NASA Astrophysics Data System (ADS)
Bazilchuk, Molly; Haug, Halvard; Marstein, Erik Stensrud
2015-04-01
Several important semiconductor devices such as solar cells and photodetectors may be fabricated based on surface inversion layer junctions induced by fixed charge in a dielectric layer. Inversion layer junctions can easily be fabricated by depositing layers with a high density of fixed charge on a semiconducting substrate. Increasing the fixed charge improves such devices; for instance, the efficiency of a solar cell can be substantially increased by reducing the surface recombination velocity, which is a function of the fixed charge density. Methods for increasing the charge density are therefore of interest. In this work, the fixed charge density in silicon nitride layers deposited by plasma enhanced chemical vapor deposition is increased to very high values above 1 × 1013 cm-2 after the application of an external voltage to a gate electrode. The effect of the fixed charge density on the surface recombination velocity was experimentally observed using the combination of capacitance-voltage characterization and photoluminescence imaging, showing a significant reduction in the surface recombination velocity for increasing charge density. The surface recombination velocity vs. charge density data was analyzed using a numerical device model, which indicated the presence of a sub-surface damage region formed during deposition of the layers. Finally, we have demonstrated that the aluminum electrodes used for charge injection may be chemically removed in phosphoric acid without loss of the underlying charge. The injected charge was shown to be stable for a prolonged time period, leading us to propose charge injection in silicon nitride films by application of soaking voltage as a viable method for fabricating inversion layer devices.
On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.
Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo
2015-12-30
A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.
NASA Astrophysics Data System (ADS)
Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu
2018-01-01
We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.
Thermal stability of atomic layer deposition Al2O3 film on HgCdTe
NASA Astrophysics Data System (ADS)
Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.
2015-06-01
Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.
Modeling and simulation of deformation of hydrogels responding to electric stimulus.
Li, Hua; Luo, Rongmo; Lam, K Y
2007-01-01
A model for simulation of pH-sensitive hydrogels is refined in this paper to extend its application to electric-sensitive hydrogels, termed the refined multi-effect-coupling electric-stimulus (rMECe) model. By reformulation of the fixed-charge density and consideration of finite deformation, the rMECe model is able to predict the responsive deformations of the hydrogels when they are immersed in a bath solution subject to externally applied electric field. The rMECe model consists of nonlinear partial differential governing equations with chemo-electro-mechanical coupling effects and the fixed-charge density with electric-field effect. By comparison between simulation and experiment extracted from literature, the model is verified to be accurate and stable. The rMECe model performs quantitatively for deformation analysis of the electric-sensitive hydrogels. The influences of several physical parameters, including the externally applied electric voltage, initial fixed-charge density, hydrogel strip thickness, ionic strength and valence of surrounding solution, are discussed in detail on the displacement and average curvature of the hydrogels.
Trapped charge densities in Al{sub 2}O{sub 3}-based silicon surface passivation layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Paul M., E-mail: Paul.Jordan@namlab.com; Simon, Daniel K.; Dirnstorfer, Ingo
2016-06-07
In Al{sub 2}O{sub 3}-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al{sub 2}O{sub 3} layers are grown by atomic layer deposition with very thin (∼1 nm) SiO{sub 2} or HfO{sub 2} interlayers or interface layers. In SiO{sub 2}/Al{sub 2}O{sub 3} and HfO{sub 2}/Al{sub 2}O{sub 3} stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured inmore » pure Al{sub 2}O{sub 3}. In Al{sub 2}O{sub 3}/SiO{sub 2}/Al{sub 2}O{sub 3} or Al{sub 2}O{sub 3}/HfO{sub 2}/Al{sub 2}O{sub 3} stacks, very high total charge densities of up to 9 × 10{sup 12} cm{sup −2} are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al{sub 2}O{sub 3} layer thickness between silicon and the HfO{sub 2} or the SiO{sub 2} interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al{sub 2}O{sub 3} layers opens the possibility to engineer the field-effect passivation in the solar cells.« less
Simulation of electric double-layer capacitors: evaluation of constant potential method
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Laird, Brian; Yang, Yang; Olmsted, David; Asta, Mark
2014-03-01
Atomistic simulations can play an important role in understanding electric double-layer capacitors (EDLCs) at a molecular level. In such simulations, typically the electrode surface is modeled using fixed surface charges, which ignores the charge fluctuation induced by local fluctuations in the electrolyte solution. In this work we evaluate an explicit treatment of charges, namely constant potential method (CPM)[1], in which the electrode charges are dynamically updated to maintain constant electrode potential. We employ a model system with a graphite electrode and a LiClO4/acetonitrile electrolyte, examined as a function of electrode potential differences. Using various molecular and macroscopic properties as metrics, we compare CPM simulations on this system to results using fixed surface charges. Specifically, results for predicted capacity, electric potential gradient and solvent density profile are identical between the two methods; However, ion density profiles and solvation structure yield significantly different results.
Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin
2016-01-28
This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.
NASA Astrophysics Data System (ADS)
Toma, G.; Apel, W. D.; Arteaga, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brâncuş, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrică, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2011-05-01
Previous EAS investigations have shown that for a fixed primary energy the charged particle density becomes independent of the primary mass at certain (fixed) distances from the shower axis. This feature can be used as an estimator for the primary energy. We present results on the reconstruction of the primary energy spectrum of cosmic rays from the experimentally recorded S(500) observable (the density of charged particles at a distance of 500 m to the shower core as measured in a plane normal to the shower axis) using the KASCADE-Grande detector array. The KASCADE-Grande experiment is hosted by the Karlsruhe Institute for Technology - Campus North, Karlsruhe, Germany, 110 m a.s.l. and operated by an international collaboration. The obtained primary energy spectrum is presented along with the result of another reconstruction technique presently employed at KASCADE-Grande.
Payload charging events in the mesosphere and their impact on Langmuir type electric probes
NASA Astrophysics Data System (ADS)
Bekkeng, T. A.; Barjatya, A.; Hoppe, U.-P.; Pedersen, A.; Moen, J. I.; Friedrich, M.; Rapp, M.
2013-02-01
Three sounding rockets were launched from Andøya Rocket Range in the ECOMA campaign in December 2010. The aim was to study the evolution of meteoric smoke particles during a major meteor shower. Of the various instruments onboard the rocket payload, this paper presents the data from a multi-Needle Langmuir Probe (m-NLP) and a charged dust detector. The payload floating potential, as observed using the m-NLP instrument, shows charging events on two of the three flights. These charging events cannot be explained using a simple charging model, and have implications towards the use of fixed bias Langmuir probes on sounding rockets investigating mesospheric altitudes. We show that for a reliable use of a single fixed bias Langmuir probe as a high spatial resolution relative density measurement, each payload should also carry an additional instrument to measure payload floating potential, and an instrument that is immune to spacecraft charging and measures absolute plasma density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capriotti, M., E-mail: mattia.capriotti@tuwien.ac.at; Alexewicz, A.; Fleury, C.
2014-03-17
Using a generalized extraction method, the fixed charge density N{sub int} at the interface between in situ deposited SiN and 5 nm thick AlGaN barrier is evaluated by measurements of threshold voltage V{sub th} of an AlGaN/GaN metal insulator semiconductor high electron mobility transistor as a function of SiN thickness. The thickness of the originally deposited 50 nm thick SiN layer is reduced by dry etching. The extracted N{sub int} is in the order of the AlGaN polarization charge density. The total removal of the in situ SiN cap leads to a complete depletion of the channel region resulting in V{sub th} = +1 V.more » Fabrication of a gate stack with Al{sub 2}O{sub 3} as a second cap layer, deposited on top of the in situ SiN, is not introducing additional fixed charges at the SiN/Al{sub 2}O{sub 3} interface.« less
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.
2013-01-01
The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175
Scaling of Device Variability and Subthreshold Swing in Ballistic Carbon Nanotube Transistors
NASA Astrophysics Data System (ADS)
Cao, Qing; Tersoff, Jerry; Han, Shu-Jen; Penumatcha, Ashish V.
