The Four Traditions of Geography: A Unified Future Ahead?
ERIC Educational Resources Information Center
Marran, James F.
1985-01-01
Identifies William Pattison's four traditions of geography (spatial dimension, area studies, people-environment interaction, and earth science); discusses how geography instruction at secondary level has been one dimensional; describes High School Geography Project's efforts to revise geography curriculum by unifying Pattison's traditions (1960s);…
ERIC Educational Resources Information Center
Unco, Inc., Washington, DC.
This report is a descriptive evaluation of the five pilot sites of Project TREND (Targeting Resources on the Educational Needs of the Disadvantaged). The five Local Education Agency (LEA) pilot sites are the educational systems of: (1) Akron, Ohio; (2) El Paso, Texas; (3) Newark, New Jersey; (4) Portland, Oregon; and, (5) San Jose (Unified),…
A new unified theory of electromagnetic and gravitational interactions
NASA Astrophysics Data System (ADS)
Li, Li-Xin
2016-12-01
In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.
ERIC Educational Resources Information Center
Franz, Jennifer D.
Community and staff surveys, conducted in 1982, were commissioned by the Sacramento City (CA) Unified School District Board of Education as part of a project designed by the District's five high school principals. This report is limited to a presentation of the survey results. A subsequent report to be developed will present conclusions and any…
Unifying electromagnetism and gravitation without curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuetze, D.
1985-10-01
This paper is devoted to a five-dimensional unification of the gravitational theory of Hayashi and Shirafuji with electromagnetism. Interference effects are found between gravitational contributions of matter spin and electromagnetism. This unification becomes the classical Kaluza--Klein theory if contributions of the torsion tensor related with spin are neglected.
Grand unified brane world scenario
NASA Astrophysics Data System (ADS)
Arai, Masato; Blaschke, Filip; Eto, Minoru; Sakai, Norisuke
2017-12-01
We present a field theoretical model unifying grand unified theory (GUT) and brane world scenario. As a concrete example, we consider S U (5 ) GUT in 4 +1 dimensions where our 3 +1 dimensional spacetime spontaneously arises on five domain walls. A field-dependent gauge kinetic term is used to localize massless non-Abelian gauge fields on the domain walls and to assure the charge universality of matter fields. We find the domain walls with the symmetry breaking S U (5 )→S U (3 )×S U (2 )×U (1 ) as a global minimum and all the undesirable moduli are stabilized with the mass scale of MGUT. Profiles of massless standard model particles are determined as a consequence of wall dynamics. The proton decay can be exponentially suppressed.
ERIC Educational Resources Information Center
Fresno City Unified School District, CA.
This report is one in a series of needs assessment publications that comprise the initial phase for PROJECT DESIGN, an ESEA Title III project administered by the Fresno City Unified School District. This report summarizes educational problems of Fresno as they were perceived by district educational leaders. One researcher interviewed five members…
ERIC Educational Resources Information Center
Calabrese, William R.; Rudick, Monica M.; Simms, Leonard J.; Clark, Lee Anna
2012-01-01
Recently, integrative, hierarchical models of personality and personality disorder (PD)--such as the Big Three, Big Four, and Big Five trait models--have gained support as a unifying dimensional framework for describing PD. However, no measures to date can simultaneously represent each of these potentially interesting levels of the personality…
NASA Astrophysics Data System (ADS)
Madriz Aguilar, José Edgar; Bellini, Mauricio
2009-08-01
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
Pauling, Linus
1988-01-01
A unified structure theory of icosahedral quasicrystals, combining the twinned-cubic-crystal theory and the Penrose-tiling-six-dimensional-projection theory, is described. Values of the primitive-cubic lattice constant for several quasicrystals are evaluated from x-ray and neutron diffraction data. The fact that the low-angle diffraction maxima can be indexed with cubic unit cells provides additional support for the twinned-cubic-crystal theory of icosahedral quasicrystals. PMID:16593990
Project UNIFY. National Dropout Prevention Center/Network Newsletter. Volume 22, Number 1
ERIC Educational Resources Information Center
Duckenfield, Marty, Ed.
2011-01-01
The "National Dropout Prevention Newsletter" is published quarterly by the National Dropout Prevention Center/Network. This issue contains the following articles: (1) Special Olympics Project UNIFY (Andrea Cahn); (2) The Impact of Project UNIFY; (3) Project UNIFY Brings Youth Together to Learn and Graduate (William H. Hughes); (4)…
Ghanbari, Yasser; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini
2014-01-01
Diffusion tensor imaging (DTI) offers rich insights into the physical characteristics of white matter (WM) fiber tracts and their development in the brain, facilitating a network representation of brain’s traffic pathways. Such a network representation of brain connectivity has provided a novel means of investigating brain changes arising from pathology, development or aging. The high dimensionality of these connectivity networks necessitates the development of methods that identify the connectivity building blocks or sub-network components that characterize the underlying variation in the population. In addition, the projection of the subject networks into the basis set provides a low dimensional representation of it, that teases apart different sources of variation in the sample, facilitating variation-specific statistical analysis. We propose a unified framework of non-negative matrix factorization and graph embedding for learning sub-network patterns of connectivity by their projective non-negative decomposition into a reconstructive basis set, as well as, additional basis sets representing variational sources in the population like age and pathology. The proposed framework is applied to a study of diffusion-based connectivity in subjects with autism that shows localized sparse sub-networks which mostly capture the changes related to pathology and developmental variations. PMID:25037933
On degenerate metrics, dark matter and unification
NASA Astrophysics Data System (ADS)
Searight, Trevor P.
2017-12-01
A five-dimensional theory of relativity is presented which suggests that gravitation and electromagnetism may be unified using a degenerate metric. There are four fields (in the four-dimensional sense): a tensor field, two vector fields, and a scalar field, and they are unified with a combination of a gauge-like invariance and a reflection symmetry which means that both vector fields are photons. The gauge-like invariance implies that the fifth dimension is not directly observable; it also implies that charge is a constant of motion. The scalar field is analogous to the Brans-Dicke scalar field, and the theory tends towards the Einstein-Maxwell theory in the limit as the coupling constant tends to infinity. As there is some scope for fields to vary in the fifth dimension, it is possible for the photons to have wave behaviour in the fifth dimension. The wave behaviour has two effects: it gives mass to the photons, and it prevents them from interacting directly with normal matter. These massive photons still act as a source of gravity, however, and therefore they are candidates for dark matter.
EMDataBank unified data resource for 3DEM.
Lawson, Catherine L; Patwardhan, Ardan; Baker, Matthew L; Hryc, Corey; Garcia, Eduardo Sanz; Hudson, Brian P; Lagerstedt, Ingvar; Ludtke, Steven J; Pintilie, Grigore; Sala, Raul; Westbrook, John D; Berman, Helen M; Kleywegt, Gerard J; Chiu, Wah
2016-01-04
Three-dimensional Electron Microscopy (3DEM) has become a key experimental method in structural biology for a broad spectrum of biological specimens from molecules to cells. The EMDataBank project provides a unified portal for deposition, retrieval and analysis of 3DEM density maps, atomic models and associated metadata (emdatabank.org). We provide here an overview of the rapidly growing 3DEM structural data archives, which include maps in EM Data Bank and map-derived models in the Protein Data Bank. In addition, we describe progress and approaches toward development of validation protocols and methods, working with the scientific community, in order to create a validation pipeline for 3DEM data. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false How do the unified planning requirements apply to the five-year strategic WIA and Wagner-Peyser plan and to other Department of Labor plans? 661... ACT State Governance Provisions § 661.240 How do the unified planning requirements apply to the five...
ERIC Educational Resources Information Center
Fresno City Unified School District, CA. Office of Planning and Research Services.
Twenty-three California school districts responded to a burglary and vandalism survey conducted by the Fresno Unified School District Burglary and Vandalism Prevention Project, which represents the first phase of a developing program to reduce vandalism occurrences and improve recovery of losses. This summary compiles survey data on 18,000…
ERIC Educational Resources Information Center
Pellegrino, Linda
2009-01-01
Art history can be a little dry at times, but the author is always trying to incorporate new ways of teaching it. In this article, she describes a project in which students were to create a place setting out of clay that had to be unified through a famous artist's style. This place setting had to consist of at least five pieces (dinner plate, cup…
Calabrese, William R; Rudick, Monica M; Simms, Leonard J; Clark, Lee Anna
2012-09-01
Recently, integrative, hierarchical models of personality and personality disorder (PD)--such as the Big Three, Big Four, and Big Five trait models--have gained support as a unifying dimensional framework for describing PD. However, no measures to date can simultaneously represent each of these potentially interesting levels of the personality hierarchy. To unify these measurement models psychometrically, we sought to develop Big Five trait scales within the Schedule for Nonadaptive and Adaptive Personality--Second Edition (SNAP-2). Through structural and content analyses, we examined relations between the SNAP-2, the Big Five Inventory (BFI), and the NEO Five-Factor Inventory (NEO-FFI) ratings in a large data set (N = 8,690), including clinical, military, college, and community participants. Results yielded scales consistent with the Big Four model of personality (i.e., Neuroticism, Conscientiousness, Introversion, and Antagonism) and not the Big Five, as there were insufficient items related to Openness. Resulting scale scores demonstrated strong internal consistency and temporal stability. Structural validity and external validity were supported by strong convergent and discriminant validity patterns between Big Four scale scores and other personality trait scores and expectable patterns of self-peer agreement. Descriptive statistics and community-based norms are provided. The SNAP-2 Big Four Scales enable researchers and clinicians to assess personality at multiple levels of the trait hierarchy and facilitate comparisons among competing big-trait models. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Calabrese, William R.; Rudick, Monica M.; Simms, Leonard J.; Clark, Lee Anna
2012-01-01
Recently, integrative, hierarchical models of personality and personality disorder (PD)—such as the Big Three, Big Four and Big Five trait models—have gained support as a unifying dimensional framework for describing PD. However, no measures to date can simultaneously represent each of these potentially interesting levels of the personality hierarchy. To unify these measurement models psychometrically, we sought to develop Big Five trait scales within the Schedule for Adaptive and Nonadaptive Personality–2nd Edition (SNAP-2). Through structural and content analyses, we examined relations between the SNAP-2, Big Five Inventory (BFI), and NEO-Five Factor Inventory (NEO-FFI) ratings in a large data set (N = 8,690), including clinical, military, college, and community participants. Results yielded scales consistent with the Big Four model of personality (i.e., Neuroticism, Conscientiousness, Introversion, and Antagonism) and not the Big Five as there were insufficient items related to Openness. Resulting scale scores demonstrated strong internal consistency and temporal stability. Structural and external validity was supported by strong convergent and discriminant validity patterns between Big Four scale scores and other personality trait scores and expectable patterns of self-peer agreement. Descriptive statistics and community-based norms are provided. The SNAP-2 Big Four Scales enable researchers and clinicians to assess personality at multiple levels of the trait hierarchy and facilitate comparisons among competing “Big Trait” models. PMID:22250598
Ferles, Christos; Beaufort, William-Scott; Ferle, Vanessa
2017-01-01
The present study devises mapping methodologies and projection techniques that visualize and demonstrate biological sequence data clustering results. The Sequence Data Density Display (SDDD) and Sequence Likelihood Projection (SLP) visualizations represent the input symbolical sequences in a lower-dimensional space in such a way that the clusters and relations of data elements are depicted graphically. Both operate in combination/synergy with the Self-Organizing Hidden Markov Model Map (SOHMMM). The resulting unified framework is in position to analyze automatically and directly raw sequence data. This analysis is carried out with little, or even complete absence of, prior information/domain knowledge.
Method of surface error visualization using laser 3D projection technology
NASA Astrophysics Data System (ADS)
Guo, Lili; Li, Lijuan; Lin, Xuezhu
2017-10-01
In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.
USDA-ARS?s Scientific Manuscript database
A five dimensional experimental design, i.e. a five component ion mixture design for nitrate, phosphate, potassium, sodium and chloride projected across a total ion concentration gradient of 1-30 mM was utilized to map the ion-based, scenopoetic, or ‘Grinnellian’, niche space for two freshwater alga...
NASA Astrophysics Data System (ADS)
Hogue, T. S.; Moldwin, M.; Nonacs, P.; Daniel, J.; Shope, R.
2009-12-01
A National Science Foundation Graduate Teaching Fellows in K- 12 Education program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA) has just completed its first year (of a five-year program) and has greatly expanded UCLA’s science and engineering partnerships with LA Unified and Culver City Unified School Districts. The SEE-LA program partners UCLA faculty, graduate students (fellows), middle and high school science teachers and their students into a program of science and engineering exploration that brings the environment of Los Angeles into the classroom. UCLA graduate fellows serve as scientists-in-residence at the four partner schools to integrate inquiry-based science and engineering lessons, facilitate advancements in science content teaching, and ultimately, to improve their own science communication skills. As part of their fellowship, graduate students are required to develop three inquiry-based lessons in their partner classroom, including a lesson focused on their dissertation research, a lesson focused on the environmental/watershed theme of the project, and a lesson that involves longer-term data collection and synthesis with the grade 6-12 teachers and students. The developed long-term projects ideally involve continued observations and analysis through the five-year project and beyond. During the first year of the project, the ten SEE-LA fellows developed a range of long-term research projects, from seasonal invertebrate observations in an urban stream system, to home energy consumption surveys, to a school bioblitz (quantification of campus animals and insects). Examples of lesson development and integration in the classroom setting will be highlighted as well as tools required for sustainability of the projects. University and local pre-college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the integration of sustainable research projects into K-12 curriculum.
Whitham modulation theory for (2 + 1)-dimensional equations of Kadomtsev–Petviashvili type
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor
2018-05-01
Whitham modulation theory for certain two-dimensional evolution equations of Kadomtsev–Petviashvili (KP) type is presented. Three specific examples are considered in detail: the KP equation, the two-dimensional Benjamin–Ono (2DBO) equation and a modified KP (m2KP) equation. A unified derivation is also provided. In the case of the m2KP equation, the corresponding Whitham modulation system exhibits features different from the other two. The approach presented here does not require integrability of the original evolution equation. Indeed, while the KP equation is known to be a completely integrable equation, the 2DBO equation and the m2KP equation are not known to be integrable. In each of the cases considered, the Whitham modulation system obtained consists of five first-order quasilinear partial differential equations. The Riemann problem (i.e. the analogue of the Gurevich–Pitaevskii problem) for the one-dimensional reduction of the m2KP equation is studied. For the m2KP equation, the system of modulation equations is used to analyze the linear stability of traveling wave solutions.
Quiltophagy--autophagy as folk art.
Crumrine, Barbara M; Klionsky, Daniel J
2015-01-01
Over the years macroautophagy (hereafter autophagy) has been depicted artistically through painting, music, dance, videos, and poetry. A unifying idea behind these different aesthetic approaches is that people learn in different ways. Thus, some learners may be engaged by a detailed, but static, painting, whereas others may find insight through the dynamic visualization provided by a dance. While each of these formats has advantages, they also have a common weakness--whether delivered through watercolor on a canvas, words on a paper, or movement captured in a video, they are all 2-dimensional. Yet, some people are tactile learners. In this paper, a quilter describes a project she created with the goal of demonstrating autophagy using a 3-dimensional approach, in which different fiber textures could be used to elaborate certain parts of the process.
Ultrafast-based projection-reconstruction three-dimensional nuclear magnetic resonance spectroscopy.
Mishkovsky, Mor; Kupce, Eriks; Frydman, Lucio
2007-07-21
Recent years have witnessed increased efforts toward the accelerated acquisition of multidimensional nuclear magnetic resonance (nD NMR) spectra. Among the methods proposed to speed up these NMR experiments is "projection reconstruction," a scheme based on the acquisition of a reduced number of two-dimensional (2D) NMR data sets constituting cross sections of the nD time domain being sought. Another proposition involves "ultrafast" spectroscopy, capable of completing nD NMR acquisitions within a single scan. Potential limitations of these approaches include the need for a relatively slow 2D-type serial data collection procedure in the former case, and a need for at least n high-performance, linearly independent gradients and a sufficiently high sensitivity in the latter. The present study introduces a new scheme that comes to address these limitations, by combining the basic features of the projection reconstruction and the ultrafast approaches into a single, unified nD NMR experiment. In the resulting method each member within the series of 2D cross sections required by projection reconstruction to deliver the nD NMR spectrum being sought, is acquired within a single scan with the aid of the 2D ultrafast protocol. Full nD NMR spectra can thus become available by backprojecting a small number of 2D sets, collected using a minimum number of scans. Principles, opportunities, and limitations of the resulting approach, together with demonstrations of its practical advantages, are here discussed and illustrated with a series of three-dimensional homo- and heteronuclear NMR correlation experiments.
Phases of five-dimensional theories, monopole walls, and melting crystals
NASA Astrophysics Data System (ADS)
Cherkis, Sergey A.
2014-06-01
Moduli spaces of doubly periodic monopoles, also called monopole walls or monowalls, are hyperkähler; thus, when four-dimensional, they are self-dual gravitational instantons. We find all monowalls with lowest number of moduli. Their moduli spaces can be identified, on the one hand, with Coulomb branches of five-dimensional supersymmetric quantum field theories on 3 × T 2 and, on the other hand, with moduli spaces of local Calabi-Yau metrics on the canonical bundle of a del Pezzo surface. We explore the asymptotic metric of these moduli spaces and compare our results with Seiberg's low energy description of the five-dimensional quantum theories. We also give a natural description of the phase structure of general monowall moduli spaces in terms of triangulations of Newton polygons, secondary polyhedra, and associahedral projections of secondary fans.
A Unified Scaling Law in Spiral Galaxies.
Koda; Sofue; Wada
2000-03-01
We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensional logarithmic space of luminosity L, radius R, and rotation velocity V. The plane is expressed as L~&parl0;VR&parr0;alpha in the I passband, where alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations L-V (Tully-Fisher [TF] relation), V-R (also the TF relation), and R-L (Freeman's law) can be understood as oblique projections of the surfboard-like plane into two-dimensional spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/smoothed particle hydrodynamics method, including cooling, star formation, and stellar feedback. Initial conditions are set to 14 isolated spheres with two free parameters, such as mass and angular momentum. The cold dark matter (h=0.5, Omega0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (1) The slope of the plane is well reproduced but the zero point is not. This zero-point discrepancy could be solved in a low-density (Omega0<1) and high-expansion (h>0.5) cosmology. (2) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.
Design and application of BIM based digital sand table for construction management
NASA Astrophysics Data System (ADS)
Fuquan, JI; Jianqiang, LI; Weijia, LIU
2018-05-01
This paper explores the design and application of BIM based digital sand table for construction management. Aiming at the demands and features of construction management plan for bridge and tunnel engineering, the key functional features of digital sand table should include three-dimensional GIS, model navigation, virtual simulation, information layers, and data exchange, etc. That involving the technology of 3D visualization and 4D virtual simulation of BIM, breakdown structure of BIM model and project data, multi-dimensional information layers, and multi-source data acquisition and interaction. Totally, the digital sand table is a visual and virtual engineering information integrated terminal, under the unified data standard system. Also, the applications shall contain visual constructing scheme, virtual constructing schedule, and monitoring of construction, etc. Finally, the applicability of several basic software to the digital sand table is analyzed.
Scalar-tensor Theories of Gravity: Some personal history
NASA Astrophysics Data System (ADS)
Brans, Carl H.
2008-12-01
From a perspective of some 50 years or more, this paper reviews my recall of the early days of scalar-tensor alternatives to standard Einstein general relativistic theory of gravity. Of course, the story begins long before my involvement, going back to the proposals of Nordström in 1914, and that of Kaluza, Klein, et al., a few years later, sol include reviews of these seminal ideas and those that followed in the 1920's through the 1940's. This early work concerned the search for a Unified Field Theory, unifying gravity and Electromagnetism, using five dimensional manifolds. This formalism included not only the electromagnetic spacetime vector potential within the five-metric, but also a spacetime scalar as the five-five metric component. Although this was at first regarded more as a nuisance, to be set to a constant, it turned out later that Fierz, Jordan, Einstein and Bergmann noticed that this scalar could be a field, possibly related to the Newtonian gravitational constant. Relatively little theoretical and experimental attention was given to these ideas until after the second world war when Bob Dicke, motivated by the ideas of Mach, Dirac, and others, suggested that this additional scalar, coupled only to the metric and matter, could provide a reasonable and viable alternative to standard Einstein theory. This is the point of my direct involvement with these topics. However, it was Dicke's prominence and expertise in experimental work, together with the blossoming of NASA's experimental tools, that caused the explosion of interest, experimental and theoretical, in this possible alternative to standard Einstein theory. This interest has waxed and waned over the last 50 years, and we summarize some of this work.
Deep linear autoencoder and patch clustering-based unified one-dimensional coding of image and video
NASA Astrophysics Data System (ADS)
Li, Honggui
2017-09-01
This paper proposes a unified one-dimensional (1-D) coding framework of image and video, which depends on deep learning neural network and image patch clustering. First, an improved K-means clustering algorithm for image patches is employed to obtain the compact inputs of deep artificial neural network. Second, for the purpose of best reconstructing original image patches, deep linear autoencoder (DLA), a linear version of the classical deep nonlinear autoencoder, is introduced to achieve the 1-D representation of image blocks. Under the circumstances of 1-D representation, DLA is capable of attaining zero reconstruction error, which is impossible for the classical nonlinear dimensionality reduction methods. Third, a unified 1-D coding infrastructure for image, intraframe, interframe, multiview video, three-dimensional (3-D) video, and multiview 3-D video is built by incorporating different categories of videos into the inputs of patch clustering algorithm. Finally, it is shown in the results of simulation experiments that the proposed methods can simultaneously gain higher compression ratio and peak signal-to-noise ratio than those of the state-of-the-art methods in the situation of low bitrate transmission.
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
NASA Astrophysics Data System (ADS)
Kitano, Ryuichiro; Li, Tianjun
2003-06-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group.
Supersymmetric attractors, topological strings, and the M5-brane CFT
NASA Astrophysics Data System (ADS)
Guica, Monica M.
One of the purposes of this thesis is to present the consistent and unifying picture that emerges in string and M-theory with eight supercharges. On one hand, this involves classifying and relating supersymmetric objects that occur in N = 2 compactifications of string and M-theory on a Calabi-Yau manifold. These come in a surprisingly wide variety of four and five-dimensional black holes, black rings and their sometimes very complicated bound states. On the other hand, the topological string also makes its appearance in theories with eight supercharges, and turns out to compute certain black hole degeneracies. We dedicate the introduction and the first chapter to summarizing and reviewing the beautiful relationships between black holes, black rings, their dual conformal field theory and the topological string, and we also outline the remaining puzzles and issues. Some of the black holes in question can be obtained by multiply-wrapping an M-theory M5-brane on a self-intersecting four-cycle in the Calabi-Yau manifold. Their dual microscopic description is known, and consists of a two-dimensional conformal field theory (CFT) which is the low-energy limit of the gauge theory that resides on the worldvolume of the M5 brane. We show that in a certain limit the M5-brane CFT is - perhaps surprisingly - able to reproduce the entropy of a completely different type of black holes, those obtained from wrapped M2-branes, whose microscopic description has not yet been understood. We also argue that certain black hole bound states should also be described by the same CFT, which suggests a unifying description of the various black objects in eight-supercharge supergravity theories. Finally, we describe and present a proof of the so-called OSV conjecture, which states that the mixed partition function of N = 2 four-dimensional BPS black holes equals the modulus square of the type A topological string partition function. We also attempt to use this relationship to better understand corrections to the entropy of supersymmetric black holes and rings in five dimensions.
Five analogies between a King's Speech treatment and contemporary play therapies.
Terr, Lenore C
2012-01-01
Psychiatric patients frequently respond positively to play therapy, which may rely on psychoanalytic, Jungian, cognitive-behavioral, familial, school-based, or other theories. I wished to determine if there were unifying principles that tie together these various types of play treatments. The fact-based film, The King's Speech, vividly illustrates play utilized by Lionel Logue in his speech treatment (1926-1939) of the future King of England. In the film I found five analogies to the play therapy I employ in office practice. The play scenes in The King's Speech point to five unifying principles among contemporary play therapies: (1) the crucial nature of the relationship, (2) the centrality of having fun, (3) the occasional reliance on others, (4) the interjection of pithy talk, and (5) the usefulness of a little drama. No matter what theory a play therapist ascribes to, these five unifying principles should be kept in mind during treatment.
NASA Astrophysics Data System (ADS)
Menthe, R. W.; McColgan, C. J.; Ladden, R. M.
1991-05-01
The Unified AeroAcoustic Program (UAAP) code calculates the airloads on a single rotation prop-fan, or propeller, and couples these airloads with an acoustic radiation theory, to provide estimates of near-field or far-field noise levels. The steady airloads can also be used to calculate the nonuniform velocity components in the propeller wake. The airloads are calculated using a three dimensional compressible panel method which considers the effects of thin, cambered, multiple blades which may be highly swept. These airloads may be either steady or unsteady. The acoustic model uses the blade thickness distribution and the steady or unsteady aerodynamic loads to calculate the acoustic radiation. The users manual for the UAAP code is divided into five sections: general code description; input description; output description; system description; and error codes. The user must have access to IMSL10 libraries (MATH and SFUN) for numerous calls made for Bessel functions and matrix inversion. For plotted output users must modify the dummy calls to plotting routines included in the code to system-specific calls appropriate to the user's installation.
NASA Technical Reports Server (NTRS)
Menthe, R. W.; Mccolgan, C. J.; Ladden, R. M.
1991-01-01
The Unified AeroAcoustic Program (UAAP) code calculates the airloads on a single rotation prop-fan, or propeller, and couples these airloads with an acoustic radiation theory, to provide estimates of near-field or far-field noise levels. The steady airloads can also be used to calculate the nonuniform velocity components in the propeller wake. The airloads are calculated using a three dimensional compressible panel method which considers the effects of thin, cambered, multiple blades which may be highly swept. These airloads may be either steady or unsteady. The acoustic model uses the blade thickness distribution and the steady or unsteady aerodynamic loads to calculate the acoustic radiation. The users manual for the UAAP code is divided into five sections: general code description; input description; output description; system description; and error codes. The user must have access to IMSL10 libraries (MATH and SFUN) for numerous calls made for Bessel functions and matrix inversion. For plotted output users must modify the dummy calls to plotting routines included in the code to system-specific calls appropriate to the user's installation.
Deaf People, Modernity, and a Contentious Effort to Unify Arab Sign Languages
ERIC Educational Resources Information Center
Al-Fityani, Kinda
2010-01-01
This dissertation examines a project to unify sign languages across twenty-two Arab countries. Proponents of the project, mainly pan-Arab governmental bodies with the support of members of the staff at the Al Jazeera satellite network, have framed the project as a human rights effort to advance the welfare of deaf Arab people. They have urged its…
A zero waste vision for industrial networks in Europe.
Curran, T; Williams, I D
2012-03-15
'ZeroWIN' (Towards Zero Waste in Industrial Networks--www.zerowin.eu) is a five year project running 2009-2014, funded by the EC under the 7th Framework Programme. Project ZeroWIN envisions industrial networks that have eliminated the wasteful consumption of resources. Zero waste is a unifying concept for a range of measures aimed at eliminating waste and challenging old ways of thinking. Aiming for zero waste will mean viewing waste as a potential resource with value to be realised, rather than as a problem to be dealt with. The ZeroWIN project will investigate and demonstrate how existing approaches and tools can be improved and combined to best effect in an industrial network, and how innovative technologies can contribute to achieving the zero waste vision. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yinan; Shi Handuo; Xiong Zhaoxi
We present a unified universal quantum cloning machine, which combines several different existing universal cloning machines together, including the asymmetric case. In this unified framework, the identical pure states are projected equally into each copy initially constituted by input and one half of the maximally entangled states. We show explicitly that the output states of those universal cloning machines are the same. One importance of this unified cloning machine is that the cloning procession is always the symmetric projection, which reduces dramatically the difficulties for implementation. Also, it is found that this unified cloning machine can be directly modified tomore » the general asymmetric case. Besides the global fidelity and the single-copy fidelity, we also present all possible arbitrary-copy fidelities.« less
A unified theoretical framework for mapping models for the multi-state Hamiltonian.
Liu, Jian
2016-11-28
We propose a new unified theoretical framework to construct equivalent representations of the multi-state Hamiltonian operator and present several approaches for the mapping onto the Cartesian phase space. After mapping an F-dimensional Hamiltonian onto an F+1 dimensional space, creation and annihilation operators are defined such that the F+1 dimensional space is complete for any combined excitation. Commutation and anti-commutation relations are then naturally derived, which show that the underlying degrees of freedom are neither bosons nor fermions. This sets the scene for developing equivalent expressions of the Hamiltonian operator in quantum mechanics and their classical/semiclassical counterparts. Six mapping models are presented as examples. The framework also offers a novel way to derive such as the well-known Meyer-Miller model.
a Comparative Analysis of Five Cropland Datasets in Africa
NASA Astrophysics Data System (ADS)
Wei, Y.; Lu, M.; Wu, W.
2018-04-01
The food security, particularly in Africa, is a challenge to be resolved. The cropland area and spatial distribution obtained from remote sensing imagery are vital information. In this paper, according to cropland area and spatial location, we compare five global cropland datasets including CCI Land Cover, GlobCover, MODIS Collection 5, GlobeLand30 and Unified Cropland in circa 2010 of Africa in terms of cropland area and spatial location. The accuracy of cropland area calculated from five datasets was analyzed compared with statistic data. Based on validation samples, the accuracies of spatial location for the five cropland products were assessed by error matrix. The results show that GlobeLand30 has the best fitness with the statistics, followed by MODIS Collection 5 and Unified Cropland, GlobCover and CCI Land Cover have the lower accuracies. For the accuracy of spatial location of cropland, GlobeLand30 reaches the highest accuracy, followed by Unified Cropland, MODIS Collection 5 and GlobCover, CCI Land Cover has the lowest accuracy. The spatial location accuracy of five datasets in the Csa with suitable farming condition is generally higher than in the Bsk.
A Unified Approach to Modeling Multidisciplinary Interactions
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Bhatia, Kumar G.
2000-01-01
There are a number of existing methods to transfer information among various disciplines. For a multidisciplinary application with n disciplines, the traditional methods may be required to model (n(exp 2) - n) interactions. This paper presents a unified three-dimensional approach that reduces the number of interactions from (n(exp 2) - n) to 2n by using a computer-aided design model. The proposed modeling approach unifies the interactions among various disciplines. The approach is independent of specific discipline implementation, and a number of existing methods can be reformulated in the context of the proposed unified approach. This paper provides an overview of the proposed unified approach and reformulations for two existing methods. The unified approach is specially tailored for application environments where the geometry is created and managed through a computer-aided design system. Results are presented for a blended-wing body and a high-speed civil transport.
ERIC Educational Resources Information Center
Shin, Dong Sun; Jang, Hae Gwon; Hwang, Sung Bae; Har, Dong-Hwan; Moon, Young Lae; Chung, Min Suk
2013-01-01
In the Visible Korean project, serially sectioned images of the pelvis were made from a female cadaver. Outlines of significant structures in the sectioned images were drawn and stacked to build surface models. To improve the accessibility and informational content of these data, a five-step process was designed and implemented. First, 154 pelvic…
Berne, Rosalyn W; Raviv, Daniel
2004-04-01
This paper introduces the Eight Dimensional Methodology for Innovative Thinking (the Eight Dimensional Methodology), for innovative problem solving, as a unified approach to case analysis that builds on comprehensive problem solving knowledge from industry, business, marketing, math, science, engineering, technology, arts, and daily life. It is designed to stimulate innovation by quickly generating unique "out of the box" unexpected and high quality solutions. It gives new insights and thinking strategies to solve everyday problems faced in the workplace, by helping decision makers to see otherwise obscure alternatives and solutions. Daniel Raviv, the engineer who developed the Eight Dimensional Methodology, and paper co-author, technology ethicist Rosalyn Berne, suggest that this tool can be especially useful in identifying solutions and alternatives for particular problems of engineering, and for the ethical challenges which arise with them. First, the Eight Dimensional Methodology helps to elucidate how what may appear to be a basic engineering problem also has ethical dimensions. In addition, it offers to the engineer a methodology for penetrating and seeing new dimensions of those problems. To demonstrate the effectiveness of the Eight Dimensional Methodology as an analytical tool for thinking about ethical challenges to engineering, the paper presents the case of the construction of the Large Binocular Telescope (LBT) on Mount Graham in Arizona. Analysis of the case offers to decision makers the use of the Eight Dimensional Methodology in considering alternative solutions for how they can proceed in their goals of exploring space. It then follows that same process through the second stage of exploring the ethics of each of those different solutions. The LBT project pools resources from an international partnership of universities and research institutes for the construction and maintenance of a highly sophisticated, powerful new telescope. It will soon mark the erection of the world's largest and most powerful optical telescope, designed to see fine detail otherwise visible only from space. It also represents a controversial engineering project that is being undertaken on land considered to be sacred by the local, native Apache people. As presented, the case features the University of Virginia, and its challenges in consideration of whether and how to join the LBT project consortium.
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2006-01-01
The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).
NASA Technical Reports Server (NTRS)
Yao, Tse-Min; Choi, Kyung K.
1987-01-01
An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.
A unified Fourier theory for time-of-flight PET data
Li, Yusheng; Matej, Samuel; Metzler, Scott D
2016-01-01
Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D X-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions—the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are necessary and sufficient for 3D X-ray transform with TOF measurement. Finally, we give numerical examples of inverse rebinning for a 3D TOF PET and Fourier-based rebinning for a 2D TOF PET using the FORCEs to show the efficacy of the unified Fourier solutions. PMID:26689836
A unified Fourier theory for time-of-flight PET data.
Li, Yusheng; Matej, Samuel; Metzler, Scott D
2016-01-21
Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions--the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are necessary and sufficient for 3D x-ray transform with TOF measurement. Finally, we give numerical examples of inverse rebinning for a 3D TOF PET and Fourier-based rebinning for a 2D TOF PET using the FORCEs to show the efficacy of the unified Fourier solutions.
OPUS: Optimal Projection for Uncertain Systems. Volume 1
1991-09-01
unifiedI control- design methodology that directly addresses these technology issues. 1 In particular, optimal projection theory addresses the need for...effects, and limited identification accuracy in a 1-g environment. The principal contribution of OPUS is a unified design methodology that...characterizing solutions to constrained control- design problems. Transforming OPUS into a practi- cal design methodology requires the development of
Code of Federal Regulations, 2010 CFR
2010-04-01
...) [Reserved] (6) Senior Community Service Employment Programs under title V of the Older Americans Act. (b... meeting the requirements of the Interagency guidance entitled State Unified Plan, Planning Guidance for...
Unified-theory-of-reinforcement neural networks do not simulate the blocking effect.
Calvin, Nicholas T; J McDowell, J
2015-11-01
For the last 20 years the unified theory of reinforcement (Donahoe et al., 1993) has been used to develop computer simulations to evaluate its plausibility as an account for behavior. The unified theory of reinforcement states that operant and respondent learning occurs via the same neural mechanisms. As part of a larger project to evaluate the operant behavior predicted by the theory, this project was the first replication of neural network models based on the unified theory of reinforcement. In the process of replicating these neural network models it became apparent that a previously published finding, namely, that the networks simulate the blocking phenomenon (Donahoe et al., 1993), was a misinterpretation of the data. We show that the apparent blocking produced by these networks is an artifact of the inability of these networks to generate the same conditioned response to multiple stimuli. The piecemeal approach to evaluate the unified theory of reinforcement via simulation is critiqued and alternatives are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Information system end-user satisfaction and continuance intention: A unified modeling approach.
Hadji, Brahim; Degoulet, Patrice
2016-06-01
Permanent evaluation of end-user satisfaction and continuance intention is a critical issue at each phase of a clinical information system (CIS) project, but most validation studies are concerned with the pre- or early post-adoption phases. The purpose of this study was twofold: to validate at the Pompidou University Hospital (HEGP) an information technology late post-adoption model built from four validated models and to propose a unified metamodel of evaluation that could be adapted to each context or deployment phase of a CIS project. Five dimensions, i.e., CIS quality (CISQ), perceived usefulness (PU), confirmation of expectations (CE), user satisfaction (SAT), and continuance intention (CI) were selected to constitute the CI evaluation model. The validity of the model was tested using the combined answers to four surveys performed between 2011 and 2015, i.e., more than ten years after the opening of HEGP in July 2000. Structural equation modeling was used to test the eight model-associated hypotheses. The multi-professional study group of 571 responders consisted of 158 doctors, 282 nurses, and 131 secretaries. The evaluation model accounted for 84% of variance of satisfaction and 53% of CI variance for the period 2011-2015 and for 92% and 69% for the period 2014-2015. In very late post adoption, CISQ appears to be the major determinant of satisfaction and CI. Combining the results obtained at various phases of CIS deployment, a Unified Model of Information System Continuance (UMISC) is proposed. In a meaningful CIS use situation at HEGP, this study confirms the importance of CISQ in explaining satisfaction and CI. The proposed UMISC model that can be adapted to each phase of CIS deployment could facilitate the necessary efforts of permanent CIS acceptance and continuance evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Sandow, M J; Fisher, T J; Howard, C Q; Papas, S
2014-05-01
This study was part of a larger project to develop a (kinetic) theory of carpal motion based on computationally derived isometric constraints. Three-dimensional models were created from computed tomography scans of the wrists of ten normal subjects and carpal spatial relationships at physiological motion extremes were assessed. Specific points on the surface of the various carpal bones and the radius that remained isometric through range of movement were identified. Analysis of the isometric constraints and intercarpal motion suggests that the carpus functions as a stable central column (lunate-capitate-hamate-trapezoid-trapezium) with a supporting lateral column (scaphoid), which behaves as a 'two gear four bar linkage'. The triquetrum functions as an ulnar translation restraint, as well as controlling lunate flexion. The 'trapezoid'-shaped trapezoid places the trapezium anterior to the transverse plane of the radius and ulna, and thus rotates the principal axis of the central column to correspond to that used in the 'dart thrower's motion'. This study presents a forward kinematic analysis of the carpus that provides the basis for the development of a unifying kinetic theory of wrist motion based on isometric constraints and rules-based motion.
NASA Technical Reports Server (NTRS)
Gunness, R. C., Jr.; Knight, C. J.; Dsylva, E.
1972-01-01
The unified small disturbance equations are numerically solved using the well-known Lax-Wendroff finite difference technique. The method allows complete determination of the inviscid flow field and surface properties as long as the flow remains supersonic. Shock waves and other discontinuities are accounted for implicity in the numerical method. This technique was programed for general application to the three-dimensional case. The validity of the method is demonstrated by calculations on cones, axisymmetric bodies, lifting bodies, delta wings, and a conical wing/body combination. Part 1 contains the discussion of problem development and results of the study. Part 2 contains flow charts, subroutine descriptions, and a listing of the computer program.
TACKETT, JENNIFER L.; BALSIS, STEVE; OLTMANNS, THOMAS F.; KRUEGER, ROBERT F.
2010-01-01
Proposed changes in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) include replacing current personality disorder (PD) categories on Axis II with a taxonomy of dimensional maladaptive personality traits. Most of the work on dimensional models of personality pathology, and on personality disorders per se, has been conducted on young and middle-aged adult populations. Numerous questions remain regarding the applicability and limitations of applying various PD models to early and later life. In the present paper, we provide an overview of such dimensional models and review current proposals for conceptualizing PDs in DSM-V. Next, we extensively review existing evidence on the development, measurement, and manifestation of personality pathology in early and later life focusing on those issues deemed most relevant for informing DSM-V. Finally, we present overall conclusions regarding the need to incorporate developmental issues in conceptualizing PDs in DSM-V and highlight the advantages of a dimensional model in unifying PD perspectives across the life span. PMID:19583880
Unified planning work program federal fiscal year 2008
DOT National Transportation Integrated Search
2008-01-01
This Unified Planning Work Program (UPWP) contains information about surface-transportation planning projects that will be conducted in the Boston metropolitan region during the period of October 1, 2007, through September 30, 2008 (federal fiscal ye...
This project represents the Agency’s first effort to unify harmful algal blooms (HABs) research that had been previously carried out in isolation within various laboratories. A unified program is the most efficient way generate useful results for the Agency’s decision...
Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.
2009-01-01
Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.
The R.I. Pimenov unified gravitation and electromagnetism field theory as semi-Riemannian geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, N. A., E-mail: gromov@dm.komisc.r
2009-05-15
More than forty years ago R.I. Pimenov introduced a new geometry-semi-Riemannian one-as a set of geometrical objects consistent with a fibering pr: M{sub n} {yields} M{sub m}. He suggested the heuristic principle according to which the physically different quantities (meter, second, Coulomb, etc.) are geometrically modelled as space coordinates that are not superposed by automorphisms. As there is only one type of coordinates in Riemannian geometry and only three types of coordinates in pseudo-Riemannian one, a multiple-fibered semi-Riemannian geometry is the most appropriate one for the treatment of more than three different physical quantities as unified geometrical field theory. Semi-Euclideanmore » geometry {sup 3}R{sub 5}{sup 4} with 1-dimensional fiber x{sup 5} and 4-dimensional Minkowski space-time as a base is naturally interpreted as classical electrodynamics. Semi-Riemannian geometry {sup 3}V{sub 5}{sup 4} with the general relativity pseudo-Riemannian space-time {sup 3}V{sub 4}, and 1-dimensional fiber x{sup 5}, responsible for the electromagnetism, provides the unified field theory of gravitation and electromagnetism. Unlike Kaluza-Klein theories, where the fifth coordinate appears in nondegenerate Riemannian or pseudo-Riemannian geometry, the theory based on semi-Riemannian geometry is free from defects of the former. In particular, scalar field does not arise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaglioni, S.
