjustment as well as experimental results. A critical discussion of the results will close the talk.

  4. Measurement techniques for determining the static stiffness of foundations for machine tools

    NASA Astrophysics Data System (ADS)

    Myers, A.; Barrans, S. M.; Ford, D. G.

    2005-01-01

    The paper presents a novel technique for accurately measuring the static stiffness of a machine tool concrete foundation using various items of metrology equipment. The foundation was loaded in a number of different ways which simulated the erection of the machine, traversing of the axes and loading of the heaviest component. The results were compared with the stiffness tolerances specified for the foundation which were deemed necessary in order that the machine alignments could be achieved. This paper is a continuation of research previously published for a FEA of the foundation.

  5. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    NASA Astrophysics Data System (ADS)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  6. minimega

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Fritz, John Floren

    2013-08-27

    Minimega is a simple emulytics platform for creating testbeds of networked devices. The platform consists of easily deployable tools to facilitate bringing up large networks of virtual machines including Windows, Linux, and Android. Minimega attempts to allow experiments to be brought up quickly with nearly no configuration. Minimega also includes tools for simple cluster management, as well as tools for creating Linux based virtual machine images.

  7. Web-Based Machine Translation as a Tool for Promoting Electronic Literacy and Language Awareness

    ERIC Educational Resources Information Center

    Williams, Lawrence

    2006-01-01

    This article addresses a pervasive problem of concern to teachers of many foreign languages: the use of Web-Based Machine Translation (WBMT) by students who do not understand the complexities of this relatively new tool. Although networked technologies have greatly increased access to many language and communication tools, WBMT is still…

  8. Ultra precision machining

    NASA Astrophysics Data System (ADS)

    Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas

    1990-05-01

    There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.

  9. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation

    PubMed Central

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment. PMID:26368541

  10. Pre-Finishing of SiC for Optical Applications

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay; Clavier, Odile; Gagne, John

    2011-01-01

    13 Manufacturing & Prototyping A method is based on two unique processing steps that are both based on deterministic machining processes using a single-point diamond turning (SPDT) machine. In the first step, a high-MRR (material removal rate) process is used to machine the part within several microns of the final geometry. In the second step, a low-MRR process is used to machine the part to near optical quality using a novel ductile regime machining (DRM) process. DRM is a deterministic machining process associated with conditions under high hydrostatic pressures and very small depths of cut. Under such conditions, using high negative-rake angle cutting tools, the high-pressure region near the tool corresponds to a plastic zone, where even a brittle material will behave in a ductile manner. In the high-MRR processing step, the objective is to remove material with a sufficiently high rate such that the process is economical, without inducing large-scale subsurface damage. A laser-assisted machining approach was evaluated whereby a CO2 laser was focused in advance of the cutting tool. While CVD (chemical vapor deposition) SiC was successfully machined with this approach, the cutting forces were substantially higher than cuts at room temperature under the same machining conditions. During the experiments, the expansion of the part and the tool due to the heating was carefully accounted for. The higher cutting forces are most likely due to a small reduction in the shear strength of the material compared with a larger increase in friction forces due to the thermal softening effect. The key advantage is that the hybrid machine approach has the potential to achieve optical quality without the need for a separate optical finishing step. Also, this method is scalable, so one can easily progress from machining 50-mm-diameter samples to the 250-mm-diameter mirror that NASA desires.

  11. National Aspects of Creating and Using MARC/RECON Records.

    ERIC Educational Resources Information Center

    Rather, John C., Ed.; Avram, Henriette D., Ed.

    The Retrospective Conversion (RECON) Working Task Force investigated the problems of converting retrospective catalog records to machine readable form. The major conclusions and recommendations of the Task Force cover five areas: the level of machine-readable records, conversion of other machine-readable data bases, a machine-readable National…

  12. Angular distribution of fusion products and x rays emitted by a small dense plasma focus machine

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Herrera, J. J. E.; Gamboa, Isabel; Rangel, J.; Golzarri, J. I.; Espinosa, G.