2015-08-01
In field-effect transistors, the inherent randomness of dopants and other charges is a major cause of device-to-device variability. For a quasi-one-dimensional device such as carbon nanotube transistors, even a single charge can drastically change the performance, making this a critical issue for their adoption as a practical technology. Here we calculate the effect of the random charges at the gate-oxide surface in ballistic carbon nanotube transistors, finding good agreement with the variability statistics in recent experiments. A combination of experimental and simulation results further reveals that these random charges are also a major factor limiting the subthreshold swing for nanotube transistors fabricated on thin gate dielectrics. We then establish that the scaling of the nanotube device uniformity with the gate dielectric, fixed-charge density, and device dimension is qualitatively different from conventional silicon transistors, reflecting the very different device physics of a ballistic transistor with a quasi-one-dimensional channel. The combination of gate-oxide scaling and improved control of fixed-charge density should provide the uniformity needed for large-scale integration of such novel one-dimensional transistors even at extremely scaled device dimensions.
Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface
NASA Astrophysics Data System (ADS)
Kotipalli, R.; Vermang, B.; Joel, J.; Rajkumar, R.; Edoff, M.; Flandre, D.
2015-10-01
Atomic layer deposited (ALD) Al2O3 films on Cu(In,Ga)Se2 (CIGS) surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf) and interface-trap charge density (Dit), for as-deposited (AD) and post-deposition annealed (PDA) ALD Al2O3 films on CIGS surfaces using capacitance-voltage (C-V) and conductance-frequency (G-f) measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm-2), whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm-2). The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm-2 eV-1) for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns), preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns) in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
Maroudas, Alice
1968-01-01
Ion exchange theory has been applied to articular cartilage. Relationships were derived between permeability, diffusivity, electrical conductivity, and streaming potential. Systematic measurements were undertaken on these properties. Experimental techniques are described and data tabulated. Theoretical correlations were found to hold within the experimental error. The concentration of fixed negatively-charged groups in cartilage was shown to be the most important parameter. Fixed charge density was found to increase with distance from the articular surface and this variation was reflected in the other properties. PMID:5699797
MIS capacitor studies on silicon carbide single crystals
NASA Technical Reports Server (NTRS)
Kopanski, J. J.
1990-01-01
Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors).
NASA Astrophysics Data System (ADS)
Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.
2016-03-01
We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.
Double ion production in mercury thrusters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Peters, R. R.
1976-01-01
The development of a model which predicts doubly charged ion density is discussed. The accuracy of the model is shown to be good for two different thruster sizes and a total of 11 different cases. The model indicates that in most cases more than 80% of the doubly charged ions are produced from singly charged ions. This result can be used to develop a much simpler model which, along with correlations of the average plasma properties, can be used to determine the doubly charged ion density in ion thrusters with acceptable accuracy. Two different techniques which can be used to reduce the doubly charged ion density while maintaining good thruster operation, are identified as a result of an examination of the simple model. First, the electron density can be reduced and the thruster size then increased to maintain the same propellant utilization. Second, at a fixed thruster size, the plasma density, temperature and energy can be reduced and then to maintain a constant propellant utilization the open area of the grids to neutral propellant loss can be reduced through the use of a small hole accelerator grid.
The strange sea density and charm production in deep inelastic charged current processes
NASA Astrophysics Data System (ADS)
Glück, M.; Kretzer, S.; Reya, E.
1996-02-01
Charm production as related to the determination of the strange sea density in deep inelastic charged current processes is studied predominantly in the framework of the overlineMS fixed flavor factorization scheme. Perturbative stability within this formalism is demonstrated. The compatibility of recent next-to-leading order strange quark distributions with the available dimuon and F2νN data is investigated. It is shown that final conclusions concerning these distributions afford further analyses of presently available and/or forthcoming neutrino data.