2016-09-22
A 2011 DOE-NP Early Career Award (ECA) under Field Work Proposal (FWP) SCW1158 supported the project “Solving the Long-Standing Problem of Low-Energy Nuclear Reactions at the Highest Microscopic Level” in the five-year period from June 15, 2011 to June 14, 2016. This project, led by PI S. Quaglioni, aimed at developing a comprehensive and computationally efficient framework to arrive at a unified description of structural properties and reactions of light nuclei in terms of constituent protons and neutrons interacting through nucleon-nucleon (NN) and three-nucleon (3N) forces. Specifically, the project had three main goals: 1) arriving at the accurate predictions formore » fusion reactions that power stars and Earth-based fusion facilities; 2) realizing a comprehensive description of clustering and continuum effects in exotic nuclei, including light Borromean systems; and 3) achieving fundamental understanding of the role of the 3N force in nuclear reactions and nuclei at the drip line.« less
Heritability construction for provenance and family selection
Fan H. Kung; Calvin F. Bey
1977-01-01
Concepts and procedures for heritability estimations through the variance components and the unified F-statistics approach are described. The variance components approach is illustrated by five possible family selection schemes within a diallel mating test, while the unified F-statistics approach is demonstrated by a geographic variation study. In a balance design, the...
Graph embedding and extensions: a general framework for dimensionality reduction.
Yan, Shuicheng; Xu, Dong; Zhang, Benyu; Zhang, Hong-Jiang; Yang, Qiang; Lin, Stephen
2007-01-01
Over the past few decades, a large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions.
Focus Group Research on the Implications of Adopting the Unified English Braille Code
ERIC Educational Resources Information Center
Wetzel, Robin; Knowlton, Marie
2006-01-01
Five focus groups explored concerns about adopting the Unified English Braille Code. The consensus was that while the proposed changes to the literary braille code would be minor, those to the mathematics braille code would be much more extensive. The participants emphasized that "any code that reduces the number of individuals who can access…
IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.
Ha, Vi Q; Lykotrafitis, George
2016-12-08
We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lift and drag in three-dimensional steady viscous and compressible flow
NASA Astrophysics Data System (ADS)
Liu, L. Q.; Wu, J. Z.; Su, W. D.; Kang, L. L.
2017-11-01
In a recent paper, Liu, Zhu, and Wu ["Lift and drag in two-dimensional steady viscous and compressible flow," J. Fluid Mech. 784, 304-341 (2015)] present a force theory for a body in a two-dimensional, viscous, compressible, and steady flow. In this companion paper, we do the same for three-dimensional flows. Using the fundamental solution of the linearized Navier-Stokes equations, we improve the force formula for incompressible flows originally derived by Goldstein in 1931 and summarized by Milne-Thomson in 1968, both being far from complete, to its perfect final form, which is further proved to be universally true from subsonic to supersonic flows. We call this result the unified force theorem, which states that the forces are always determined by the vector circulation Γϕ of longitudinal velocity and the scalar inflow Qψ of transverse velocity. Since this theorem is not directly observable either experimentally or computationally, a testable version is also derived, which, however, holds only in the linear far field. We name this version the testable unified force formula. After that, a general principle to increase the lift-drag ratio is proposed.
Cosmological applications of singular hypersurfaces in general relativity
NASA Astrophysics Data System (ADS)
Laguna-Castillo, Pablo
Three applications to cosmology of surface layers, based on Israel's formalism of singular hypersurfaces and thin shells in general relativity, are presented. Einstein's field equations are analyzed in the presence of a bubble nucleated in vacuum phase transitions within the context of the old inflationary universe scenario. The evolution of a bubble with vanishing surface energy density is studied. It is found that such bubbles lead to a worm-hole matching. Next, the observable four-dimensional universe is considered as a singular hypersurface of discontinuity embedded in a five-dimensional Kaluza-Klein cosmology. It is possible to rewrite the projected five-dimensional Einstein equations on the surface layer in a similar way to the four-dimensional Robertson-Walker cosmology equations. Next, a model is described for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. A set of equations is introduced which are required to develop a three-dimensional computer code whose purpose is to study the process of intercommuting cosmic strings with the inclusion of gravitational effects. The outcome is evolution and constraint equations for the gravitational, scalar and gauge field of two initially separated, perpendicular, cosmic strings.
Unified Plant Growth Model (UPGM). 1. Background, objectives, and vision.
USDA-ARS?s Scientific Manuscript database
Since the development of the Environmental Policy Integrated Climate (EPIC) model in 1988, the EPIC-based plant growth code has been incorporated and modified into many agro-ecosystem models. The goals of the Unified Plant Growth Model (UPGM) project are: 1) integrating into one platform the enhance...
Toward a Unified Science Curriculum.
ERIC Educational Resources Information Center
Showalter, Victor M.
The two major models of science curriculum change, textbook revision and national curriculum projects, are derived from, and reinforce, the present curriculum structure. This is undesirable in a time of increasing fluidity and change, because adaptation to new situations is difficult. Unified science, based on the premise that science is a unity,…
Fu, Wei; Nijhoff, Frank W
2017-07-01
A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.
A Project Course Sequence in Innovation and Commercialization of Medical Devices.
Eberhardt, Alan W; Tillman, Shea; Kirkland, Brandon; Sherrod, Brandon
2017-07-01
There exists a need for educational processes in which students gain experience with design and commercialization of medical devices. This manuscript describes the implementation of, and assessment results from, the first year offering of a project course sequence in Master of Engineering (MEng) in Design and Commercialization at our institution. The three-semester course sequence focused on developing and applying hands-on skills that contribute to product development to address medical device needs found within our university hospital and local community. The first semester integrated computer-aided drawing (CAD) as preparation for manufacturing of device-related components (hand machining, computer numeric control (CNC), three-dimensional (3D) printing, and plastics molding), followed by an introduction to microcontrollers (MCUs) and printed circuit boards (PCBs) for associated electronics and control systems. In the second semester, the students applied these skills on a unified project, working together to construct and test multiple weighing scales for wheelchair users. In the final semester, the students applied industrial design concepts to four distinct device designs, including user and context reassessment, human factors (functional and aesthetic) design refinement, and advanced visualization for commercialization. The assessment results are described, along with lessons learned and plans for enhancement of the course sequence.
Parallel hyperspectral image reconstruction using random projections
NASA Astrophysics Data System (ADS)
Sevilla, Jorge; Martín, Gabriel; Nascimento, José M. P.
2016-10-01
Spaceborne sensors systems are characterized by scarce onboard computing and storage resources and by communication links with reduced bandwidth. Random projections techniques have been demonstrated as an effective and very light way to reduce the number of measurements in hyperspectral data, thus, the data to be transmitted to the Earth station is reduced. However, the reconstruction of the original data from the random projections may be computationally expensive. SpeCA is a blind hyperspectral reconstruction technique that exploits the fact that hyperspectral vectors often belong to a low dimensional subspace. SpeCA has shown promising results in the task of recovering hyperspectral data from a reduced number of random measurements. In this manuscript we focus on the implementation of the SpeCA algorithm for graphics processing units (GPU) using the compute unified device architecture (CUDA). Experimental results conducted using synthetic and real hyperspectral datasets on the GPU architecture by NVIDIA: GeForce GTX 980, reveal that the use of GPUs can provide real-time reconstruction. The achieved speedup is up to 22 times when compared with the processing time of SpeCA running on one core of the Intel i7-4790K CPU (3.4GHz), with 32 Gbyte memory.
The minimal GUT with inflaton and dark matter unification
NASA Astrophysics Data System (ADS)
Chen, Heng-Yu; Gogoladze, Ilia; Hu, Shan; Li, Tianjun; Wu, Lina
2018-01-01
Giving up the solutions to the fine-tuning problems, we propose the non-supersymmetric flipped SU(5)× U(1)_X model based on the minimal particle content principle, which can be constructed from the four-dimensional SO(10) models, five-dimensional orbifold SO(10) models, and local F-theory SO(10) models. To achieve gauge coupling unification, we introduce one pair of vector-like fermions, which form a complete SU(5)× U(1)_X representation. The proton lifetime is around 5× 10^{35} years, neutrino masses and mixing can be explained via the seesaw mechanism, baryon asymmetry can be generated via leptogenesis, and the vacuum stability problem can be solved as well. In particular, we propose that inflaton and dark matter particles can be unified to a real scalar field with Z_2 symmetry, which is not an axion and does not have the non-minimal coupling to gravity. Such a kind of scenarios can be applied to the generic scalar dark matter models. Also, we find that the vector-like particle corrections to the B_s^0 masses might be about 6.6%, while their corrections to the K^0 and B_d^0 masses are negligible.
Heating and flooding: A unified approach for rapid generation of free energy surfaces
NASA Astrophysics Data System (ADS)
Chen, Ming; Cuendet, Michel A.; Tuckerman, Mark E.
2012-07-01
We propose a general framework for the efficient sampling of conformational equilibria in complex systems and the generation of associated free energy hypersurfaces in terms of a set of collective variables. The method is a strategic synthesis of the adiabatic free energy dynamics approach, previously introduced by us and others, and existing schemes using Gaussian-based adaptive bias potentials to disfavor previously visited regions. In addition, we suggest sampling the thermodynamic force instead of the probability density to reconstruct the free energy hypersurface. All these elements are combined into a robust extended phase-space formalism that can be easily incorporated into existing molecular dynamics packages. The unified scheme is shown to outperform both metadynamics and adiabatic free energy dynamics in generating two-dimensional free energy surfaces for several example cases including the alanine dipeptide in the gas and aqueous phases and the met-enkephalin oligopeptide. In addition, the method can efficiently generate higher dimensional free energy landscapes, which we demonstrate by calculating a four-dimensional surface in the Ramachandran angles of the gas-phase alanine tripeptide.
Brodney, Marian D; Brosius, Arthur D; Gregory, Tracy; Heck, Steven D; Klug-McLeod, Jacquelyn L; Poss, Christopher S
2009-12-01
Advances in the field of drug discovery have brought an explosion in the quantity of data available to medicinal chemists and other project team members. New strategies and systems are needed to help these scientists to efficiently gather, organize, analyze, annotate, and share data about potential new drug molecules of interest to their project teams. Herein we describe a suite of integrated services and end-user applications that facilitate these activities throughout the medicinal chemistry design cycle. The Automated Data Presentation (ADP) and Virtual Compound Profiler (VCP) processes automate the gathering, organization, and storage of real and virtual molecules, respectively, and associated data. The Project-Focused Activity and Knowledge Tracker (PFAKT) provides a unified data analysis and collaboration environment, enhancing decision-making, improving team communication, and increasing efficiency.
Topics in high-energy physics: The standard model and beyond
NASA Astrophysics Data System (ADS)
Blechman, Andrew Eric
This thesis is compiled from the various projects I completed as a graduate student at the Johns Hopkins University Physics Department. The first project studied threshold effects in excited charmed baryon decays. The strong decays of the L+c (2593) are sensitive to finite width effects. This distorts the shape of the invariant mass spectrum in L+c1 → L+c pi+pi- from a simple Breit-Wigner resonance, which has implications for the experimental extraction of the L+c (2593) mass and couplings. A fit is performed to unpublished CLEO data which gives M( L+c (2593))---M( L+c ) = 305.6 +/- 0.3 MeV and h22=0.24+0.23 -0.11 , with h2 the L+c → Sigmacpi strong coupling in the chiral Lagrangian. In the second project, by shining a hypermultiplet from one side of the bulk of a flat five-dimensional orbifold, supersymmetry is broken. The extra dimension is stabilized in a supersymmetric way, and supersymmetry breaking does not damage the radius stabilization mechanism. The low energy theory contains the radion and two complex scalars that are massless in the global supersymmetric limit and are stabilized by tree level supergravity effects. It is shown that radion mediation can play the dominant role in communicating supersymmetry breaking to the visible sector and contact terms are exponentially suppressed at tree level. The third project studied lepton flavor violation in flavor anarchic Randall-Sundrum models. All Yukawa couplings and mixing matrices are generated at the TeV-scale by wavefunction overlaps in the five-dimensional Anti-deSitter geometry present in this theory, without introducing any additional structure. This leads to a TeV-scale solution to both the flavor and electroweak hierarchy problems. A thorough scan of the available parameter space is performed, including the effects of allowing the Higgs boson to propagate in the full five-dimensional space-time. These models give constraints at the few TeV level throughout the natural range of parameters. Near-future experiments will definitively test this model.
ERIC Educational Resources Information Center
Keller, Robert W.; Warpinski, Robert J.
1974-01-01
Project ICE is a regional, multidisciplinary, k-12 environmental education program that stresses student involvement. Four major project objectives and twelve unifying concepts for the curriculum are listed. The role of the teacher, project services, and available resources are discussed. Several specific examples illustrate student involvement…
Gao, Zheng; Liu, Yangang; Li, Xiaolin; ...
2018-02-19
Here, a new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measuremore » to represent the effect of various entrainment-mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated in search for a unified parameterization of entrainment-mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment-mixing mechanisms can be reasonably represented with power-law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.« less
Tales from the prehistory of Quantum Gravity. Léon Rosenfeld's earliest contributions
NASA Astrophysics Data System (ADS)
Peruzzi, Giulio; Rocci, Alessio
2018-05-01
The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of "general relativistic quantum mechanics" Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called `quantum phenomena', represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld's work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr's correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zheng; Liu, Yangang; Li, Xiaolin
Here, a new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measuremore » to represent the effect of various entrainment-mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated in search for a unified parameterization of entrainment-mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment-mixing mechanisms can be reasonably represented with power-law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.« less
A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh
NASA Astrophysics Data System (ADS)
Sun, Wenjun; Jiang, Song; Xu, Kun
2017-12-01
In order to extend the unified gas kinetic scheme (UGKS) to solve radiative transfer equations in a complex geometry, a multidimensional asymptotic preserving implicit method on unstructured mesh is constructed in this paper. With an implicit formulation, the CFL condition for the determination of the time step in UGKS can be much relaxed, and a large time step is used in simulations. Differently from previous direction-by-direction UGKS on orthogonal structured mesh, on unstructured mesh the interface flux transport takes into account multi-dimensional effect, where gradients of radiation intensity and material temperature in both normal and tangential directions of a cell interface are included in the flux evaluation. The multiple scale nature makes the UGKS be able to capture the solutions in both optically thin and thick regions seamlessly. In the optically thick region the condition of cell size being less than photon's mean free path is fully removed, and the UGKS recovers a solver for diffusion equation in such a limit on unstructured mesh. For a distorted quadrilateral mesh, the UGKS goes to a nine-point scheme for the diffusion equation, and it naturally reduces to the standard five-point scheme for a orthogonal quadrilateral mesh. Numerical computations covering a wide range of transport regimes on unstructured and distorted quadrilateral meshes will be presented to validate the current approach.
Tales from the prehistory of Quantum Gravity - Léon Rosenfeld's earliest contributions
NASA Astrophysics Data System (ADS)
Peruzzi, Giulio; Rocci, Alessio
2018-04-01
The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of "general relativistic quantum mechanics" Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called `quantum phenomena', represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld's work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr's correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.
NASA Astrophysics Data System (ADS)
Viner, K.; Reinecke, P. A.; Gabersek, S.; Flagg, D. D.; Doyle, J. D.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F.
2016-12-01
NEPTUNE: the Navy Environmental Prediction sysTem Using the NUMA*corE, is a 3D spectral element atmospheric model composed of a full suite of physics parameterizations and pre- and post-processing infrastructure with plans for data assimilation and coupling components to a variety of Earth-system models. This talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation, as demonstrated through idealized test cases. In addition, details of the physics-dynamics coupling methodology will be discussed. NEPTUNE results for test cases from the 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) will be shown and discussed. *NUMA: Nonhydrostatic Unified Model of the Atmosphere; Kelly and Giraldo 2012, JCP
NASA Astrophysics Data System (ADS)
Bahauddin, Shah Mohammad; Mehedi Faruk, Mir
2016-09-01
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.
NASA Technical Reports Server (NTRS)
Tomayko, James E.
1986-01-01
Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.
The Challenge of Assessing Project-Based Learning
ERIC Educational Resources Information Center
Boss, Suzie
2012-01-01
For their ambitious project, called America at War, high school juniors at Da Vinci Charter Academy in the Davis (California) Joint Unified School District didn't just study history. They became historians. Their project offers compelling evidence of what students can accomplish through project-based learning (PBL), an instructional approach that…
NASA Astrophysics Data System (ADS)
McReynolds, Sean
Five-dimensional N = 2 Yang-Mills-Einstein supergravity and its couplings to hyper and tensor multiplets are considered on an orbifold spacetime of the form M4 x S1/Gamma, where Gamma is a discrete group. As is well known in such cases, supersymmetry is broken to N = 1 on the orbifold fixed planes, and chiral 4D theories can be obtained from bulk hypermultiplets (or from the coupling of fixed-plane supported fields). Five-dimensional gauge symmetries are broken by boundary conditions for the fields, which are equivalent to some set of Gamma-parity assignments in the orbifold theory, allowing for arbitrary rank reduction. Furthermore, Wilson lines looping from one boundary to the other can break bulk gauge groups, or give rise to vacuum expectation values for scalars on the boundaries, which can result in spontaneous breaking of boundary gauge groups. The broken gauge symmetries do not survive as global symmetries of the low energy theories below the compactification scale due to 4 D minimal couplings to gauge fields. Axionic fields are a generic feature, just as in any compactification of M-theory (or string theory for that matter), and we exhibit the form of this field and its role as the QCD axion, capable of resolving the strong CP problem. The main motivation for the orbifold theories here is taken to be orbifold-GUTS, wherein a unified gauge group is sought in higher dimensions while allowing the orbifold reduction to handle problems such as rapid proton decay, exotic matter, mass hierarchies, etc. To that end, we discuss the allowable minimal SU(5), SO(10) and E6 GUT theories with all fields living in five dimensions. It is argued that, within the class of homogeneous quaternionic scalar manifolds characterizing the hypermultiplet couplings in 5D, supergravity admits a restricted set of theories that yield minimal phenomenological field content. In addition, non-compact gaugings are a novel feature of supergravity theories, and in particular we consider the example of an SU(5,1) YMESGT in which all of the fields of the theory are connected by local (susy and gauge) transformations that are symmetries of the Lagrangian. Such non-compact gaugings allow a novel type of gauge-Higgs unification in higher dimensions. The possibility of boundary-localized fields is considered only via anomaly arguments. (Abstract shortened by UMI.)
The manager's guide to NASA graphics standards
NASA Technical Reports Server (NTRS)
1980-01-01
NASA managers have the responsibility to initiate and carry out communication projects with a degree of sophistication that properly reflects the agency's substantial work. Over the course of the last decade, it has become more important to clearly communicate NASA's objectives in aeronautical research, space exploration, and related sciences. Many factors come into play when preparing communication materials for internal and external use. Three overriding factors are: producing the materials by the most cost-efficient method; ensuring that each item reflects the vitality, knowledge, and precision of NASA; and portraying all visual materials with a unified appearance. This guide will serve as the primary tool in meeting these criteria. This publication spells out the many benefits inherent in the Unified Visual Communication System and describes how the system was developed. The last section lists the graphic coordinators at headquarters and the centers who can assist with graphic projects. By understanding the Unified Visual Communication System, NASA managers will be able to manage a project from inception through production in the most cost-effective manner while maintaining the quality of NASA communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sham, Sam; Walker, Kevin P.
The expected service life of the Next Generation Nuclear Plant is 60 years. Structural analyses of the Intermediate Heat Exchanger (IHX) will require the development of unified viscoplastic constitutive models that address the material behavior of Alloy 617, a construction material of choice, over a wide range of strain rates. Many unified constitutive models employ a yield stress state variable which is used to account for cyclic hardening and softening of the material. For low stress values below the yield stress state variable these constitutive models predict that no inelastic deformation takes place which is contrary to experimental results. Themore » ability to model creep deformation at low stresses for the IHX application is very important as the IHX operational stresses are restricted to very small values due to the low creep strengths at elevated temperatures and long design lifetime. This paper presents some preliminary work in modeling the unified viscoplastic constitutive behavior of Alloy 617 which accounts for the long term, low stress, creep behavior and the hysteretic behavior of the material at elevated temperatures. The preliminary model is presented in one-dimensional form for ease of understanding, but the intent of the present work is to produce a three-dimensional model suitable for inclusion in the user subroutines UMAT and USERPL of the ABAQUS and ANSYS nonlinear finite element codes. Further experiments and constitutive modeling efforts are planned to model the material behavior of Alloy 617 in more detail.« less
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
A project was conducted to develop a laboratory-based instructional system in physics for two-year technician programs that emphasizes both the analogies between basic physical principles and the applications of the principles in modern technology. The Unified Technical Concepts (UTC) system that was developed is (1) a reorganization of physics…
Teacher Hiring, Transfer and Evaluation in Los Angeles Unified School District. Executive Summary
ERIC Educational Resources Information Center
New Teacher Project, 2009
2009-01-01
In the spring and summer of 2008, The New Teacher Project (TNTP) partnered with Los Angeles Unified School District (LAUSD) to investigate the impact of the school district's policies and practices on the ability of schools to build and maintain strong instructional teams. TNTP's analysis included the following components: (1) Analysis of teacher…
ERIC Educational Resources Information Center
Thornton, Julie A.
The report describes one segment of the Federal Language Testing Board's Unified Language Testing Plan (ULTP), the validation of the speaking proficiency test in Russian. The ULTP is a project to increase standardization of foreign language proficiency measurement and promote sharing of resources among testing programs in the federal government.…
ERIC Educational Resources Information Center
Thornton, Julie A.
This report describes one segment of the Federal Language Testing Board's Unified Language Testing Plan (ULTP), the validation of speaking proficiency tests in Spanish and English. The ULTP is a project to increase standardization of foreign language proficiency measurement and promote sharing of resources among testing programs in the federal…
Transferring Standard English Braille Skills to the Unified English Braille Code: A Pilot Study
ERIC Educational Resources Information Center
Steinman, Bernard A.; Kimbrough, B. T.; Johnson, Franklin; LeJeune, B. J.
2004-01-01
The enormously complex and sometimes controversial project to unify the traditional literary Braille code used in English-speaking countries with the technical and mathematical codes authorized by the Braille Authority of North America (BANA) and the Braille Authority of the United Kingdom (BAUK) proposes to change English Grade Two Braille on a…
ERIC Educational Resources Information Center
DeLucca, Adolph
1982-01-01
As a state and national model for a basic skills curriculum for Kindergarten through grade 12 students, Coordination Learning Integration--Middlesex Basics (Project CLIMB) is described. The unified system was developed by teachers with administrative support to accomodate all students' reading and mathematics needs. Project CLIMB's development and…
NASA Astrophysics Data System (ADS)
Liu, Zhijun; Zhang, Liangpei; Liu, Zhenmin; Jiao, Hongbo; Chen, Liqun
2008-12-01
In order to manage the internal resources of Gulf of Tonkin and integrate multiple-source spatial data, the establishment of region unified plan management system is needed. The data fusion and the integrated research should be carried on because there are some difficulties in the course of the system's establishment. For example, kinds of planning and the project data format are different, and data criterion is not unified. Besides, the time state property is strong, and spatial reference is inconsistent, etc. In this article the ARCGIS ENGINE is introduced as the developing platform, key technologies are researched, such as multiple-source data transformation and fusion, remote sensing data and DEM fusion and integrated, plan and project data integration, and so on. Practice shows that the system improves the working efficiency of Guangxi Gulf of Tonkin Economic Zone Management Committee significantly and promotes planning construction work of the economic zone remarkably.
NASA Technical Reports Server (NTRS)
Ford, Hugh; Turner, C. E.; Fenner, R. T.; Curr, R. M.; Ivankovic, A.
1995-01-01
The objects of the first, exploratory, stage of the project were listed as: (1) to make a detailed and critical review of the Boundary Element method as already published and with regard to elastic-plastic fracture mechanics, to assess its potential for handling present concepts in two-dimensional and three-dimensional cases. To this was subsequently added the Finite Volume method and certain aspects of the Finite Element method for comparative purposes; (2) to assess the further steps needed to apply the methods so far developed to the general field, covering a practical range of geometries, work hardening materials, and composites: to consider their application under higher temperature conditions; (3) to re-assess the present stage of development of the energy dissipation rate, crack tip opening angle and J-integral models in relation to the possibilities of producing a unified technology with the previous two items; and (4) to report on the feasibility and promise of this combined approach and, if appropriate, make recommendations for the second stage aimed at developing a generalized crack growth technology for its application to real-life problems.
NASA Astrophysics Data System (ADS)
Yamazaki, Y. H.; Skeet, D. R.; Read, P. L.
2004-04-01
We have been developing a new three-dimensional general circulation model for the stratosphere and troposphere of Jupiter based on the dynamical core of a portable version of the Unified Model of the UK Meteorological Office. Being one of the leading terrestrial GCMs, employed for operational weather forecasting and climate research, the Unified Model has been thoroughly tested and performance tuned for both vector and parallel computers. It is formulated as a generalized form of the standard primitive equations to handle a thick atmosphere, using a scaled pressure as the vertical coordinate. It is able to accurately simulate the dynamics of a three-dimensional fully compressible atmosphere on the whole or a part of a spherical shell at high spatial resolution in all three directions. Using the current version of the GCM, we examine the characteristics of the Jovian winds in idealized configurations based on the observed vertical structure of temperature. Our initial focus is on the evolution of isolated eddies in the mid-latitudes. Following a brief theoretical investigation of the vertical structure of the atmosphere, limited-area cyclic channel domains are used to numerically investigate the nonlinear evolution of the mid-latitude winds. First, the evolution of deep and shallow cyclones and anticyclones are tested in the atmosphere at rest to identify a preferred horizontal and vertical structure of the vortices. Then, the dependency of the migration characteristics of the vortices are investigated against modelling parameters to find that it is most sensitive to the horizontal diffusion. We also examine the hydrodynamical stability of observed subtropical jets in both northern and southern hemispheres in the three-dimensional nonlinear model as initial value problems. In both cases, it was found that the prominent jets are unstable at various scales and that vorteces of various sizes are generated including those comparable to the White Ovals and the Great Red Spot.
NASA Astrophysics Data System (ADS)
Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc
2016-03-01
We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.
77 FR 54382 - Revisions of Five California Clean Air Act Title V Operating Permits Programs
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... Five California Clean Air Act Title V Operating Permits Programs AGENCY: Environmental Protection... Permits (Title V) programs of the Monterey Bay Unified Air Pollution Control District (MBUAPCD), San Luis... thresholds in EPA's Tailoring Rule, which have not been previously subject [[Page 54383
Brannon, S Diane; Kemper, Peter; Barry, Theresa
2009-01-01
Better Jobs Better Care was a five-state direct care workforce demonstration designed to change policy and management practices that influence recruitment and retention of direct care workers, problems that continue to challenge providers. One of the projects, the North Carolina Partner Team, developed a unified approach in which skilled nursing, home care, and assisted living providers could be rewarded for meeting standards of workplace excellence. This case study documents the complex adaptive system agents and processes that coalesced to result in legislation recognizing the North Carolina New Organizational Vision Award. We used a holistic, single-case study design. Qualitative data from project work plans and progress reports as well as notes from interviews with key stakeholders and observation of meetings were coded into a simple rubric consisting of characteristics of complex adaptive systems. Key system agents in the state set the stage for the successful multistakeholder coalition. These included leadership by the North Carolina Department of Health and Human Services and a several year effort to develop a unifying vision for workforce development. Grant resources were used to facilitate both content and process work. Structure was allowed to emerge as needed. The coalition's own development is shown to have changed the context from which it was derived. An inclusive and iterative process produced detailed standards and measures for the voluntary recognition process. With effective facilitation, the interests of the multiple stakeholders coalesced into a policy response that encourages practice changes. Implications for managing change-oriented coalitions are discussed.
An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms
NASA Astrophysics Data System (ADS)
Sá, Lucas
2017-03-01
Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.
Derivation of kinetic equations from non-Wiener stochastic differential equations
NASA Astrophysics Data System (ADS)
Basharov, A. M.
2013-12-01
Kinetic differential-difference equations containing terms with fractional derivatives and describing α -stable Levy processes with 0 < α < 1 have been derived in a unified manner in terms of one-dimensional stochastic differential equations controlled merely by the Poisson processes.
Projective formulation of Maggi's method for nonholonomic systems analysis
NASA Astrophysics Data System (ADS)
Blajer, Wojciech
1992-04-01
A projective interpretation of Maggi'a approach to dynamic analysis of nonholonomic systems is presented. Both linear and nonlinear constraint cases are treatment in unified fashion, using the language of vector spaces and tensor algebra analysis.
Design and Realization of Online Monitoring System of Distributed New Energy and Renewable Energy
NASA Astrophysics Data System (ADS)
Tang, Yanfen; Zhou, Tao; Li, Mengwen; Zheng, Guotai; Li, Hao
2018-01-01
Aimed at difficult centralized monitoring and management of current distributed new energy and renewable energy generation projects due to great varieties, different communication protocols and large-scale difference, this paper designs a online monitoring system of new energy and renewable energy characterized by distributed deployment, tailorable functions, extendible applications and fault self-healing performance. This system is designed based on international general standard for grid information data model, formulates unified data acquisition and transmission standard for different types of new energy and renewable energy generation projects, and can realize unified data acquisition and real-time monitoring of new energy and renewable energy generation projects, such as solar energy, wind power, biomass energy, etc. within its jurisdiction. This system has applied in Beijing. At present, 576 projects are connected to the system. Good effect is achieved and stability and reliability of the system have been validated.
Even Start Projects Serving Migrant Families: Resource Guide.
ERIC Educational Resources Information Center
Gonzales, Miriam; Goldstein, David; Stief, Elizabeth; Fiester, Leila; Weiner, Lisa; Waiters, Katrina
Even Start was created by federal legislation to address poverty and illiteracy among low-income families by integrating early childhood education, adult literacy or adult basic education, and parenting education into a unified family literacy program. Migrant Education Even Start (MEES) projects resemble other Even Start projects but are affected…
The Circle in the Spiral: Up the Down Spiral with English, Volume II.
ERIC Educational Resources Information Center
Catholic Board of Education, Diocese of Cleveland, OH.
This document reports on a project on changing and improving the teaching of English, Project Insight. This project aims to improve the instruction of English on the secondary level through an organically unified English program. Initiated by the Board of Catholic Education, the project included participants from both public and Catholic high…
Exact rebinning methods for three-dimensional PET.
Liu, X; Defrise, M; Michel, C; Sibomana, M; Comtat, C; Kinahan, P; Townsend, D
1999-08-01
The high computational cost of data processing in volume PET imaging is still hindering the routine application of this successful technique, especially in the case of dynamic studies. This paper describes two new algorithms based on an exact rebinning equation, which can be applied to accelerate the processing of three-dimensional (3-D) PET data. The first algorithm, FOREPROJ, is a fast-forward projection algorithm that allows calculation of the 3-D attenuation correction factors (ACF's) directly from a two-dimensional (2-D) transmission scan, without first reconstructing the attenuation map and then performing a 3-D forward projection. The use of FOREPROJ speeds up the estimation of the 3-D ACF's by more than a factor five. The second algorithm, FOREX, is a rebinning algorithm that is also more than five times faster, compared to the standard reprojection algorithm (3DRP) and does not suffer from the image distortions generated by the even faster approximate Fourier rebinning (FORE) method at large axial apertures. However, FOREX is probably not required by most existing scanners, as the axial apertures are not large enough to show improvements over FORE with clinical data. Both algorithms have been implemented and applied to data simulated for a scanner with a large axial aperture (30 degrees), and also to data acquired with the ECAT HR and the ECAT HR+ scanners. Results demonstrate the excellent accuracy achieved by these algorithms and the important speedup when the sinogram sizes are powers of two.
Scientific Communication and the Unified Laboratory Sequence1
NASA Astrophysics Data System (ADS)
Silverstein, Todd P.; Hudak, Norman J.; Chapple, Frances H.; Goodney, David E.; Brink, Christina P.; Whitehead, Joyce P.
1997-02-01
The "Temperature Dependent Relaxation Kinetics" lab was first implemented in 1987; it uses stopped-flow pH jump techniques to determine rate constants and activation parameters (H, S, G) for a reaction mechanism. Two new experiments (Monoamine Oxidase, and Molecular Modeling) will be implemented in the fall of 1997. The "Monoamine Oxidase" project uses chromatography and spectrophotometry to purify and characterize the enzyme. Subsequent photometric assays explore the enzyme's substrate specificity, activation energy, and denaturation. Finally, in the "Molecular Modeling"project, students characterize enzyme - substrate and drug - receptor interactions. Energy minimization protocols are used to make predictions about protein structure and ligand binding, and to explore pharmacological and biomedical implications. With these additions, the twelve Unified Laboratory projects introduce our chemistry majors to nearly all of the instrumental methods commonly encountered in modern chemistry.
NASA Astrophysics Data System (ADS)
Arendt, V.; Shalchi, A.
2018-06-01
We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.
ERIC Educational Resources Information Center
Borhani, Rahim
This is the final report of a Kansas state project which had four purposes: (1) Involvement of teacher training institutions with the unified school districts' career education program in order to gather information needed to provide realistic experiences for inservice education of future career education teachers, (2) involve the community in…
ERIC Educational Resources Information Center
Center for Mental Health in Schools at UCLA, 2005
2005-01-01
This report was developed to highlight the current state of affairs and illustrate the value of a unifying framework and integrated infrastructure for the many initiatives, projects, programs, and services schools pursue in addressing barriers to learning and promoting healthy development. Specifically, it highlights how initiatives can be…
Rating Scales for Dystonia in Cerebral Palsy: Reliability and Validity
ERIC Educational Resources Information Center
Monbaliu, E.; Ortibus, E.; Roelens, F.; Desloovere, K.; Deklerck, J.; Prinzie, P.; De Cock, P.; Feys, H.
2010-01-01
Aim: This study investigated the reliability and validity of the Barry-Albright Dystonia Scale (BADS), the Burke-Fahn-Marsden Movement Scale (BFMMS), and the Unified Dystonia Rating Scale (UDRS) in patients with bilateral dystonic cerebral palsy (CP). Method: Three raters independently scored videotapes of 10 patients (five males, five females;…
Integrated Research in Grade 12.
ERIC Educational Resources Information Center
Milosevich, Mike
1995-01-01
Describes a new approach to research projects based on an interdisciplinary global education model. Students integrate their learning from several courses in a unified research essay. Discusses the benefits of this approach and summarizes the research project for an environmental theme. (LZ)
Predicting crystal growth via a unified kinetic three-dimensional partition model
NASA Astrophysics Data System (ADS)
Anderson, Michael W.; Gebbie-Rayet, James T.; Hill, Adam R.; Farida, Nani; Attfield, Martin P.; Cubillas, Pablo; Blatov, Vladislav A.; Proserpio, Davide M.; Akporiaye, Duncan; Arstad, Bjørnar; Gale, Julian D.
2017-04-01
Understanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into ‘natural tiles’ or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal-organic frameworks, calcite, urea and L-cystine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunta, G.; Belouettar, S.
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less
Mean Comparison: Manifest Variable versus Latent Variable
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Bentler, Peter M.
2006-01-01
An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents' preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables…
Mathematics: PROJECT DESIGN. Educational Needs, Fresno, 1968, Number 12.
ERIC Educational Resources Information Center
Smart, James R.
This report examines and summarizes the needs in mathematics of the Fresno City school system. The study is one in a series of needs assessment reports for PROJECT DESIGN, an ESEA Title III project administered by the Fresno City Unified School District. Theoretical concepts, rather than computational drill, would be emphasized in the proposed…
MICHIGAN SCIENCE CURRICULUM COMMITTEE JUNIOR HIGH SCHOOL PROJECT. (TITLE SUPPLIED).
ERIC Educational Resources Information Center
VAN DEVENTER, W.C.
REPORTED ARE THE RESULTS OF A CURRICULUM RESEARCH PROJECT OF THE MICHIGAN SCIENCE CURRICULUM COMMITTEE JUNIOR HIGH SCHOOL PROJECT FOR USE IN TEACHING JUNIOR HIGH SCHOOL UNIFIED SCIENCE. THE COMMITTEE USED PREVIOUS RESEARCH DATA, PARTICULARLY IN THE AREA OF INSTRUCTION AND INQUIRY TRAINING, TO DEVELOP 13 UNITS INCLUDING 55 OPEN-ENDED LABORATORY…
Experimental test of single-system steering and application to quantum communication
NASA Astrophysics Data System (ADS)
Liu, Zhao-Di; Sun, Yong-Nan; Cheng, Ze-Di; Xu, Xiao-Ye; Zhou, Zong-Quan; Chen, Geng; Li, Chuan-Feng; Guo, Guang-Can
2017-02-01
Einstein-Podolsky-Rosen (EPR) steering describes the ability to steer remotely quantum states of an entangled pair by measuring locally one of its particles. Here we report on an experimental demonstration of single-system steering. The application to quantum communication is also investigated. Single-system steering refers to steering of a single d -dimensional quantum system that can be used in a unifying picture to certify the reliability of tasks employed in both quantum communication and quantum computation. In our experiment, high-dimensional quantum states are implemented by encoding polarization and orbital angular momentum of photons with dimensionality of up to 12.
A Unified Approach to the Synthesis of Fully Testable Sequential Machines
1989-10-01
N A Unified Approach to the Synthesis of Fully Testable Sequential Machines Srinivas Devadas and Kurt Keutzer Abstract • In this paper we attempt to...research was supported in part by the Defense Advanced Research Projects Agency under contract N00014-87-K-0825. Author Information Devadas : Department...Fully Testable Sequential Maine(S P Sritiivas Devadas Departinent of Electrical Engineerinig anid Comivi Sciec Massachusetts Institute of Technology
Unified Engineering Software System
NASA Technical Reports Server (NTRS)
Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.
1989-01-01
Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.
Paim, Jairnilson Silva
2013-10-01
This article, celebrating the 25th anniversary of Brazil's 1988 Constitution, aims to review the country's social policy development, discuss political projects, and analyze challenges for the sustainability of the Unified National Health System (SUS). Based on public policymaking studies, the article revisits the origins of liberal social policy, focused on social assistance, and analyzes the hegemony of U.S. policies targeting poverty and their repercussions for universal policies. After identifying the formulation of political projects in Brazil's democratic transition, it discusses their implications during the various Administrations since 1988, along with the difficulties faced by the National Health System. The article concludes that the political forces occupying government in the last two decades have failed to present a project for the country on the same level as those who drafted the Citizen Constitution.
Integrated design optimization research and development in an industrial environment
NASA Astrophysics Data System (ADS)
Kumar, V.; German, Marjorie D.; Lee, S.-J.
1989-04-01
An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.
Integrated design optimization research and development in an industrial environment
NASA Technical Reports Server (NTRS)
Kumar, V.; German, Marjorie D.; Lee, S.-J.
1989-01-01
An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.
NASA Astrophysics Data System (ADS)
Wu, Wenyuan
This dissertation evaluates and compares social and environmental records of Chinese national oil companies (NOCs) operating in Latin America from the early 21st century to 2015. Five countries representing the entirety of Chinese NOCs' physical presence are selected: Peru, Ecuador, Argentina, Colombia, and Venezuela. The project discovers that Chinese NOCs demonstrate the highest level of social responsibility in Peru and the lowest in Venezuela, with the other three countries constituting intermediate observations. The differences in social responsibility records are then causally traced to variances in the host countries' regulatory frameworks and civil society capacities. Chinese NOCs are found to be most willing to commit to social responsibility under an enabling regulatory environment in which the host government facilitates competitiveness and decentralization in its hydrocarbons industry while upholding inclusive policies regarding its civil society. Moreover, these NOCs are most likely to follow through on their CSR commitments when faced with a unified and collaborative civil society. These major findings yield important policy lessons for both the host government and the civil society in developing countries with abundance in energy resources.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... Approval of Revision of Five California Clean Air Act Title V Operating Permits Programs AGENCY... the Operating Permits (Title V) programs of the Monterey Bay Unified Air Pollution Control District... been previously subject to Title V for other reasons to obtain a Title V permit. See ``Prevention of...
ERIC Educational Resources Information Center
Hwang, Heungsun; Montreal, Hec; Dillon, William R.; Takane, Yoshio
2006-01-01
An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents' preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables…
ERIC Educational Resources Information Center
Terrón-López, María-José; García-García, María-José; Velasco-Quintana, Paloma-Julia; Ocampo, Jared; Vigil Montaño, María-Reyes; Gaya-López, María-Cruz
2017-01-01
The School of Engineering at Universidad Europea de Madrid (UEM) implemented, starting in the 2012-2013 period, a unified academic model based on project-based learning as the methodology used throughout the entire School. This model expects that every year, in each grade, all the students should participate in a capstone project integrating the…
ERIC Educational Resources Information Center
McDonald, Trevor; Thornley, Christina; Staley, Rosemary; Moore, David W.
2009-01-01
This Research Connections column describes the background to and the research base for the San Diego Unified School Districts' federally funded Striving Readers Project. The curriculum for the project was developed out of a longitudinal study into the literacy experiences of secondary students in New Zealand and from exploratory work in San Diego…
Overview of the American Indian Archeology in the Middle School Project.
ERIC Educational Resources Information Center
McNett, Charles W., Jr.