    2007-01-01

    Time integrated measurements of the angular distributions of fusion products and x rays in a small dense plasma focus machine are made inside the discharge chamber, using passive detectors. The machine is operated at 37kV with a stored energy of 4.8kJ and a deuterium filling pressure of 2.75torr. Distributions of protons and neutrons are measured with CR-39 Lantrack® nuclear track detectors, on 1.8×0.9cm2 chips, 500μm thick. A set of detectors was placed on a semicircular Teflon® holder, 13cm away from the plasma column, and covered with 15μm Al filters, thus eliminating tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. The angular distribution of x rays is also studied within the chamber with TLD-200 dosimeters. While the neutron angular distributions can be fitted by Gaussian curves mounted on constant pedestals and the proton distributions are strongly peaked, falling rapidly after ±40°, the x-ray distributions show two maxima around the axis, presumably as a result of the collision of a collimated electron beam against the inner electrode, along the axis.

  13. 25. VIEW OF THE MACHINE TOOL LAYOUT IN ROOMS 244 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF THE MACHINE TOOL LAYOUT IN ROOMS 244 AND 296. MACHINES WERE USED FOR STAINLESS STEEL FABRICATION (THE J-LINE). THE ORIGINAL DRAWING HAS BEEN ARCHIVED ON MICROFILM. THE DRAWING WAS REPRODUCED AT THE BEST QUALITY POSSIBLE. LETTERS AND NUMBERS IN THE CIRCLES INDICATE FOOTER AND/OR COLUMN LOCATIONS. - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  14. Surface structuring of boron doped CVD diamond by micro electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.

    2018-05-01

    Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.

  15. Osteoporosis risk prediction using machine learning and conventional methods.

    PubMed

    Kim, Sung Kean; Yoo, Tae Keun; Oh, Ein; Kim, Deok Won

    2013-01-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women, and compared with the ability of a conventional clinical decision tool, osteoporosis self-assessment tool (OST). We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Surveys (KNHANES V-1). The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and logistic regression (LR) based on various predictors associated with low bone density. The learning models were compared with OST. SVM had significantly better area under the curve (AUC) of the receiver operating characteristic (ROC) than ANN, LR, and OST. Validation on the test set showed that SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0%. We were the first to perform comparisons of the performance of osteoporosis prediction between the machine learning and conventional methods using population-based epidemiological data. The machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  16. PHLUX: Photographic Flux Tools for Solar Glare and Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2010-12-02

    A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2) and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flashmore » blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.« less

  17. Industrial machine systems risk assessment: a critical review of concepts and methods.

    PubMed

    Etherton, John R

    2007-02-01

    Reducing the risk of work-related death and injury to machine operators and maintenance personnel poses a continuing occupational safety challenge. The risk of injury from machinery in U.S. workplaces is high. Between 1992 and 2001, there were, on average, 520 fatalities per year involving machines and, on average, 3.8 cases per 10,000 workers of nonfatal caught-in-running-machine injuries involving lost workdays. A U.S. task group recently developed a technical reference guideline, ANSI B11 TR3, "A Guide to Estimate, Evaluate, & Reduce Risks Associated with Machine Tools," that is intended to bring machine tool risk assessment practice in the United States up to or above the level now required by the international standard, ISO 14121. The ANSI guideline emphasizes identifying tasks and hazards not previously considered, particularly those associated with maintenance; and it further emphasizes teamwork among line workers, engineers, and safety professionals. The value of this critical review of concepts and methods resides in (1) its linking current risk theory to machine system risk assessment and (2) its exploration of how various risk estimation tools translate into risk-informed decisions on industrial machine system design and use. The review was undertaken to set the stage for a field evaluation study on machine risk assessment among users of the ANSI B11 TR3 method.

  18. Mathematic study of the rotor motion with a pendulum selfbalancing device

    NASA Astrophysics Data System (ADS)

    Ivkina, O. P.; Ziyakaev, G. R.; Pashkov, E. N.

    2016-09-01

    The rotary machines used in manufacturing may become unbalanced leading to vibration. In some cases, the problem may be solved by installing self-balancing devices (SBDs). Certain factors, however, exhibit a pronounced effect on the efficiency of these devices. The objective of the research comprised of establishing the most beneficial spatial position of pendulums to minimize the necessary time to repair the rotor unbalance. The mathematical research of the motion of a rotor with pendulum SBDs in the situation of their misalignment was undertaken. This objective was achieved by using the Lagrange equations of the second type. The analysis identified limiting cases of location of the rotor unbalance vector and the vector of housing's unbalance relative to each other, as well as the minimum capacity of the pendulum. When determining pendulums ’ parameters during the SBD design process, it is necessary to take into account the rotor unbalance and the unbalance of the machine body, which is caused by the misalignment of rotor axis and pendulum's axis of rotation.