A project to create a series of archaeology teaching modules and resource guides on American Indians for junior high school social studies is described. University personnel in charge of the project participated with junior high school teachers in the planning and development of the modules and guides. The unifying theme is the diversity of…
Three-dimensional measurement of yarn hairiness via multiperspective images
NASA Astrophysics Data System (ADS)
Wang, Lei; Xu, Bugao; Gao, Weidong
2018-02-01
Yarn hairiness is one of the essential parameters for assessing yarn quality. Most of the currently used yarn measurement systems are based on two-dimensional (2-D) photoelectric measurements, which are likely to underestimate levels of yarn hairiness because hairy fibers on a yarn surface are often projected or occluded in these 2-D systems. A three-dimensional (3-D) test method for hairiness measurement using a multiperspective imaging system is presented. The system was developed to reconstruct a 3-D yarn model for tracing the actual length of hairy fibers on a yarn surface. Five views of a yarn from different perspectives were created by two angled mirrors and simultaneously captured in one panoramic picture by a camera. A 3-D model was built by extracting the yarn silhouettes in the five views and transferring the silhouettes into a common coordinate system. From the 3-D model, curved hair fibers were traced spatially so that projection and occlusion occurring in the current systems could be avoided. In the experiment, the proposed method was compared with two commercial instruments, i.e., the Uster Tester and Zweigle Tester. It is demonstrated that the length distribution of hairy fibers measured from the 3-D model showed an exponential growth when the fiber length is sorted from shortest to longest. The hairiness measurements, such as H-value, measured by the multiperspective method were highly consistent with those of Uster Tester (r=0.992) but had larger values than those obtained from Uster Tester and Zweigle Tester, proving that the proposed method corrected underestimated hairiness measurements in the commercial systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten
2012-05-01
Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less
Boisseau, Christina L.; Farchione, Todd J.; Fairholme, Christopher P.; Ellard, Kristen K.; Barlow, David H.
2013-01-01
A detailed description of treatment utilizing the Unified Protocol (UP), a transdiagnostic emotion-focused cognitive-behavioral treatment, is presented using a clinical case example treated during the most current phase of an ongoing randomized controlled trial of the UP. The implementation of the UP in its current, modular version is illustrated. A working case conceptualization is presented from the perspective of the UP drawing from theory and research that underlies current transdiagnostic approaches to treatment and consistent with recent dimensional classification proposals (Brown & Barlow, in press). Treatment is illustrated module-by-module describing how the principles of the UP were applied in the presented case. PMID:23997572
NASA Astrophysics Data System (ADS)
Sparks, J. R.; Palmer, T. C.; Siegel, A. P.
2014-12-01
In recent years Americans have warmed to the idea of installing solar panels to their homes and businesses. These panels help reduce the cost of receiving energy from power plants that lose a lot of energy in transportation. These power plants provide energy by burning gas or coal producing emissions that add to the growing problem of pollution and global warming. In 2010 the Castro Valley Unified School District decided to add solar panels to Canyon Middle School, Castro Valley High School, and Castro Valley Adult School. We researched whether the solar panels reached their projected amount of energy (74%) for the sites where the panels were placed. The solar panels at all three sites were found to exceed these projected amounts. The solar panels at each site produce a little over 74% for the each school.
Multidimensionally encoded magnetic resonance imaging.
Lin, Fa-Hsuan
2013-07-01
Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.
2011-01-01
Staff, the Unified Combatant Commands, the Navy, the Marine Corps, the defense agencies, and the defense Intelligence Community under Contract W74V8H...Unified Combatant Commands, the Navy, the Marine Corps, the defense agencies, and the defense Intel- ligence Community . For more information on the...the Cuban missile crisis of October 1962. The newest active air- craft carrier, the Nimitz-class USS George H. W. Bush (CVN 77), was 1 CVN is an
Wall Interference in Two-Dimensional Wind Tunnels
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.
1986-01-01
Viscosity and tunnel-wall constraints introduced via boundary conditions. TWINTN4 computer program developed to implement method of posttest assessment of wall interference in two-dimensional wind tunnels. Offers two methods for combining sidewall boundary-layer effects with upper and lower wall interference. In sequential procedure, Sewall method used to define flow free of sidewall effects, then assessed for upper and lower wall effects. In unified procedure, wind-tunnel flow equations altered to incorporate effects from all four walls at once. Program written in FORTRAN IV for batch execution.
1955-01-01
Congress approved-Mfarch 3, 1915, for the supervision and dlirction of the scientific study of tho problems of flight (U. S. Code, -title 50, see. 15 1...streamldines. With this iiiforia- portance, compared to ’,)ose associated with-the curs at are of tion. %c tire enabled to construt t the flo%% field... articles at anld C) and this situailtion would preclude the-pos- -Characteristics theory.-’I’lIiucomnf~xtibihit3 equiat ions relat- sibilit(i of Prandt l-M
Phases, phase equilibria, and phase rules in low-dimensional systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, T., E-mail: timfrol@berkeley.edu; Mishin, Y., E-mail: ymishin@gmu.edu
2015-07-28
We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phasemore » rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.« less
Mainstreaming the Sustainably Designed School.
ERIC Educational Resources Information Center
Weintraub, Deborah; Pierce, Tony
This paper documents a school building energy efficiency and sustainability project involving the Newport Mesa Unified School District, Southern California Edison's Design and Engineering Services (D&ES), and the architectural firm Perkins and Will. The paper first examines the project design objectives and then discusses each of the project…
NASA Astrophysics Data System (ADS)
Yu, Yi-Cong; Guan, Xi-Wen
2017-06-01
We present a unified derivation of the pressure equation of states, thermodynamics and scaling functions for the one-dimensional (1D) strongly attractive Fermi gases with SU(w) symmetry. These physical quantities provide a rigorous understanding on a universality class of quantum criticality characterized by the critical exponents z = 2 and correlation length exponent ν = 1/2. Such a universality class of quantum criticality can occur when the Fermi sea of one branch of charge bound states starts to fill or becomes gapped at zero temperature. The quantum critical cone can be determined by the double peaks in specific heat, which serve to mark two crossover temperatures fanning out from the critical point. Our method opens to further study on quantum phases and phase transitions in strongly interacting fermions with large SU(w) and non-SU(w) symmetries in one dimension. Supported by the National Natural Science Foundation of China under Grant No 11374331 and the key NSFC under Grant No 11534014. XWG has been partially supported by the Australian Research Council.
NASA Astrophysics Data System (ADS)
de Albuquerque, Douglas F.; Fittipaldi, I. P.
1994-05-01
A unified effective-field renormalization-group framework (EFRG) for both quenched bond- and site-diluted Ising models is herein developed by extending recent works. The method, as in the previous works, follows up the same strategy of the mean-field renormalization-group scheme (MFRG), and is achieved by introducing an alternative way for constructing classical effective-field equations of state, based on rigorous Ising spin identities. The concentration dependence of the critical temperature, Tc(p), and the critical concentrations of magnetic atoms, pc, at which the transition temperature goes to zero, are evaluated for several two- and three-dimensional lattice structures. The obtained values of Tc and pc and the resulting phase diagrams for both bond and site cases are much more accurate than those estimated by the standard MFRG approach. Although preserving the same level of simplicity as the MFRG, it is shown that the present EFRG method, even by considering its simplest size-cluster version, provides results that correctly distinguishes those lattices that have the same coordination number, but differ in dimensionality or geometry.
Students' and Teachers' Perceptions: Initial Achievements of a Project-Based Engineering School
ERIC Educational Resources Information Center
Terrón-López, María-José; Velasco-Quintana, Paloma-Julia; García-García, María-José; Ocampo, Jared R.
2017-01-01
A unified academic model based on the project-based learning (PBL) methodology was implemented, in the 2012-2013 period, in the School of Engineering at Universidad Europea de Madrid. The purpose of this paper is to explore whether teachers and students participating in the capstone projects feel that the objectives for which this methodology was…
ERIC Educational Resources Information Center
Haxton, Clarisse L.; Chambers, Jay G.; Manship, Karen; Cruz, Lisa; O'Neil, Caitlin
2012-01-01
As part of the evaluation of the Strategic School Funding for Results (SSFR) project (called Budgeting for Student Success, or BSA, in Los Angeles Unified School District), the American Institutes for Research (AIR) conducted surveys of principals, teachers, and members of School Site Councils (SSCs) to gather information on their attitudes and…
NASA Technical Reports Server (NTRS)
Fromm, Michael; Pitts, Michael; Alfred, Jerome
2000-01-01
This report summarizes the project team's activity and accomplishments during the period 12 February, 1999 - 12 February, 2000. The primary objective of this project was to create and test a generic algorithm for detecting polar stratospheric clouds (PSC), an algorithm that would permit creation of a unified, long term PSC database from a variety of solar occultation instruments that measure aerosol extinction near 1000 nm The second objective was to make a database of PSC observations and certain relevant related datasets. In this report we describe the algorithm, the data we are making available, and user access options. The remainder of this document provides the details of the algorithm and the database offering.
Three-dimensional organization of dermal fibroblasts by macromass culture.
Deshpande, Manisha
2008-01-01
The three-dimensional organization of cells by high-cell-seeding-density culture, termed 'macromass culture', is described. By macromass culture, dermal fibroblasts can be made to organize themselves into a unified three-dimensional form without the aid of a scaffold, and macroscopic constructs, named macromasses, can be made wholly from cells. The sole factor causing three-dimensional organization is culture of cells at high cell seeding density per unit area. No scaffold or extraneous matrix is used for the generation of macromasses; they are of completely cellular origin. No other agents or external influences such as tissue-inducing chemicals, tissue-inducing growth factors, substratum with special properties, rotational culture, centrifugation etc. are employed for macromass formation, and all seeded cells become part of the cohesive construct. These three-dimensional constructs have the potential for use as in vitro tissue analogues, and a possible application for in vitro cytotoxicity testing is demonstrated.
It Works: Project R-3, San Jose, California.
ERIC Educational Resources Information Center
American Institutes for Research in the Behavioral Sciences, Palo Alto, CA.
A project was designed by the San Jose Unified School District and the education division of the Lockheed Missiles and Space Company to treat learning problems experienced by eighth and ninth grade students with underdeveloped reading and mathematics skills. The students were largely Mexican American and were from predominately disadvantaged…
Multihandicapped Blind. Final Project Report.
ERIC Educational Resources Information Center
Jones, Lloyd
The final report of the Garden Grove unified school district project for 1969 through 1972 (funded through Title III) involving six multiply handicapped, legally blind children, 7- to 10-years-old, who were previously excluded from special education (SE) classes is presented. Described as the main procedural objective is development of a…
Developing Thoughtful Practitioners through School/University Collaboration.
ERIC Educational Resources Information Center
Cooper, Mary Gendernalik; Morey, Ann I.
This paper discusses the New Teacher Retention Project, a collaborative partnership between San Diego State University and the San Diego Unified School District, California. The purposes of this project are to develop a practical model of support and assistance to new teachers, particularly those working with students from culturally diverse…
Bilingual Program Application for Continuation Proposal: Compton Unified School District.
ERIC Educational Resources Information Center
Compton City Schools, CA.
This document contains the continuation proposal for the fourth grade Compton bilingual education program. A review of the third year is included with details on process evaluation, project personnel and duties, new vocabulary developed by the project for lexical references, and inservice training of teachers. Information concerning the proposed…
Group sparse multiview patch alignment framework with view consistency for image classification.
Gui, Jie; Tao, Dacheng; Sun, Zhenan; Luo, Yong; You, Xinge; Tang, Yuan Yan
2014-07-01
No single feature can satisfactorily characterize the semantic concepts of an image. Multiview learning aims to unify different kinds of features to produce a consensual and efficient representation. This paper redefines part optimization in the patch alignment framework (PAF) and develops a group sparse multiview patch alignment framework (GSM-PAF). The new part optimization considers not only the complementary properties of different views, but also view consistency. In particular, view consistency models the correlations between all possible combinations of any two kinds of view. In contrast to conventional dimensionality reduction algorithms that perform feature extraction and feature selection independently, GSM-PAF enjoys joint feature extraction and feature selection by exploiting l(2,1)-norm on the projection matrix to achieve row sparsity, which leads to the simultaneous selection of relevant features and learning transformation, and thus makes the algorithm more discriminative. Experiments on two real-world image data sets demonstrate the effectiveness of GSM-PAF for image classification.
Unsupervised Deep Hashing With Pseudo Labels for Scalable Image Retrieval.
Zhang, Haofeng; Liu, Li; Long, Yang; Shao, Ling
2018-04-01
In order to achieve efficient similarity searching, hash functions are designed to encode images into low-dimensional binary codes with the constraint that similar features will have a short distance in the projected Hamming space. Recently, deep learning-based methods have become more popular, and outperform traditional non-deep methods. However, without label information, most state-of-the-art unsupervised deep hashing (DH) algorithms suffer from severe performance degradation for unsupervised scenarios. One of the main reasons is that the ad-hoc encoding process cannot properly capture the visual feature distribution. In this paper, we propose a novel unsupervised framework that has two main contributions: 1) we convert the unsupervised DH model into supervised by discovering pseudo labels; 2) the framework unifies likelihood maximization, mutual information maximization, and quantization error minimization so that the pseudo labels can maximumly preserve the distribution of visual features. Extensive experiments on three popular data sets demonstrate the advantages of the proposed method, which leads to significant performance improvement over the state-of-the-art unsupervised hashing algorithms.
Update of the DTM thermosphere model in the framework of the H2020 project `SWAMI'
NASA Astrophysics Data System (ADS)
Bruinsma, S.; Jackson, D.; Stolle, C.; Negrin, S.
2017-12-01
In the framework of the H2020 project SWAMI (Space Weather Atmosphere Model and Indices), which is expected to start in January 2018, the CIRA thermosphere specification model DTM2013 will be improved through the combination of assimilating more density data to drive down remaining biases and a new high cadence kp geomagnetic index in order to improve storm-time performance. Five more years of GRACE high-resolution densities from 2012-2016, densities from the last year of the GOCE mission, Swarm mean densities, and mean densities from 2010-2017 inferred from the geodetic satellites at about 800 km are available now. The DTM2013 model will be compared with the new density data in order to detect possible systematic errors or other kinds of deficiencies and a first analysis will be presented. Also, a more detailed analysis of model performance under storm conditions will be provided, which will then be the benchmark to quantify model improvement expected with the higher cadence kp indices. In the SWAMI project, the DTM model will be coupled in the 120-160 km altitude region to the Met Office Unified Model in order to create a whole atmosphere model. It can be used for launch operations, re-entry computations, orbit prediction, and aeronomy and space weather studies. The project objectives and time line will be given.
Ethier, Jean-François; Dameron, Olivier; Curcin, Vasa; McGilchrist, Mark M; Verheij, Robert A; Arvanitis, Theodoros N; Taweel, Adel; Delaney, Brendan C; Burgun, Anita
2013-01-01
Biomedical research increasingly relies on the integration of information from multiple heterogeneous data sources. Despite the fact that structural and terminological aspects of interoperability are interdependent and rely on a common set of requirements, current efforts typically address them in isolation. We propose a unified ontology-based knowledge framework to facilitate interoperability between heterogeneous sources, and investigate if using the LexEVS terminology server is a viable implementation method. We developed a framework based on an ontology, the general information model (GIM), to unify structural models and terminologies, together with relevant mapping sets. This allowed a uniform access to these resources within LexEVS to facilitate interoperability by various components and data sources from implementing architectures. Our unified framework has been tested in the context of the EU Framework Program 7 TRANSFoRm project, where it was used to achieve data integration in a retrospective diabetes cohort study. The GIM was successfully instantiated in TRANSFoRm as the clinical data integration model, and necessary mappings were created to support effective information retrieval for software tools in the project. We present a novel, unifying approach to address interoperability challenges in heterogeneous data sources, by representing structural and semantic models in one framework. Systems using this architecture can rely solely on the GIM that abstracts over both the structure and coding. Information models, terminologies and mappings are all stored in LexEVS and can be accessed in a uniform manner (implementing the HL7 CTS2 service functional model). The system is flexible and should reduce the effort needed from data sources personnel for implementing and managing the integration.
Ethier, Jean-François; Dameron, Olivier; Curcin, Vasa; McGilchrist, Mark M; Verheij, Robert A; Arvanitis, Theodoros N; Taweel, Adel; Delaney, Brendan C; Burgun, Anita
2013-01-01
Objective Biomedical research increasingly relies on the integration of information from multiple heterogeneous data sources. Despite the fact that structural and terminological aspects of interoperability are interdependent and rely on a common set of requirements, current efforts typically address them in isolation. We propose a unified ontology-based knowledge framework to facilitate interoperability between heterogeneous sources, and investigate if using the LexEVS terminology server is a viable implementation method. Materials and methods We developed a framework based on an ontology, the general information model (GIM), to unify structural models and terminologies, together with relevant mapping sets. This allowed a uniform access to these resources within LexEVS to facilitate interoperability by various components and data sources from implementing architectures. Results Our unified framework has been tested in the context of the EU Framework Program 7 TRANSFoRm project, where it was used to achieve data integration in a retrospective diabetes cohort study. The GIM was successfully instantiated in TRANSFoRm as the clinical data integration model, and necessary mappings were created to support effective information retrieval for software tools in the project. Conclusions We present a novel, unifying approach to address interoperability challenges in heterogeneous data sources, by representing structural and semantic models in one framework. Systems using this architecture can rely solely on the GIM that abstracts over both the structure and coding. Information models, terminologies and mappings are all stored in LexEVS and can be accessed in a uniform manner (implementing the HL7 CTS2 service functional model). The system is flexible and should reduce the effort needed from data sources personnel for implementing and managing the integration. PMID:23571850
A unified approach to computational drug discovery.
Tseng, Chih-Yuan; Tuszynski, Jack
2015-11-01
It has been reported that a slowdown in the development of new medical therapies is affecting clinical outcomes. The FDA has thus initiated the Critical Path Initiative project investigating better approaches. We review the current strategies in drug discovery and focus on the advantages of the maximum entropy method being introduced in this area. The maximum entropy principle is derived from statistical thermodynamics and has been demonstrated to be an inductive inference tool. We propose a unified method to drug discovery that hinges on robust information processing using entropic inductive inference. Increasingly, applications of maximum entropy in drug discovery employ this unified approach and demonstrate the usefulness of the concept in the area of pharmaceutical sciences. Copyright © 2015. Published by Elsevier Ltd.
Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme
NASA Astrophysics Data System (ADS)
Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping
2018-06-01
The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.
Ortervirales: A new viral order unifying five families of reverse-transcribing viruses.
Krupovic, Mart; Blomberg, Jonas; Coffin, John M; Dasgupta, Indranil; Fan, Hung; Geering, Andrew D; Gifford, Robert; Harrach, Balázs; Hull, Roger; Johnson, Welkin; Kreuze, Jan F; Lindemann, Dirk; Llorens, Carlos; Lockhart, Ben; Mayer, Jens; Muller, Emmanuelle; Olszewski, Neil; Pappu, Hanu R; Pooggin, Mikhail; Richert-Pöggeler, Katja R; Sabanadzovic, Sead; Sanfaçon, Hélène; Schoelz, James E; Seal, Susan; Stavolone, Livia; Stoye, Jonathan P; Teycheney, Pierre-Yves; Tristem, Michael; Koonin, Eugene V; Kuhn, Jens H
2018-04-04
Reverse-transcribing viruses, which synthesize a copy of genomic DNA from an RNA template, are widespread in animals, plants, algae and fungi (1, 2).…. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korogi, Yukunori; Takahashi, Mutsumasa; Mabuchi, Nobuhisa
1994-10-01
To assess the accuracy of three-dimensional, Fourier transform, time-of-flight magnetic resonance (MR) angiography in the detection of intracranial steno-occlusive diseases. One hundred thirty-one patients (62 male and 69 female patients, aged 6-77 years [mean, 53 years 8 months]) underwent MR and conventional angiography for evaluation of possible intracranial vascular disease. A total of 502 arteries were assessed. Eight projections and a collapsed image postprocessed by means of a maximum-intensity projection algorithm were reviewed by five observers in a blinded manner, with conventional angiography as the standard. A total of 32 steno-occlusive lesions were available for review. Receiver operating characteristic analysismore » from the pooled data revealed overall sensitivities of 85% and 88% and specificities of 96% and 97% for the internal carotid artery and the middle cerebral artery, respectively. MR angiography is useful as the primary diagnostic tool for evaluating suspected intracranial steno-occlusive disease. 22 refs., 7 figs., 5 tabs.« less
ERIC Educational Resources Information Center
Los Angeles Unified School District, CA. Div. of Adult and Occupational Education.
This document consists of performance, computational, and communication modules used by the Working Smart workplace literacy project, a project conducted for the hotel and food industry in the Los Angeles area by a public school district and several profit and nonprofit companies. Literacy instruction was merged with job requirements of the…
Requirements for data integration platforms in biomedical research networks: a reference model.
Ganzinger, Matthias; Knaup, Petra
2015-01-01
Biomedical research networks need to integrate research data among their members and with external partners. To support such data sharing activities, an adequate information technology infrastructure is necessary. To facilitate the establishment of such an infrastructure, we developed a reference model for the requirements. The reference model consists of five reference goals and 15 reference requirements. Using the Unified Modeling Language, the goals and requirements are set into relation to each other. In addition, all goals and requirements are described textually in tables. This reference model can be used by research networks as a basis for a resource efficient acquisition of their project specific requirements. Furthermore, a concrete instance of the reference model is described for a research network on liver cancer. The reference model is transferred into a requirements model of the specific network. Based on this concrete requirements model, a service-oriented information technology architecture is derived and also described in this paper.
The Metaplectic Sampling of Quantum Engineering
NASA Astrophysics Data System (ADS)
Schempp, Walter J.
2010-12-01
Due to photonic visualization, quantum physics is not restricted to the microworld. Starting off with synthetic aperture radar, the paper provides a unified approach to coherent atom optics, clinical magnetic resonance tomography and the bacterial protein dynamics of structural microbiology. Its mathematical base is harmonic analysis on the three-dimensional Heisenberg Lie group with associated nilpotent Heisenberg algebra Lie(N).
From anomalies of finite symmetries to heterotic GUTs
NASA Astrophysics Data System (ADS)
Vaudrevange, Patrick K. S.
2017-11-01
We review the role of finite symmetries for particle physics with special emphasis on discrete anomalies and on their possible origin from extra dimensions. Then, we apply our knowledge on finite symmetries to the problematic proton decay operators of various mass-dimensions, focusing on ℤ4R , i.e. a special R-symmetry of order 4. We show that this ℤ4R symmetry can naturally originate from extra dimensions as a discrete remnant of higher-dimensional Lorentz symmetry. Finally, in order to obtain a unified picture from the heterotic string theory we discuss grand unified theories (GUTs) in extra dimensions compactified on ℤ2 × ℤ2 orbifolds and show how proton decay operators can be suppressed in a certain class of orbifolds.
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling
NASA Astrophysics Data System (ADS)
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-07-01
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.
MLeXAI: A Project-Based Application-Oriented Model
ERIC Educational Resources Information Center
Russell, Ingrid; Markov, Zdravko; Neller, Todd; Coleman, Susan
2010-01-01
Our approach to teaching introductory artificial intelligence (AI) unifies its diverse core topics through a theme of machine learning, and emphasizes how AI relates more broadly with computer science. Our work, funded by a grant from the National Science Foundation, involves the development, implementation, and testing of a suite of projects that…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jin; Yi Byongyong; Lasio, Giovanni
Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information frommore » a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.« less
A neural network approach for image reconstruction in electron magnetic resonance tomography.
Durairaj, D Christopher; Krishna, Murali C; Murugesan, Ramachandran
2007-10-01
An object-oriented, artificial neural network (ANN) based, application system for reconstruction of two-dimensional spatial images in electron magnetic resonance (EMR) tomography is presented. The standard back propagation algorithm is utilized to train a three-layer sigmoidal feed-forward, supervised, ANN to perform the image reconstruction. The network learns the relationship between the 'ideal' images that are reconstructed using filtered back projection (FBP) technique and the corresponding projection data (sinograms). The input layer of the network is provided with a training set that contains projection data from various phantoms as well as in vivo objects, acquired from an EMR imager. Twenty five different network configurations are investigated to test the ability of the generalization of the network. The trained ANN then reconstructs two-dimensional temporal spatial images that present the distribution of free radicals in biological systems. Image reconstruction by the trained neural network shows better time complexity than the conventional iterative reconstruction algorithms such as multiplicative algebraic reconstruction technique (MART). The network is further explored for image reconstruction from 'noisy' EMR data and the results show better performance than the FBP method. The network is also tested for its ability to reconstruct from limited-angle EMR data set.
ERIC Educational Resources Information Center
Reese, Susan
2001-01-01
Describes the Visible Human Project of the National Library of Medicine that links the print library of functional-physiological knowledge with the image library of structural-anatomical knowledge into one unified resource. (JOW)
An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1991-01-01
The three dimensional quasi-analytical sensitivity analysis and the ancillary driver programs are developed needed to carry out the studies and perform comparisons. The code is essentially contained in one unified package which includes the following: (1) a three dimensional transonic wing analysis program (ZEBRA); (2) a quasi-analytical portion which determines the matrix elements in the quasi-analytical equations; (3) a method for computing the sensitivity coefficients from the resulting quasi-analytical equations; (4) a package to determine for comparison purposes sensitivity coefficients via the finite difference approach; and (5) a graphics package.
The three constituencies of the state: why the state has lost unifying energy.
King, Desmond; Le Galès, Patrick
2017-11-01
We address resurgent populism by examining structural processes of state transformation in the UK, the US and France. Scholars stress the 'unifying energy of the state', a set of institutions and policies capable of limiting inequalities and defending legal regimes. One characteristic of modern Western statehood were packages of policies designed to integrate social groups and territories in part by ensuring common standards of provision and social citizenship across the nation state. This echoes James Scott's critical analysis of the modernist project of the state (1998). This 'unifying energy' had different origins including nationalist movements, combatting external influence or powers, war, and preparing citizens for the rigours of industrialization. Overcoming class differences and territorial differences (including cultural, social and economic differences) was a major source of mobilization to feed this 'unifying energy of the state' in France, Italy or Spain for instance. Political and cultural identities are related in significant part to respective nation states. We argue that this 'unifying energy' was an essential component of statehood in Europe and in the US. It is now largely lost. We explain why and the significance of its displacement. © London School of Economics and Political Science 2017.
Cluster redshifts in five suspected superclusters
NASA Technical Reports Server (NTRS)
Ciardullo, R.; Ford, H.; Harms, R.
1985-01-01
Redshift surveys for rich superclusters were carried out in five regions of the sky containing surface-density enhancements of Abell clusters. While several superclusters are identified, projection effects dominate each field, and no system contains more than five rich clusters. Two systems are found to be especially interesting. The first, field 0136 10, is shown to contain a superposition of at least four distinct superclusters, with the richest system possessing a small velocity dispersion. The second system, 2206 - 22, though a region of exceedingly high Abell cluster surface density, appears to be a remarkable superposition of 23 rich clusters almost uniformly distributed in redshift space between 0.08 and 0.24. The new redshifts significantly increase the three-dimensional information available for the distance class 5 and 6 Abell clusters and allow the spatial correlation function around rich superclusters to be estimated.
[Life project of residents and institutional approach in nursing homes].
Chanut, Corinne
The life project in a nursing home involves all the players concerned: first of all, the resident, then the caregivers, the families and the institution. This unifying tool, organised around the elderly, helps to develop collective competencies, favours the integration of new residents and reassures families. This article presents a nursing home's experience of setting up a life project. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The formal Darwinism project: a mid-term report.
Grafen, A
2007-07-01
For 8 years I have been pursuing in print an ambitious and at times highly technical programme of work, the 'Formal Darwinism Project', whose essence is to underpin and formalize the fitness optimization ideas used by behavioural ecologists, using a new kind of argument linking the mathematics of motion and the mathematics of optimization. The value of the project is to give stronger support to current practices, and at the same time sharpening theoretical ideas and suggesting principled resolutions of some untidy areas, for example, how to define fitness. The aim is also to unify existing free-standing theoretical structures, such as inclusive fitness theory, Evolutionary Stable Strategy (ESS) theory and bet-hedging theory. The 40-year-old misunderstanding over the meaning of fitness optimization between mathematicians and biologists is explained. Most of the elements required for a general theory have now been implemented, but not together in the same framework, and 'general time' remains to be developed and integrated with the other elements to produce a final unified theory of neo-Darwinian natural selection.
The Unified Medical Language System
Humphreys, Betsy L.; Lindberg, Donald A. B.; Schoolman, Harold M.; Barnett, G. Octo
1998-01-01
In 1986, the National Library of Medicine (NLM) assembled a large multidisciplinary, multisite team to work on the Unified Medical Language System (UMLS), a collaborative research project aimed at reducing fundamental barriers to the application of computers to medicine. Beyond its tangible products, the UMLS Knowledge Sources, and its influence on the field of informatics, the UMLS project is an interesting case study in collaborative research and development. It illustrates the strengths and challenges of substantive collaboration among widely distributed research groups. Over the past decade, advances in computing and communications have minimized the technical difficulties associated with UMLS collaboration and also facilitated the development, dissemination, and use of the UMLS Knowledge Sources. The spread of the World Wide Web has increased the visibility of the information access problems caused by multiple vocabularies and many information sources which are the focus of UMLS work. The time is propitious for building on UMLS accomplishments and making more progress on the informatics research issues first highlighted by the UMLS project more than 10 years ago. PMID:9452981
The Unified Medical Language System: an informatics research collaboration.
Humphreys, B L; Lindberg, D A; Schoolman, H M; Barnett, G O
1998-01-01
In 1986, the National Library of Medicine (NLM) assembled a large multidisciplinary, multisite team to work on the Unified Medical Language System (UMLS), a collaborative research project aimed at reducing fundamental barriers to the application of computers to medicine. Beyond its tangible products, the UMLS Knowledge Sources, and its influence on the field of informatics, the UMLS project is an interesting case study in collaborative research and development. It illustrates the strengths and challenges of substantive collaboration among widely distributed research groups. Over the past decade, advances in computing and communications have minimized the technical difficulties associated with UMLS collaboration and also facilitated the development, dissemination, and use of the UMLS Knowledge Sources. The spread of the World Wide Web has increased the visibility of the information access problems caused by multiple vocabularies and many information sources which are the focus of UMLS work. The time is propitious for building on UMLS accomplishments and making more progress on the informatics research issues first highlighted by the UMLS project more than 10 years ago.
Ran, Shi-Ju
2016-05-01
In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising chain and 2D classical Ising model, showing the remarkable efficiency and accuracy of the AOP.
McConkey, R; Dowling, S; Hassan, D; Menke, S
2013-10-01
Although the promotion of social inclusion through sports has received increased attention with other disadvantaged groups, this is not the case for children and adults with intellectual disability who experience marked social isolation. The study evaluated the outcomes from one sports programme with particular reference to the processes that were perceived to enhance social inclusion. The Youth Unified Sports programme of Special Olympics combines players with intellectual disabilities (called athletes) and those without intellectual disabilities (called partners) of similar skill level in the same sports teams for training and competition. Alongside the development of sporting skills, the programme offers athletes a platform to socialise with peers and to take part in the life of their community. Unified football and basketball teams from five countries--Germany, Hungary, Poland, Serbia and Ukraine--participated. Individual and group interviews were held with athletes, partners, coaches, parents and community leaders: totalling around 40 informants per country. Qualitative data analysis identified four thematic processes that were perceived by informants across all countries and the two sports to facilitate social inclusion of athletes. These were: (1) the personal development of athletes and partners; (2) the creation of inclusive and equal bonds; (3) the promotion of positive perceptions of athletes; and (4) building alliances within local communities. Unified Sports does provide a vehicle for promoting the social inclusion of people with intellectual disabilities that is theoretically credible in terms of social capital scholarship and which contains lessons for advancing social inclusion in other contexts. Nonetheless, certain limitations are identified that require further consideration to enhance athletes' social inclusion in the wider community. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSID.
Social Capital and Stability Operations
2008-03-26
defined as an instantiated set of informal values or norms that permit cooperation between two or more individuals, is the sine qua non of stable... multi -dimensional research, and editorial opinions, relate to the means (resources) by which to accomplish stability operations: unified action...development phase requires weaning indigenous institutions from reliance on external assistance. Fukuyama asserts that this is hard for three reasons
The Ritz - Sublaminate Generalized Unified Formulation approach for piezoelectric composite plates
NASA Astrophysics Data System (ADS)
D'Ottavio, Michele; Dozio, Lorenzo; Vescovini, Riccardo; Polit, Olivier
2018-01-01
This paper extends to composite plates including piezoelectric plies the variable kinematics plate modeling approach called Sublaminate Generalized Unified Formulation (SGUF). Two-dimensional plate equations are obtained upon defining a priori the through-thickness distribution of the displacement field and electric potential. According to SGUF, independent approximations can be adopted for the four components of these generalized displacements: an Equivalent Single Layer (ESL) or Layer-Wise (LW) description over an arbitrary group of plies constituting the composite plate (the sublaminate) and the polynomial order employed in each sublaminate. The solution of the two-dimensional equations is sought in weak form by means of a Ritz method. In this work, boundary functions are used in conjunction with the domain approximation expressed by an orthogonal basis spanned by Legendre polynomials. The proposed computational tool is capable to represent electroded surfaces with equipotentiality conditions. Free-vibration problems as well as static problems involving actuator and sensor configurations are addressed. Two case studies are presented, which demonstrate the high accuracy of the proposed Ritz-SGUF approach. A model assessment is proposed for showcasing to which extent the SGUF approach allows a reduction of the number of unknowns with a controlled impact on the accuracy of the result.
Uniforming information management in Finnish Social Welfare.
Laaksonen, Maarit; Kärki, Jarmo; Ailio, Erja
2012-01-01
This paper describes the phases and methods used in the National project for IT in Social Services in Finland (Tikesos). The main goals of Tikesos were to unify the client information systems in social services, to develop electronic documentation and to produce specifications for nationally organized electronic archive. The method of Enterprise Architecture was largely used in the project.
ERIC Educational Resources Information Center
Salinas, Esther Charlotte
2013-01-01
Using the Gap Analysis problem-solving framework (Clark & Estes, 2008), this project examined collaboration around student achievement at the school site leadership level in the Pasadena Unified School District (PUSD). This project is one of three concurrent studies focused on collaboration around student achievement in the PUSD that include…
ERIC Educational Resources Information Center
Carruthers, Anthony Steven
2013-01-01
Using the Gap Analysis problem-solving framework (Clark & Estes, 2008), this project examined collaboration around student achievement in the Pasadena Unified School District (PUSD) from the teacher perspective. As part of a tri-level study, two other projects examined collaboration around student achievement in PUSD from the perspectives of…
Isayeva, A M; Zibaryov, E V
2015-01-01
The article covers data on major errors in sanitary protection zones specification for civil airports, revealed through sanitary epidemiologic examination. The authors focus attention on necessity to develop unified methodic approach to evaluation of aviation noise effects, when justifying sanitary protection zone of airports and examining sanitary and epidemiologic project documents.
EVALUATION OF E.S.E.A. PROGRAMS AND SERVICES FOR THE EDUCATIONALLY DISADVANTAGED.
ERIC Educational Resources Information Center
DELAVAN, FRANK E.; ENGLAND, MORRISON C.
THE SACRAMENTO CITY UNIFIED SCHOOL DISTRICT DEVELOPED THREE PROJECTS UNDER THE TITLE "PROGRAMS AND SERVICES FOR THE EDUCATIONALLY DEPRIVED" WHICH WERE FUNDED UNDER THE PROVISIONS OF THE ELEMENTARY AND SECONDARY EDUCATION ACT OF 1965 AND THE CALIFORNIA MCATEER ACT OF 1965. IMPLEMENTED DURING THE SPRING SEMESTER, 1966, THESE THREE PROJECTS WERE (1)…
Asymptotics of empirical eigenstructure for high dimensional spiked covariance.
Wang, Weichen; Fan, Jianqing
2017-06-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies.
Asymptotics of empirical eigenstructure for high dimensional spiked covariance
Wang, Weichen
2017-01-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies. PMID:28835726
A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
Nagaoka, Tomoaki; Watanabe, Soichi
2010-01-01
Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.
Michiue, Yuichi; Kimizuka, Noboru; Kanke, Yasushi; Mori, Takao
2012-06-01
The structure of (Ga(2)O(3))(2)(ZnO)(13) has been determined by a single-crystal X-ray diffraction technique. In the monoclinic structure of the space group C2/m with cell parameters a = 19.66 (4), b = 3.2487 (5), c = 27.31 (2) Å, and β = 105.9 (1)°, a unit cell is constructed by combining the halves of the unit cell of Ga(2)O(3)(ZnO)(6) and Ga(2)O(3)(ZnO)(7) in the homologous series Ga(2)O(3)(ZnO)(m). The homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) is derived and a unified description for structures in the series is presented using the (3+1)-dimensional superspace formalism. The phases are treated as compositely modulated structures consisting of two subsystems. One is constructed by metal ions and another is by O ions. In the (3 + 1)-dimensional model, displacive modulations of ions are described by the asymmetric zigzag function with large amplitudes, which was replaced by a combination of the sawtooth function in refinements. Similarities and differences between the two homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) and Ga(2)O(3)(ZnO)(m) are clarified in (3 + 1)-dimensional superspace. The validity of the (3 + 1)-dimensional model is confirmed by the refinements of (Ga(2)O(3))(2)(ZnO)(13), while a few complex phenomena in the real structure are taken into account by modifying the model.
CHAIN-project and installation of the flare monitoring telescopes in developing countries
NASA Astrophysics Data System (ADS)
Ueno, Satoru; Shibata, Kazunari; Kimura, Goichi; Nakatani, Yoshikazu; Kitai, Reizaburo; Nagata, Shin'ichi
2007-12-01
The Flare Monitoring Telescope (FMT) was constructed in 1992 at the Hida Observatory in Japan to investigate the long-term variation of solar activity and explosive events, as a project of the international coordinated observations programme (STEP). The FMT consists of five solar imaging telescopes and one guide telescope. The five telescopes simultaneously observe the full-disk Sun at different wavelengths around H-alpha absorption line or in different modes. Therefore, the FMT can measure the three-dimensional velocity field of moving structures on the full solar disk without the atmospheric seeing effect. The science target of the FMT is to monitor solar flares and erupting filaments continuously all over the solar disk and as many events as possible and to investigate the relationship between such phenomena and space weather. Now we are planning to start a new worldwide project called as ``Continuous H-alpha Imaging Network (CHAIN)-project''. As part of this project, we are examining the possibility of installing telescopes similar to the FMT in developing countries with cooperative help by the United Nations. We have selected Peru as the candidate country where the first oversea FMT will be installed, and are beginning to study the natural environment, the seeing conditions, the proper design of the telescope for Peru and the training and education programme of operating staff, etc.
Romans supergravity from five-dimensional holograms
NASA Astrophysics Data System (ADS)
Chang, Chi-Ming; Fluder, Martin; Lin, Ying-Hsuan; Wang, Yifan
2018-05-01
We study five-dimensional superconformal field theories and their holographic dual, matter-coupled Romans supergravity. On the one hand, some recently derived formulae allow us to extract the central charges from deformations of the supersymmetric five-sphere partition function, whose large N expansion can be computed using matrix model techniques. On the other hand, the conformal and flavor central charges can be extracted from the six-dimensional supergravity action, by carefully analyzing its embedding into type I' string theory. The results match on the two sides of the holographic duality. Our results also provide analytic evidence for the symmetry enhancement in five-dimensional superconformal field theories.
ERIC Educational Resources Information Center
Grimm, C. A.
This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…
Recent Theoretical Studies On Excitation and Recombination
NASA Technical Reports Server (NTRS)
Pradhan, Anil K.
2000-01-01
New advances in the theoretical treatment of atomic processes in plasmas are described. These enable not only an integrated, unified, and self-consistent treatment of important radiative and collisional processes, but also large-scale computation of atomic data with high accuracy. An extension of the R-matrix work, from excitation and photoionization to electron-ion recombination, includes a unified method that subsumes both the radiative and the di-electronic recombination processes in an ab initio manner. The extensive collisional calculations for iron and iron-peak elements under the Iron Project are also discussed.
Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2016-01-01
Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests.
Multidimensional flamelet-generated manifolds for partially premixed combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Phuc-Danh; Vervisch, Luc; Subramanian, Vallinayagam
2010-01-15
Flamelet-generated manifolds have been restricted so far to premixed or diffusion flame archetypes, even though the resulting tables have been applied to nonpremixed and partially premixed flame simulations. By using a projection of the full set of mass conservation species balance equations into a restricted subset of the composition space, unsteady multidimensional flamelet governing equations are derived from first principles, under given hypotheses. During the projection, as in usual one-dimensional flamelets, the tangential strain rate of scalar isosurfaces is expressed in the form of the scalar dissipation rates of the control parameters of the multidimensional flamelet-generated manifold (MFM), which ismore » tested in its five-dimensional form for partially premixed combustion, with two composition space directions and three scalar dissipation rates. It is shown that strain-rate-induced effects can hardly be fully neglected in chemistry tabulation of partially premixed combustion, because of fluxes across iso-equivalence-ratio and iso-progress-of-reaction surfaces. This is illustrated by comparing the 5D flamelet-generated manifold with one-dimensional premixed flame and unsteady strained diffusion flame composition space trajectories. The formal links between the asymptotic behavior of MFM and stratified flame, weakly varying partially premixed front, triple-flame, premixed and nonpremixed edge flames are also evidenced. (author)« less
Development of performance measurement for freight transportation.
DOT National Transportation Integrated Search
2014-09-01
In this project, the researchers built a set of performance measures that are unified, user-oriented, scalable, systematic, effective, and : calculable for intermodal freight management and developed methodologies to calculate and use the measures. :...
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-01-01
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices. PMID:26152705
Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.
Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K
2002-04-01
In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2017-03-01
In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.
NASA Astrophysics Data System (ADS)
Damayanti, Latifah Adelina; Ikhsan, Jaslin
2017-05-01
Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.
Hierarchical brain mapping via a generalized Dirichlet solution for mapping brain manifolds
NASA Astrophysics Data System (ADS)
Joshi, Sarang C.; Miller, Michael I.; Christensen, Gary E.; Banerjee, Ayan; Coogan, Tom; Grenander, Ulf
1995-08-01
In this paper we present a coarse-to-fine approach for the transformation of digital anatomical textbooks from the ideal to the individual that unifies the work on landmark deformations and volume based transformation. The Hierarchical approach is linked to the Biological problem itself, coming out of the various kinds of information which is provided by the anatomists. This information is in the form of points, lines, surfaces and sub-volumes corresponding to 0, 1, 2, and 3 dimensional sub-manifolds respectively. The algorithm is driven by these sub- manifolds. We follow the approach that the highest dimensional transformation is a result from the solution of a sequence of lower dimensional problems driven by successive refinements or partitions of the images into various Biologically meaningful sub-structures.
The high performance parallel algorithm for Unified Gas-Kinetic Scheme
NASA Astrophysics Data System (ADS)
Li, Shiyi; Li, Qibing; Fu, Song; Xu, Jinxiu
2016-11-01
A high performance parallel algorithm for UGKS is developed to simulate three-dimensional flows internal and external on arbitrary grid system. The physical domain and velocity domain are divided into different blocks and distributed according to the two-dimensional Cartesian topology with intra-communicators in physical domain for data exchange and other intra-communicators in velocity domain for sum reduction to moment integrals. Numerical results of three-dimensional cavity flow and flow past a sphere agree well with the results from the existing studies and validate the applicability of the algorithm. The scalability of the algorithm is tested both on small (1-16) and large (729-5832) scale processors. The tested speed-up ratio is near linear ashind thus the efficiency is around 1, which reveals the good scalability of the present algorithm.
A low dimensional dynamical system for the wall layer
NASA Technical Reports Server (NTRS)
Aubry, N.; Keefe, L. R.
1987-01-01
Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.
NASA Technical Reports Server (NTRS)
Ghil, M.
1980-01-01
A unified theoretical approach to both the four-dimensional assimilation of asynoptic data and the initialization problem is attempted. This approach relies on the derivation of certain relationships between geopotential tendencies and tendencies of the horizontal velocity field in primitive-equation models of atmospheric flow. The approach is worked out and analyzed in detail for some simple barotropic models. Certain independent results of numerical experiments for the time-continuous assimilation of real asynoptic meteorological data into a complex, baroclinic weather prediction model are discussed in the context of the present approach. Tentative inferences are drawn for practical assimilation procedures.
Building the Encyclopedia of Life
NASA Astrophysics Data System (ADS)
Mangiafico, P. A.; Patterson, D. J.
2010-04-01
The Encyclopedia of Life (EOL) is a collaborative project that indexes information about species, and makes it freely accessible to anyone. In order to accomplish this, EOL is building collaborative tools and infrastructure to unify the information.
ERIC Educational Resources Information Center
Carr, Dorothy B.; Avance, Lyonel D.
Presented is a sequenced instructional program in physical education which constitutes the third of a three-phase, 4-year project, funded by Title III, for handicapped children, preschool through high school levels, in the Los Angeles Unified School District. Described are the project setting and the following accomplishments: a curriculum guide…
ERIC Educational Resources Information Center
Slaughter, Helen B.; And Others
Although many large districts have centrally organized their Chapter 1 (Education Consolidation and Improvement Act) compensatory programs at the district and project levels, elementary school improvement efforts are strongly tied to local school autonomy and principal leadership. This paper analyzes the Tucson (Arizona) Unified School District's…
ERIC Educational Resources Information Center
Baker, Octave V.
One of seven career education programs chosen for nationwide dissemination by the Department of Health, Education, and Welfare's Joint Dissemination Review Panel (JDRP), Project CERES (Career Education Responsive to Every Student) is being conducted for grades K-6 with planned expansion to grades 7-12. For the years 1972-76, it received funding…
ERIC Educational Resources Information Center
Williams, Georgia
This report summarizes the work undertaken by the Berkeley Unified School District's (BUSD) project to define a collaborative leadership planning/training model to combat school resegregation. In 1972, four years after full desegregation, the BUSD experienced a marked shift in the school population and its distribution. In 1976, the BUSD committed…
Stam, Henderikus J.
2015-01-01
The search for a so-called unified or integrated theory has long served as a goal for some psychologists, even if the search is often implicit. But if the established sciences do not have an explicitly unified set of theories, then why should psychology? After examining this question again I argue that psychology is in fact reasonably unified around its methods and its commitment to functional explanations, an indeterminate functionalism. The question of the place of the neurosciences in this framework is complex. On the one hand, the neuroscientific project will not likely renew and synthesize the disparate arms of psychology. On the other hand, their reformulation of what it means to be human will exert an influence in multiple ways. One way to capture that influence is to conceptualize the brain in terms of a technology that we interact with in a manner that we do not yet fully understand. In this way we maintain both a distance from neuro-reductionism and refrain from committing to an unfettered subjectivity. PMID:26500571
Radiographic anatomy of the foot and ankle—part 4: the metatarsals.
Christman, Robert A
2015-01-01
The normal radiographic anatomy of the foot and ankle, aside from my previous work, has been addressed only superficially or sparingly in the medical literature. This project correlates the detailed radiographic anatomy of the entire adult foot and ankle (two-dimensional) to osteology (three-dimensional). Each bone's position was determined after meticulous examination and correlation to an articulated skeleton relative to the image receptor and direction of the x-ray beam, with correlation to the radiograph for confirmation. Images of each foot and distal leg bone ("front" and "back" perspectives) are presented alongside a corresponding radiographic image for comparison. The normal gross and radiographic anatomy is correlated and described for each radiographic positioning technique. Foundational knowledge is provided that future researchers can use as a baseline ("normal") and that students and practitioners can use for comparison when interpreting radiographs and distinguishing abnormal findings. The results of the original project, owing to its broad scope, have been divided into five parts: the lower leg, the greater tarsus, the lesser tarsus, the metatarsals (the focus of this article), and the phalanges.
Radiographic anatomy of the foot and ankle-part 5. The phalanges.
Christman, Robert A
2015-03-01
The normal radiographic anatomy of the foot and ankle, aside from my previous work, has been addressed only superficially or sparingly in the medical literature. This project correlates the detailed radiographic anatomy of the entire adult foot and ankle (two-dimensional) to osteology (three-dimensional). Each bone's position was determined after meticulous examination and correlation to an articulated skeleton relative to the image receptor and direction of the x-ray beam, with correlation to the radiograph for confirmation. Images of each foot and distal leg bone ("front" and "back" perspectives) are presented alongside a corresponding radiographic image for comparison. The normal gross and radiographic anatomy is correlated and described for each radiographic positioning technique. Foundational knowledge is provided that future researchers can use as a baseline ("normal") and that students and practitioners can use for comparison when interpreting radiographs and distinguishing abnormal findings. The results of the original project, owing to its broad scope, have been divided into five parts: the lower leg, the greater tarsus, the lesser tarsus, the metatarsals, and the phalanges (the focus of this article).
Radiographic anatomy of the foot and ankle-part 2: the greater tarsus.
Christman, Robert A
2014-01-01
Normal radiographic anatomy of the foot and ankle, aside from my previous work, has been addressed only superficially or sparingly in the medical literature. This project correlates detailed radiographic anatomy of the entire adult foot and ankle (two-dimensional) to osteology (three-dimensional). Each bone's position was determined after meticulous examination and correlation to an articulated skeleton relative to the image receptor and direction of the x-ray beam, with correlation to the radiograph for confirmation. Images of each foot and distal leg bone ("front" and "back" perspectives) are presented alongside a corresponding radiographic image for comparison. The normal gross and radiographic anatomy is correlated and described for each radiographic positioning technique. Foundational knowledge is provided that future researchers can use as a baseline ("normal") and that students and practitioners can use for comparison when interpreting radiographs and distinguishing abnormal findings. The results of the original project, owing to its broad scope, have been divided into five parts: the lower leg, the greater tarsus (the focus of this article), the lesser tarsus, the metatarsals, and the phalanges.
Scientific Activities Pursuant to the Provisions of AFOSR Grant 79-0018.
1984-01-01
controllability implies stabilizability n the case of autono- mous finite dimensional linear systems , we are not surprised to find control ...Current Status of the Control Theory of Single Space Dim- ension Hyperbolicr Systems " was presented at the NASA JPL Symposium on Cbntrol and Stabilization ...theory of hyperbolic systems , including controllability , stabilization , control canonical form theory, etc. To allow a unified and not
NASA Astrophysics Data System (ADS)
Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen
2015-04-01
This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive, nevertheless, the present GKUAs for kinetic model Boltzmann equations in conjunction with current available high-performance parallel computer power can provide a vital engineering tool for analyzing rarefied gas flows covering the whole range of flow regimes in aerospace engineering applications.
Glazoff, Michael V.; Gering, Kevin L.; Garnier, John E.; Rashkeev, Sergey N.; Pyt'ev, Yuri Petrovich
2016-05-17
Embodiments discussed herein in the form of methods, systems, and computer-readable media deal with the application of advanced "projectional" morphological algorithms for solving a broad range of problems. In a method of performing projectional morphological analysis, an N-dimensional input signal is supplied. At least one N-dimensional form indicative of at least one feature in the N-dimensional input signal is identified. The N-dimensional input signal is filtered relative to the at least one N-dimensional form and an N-dimensional output signal is generated indicating results of the filtering at least as differences in the N-dimensional input signal relative to the at least one N-dimensional form.
Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan
2016-02-01
A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.
NASA Taxonomy 2.0 Project Overview
NASA Technical Reports Server (NTRS)
Dutra, Jayne; Busch, Joseph
2004-01-01
This viewgraph presentation reviews the project to develop a Taxonomy for NASA. The benefits of this project are: Make it easy for various audiences to find relevant information from NASA programs quickly, specifically (1) Provide easy access for NASA Web resources (2) Information integration for unified queries and management reporting ve search results targeted to user interests the ability to move content through the enterprise to where it is needed most (3) Facilitate Records Management and Retention Requirements. In addition the project will assist NASA in complying with E-Government Act of 2002 and prepare NASA to participate in federal projects.
Enhancements to and Applications with the "Unified" Long-Term PSC Database
NASA Technical Reports Server (NTRS)
Fromm, Michael; Alfred, Jerome
2004-01-01
This report summaries the project team's activity during the period 1 January - 31 March 2004. It consists of a project plan, which was completed during this period and an indication of the completion status of each phase of the project. The intention of the investigative team is to closely follow the statement of work documented in our proposal. For this reason, the proposal may be referenced in this and upcoming status reports. This project got underway in this quarter. Our activity was to formulate a project plan and to engage in planning meetings with collaborators.
EarthServer - an FP7 project to enable the web delivery and analysis of 3D/4D models
NASA Astrophysics Data System (ADS)
Laxton, John; Sen, Marcus; Passmore, James
2013-04-01
EarthServer aims at open access and ad-hoc analytics on big Earth Science data, based on the OGC geoservice standards Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS). The WCS model defines "coverages" as a unifying paradigm for multi-dimensional raster data, point clouds, meshes, etc., thereby addressing a wide range of Earth Science data including 3D/4D models. WCPS allows declarative SQL-style queries on coverages. The project is developing a pilot implementing these standards, and will also investigate the use of GeoSciML to describe coverages. Integration of WCPS with XQuery will in turn allow coverages to be queried in combination with their metadata and GeoSciML description. The unified service will support navigation, extraction, aggregation, and ad-hoc analysis on coverage data from SQL. Clients will range from mobile devices to high-end immersive virtual reality, and will enable 3D model visualisation using web browser technology coupled with developing web standards. EarthServer is establishing open-source client and server technology intended to be scalable to Petabyte/Exabyte volumes, based on distributed processing, supercomputing, and cloud virtualization. Implementation will be based on the existing rasdaman server technology developed. Services using rasdaman technology are being installed serving the atmospheric, oceanographic, geological, cryospheric, planetary and general earth observation communities. The geology service (http://earthserver.bgs.ac.uk/) is being provided by BGS and at present includes satellite imagery, superficial thickness data, onshore DTMs and 3D models for the Glasgow area. It is intended to extend the data sets available to include 3D voxel models. Use of the WCPS standard allows queries to be constructed against single or multiple coverages. For example on a single coverage data for a particular area can be selected or data with a particular range of pixel values. Queries on multiple surfaces can be constructed to calculate, for example, the thickness between two surfaces in a 3D model or the depth from ground surface to the top of a particular geologic unit. In the first version of the service a simple interface showing some example queries has been implemented in order to show the potential of the technologies. The project aims to develop the services available in light of user feedback, both in terms of the data available, the functionality and the interface. User feedback on the services guides the software and standards development aspects of the project, leading to enhanced versions of the software which will be implemented in upgraded versions of the services during the lifetime of the project.
Concept of Draft International Standard for a Unified Approach to Space Program Quality Assurance
NASA Astrophysics Data System (ADS)
Stryzhak, Y.; Vasilina, V.; Kurbatov, V.
2002-01-01
For want of the unified approach to guaranteed space project and product quality assurance, implementation of many international space programs has become a challenge. Globalization of aerospace industry and participation of various international ventures with diverse quality assurance requirements in big international space programs requires for urgent generation of unified international standards related to this field. To ensure successful fulfillment of space missions, aerospace companies should design and process reliable and safe products with properties complying or bettering User's (or Customer's) requirements. Quality of the products designed or processed by subcontractors (or other suppliers) should also be in compliance with the main user (customer)'s requirements. Implementation of this involved set of unified requirements will be made possible by creating and approving a system (series) of international standards under a generic title Space Product Quality Assurance based on a system consensus principle. Conceptual features of the baseline standard in this system (series) should comprise: - Procedures for ISO 9000, CEN and ECSS requirements adaptation and introduction into space product creation, design, manufacture, testing and operation; - Procedures for quality assurance at initial (design) phases of space programs, with a decision on the end product made based on the principle of independence; - Procedures to arrange incoming inspection of products delivered by subcontractors (including testing, audit of supplier's procedures, review of supplier's documentation), and space product certification; - Procedures to identify materials and primary products applied; - Procedures for quality system audit at the component part, primary product and materials supplier facilities; - Unified procedures to form a list of basic performances to be under configuration management; - Unified procedures to form a list of critical space product components, and unified procedures to define risks related to the specific component application and evaluate safety for the entire program implementation. In the eyes of the authors, those features together with a number of other conceptual proposals should constitute a unified standard-technical basis for implementing international space programs.
García-López, Pablo; García-Marín, Virginia; Freire, Miguel
2010-01-01
Dendritic spines receive the majority of excitatory connections in the central nervous system, and, thus, they are key structures in the regulation of neural activity. Hence, the cellular and molecular mechanisms underlying their generation and plasticity, both during development and in adulthood, are a matter of fundamental and practical interest. Indeed, a better understanding of these mechanisms should provide clues to the development of novel clinical therapies. Here, we present original results obtained from high-quality images of Cajal's histological preparations, stored at the Cajal Museum (Instituto Cajal, CSIC), obtained using extended focus imaging, three-dimensional reconstruction, and rendering. Based on the data available in the literature regarding the formation of dendritic spines during development and our results, we propose a unifying model for dendritic spine development. PMID:21584262
Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmel, R.; Malladi, R.; Sochen, N.
A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as amore » surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.« less
Spectral properties near the Mott transition in the two-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Kohno, Masanori
2013-03-01
Single-particle excitations near the Mott transition in the two-dimensional (2D) Hubbard model are investigated by using cluster perturbation theory. The Mott transition is characterized by the loss of the spectral weight from the dispersing mode that leads continuously to the spin-wave excitation of the Mott insulator. The origins of the dominant modes of the 2D Hubbard model near the Mott transition can be traced back to those of the one-dimensional Hubbard model. Various anomalous spectral features observed in cuprate high-temperature superconductors, such as the pseudogap, Fermi arc, flat band, doping-induced states, hole pockets, and spinon-like and holon-like branches, as well as giant kink and waterfall in the dispersion relation, are explained in a unified manner as properties near the Mott transition in a 2D system.
Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.
Nagaoka, Tomoaki; Watanabe, Soichi
2011-01-01
Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.
The Unified Database for BM@N experiment data handling
NASA Astrophysics Data System (ADS)
Gertsenberger, Konstantin; Rogachevsky, Oleg
2018-04-01
The article describes the developed Unified Database designed as a comprehensive relational data storage for the BM@N experiment at the Joint Institute for Nuclear Research in Dubna. The BM@N experiment, which is one of the main elements of the first stage of the NICA project, is a fixed target experiment at extracted Nuclotron beams of the Laboratory of High Energy Physics (LHEP JINR). The structure and purposes of the BM@N setup are briefly presented. The article considers the scheme of the Unified Database, its attributes and implemented features in detail. The use of the developed BM@N database provides correct multi-user access to actual information of the experiment for data processing. It stores information on the experiment runs, detectors and their geometries, different configuration, calibration and algorithm parameters used in offline data processing. An important part of any database - user interfaces are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bena, Iosif; Kraus, Per; Warner, Nicholas P.
We construct the most generic three-charge, three-dipole-charge, BPS black-ring solutions in a Taub-NUT background. These solutions depend on seven charges and six moduli, and interpolate between a four-dimensional black hole and a five-dimensional black ring. They are also instrumental in determining the correct microscopic description of the five-dimensional BPS black rings.
ERIC Educational Resources Information Center
Roderer, Nancy K.
1993-01-01
Describes five programs that have been significant to the evolution of biomedical communications in health sciences libraries over the last twenty years: the National Network of Libraries of Medicine (NNLM); Integrated Advanced Information Management Systems (IAIMS); National Research and Education Network (NREN); Unified Medical Language System…
Curricular Trends and Practices in the High School: A Second Look.
ERIC Educational Resources Information Center
Tubbs, Mary P.; Beane, James A.
1981-01-01
In this 1979 replication of a 1974 survey, 234 high school principals provided information on perceived influences on curriculum, groups involved in curricular decision making, and use of 20 curricular arrangements and offerings, such as departmentalization, independent study, competencies, moral education, and unified studies. Five-year trends…
77 FR 20881 - Unified Carrier Registration Plan Board of Directors; Request for Nominations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... Carrier Industry to the Board of Directors. SUMMARY: FMCSA solicits nominations and applications for... persons to serve as representatives of the motor carrier industry. The Agency will appoint five members from the motor carrier industry. The UCR Plan is responsible for the administration of the UCR...
Unified phenology model with Bayesian calibration for several European species in Belgium
NASA Astrophysics Data System (ADS)
Fu, Y. S. H.; Demarée, G.; Hamdi, R.; Deckmyn, A.; Deckmyn, G.; Janssens, I. A.
2009-04-01
Plant phenology is a good bio-indicator for climate change, and this has brought a significant increase of interest. Many kinds of phenology models have been developed to analyze and predict the phenological response to climate change, and those models have been summarized into one kind of unified model, which could be applied to different species and environments. In our study, we selected seven European woody plant species (Betula verrucosa, Quercus robur pedunculata, Fagus sylvatica, Fraxinus excelsior, Symphoricarpus racemosus, Aesculus hippocastanum, Robinia pseudoacacia) occurring in five sites distributed across Belgium. For those sites and tree species, phenological observations such as bud burst were available for the period 1956 - 2002. We also obtained regional downscaled climatic data for each of these sites, and combined both data sets to test the unified model. We used a Bayesian approach to generate distributions of model parameters from the observation data. In this poster presentation, we compare parameter distributions between different species and between different sites for individual species. The results of the unified model show a good agreement with the observations, except for Fagus sylvatica. The failure to reproduce the bud burst data for Fagus sylvatica suggest that the other factors not included in the unified model affect the phenology of this species. The parameter series show differences among species as we expected. However, they also differed strongly for the same species among sites.Further work should elucidate the mechanism that explains why model parameters differ among species and sites.
Real-time inextensible surgical thread simulation.
Xu, Lang; Liu, Qian
2018-03-27
This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.
Hawking radiation of five-dimensional charged black holes with scalar fields
NASA Astrophysics Data System (ADS)
Miao, Yan-Gang; Xu, Zhen-Ming
2017-09-01
We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.
Building a Unified Information Network.
ERIC Educational Resources Information Center
Avram, Henriette D.
1988-01-01
Discusses cooperative efforts between research organizations and libraries to create a national information network. Topics discussed include the Linked System Project (LSP); technical processing versus reference and research functions; Open Systems Interconnection (OSI) Reference Model; the National Science Foundation Network (NSFNET); and…
Three Dimensional Thermal Pollution Models. Volume 2; Rigid-Lid Models
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.
1978-01-01
Three versions of rigid lid programs are presented: one for near field simulation; the second for far field unstratified situations; and the third for stratified basins, far field simulation. The near field simulates thermal plume areas, and the far field version simulates larger receiving aquatic ecosystems. Since these versions have many common subroutines, a unified testing is provided, with main programs for the three possible conditions listed.
An efficient direct solver for rarefied gas flows with arbitrary statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Manuel A., E-mail: f99543083@ntu.edu.tw; Yang, Jaw-Yen, E-mail: yangjy@iam.ntu.edu.tw; Center of Advanced Study in Theoretical Science, National Taiwan University, Taipei 10167, Taiwan
2016-01-15
A new numerical methodology associated with a unified treatment is presented to solve the Boltzmann–BGK equation of gas dynamics for the classical and quantum gases described by the Bose–Einstein and Fermi–Dirac statistics. Utilizing a class of globally-stiffly-accurate implicit–explicit Runge–Kutta scheme for the temporal evolution, associated with the discrete ordinate method for the quadratures in the momentum space and the weighted essentially non-oscillatory method for the spatial discretization, the proposed scheme is asymptotic-preserving and imposes no non-linear solver or requires the knowledge of fugacity and temperature to capture the flow structures in the hydrodynamic (Euler) limit. The proposed treatment overcomes themore » limitations found in the work by Yang and Muljadi (2011) [33] due to the non-linear nature of quantum relations, and can be applied in studying the dynamics of a gas with internal degrees of freedom with correct values of the ratio of specific heat for the flow regimes for all Knudsen numbers and energy wave lengths. The present methodology is numerically validated with the unified treatment by the one-dimensional shock tube problem and the two-dimensional Riemann problems for gases of arbitrary statistics. Descriptions of ideal quantum gases including rotational degrees of freedom have been successfully achieved under the proposed methodology.« less
Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells
Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis
2016-01-01
A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446
An information model for managing multi-dimensional gridded data in a GIS
NASA Astrophysics Data System (ADS)
Xu, H.; Abdul-Kadar, F.; Gao, P.
2016-04-01
Earth observation agencies like NASA and NOAA produce huge volumes of historical, near real-time, and forecasting data representing terrestrial, atmospheric, and oceanic phenomena. The data drives climatological and meteorological studies, and underpins operations ranging from weather pattern prediction and forest fire monitoring to global vegetation analysis. These gridded data sets are distributed mostly as files in HDF, GRIB, or netCDF format and quantify variables like precipitation, soil moisture, or sea surface temperature, along one or more dimensions like time and depth. Although the data cube is a well-studied model for storing and analyzing multi-dimensional data, the GIS community remains in need of a solution that simplifies interactions with the data, and elegantly fits with existing database schemas and dissemination protocols. This paper presents an information model that enables Geographic Information Systems (GIS) to efficiently catalog very large heterogeneous collections of geospatially-referenced multi-dimensional rasters—towards providing unified access to the resulting multivariate hypercubes. We show how the implementation of the model encapsulates format-specific variations and provides unified access to data along any dimension. We discuss how this framework lends itself to familiar GIS concepts like image mosaics, vector field visualization, layer animation, distributed data access via web services, and scientific computing. Global data sources like MODIS from USGS and HYCOM from NOAA illustrate how one would employ this framework for cataloging, querying, and intuitively visualizing such hypercubes. ArcGIS—an established platform for processing, analyzing, and visualizing geospatial data—serves to demonstrate how this integration brings the full power of GIS to the scientific community.
Requirements for data integration platforms in biomedical research networks: a reference model
Knaup, Petra
2015-01-01
Biomedical research networks need to integrate research data among their members and with external partners. To support such data sharing activities, an adequate information technology infrastructure is necessary. To facilitate the establishment of such an infrastructure, we developed a reference model for the requirements. The reference model consists of five reference goals and 15 reference requirements. Using the Unified Modeling Language, the goals and requirements are set into relation to each other. In addition, all goals and requirements are described textually in tables. This reference model can be used by research networks as a basis for a resource efficient acquisition of their project specific requirements. Furthermore, a concrete instance of the reference model is described for a research network on liver cancer. The reference model is transferred into a requirements model of the specific network. Based on this concrete requirements model, a service-oriented information technology architecture is derived and also described in this paper. PMID:25699205
Dissemination and support of ARGUS for accelerator applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User's Guide that documents the use of the code for all users. To release the code and the User's Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less
NASA Astrophysics Data System (ADS)
Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C.
2012-01-01
The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier.
Research on the application of BIM technology in the whole life cycle of construction projects
NASA Astrophysics Data System (ADS)
Chang-liu, CHEN; Wei-wei, KOU; Shuai-hua, YE
2018-05-01
BIM technology can realize information sharing, and good BIM application will reduce the whole life cycle cost of construction projects. The popularization of BIM technology challenges the application of BIM technology at all stages of the whole life cycle of the construction project. It will give full play to the value of BIM, if developing a reasonable BIM project execution plan, defining BIM requirements, specifying Level of Development, determining the BIM quality control plan and clearing BIM application content of each stage, and will provide a unified method for project stakeholders, realize the whole life cycle of construction projects, and achieve the desired information sharing in construction project.
Spheres, charges, instantons, and bootstrap: A five-dimensional odyssey
NASA Astrophysics Data System (ADS)
Chang, Chi-Ming; Fluder, Martin; Lin, Ying-Hsuan; Wang, Yifan
2018-03-01
We combine supersymmetric localization and the conformal bootstrap to study five-dimensional superconformal field theories. To begin, we classify the admissible counter-terms and derive a general relation between the five-sphere partition function and the conformal and flavor central charges. Along the way, we discover a new superconformal anomaly in five dimensions. We then propose a precise triple factorization formula for the five-sphere partition function, that incorporates instantons and is consistent with flavor symmetry enhancement. We numerically evaluate the central charges for the rank-one Seiberg and Morrison-Seiberg theories, and find strong evidence for their saturation of bootstrap bounds, thereby determining the spectra of long multiplets in these theories. Lastly, our results provide new evidence for the F-theorem and possibly a C-theorem in five-dimensional superconformal theories.
Near- and far-field infrasound monitoring in the Mediterranean area
NASA Astrophysics Data System (ADS)
Campus, Paola; Marchetti, Emanuele; Le Pichon, Alexis; Wallenstein, Nicolau; Ripepe, Maurizio; Kallel, Mohamed; Mialle, Pierrick
2013-04-01
The Mediterranean area is characterized by a number of very interesting sources of infrasound signals and offers a promising playground for the development of a deeper understanding of such sources and of the associated propagation models. The progress in the construction and certification of infrasound arrays belonging to the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in the vicinity of this area has been complemented, in the last decade, by the construction of infrasound arrays established by several European research groups. The University of Florence (UniFi) plays a crucial role for the detection of infrasound signals in the Mediterranean area, having deployed since several years two infrasound arrays on Stromboli and Etna volcanoes, and, more recently, three infrasound arrays in the Alpine area of NW Italy and one infrasound array on the Apennines (Mount Amiata), designed and established in the framework of the ARISE Project. The IMS infrasound arrays IS42 (Graciosa, Azores, Portugal) and IS48 (Kesra, Tunisia) recorded, since the time of their certification, a number of far-field events which can be correlated with some near-field records of the infrasound arrays belonging to UniFi. An analysis of the results and potentialities of infrasound source's detections in near and far-field realized by IS42, IS48 and UniFi arrays in the Mediterranean area, with special focus on volcanic events is presented. The combined results deriving from the analysis of data recorded by the Unifi arrays and by the IS42 and IS48 arrays, in collaboration with the Department of Analyse et Surveillance (CEA/DASE), will generate a synergy which will certainly contribute to the progress of the ARISE Project.
Stochastic simulation of spatially correlated geo-processes
Christakos, G.
1987-01-01
In this study, developments in the theory of stochastic simulation are discussed. The unifying element is the notion of Radon projection in Euclidean spaces. This notion provides a natural way of reconstructing the real process from a corresponding process observable on a reduced dimensionality space, where analysis is theoretically easier and computationally tractable. Within this framework, the concept of space transformation is defined and several of its properties, which are of significant importance within the context of spatially correlated processes, are explored. The turning bands operator is shown to follow from this. This strengthens considerably the theoretical background of the geostatistical method of simulation, and some new results are obtained in both the space and frequency domains. The inverse problem is solved generally and the applicability of the method is extended to anisotropic as well as integrated processes. Some ill-posed problems of the inverse operator are discussed. Effects of the measurement error and impulses at origin are examined. Important features of the simulated process as described by geomechanical laws, the morphology of the deposit, etc., may be incorporated in the analysis. The simulation may become a model-dependent procedure and this, in turn, may provide numerical solutions to spatial-temporal geologic models. Because the spatial simu??lation may be technically reduced to unidimensional simulations, various techniques of generating one-dimensional realizations are reviewed. To link theory and practice, an example is computed in detail. ?? 1987 International Association for Mathematical Geology.
NASA Astrophysics Data System (ADS)
Lu, Haiming; Meng, Xiangkang
2015-06-01
Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.
Multilayered nonuniform sampling for three-dimensional scene representation
NASA Astrophysics Data System (ADS)
Lin, Huei-Yung; Xiao, Yu-Hua; Chen, Bo-Ren
2015-09-01
The representation of a three-dimensional (3-D) scene is essential in multiview imaging technologies. We present a unified geometry and texture representation based on global resampling of the scene. A layered data map representation with a distance-dependent nonuniform sampling strategy is proposed. It is capable of increasing the details of the 3-D structure locally and is compact in size. The 3-D point cloud obtained from the multilayered data map is used for view rendering. For any given viewpoint, image synthesis with different levels of detail is carried out using the quadtree-based nonuniformly sampled 3-D data points. Experimental results are presented using the 3-D models of reconstructed real objects.
Research of MPPT for photovoltaic generation based on two-dimensional cloud model
NASA Astrophysics Data System (ADS)
Liu, Shuping; Fan, Wei
2013-03-01
The cloud model is a mathematical representation to fuzziness and randomness in linguistic concepts. It represents a qualitative concept with expected value Ex, entropy En and hyper entropy He, and integrates the fuzziness and randomness of a linguistic concept in a unified way. This model is a new method for transformation between qualitative and quantitative in the knowledge. This paper is introduced MPPT (maximum power point tracking, MPPT) controller based two- dimensional cloud model through analysis of auto-optimization MPPT control of photovoltaic power system and combining theory of cloud model. Simulation result shows that the cloud controller is simple and easy, directly perceived through the senses, and has strong robustness, better control performance.
Mixed-order phase transition in a one-dimensional model.
Bar, Amir; Mukamel, David
2014-01-10
We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions that exhibits a mixed-order transition, namely a phase transition in which the order parameter is discontinuous as in first order transitions while the correlation length diverges as in second order transitions. Such transitions are known to appear in a diverse classes of models that are seemingly unrelated. The model we present serves as a link between two classes of models that exhibit a mixed-order transition in one dimension, namely, spin models with a coupling constant that decays as the inverse distance squared and models of depinning transitions, thus making a step towards a unifying framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lue Xing; Sun Kun; Wang Pan
In the framework of Bell-polynomial manipulations, under investigation hereby are three single-field bilinearizable equations: the (1+1)-dimensional shallow water wave model, Boiti-Leon-Manna-Pempinelli model, and (2+1)-dimensional Sawada-Kotera model. Based on the concept of scale invariance, a direct and unifying Bell-polynomial scheme is employed to achieve the Baecklund transformations and Lax pairs associated with those three soliton equations. Note that the Bell-polynomial expressions and Bell-polynomial-typed Baecklund transformations for those three soliton equations can be, respectively, cast into the bilinear equations and bilinear Baecklund transformations with symbolic computation. Consequently, it is also shown that the Bell-polynomial-typed Baecklund transformations can be linearized into the correspondingmore » Lax pairs.« less
Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J
2017-03-08
Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.
A UNIFIED KINETIC APPROACH TO BINARY NUCLEATION. (R826768)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
TopoCad - A unified system for geospatial data and services
NASA Astrophysics Data System (ADS)
Felus, Y. A.; Sagi, Y.; Regev, R.; Keinan, E.
2013-10-01
"E-government" is a leading trend in public sector activities in recent years. The Survey of Israel set as a vision to provide all of its services and datasets online. The TopoCad system is the latest software tool developed in order to unify a number of services and databases into one on-line and user friendly system. The TopoCad system is based on Web 1.0 technology; hence the customer is only a consumer of data. All data and services are accessible for the surveyors and geo-information professional in an easy and comfortable way. The future lies in Web 2.0 and Web 3.0 technologies through which professionals can upload their own data for quality control and future assimilation with the national database. A key issue in the development of this complex system was to implement a simple and easy (comfortable) user experience (UX). The user interface employs natural language dialog box in order to understand the user requirements. The system then links spatial data with alpha-numeric data in a flawless manner. The operation of the TopoCad requires no user guide or training. It is intuitive and self-taught. The system utilizes semantic engines and machine understanding technologies to link records from diverse databases in a meaningful way. Thus, the next generation of TopoCad will include five main modules: users and projects information, coordinates transformations and calculations services, geospatial data quality control, linking governmental systems and databases, smart forms and applications. The article describes the first stage of the TopoCad system and gives an overview of its future development.
Causal Factors of Corruption in Construction Project Management: An Overview.
Owusu, Emmanuel Kingsford; Chan, Albert P C; Shan, Ming
2017-11-11
The development of efficient and strategic anti-corruption measures can be better achieved if a deeper understanding and identification of the causes of corruption are established. Over the past years, many studies have been devoted to the research of corruption in construction management (CM). This has resulted in a significant increase in the body of knowledge on the subject matter, including the causative factors triggering these corrupt practices. However, an apropos systematic assessment of both past and current studies on the subject matter which is needful for the future endeavor is lacking. Moreover, there is an absence of unified view of the causative factors of corruption identified in construction project management (CPM). This paper, therefore, presents a comprehensive review of the causes of corruption from selected articles in recognized construction management journals to address the mentioned gaps. A total number of 44 causes of corruption were identified from 37 publications and analyzed in terms of existing causal factors of corruption, annual trend of publications and the thematic categorization of the identified variables. The most identifiable causes were over close relationships, poor professional ethical standards, negative industrial and working conditions, negative role models and inadequate sanctions. A conceptual framework of causes of corruption was established, after categorizing the 44 variables into five unique categories. In descending order, the five constructs are Psychosocial-Specific Causes, Organizational-Specific Causes, Regulatory-Specific Causes, Project-Specific Causes and Statutory-Specific Causes. This study extends the current literature of corruption research in construction management and contributes to a deepened understanding of the causal instigators of corruption identified in CPM. The findings from this study provide valuable information and extended knowledge to industry practitioners and policymakers as well as anti-corruption agencies in the formulation and direction of anti-corruption measures. To corruption researchers in CM, this study is vital for further research.
Assessment of metal artifact reduction methods in pelvic CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdoli, Mehrsima; Mehranian, Abolfazl; Ailianou, Angeliki
2016-04-15
Purpose: Metal artifact reduction (MAR) produces images with improved quality potentially leading to confident and reliable clinical diagnosis and therapy planning. In this work, the authors evaluate the performance of five MAR techniques for the assessment of computed tomography images of patients with hip prostheses. Methods: Five MAR algorithms were evaluated using simulation and clinical studies. The algorithms included one-dimensional linear interpolation (LI) of the corrupted projection bins in the sinogram, two-dimensional interpolation (2D), a normalized metal artifact reduction (NMAR) technique, a metal deletion technique, and a maximum a posteriori completion (MAPC) approach. The algorithms were applied to ten simulatedmore » datasets as well as 30 clinical studies of patients with metallic hip implants. Qualitative evaluations were performed by two blinded experienced radiologists who ranked overall artifact severity and pelvic organ recognition for each algorithm by assigning scores from zero to five (zero indicating totally obscured organs with no structures identifiable and five indicating recognition with high confidence). Results: Simulation studies revealed that 2D, NMAR, and MAPC techniques performed almost equally well in all regions. LI falls behind the other approaches in terms of reducing dark streaking artifacts as well as preserving unaffected regions (p < 0.05). Visual assessment of clinical datasets revealed the superiority of NMAR and MAPC in the evaluated pelvic organs and in terms of overall image quality. Conclusions: Overall, all methods, except LI, performed equally well in artifact-free regions. Considering both clinical and simulation studies, 2D, NMAR, and MAPC seem to outperform the other techniques.« less
General System Theory: Toward a Conceptual Framework for Science and Technology Education for All.
ERIC Educational Resources Information Center
Chen, David; Stroup, Walter
1993-01-01
Suggests using general system theory as a unifying theoretical framework for science and technology education for all. Five reasons are articulated: the multidisciplinary nature of systems theory, the ability to engage complexity, the capacity to describe system dynamics, the ability to represent the relationship between microlevel and…
Battle in Los Angeles: Conflict Escalates as Charter Schools Thrive
ERIC Educational Resources Information Center
Whitmire, Richard
2016-01-01
Throughout the 1990s and well into the new millennium, the massive Los Angeles Unified School District barely noticed the many charter schools that were springing up around the metropolis. But Los Angeles parents certainly took notice, and started enrolling their children. In 2008, five charter-management organizations announced plans to…
SSBRP Communication & Data System Development using the Unified Modeling Language (UML)
NASA Technical Reports Server (NTRS)
Windrem, May; Picinich, Lou; Givens, John J. (Technical Monitor)
1998-01-01
The Unified Modeling Language (UML) is the standard method for specifying, visualizing, and documenting the artifacts of an object-oriented system under development. UML is the unification of the object-oriented methods developed by Grady Booch and James Rumbaugh, and of the Use Case Model developed by Ivar Jacobson. This paper discusses the application of UML by the Communications and Data Systems (CDS) team to model the ground control and command of the Space Station Biological Research Project (SSBRP) User Operations Facility (UOF). UML is used to define the context of the system, the logical static structure, the life history of objects, and the interactions among objects.
Tachyon cosmology with non-vanishing minimum potential: a unified model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huiquan, E-mail: hqli@ustc.edu.cn
2012-07-01
We investigate the tachyon condensation process in the effective theory with non-vanishing minimum potential and its implications to cosmology. It is shown that the tachyon condensation on an unstable three-brane described by this modified tachyon field theory leads to lower-dimensional branes (defects) forming within a stable three-brane. Thus, in the cosmological background, we can get well-behaved tachyon matter after tachyon inflation, (partially) avoiding difficulties encountered in the original tachyon cosmological models. This feature also implies that the tachyon inflated and reheated universe is followed by a Chaplygin gas dark matter and dark energy universe. Hence, such an unstable three-brane behavesmore » quite like our universe, reproducing the key features of the whole evolutionary history of the universe and providing a unified description of inflaton, dark matter and dark energy in a very simple single-scalar field model.« less
Big behavioral data: psychology, ethology and the foundations of neuroscience.
Gomez-Marin, Alex; Paton, Joseph J; Kampff, Adam R; Costa, Rui M; Mainen, Zachary F
2014-11-01
Behavior is a unifying organismal process where genes, neural function, anatomy and environment converge and interrelate. Here we review the current state and discuss the future effect of accelerating advances in technology for behavioral studies, focusing on rodents as an example. We frame our perspective in three dimensions: the degree of experimental constraint, dimensionality of data and level of description. We argue that 'big behavioral data' presents challenges proportionate to its promise and describe how these challenges might be met through opportunities afforded by the two rival conceptual legacies of twentieth century behavioral science, ethology and psychology. We conclude that, although 'more is not necessarily better', copious, quantitative and open behavioral data has the potential to transform and unify these two disciplines and to solidify the foundations of others, including neuroscience, but only if the development of new theoretical frameworks and improved experimental designs matches the technological progress.
Astronomical reach of fundamental physics.
Burrows, Adam S; Ostriker, Jeremiah P
2014-02-18
Using basic physical arguments, we derive by dimensional and physical analysis the characteristic masses and sizes of important objects in the universe in terms of just a few fundamental constants. This exercise illustrates the unifying power of physics and the profound connections between the small and the large in the cosmos we inhabit. We focus on the minimum and maximum masses of normal stars, the corresponding quantities for neutron stars, the maximum mass of a rocky planet, the maximum mass of a white dwarf, and the mass of a typical galaxy. To zeroth order, we show that all these masses can be expressed in terms of either the Planck mass or the Chandrasekar mass, in combination with various dimensionless quantities. With these examples, we expose the deep interrelationships imposed by nature between disparate realms of the universe and the amazing consequences of the unifying character of physical law.
A unified wall function for compressible turbulence modelling
NASA Astrophysics Data System (ADS)
Ong, K. C.; Chan, A.
2018-05-01
Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.
Astronomical reach of fundamental physics
Burrows, Adam S.; Ostriker, Jeremiah P.
2014-01-01
Using basic physical arguments, we derive by dimensional and physical analysis the characteristic masses and sizes of important objects in the universe in terms of just a few fundamental constants. This exercise illustrates the unifying power of physics and the profound connections between the small and the large in the cosmos we inhabit. We focus on the minimum and maximum masses of normal stars, the corresponding quantities for neutron stars, the maximum mass of a rocky planet, the maximum mass of a white dwarf, and the mass of a typical galaxy. To zeroth order, we show that all these masses can be expressed in terms of either the Planck mass or the Chandrasekar mass, in combination with various dimensionless quantities. With these examples, we expose the deep interrelationships imposed by nature between disparate realms of the universe and the amazing consequences of the unifying character of physical law. PMID:24477692
The 3D Elevation Program: summary for Alaska
Carswell, William J.
2013-01-01
Coordination by SDMI and AMEC avoids duplication of effort and ensures a unified approach to consistent, statewide data acquisition; the enhancement of existing data; and support for emerging applications. The 3D Elevation Program (3DEP) initiative, managed by the U.S. Geological Survey (USGS), responds to the growing need for high-quality topographic data and a wide range of other three-dimensional representations of the Nation’s natural and constructed features.
An Adaptive Shifted Power Method for Computing Generalized Tensor Eigenpairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolda, Tamara G.; Mayo, Jackson R.
2014-12-11
Several tensor eigenpair definitions have been put forth in the past decade, but these can all be unified under generalized tensor eigenpair framework, introduced by Chang, Pearson, and Zhang [J. Math. Anal. Appl., 350 (2009), pp. 416--422]. Given mth-order, n-dimensional real-valued symmetric tensorsmore » $${\\mathscr{A}}$$ and $$\\boldsymbol{\\mathscr{B}}$$, the goal is to find $$\\lambda \\in \\mathbb{R}$$ and $$\\mathbf{x} \\in \\mathbb{R}^{n}, \\mathbf{x} \
ERIC Educational Resources Information Center
Cheney, Carol
1995-01-01
For colleges and schools concerned with the image they project to the public, guidelines for creating and presenting a graphic identity, particularly for fund raising, are offered. Design principles include creating a unified communications program, accurately reflecting the institution's mission and spirit, inspiring confidence in workers and…
Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?
NASA Astrophysics Data System (ADS)
Troisi, Antonio
2017-03-01
Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f( R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R)=f_0R^n the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions.
Evaluation of maternal and neonatal hospital care: quality index of completeness
da Silva, Ana Lúcia Andrade; Mendes, Antonio da Cruz Gouveia; Miranda, Gabriella Morais Duarte; de Sá, Domicio Aurélio; de Souza, Wayner Vieira; Lyra, Tereza Maciel
2014-01-01
OBJECTIVE Develop an index to evaluate the maternal and neonatal hospital care of the Brazilian Unified Health System. METHODS This descriptive cross-sectional study of national scope was based on the structure-process-outcome framework proposed by Donabedian and on comprehensive health care. Data from the Hospital Information System and the National Registry of Health Establishments were used. The maternal and neonatal network of Brazilian Unified Health System consisted of 3,400 hospitals that performed at least 12 deliveries in 2009 or whose number of deliveries represented 10.0% or more of the total admissions in 2009. Relevance and reliability were defined as criteria for the selection of variables. Simple and composite indicators and the index of completeness were constructed and evaluated, and the distribution of maternal and neonatal hospital care was assessed in different regions of the country. RESULTS A total of 40 variables were selected, from which 27 single indicators, five composite indicators, and the index of completeness of care were built. Composite indicators were constructed by grouping simple indicators and included the following variables: hospital size, level of complexity, delivery care practice, recommended hospital practice, and epidemiological practice. The index of completeness of care grouped the five variables and classified them in ascending order, thereby yielding five levels of completeness of maternal and neonatal hospital care: very low, low, intermediate, high, and very high. The hospital network was predominantly of small size and low complexity, with inadequate child delivery care and poor development of recommended and epidemiological practices. The index showed that more than 80.0% hospitals had a low index of completeness of care and that most qualified heath care services were concentrated in the more developed regions of the country. CONCLUSIONS The index of completeness proved to be of great value for monitoring the maternal and neonatal hospital care of Brazilian Unified Health System and indicated that the quality of health care was unsatisfactory. However, its application does not replace specific evaluations. PMID:25210827
Five-dimensional Myers-Perry black holes cannot be overspun in gedanken experiments
NASA Astrophysics Data System (ADS)
An, Jincheng; Shan, Jieru; Zhang, Hongbao; Zhao, Suting
2018-05-01
We apply the new version of a gedanken experiment designed recently by Sorce and Wald to overspin the five-dimensional Myers-Perry black holes. As a result, the extremal black holes cannot be overspun at the linear order. On the other hand, although the nearly extremal black holes could be overspun at the linear order, this process is shown to be prohibited by the quadratic order correction. Thus, no violation of the weak cosmic censorship conjecture occurs around the five-dimensional Myers-Perry black holes.
Holá, Markéta; Mikuska, Pavel; Hanzlíková, Renáta; Kaiser, Jozef; Kanický, Viktor
2010-03-15
A study of LA-ICP-MS analysis of pressed powdered tungsten carbide precursors was performed to show the advantages and problems of nanosecond laser ablation of matrix-unified samples. Five samples with different compositions were pressed into pellets both with silver powder as a binder serving to keep the matrix unified, and without any binder. The laser ablation was performed by nanosecond Nd:YAG laser working at 213 nm. The particle formation during ablation of both sets of pellets was studied using an optical aerosol spectrometer allowing the measurement of particle concentration in two size ranges (10-250 nm and 0.25-17 microm) and particle size distribution in the range of 0.25-17 microm. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using a scanning electron microscope (SEM) and the particle chemical composition was determined by an energy dispersive X-ray spectroscope (EDS). The matrix effect was proved to be reduced using the same silver powdered binder for pellet preparation in the case of the laser ablation of powdered materials. The LA-ICP-MS signal dependence on the element content present in the material showed an improved correlation for Co, Ti, Ta and Nb of the matrix-unified samples compared to the non-matrix-unified pellets. In the case of W, the ICP-MS signal of matrix-unified pellets was influenced by the changes in the particle formation. Copyright (c) 2009 Elsevier B.V. All rights reserved.
The Many Dimensions of Program Management
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1992-01-01
For the purposes of this paper, program refers to a collection of activities or projects which must be performed according to a plan or schedule. The Space Exploration Initiative within the National Aeronautics and Space Administration (NASA) is an example. Dimensionality refers to both the various perspectives of a program and to the components within that perspective. It is, thus, appropriate to think of dimensions of dimensionality. For example, one dimension or perspective of a program is the projects which perform the program. Within the project dimension, the individual projects are the components of that dimensionality. The number of projects defines the spatial dimensionality of the project dimension. Thus, each perspective or dimension has a dimensionality of its own. The structure and associated values of all the various perspectives of a program define the program. A project refers to the collection of activities required to conceive, sell, design, develop, evaluate, produce, operate, support, evolve, and retire a given system. A project thus effects the life cycle of given system. A project is, thus, the system to conceive, sell, design, develop, evaluate, produce, operate, support, evolve, and retire a system. A program, thus, effects the life cycle of the collection of projects required to effect the collection of systems required to implement the program.
The Dynamic Community of Interest and Its Realization in ZODIAC
2009-10-01
the ZODIAC project. ZODIAC is a network architecture that puts security first and foremost, with security broken down into confidentiality, integrity...hosts, a unified solution for MANETs will work for hosts or routers as well. DYNAMIC COMMUNITIES OF INTEREST The basis of the ZODIAC design is a new dis...narrow scope of each DCoI limits attack propagation, and supports confidentiality ABSTRACT The ZODIAC project has been exploring a security first
IIB supergravity and the E 6(6) covariant vector-tensor hierarchy
Ciceri, Franz; de Wit, Bernard; Varela, Oscar
2015-04-20
IIB supergravity is reformulated with a manifest local USp(8) invariance that makes the embedding of five-dimensional maximal supergravities transparent. In this formulation the ten-dimensional theory exhibits all the 27 one-form fields and 22 of the 27 two-form fields that are required by the vector-tensor hierarchy of the five-dimensional theory. The missing 5 two-form fields must transform in the same representation as a descendant of the ten-dimensional ‘dual graviton’. The invariant E 6(6) symmetric tensor that appears in the vector-tensor hierarchy is reproduced. Generalized vielbeine are derived from the supersymmetry transformations of the vector fields, as well as consistent expressions formore » the USp(8) covariant fermion fields. Implications are further discussed for the consistency of the truncation of IIB supergravity compactified on the five-sphere to maximal gauged supergravity in five space-time dimensions with an SO(6) gauge group.« less
Kaluza-Klein cosmology from five-dimensional Lovelock-Cartan theory
NASA Astrophysics Data System (ADS)
Castillo-Felisola, Oscar; Corral, Cristóbal; del Pino, Simón; Ramírez, Francisca
2016-12-01
We study the Kaluza-Klein dimensional reduction of the Lovelock-Cartan theory in five-dimensional spacetime, with a compact dimension of S1 topology. We find cosmological solutions of the Friedmann-Robertson-Walker class in the reduced spacetime. The torsion and the fields arising from the dimensional reduction induce a nonvanishing energy-momentum tensor in four dimensions. We find solutions describing expanding, contracting, and bouncing universes. The model shows a dynamical compactification of the extra dimension in some regions of the parameter space.
Hellmann, B; Güntürkün, O
2001-01-01
Visual information processing within the ascending tectofugal pathway to the forebrain undergoes essential rearrangements between the mesencephalic tectum opticum and the diencephalic nucleus rotundus of birds. The outer tectal layers constitute a two-dimensional map of the visual surrounding, whereas nucleus rotundus is characterized by functional domains in which different visual features such as movement, color, or luminance are processed in parallel. Morphologic correlates of this reorganization were investigated by means of focal injections of the neuronal tracer choleratoxin subunit B into different regions of the nuclei rotundus and triangularis of the pigeon. Dependent on the thalamic injection site, variations in the retrograde labeling pattern of ascending tectal efferents were observed. All rotundal projecting neurons were located within the deep tectal layer 13. Five different cell populations were distinguished that could be differentiated according to their dendritic ramifications within different retinorecipient laminae and their axons projecting to different subcomponents of the nucleus rotundus. Because retinorecipient tectal layers differ in their input from distinct classes of retinal ganglion cells, each tectorotundal cell type probably processes different aspects of the visual surrounding. Therefore, the differential input/output connections of the five tectorotundal cell groups might constitute the structural basis for spatially segregated parallel information processing of different stimulus aspects within the tectofugal visual system. Because two of five rotundal projecting cell groups additionally exhibited quantitative shifts along the dorsoventral extension of the tectum, data also indicate visual field-dependent alterations in information processing for particular visual features. Copyright 2001 Wiley-Liss, Inc.
Optimization in Bilingual Language Use
ERIC Educational Resources Information Center
Bhatt, Rakesh M.
2013-01-01
Pieter Muysken's keynote paper, "Language contact outcomes as a result of bilingual optimization strategies", undertakes an ambitious project to theoretically unify different empirical outcomes of language contact, for instance, SLA, pidgins and Creoles, and code-switching. Muysken has dedicated a life-time to researching, rather…
Evaluating Health Information Systems Using Ontologies
Anderberg, Peter; Larsson, Tobias C; Fricker, Samuel A; Berglund, Johan
2016-01-01
Background There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems. Objectives The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems—whether similar or heterogeneous—by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework. Methods On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and deployed across European Union countries. Results The relevance of the evaluation aspects created by the UVON method for the FI-STAR project was validated by the corresponding stakeholders of each case. These evaluation aspects were extracted from a UVON-generated ontology structure that reflects both the internally declared required quality attributes in the 7 eHealth applications of the FI-STAR project and the evaluation aspects recommended by the Model for ASsessment of Telemedicine applications (MAST) evaluation framework. The extracted evaluation aspects were used to create questionnaires (for the corresponding patients and health professionals) to evaluate each individual case and the whole of the FI-STAR project. Conclusions The UVON method can provide a relevant set of evaluation aspects for a heterogeneous set of health information systems by organizing, unifying, and aggregating the quality attributes through ontological structures. Those quality attributes can be either suggested by evaluation models or elicited from the stakeholders of those systems in the form of system requirements. The method continues to be systematic, context sensitive, and relevant across a heterogeneous set of health information systems. PMID:27311735
Evaluating Health Information Systems Using Ontologies.
Eivazzadeh, Shahryar; Anderberg, Peter; Larsson, Tobias C; Fricker, Samuel A; Berglund, Johan
2016-06-16
There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems. The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems-whether similar or heterogeneous-by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework. On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and deployed across European Union countries. The relevance of the evaluation aspects created by the UVON method for the FI-STAR project was validated by the corresponding stakeholders of each case. These evaluation aspects were extracted from a UVON-generated ontology structure that reflects both the internally declared required quality attributes in the 7 eHealth applications of the FI-STAR project and the evaluation aspects recommended by the Model for ASsessment of Telemedicine applications (MAST) evaluation framework. The extracted evaluation aspects were used to create questionnaires (for the corresponding patients and health professionals) to evaluate each individual case and the whole of the FI-STAR project. The UVON method can provide a relevant set of evaluation aspects for a heterogeneous set of health information systems by organizing, unifying, and aggregating the quality attributes through ontological structures. Those quality attributes can be either suggested by evaluation models or elicited from the stakeholders of those systems in the form of system requirements. The method continues to be systematic, context sensitive, and relevant across a heterogeneous set of health information systems.
NASA Astrophysics Data System (ADS)
Mooney, Robin P.; McFadden, Shaun
2017-12-01
In-situ observation of crystal growth in transparent media allows us to observe solidification phase change in real-time. These systems are analogous to opaque systems such as metals. The interpretation of transient 2-dimensional area projections from 3-dimensional phase change phenomena occurring in a bulky sample is problematic due to uncertainty of impingement and hidden nucleation events; in stereology this problem is known as over-projection. This manuscript describes and demonstrates a continuous model for nucleation and growth using the well-established Johnson-Mehl-Avrami-Kolmogorov model, and provides a method to relate 3-dimensional volumetric data (nucleation events, volume fraction) to observed data in a 2-dimensional projection (nucleation count, area fraction). A parametric analysis is performed; the projection phenomenon is shown to be significant in cases where nucleation is occurring continuously with a relatively large variance. In general, area fraction on a projection plane will overestimate the volume fraction within the sample and the nuclei count recorded on the projection plane will underestimate the number of real nucleation events. The statistical framework given in this manuscript provides a methodology to deal with the differences between the observed (projected) data and the real (volumetric) measures.
Validation of A One-Dimensional Snow-Land Surface Model at the Sleepers River Watershed
NASA Astrophysics Data System (ADS)
Sun, Wen-Yih; Chern, Jiun-Dar
A one-dimensional land surface model, based on conservations of heat and water substance inside the soil and snow, is presented. To validate the model, a stand-alone experiment is carried out with five years of meteorological and hydrological observations collected from the NOAA-ARS Cooperative Snow Research Project (1966-1974) at the Sleepers River watershed in Danville, Vermont, U.S.A. The numerical results show that the model is capable of reproducing the observed soil temperature at different depths during the winter as well as a rapid increase of soil temperature after snow melts in the spring. The model also simulates the density, temperature, thickness, and equivalent water depth of snow reasonably well. The numerical results are sensitive to the fresh snow density and the soil properties used in the model, which affect the heat exchange between the snowpack and the soil.
Development of novel 3D-printed robotic prosthetic for transradial amputees.
Gretsch, Kendall F; Lather, Henry D; Peddada, Kranti V; Deeken, Corey R; Wall, Lindley B; Goldfarb, Charles A
2016-06-01
Upper extremity myoelectric prostheses are expensive. The Robohand demonstrated that three-dimensional printing reduces the cost of a prosthetic extremity. The goal of this project was to develop a novel, inexpensive three-dimensional printed prosthesis to address limitations of the Robohand. The prosthesis was designed for patients with transradial limb amputation. It is shoulder-controlled and externally powered with an anthropomorphic terminal device. The user can open and close all five fingers, and move the thumb independently. The estimated cost is US$300. After testing on a patient with a traumatic transradial amputation, several advantages were noted. The independent thumb movement facilitated object grasp, the device weighed less than most externally powered prostheses, and the size was easily scalable. Limitations of the new prosthetic include low grip strength and decreased durability compared to passive prosthetics. Most children with a transradial congenital or traumatic amputation do not use a prosthetic. A three-dimensional printed shoulder-controlled robotic prosthesis provides a cost effective, easily sized and highly functional option which has been previously unavailable. © The International Society for Prosthetics and Orthotics 2015.
High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.
Andras, Peter
2018-02-01
Approximation of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the approximated function is defined resides on a low-dimensional manifold and in principle the approximation of the function over this manifold should improve the approximation performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network approximation of the function over this space, provides a more precise approximation of the function than the approximation of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the approximation error of neural networks trained over the projection space. We show that such neural networks should have better approximation performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network approximation of a set of functions defined on high-dimensional data including real world data as well.
Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining.
Hero, Alfred O; Rajaratnam, Bala
2016-01-01
When can reliable inference be drawn in fue "Big Data" context? This paper presents a framework for answering this fundamental question in the context of correlation mining, wifu implications for general large scale inference. In large scale data applications like genomics, connectomics, and eco-informatics fue dataset is often variable-rich but sample-starved: a regime where the number n of acquired samples (statistical replicates) is far fewer than fue number p of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for "Big Data". Sample complexity however has received relatively less attention, especially in the setting when the sample size n is fixed, and the dimension p grows without bound. To address fuis gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where fue variable dimension is fixed and fue sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa cale data dimension. We illustrate this high dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables fua t are of interest. Correlation mining arises in numerous applications and subsumes the regression context as a special case. we demonstrate various regimes of correlation mining based on the unifying perspective of high dimensional learning rates and sample complexity for different structured covariance models and different inference tasks.
Choi, Ji Yeh; Hwang, Heungsun; Yamamoto, Michio; Jung, Kwanghee; Woodward, Todd S
2017-06-01
Functional principal component analysis (FPCA) and functional multiple-set canonical correlation analysis (FMCCA) are data reduction techniques for functional data that are collected in the form of smooth curves or functions over a continuum such as time or space. In FPCA, low-dimensional components are extracted from a single functional dataset such that they explain the most variance of the dataset, whereas in FMCCA, low-dimensional components are obtained from each of multiple functional datasets in such a way that the associations among the components are maximized across the different sets. In this paper, we propose a unified approach to FPCA and FMCCA. The proposed approach subsumes both techniques as special cases. Furthermore, it permits a compromise between the techniques, such that components are obtained from each set of functional data to maximize their associations across different datasets, while accounting for the variance of the data well. We propose a single optimization criterion for the proposed approach, and develop an alternating regularized least squares algorithm to minimize the criterion in combination with basis function approximations to functions. We conduct a simulation study to investigate the performance of the proposed approach based on synthetic data. We also apply the approach for the analysis of multiple-subject functional magnetic resonance imaging data to obtain low-dimensional components of blood-oxygen level-dependent signal changes of the brain over time, which are highly correlated across the subjects as well as representative of the data. The extracted components are used to identify networks of neural activity that are commonly activated across the subjects while carrying out a working memory task.
Quantum approach to classical statistical mechanics.
Somma, R D; Batista, C D; Ortiz, G
2007-07-20
We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.
A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.
1993-01-01
This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).
Visual exploration of high-dimensional data through subspace analysis and dynamic projections
Liu, S.; Wang, B.; Thiagarajan, J. J.; ...
2015-06-01
Here, we introduce a novel interactive framework for visualizing and exploring high-dimensional datasets based on subspace analysis and dynamic projections. We assume the high-dimensional dataset can be represented by a mixture of low-dimensional linear subspaces with mixed dimensions, and provide a method to reliably estimate the intrinsic dimension and linear basis of each subspace extracted from the subspace clustering. Subsequently, we use these bases to define unique 2D linear projections as viewpoints from which to visualize the data. To understand the relationships among the different projections and to discover hidden patterns, we connect these projections through dynamic projections that createmore » smooth animated transitions between pairs of projections. We introduce the view transition graph, which provides flexible navigation among these projections to facilitate an intuitive exploration. Finally, we provide detailed comparisons with related systems, and use real-world examples to demonstrate the novelty and usability of our proposed framework.« less
Visual Exploration of High-Dimensional Data through Subspace Analysis and Dynamic Projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S.; Wang, B.; Thiagarajan, Jayaraman J.
2015-06-01
We introduce a novel interactive framework for visualizing and exploring high-dimensional datasets based on subspace analysis and dynamic projections. We assume the high-dimensional dataset can be represented by a mixture of low-dimensional linear subspaces with mixed dimensions, and provide a method to reliably estimate the intrinsic dimension and linear basis of each subspace extracted from the subspace clustering. Subsequently, we use these bases to define unique 2D linear projections as viewpoints from which to visualize the data. To understand the relationships among the different projections and to discover hidden patterns, we connect these projections through dynamic projections that create smoothmore » animated transitions between pairs of projections. We introduce the view transition graph, which provides flexible navigation among these projections to facilitate an intuitive exploration. Finally, we provide detailed comparisons with related systems, and use real-world examples to demonstrate the novelty and usability of our proposed framework.« less
In Search of Optimal Cognitive Diagnostic Model(s) for ESL Grammar Test Data
ERIC Educational Resources Information Center
Yi, Yeon-Sook
2017-01-01
This study compares five cognitive diagnostic models in search of optimal one(s) for English as a Second Language grammar test data. Using a unified modeling framework that can represent specific models with proper constraints, the article first fit the full model (the log-linear cognitive diagnostic model, LCDM) and investigated which model…
A unified convention for biological assemblies with helical symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Chung-Jung, E-mail: tsaic@mail.nih.gov; Nussinov, Ruth; Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978
A new representation of helical structure by four parameters, [n{sub 1}, n{sub 2}, twist, rise], is able to generate an entire helical construct from asymmetric units, including cases of helical assembly with a seam. Assemblies with helical symmetry can be conveniently formulated in many distinct ways. Here, a new convention is presented which unifies the two most commonly used helical systems for generating helical assemblies from asymmetric units determined by X-ray fibre diffraction and EM imaging. A helical assembly is viewed as being composed of identical repetitive units in a one- or two-dimensional lattice, named 1-D and 2-D helical systems,more » respectively. The unification suggests that a new helical description with only four parameters [n{sub 1}, n{sub 2}, twist, rise], which is called the augmented 1-D helical system, can generate the complete set of helical arrangements, including coverage of helical discontinuities (seams). A unified four-parameter characterization implies similar parameters for similar assemblies, can eliminate errors in reproducing structures of helical assemblies and facilitates the generation of polymorphic ensembles from helical atomic models or EM density maps. Further, guidelines are provided for such a unique description that reflects the structural signature of an assembly, as well as rules for manipulating the helical symmetry presentation.« less
NASA Astrophysics Data System (ADS)
Raksharam; Dutta, Aloke K.
2017-04-01
In this paper, a unified analytical model for the drain current of a symmetric Double-Gate Junctionless Field-Effect Transistor (DG-JLFET) is presented. The operation of the device has been classified into four modes: subthreshold, semi-depleted, accumulation, and hybrid; with the main focus of this work being on the accumulation mode, which has not been dealt with in detail so far in the literature. A physics-based model, using a simplified one-dimensional approach, has been developed for this mode, and it has been successfully integrated with the model for the hybrid mode. It also includes the effect of carrier mobility degradation due to the transverse electric field, which was hitherto missing in the earlier models reported in the literature. The piece-wise models have been unified using suitable interpolation functions. In addition, the model includes two most important short-channel effects pertaining to DG-JLFETs, namely the Drain Induced Barrier Lowering (DIBL) and the Subthreshold Swing (SS) degradation. The model is completely analytical, and is thus computationally highly efficient. The results of our model have shown an excellent match with those obtained from TCAD simulations for both long- and short-channel devices, as well as with the experimental data reported in the literature.
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1984-01-01
The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.
Global Binary Optimization on Graphs for Classification of High Dimensional Data
2014-09-01
Buades et al . in [10] introduce a new non-local means algorithm for image denoising and compare it to some of the best methods. In [28], Grady de...scribes a random walk algorithm for image seg- mentation using the solution to a Dirichlet prob- lem. Elmoataz et al . present generalizations of the...graph Laplacian [19] for image denoising and man- ifold smoothing. Couprie et al . in [16] propose a parameterized graph-based energy function that unifies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inomata, A.; Junker, G.; Wilson, R.
1993-08-01
The unified treatment of the Dirac monopole, the Schwinger monopole, and the Aharonov-Bahn problem by Barut and Wilson is revisited via a path integral approach. The Kustaanheimo-Stiefel transformation of space and time is utilized to calculate the path integral for a charged particle in the singular vector potential. In the process of dimensional reduction, a topological charge quantization rule is derived, which contains Dirac's quantization condition as a special case. 32 refs.
2013-01-01
Gravity Wave. A slice of the potential temperature perturbation (at y=50 km) after 700 s for 30× 30× 5 elements with 4th-order polynomials . The contour...CONSTANTINESCU ‡ Key words. cloud-resolving model; compressible flow; element-based Galerkin methods; Euler; global model; IMEX; Lagrange; Legendre ...methods in terms of accuracy and efficiency for two types of geophysical fluid dynamics problems: buoyant convection and inertia- gravity waves. These
An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts
NASA Technical Reports Server (NTRS)
Rasmussen, M. L.; Emanuel, George
1989-01-01
The design of a unified aero-space plane based on waverider technology is analyzed. The overall aerodynamic design and performance of an aero-space plane are discussed in terms of the forebody, scramjet, and afterbody. Other subjects considered in the study are combustion/nozzle optimization, the idealized tip-to-tail waverider model, and the two-dimensional minimum length nozzle. Charts and graphs are provided to show the results of the preliminary investigations.
SPIM-fluid: open source light-sheet based platform for high-throughput imaging
Gualda, Emilio J.; Pereira, Hugo; Vale, Tiago; Estrada, Marta Falcão; Brito, Catarina; Moreno, Nuno
2015-01-01
Light sheet fluorescence microscopy has recently emerged as the technique of choice for obtaining high quality 3D images of whole organisms/embryos with low photodamage and fast acquisition rates. Here we present an open source unified implementation based on Arduino and Micromanager, which is capable of operating Light Sheet Microscopes for automatized 3D high-throughput imaging on three-dimensional cell cultures and model organisms like zebrafish, oriented to massive drug screening. PMID:26601007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User`s Guide that documents the use of the code for all users. To release the code and the User`s Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less
Putting the School Interoperability Framework to the Test
ERIC Educational Resources Information Center
Mercurius, Neil; Burton, Glenn; Hopkins, Bill; Larsen, Hans
2004-01-01
The Jurupa Unified School District in Southern California recently partnered with Microsoft, Dell and the Zone Integration Group for the implementation of a School Interoperability Framework (SIF) database repository model throughout the district (Magner 2002). A two-week project--the Integrated District Education Applications System, better known…
ERIC Educational Resources Information Center
Smith, Nathaniel J.
2011-01-01
This dissertation contains several projects, each addressing different questions with different techniques. In chapter 1, I argue that they are unified thematically by their goal of "scaling up psycholinguistics"; they are all aimed at analyzing large data-sets using tools that reveal patterns to propose and test mechanism-neutral hypotheses about…
78 FR 1586 - Unified Agenda of Federal Regulatory and Deregulatory Actions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
.... Additionally, this project would update shipboard marine pollution emergency plans for noxious liquid substance... regulations on vessels carrying oil, oil pollution prevention, oil transfer operations, and rules for marine... No. 318 Marine Transportation- 1625-AA12 Related Facility Response Plans for Hazardous Substances...
Interactive Instructional Television: Education for Rural Areas.
ERIC Educational Resources Information Center
Anagal, Judy; And Others
The Rural Special Education Project is a federally funded partnership between Kayenta Unified School District and Northern Arizona University's (NAU) Center for Excellence in Education that aims to prepare well qualified special education teachers to work in rural and reservation schools. The participants are Native American residents working…
ERIC Educational Resources Information Center
Pantin, Gerard
This publication summarizes the evolution of the basic ideas and philosophies of a community development organization called Servol in Trinidad and recounts how over nine years these ideas coalesced into a unified approach. The document describes how the earliest projects--a welding institute, a clinic, a nursery school, and recreational…
OVERGRID: A Unified Overset Grid Generation Graphical Interface
NASA Technical Reports Server (NTRS)
Chan, William M.; Akien, Edwin W. (Technical Monitor)
1999-01-01
This paper presents a unified graphical interface and gridding strategy for performing overset grid generation. The interface called OVERGRID has been specifically designed to follow an efficient overset gridding strategy, and contains general grid manipulation capabilities as well as modules that are specifically suited for overset grids. General grid utilities include functions for grid redistribution, smoothing, concatenation, extraction, extrapolation, projection, and many others. Modules specially tailored for overset grids include a seam curve extractor, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, and a Cartesian box grid generator, Grid visualization is achieved using OpenGL while widgets are constructed with Tcl/Tk. The software is portable between various platforms from UNIX workstations to personal computers.
A Unified Air-Sea Visualization System: Survey on Gridding Structures
NASA Technical Reports Server (NTRS)
Anand, Harsh; Moorhead, Robert
1995-01-01
The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.
Shadows of rotating five-dimensional charged EMCS black holes
NASA Astrophysics Data System (ADS)
Amir, Muhammed; Singh, Balendra Pratap; Ghosh, Sushant G.
2018-05-01
Higher-dimensional theories admit astrophysical objects like supermassive black holes, which are rather different from standard ones, and their gravitational lensing features deviate from general relativity. It is well known that a black hole shadow is a dark region due to the falling geodesics of photons into the black hole and, if detected, a black hole shadow could be used to determine which theory of gravity is consistent with observations. Measurements of the shadow sizes around the black holes can help to evaluate various parameters of the black hole metric. We study the shapes of the shadow cast by the rotating five-dimensional charged Einstein-Maxwell-Chern-Simons (EMCS) black holes, which is characterized by four parameters, i.e., mass, two spins, and charge, in which the spin parameters are set equal. We integrate the null geodesic equations and derive an analytical formula for the shadow of the five-dimensional EMCS black hole, in turn, to show that size of black hole shadow is affected due to charge as well as spin. The shadow is a dark zone covered by a deformed circle, and the size of the shadow decreases with an increase in the charge q when compared with the five-dimensional Myers-Perry black hole. Interestingly, the distortion increases with charge q. The effect of these parameters on the shape and size of the naked singularity shadow of the five-dimensional EMCS black hole is also discussed.
BGFit: management and automated fitting of biological growth curves.
Veríssimo, André; Paixão, Laura; Neves, Ana Rute; Vinga, Susana
2013-09-25
Existing tools to model cell growth curves do not offer a flexible integrative approach to manage large datasets and automatically estimate parameters. Due to the increase of experimental time-series from microbiology and oncology, the need for a software that allows researchers to easily organize experimental data and simultaneously extract relevant parameters in an efficient way is crucial. BGFit provides a web-based unified platform, where a rich set of dynamic models can be fitted to experimental time-series data, further allowing to efficiently manage the results in a structured and hierarchical way. The data managing system allows to organize projects, experiments and measurements data and also to define teams with different editing and viewing permission. Several dynamic and algebraic models are already implemented, such as polynomial regression, Gompertz, Baranyi, Logistic and Live Cell Fraction models and the user can add easily new models thus expanding current ones. BGFit allows users to easily manage their data and models in an integrated way, even if they are not familiar with databases or existing computational tools for parameter estimation. BGFit is designed with a flexible architecture that focus on extensibility and leverages free software with existing tools and methods, allowing to compare and evaluate different data modeling techniques. The application is described in the context of bacterial and tumor cells growth data fitting, but it is also applicable to any type of two-dimensional data, e.g. physical chemistry and macroeconomic time series, being fully scalable to high number of projects, data and model complexity.
Studies for the Loss of Atomic and Molecular Species from IO
NASA Technical Reports Server (NTRS)
Combi, Michael R.
1999-01-01
The general objective of this project has been to advance our theoretical understanding of lo's atmosphere and how various atomic and molecular species are lost from this atmosphere and are distributed in the circumplanetary environment of Jupiter. This grant has provided support for the activities of Dr. Michael Combi at the University of Michigan to serve as a small part in collaboration with a larger project awarded to Atmospheric & Environmental Research, Inc., with primary principal investigator Dr. William H. Smyth. Dr. Combi is the Principal Investigator and Project Manager for the Michigan grant NAG5-6187. This Michigan grant has provided for a continuation of a collaboration between Drs. Smyth and Combi in related efforts beginning in 1981, and with the object to develop and apply sophisticated theoretical models to interpret and to relate a number of new and exciting observations for the atmospheric gases of the satellite. The ability to interpret and then to relate through the theoretical fabric a number of these otherwise independent observations are a central strength of this program. This comprehensive approach provides a collective power, extracting more from the sum of the parts and seeing beyond various limitations that are inherent in any one observation. Although the approach is designed to unify, the program is divided into well-defined studies for the likely dominant atmospheric gases involving species of the SO2 family (SO2, SO, O2, S and O) and for the trace atmospheric gas atomic sodium and a likely escaping molecular ion NaX(+) (where Na(X) is the atmospheric molecule and X represents one or more atoms).Attachments: IO's sodium corona and spatially cloud: a consistent flux speed distribution. and Io's plasma environment during the Galileo flyby: global three-dimensional MHD modeling with adaptive mesh refinement.
A geo-spatial data management system for potentially active volcanoes—GEOWARN project
NASA Astrophysics Data System (ADS)
Gogu, Radu C.; Dietrich, Volker J.; Jenny, Bernhard; Schwandner, Florian M.; Hurni, Lorenz
2006-02-01
Integrated studies of active volcanic systems for the purpose of long-term monitoring and forecast and short-term eruption prediction require large numbers of data-sets from various disciplines. A modern database concept has been developed for managing and analyzing multi-disciplinary volcanological data-sets. The GEOWARN project (choosing the "Kos-Yali-Nisyros-Tilos volcanic field, Greece" and the "Campi Flegrei, Italy" as test sites) is oriented toward potentially active volcanoes situated in regions of high geodynamic unrest. This article describes the volcanological database of the spatial and temporal data acquired within the GEOWARN project. As a first step, a spatial database embedded in a Geographic Information System (GIS) environment was created. Digital data of different spatial resolution, and time-series data collected at different intervals or periods, were unified in a common, four-dimensional representation of space and time. The database scheme comprises various information layers containing geographic data (e.g. seafloor and land digital elevation model, satellite imagery, anthropogenic structures, land-use), geophysical data (e.g. from active and passive seismicity, gravity, tomography, SAR interferometry, thermal imagery, differential GPS), geological data (e.g. lithology, structural geology, oceanography), and geochemical data (e.g. from hydrothermal fluid chemistry and diffuse degassing features). As a second step based on the presented database, spatial data analysis has been performed using custom-programmed interfaces that execute query scripts resulting in a graphical visualization of data. These query tools were designed and compiled following scenarios of known "behavior" patterns of dormant volcanoes and first candidate signs of potential unrest. The spatial database and query approach is intended to facilitate scientific research on volcanic processes and phenomena, and volcanic surveillance.
Model-Free Conditional Independence Feature Screening For Ultrahigh Dimensional Data.
Wang, Luheng; Liu, Jingyuan; Li, Yong; Li, Runze
2017-03-01
Feature screening plays an important role in ultrahigh dimensional data analysis. This paper is concerned with conditional feature screening when one is interested in detecting the association between the response and ultrahigh dimensional predictors (e.g., genetic makers) given a low-dimensional exposure variable (such as clinical variables or environmental variables). To this end, we first propose a new index to measure conditional independence, and further develop a conditional screening procedure based on the newly proposed index. We systematically study the theoretical property of the proposed procedure and establish the sure screening and ranking consistency properties under some very mild conditions. The newly proposed screening procedure enjoys some appealing properties. (a) It is model-free in that its implementation does not require a specification on the model structure; (b) it is robust to heavy-tailed distributions or outliers in both directions of response and predictors; and (c) it can deal with both feature screening and the conditional screening in a unified way. We study the finite sample performance of the proposed procedure by Monte Carlo simulations and further illustrate the proposed method through two real data examples.
NASA Astrophysics Data System (ADS)
Peyronel, Fernanda; Ilavsky, Jan; Mazzanti, Gianfranco; Marangoni, Alejandro G.; Pink, David A.
2013-12-01
Ultra-small angle X-ray scattering has been used for the first time to elucidate, in situ, the aggregation structure of a model edible oil system. The three-dimensional nano- to micro-structure of tristearin solid particles in triolein solvent was investigated using 5, 10, 15, and 20% solids. Three different sample preparation procedures were investigated: two slow cooling rates of 0.5°/min, case 1 (22 days of storage at room temperature) and case 2 (no storage), and one fast cooling of 30°/min, case 3 (no storage). The length scale investigated, by using the Bonse-Hart camera at beamline ID-15D at the Advanced Photon Source, Argonne National Laboratory, covered the range from 300 Å to 10 μm. The unified fit and the Guinier-Porod models in the Irena software were used to fit the data. The former was used to fit 3 structural levels. Level 1 structures showed that the primary scatterers were essentially 2-dimensional objects for the three cases. The scatterers possessed lateral dimensions between 1000 and 4300 Å. This is consistent with the sizes of crystalline nanoplatelets present which were observed using cryo-TEM. Level 2 structures were aggregates possessing radii of gyration, Rg2 between 1800 Å and 12000 Å and fractal dimensions of either D2=1 for case 3 or 1.8≤D2≤2.1 for case 1 and case 2. D2 = 1 is consistent with unaggregated 1-dimensional objects. 1.8 ≤ D2 ≤ 2.1 is consistent with these 1-dimensional objects (below) forming structures characteristic of diffusion or reaction limited cluster-cluster aggregation. Level 3 structures showed that the spatial distribution of the level 2 structures was uniform, on the average, for case 1, with fractal dimension D3≈3 while for case 2 and case 3 the fractal dimension was D3≈2.2, which suggested that the large-scale distribution had not come to equilibrium. The Guinier-Porod model showed that the structures giving rise to the aggregates with a fractal dimension given by D2 in the unified fit level 2 model were cylinders described by the parameter s ≈1 in the Guinier-Porod model. The size of the base of these cylinders was in agreement with the cryo-TEM observations as well as with the results of the level 1 unified fit model. By estimating the size of the nanoplatelets and understanding the structures formed via their aggregation, it will be possible to engineer novel lipids systems that embody desired functional characteristics.
78 FR 30268 - Del Norte County Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... Schools and Community Self-Determination Act (Pub. L. 112-141) (the Act) and operates in compliance with... to review prior year project's progress. Should the Secure Rural Schools Act be reauthorized, the.... ADDRESSES: The meetings will be held at the Del Norte County Unified School District, Redwood Room, 301 West...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
14 CFR 11.33 - How can I track FAA's rulemaking activities?
Code of Federal Regulations, 2013 CFR
2013-01-01
... publishes a semiannual agenda of all current and projected DOT rulemakings, reviews of existing regulations, and completed actions. This semiannual agenda appears in the Unified Agenda of Federal Regulations, published in the Federal Register in April and October of each year. The semiannual agenda tells the public...
Long Range Facilities Master Plan: 1986-2000, San Diego Unified School District.
ERIC Educational Resources Information Center
Blair, Billie; And Others
The Long-Range Facilities Master Plan presents solution strategies and financing methods for accommodating a projected student enrollment increase of 45,000 between 1986 and 2000. This increase, plus limited financial resources, school use studies, and recent legislation, necessitated the plan. The issues include housing students, facility…
DeTocqueville's Ghost: Examining the Struggle for Democracy in America
ERIC Educational Resources Information Center
Pesick, Stan; Weintraub, Shelley
2003-01-01
The need to increase the content knowledge of American History teachers is emphasized by the Teaching American History Grant. This focus recognizes the crucial role played by classroom teachers in helping students increase their knowledge and understanding of American History. Oakland Unified School District's Teaching American History project,…
Up the Down Spiral with English: Guidelines, Project Insight.
ERIC Educational Resources Information Center
Catholic Board of Education, Diocese of Cleveland, OH.
This curriculum guide presents the philosophy, objectives, and processes which unify a student-centered English program based on Jerome Bruner's concept of the spiral curriculum. To illustrate the spiraling of the learning process (i.e., engagement, perception, interpretation, evaluation, and personal integration), the theme of "hero" is traced…
Russian Higher Education: Who Can Afford It?
ERIC Educational Resources Information Center
Gounko, Tatiana
2012-01-01
The article explores the issue of access and equity in the Russian higher education system by examining recent government initiatives. While recently introduced measures such as the Unified State Examination and student loan project are designed to aid students and expand participation, they alone cannot ensure equitable access to higher education…
Head Start on Science Preliminary Findings.
ERIC Educational Resources Information Center
Ritz, William C.; Von Blum, Ruth
For many Head Start teachers and staff, the word "science" conjures up uncomfortable feelings and memories. The purpose of this project--a collaborative effort of California State University, Long Beach and the Head Start Program of Long Beach Unified School District (LBUSD)--was to prepare Head Start staff to become more capable,…
The BioMart community portal: an innovative alternative to large, centralized data repositories
USDA-ARS?s Scientific Manuscript database
The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biologi...
Expeditionary Learning Approach in Integrated Teacher Education: Model Effectiveness and Dilemma.
ERIC Educational Resources Information Center
Hyun, Eunsook
This paper introduces an integrated teacher education model based on the Expeditionary Learning Outward Bound Project model. It integrates early childhood, elementary, and special education and uses inquiry-oriented and social constructive approaches. It models a team approach, with all teachers unified in their mutually shared philosophy of…
Computer Networking Strategies for Building Collaboration among Science Educators.