  19. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    NASA Astrophysics Data System (ADS)

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  20. Determination of real machine-tool settings and minimization of real surface deviation by computerized inspection

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Kuan, Chihping; Zhang, YI

    1991-01-01

    A numerical method is developed for the minimization of deviations of real tooth surfaces from the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the proper correction of initially applied machine-tool settings. The contents of accomplished research project cover the following topics: (1) Descriptions of the principle of coordinate measurements of gear tooth surfaces; (2) Deviation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and references for spiral bevel gears); (3) Determination of the reference point and the grid; (4) Determination of the deviations of real tooth surfaces at the points of the grid; and (5) Determination of required corrections of machine-tool settings for minimization of deviations. The procedure for minimization of deviations is based on numerical solution of an overdetermined system of n linear equations in m unknowns (m much less than n ), where n is the number of points of measurements and m is the number of parameters of applied machine-tool settings to be corrected. The developed approach is illustrated with numerical examples.

  1. Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique

    NASA Astrophysics Data System (ADS)

    Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.

    2017-10-01

    Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.

  2. Calibrated thermal microscopy of the tool-chip interface in machining

    NASA Astrophysics Data System (ADS)

    Yoon, Howard W.; Davies, Matthew A.; Burns, Timothy J.; Kennedy, M. D.

    2000-03-01

    A critical parameter in predicting tool wear during machining and in accurate computer simulations of machining is the spatially-resolved temperature at the tool-chip interface. We describe the development and the calibration of a nearly diffraction-limited thermal-imaging microscope to measure the spatially-resolved temperatures during the machining of an AISI 1045 steel with a tungsten-carbide tool bit. The microscope has a target area of 0.5 mm X 0.5 mm square region with a < 5 micrometers spatial resolution and is based on a commercial InSb 128 X 128 focal plane array with an all reflective microscope objective. The minimum frame image acquisition time is < 1 ms. The microscope is calibrated using a standard blackbody source from the radiance temperature calibration laboratory at the National Institute of Standards and Technology, and the emissivity of the machined material is deduced from the infrared reflectivity measurements. The steady-state thermal images from the machining of 1045 steel are compared to previous determinations of tool temperatures from micro-hardness measurements and are found to be in agreement with those studies. The measured average chip temperatures are also in agreement with the temperature rise estimated from energy balance considerations. From these calculations and the agreement between the experimental and the calculated determinations of the emissivity of the 1045 steel, the standard uncertainty of the temperature measurements is estimated to be about 45 degree(s)C at 900 degree(s)C.

  3. Sustainable cooling method for machining titanium alloy

    NASA Astrophysics Data System (ADS)

    Boswell, B.; Islam, M. N.

    2016-02-01

    Hard to machine materials such as Titanium Alloy TI-6AI-4V Grade 5 are notoriously known to generate high temperatures and adverse reactions between the workpiece and the tool tip materials. These conditions all contribute to an increase in the wear mechanisms, reducing tool life. Titanium Alloy, for example always requires coolant to be used during machining. However, traditional flood cooling needs to be replaced due to environmental issues, and an alternative cooling method found that has minimum impact on the environment. For true sustainable cooling of the tool it is necessary to account for all energy used in the cooling process, including the energy involved in producing the coolant. Previous research has established that efficient cooling of the tool interface improves the tool life and cutting action. The objective of this research is to determine the most appropriate sustainable cooling method that can also reduce the rate of wear at the tool interface.

  4. Tool Wear Monitoring Using Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu

    A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.

  5. An FMS Dynamic Production Scheduling Algorithm Considering Cutting Tool Failure and Cutting Tool Life

    NASA Astrophysics Data System (ADS)

    Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.

    2016-02-01

    This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Bennett

    The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sizedmore » manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.« less

  7. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  8. Chip morphology as a performance predictor during high speed end milling of soda lime glass

    NASA Astrophysics Data System (ADS)

    Bagum, M. N.; Konneh, M.; Abdullah, K. A.; Ali, M. Y.