ERIC Educational Resources Information Center
Aust, Ronald
The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…
78 FR 53436 - Improving Performance of Federal Permitting and Review of Infrastructure Projects
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... an efficient decision-making process within each agency; to the extent possible, unifying and... IIP Process, the developer is encouraged to inform DOE in writing as soon as possible of its decision... to improve the performance of Federal siting, permitting, and review processes for infrastructure...
Diverse Applications of the Unifying Principles of Lifelong Education to Teacher Preparation
ERIC Educational Resources Information Center
Buckley, Dennis L.
1978-01-01
Reports on procedures of teacher preparation for experimental lifelong education programs developed in Germany, Singapore, Hungary, Australia, and India. The programs were part of a research project employing principles of lifelong education including (1) horizontal integration of formal, nonformal, and informal learning, and (2) democratization…
A Thematic Instruction Approach to Teaching Technology and Engineering
ERIC Educational Resources Information Center
Moyer, Courtney D.
2016-01-01
Thematic instruction offers flexible opportunities to engage students with real-world experiences in the technology and engineering community. Whether used in a broad unifying theme or specific project-based theme, research has proven that thematic instruction has the capacity to link cross-curricular subjects, facilitate active learning, and…
ERIC Educational Resources Information Center
Burgmayer, Paul
2011-01-01
"A Tale of Four Electrons" is a creative writing assignment used with 10th-grade Honors Chemistry students. The project helps students consolidate their learning about bonding--an important unifying theme in chemistry--and answers questions such as (1) How are ionic, metallic, and covalent bonds related? (2) How do variations in electron…
The Napa Project: 02 Year Annual Drug Survey.
ERIC Educational Resources Information Center
Moskowitz, Joel M.; And Others
The results of a survey administered to junior and senior high students in the Napa Valley (CA) Unified School District in 1980 are summarized. The questionnaire administered was the Drug and Alcohol Survey, a group administered, self-report instrument. The questionnaire assesses: (1) drug knowledge; (2) general drug attitudes; (3) perceived…
Brazil's Balbina Dam: Environment versus the legacy of the Pharaohs in Amazonia
NASA Astrophysics Data System (ADS)
Fearnside, Philip M.
1989-07-01
The Balbina Dam in Brazil's state of Amazonas floods 2360 km2 of tropical forest to generate an average of only 112.2 MW of electricity. The flat topography and small size of the drainage basin make output small. Vegetation has been left to decompose in the reservoir, resulting in acidic, anoxic water that will corrode the turbines. The shallow reservoir contains 1500 islands and innumerable stagnant bays where the water's residence time will be even longer than the average time of over one year. Balbina was built to supply electricity to Manaus, a city that has grown so much while the dam was under construction that other alternatives are already needed. Government subsidies explain the explosive growth, including Brazil's unified tariff for electricity. Alternative power sources for Manaus include transmission from more distant dams or from recently discovered oil and natural gas deposits. Among Balbina's impacts are loss of potential use of the forest and displacement of about one third of the surviving members of a much-persecuted Amerindian tribe: the Waimiri-Atroari. The dam was closed on 1 October 1987 and the first of five generators began operation in February 1989. The example of Balbina points to important ways that the decision-making process could be improved in Brazil and in the international funding agencies that have directly and indirectly contributed to the project. Environmental impact analyses must be completed prior to decisions on overall project implementation and must be free of influence from project proponents. The current environmental impact assessment system in Brazil, as in many other countries, has an undesirable influence on science policy, in addition to failing to address the underlying causes of environmentally destructive development processes and inability to halt “irreversible” projects like Balbina.
Maximum projection designs for computer experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, V. Roshan; Gul, Evren; Ba, Shan
Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs only consider space-filling in the full dimensional space. This can result in poor projections onto lower dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-dimensional projections, but cannot guarantee good space-filling properties in larger subspaces. We propose designs that maximize space-filling properties on projections to all subsets of factors. We call our designs maximum projection designs. As a result, our design criterion can be computed at a cost nomore » more than a design criterion that ignores projection properties.« less
Maximum projection designs for computer experiments
Joseph, V. Roshan; Gul, Evren; Ba, Shan
2015-03-18
Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs only consider space-filling in the full dimensional space. This can result in poor projections onto lower dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-dimensional projections, but cannot guarantee good space-filling properties in larger subspaces. We propose designs that maximize space-filling properties on projections to all subsets of factors. We call our designs maximum projection designs. As a result, our design criterion can be computed at a cost nomore » more than a design criterion that ignores projection properties.« less
The Teen Photovoice Project: A Pilot Study to Promote Health Through Advocacy
Necheles, Jonathan W.; Chung, Emily Q.; Hawes-Dawson, Jennifer; Ryan, Gery W.; Williams, La’Shield B.; Holmes, Heidi N.; Wells, Kenneth B.; Vaiana, Mary E.; Schuster, Mark A.
2009-01-01
Background Clinicians, public health practitioners, and policymakers would like to understand how youth perceive health issues and how they can become advocates for health promotion in their communities. 1,2 Traditional research methods can be used to capture these perceptions, but are limited in their ability to activate (excite and engage) youth to participate in health promotion activities. Objectives To pilot the use of an adapted version of photovoice as a starting point to engage youth in identifying influences on their health behaviors in a process that encourages the development of health advocacy projects. Methods Application of qualitative and quantitative methods to a participatory research project that teaches youth the photovoice method to identify and address health promotion issues relevant to their lives. Participants included 13 students serving on a Youth Advisory Board (YAB) of the UCLA/RAND Center for Adolescent Health Promotion working in four small groups of two to five participants. Students were from the Los Angeles, California, metropolitan area. Results Results were derived from photograph sorting activities, analysis of photograph narratives, and development of advocacy projects. Youth frequently discussed a variety of topics reflected in their pictures that included unhealthy food choices, inducers of stress, friends, emotions, environment, health, and positive aspects of family. The advocacy projects used social marketing strategies, focusing on unhealthy dietary practices and inducers of stress. The youths’ focus on obesity-related issues have contributed to the center’s success in partnering with the Los Angeles Unified School District on a new community-based participatory research (CBPR) project. Conclusion Youth can engage in a process of identifying community-level health influences, leading to health promotion through advocacy. Participants focused their advocacy work on selected issues addressing the types of unhealthy food available in their communities and stress. This process appears to provide meaningful insight into the youths’ perspective on what influences their health behaviors. PMID:20208284
Why are some dimensions integral? Testing two hypotheses through causal learning experiments.
Soto, Fabián A; Quintana, Gonzalo R; Pérez-Acosta, Andrés M; Ponce, Fernando P; Vogel, Edgar H
2015-10-01
Compound generalization and dimensional generalization are traditionally studied independently by different groups of researchers, who have proposed separate theories to explain results from each area. A recent extension of Shepard's rational theory of dimensional generalization allows an explanation of data from both areas within a single framework. However, the conceptualization of dimensional integrality in this theory (the direction hypothesis) is different from that favored by Shepard in his original theory (the correlation hypothesis). Here, we report two experiments that test differential predictions of these two notions of integrality. Each experiment takes a design from compound generalization and translates it into a design for dimensional generalization by replacing discrete stimulus components with dimensional values. Experiment 1 showed that an effect analogous to summation is found in dimensional generalization with separable dimensions, but the opposite effect is found with integral dimensions. Experiment 2 showed that the analogue of a biconditional discrimination is solved faster when stimuli vary in integral dimensions than when stimuli vary in separable dimensions. These results, which are analogous to more "non-linear" processing with integral than with separable dimensions, were predicted by the direction hypothesis, but not by the correlation hypothesis. This confirms the assumptions of the unified rational theory of stimulus generalization and reveals interesting links between compound and dimensional generalization phenomena. Copyright © 2015 Elsevier B.V. All rights reserved.
MBAT: a scalable informatics system for unifying digital atlasing workflows.
Lee, Daren; Ruffins, Seth; Ng, Queenie; Sane, Nikhil; Anderson, Steve; Toga, Arthur
2010-12-22
Digital atlases provide a common semantic and spatial coordinate system that can be leveraged to compare, contrast, and correlate data from disparate sources. As the quality and amount of biological data continues to advance and grow, searching, referencing, and comparing this data with a researcher's own data is essential. However, the integration process is cumbersome and time-consuming due to misaligned data, implicitly defined associations, and incompatible data sources. This work addressing these challenges by providing a unified and adaptable environment to accelerate the workflow to gather, align, and analyze the data. The MouseBIRN Atlasing Toolkit (MBAT) project was developed as a cross-platform, free open-source application that unifies and accelerates the digital atlas workflow. A tiered, plug-in architecture was designed for the neuroinformatics and genomics goals of the project to provide a modular and extensible design. MBAT provides the ability to use a single query to search and retrieve data from multiple data sources, align image data using the user's preferred registration method, composite data from multiple sources in a common space, and link relevant informatics information to the current view of the data or atlas. The workspaces leverage tool plug-ins to extend and allow future extensions of the basic workspace functionality. A wide variety of tool plug-ins were developed that integrate pre-existing as well as newly created technology into each workspace. Novel atlasing features were also developed, such as supporting multiple label sets, dynamic selection and grouping of labels, and synchronized, context-driven display of ontological data. MBAT empowers researchers to discover correlations among disparate data by providing a unified environment for bringing together distributed reference resources, a user's image data, and biological atlases into the same spatial or semantic context. Through its extensible tiered plug-in architecture, MBAT allows researchers to customize all platform components to quickly achieve personalized workflows.
Curvature tensors unified field equations on SEXn
NASA Astrophysics Data System (ADS)
Chung, Kyung Tae; Lee, Il Young
1988-09-01
We study the curvature tensors and field equations in the n-dimensional SE manifold SEXn. We obtain several basic properties of the vectors S λ and U λ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEXn and one of its particular solutions is constructed and displayed.
Personalization of structural PDB files.
Woźniak, Tomasz; Adamiak, Ryszard W
2013-01-01
PDB format is most commonly applied by various programs to define three-dimensional structure of biomolecules. However, the programs often use different versions of the format. Thus far, no comprehensive solution for unifying the PDB formats has been developed. Here we present an open-source, Python-based tool called PDBinout for processing and conversion of various versions of PDB file format for biostructural applications. Moreover, PDBinout allows to create one's own PDB versions. PDBinout is freely available under the LGPL licence at http://pdbinout.ibch.poznan.pl.
Automated generation of image products for Mars Exploration Rover Mission tactical operations
NASA Technical Reports Server (NTRS)
Alexander, Doug; Zamani, Payam; Deen, Robert; Andres, Paul; Mortensen, Helen
2005-01-01
This paper will discuss, from design to implementation, the methodologies applied to MIPL's automated pipeline processing as a 'system of systems' integrated with the MER GDS. Overviews of the interconnected product generating systems will also be provided with emphasis on interdependencies, including those for a) geometric rectificationn of camera lens distortions, b) generation of stereo disparity, c) derivation of 3-dimensional coordinates in XYZ space, d) generation of unified terrain meshes, e) camera-to-target ranging (distance) and f) multi-image mosaicking.
NASA Astrophysics Data System (ADS)
Redi, Michele; Sato, Ryosuke
2016-05-01
We present several models where the QCD axion arises accidentally. Confining gauge theories can generate axion candidates whose properties are uniquely determined by the quantum numbers of the new fermions under the Standard Model. The Peccei-Quinn symmetry can emerge accidentally if the gauge theory is chiral. We generalise previous constructions in a unified framework. In some cases these models can be understood as the deconstruction of 5-dimensional gauge theories where the Peccei-Quinn symmetry is protected by locality but more general constructions are possible.
ERIC Educational Resources Information Center
Russo, Charles J.
2008-01-01
In light of the dramatic increase in the presence of weapons, violence, drugs, and other contraband in schools, school officials in the United States and England face significant challenges as they seek to maintain safe and orderly learning environments. Almost twenty five years after the United States Supreme Court's 1985 ruling in "New…
ERIC Educational Resources Information Center
Thirunarayanan, M. O.
The purpose of this study was to explore students' conceptions of 31 selected science, technology, and society issues. Differences in such conceptions across different grade-levels and among males and females also were examined. A total of 138 males and females enrolled in grades five through eleven in a unified school district, and in…
The meaning of the National Environmental Policy Act within the U.S. Forest Service
Marc J. Stern; S. Andrew Predmore; Michael J. Mortimer; David N. Seesholtz
2010-01-01
We conducted a survey of 3321 Forest Service employees involved in compliance with the National Environmental Policy Act (NEPA) followed by five focus groups to investigate agency views of the purpose of agency NEPA processes and their appropriate measures of success. Results suggest the lack of a unified critical task for Forest Service NEPA processes and that...
2015-03-01
a hotel and a hospital. 2. Event handler for emergency policies (item 2 above): this has been implemented in two UG projects, one project developed a...Workshop on Logical and Se- mantic Frameworks, with Applications, Brasilia, Brazil , September 2014. Electronic Notes in Theoretical Computer Science (to...Brasilia, Brazil , September 2014, 2015. [3] S. Barker. The next 700 access control models or a unifying meta-model? In SACMAT 2009, 14th ACM Symposium on
15 maps merged in one data structure - GIS-based template for Dawn at Ceres
NASA Astrophysics Data System (ADS)
Naß, A.; Dawn Mapping Team
2017-09-01
Derive regional and global valid statements out of the map (quadrangles) is already a very time intensive task. However, another challenge is how individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) representing one geologically-consistent final map. Within this contribution a template will be presented which was generated for the process of the interpretative mapping project of Ceres to accomplish the requirement of unifying and merging individual quadrangle.
2013-03-08
applicable fire protection standards for two of the three projects we reviewed that required a fire sprinkler system . Specifically, the Secure...RSOI and Command and Control facilities do not have fire sprinkler systems as required by Unified Facilities Criteria 3-600-01, Section 4-2.2...stated that, as such, those facilities did not need fire sprinkler systems . Based on the justification provided by the Air Force on the DD Form 1391s
Development of Seismic Isolation Systems Using Periodic Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yiqun; Mo, Yi-Lung; Menq, Farn-Yuh
Advanced fast nuclear power plants and small modular fast reactors are composed of thin-walled structures such as pipes; as a result, they do not have sufficient inherent strength to resist seismic loads. Seismic isolation, therefore, is an effective solution for mitigating earthquake hazards for these types of structures. Base isolation, on which numerous studies have been conducted, is a well-defined structure protection system against earthquakes. In conventional isolators, such as high-damping rubber bearings, lead-rubber bearings, and friction pendulum bearings, large relative displacements occur between upper structures and foundations. Only isolation in a horizontal direction is provided; these features are notmore » desirable for the piping systems. The concept of periodic materials, based on the theory of solid-state physics, can be applied to earthquake engineering. The periodic material is a material that possesses distinct characteristics that prevent waves with certain frequencies from being transmitted through it; therefore, this material can be used in structural foundations to block unwanted seismic waves with certain frequencies. The frequency band of periodic material that can filter out waves is called the band gap, and the structural foundation made of periodic material is referred to as the periodic foundation. The design of a nuclear power plant, therefore, can be unified around the desirable feature of a periodic foundation, while the continuous maintenance of the structure is not needed. In this research project, three different types of periodic foundations were studied: one-dimensional, two-dimensional, and three-dimensional. The basic theories of periodic foundations are introduced first to find the band gaps; then the finite element methods are used, to perform parametric analysis, and obtain attenuation zones; finally, experimental programs are conducted, and the test data are analyzed to verify the theory. This procedure shows that the periodic foundation is a promising and effective way to mitigate structural damage caused by earthquake excitation.« less
MEaSUREs Land Surface Temperature from GOES Satellites
NASA Astrophysics Data System (ADS)
Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon
2017-04-01
Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).
APPLE - An aeroelastic analysis system for turbomachines and propfans
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral
1992-01-01
This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).
Warped unification, proton stability, and dark matter.
Agashe, Kaustubh; Servant, Géraldine
2004-12-03
We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.
A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Bard, Christopher M.; Dorelli, John C.
2014-02-01
We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of ≈126 for a 10242 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.
NASA Astrophysics Data System (ADS)
Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.
2014-10-01
The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.
Including information technology project management in the nursing informatics curriculum.
Sockolow, Paulina; Bowles, Kathryn H
2008-01-01
Project management is a critical skill for nurse informaticists who are in prominent roles developing and implementing clinical information systems. It should be included in the nursing informatics curriculum, as evidenced by its inclusion in informatics competencies and surveys of important skills for informaticists. The University of Pennsylvania School of Nursing includes project management in two of the four courses in the master's level informatics minor. Course content includes the phases of the project management process; the iterative unified process methodology; and related systems analysis and project management skills. During the introductory course, students learn about the project plan, requirements development, project feasibility, and executive summary documents. In the capstone course, students apply the system development life cycle and project management skills during precepted informatics projects. During this in situ experience, students learn, the preceptors benefit, and the institution better prepares its students for the real world.
Hall, S; Poller, B; Bailey, C; Gregory, S; Clark, R; Roberts, P; Tunbridge, A; Poran, V; Evans, C; Crook, B
2018-06-01
Variations currently exist across the UK in the choice of personal protective equipment (PPE) used by healthcare workers when caring for patients with suspected high-consequence infectious diseases (HCIDs). To test the protection afforded to healthcare workers by current PPE ensembles during assessment of a suspected HCID case, and to provide an evidence base to justify proposal of a unified PPE ensemble for healthcare workers across the UK. One 'basic level' (enhanced precautions) PPE ensemble and five 'suspected case' PPE ensembles were evaluated in volunteer trials using 'Violet'; an ultraviolet-fluorescence-based simulation exercise to visualize exposure/contamination events. Contamination was photographed and mapped. There were 147 post-simulation and 31 post-doffing contamination events, from a maximum of 980, when evaluating the basic level of PPE. Therefore, this PPE ensemble did not afford adequate protection, primarily due to direct contamination of exposed areas of the skin. For the five suspected case ensembles, 1584 post-simulation contamination events were recorded, from a maximum of 5110. Twelve post-doffing contamination events were also observed (face, two events; neck, one event; forearm, one event; lower legs, eight events). All suspected case PPE ensembles either had post-doffing contamination events or other significant disadvantages to their use. This identified the need to design a unified PPE ensemble and doffing procedure, incorporating the most protective PPE considered for each body area. This work has been presented to, and reviewed by, key stakeholders to decide on a proposed unified ensemble, subject to further evaluation. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Neutron star mass-radius relation with gravitational field shielding by a scalar field
NASA Astrophysics Data System (ADS)
Zhang, Bo-Jun; Zhang, Tian-Xi; Guggilla, Padmaja; Dokhanian, Mostafa
2013-05-01
The currently well-developed models for equations of state (EoSs) have been severely impacted by recent measurements of neutron stars with a small radius and/or large mass. To explain these measurements, the theory of gravitational field shielding by a scalar field is applied. This theory was recently developed in accordance with the five-dimensional (5D) fully covariant Kaluza-Klein (KK) theory that has successfully unified Einstein's general relativity and Maxwell's electromagnetic theory. It is shown that a massive, compact neutron star can generate a strong scalar field, which can significantly shield or reduce its gravitational field, thus making it more massive and more compact. The mass-radius relation developed under this type of modified gravity can be consistent with these recent measurements of neutron stars. In addition, the effect of gravitational field shielding helps explain why the supernova explosions of some very massive stars (e.g., 40 Msolar as measured recently) actually formed neutron stars rather than black holes as expected. The EoS models, ruled out by measurements of small radius and/or large mass neutron stars according to the theory of general relativity, can still work well in terms of the 5D fully covariant KK theory with a scalar field.
Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter
2016-01-01
The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model. PMID:27148130
Five-Dimensional Gauged Supergravity with Higher Derivatives
NASA Astrophysics Data System (ADS)
Hanaki, Kentaro
This thesis summarizes the recent developments on the study of five-dimensional gauged supergravity with higher derivative terms, emphasizing in particular the application to understanding the hydrodynamic properties of gauge theory plasma via the AdS/CFT correspondence. We first review how the ungauged and gauged five-dimensional supergravity actions with higher derivative terms can be constructed using the off-shell superconformal formalism. Then we relate the gauged supergravity to four-dimensional gauge theory using the AdS/CFT correspondence and extract the physical quantities associated with gauge theory plasma from the dual classical supergravity computations. We put a particular emphasis on the discussion of the conjectured lower bound for the shear viscosity over entropy density ratio proposed by Kovtun, Son and Starinets, and discuss how higher derivative terms in supergravity and the introduction of chemical potential for the R-charge affect this bound.
NASA Astrophysics Data System (ADS)
Li, Lu-Ke; Zhang, Shen-Feng
2018-03-01
Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.
The WCA reference system for four- and five-dimensional Lennard-Jones fluids
NASA Astrophysics Data System (ADS)
Bishop, Marvin
1988-05-01
The WCA reference system is investigated for four- and five-dimensional Lennard-Jones fluids by molecular dynamics simulations. It is found that the WCA prescription for the scaling of the reference system to a hard hypersphere one is a very good approximation in the fluid region.
NASA Astrophysics Data System (ADS)
Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo
2018-03-01
In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.
NASA Astrophysics Data System (ADS)
Hou, C. Y.; Dattore, R.; Peng, G. S.
2014-12-01
The National Center for Atmospheric Research's Global Climate Four-Dimensional Data Assimilation (CFDDA) Hourly 40km Reanalysis dataset is a dynamically downscaled dataset with high temporal and spatial resolution. The dataset contains three-dimensional hourly analyses in netCDF format for the global atmospheric state from 1985 to 2005 on a 40km horizontal grid (0.4°grid increment) with 28 vertical levels, providing good representation of local forcing and diurnal variation of processes in the planetary boundary layer. This project aimed to make the dataset publicly available, accessible, and usable in order to provide a unique resource to allow and promote studies of new climate characteristics. When the curation project started, it had been five years since the data files were generated. Also, although the Principal Investigator (PI) had generated a user document at the end of the project in 2009, the document had not been maintained. Furthermore, the PI had moved to a new institution, and the remaining team members were reassigned to other projects. These factors made data curation in the areas of verifying data quality, harvest metadata descriptions, documenting provenance information especially challenging. As a result, the project's curation process found that: Data curator's skill and knowledge helped make decisions, such as file format and structure and workflow documentation, that had significant, positive impact on the ease of the dataset's management and long term preservation. Use of data curation tools, such as the Data Curation Profiles Toolkit's guidelines, revealed important information for promoting the data's usability and enhancing preservation planning. Involving data curators during each stage of the data curation life cycle instead of at the end could improve the curation process' efficiency. Overall, the project showed that proper resources invested in the curation process would give datasets the best chance to fulfill their potential to help with new climate pattern discovery.
Novel, posterior sensory organ in the trochophore larva of Phyllodoce maculata (Polychaeta).
Nezlin, L P; Voronezhskaya, E E
2003-01-01
A new posterior sensory organ (PSO), located at the dorsal midline of the hyposphere, is described by immunocytochemical detection of acetylated alpha tubulin and serotonin (5-HT) in a laser-scanning microscope, as well as three-dimensional reconstructions after optical serial sectioning in the trochophore larva of the polychaete Phyllodoce maculata (Phyllodocidae). The unpaired PSO consists of five bipolar sensory cells, two of them being 5-HT immunopositive, which send axons to the cerebral ganglion and prototroch nerve. The dendrites of these cells project to the surface and bear one cilium each. A single neuronal fibre from the apical sensory organ innervates the PSO. PMID:14667369
FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data.
DeTomaso, David; Yosef, Nir
2016-08-23
A key challenge in the emerging field of single-cell RNA-Seq is to characterize phenotypic diversity between cells and visualize this information in an informative manner. A common technique when dealing with high-dimensional data is to project the data to 2 or 3 dimensions for visualization. However, there are a variety of methods to achieve this result and once projected, it can be difficult to ascribe biological significance to the observed features. Additionally, when analyzing single-cell data, the relationship between cells can be obscured by technical confounders such as variable gene capture rates. To aid in the analysis and interpretation of single-cell RNA-Seq data, we have developed FastProject, a software tool which analyzes a gene expression matrix and produces a dynamic output report in which two-dimensional projections of the data can be explored. Annotated gene sets (referred to as gene 'signatures') are incorporated so that features in the projections can be understood in relation to the biological processes they might represent. FastProject provides a novel method of scoring each cell against a gene signature so as to minimize the effect of missed transcripts as well as a method to rank signature-projection pairings so that meaningful associations can be quickly identified. Additionally, FastProject is written with a modular architecture and designed to serve as a platform for incorporating and comparing new projection methods and gene selection algorithms. Here we present FastProject, a software package for two-dimensional visualization of single cell data, which utilizes a plethora of projection methods and provides a way to systematically investigate the biological relevance of these low dimensional representations by incorporating domain knowledge.
Lessons in Reading Reform: Finding What Works. Technical Appendix
ERIC Educational Resources Information Center
Betts, Julian R.; Zau, Andrew C.; Koedel, Cory
2010-01-01
This technical appendix provides more detail on the reading reforms implemented under the Blueprint for Student Success project in the San Diego Unified School District (SDUSD) between 2000 and 2005. It provides details on the dataset, the econometric methods the authors employed, and the results, which are also detailed and discussed in the main…
Persuasive Writing, A Curriculum Design: K-12.
ERIC Educational Resources Information Center
Bennett, Susan G., Ed.
In the spirit of the Texas Hill Country Writing Project and in response to the requirements of the Texas Assessment of Basic Skills, this guide presents writing assignments reflecting a commitment to a unified writing program for kindergarten through grade twelve. The framework for the assignments is adopted from the discourse theory of James…
Universe Cycle. K-6 Science Curriculum.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
Universe Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) earth (providing activities on the physical shape of the earth and landform formations; (2) geography (emphasizing map reading skills); (3) universe (exploring the components, processes and future projects for the…
Science Inquiry into Local Animals: Structure and Function Explored through Model Making
ERIC Educational Resources Information Center
Rule, Audrey C.; Tallakson, Denise A.; Glascock, Alex L.; Chao, Astoria
2015-01-01
This article describes an arts- and spatial thinking skill--integrated inquiry project applied to life science concepts from the Next Generation Science Standards for fourth grade students that focuses on two unifying or crosscutting themes: (1) structure (or "form") and function and (2) use of models. Students made observations and…
The Quest for Space--CD-ROM and Capacity Constraints.
ERIC Educational Resources Information Center
Wright, David
1997-01-01
Examines the current status of optical technology, in particular the CD-ROM and its projected obsolescence due to DVD technology. The article focuses on the recent COBUILD release, addressing the rationale for integrating the learning of prefabricated items and collocations into the language learning syllabus. A unifying theme of this article is…
A National Association: Our Growth, Organizational Development and Special Projects.
ERIC Educational Resources Information Center
Dorn, Charles M.
The establishment of a unified voice, the development of a learned society, and the democratization of the National Art Education Association's (NAEA) governance are the three most significant changes that have occurred in the development of the NAEA since its establishment in 1947. During NAEA's foundational years, 1947-1958, many important…
TITLE I, E.S.E.A., 1967-68. REVISED REPORT.
ERIC Educational Resources Information Center
SWEENEY, DAVID L.
THIS REPORT DESCRIBES THE WAYS IN WHICH THE UNIFIED SCHOOL DISTRICT OF RACINE, WISCONSIN, WILL USE ELEMENTARY AND SECONDARY EDUCATION ACT, TITLE I FUNDS. THE PROJECT ACTIVITIES INCLUDE THE DEVELOPMENT OF THREE "UNITIZED" SCHOOLS WITH RESTRUCTURED GRADE ORGANIZATIONS AND TEAM TEACHING INSTRUCTION, THE USE OF ART AND MUSIC SPECIALISTS IN…
Curricular Improvements through Computation and Experiment Based Learning Modules
ERIC Educational Resources Information Center
Khan, Fazeel; Singh, Kumar
2015-01-01
Engineers often need to predict how a part, mechanism or machine will perform in service, and this insight is typically achieved thorough computer simulations. Therefore, instruction in the creation and application of simulation models is essential for aspiring engineers. The purpose of this project was to develop a unified approach to teaching…
40 CFR 52.270 - Significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... applicable State plan for the State of California. (b) District PSD Plans. (1) The PSD rules for Sacramento... of PSD increments. (ii) Those projects which are major stationary sources or major modifications... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved...
Project UNIFY: Promoting Social Inclusion through Sports, Interaction and Education
ERIC Educational Resources Information Center
Parker, Robin C.; Corona, Laura; Cahn, Andrea
2013-01-01
Today's youth face many challenges, from achieving personal and academic success to feeling emotionally and physically healthy and safe. These challenges are even greater for some students due to the presence of a disability, and especially students with intellectual disabilities (ID). Increasingly, children with ID, who once were on the margins…
40 CFR 52.270 - Significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicable State plan for the State of California. (b) District PSD Plans. (1) The PSD rules for Sacramento... of PSD increments. (ii) Those projects which are major stationary sources or major modifications... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved...
40 CFR 52.270 - Significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicable State plan for the State of California. (b) District PSD Plans. (1) The PSD rules for Sacramento... of PSD increments. (ii) Those projects which are major stationary sources or major modifications... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved...
40 CFR 52.270 - Significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicable State plan for the State of California. (b) District PSD Plans. (1) The PSD rules for Sacramento... of PSD increments. (ii) Those projects which are major stationary sources or major modifications... 83-01, 5/6/83. (2) The PSD rules for North Coast Unified Air Quality Management District are approved...
2012-11-27
with powerful analysis tools and an informatics approach leveraging best-of-breed NoSQL databases, in order to store, search and retrieve relevant...dictionaries, and JavaScript also has good support. The MongoDB project[15] was chosen as a scalable NoSQL data store for the cheminfor- matics components
ERIC Educational Resources Information Center
Kennedy, Mike
2009-01-01
This fall, the Los Angeles Unified School District sold about $2 billion in bonds to finance more projects in its massive school construction program. But the cost of repaying that debt won't be as burdensome as it could have been. Los Angeles took advantage of two federal programs available to school systems through the American Reinvestment and…
A support architecture for reliable distributed computing systems
NASA Technical Reports Server (NTRS)
Dasgupta, Partha; Leblanc, Richard J., Jr.
1988-01-01
The Clouds project is well underway to its goal of building a unified distributed operating system supporting the object model. The operating system design uses the object concept of structuring software at all levels of the system. The basic operating system was developed and work is under progress to build a usable system.
Benefits of Cultural Immersion Activities in a Special Education Teacher Training Program.
ERIC Educational Resources Information Center
Minner, Sam; And Others
The Rural Special Education Project (RSEP) is a school-based, special education teacher preparation program located on the Navajo Reservation. The program, which is a partnership between Northern Arizona University and Kayenta Unified School District, immerses Anglo participants in Navajo culture and heightens their awareness of cross-cultural and…
A Low Power SOC Architecture for the V2.0+EDR Bluetooth Using a Unified Verification Platform
NASA Astrophysics Data System (ADS)
Kim, Jeonghun; Kim, Suki; Baek, Kwang-Hyun
This paper presents a low-power System on Chip (SOC) architecture for the v2.0+EDR (Enhanced Data Rate) Bluetooth and its applications. Our design includes a link controller, modem, RF transceiver, Sub-Band Codec (SBC), Expanded Instruction Set Computer (ESIC) processor, and peripherals. To decrease power consumption of the proposed SOC, we reduce data transfer using a dual-port memory, including a power management unit, and a clock gated approach. We also address some of issues and benefits of reusable and unified environment on a centralized data structure and SOC verification platform. This includes flexibility in meeting the final requirements using technology-independent tools wherever possible in various processes and for projects. The other aims of this work are to minimize design efforts by avoiding the same work done twice by different people and to reuse the similar environment and platform for different projects. This chip occupies a die size of 30mm2 in 0.18µm CMOS, and the worst-case current of the total chip is 54mA.
Optimization of microphysics in the Unified Model, using the Micro-genetic algorithm.
NASA Astrophysics Data System (ADS)
Jang, J.; Lee, Y.; Lee, H.; Lee, J.; Joo, S.
2016-12-01
This study focuses on parameter optimization of microphysics in the Unified Model (UM) using the Micro-genetic algorithm (Micro-GA). We need the optimization of microphysics in UM. Because, Microphysics in the Numerical Weather Prediction (NWP) model is important to Quantitative Precipitation Forecasting (QPF). The Micro-GA searches for optimal parameters on the basis of fitness function. The five parameters are chosen. The target parameters include x1, x2 related to raindrop size distribution, Cloud-rain correlation coefficient, Surface droplet number and Droplet taper height. The fitness function is based on the skill score that is BIAS and Critical Successive Index (CSI). An interface between UM and Micro-GA is developed and applied to three precipitation cases in Korea. The cases are (ⅰ) heavy rainfall in the Southern area because of typhoon NAKRI, (ⅱ) heavy rainfall in the Youngdong area, and (ⅲ) heavy rainfall in the Seoul metropolitan area. When the optimized result is compared to the control result (using the UM default value, CNTL), the optimized result leads to improvements in precipitation forecast, especially for heavy rainfall of the late forecast time. Also, we analyze the skill score of precipitation forecasts in terms of various thresholds of CNTL, Optimized result, and experiments on each optimized parameter for five parameters. Generally, the improvement is maximized when the five optimized parameters are used simultaneously. Therefore, this study demonstrates the ability to improve Korean precipitation forecasts by optimizing microphysics in UM.
Jia, Jingjing; Li, Huajiao; Zhou, Jinsheng; Jiang, Meihui; Dong, Di
2018-03-01
Research on the price fluctuation transmission of the carbon trading pilot market is of great significance for the establishment of China's unified carbon market and its development in the future. In this paper, the carbon market transaction prices of Beijing, Shanghai, Tianjin, Shenzhen, and Guangdong were selected from December 29, 2013 to March 26, 2016, as sample data. Based on the view of the complex network theory, we construct a price fluctuation transmission network model of five pilot carbon markets in China, with the purposes of analyzing the topological features of this network, including point intensity, weighted clustering coefficient, betweenness centrality, and community structure, and elucidating the characteristics and transmission mechanism of price fluctuation in China's five pilot cities. The results of point intensity and weighted clustering coefficient show that the carbon prices in the five markets remained unchanged and transmitted smoothly in general, and price fragmentation is serious; however, at some point, the price fluctuates with mass phenomena. The result of betweenness centrality reflects that a small number of price fluctuations can control the whole market carbon price transmission and price fluctuation evolves in an alternate manner. The study provides direction for the scientific management of the carbon price. Policy makers should take a positive role in promoting market activity, preventing the risks that may arise from mass trade and scientifically forecasting the volatility of trading prices, which will provide experience for the establishment of a unified carbon market in China.
High dimensional feature reduction via projection pursuit
NASA Technical Reports Server (NTRS)
Jimenez, Luis; Landgrebe, David
1994-01-01
The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many more spectral intervals than previously possible. An example of that technology is the AVIRIS system, which collects image data in 220 bands. As a result of this, new algorithms must be developed in order to analyze the more complex data effectively. Data in a high dimensional space presents a substantial challenge, since intuitive concepts valid in a 2-3 dimensional space to not necessarily apply in higher dimensional spaces. For example, high dimensional space is mostly empty. This results from the concentration of data in the corners of hypercubes. Other examples may be cited. Such observations suggest the need to project data to a subspace of a much lower dimension on a problem specific basis in such a manner that information is not lost. Projection Pursuit is a technique that will accomplish such a goal. Since it processes data in lower dimensions, it should avoid many of the difficulties of high dimensional spaces. In this paper, we begin the investigation of some of the properties of Projection Pursuit for this purpose.
Wang, Guoli; Ebrahimi, Nader
2014-01-01
Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H, such that V ∼ W H. It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H. In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data. PMID:25821345
Devarajan, Karthik; Wang, Guoli; Ebrahimi, Nader
2015-04-01
Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H , such that V ∼ W H . It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H . In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data.
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.
2017-12-01
Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications. In this poster, we summarize the key components of the UCVM framework and describe the impact it has had in various computational geoscientific applications.
A Unified Directional Spectrum for Long and Short Wind-Driven Waves
NASA Technical Reports Server (NTRS)
Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D.
1997-01-01
Review of several recent ocean surface wave models finds that while comprehensive in many regards, these spectral models do not satisfy certain additional, but fundamental, criteria. We propose that these criteria include the ability to properly describe diverse fetch conditions and to provide agreement with in situ observations of Cox and Munk [1954] and Jiihne and Riemer [1990] and Hara et al. [1994] data in the high-wavenumber regime. Moreover, we find numerous analytically undesirable aspects such as discontinuities across wavenumber limits, nonphysical tuning or adjustment parameters, and noncentrosymmetric directional spreading functions. This paper describes a two-dimensional wavenumber spectrum valid over all wavenumbers and analytically amenable to usage in electromagnetic models. The two regime model is formulated based on the Joint North Sea Wave Project (JONSWAP) in the long-wave regime and on the work of Phillips [1985] and Kitaigorodskii [1973] at the high wavenumbers. The omnidirectional and wind-dependent spectrum is constructed to agree with past and recent observations including the criteria mentioned above. The key feature of this model is the similarity of description for the high- and low-wavenumber regimes; both forms are posed to stress that the air-sea interaction process of friction between wind and waves (i.e., generalized wave age, u/c) is occurring at all wavelengths simultaneously. This wave age parameterization is the unifying feature of the spectrum. The spectrum's directional spreading function is symmetric about the wind direction and has both wavenumber and wind speed dependence. A ratio method is described that enables comparison of this spreading function with previous noncentrosymmetric forms. Radar data are purposefully excluded from this spectral development. Finally, a test of the spectrum is made by deriving roughness length using the boundary layer model of Kitaigorodskii. Our inference of drag coefficient versus wind speed and wave age shows encouraging agreement with Humidity Exchange Over the Sea (HEXOS) campaign results.
Bi-level Multi-Source Learning for Heterogeneous Block-wise Missing Data
Xiang, Shuo; Yuan, Lei; Fan, Wei; Wang, Yalin; Thompson, Paul M.; Ye, Jieping
2013-01-01
Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified “bi-level” learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. PMID:23988272
Bi-level multi-source learning for heterogeneous block-wise missing data.
Xiang, Shuo; Yuan, Lei; Fan, Wei; Wang, Yalin; Thompson, Paul M; Ye, Jieping
2014-11-15
Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified "bi-level" learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-10-01
Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics and find the entropy of a (2 +1 )-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole. The shell in (2 +1 ) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ spacetime. The extremal BTZ rotating black hole can be obtained in three different ways depending on the way the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The resulting three cases give that the BTZ black hole entropy is either the Bekenstein-Hawking entropy, S =A/+ 4 G , or an arbitrary function of A+, S =S (A+) , where A+=2 π r+ is the area, i.e., the perimeter, of the event horizon in (2 +1 ) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤S (A+)≤A/+ 4 G . We also show that the contributions from the various thermodynamic quantities, namely, the mass, the circular velocity, and the temperature, for the entropy in all three cases are distinct. This study complements the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates the results found for a (3 +1 )-dimensional extremal electrically charged Reissner-Nordström black hole.
A standard lexicon for biodiversity conservation: unified classifications of threats and actions.
Salafsky, Nick; Salzer, Daniel; Stattersfield, Alison J; Hilton-Taylor, Craig; Neugarten, Rachel; Butchart, Stuart H M; Collen, Ben; Cox, Neil; Master, Lawrence L; O'Connor, Sheila; Wilkie, David
2008-08-01
An essential foundation of any science is a standard lexicon. Any given conservation project can be described in terms of the biodiversity targets, direct threats, contributing factors at the project site, and the conservation actions that the project team is employing to change the situation. These common elements can be linked in a causal chain, which represents a theory of change about how the conservation actions are intended to bring about desired project outcomes. If project teams want to describe and share their work and learn from one another, they need a standard and precise lexicon to specifically describe each node along this chain. To date, there have been several independent efforts to develop standard classifications for the direct threats that affect biodiversity and the conservation actions required to counteract these threats. Recognizing that it is far more effective to have only one accepted global scheme, we merged these separate efforts into unified classifications of threats and actions, which we present here. Each classification is a hierarchical listing of terms and associated definitions. The classifications are comprehensive and exclusive at the upper levels of the hierarchy, expandable at the lower levels, and simple, consistent, and scalable at all levels. We tested these classifications by applying them post hoc to 1191 threatened bird species and 737 conservation projects. Almost all threats and actions could be assigned to the new classification systems, save for some cases lacking detailed information. Furthermore, the new classification systems provided an improved way of analyzing and comparing information across projects when compared with earlier systems. We believe that widespread adoption of these classifications will help practitioners more systematically identify threats and appropriate actions, managers to more efficiently set priorities and allocate resources, and most important, facilitate cross-project learning and the development of a systematic science of conservation.
Variation simulation for compliant sheet metal assemblies with applications
NASA Astrophysics Data System (ADS)
Long, Yufeng
Sheet metals are widely used in discrete products, such as automobiles, aircraft, furniture and electronics appliances, due to their good manufacturability and low cost. A typical automotive body assembly consists of more than 300 parts welded together in more than 200 assembly fixture stations. Such an assembly system is usually quite complex, and takes a long time to develop. As the automotive customer demands products of increasing quality in a shorter time, engineers in automotive industry turn to computer-aided engineering (CAE) tools for help. Computers are an invaluable resource for engineers, not only to simplify and automate the design process, but also to share design specifications with manufacturing groups so that production systems can be tooled up quickly and efficiently. Therefore, it is beneficial to develop computerized simulation and evaluation tools for development of automotive body assembly systems. It is a well-known fact that assembly architectures (joints, fixtures, and assembly lines) have a profound impact on dimensional quality of compliant sheet metal assemblies. To evaluate sheet metal assembly architectures, a special dimensional analysis tool need be developed for predicting dimensional variation of the assembly. Then, the corresponding systematic tools can be established to help engineers select the assembly architectures. In this dissertation, a unified variation model is developed to predict variation in compliant sheet metal assemblies by considering fixture-induced rigid-body motion, deformation and springback. Based on the unified variation model, variation propagation models in multiple assembly stations with various configurations are established. To evaluate the dimensional capability of assembly architectures, quantitative indices are proposed based on the sensitivity matrix, which are independent of the variation level of the process. Examples are given to demonstrate their applications in selecting robust assembly architectures, and some useful guidelines for selection of assembly architectures are summarized. In addition, to enhance the fault diagnosis, a systematic methodology is proposed for selection of measurement configurations. Specifically, principles involved in selecting measurements are generalized first; then, the corresponding quantitative indices are developed to evaluate the measurement configurations, and finally, examples are present.
Onishi, Hideo; Motomura, Nobutoku; Takahashi, Masaaki; Yanagisawa, Masamichi; Ogawa, Koichi
2010-03-01
Degradation of SPECT images results from various physical factors. The primary aim of this study was the development of a digital phantom for use in the characterization of factors that contribute to image degradation in clinical SPECT studies. A 3-dimensional mathematic cylinder (3D-MAC) phantom was devised and developed. The phantom (200 mm in diameter and 200 mm long) comprised 3 imbedded stacks of five 30-mm-long cylinders (diameters, 4, 10, 20, 40, and 60 mm). In simulations, the 3 stacks and the background were assigned radioisotope concentrations and attenuation coefficients. SPECT projection datasets that included Compton scattering effects, photoelectric effects, and gamma-camera models were generated using the electron gamma-shower Monte Carlo simulation program. Collimator parameters, detector resolution, total photons acquired, number of projections acquired, and radius of rotation were varied in simulations. The projection data were formatted in Digital Imaging and Communications in Medicine (DICOM) and imported to and reconstructed using commercial reconstruction software on clinical SPECT workstations. Using the 3D-MAC phantom, we validated that contrast depended on size of region of interest (ROI) and was overestimated when the ROI was small. The low-energy general-purpose collimator caused a greater partial-volume effect than did the low-energy high-resolution collimator, and contrast in the cold region was higher using the filtered backprojection algorithm than using the ordered-subset expectation maximization algorithm in the SPECT images. We used imported DICOM projection data and reconstructed these data using vendor software; in addition, we validated reconstructed images. The devised and developed 3D-MAC SPECT phantom is useful for the characterization of various physical factors, contrasts, partial-volume effects, reconstruction algorithms, and such, that contribute to image degradation in clinical SPECT studies.
Killing Forms on the Five-Dimensional Einstein-Sasaki Y(p, q) Spaces
NASA Astrophysics Data System (ADS)
Visinescu, Mihai
2012-12-01
We present the complete set of Killing-Yano tensors on the five-dimensional Einstein-Sasaki Y(p, q) spaces. Two new Killing-Yano tensors are identified, associated with the complex volume form of the Calabi-Yau metric cone. The corresponding hidden symmetries are not anomalous and the geodesic equations are superintegrable.
Nishio, Kengo; Miyazaki, Takehide
2017-01-01
Polyhedral tilings are often used to represent structures such as atoms in materials, grains in crystals, foams, galaxies in the universe, etc. In the previous paper, we have developed a theory to convert a way of how polyhedra are arranged to form a polyhedral tiling into a codeword (series of numbers) from which the original structure can be recovered. The previous theory is based on the idea of forming a polyhedral tiling by gluing together polyhedra face to face. In this paper, we show that the codeword contains redundant digits not needed for recovering the original structure, and develop a theory to reduce the redundancy. For this purpose, instead of polyhedra, we regard two-dimensional regions shared by faces of adjacent polyhedra as building blocks of a polyhedral tiling. Using the present method, the same information is represented by a shorter codeword whose length is reduced by up to the half of the original one. Shorter codewords are easier to handle for both humans and computers, and thus more useful to describe polyhedral tilings. By generalizing the idea of assembling two-dimensional components to higher dimensional polytopes, we develop a unified theory to represent polyhedral tilings and polytopes of different dimensions in the same light. PMID:28094254
The, Bertram; Flivik, Gunnar; Diercks, Ron L; Verdonschot, Nico
2008-03-01
Wear curves from individual patients often show unexplained irregular wear curves or impossible values (negative wear). We postulated errors of two-dimensional wear measurements are mainly the result of radiographic projection differences. We tested a new method that makes two-dimensional wear measurements less sensitive for radiograph projection differences of cemented THAs. The measurement errors that occur when radiographically projecting a three-dimensional THA were modeled. Based on the model, we developed a method to reduce the errors, thus approximating three-dimensional linear wear values, which are less sensitive for projection differences. An error analysis was performed by virtually simulating 144 wear measurements under varying conditions with and without application of the correction: the mean absolute error was reduced from 1.8 mm (range, 0-4.51 mm) to 0.11 mm (range, 0-0.27 mm). For clinical validation, radiostereometric analysis was performed on 47 patients to determine the true wear at 1, 2, and 5 years. Subsequently, wear was measured on conventional radiographs with and without the correction: the overall occurrence of errors greater than 0.2 mm was reduced from 35% to 15%. Wear measurements are less sensitive to differences in two-dimensional projection of the THA when using the correction method.
Fast image matching algorithm based on projection characteristics
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun
2011-06-01
Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.
OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS
OTT, WILLIAM; RIVAS, MAURICIO A.; WEST, JAMES
2016-01-01
Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝN using a ‘typical’ nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time-T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence). PMID:28066028
OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.
Ott, William; Rivas, Mauricio A; West, James
2015-12-01
Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).
A unified theory for laminated plates
NASA Astrophysics Data System (ADS)
Guiamatsia Tafeuvoukeng, Irene
A literature survey on plate and beam theories show how the advent of the finite element method and the variational method circa 1940 have been a great stimulant for the research in this field. The initial thin plate formulation has been incrementally expanded to treat the isotropic thick plate, the anisotropic single layer, and then laminated plates. It appears however that current formulations still fall into one of two categories: (1) The formulation is tailored for a specific laminate and/or loading case; (2) or the formulation is too complicated to be of practical relevance. In this work a new unifying approach to laminated plate formulation is presented. All laminated plates, including sandwich panels, subjected to any surface load and with any boundary conditions are treated within a single model. In addition, the fundamental behavior of the plate as a two-dimensional structural element is explained. The novel idea is the introduction of fundamental state solutions, which are analytical far field stress and strain solutions of the laminated plate subjected to a set of hierarchical primary loads, the fundamental loads. These loads are carefully selected to form a basis of the load space, and corresponding solutions are superposed to obtain extremely accurate predictions of the three dimensional solution. six,y,z =aklx,y sikl z where i = 1,..., 6; 1=1,...,l max is a substate of the kth fundamental state k=1,2,3,... Typically, a fundamental state solution is expressed as a through-thickness function (z), while the amplitudes of each fundamental load are found from two dimensional finite element solution as a function of in-plane coordinates (x,y). Three major contributions are produced in this work: (1) A complete calibration of the plate as a two-dimensional structure is performed with pure bending and constant shear fundamental states. (2) There are four independent ways to apply a constant shear resultant on a plate, as opposed to one for a beam. This makes it impossible to define a unique 2 x 2 transverse shear stiffness matrix. Therefore the traditional problem of the shear correction factor loses all relevance. It is however shown that an explicit transverse constitutive relation can be obtained for isotropic-layered laminates or single-layers. (3) Higher accuracy, three-dimensional solutions are obtained using a two-dimensional finite element model with a complexity level (degrees of freedom) similar to the Reissner-Mindlin plate. The proof of concept is realized using Pagano solution for rectangular plates under sinusoidal load, for a sandwich panel. Additional comparisons are also performed for four and six-layer symmetric and antisymmetric laminates, between the new plate theory results and full three-dimensional finite element solutions.
Volegov, P. L.; Danly, C. R.; Merrill, F. E.; ...
2015-11-24
The neutron imaging system at the National Ignition Facility is an important diagnostic tool for measuring the two-dimensional size and shape of the source of neutrons produced in the burning deuterium-tritium plasma during the stagnation phase of inertial confinement fusion implosions. Few two-dimensional projections of neutronimages are available to reconstruct the three-dimensionalneutron source. In our paper, we present a technique that has been developed for the 3Dreconstruction of neutron and x-raysources from a minimal number of 2D projections. Here, we present the detailed algorithms used for this characterization and the results of reconstructedsources from experimental data collected at Omega.
Five Misunderstandings About Cultural Evolution.
Henrich, Joseph; Boyd, Robert; Richerson, Peter J
2008-06-01
Recent debates about memetics have revealed some widespread misunderstandings about Darwinian approaches to cultural evolution. Drawing from these debates, this paper disputes five common claims: (1) mental representations are rarely discrete, and therefore models that assume discrete, gene-like particles (i.e., replicators) are useless; (2) replicators are necessary for cumulative, adaptive evolution; (3) content-dependent psychological biases are the only important processes that affect the spread of cultural representations; (4) the "cultural fitness" of a mental representation can be inferred from its successful transmission; and (5) selective forces only matter if the sources of variation are random. We close by sketching the outlines of a unified evolutionary science of culture.
Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying
2013-12-01
Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.
Quantum engineering of transistors based on 2D materials heterostructures
NASA Astrophysics Data System (ADS)
Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca
2018-03-01
Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.
Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1996-01-01
This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.
A Simple GPU-Accelerated Two-Dimensional MUSCL-Hancock Solver for Ideal Magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Bard, Christopher; Dorelli, John C.
2013-01-01
We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of approx. = 126 for a sq 1024 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.
On an algebraic structure of dimensionally reduced magical supergravity theories
NASA Astrophysics Data System (ADS)
Fukuchi, Shin; Mizoguchi, Shun'ya
2018-06-01
We study an algebraic structure of magical supergravities in three dimensions. We show that if the commutation relations among the generators of the quasi-conformal group in the super-Ehlers decomposition are in a particular form, then one can always find a parameterization of the group element in terms of various 3d bosonic fields that reproduces the 3d reduced Lagrangian of the corresponding magical supergravity. This provides a unified treatment of all the magical supergravity theories in finding explicit relations between the 3d dimensionally reduced Lagrangians and particular coset nonlinear sigma models. We also verify that the commutation relations of E 6 (+ 2), the quasi-conformal group for A = C, indeed satisfy this property, allowing the algebraic interpretation of the structure constants and scalar field functions as was done in the F 4 (+ 4) magical supergravity.
Quantum engineering of transistors based on 2D materials heterostructures.
Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca
2018-03-01
Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.
Cosmology and the large-mass problem of the five-dimensional Kaluza-Klein theory
NASA Astrophysics Data System (ADS)
Lukács, B.; Pacher, T.
1985-12-01
It is shown that in five-dimensional Kaluza-Klein theories the large-mass problem leads to circulus vitiosus: the huge recent e2/G value produces the large mass problem, which restricts the ratio e2/Gm2 to the order of unity, in contradiction with the present 1040 value for elementary particles.
Charged black lens in de Sitter space
NASA Astrophysics Data System (ADS)
Tomizawa, Shinya
2018-02-01
We obtain a charged black lens solution in the five-dimensional Einstein-Maxwell-Chern-Simons theory with a positive cosmological constant. It is shown that the solution obtained here describes the formation of a black hole with the spatial cross section of a sphere from that of the lens space of L (n ,1 ) in five-dimensional de Sitter space.
Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons
NASA Astrophysics Data System (ADS)
Peng, Jun-Jin
2017-10-01
We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well.
Temporal and spectral imaging with micro-CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T.
2012-08-15
Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopulmonary disease, but further development is needed to improve spatial resolution, temporal resolution, and material contrast. We present a technique for visualizing the changing distribution of iodine in the cardiac cycle with dual source micro-CT. Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and voltages, and a series of computational operations to reconstruct the data. Projection interpolation and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce noise and artifacts associated with retrospective gating. We reconstruct separatemore » volumes corresponding to different cardiac phases and apply a linear transformation to decompose these volumes into components representing concentrations of water and iodine. Since the resulting material images are still compromised by noise, we improve their quality in an iterative process that minimizes the discrepancy between the original acquired projections and the projections predicted by the reconstructed volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of linear combinations of basis functions over time and energy. We have implemented the reconstruction algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the cardiac output. Results: Our proposed method produces five-dimensional volumetric images that distinguish different materials at different points in time, and can be used to segment regions containing iodinated blood and compute measures of cardiac function. Conclusions: We believe this combined spectral and temporal imaging technique will be useful for future studies of cardiopulmonary disease in small animals.« less
ERIC Educational Resources Information Center
Bohr, Dennis J.; Rhoades, Georgia
2014-01-01
The Writing Across the Curriculum Program at Appalachian State University, founded in 2008, supports faculty instruction in a vertical writing curriculum which requires two courses in Composition and two in the disciplines, ensuring that students take a dedicated writing course in each year of undergraduate education. To address the challenges of…
Bond Feasibility Study. Project Identification Committee Report.
ERIC Educational Resources Information Center
Wichita Public Schools, KS.
A committee, appointed by the Board of Education, was requested to make a comprehensive study of the school building needs of Unified School District No. 259. In an attempt to determine the feasibility of a general bond election to upgrade the public schools, the specific charge to the committee was to evaluate the needs for physical plant…
The Ned IIS project - forest ecosystem management
W. Potter; D. Nute; J. Wang; F. Maier; Michael Twery; H. Michael Rauscher; P. Knopp; S. Thomasma; M. Dass; H. Uchiyama
2002-01-01
For many years we have held to the notion that an Intelligent Information System (IIS) is composed of a unified knowledge base, database, and model base. The main idea behind this notion is the transparent processing of user queries. The system is responsible for "deciding" which information sources to access in order to fulfil a query regardless of whether...
The Role of Music in Education: Forming Cultural Identity and Making Cross-Cultural Connections
ERIC Educational Resources Information Center
Pascale, Louise M.
2013-01-01
In this reflection, Louise Pascale describes the evolution, development, and outcomes of the Afghan Children's Songbook Project, which is reintroducing children's ethnic songs to the children of Afghanistan and Afghan expats as well as to American schoolchildren. Her reflection highlights the potential for music to unify and strengthen community,…
ERIC Educational Resources Information Center
Baggaley, Jon
2011-01-01
The term Tower of Babel has become synonymous with projects that have grand designs but end in confusion. So named in the Bible, the Tower is described in the Qur'an and in Judaic texts also, under different names. Its reputed purpose was to unify the nations of the earth with a common language. The Tower fell, however, and those who collaborated…
Connecting Instructional and Cognitive Aspects of an LE: A Study of the Global Seminar Project
ERIC Educational Resources Information Center
Savelyeva, Tamara
2012-01-01
My research problem is based on the lack of unifying conceptual cohesion between the discourses concerning cognitive and instructional aspects of learning environments (LE). I contrast that lack with practical developments of LE studies connected at the level of practical implementation and evaluation. Next, I briefly review the LE boundaries,…
Teacher Quality Roadmap: Improving Policies and Practices in LAUSD
ERIC Educational Resources Information Center
National Council on Teacher Quality, 2011
2011-01-01
At the request of the United Way of Greater Los Angeles, the National Council on Teacher Quality (NCTQ) undertook this analysis of the teacher policies in the Los Angeles Unified School District (LAUSD). A coalition of civil rights groups were also involved in this project, including Parent Organization Network, Families in Schools, Alliance for a…
Proposal for an Early Retirement Incentive Program at Mercer County Community College.
ERIC Educational Resources Information Center
Schwartz, Arthur E.
A project was undertaken to evaluate existing models of early retirement incentive programs (ERIPs) and recommend an ERIP for New Jersey's Mercer County Community College (MCCC). The following categories of ERIPs were reviewed: state plans for New York and Minnesota; K-12 school districts plans at the Castro Valley Unified School District and 48…
ERIC Educational Resources Information Center
Prater, Greg; And Others
1996-01-01
A Northern Arizona University program prepares preservice special education teachers to work with Native American children and families. University students live on the Navajo reservation and receive practical classroom experience at Kayenta Unified School District (Arizona). Anglo students are paired with Navajo students who act as "cultural…
Donaldson, D; Mayes, M
1999-10-01
Within six months, AHS needed to integrate three recently merged hospitals running on disparate hardware and software systems into one unified system. AHS partnered with DataStudy Inc., Parsippany, N.J., and formed a team to address the specific enterprise resource planning needs of this healthcare organization. The implementation team completed the project within the six-month time frame and incorporated functionality that went beyond the initial specifications for the project. "To maximize the return on the always substantial ERP investment, healthcare executives must be aware of the many pitfalls waiting to derail every well-intentioned implementation."
ERIC Educational Resources Information Center
Sergovich, Aimee; Johnson, Marjorie; Wilson, Timothy D.
2010-01-01
The anatomy of the pelvis is complex, multilayered, and its three-dimensional organization is conceptually difficult for students to grasp. The aim of this project was to create an explorable and projectable stereoscopic, three-dimensional (3D) model of the female pelvis and pelvic contents for anatomical education. The model was created using…
2013-01-01
is the derivative of the N th-order Legendre polynomial . Given these definitions, the one-dimensional Lagrange polynomials hi(ξ) are hi(ξ) = − 1 N(N...2. Detail of one interface patch in the northern hemisphere. The high-order Legendre -Gauss-Lobatto (LGL) points are added to the linear grid by...smaller ones by a Lagrange polynomial of order nI . The number of quadrilateral elements and grid points of the final grid are then given by Np = 6(N
Nearest pattern interaction and global pattern formation
NASA Astrophysics Data System (ADS)
Jeong, Seong-Ok; Moon, Hie-Tae; Ko, Tae-Wook
2000-12-01
We studied the effect of nearest pattern interaction on a global pattern formation in a two-dimensional space, where patterns are to grow initially from a noise in the presence of a periodic supply of energy. Although our approach is general, we found that this study is relevant in particular to the pattern formation on a periodically vibrated granular layer, as it gives a unified perspective of the experimentally observed pattern dynamics such as oscillon and stripe formations, skew-varicose and crossroll instabilities, and also a kink formation and decoration.
2008-06-01
Ciencia e Ingenieria de los Materiales , Universidad de Costa Rica, San Jose, Costa Rica. We have developed a new unifying tight-binding theory that...Fisico Matem6ticas, Universidad Aut6noma de Nuevo Le6n, San Nicolas de los Garza, Nuevo LeAfA3n, Mexico; 2Chemical Engineering Department and Texas...ORNL), Oak Ridge, Tennessee; 2Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cadiz, Puerto Real, Cadiz, Spain; 3Departamento de
Ebner, Hubert; Hayn, Dieter; Falgenhauer, Markus; Nitzlnader, Michael; Schleiermacher, Gudrun; Haupt, Riccardo; Erminio, Giovanni; Defferrari, Raffaella; Mazzocco, Katia; Kohler, Jan; Tonini, Gian Paolo; Ladenstein, Ruth; Schreier, Guenter
2016-01-01
Data from two contexts, i.e. the European Unresectable Neuroblastoma (EUNB) clinical trial and results from comparative genomic hybridisation (CGH) analyses from corresponding tumour samples shall be provided to existing repositories for secondary use. Utilizing the European Unified Patient IDentity Management (EUPID) as developed in the course of the ENCCA project, the following processes were applied to the data: standardization (providing interoperability), pseudonymization (generating distinct but linkable pseudonyms for both contexts), and linking both data sources. The applied procedures resulted in a joined dataset that did not contain any identifiers that would allow to backtrack the records to either data sources. This provided a high degree of privacy to the involved patients as required by data protection regulations, without preventing proper analysis.
Development of KIAPS Observation Processing Package for Data Assimilation System
NASA Astrophysics Data System (ADS)
Kang, Jeon-Ho; Chun, Hyoung-Wook; Lee, Sihye; Han, Hyun-Jun; Ha, Su-Jin
2015-04-01
The Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by the Korea Meteorological Administration (KMA) to develop Korea's own global Numerical Weather Prediction (NWP) system as nine year (2011-2019) project. Data assimilation team at KIAPS has been developing the observation processing system (KIAPS Package for Observation Processing: KPOP) to provide optimal observations to the data assimilation system for the KIAPS Global Model (KIAPS Integrated Model - Spectral Element method based on HOMME: KIM-SH). Currently, the KPOP is capable of processing the satellite radiance data (AMSU-A, IASI), GPS Radio Occultation (GPS-RO), AIRCRAFT (AMDAR, AIREP, and etc…), and synoptic observation (SONDE and SURFACE). KPOP adopted Radiative Transfer for TOVS version 10 (RTTOV_v10) to get brightness temperature (TB) for each channel at top of the atmosphere (TOA), and Radio Occultation Processing Package (ROPP) 1-dimensional forward module to get bending angle (BA) at each tangent point. The observation data are obtained from the KMA which has been composited with BUFR format to be converted with ODB that are used for operational data assimilation and monitoring at the KMA. The Unified Model (UM), Community Atmosphere - Spectral Element (CAM-SE) and KIM-SH model outputs are used for the bias correction (BC) and quality control (QC) of the observations, respectively. KPOP provides radiance and RO data for Local Ensemble Transform Kalman Filter (LETKF) and also provides SONDE, SURFACE and AIRCRAFT data for Three-Dimensional Variational Assimilation (3DVAR). We are expecting all of the observation type which processed in KPOP could be combined with both of the data assimilation method as soon as possible. The preliminary results from each observation type will be introduced with the current development status of the KPOP.
Three dimensional canonical singularity and five dimensional N = 1 SCFT
NASA Astrophysics Data System (ADS)
Xie, Dan; Yau, Shing-Tung
2017-06-01
We conjecture that every three dimensional canonical singularity defines a five dimensional N = 1 SCFT. Flavor symmetry can be found from singularity structure: non-abelian flavor symmetry is read from the singularity type over one dimensional singular locus. The dimension of Coulomb branch is given by the number of compact crepant divisors from a crepant resolution of singularity. The detailed structure of Coulomb branch is described as follows: a) a chamber of Coulomb branch is described by a crepant resolution, and this chamber is given by its Nef cone and the prepotential is computed from triple intersection numbers; b) Crepant resolution is not unique and different resolutions are related by flops; Nef cones from crepant resolutions form a fan which is claimed to be the full Coulomb branch.
Siveter, Derek J; Sutton, Mark D; Briggs, Derek E.G; Siveter, David J
2007-01-01
A new arthropod with three-dimensionally preserved soft parts, Tanazios dokeron, is described from the Wenlock Series (Silurian) of Herefordshire, England, UK. Serial grinding, digital photographic and computer rendering techniques yielded ‘virtual fossils’ in the round for study. The body tagmata of T. dokeron comprise a head shield and a long trunk. The head shield bears six pairs of horn-like spines and the head bears five pairs of appendages. The antennule, antenna and mandible are all uniramous, and the mandible includes a gnathobasic coxa. Appendages four and five are biramous and similar to those of the trunk: each comprises a limb base with an endite, an enditic membrane, and two epipodites, plus an endopod and exopod. The hypostome bears a large cone-like projection centrally, and there may be a short labrum. The trunk has some 64 segments and at least 60 appendage pairs. A very small telson has the anus sited ventrally in its posterior part and also bears a caudal furca. Comparative morphological and cladistic analyses of T. dokeron indicate a crustacean affinity, with a probable position in the eucrustacean stem group. As such the epipodites in T. dokeron are the first recorded in a eucrustacean stem taxon. The new species is interpreted as a benthic or nektobenthic scavenger. PMID:17609185
Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hero, Alfred O.; Rajaratnam, Bala
When can reliable inference be drawn in the ‘‘Big Data’’ context? This article presents a framework for answering this fundamental question in the context of correlation mining, with implications for general large-scale inference. In large-scale data applications like genomics, connectomics, and eco-informatics, the data set is often variable rich but sample starved: a regime where the number n of acquired samples (statistical replicates) is far fewer than the number p of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for ‘‘Big Data.’’ Sample complexity, however, hasmore » received relatively less attention, especially in the setting when the sample size n is fixed, and the dimension p grows without bound. To address this gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; and 3) the purely high-dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa-scale data dimension. We illustrate this high-dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables that are of interest. Correlation mining arises in numerous applications and subsumes the regression context as a special case. We demonstrate various regimes of correlation mining based on the unifying perspective of high-dimensional learning rates and sample complexity for different structured covariance models and different inference tasks.« less
Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining
Hero, Alfred O.; Rajaratnam, Bala
2015-01-01
When can reliable inference be drawn in fue “Big Data” context? This paper presents a framework for answering this fundamental question in the context of correlation mining, wifu implications for general large scale inference. In large scale data applications like genomics, connectomics, and eco-informatics fue dataset is often variable-rich but sample-starved: a regime where the number n of acquired samples (statistical replicates) is far fewer than fue number p of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for “Big Data”. Sample complexity however has received relatively less attention, especially in the setting when the sample size n is fixed, and the dimension p grows without bound. To address fuis gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where fue variable dimension is fixed and fue sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa cale data dimension. We illustrate this high dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables fua t are of interest. Correlation mining arises in numerous applications and subsumes the regression context as a special case. we demonstrate various regimes of correlation mining based on the unifying perspective of high dimensional learning rates and sample complexity for different structured covariance models and different inference tasks. PMID:27087700
Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining
Hero, Alfred O.; Rajaratnam, Bala
2015-12-09
When can reliable inference be drawn in the ‘‘Big Data’’ context? This article presents a framework for answering this fundamental question in the context of correlation mining, with implications for general large-scale inference. In large-scale data applications like genomics, connectomics, and eco-informatics, the data set is often variable rich but sample starved: a regime where the number n of acquired samples (statistical replicates) is far fewer than the number p of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for ‘‘Big Data.’’ Sample complexity, however, hasmore » received relatively less attention, especially in the setting when the sample size n is fixed, and the dimension p grows without bound. To address this gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; and 3) the purely high-dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa-scale data dimension. We illustrate this high-dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables that are of interest. Correlation mining arises in numerous applications and subsumes the regression context as a special case. We demonstrate various regimes of correlation mining based on the unifying perspective of high-dimensional learning rates and sample complexity for different structured covariance models and different inference tasks.« less
ERIC Educational Resources Information Center
Benjamin, Rebecca
1997-01-01
Discusses the function of Spanish in the school lives of Mexican American children, documenting the discussion through the experiences of five fifth-grade friends. Spanish serves to unify them, but it also serves to keep others out of the friendship group. Educators must recognize that language minority children have special needs. (SLD)
ERIC Educational Resources Information Center
Singh, Gurmak; Hardaker, Glenn
2017-01-01
Using Giddens' theory of structuration as a theoretical framework, this paper outlines how five prominent United Kingdom universities aimed to integrate top-down and bottom-up approaches to the adoption and diffusion of e-learning. The aim of this paper is to examine the major challenges that arise from the convergence of bottom-up perspectives…
Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M. R.; Kamali, V.
2010-10-15
In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.
NASA Technical Reports Server (NTRS)
Povinelli, L. A.
1984-01-01
An assessment of several three dimensional inviscid turbine aerodynamic computer codes and loss models used at the NASA Lewis Research Center is presented. Five flow situations are examined, for which both experimental data and computational results are available. The five flows form a basis for the evaluation of the computational procedures. It was concluded that stator flows may be calculated with a high degree of accuracy, whereas, rotor flow fields are less accurately determined. Exploitation of contouring, learning, bowing, and sweeping will require a three dimensional viscous analysis technique.
Dimensional models of personality: the five-factor model and the DSM-5
Trull, Timothy J.; Widiger, Thomas A.
2013-01-01
It is evident that the classification of personality disorder is shifting toward a dimensional trait model and, more specifically, the five-factor model (FFM). The purpose of this paper is to provide an overview of the FFM of personality disorder. It will begin with a description of this dimensional model of normal and abnormal personality functioning, followed by a comparison with a proposal for future revisions to DSM-5 and a discussion of its potential advantages as an integrative hierarchical model of normal and abnormal personality structure. PMID:24174888
Pinto, Márcia Ferreira Teixeira; Steffen, Ricardo; Entringer, Aline; Costa, Ana Carolina Carioca da; Trajman, Anete
2017-10-09
The study aimed to estimate the budget impact of GeneXpert MTB/RIF for diagnosis of tuberculosis from the perspective of the Brazilian National Program for Tuberculosis Control, drawing on a static model using the epidemiological method, from 2013 to 2017. GeneXpert MTB/RIF was compared with two diagnostic sputum smear tests. The study used epidemiological, population, and cost data, exchange rates, and databases from the Brazilian Unified National Health System. Sensitivity analysis of scenarios was performed. Incorporation of GeneXpert MTB/RIF would cost BRL 147 million (roughly USD 45 million) in five years and would have an impact of 23 to 26% in the first two years and some 11% between 2015 and 2017. The results can support Brazilian and other Latin American health administrators in planning and managing the decision on incorporating the technology.
Primary disorders of the lymphatic vessels--a unified concept.
Levine, C
1989-03-01
Congenital defects of lymphatics constitute a spectrum of disorders that may manifest with a variety of clinical presentations including lymphedema, chylous effusions, lymphangiomatous malformations with cystic masses and localized gigantism, and intestinal lymphangiectasia with malabsorption. These entities constitute a relatively rare group of disorders, the origin of which remains somewhat controversial, but in some it appears to be due to early lymphatic obstruction. Five cases are described, which demonstrate the anatomical pathology of these entities. A classification and description of the defects is also presented. An attempt is made to present a unified theory of origin for this seemingly diverse group of diseases. While these entities may be challenging from a diagnostic and therapeutic standpoint, a wide variety of imaging modalities, which includes lymphography, computed tomography scanning, and ultrasound, may be used to diagnose the extent and internal structural characteristics of the abnormalities.
NASA Astrophysics Data System (ADS)
Moldwin, M. B.; Fiello, D.; Harter, E.; Holman, G.; Nagumo, N.; Pryharski, A.; Takunaga, C.
2008-12-01
An elementary science education professional development partnership between Culver City Unified School District teachers and UCLA has been formed. The project was designed to assist teachers to comfortably present introductory space science concepts, to support them in their efforts, and to aid them in encouraging their students to develop inquiry skills related to space sciences. The project encourages teacher use of observational science techniques in their classrooms, the use of NASA solar mission images and enhanced use of astronomical observation to facilitate discovery learning. The integrated approach of the project has fostered collegial learning activities among the participating teachers and offered them opportunities for continued renewal and professional development of teacher competencies in astronomy and space science. The activities used in the classroom were developed by others, classroom tested, and specifically address National Science Education and California Science Content Standards. These activities have been sustained through on-going collaboration between the scientist and the teachers, a summer Research Experience for Teachers program, and on-going, grade-specific, district-sponsored workshops. Assessment of the value of the program is done by the school district and is used to continuously improve each workshop and program component. Culver City (California) Unified School District is a small urban school district located on the Westside of Los Angeles. This paper describes the program and the plans for incorporating IHY-themed science into the classroom.
NASA Astrophysics Data System (ADS)
Raykova, Zh.; Mitrikova, R.; Nikolov, St.; Dimova, Y.; Valtonen, S.; Lampiselka, J.; Kyyronen, L.; Krikmann, Ott; Susi, J.; Przegietka, K.; Turlo, J.
2007-04-01
Recent research shows that students' interest in science is decreasing dramatically. This places urgent demands to making science teaching better so as to stimulate interest in it. Future teachers who are to cope with the problem are the main figures in this process. Teaching practice as a fundamental part of then-university education is essential for their successful preparation as teachers. Searching for possibilities in this area led to the launch of this international project with partners from University of Helsinki, University of Jyvaskyla (Finland), the University of Plovdiv (Bulgaria), Copernicus University in Torun (Poland) and the University of Tartu (Estonia). The main objective of the project is to present guidelines for unified initial training of science teachers in partner countries and the possibility for mobility of trainees during their studies. The present study has made a comparison of the teaching practice in partners' countries. It has identified certain main principles for a future unified curriculum for initial training of science teachers. The comparison aims to create suitable conditions for mobility of students from partners' countries during their studies and to set up the grounds for a future collaboration in developing common principles, requirements and educational standards for the practical training of science teachers.
LFRic: Building a new Unified Model
NASA Astrophysics Data System (ADS)
Melvin, Thomas; Mullerworth, Steve; Ford, Rupert; Maynard, Chris; Hobson, Mike
2017-04-01
The LFRic project, named for Lewis Fry Richardson, aims to develop a replacement for the Met Office Unified Model in order to meet the challenges which will be presented by the next generation of exascale supercomputers. This project, a collaboration between the Met Office, STFC Daresbury and the University of Manchester, builds on the earlier GungHo project to redesign the dynamical core, in partnership with NERC. The new atmospheric model aims to retain the performance of the current ENDGame dynamical core and associated subgrid physics, while also enabling a far greater scalability and flexibility to accommodate future supercomputer architectures. Design of the model revolves around a principle of a 'separation of concerns', whereby the natural science aspects of the code can be developed without worrying about the underlying architecture, while machine dependent optimisations can be carried out at a high level. These principles are put into practice through the development of an autogenerated Parallel Systems software layer (known as the PSy layer) using a domain-specific compiler called PSyclone. The prototype model includes a re-write of the dynamical core using a mixed finite element method, in which different function spaces are used to represent the various fields. It is able to run in parallel with MPI and OpenMP and has been tested on over 200,000 cores. In this talk an overview of the both the natural science and computational science implementations of the model will be presented.
NASA Astrophysics Data System (ADS)
Demory, Marie-Estelle; Vidale, Pier-Luigi; Schiemann, Reinhard; Roberts, Malcolm; Mizielinski, Matthew
2014-05-01
A traceable hierarchy of global climate models (based on the Met Office Unified Model, GA3 formulation), with mesh sizes ranging from 130km to 25km, has been developed in order to study the impact of improved representation of small-scale processes on the mean climate, its variability and extremes. Five-member ensembles of atmosphere-only integrations were completed at these resolutions, each 27 years in length, using both present day forcing and a future climate scenario. These integrations, collectively known as the "UPSCALE campaign", were completed using time provided by the European PrACE project on supercomputer HERMIT (HLRS Stuttgart). A wide variety of processes are being studied to assess these integrations, in particular with regards to the role of resolution. It has been shown that the relatively coarse resolution of atmospheric general circulation models (AGCMs) limits their ability to represent moisture transport from ocean to land. Understanding of the processes underlying this observed improvement with higher resolution remains insufficient. Atmospheric Rivers (ARs) are an important process of moisture transport onto land in mid-latitude eddies and have been shown by Lavers et al. (2012) to be involved in creating the moisture supply that sustains extreme precipitation events. We investigated the ability of a state-of-the art climate model to represent the location, frequency and 3D structure of atmospheric rivers affecting Western Europe, with a focus on the UK. We show that the climatology of atmospheric rivers, in particular frequency, is underrepresented in the GCM at standard resolution and that this is slightly improved at high resolution (25km): our results are in better agreement with reanalysis data, even if sizable biases remain. The three-dimensional structure of the atmospheric rivers is also more credibly represented at high-resolution. Some aspects of the relationship between the improved simulation in current climate conditions, and how this impacts on changes in the future climate, with much larger atmospheric moisture availability, will also be discussed. In particular, we aim to quantify the relative roles of atmospheric transport and increased precipitation rates in the higher quantiles.
Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.
Cheng, Ching-An; Huang, Han-Pang
2016-12-01
We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.
Image intensifier-based volume tomographic angiography imaging system: system evaluation
NASA Astrophysics Data System (ADS)
Ning, Ruola; Wang, Xiaohui; Shen, Jianjun; Conover, David L.
1995-05-01
An image intensifier-based rotational volume tomographic angiography imaging system has been constructed. The system consists of an x-ray tube and an image intensifier that are separately mounted on a gantry. This system uses an image intensifier coupled to a TV camera as a two-dimensional detector so that a set of two-dimensional projections can be acquired for a direct three-dimensional reconstruction (3D). This system has been evaluated with two phantoms: a vascular phantom and a monkey head cadaver. One hundred eighty projections of each phantom were acquired with the system. A set of three-dimensional images were directly reconstructed from the projection data. The experimental results indicate that good imaging quality can be obtained with this system.
Representation of the five- and six-dimensional harmonic oscillators in a u(5) ⊃ so(5) ⊃ so(3) basis
NASA Astrophysics Data System (ADS)
Rowe, D. J.
1994-06-01
The duality that exists between the two subgroups SU(1,1) and O(5) of Sp(5,R) to construct basis states for the five-dimensional harmonic oscillator which simultaneously reduce the Sp(5,R)⊇U(5)⊇O(5)⊇SO(3) and Sp(5,R)⊇ SU(1,1)⊇U(1) subgroup chains is used. It is shown that the vector-coherent-state wave functions of the fundamental five-dimensional SO(5) irrep [1,0] realize the traceless bosons introduced by Lohe and Hurst to classify the irreps of the orthogonal groups and employed in Chacon, Moshinsky, and Sharp's construction of a basis for the five-dimensional harmonic oscillator. Moreover, it is shown that VCS theory provides a simple mechanism for constructing matrix elements of the traceless boson operators. These matrix elements are used to extend the VCS representations of SO(5) in an SO(3) basis, given in a previous paper, to irreps of U(5) in an SO(5)⊇ SO(3) basis. The extension to U(6)⊇U(5)⊇SO(5)⊇SO(3) is also given.
Simulation of Aerosols and Chemistry with a Unified Global Model
NASA Technical Reports Server (NTRS)
Chin, Mian
2004-01-01
This project is to continue the development of the global simulation capabilities of tropospheric and stratospheric chemistry and aerosols in a unified global model. This is a part of our overall investigation of aerosol-chemistry-climate interaction. In the past year, we have enabled the tropospheric chemistry simulations based on the GEOS-CHEM model, and added stratospheric chemical reactions into the GEOS-CHEM such that a globally unified troposphere-stratosphere chemistry and transport can be simulated consistently without any simplifications. The tropospheric chemical mechanism in the GEOS-CHEM includes 80 species and 150 reactions. 24 tracers are transported, including O3, NOx, total nitrogen (NOy), H2O2, CO, and several types of hydrocarbon. The chemical solver used in the GEOS-CHEM model is a highly accurate sparse-matrix vectorized Gear solver (SMVGEAR). The stratospheric chemical mechanism includes an additional approximately 100 reactions and photolysis processes. Because of the large number of total chemical reactions and photolysis processes and very different photochemical regimes involved in the unified simulation, the model demands significant computer resources that are currently not practical. Therefore, several improvements will be taken, such as massive parallelization, code optimization, or selecting a faster solver. We have also continued aerosol simulation (including sulfate, dust, black carbon, organic carbon, and sea-salt) in the global model to cover most of year 2002. These results have been made available to many groups worldwide and accessible from the website http://code916.gsfc.nasa.gov/People/Chin/aot.html.
A Unified and Coherent Land Surface Emissivity Earth System Data Record
NASA Astrophysics Data System (ADS)
Knuteson, R. O.; Borbas, E. E.; Hulley, G. C.; Hook, S. J.; Anderson, M. C.; Pinker, R. T.; Hain, C.; Guillevic, P. C.
2014-12-01
Land Surface Temperature and Emissivity (LST&E) data are essential for a wide variety of studies from calculating the evapo-transpiration of plant canopies to retrieving atmospheric water vapor. LST&E products are generated from data acquired by sensors in low Earth orbit (LEO) and by sensors in geostationary Earth orbit (GEO). Although these products represent the same measure, they are produced at different spatial, spectral and temporal resolutions using different algorithms. The different approaches used to retrieve the temperatures and emissivities result in discrepancies and inconsistencies between the different products. NASA has identified a major need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. This poster will introduce the land surface emissivity product of the NASA MEASUREs project called A Unified and Coherent Land Surface Temperature and Emissivity (LST&E) Earth System Data Record (ESDR). To develop a unified high spectral resolution emissivity database, the MODIS baseline-fit emissivity database (MODBF) produced at the University of Wisconsin-Madison and the ASTER Global Emissivity Database (ASTER GED) produced at JPL will be merged. The unified Emissivity ESDR will be produced globally at 5km in mean monthly time-steps and for 12 bands from 3.6-14.3 micron and extended to 417 bands using a PC regression approach. The poster will introduce this data product. LST&E is a critical ESDR for a wide variety of studies in particular ecosystem and climate modeling.
NASA Astrophysics Data System (ADS)
Terrón-López, María-José; García-García, María-José; Velasco-Quintana, Paloma-Julia; Ocampo, Jared; Vigil Montaño, María-Reyes; Gaya-López, María-Cruz
2017-11-01
The School of Engineering at Universidad Europea de Madrid (UEM) implemented, starting in the 2012-2013 period, a unified academic model based on project-based learning as the methodology used throughout the entire School. This model expects that every year, in each grade, all the students should participate in a capstone project integrating the contents and competencies of several courses. This paper presents the academic context under which this experience has been implemented, and a summary of the work done to design and implement the Project-Based Engineering School at the UEM. The steps followed, the structure used, some sample projects, as well as the difficulties and benefits of implementing the programme are discussed in this paper. The results are encouraging as students are more motivated and the initial set objectives were accomplished.
Unifying the aspects of the Big Five, the interpersonal circumplex, and trait affiliation.
DeYoung, Colin G; Weisberg, Yanna J; Quilty, Lena C; Peterson, Jordan B
2013-10-01
Two dimensions of the Big Five, Extraversion and Agreeableness, are strongly related to interpersonal behavior. Factor analysis has indicated that each of the Big Five contains two separable but related aspects. The present study examined the manner in which the aspects of Extraversion (Assertiveness and Enthusiasm) and Agreeableness (Compassion and Politeness) relate to interpersonal behavior and trait affiliation, with the hypothesis that these four aspects have a structure corresponding to the octants of the interpersonal circumplex. A second hypothesis was that measures of trait affiliation would fall between Enthusiasm and Compassion in the IPC. These hypotheses were tested in three demographically different samples (N = 469; 294; 409) using both behavioral frequency and trait measures of the interpersonal circumplex, in conjunction with the Big Five Aspect Scales (BFAS) and measures of trait affiliation. Both hypotheses were strongly supported. These findings provide a more thorough and precise mapping of the interpersonal traits within the Big Five and support the integration of the Big Five with models of interpersonal behavior and trait affiliation. © 2012 Wiley Periodicals, Inc.