    2018-01-01

    Soda lime glass has application in DNA arrays and lab on chip manufacturing. Although investigation revealed that machining of such brittle material is possible using ductile mode under controlled cutting parameters and tool geometry, it remains a challenging task. Furthermore, ability of ductile machining is usually assed through machined surface texture examination. Soda lime glass is a strain rate and temperature sensitive material. Hence, influence on attainment of ductile surface due to adiabatic heat generated during high speed end milling using uncoated tungsten carbide tool is investigated in this research. Experimental runs were designed using central composite design (CCD), taking spindle speed, feed rate and depth of cut as input variable and tool-chip contact point temperature (Ttc) and the surface roughness (Rt) as responses. Along with machined surface texture, Rt and chip morphology was examined to assess machinability of soda lime glass. The relation between Ttc and chip morphology was examined. Investigation showed that around glass transition temperature (Tg) ductile chip produced and subsequently clean and ductile final machined surface produced.

  9. Universal Tool Grinder Operator Instructor's Guide. Part of Single-Tool Skills Program Machine Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of Curriculum Development.

    The document is an instructor's guide for a course on universal tool grinder operation. The course is designed to train people in making complicated machine setups and precision in the grinding operations and, although intended primarily for adult learners, it can be adapted for high school use. The guide is divided into three parts: (1) the…

  10. Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces

    NASA Astrophysics Data System (ADS)

    Seo, Hyunju; Han, Jeong-Yeol; Kim, Sug-Whan; Seong, Sehyun; Yoon, Siyoung; Lee, Kyungmook; Lee, Haengbok

    2015-09-01

    Today, CVD SiC mirrors are readily available in the market. However, it is well known to the community that the key surface fabrication processes and, in particular, the material removal characteristics of the CVD SiC mirror surface varies sensitively depending on the shop floor polishing and figuring variables. We investigated the material removal characteristics of CVD SiC mirror surfaces using a new and patented polishing tool called orthogonal velocity tool (OVT) that employs two orthogonal velocity fields generated simultaneously during polishing and figuring machine runs. We built an in-house OVT machine and its operating principle allows for generation of pseudo Gaussian shapes of material removal from the target surface. The shapes are very similar to the tool influence functions (TIFs) of other polishing machine such as IRP series polishing machines from Zeeko. Using two CVD SiC mirrors of 150 mm in diameter and flat surface, we ran trial material removal experiments over the machine run parameter ranges from 12.901 to 25.867 psi in pressure, 0.086 m/sec to 0.147 m/sec in tool linear velocity, and 5 to 15 sec in dwell time. An in-house developed data analysis program was used to obtain a number of Gaussian shaped TIFs and the resulting material removal coefficient varies from 3.35 to 9.46 um/psi hour m/sec with the mean value to 5.90 ± 1.26(standard deviation). We report the technical details of the new OVT machine, of the data analysis program, of the experiments and the results together with the implications to the future development of the OVT machine and process for large CVD SiC mirror surfaces.

  11. Swept Mechanism of Micro-Milling Tool Geometry Effect on Machined Oxygen Free High Conductivity Copper (OFHC) Surface Roughness

    PubMed Central

    Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang

    2017-01-01

    Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479

  12. Robotic edge machining using elastic abrasive tool

    NASA Astrophysics Data System (ADS)

    Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.

    2018-03-01

    The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.

  13. Design of New Muzzle for 80mm Diamter Single-Stage Gas Gun

    NASA Astrophysics Data System (ADS)

    Russell, R. T.; Starks, K. S.; Grote, D. L., II; Vandersall, K. S.; Zhou, M.; Thadhani, N. N.

    1999-06-01

    In this paper, we describe the design of a new muzzle for the Georgia Institute of Technology's 80mm diameter single-stage gas gun. The muzzle is designed to accommodate both normal and inclined impact experiments. Modular target-holding assemblies are mounted on a hardened tool steel annular plate 3 inches in thickness and 15 inches in diameter. This plate is threaded on to the gun barrel and locked into place by an anti-backlash assembly to prevent loss of alignment. The target mount for normal impact experiments consists of two 4.5 inch diameter semi-cylindrical ring sections with surfaces lapped perpendicular to the major bore axis. The inclined target mount includes a pair of concentric cylinder sections with an inner diameter of 8 inches. Tilt adjustment is achieved around two mutually perpendicular and intersecting axis of rotation, as in a gimbals assembly. Coarse alignment allows for angles between -10 and +30 degrees. Fine alignment is achieved using 3/8 inch machine screws with 40 threads per inch. This mechanism yields a precision of 0.025 inches per revolution, the same precision found in a micrometer. The linear distance between the adjustment mechanisms and the axes of rotation geometrically enhances fine alignment. Velocity measurement assemblies using shear pins, time of arrival pins, and laser/photo-diode circuits are designed as bolt-on modules.