Unified transform architecture for AVC, AVS, VC-1 and HEVC high-performance codecs
NASA Astrophysics Data System (ADS)
Dias, Tiago; Roma, Nuno; Sousa, Leonel
2014-12-01
A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e.g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 × 4,320 at 30 fps) in real time.
NASA Astrophysics Data System (ADS)
Troy, R. M.
2005-12-01
With ever increasing amounts of Earth-Science funding being diverted to the war in Iraq, the Earth-Science community must now more than ever wring every bit of utility out of every dollar. We're not likely to get funded any projects perceived by others as "pie in the sky", so we have to look at already funded programs within our community and directing new programs in a unifying direction. We have not yet begun the transition to a computationally unifying, general-purpose Earth Science computing paradigm, though it was proposed at the Fall 2002 AGU meeting in San Francisco, and perhaps earlier. Encouragingly, we do see a recognition that more commonality is needed as various projects have as funded goals the addition of the processing and dissemination of new datatypes, or data-sets, if you prefer, to their existing repertoires. Unfortunately, the timelines projected for adding a datatype to an existing system are typically estimated at around two years each. Further, many organizations have the perception that they can only use their dollars to support exclusively their own needs as they don't have the money to support the goals of others, thus overlooking opportunities to satisfy their own needs while at the same time aiding the creation of a global GeoScience cyber-infrastructure. While Computational Unification appears to be an unfunded, impossible dream, at least for now, individual projects can take steps that are compatible with a unified community and can help build one over time. This session explores these opportunities. The author will discuss the issues surrounding this topic, outlining alternative perspectives on the points of difficulty, and proposing straight-forward solutions which every Earth Science data processing system should consider. Sub-topics include distributed meta-data, distributed processing, distributed data objects, interdisciplinary concerns, and scientific defensibility with an overall emphasis on how previously written processes and functions may be integrated into a system efficiently, with minimal effort, and with an eye toward an eventual Computational Unification of the Earth Sciences. A fundamental to such systems is meta-data which describe not only the content of data but also how intricate relationships are represented and used to good advantage. Retrieval techniques will be discussed including trade-offs in using externally managed meta-data versus embedded meta-data, how the two may be integrated, and how "simplifying assumptions" may or may not actually be helpful. The perspectives presented in this talk or poster session are based upon the experience of the Sequoia 2000 and BigSur research projects at the University of California, Berkeley, which sought to unify NASA's Mission To Planet Earth's EOS-DIS, and on-going experience developed by Science Tools corporation, of which the author is a principal. NOTE: These ideas are most easily shared in the form of a talk, and we suspect that this session will generate a lot of interest. We would therefore prefer to have this session accepted as a talk as opposed to a poster session.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, Shinya; Nozawa, Masato
2006-06-15
We study vacuum solutions of five-dimensional Einstein equations generated by the inverse scattering method. We reproduce the black ring solution which was found by Emparan and Reall by taking the Euclidean Levi-Civita metric plus one-dimensional flat space as a seed. This transformation consists of two successive processes; the first step is to perform the three-solitonic transformation of the Euclidean Levi-Civita metric with one-dimensional flat space as a seed. The resulting metric is the Euclidean C-metric with extra one-dimensional flat space. The second is to perform the two-solitonic transformation by taking it as a new seed. Our result may serve asmore » a stepping stone to find new exact solutions in higher dimensions.« less
Depth measurements through controlled aberrations of projected patterns.
Birch, Gabriel C; Tyo, J Scott; Schwiegerling, Jim
2012-03-12
Three-dimensional displays have become increasingly present in consumer markets. However, the ability to capture three-dimensional images in space confined environments and without major modifications to current cameras is uncommon. Our goal is to create a simple modification to a conventional camera that allows for three dimensional reconstruction. We require such an imaging system have imaging and illumination paths coincident. Furthermore, we require that any three-dimensional modification to a camera also permits full resolution 2D image capture.Here we present a method of extracting depth information with a single camera and aberrated projected pattern. A commercial digital camera is used in conjunction with a projector system with astigmatic focus to capture images of a scene. By using an astigmatic projected pattern we can create two different focus depths for horizontal and vertical features of a projected pattern, thereby encoding depth. By designing an aberrated projected pattern, we are able to exploit this differential focus in post-processing designed to exploit the projected pattern and optical system. We are able to correlate the distance of an object at a particular transverse position from the camera to ratios of particular wavelet coefficients.We present our information regarding construction, calibration, and images produced by this system. The nature of linking a projected pattern design and image processing algorithms will be discussed.
Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning
NASA Technical Reports Server (NTRS)
Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)
2007-01-01
Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.
Williams, Jessica A R; Schult, Tamara M; Nelson, Candace C; Cabán-Martinez, Alberto J; Katz, Jeffrey N; Wagner, Gregory R; Pronk, Nicolaas P; Sorensen, Glorian; McLellan, Deborah L
2016-05-01
To conduct validation and dimensionality analyses for an existing measure of the integration of worksite health protection and health promotion approaches. A survey of small to medium size employers located in the United States was conducted between October 2013 and March 2014 (N = 115). A survey of Department of Veterans Affairs (VA) administrative parents was also conducted from June to July 2014 (N = 140). Exploratory factor analysis (EFA) was used to determine the dimensionality of the Integration Score in each sample. Using EFA, both samples indicated the presence of one unified factor. The VA survey indicated that customization improves the relevance of the Integration Score for different types of organizations. The Integration Score is a valid index for assessing the integration of worksite health protection and health promotion approaches and is customizable based on industry. The Integration Score may be used as a single metric for assessing the integration of worksite health protection and health promotion approaches in differing work contexts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently andmore » thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.« less
Wavepacket dynamics and the multi-configurational time-dependent Hartree approach
NASA Astrophysics Data System (ADS)
Manthe, Uwe
2017-06-01
Multi-configurational time-dependent Hartree (MCTDH) based approaches are efficient, accurate, and versatile methods for high-dimensional quantum dynamics simulations. Applications range from detailed investigations of polyatomic reaction processes in the gas phase to high-dimensional simulations studying the dynamics of condensed phase systems described by typical solid state physics model Hamiltonians. The present article presents an overview of the different areas of application and provides a comprehensive review of the underlying theory. The concepts and guiding ideas underlying the MCTDH approach and its multi-mode and multi-layer extensions are discussed in detail. The general structure of the equations of motion is highlighted. The representation of the Hamiltonian and the correlated discrete variable representation (CDVR), which provides an efficient multi-dimensional quadrature in MCTDH calculations, are discussed. Methods which facilitate the calculation of eigenstates, the evaluation of correlation functions, and the efficient representation of thermal ensembles in MCTDH calculations are described. Different schemes for the treatment of indistinguishable particles in MCTDH calculations and recent developments towards a unified multi-layer MCTDH theory for systems including bosons and fermions are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
...) restoration and enhancement of vernal pools occupied by San Diego fairy shrimp on the McAuliffe Park and... would permanently remove all San Diego fairy shrimp and its vernal pool habitat from the project site. To mitigate impacts to the San Diego fairy shrimp and its vernal pool habitat, the applicant would...
Heat, Energy, and Order, Part Two of an Integrated Science Sequence, Teacher's Guide, 1970 Edition.
ERIC Educational Resources Information Center
Portland Project Committee, OR.
This teacher's guide contains part two of the four-part first year Portland Project, a three-year secondary integrated science curriculum sequence. This part involves the student with unifying principles essential for deeper understanding of the concept of energy. Confidence in the atomic nature of matter is built by relating heat in terms of…
LOx / LCH4: A Unifying Technology for Future Exploration
NASA Technical Reports Server (NTRS)
Falker, John; Terrier, Douglas; Clayton, Ronald G.; Banker, Brian; Ryan, Abigail
2015-01-01
Reduced mass due to increasing commonality between spacecraft subsystems such as power and propulsion have been identified as critical to enabling human missions to Mars. This project represents the first ever integrated propulsion and power system testing and lays the foundations for future sounding rocket flight testing, which will yield the first in-space ignition of a LOx / LCH4 rocket engine.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
To evolve a new methodology and system for teaching physics to students aspiring to become (or to become more competent as) technicians in a variety of technologies, this research and development effort was initiated. The project's thesis stemmed from a notion that the study of physics would be more accepted and assimilated by students if concepts…
A Unified Approach toward the Development of Swedish as L2: A Processability Account.
ERIC Educational Resources Information Center
Pienemann, Manfred; Hakansson, Gisela
1999-01-01
Aims to put the body of research on Swedish as a second language (SSL) into one coherent framework and to test the predictions deriving from processability theory for Swedish against this empirical database. Surveys the 14 most prominent research projects on SSL, covering wide areas of syntax and morphology in longitudinal and cross-sectional…
Building a Multi-Discipline Digital Library Through Extending the Dienst Protocol
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maly, Kurt; Shen, Stewart N. T.
1997-01-01
The purpose of this project is to establish multi-discipline capability for a unified, canonical digital library service for scientific and technical information (STI). This is accomplished by extending the Dienst Protocol to be aware of subject classification of a servers holdings. We propose a hierarchical, general, and extendible subject classification that can encapsulate existing classification systems.
ERIC Educational Resources Information Center
McGee, Daniel; Moore-Russo, Deborah
2015-01-01
A test project at the University of Puerto Rico in Mayagüez used GeoGebra applets to promote the concept of multirepresentational fluency among high school mathematics preservice teachers. For this study, this fluency was defined as simultaneous awareness of all representations associated with a mathematical concept, as measured by the ability to…
Upper South Platte Watershed Protection and Restoration Project
Steve Culver; Cindy Dean; Fred Patten; Jim Thinnes
2001-01-01
The Upper South Platte Basin is a critical watershed in Colorado. Nearly 80 percent of the water used by the 1.5 million Denver metropolitan residents comes from or is transmitted through this river drainage. The Colorado Unified Watershed Assessment identified the Upper South Platte River as a Category 1 watershed in need of restoration. Most of the river basin is...
Telerobotics for depot modernization
NASA Technical Reports Server (NTRS)
Leahy, M. B., Jr.; Petroski, S. B.
1994-01-01
Development and application of telerobotics technology for the enhancement of the quality of the Air Logistic Centers (ALC) repair and remanufacturing processes is described. Telerobotics provides the means for bridging the gap between manual operation and full automation. The Robotics and Automation Center for Excellence (RACE) initiated the Unified Telerobotics Architecture Project (UTAP) to support the development and application of telerobotics for depot operation.
Impact of a Rural Special Education Field-Based Program on the Kayenta School System and Community.
ERIC Educational Resources Information Center
Silva, Charlie; And Others
In partnership with the Kayenta Unified School District (KUSD) on the Navajo Reservation in northeastern Arizona, Northern Arizona University developed the Rural Special Education Project (RSEP) as a field-based training program for special education teachers. In the past 3 years, 22 Anglo American and 26 Navajo students have graduated from RSEP.…
Unified Description of the Optical Phonon Modes inN-Layer MoTe2
NASA Astrophysics Data System (ADS)
Froehlicher, Guillaume; Lorchat, Etienne; Fernique, François; Joshi, Chaitanya; Molina-Sánchez, Alejandro; Wirtz, Ludger; Berciaud, Stéphane
2015-10-01
$N$-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three dimensional) and monolayer (quasi two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the $\\Gamma$-point optical phonons in $N$-layer $2H$-molybdenum ditelluride (MoTe$_2$). We observe a series of $N$-dependent low-frequency interlayer shear and breathing modes (below $40~\\rm cm^{-1}$, denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range $100-200~\\rm cm^{-1}$, denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range $200-300~\\rm cm^{-1}$, denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in $N$-layer crystals are directly correlated to the corresponding bulk Davydov splittings between the $E_{2u}/E_{1g}$ and $B_{1u}/A_{1g}$ modes, respectively, and provide a measurement of the frequencies of the bulk silent $E_{2u}$ and $B_{1u}$ optical phonon modes. Our analysis could readily be generalized to other layered crystals.
NASA Astrophysics Data System (ADS)
Yu, Baihui; Zhao, Ziran; Wang, Xuewu; Wu, Dufan; Zeng, Zhi; Zeng, Ming; Wang, Yi; Cheng, Jianping
2016-01-01
The Tsinghua University MUon Tomography facilitY (TUMUTY) has been built up and it is utilized to reconstruct the special objects with complex structure. Since fine image is required, the conventional Maximum likelihood Scattering and Displacement (MLSD) algorithm is employed. However, due to the statistical characteristics of muon tomography and the data incompleteness, the reconstruction is always instable and accompanied with severe noise. In this paper, we proposed a Maximum a Posterior (MAP) algorithm for muon tomography regularization, where an edge-preserving prior on the scattering density image is introduced to the object function. The prior takes the lp norm (p>0) of the image gradient magnitude, where p=1 and p=2 are the well-known total-variation (TV) and Gaussian prior respectively. The optimization transfer principle is utilized to minimize the object function in a unified framework. At each iteration the problem is transferred to solving a cubic equation through paraboloidal surrogating. To validate the method, the French Test Object (FTO) is imaged by both numerical simulation and TUMUTY. The proposed algorithm is used for the reconstruction where different norms are detailedly studied, including l2, l1, l0.5, and an l2-0.5 mixture norm. Compared with MLSD method, MAP achieves better image quality in both structure preservation and noise reduction. Furthermore, compared with the previous work where one dimensional image was acquired, we achieve the relatively clear three dimensional images of FTO, where the inner air hole and the tungsten shell is visible.
A unifying model of concurrent spatial and temporal modularity in muscle activity.
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2014-02-01
Modularity in the central nervous system (CNS), i.e., the brain capability to generate a wide repertoire of movements by combining a small number of building blocks ("modules"), is thought to underlie the control of movement. Numerous studies reported evidence for such a modular organization by identifying invariant muscle activation patterns across various tasks. However, previous studies relied on decompositions differing in both the nature and dimensionality of the identified modules. Here, we derive a single framework that encompasses all influential models of muscle activation modularity. We introduce a new model (named space-by-time decomposition) that factorizes muscle activations into concurrent spatial and temporal modules. To infer these modules, we develop an algorithm, referred to as sample-based nonnegative matrix trifactorization (sNM3F). We test the space-by-time decomposition on a comprehensive electromyographic dataset recorded during execution of arm pointing movements and show that it provides a low-dimensional yet accurate, highly flexible and task-relevant representation of muscle patterns. The extracted modules have a well characterized functional meaning and implement an efficient trade-off between replication of the original muscle patterns and task discriminability. Furthermore, they are compatible with the modules extracted from existing models, such as synchronous synergies and temporal primitives, and generalize time-varying synergies. Our results indicate the effectiveness of a simultaneous but separate condensation of spatial and temporal dimensions of muscle patterns. The space-by-time decomposition accommodates a unified view of the hierarchical mapping from task parameters to coordinated muscle activations, which could be employed as a reference framework for studying compositional motor control.
Two-dimensional beam profiles and one-dimensional projections
NASA Astrophysics Data System (ADS)
Findlay, D. J. S.; Jones, B.; Adams, D. J.
2018-05-01
One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.
Nam, Julia EunJu; Mueller, Klaus
2013-02-01
Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here, we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip: connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location, look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.
A Unified Approach to Quantifying Feedbacks in Earth System Models
NASA Astrophysics Data System (ADS)
Taylor, K. E.
2008-12-01
In order to speed progress in reducing uncertainty in climate projections, the processes that most strongly influence those projections must be identified. It is of some importance, therefore, to assess the relative strengths of various climate feedbacks and to determine the degree to which various earth system models (ESMs) agree in their simulations of these processes. Climate feedbacks have been traditionally quantified in terms of their impact on the radiative balance of the planet, whereas carbon cycle responses have been assessed in terms of the size of the perturbations to the surface fluxes of carbon dioxide. In this study we introduce a diagnostic strategy for unifying the two approaches, which allows us to directly compare the strength of carbon-climate feedbacks with other conventional climate feedbacks associated with atmospheric and surface changes. Applying this strategy to a highly simplified model of the carbon-climate system demonstrates the viability of the approach. In the simple model we find that even if the strength of the carbon-climate feedbacks is very large, the uncertainty associated with the overall response of the climate system is likely to be dominated by uncertainties in the much larger feedbacks associated with clouds. This does not imply that the carbon cycle itself is unimportant, only that changes in the carbon cycle that are associated with climate change have a relatively small impact on global temperatures. This new, unified diagnostic approach is suitable for assessing feedbacks in even the most sophisticated earth system models. It will be interesting to see whether our preliminary conclusions are confirmed when output from the more realistic models is analyzed. This work was carried out at the University of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Integrating Unified Gravity Wave Physics into the NOAA Next Generation Global Prediction System
NASA Astrophysics Data System (ADS)
Alpert, J. C.; Yudin, V.; Fuller-Rowell, T. J.; Akmaev, R. A.
2017-12-01
The Unified Gravity Wave Physics (UGWP) project for the Next Generation Global Prediction System (NGGPS) is a NOAA collaborative effort between the National Centers for Environmental Prediction (NCEP), Environemntal Modeling Center (EMC) and the University of Colorado, Cooperative Institute for Research in Environmental Sciences (CU-CIRES) to support upgrades and improvements of GW dynamics (resolved scales) and physics (sub-grid scales) in the NOAA Environmental Modeling System (NEMS)†. As envisioned the global climate, weather and space weather models of NEMS will substantially improve their predictions and forecasts with the resolution-sensitive (scale-aware) formulations planned under the UGWP framework for both orographic and non-stationary waves. In particular, the planned improvements for the Global Forecast System (GFS) model of NEMS are: calibration of model physics for higher vertical and horizontal resolution and an extended vertical range of simulations, upgrades to GW schemes, including the turbulent heating and eddy mixing due to wave dissipation and breaking, and representation of the internally-generated QBO. The main priority of the UGWP project is unified parameterization of orographic and non-orographic GW effects including momentum deposition in the middle atmosphere and turbulent heating and eddies due to wave dissipation and breaking. The latter effects are not currently represented in NOAA atmosphere models. The team has tested and evaluated four candidate GW solvers integrating the selected GW schemes into the NGGPS model. Our current work and planned activity is to implement the UGWP schemes in the first available GFS/FV3 (open FV3) configuration including adapted GFDL modification for sub-grid orography in GFS. Initial global model results will be shown for the operational and research GFS configuration for spectral and FV3 dynamical cores. †http://www.emc.ncep.noaa.gov/index.php?branch=NEMS
Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration
Liu, Bo; Chen, Sanfeng; Li, Shuai; Liang, Yongsheng
2012-01-01
In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL), for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI). Random Projections are a fast, non-adaptive dimensionality reduction framework in which high-dimensionality data is projected onto a random lower-dimension subspace via spherically random rotation and coordination sampling. KLSPI introduce kernel trick into the LSPI framework for Reinforcement Learning, often achieving faster convergence and providing automatic feature selection via various kernel sparsification approaches. In this approach, policies are computed in a low-dimensional subspace generated by projecting the high-dimensional features onto a set of random basis. We first show how Random Projections constitute an efficient sparsification technique and how our method often converges faster than regular LSPI, while at lower computational costs. Theoretical foundation underlying this approach is a fast approximation of Singular Value Decomposition (SVD). Finally, simulation results are exhibited on benchmark MDP domains, which confirm gains both in computation time and in performance in large feature spaces. PMID:22736969
NASA Astrophysics Data System (ADS)
Sousa, Tânia; Domingos, Tiago
2006-11-01
We develop a unified conceptual and mathematical structure for equilibrium econophysics, i.e., the use of concepts and tools of equilibrium thermodynamics in neoclassical microeconomics and vice versa. Within this conceptual structure the results obtained in microeconomic theory are: (1) the definition of irreversibility in economic behavior; (2) the clarification that the Engel curve and the offer curve are not descriptions of real processes dictated by the maximization of utility at constant endowment; (3) the derivation of a relation between elasticities proving that economic elasticities are not all independent; (4) the proof that Giffen goods do not exist in a stable equilibrium; (5) the derivation that ‘economic integrability’ is equivalent to the generalized Le Chatelier principle and (6) the definition of a first order phase transition, i.e., a transition between separate points in the utility function. In thermodynamics the results obtained are: (1) a relation between the non-dimensional isothermal and adiabatic compressibilities and the increase or decrease in the thermodynamic potentials; (2) the distinction between mathematical integrability and optimization behavior and (3) the generalization of the Clapeyron equation.
Theory of Remote Image Formation
NASA Astrophysics Data System (ADS)
Blahut, Richard E.
2004-11-01
In many applications, images, such as ultrasonic or X-ray signals, are recorded and then analyzed with digital or optical processors in order to extract information. Such processing requires the development of algorithms of great precision and sophistication. This book presents a unified treatment of the mathematical methods that underpin the various algorithms used in remote image formation. The author begins with a review of transform and filter theory. He then discusses two- and three-dimensional Fourier transform theory, the ambiguity function, image construction and reconstruction, tomography, baseband surveillance systems, and passive systems (where the signal source might be an earthquake or a galaxy). Information-theoretic methods in image formation are also covered, as are phase errors and phase noise. Throughout the book, practical applications illustrate theoretical concepts, and there are many homework problems. The book is aimed at graduate students of electrical engineering and computer science, and practitioners in industry. Presents a unified treatment of the mathematical methods that underpin the algorithms used in remote image formation Illustrates theoretical concepts with reference to practical applications Provides insights into the design parameters of real systems
Tao, Chenyang; Nichols, Thomas E.; Hua, Xue; Ching, Christopher R.K.; Rolls, Edmund T.; Thompson, Paul M.; Feng, Jianfeng
2017-01-01
We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches. PMID:27666385
Shape from sound: toward new tools for quantum gravity.
Aasen, David; Bhamre, Tejal; Kempf, Achim
2013-03-22
To unify general relativity and quantum theory is hard in part because they are formulated in two very different mathematical languages, differential geometry and functional analysis. A natural candidate for bridging this language gap, at least in the case of the Euclidean signature, is the discipline of spectral geometry. It aims at describing curved manifolds in terms of the spectra of their canonical differential operators. As an immediate benefit, this would offer a clean gauge-independent identification of the metric's degrees of freedom in terms of invariants that should be ready to quantize. However, spectral geometry is itself hard and has been plagued by ambiguities. Here, we regularize and break up spectral geometry into small, finite-dimensional and therefore manageable steps. We constructively demonstrate that this strategy works at least in two dimensions. We can now calculate the shapes of two-dimensional objects from their vibrational spectra.
Hybrid methods for simulating hydrodynamics and heat transfer in multiscale (1D-3D) models
NASA Astrophysics Data System (ADS)
Filimonov, S. A.; Mikhienkova, E. I.; Dekterev, A. A.; Boykov, D. V.
2017-09-01
The work is devoted to application of different-scale models in the simulation of hydrodynamics and heat transfer of large and/or complex systems, which can be considered as a combination of extended and “compact” elements. The model consisting of simultaneously existing three-dimensional and network (one-dimensional) elements is called multiscale. The paper examines the relevance of building such models and considers three main options for their implementation: the spatial and the network parts of the model are calculated separately; spatial and network parts are calculated simultaneously (hydraulically unified model); network elements “penetrate” the spatial part and are connected through the integral characteristics at the tube/channel walls (hydraulically disconnected model). Each proposed method is analyzed in terms of advantages and disadvantages. The paper presents a number of practical examples demonstrating the application of multiscale models.
Gimbel, Sarah; Mwanza, Moses; Nisingizwe, Marie Paul; Michel, Cathy; Hirschhorn, Lisa
2017-12-21
High-quality data are critical to inform, monitor and manage health programs. Over the seven-year African Health Initiative of the Doris Duke Charitable Foundation, three of the five Population Health Implementation and Training (PHIT) partnership projects in Mozambique, Rwanda, and Zambia introduced strategies to improve the quality and evaluation of routinely-collected data at the primary health care level, and stimulate its use in evidence-based decision-making. Using the Consolidated Framework for Implementation Research (CFIR) as a guide, this paper: 1) describes and categorizes data quality assessment and improvement activities of the projects, and 2) identifies core intervention components and implementation strategy adaptations introduced to improve data quality in each setting. The CFIR was adapted through a qualitative theme reduction process involving discussions with key informants from each project, who identified two domains and ten constructs most relevant to the study aim of describing and comparing each country's data quality assessment approach and implementation process. Data were collected on each project's data quality improvement strategies, activities implemented, and results via a semi-structured questionnaire with closed and open-ended items administered to health management information systems leads in each country, with complementary data abstraction from project reports. Across the three projects, intervention components that aligned with user priorities and government systems were perceived to be relatively advantageous, and more readily adapted and adopted. Activities that both assessed and improved data quality (including data quality assessments, mentorship and supportive supervision, establishment and/or strengthening of electronic medical record systems), received higher ranking scores from respondents. Our findings suggest that, at a minimum, successful data quality improvement efforts should include routine audits linked to ongoing, on-the-job mentoring at the point of service. This pairing of interventions engages health workers in data collection, cleaning, and analysis of real-world data, and thus provides important skills building with on-site mentoring. The effect of these core components is strengthened by performance review meetings that unify multiple health system levels (provincial, district, facility, and community) to assess data quality, highlight areas of weakness, and plan improvements.
Machado, Cristiani Vieira; Lima, Luciana Dias de; Baptista, Tatiana Wargas de Faria
2017-10-02
This article analyzes the trajectory of national health policy in Brazil from 1990 to 2016 and explores the policy's contradictions and conditioning factors during the same period. Continuities and changes were seen in the policy's context, process, and content in five distinct moments. The analysis of the policy's conditioning factors showed that the Constitutional framework, institutional arrangements, and action by health sector stakeholders were central to the expansion of public programs and services, providing the material foundations and expanding the basis of support for the Brazilian Unified National Health System at the health sector level. However, historical and structural limitations, institutional legacies, and the dispute between projects for the sector have influenced national health policy. Interaction between these conditioning factors explains the policy's contradictions during the period, for example with regard to health's position in the national development model and social security system and the financing and public-private relations in health. Expansion of public services occurred simultaneously with the strengthening of private segments. Dynamic health markets that compete for resources from government and families, limit the possibility of consolidating a universal health system, and reiterate social stratification and inequalities in health.
Development and validation of the European Cluster Assimilation Techniques run libraries
NASA Astrophysics Data System (ADS)
Facskó, G.; Gordeev, E.; Palmroth, M.; Honkonen, I.; Janhunen, P.; Sergeev, V.; Kauristie, K.; Milan, S.
2012-04-01
The European Commission funded the European Cluster Assimilation Techniques (ECLAT) project as a collaboration of five leader European universities and research institutes. A main contribution of the Finnish Meteorological Institute (FMI) is to provide a wide range global MHD runs with the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS). The runs are divided in two categories: Synthetic runs investigating the extent of solar wind drivers that can influence magnetospheric dynamics, as well as dynamic runs using measured solar wind data as input. Here we consider the first set of runs with synthetic solar wind input. The solar wind density, velocity and the interplanetary magnetic field had different magnitudes and orientations; furthermore two F10.7 flux values were selected for solar radiation minimum and maximum values. The solar wind parameter values were constant such that a constant stable solution was archived. All configurations were run several times with three different (-15°, 0°, +15°) tilt angles in the GSE X-Z plane. The result of the 192 simulations named so called "synthetic run library" were visualized and uploaded to the homepage of the FMI after validation. Here we present details of these runs.
A fully 3D approach for metal artifact reduction in computed tomography.
Kratz, Barbel; Weyers, Imke; Buzug, Thorsten M
2012-11-01
In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial domain with the well-known one-dimensional linear interpolation strategy. In conclusion, it is recommended to include as much spatial information into the recomputation step as possible. This is realized by increasing the dimension of the NFFT. The resulting image quality can be enhanced considerably.
The paraphysical principles of natural philosophy
NASA Astrophysics Data System (ADS)
Beichler, James Edward
The word `paraphysics' has never been precisely defined. To establish paraphysics as a true science, the word is first defined and its scope and limits identified. The natural phenomena which are studied in paraphysics, psi phenomena, are distinguished by their common physical properties. The historical roots of paraphysics are also discussed. Paraphysics can be defined, represented by a specific body of natural phenomena and it has a historical basis. Therefore, paraphysics is a distinguishable science. It only needs a theoretical foundation. Rather than using a quantum approach, a new theory of physical reality can be based upon a field theoretical point of view. This approach dispels philosophical questions regarding the continuity/discrete debate and the wave/particle paradox. Starting from a basic Einstein-Kaluza geometrical structure and assuming a real fifth dimension, a comprehensive and complete theory emerges. The four forces of nature are unified as are the quantum and relativity. Life, mind, consciousness and psi emerge as natural consequences of the physics. The scientific concept of consciousness, ambiguous at best, has become an increasingly important factor in modern physics. No one has ever defined consciousness in an acceptable manner let alone develop a workable theory of consciousness while no viable physical theories of life and mind are even being considered even though they are prerequisites of consciousness. In the five-dimensional model, life, mind and consciousness are explained as increasingly complex `entanglements' or patterns of density variation within the single unified field. Psi is intimately connected to consciousness, giving the science of paranormal phenomena a theoretical basis in the physics of hyperspace. Psi results from different modes of consciousness interacting non-locally via the fifth dimension. Several distinct areas of future research are suggested which will lead to falsification of the theory. A new theory of the atomic nucleus is clearly indicated as is a simple theory of the predominant spiral shape of galaxies. A quantifiable theory of life is also suggested. And finally, this model strongly implies a direct correspondence between emotional states and psi phenomena which should render the existence of psi verifiable.
DBGC: A Database of Human Gastric Cancer
Wang, Chao; Zhang, Jun; Cai, Mingdeng; Zhu, Zhenggang; Gu, Wenjie; Yu, Yingyan; Zhang, Xiaoyan
2015-01-01
The Database of Human Gastric Cancer (DBGC) is a comprehensive database that integrates various human gastric cancer-related data resources. Human gastric cancer-related transcriptomics projects, proteomics projects, mutations, biomarkers and drug-sensitive genes from different sources were collected and unified in this database. Moreover, epidemiological statistics of gastric cancer patients in China and clinicopathological information annotated with gastric cancer cases were also integrated into the DBGC. We believe that this database will greatly facilitate research regarding human gastric cancer in many fields. DBGC is freely available at http://bminfor.tongji.edu.cn/dbgc/index.do PMID:26566288
PRMS Data Warehousing Prototype
NASA Technical Reports Server (NTRS)
Guruvadoo, Eranna K.
2001-01-01
Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.
PRMS Data Warehousing Prototype
NASA Technical Reports Server (NTRS)
Guruvadoo, Eranna K.
2002-01-01
Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.
Projection-type see-through holographic three-dimensional display
NASA Astrophysics Data System (ADS)
Wakunami, Koki; Hsieh, Po-Yuan; Oi, Ryutaro; Senoh, Takanori; Sasaki, Hisayuki; Ichihashi, Yasuyuki; Okui, Makoto; Huang, Yi-Pai; Yamamoto, Kenji
2016-10-01
Owing to the limited spatio-temporal resolution of display devices, dynamic holographic three-dimensional displays suffer from a critical trade-off between the display size and the visual angle. Here we show a projection-type holographic three-dimensional display, in which a digitally designed holographic optical element and a digital holographic projection technique are combined to increase both factors at the same time. In the experiment, the enlarged holographic image, which is twice as large as the original display device, projected on the screen of the digitally designed holographic optical element was concentrated at the target observation area so as to increase the visual angle, which is six times as large as that for a general holographic display. Because the display size and the visual angle can be designed independently, the proposed system will accelerate the adoption of holographic three-dimensional displays in industrial applications, such as digital signage, in-car head-up displays, smart-glasses and head-mounted displays.
Three Dimensional Measurements And Display Using A Robot Arm
NASA Astrophysics Data System (ADS)
Swift, Thomas E.
1984-02-01
The purpose of this paper is to describe a project which makes three dimensional measurements of an object using a robot arm. A program was written to determine the X-Y-Z coordinates of the end point of a Minimover-5 robot arm which was interfaced to a TRS-80 Model III microcomputer. This program was used in conjunction with computer graphics subroutines that draw a projected three dimensional object.. The robot arm was direc-ted to touch points on an object and then lines were drawn on the screen of the microcomputer between consecutive points as they were entered. A representation of the entire object is in this way constructed on the screen. The three dimensional graphics subroutines have the ability to rotate the projected object about any of the three axes, and to scale the object to any size. This project has applications in the computer-aided design and manufacturing fields because it can accurately measure the features of an irregularly shaped object.
Jini service to reconstruct tomographic data
NASA Astrophysics Data System (ADS)
Knoll, Peter; Mirzaei, S.; Koriska, K.; Koehn, H.
2002-06-01
A number of imaging systems rely on the reconstruction of a 3- dimensional model from its projections through the process of computed tomography (CT). In medical imaging, for example magnetic resonance imaging (MRI), positron emission tomography (PET), and Single Computer Tomography (SPECT) acquire two-dimensional projections of a three dimensional projections of a three dimensional object. In order to calculate the 3-dimensional representation of the object, i.e. its voxel distribution, several reconstruction algorithms have been developed. Currently, mainly two reconstruct use: the filtered back projection(FBP) and iterative methods. Although the quality of iterative reconstructed SPECT slices is better than that of FBP slices, such iterative algorithms are rarely used for clinical routine studies because of their low availability and increased reconstruction time. We used Jini and a self-developed iterative reconstructions algorithm to design and implement a Jini reconstruction service. With this service, the physician selects the patient study from a database and a Jini client automatically discovers the registered Jini reconstruction services in the department's Intranet. After downloading the proxy object the this Jini service, the SPECT acquisition data are reconstructed. The resulting transaxial slices are visualized using a Jini slice viewer, which can be used for various imaging modalities.
A low-cost and portable realization on fringe projection three-dimensional measurement
NASA Astrophysics Data System (ADS)
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2015-12-01
Fringe projection three-dimensional measurement is widely applied in a wide range of industrial application. The traditional fringe projection system has the disadvantages of high expense, big size, and complicated calibration requirements. In this paper we introduce a low-cost and portable realization on three-dimensional measurement with Pico projector. It has the advantages of low cost, compact physical size, and flexible configuration. For the proposed fringe projection system, there is no restriction to camera and projector's relative alignment on parallelism and perpendicularity for installation. Moreover, plane-based calibration method is adopted in this paper that avoids critical requirements on calibration system such as additional gauge block or precise linear z stage. What is more, error sources existing in the proposed system are introduced in this paper. The experimental results demonstrate the feasibility of the proposed low cost and portable fringe projection system.
Metric Calibration of a Focused Plenoptic Camera Based on a 3d Calibration Target
NASA Astrophysics Data System (ADS)
Zeller, N.; Noury, C. A.; Quint, F.; Teulière, C.; Stilla, U.; Dhome, M.
2016-06-01
In this paper we present a new calibration approach for focused plenoptic cameras. We derive a new mathematical projection model of a focused plenoptic camera which considers lateral as well as depth distortion. Therefore, we derive a new depth distortion model directly from the theory of depth estimation in a focused plenoptic camera. In total the model consists of five intrinsic parameters, the parameters for radial and tangential distortion in the image plane and two new depth distortion parameters. In the proposed calibration we perform a complete bundle adjustment based on a 3D calibration target. The residual of our optimization approach is three dimensional, where the depth residual is defined by a scaled version of the inverse virtual depth difference and thus conforms well to the measured data. Our method is evaluated based on different camera setups and shows good accuracy. For a better characterization of our approach we evaluate the accuracy of virtual image points projected back to 3D space.
A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules
Ramakrishnan, Sridhar; Wesensten, Nancy J.; Balkin, Thomas J.; Reifman, Jaques
2016-01-01
Study Objectives: Historically, mathematical models of human neurobehavioral performance developed on data from one sleep study were limited to predicting performance in similar studies, restricting their practical utility. We recently developed a unified model of performance (UMP) to predict the effects of the continuum of sleep loss—from chronic sleep restriction (CSR) to total sleep deprivation (TSD) challenges—and validated it using data from two studies of one laboratory. Here, we significantly extended this effort by validating the UMP predictions across a wide range of sleep/wake schedules from different studies and laboratories. Methods: We developed the UMP on psychomotor vigilance task (PVT) lapse data from one study encompassing four different CSR conditions (7 d of 3, 5, 7, and 9 h of sleep/night), and predicted performance in five other studies (from four laboratories), including different combinations of TSD (40 to 88 h), CSR (2 to 6 h of sleep/night), control (8 to 10 h of sleep/night), and nap (nocturnal and diurnal) schedules. Results: The UMP accurately predicted PVT performance trends across 14 different sleep/wake conditions, yielding average prediction errors between 7% and 36%, with the predictions lying within 2 standard errors of the measured data 87% of the time. In addition, the UMP accurately predicted performance impairment (average error of 15%) for schedules (TSD and naps) not used in model development. Conclusions: The unified model of performance can be used as a tool to help design sleep/wake schedules to optimize the extent and duration of neurobehavioral performance and to accelerate recovery after sleep loss. Citation: Ramakrishnan S, Wesensten NJ, Balkin TJ, Reifman J. A unified model of performance: validation of its predictions across different sleep/wake schedules. SLEEP 2016;39(1):249–262. PMID:26518594
String-inspired special grand unification
NASA Astrophysics Data System (ADS)
Yamatsu, Naoki
2017-10-01
We discuss a grand unified theory (GUT) based on an SO(32) GUT gauge group broken to its subgroups including a special subgroup. In the SO(32) GUT on the six-dimensional (6D) orbifold space M^4× T^2/\\mathbb{Z}_2, one generation of the standard model fermions can be embedded into a 6D bulk Weyl fermion in the SO(32) vector representation. We show that for a three-generation model, all the 6D and 4D gauge anomalies in the bulk and on the fixed points are canceled out without exotic chiral fermions at low energies.
NASA Technical Reports Server (NTRS)
Muellerschoen, R. J.
1988-01-01
A unified method to permute vector stored Upper triangular Diagonal factorized covariance and vector stored upper triangular Square Root Information arrays is presented. The method involves cyclic permutation of the rows and columns of the arrays and retriangularization with fast (slow) Givens rotations (reflections). Minimal computation is performed, and a one dimensional scratch array is required. To make the method efficient for large arrays on a virtual memory machine, computations are arranged so as to avoid expensive paging faults. This method is potentially important for processing large volumes of radio metric data in the Deep Space Network.
Thermal non-equilibrium effect of small-scale structures in compressible turbulence
NASA Astrophysics Data System (ADS)
Li, Shi-Yi; Li, Qi-Bing
2018-05-01
The thermal non-equilibrium effect of the small-scale structures in the canonical two-dimensional turbulence is studied. Comparative studies of Unified Gas Kinetic Scheme (UGKS) and GKS-Navier-Stokes (NS) for Taylor-Green flow with initial Ma = 1, Kn = 0.01 and decaying isotropic turbulence with initial Mat = 1, Reλ = 20 show that the discrepancy exists both in small and large scales, even beyond the dissipation range to 10η with accuracy to 8% in the SGS energy transfer of the decaying isotropic turbulence, illustrating the necessity for resolving the kinetic scales even at moderated Reλ = 20.
The Scaling Group of the 1-D Invisicid Euler Equations
NASA Astrophysics Data System (ADS)
Schmidt, Emma; Ramsey, Scott; Boyd, Zachary; Baty, Roy
2017-11-01
The one dimensional (1-D) compressible Euler equations in non-ideal media support scale invariant solutions under a variety of initial conditions. Famous scale invariant solutions include the Noh, Sedov, Guderley, and collapsing cavity hydrodynamic test problems. We unify many classical scale invariant solutions under a single scaling group analysis. The scaling symmetry group generator provides a framework for determining all scale invariant solutions emitted by the 1-D Euler equations for arbitrary geometry, initial conditions, and equation of state. We approach the Euler equations from a geometric standpoint, and conduct scaling analyses for a broad class of materials.
Universal description of III-V/Si epitaxial growth processes
NASA Astrophysics Data System (ADS)
Lucci, I.; Charbonnier, S.; Pedesseau, L.; Vallet, M.; Cerutti, L.; Rodriguez, J.-B.; Tournié, E.; Bernard, R.; Létoublon, A.; Bertru, N.; Le Corre, A.; Rennesson, S.; Semond, F.; Patriarche, G.; Largeau, L.; Turban, P.; Ponchet, A.; Cornet, C.
2018-06-01
Here, we experimentally and theoretically clarify III-V/Si crystal growth processes. Atomically resolved microscopy shows that monodomain three-dimensional islands are observed at the early stages of AlSb, AlN, and GaP epitaxy on Si, independently of misfit. It is also shown that complete III-V/Si wetting cannot be achieved in most III-V/Si systems. Surface/interface contributions to the free-energy variations are found to be prominent over strain relief processes. We finally propose a general and unified description of III-V/Si growth processes, including a description of the formation of antiphase boundaries.
Toward a Standardized ODH Analysis Technique
Degraff, Brian D.
2016-12-01
Standardization of ODH analysis and mitigation policy thus represents an opportunity for the cryogenic community. There are several benefits for industry and government facilities to develop an applicable unified standard for ODH. The number of reviewers would increase, and review projects across different facilities would be simpler. Here, it would also present the opportunity for the community to broaden the development of expertise in modeling complicated flow geometries.