  14. Brain-computer interface using P300 and virtual reality: a gaming approach for treating ADHD.

    PubMed

    Rohani, Darius Adam; Sorensen, Helge B D; Puthusserypady, Sadasivan

    2014-01-01

    This paper presents a novel brain-computer interface (BCI) system aiming at the rehabilitation of attention-deficit/hyperactive disorder in children. It uses the P300 potential in a series of feedback games to improve the subjects' attention. We applied a support vector machine (SVM) using temporal and template-based features to detect these P300 responses. In an experimental setup using five subjects, an average error below 30% was achieved. To make it more challenging the BCI system has been embedded inside an immersive 3D virtual reality (VR) classroom with simulated distractions, which was created by combining a low-cost infrared camera and an "off-axis perspective projection" algorithm. This system is intended for kids by operating with four electrodes, as well as a non-intrusive VR setting. With the promising results, and considering the simplicity of the scheme, we hope to encourage future studies to adapt the techniques presented in this study.

  15. Apprentice Machine Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…

  16. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition.

    PubMed

    Caggiano, Alessandra

    2018-03-09

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features ( k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear ( VB max ) was achieved, with predicted values very close to the measured tool wear values.

  17. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition

    PubMed Central

    2018-01-01

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values. PMID:29522443

  18. Energy Survey of Machine Tools: Separating Power Information of the Main Transmission System During Machining Process

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao

    The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.

  19. Vending machine assessment methodology. A systematic review.

    PubMed

    Matthews, Melissa A; Horacek, Tanya M

    2015-07-01

    The nutritional quality of food and beverage products sold in vending machines has been implicated as a contributing factor to the development of an obesogenic food environment. How comprehensive, reliable, and valid are the current assessment tools for vending machines to support or refute these claims? A systematic review was conducted to summarize, compare, and evaluate the current methodologies and available tools for vending machine assessment. A total of 24 relevant research studies published between 1981 and 2013 met inclusion criteria for this review. The methodological variables reviewed in this study include assessment tool type, study location, machine accessibility, product availability, healthfulness criteria, portion size, price, product promotion, and quality of scientific practice. There were wide variations in the depth of the assessment methodologies and product healthfulness criteria utilized among the reviewed studies. Of the reviewed studies, 39% evaluated machine accessibility, 91% evaluated product availability, 96% established healthfulness criteria, 70% evaluated portion size, 48% evaluated price, 52% evaluated product promotion, and 22% evaluated the quality of scientific practice. Of all reviewed articles, 87% reached conclusions that provided insight into the healthfulness of vended products and/or vending environment. Product healthfulness criteria and complexity for snack and beverage products was also found to be variable between the reviewed studies. These findings make it difficult to compare results between studies. A universal, valid, and reliable vending machine assessment tool that is comprehensive yet user-friendly is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Xichun; Tong, Zhen; Liang, Yingchun

    2014-12-01

    In this article, the shape transferability of using nanoscale multi-tip diamond tools in the diamond turning for scale-up manufacturing of nanostructures has been demonstrated. Atomistic multi-tip diamond tool models were built with different tool geometries in terms of the difference in the tip cross-sectional shape, tip angle, and the feature of tool tip configuration, to determine their effect on the applied forces and the machined nano-groove geometries. The quality of machined nanostructures was characterized by the thickness of the deformed layers and the dimensional accuracy achieved. Simulation results show that diamond turning using nanoscale multi-tip tools offers tremendous shape transferability in machining nanostructures. Both periodic and non-periodic nano-grooves with different cross-sectional shapes can be successfully fabricated using the multi-tip tools. A hypothesis of minimum designed ratio of tool tip distance to tip base width (L/Wf) of the nanoscale multi-tip diamond tool for the high precision machining of nanostructures was proposed based on the analytical study of the quality of the nanostructures fabricated using different types of the multi-tip tools. Nanometric cutting trials using nanoscale multi-tip diamond tools (different in L/Wf) fabricated by focused ion beam (FIB) were then conducted to verify the hypothesis. The investigations done in this work imply the potential of using the nanoscale multi-tip diamond tool for the deterministic fabrication of period and non-periodic nanostructures, which opens up the feasibility of using the process as a versatile manufacturing technique in nanotechnology.

Top