NASA Astrophysics Data System (ADS)
Black, Lachlan E.; Kessels, W. M. M. Erwin
2018-05-01
Thin-film stacks of phosphorus oxide (POx) and aluminium oxide (Al2O3) are shown to provide highly effective passivation of crystalline silicon (c-Si) surfaces. Surface recombination velocities as low as 1.7 cm s-1 and saturation current densities J0s as low as 3.3 fA cm-2 are obtained on n-type (100) c-Si surfaces passivated by 6 nm/14 nm thick POx/Al2O3 stacks deposited in an atomic layer deposition system and annealed at 450 °C. This excellent passivation can be attributed in part to an unusually large positive fixed charge density of up to 4.7 × 1012 cm-2, which makes such stacks especially suitable for passivation of n-type Si surfaces.
Wet oxidation of GeSi strained layers by rapid thermal processing
NASA Astrophysics Data System (ADS)
Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.
1990-07-01
A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.
Evaluation of the constant potential method in simulating electric double-layer capacitors
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Yang, Yang; Olmsted, David L.; Asta, Mark; Laird, Brian B.
2014-11-01
A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations in the electrolyte solution. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [S. K. Reed et al., J. Chem. Phys. 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO4-acetonitrile/graphite EDLC. At low potential difference (ΔΨ ⩽ 2 V), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher ΔΨ. At ΔΨ ⩾ 4 V, the CPM ion density profiles show significant enhancement (over FCM) of "inner-sphere adsorbed" Li+ ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li+ ions to the electrode surface.
Sivan, S S; Roberts, S; Urban, J P G; Menage, J; Bramhill, J; Campbell, D; Franklin, V J; Lydon, F; Merkher, Y; Maroudas, A; Tighe, B J
2014-03-01
The load-bearing biomechanical role of the intervertebral disc is governed by the composition and organization of its major macromolecular components, collagen and aggrecan. The major function of aggrecan is to maintain tissue hydration, and hence disc height, under the high loads imposed by muscle activity and body weight. Key to this role is the high negative fixed charge of its glycosaminoglycan side chains, which impart a high osmotic pressure to the tissue, thus regulating and maintaining tissue hydration and hence disc height under load. In degenerate discs, aggrecan degrades and is lost from the disc, particularly centrally from the nucleus pulposus. This loss of fixed charge results in reduced hydration and loss of disc height; such changes are closely associated with low back pain. The present authors developed biomimetic glycosaminoglycan analogues based on sulphonate-containing polymers. These biomimetics are deliverable via injection into the disc where they polymerize in situ, forming a non-degradable, nuclear "implant" aimed at restoring disc height to degenerate discs, thereby relieving back pain. In vitro, these glycosaminoglycan analogues possess appropriate fixed charge density, hydration and osmotic responsiveness, thereby displaying the capacity to restore disc height and function. Preliminary biomechanical tests using a degenerate explant model showed that the implant adapts to the space into which it is injected and restores stiffness. These hydrogels mimic the role taken by glycosaminoglycans in vivo and, unlike other hydrogels, provide an intrinsic swelling pressure, which can maintain disc hydration and height under the high and variable compressive loads encountered in vivo. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol Kajetan
2014-04-01
We establish several properties of the solutions to the linear integral equations describing the infinite volume properties of the XXZ spin-1/2 chain in the disordered regime. In particular, we obtain lower and upper bounds for the dressed energy, dressed charge and density of Bethe roots. Furthermore, we establish that given a fixed external magnetic field (or a fixed magnetization) there exists a unique value of the boundary of the Fermi zone.
Improved understanding of the recombination rate at inverted p+ silicon surfaces
NASA Astrophysics Data System (ADS)
To, Alexander; Ma, Fajun; Hoex, Bram
2017-08-01
The effect of positive fixed charge on the recombination rate at SiN x -passivated p+ surfaces is studied in this work. It is shown that a high positive fixed charge on a low defect density, passivated doped surface can result in a near injection level independent lifetime in a certain injection level range. This behaviour is modelled with advanced computer simulations using Sentaurus TCAD, which replicates the measurements conditions during a photoconductance based effective minority carrier lifetime measurement. The resulting simulations show that the shape of the injection level dependent lifetime is a result of the surface recombination rate, which is non-linear due to the surfaces moving into inversion with increasing injection level. As a result, the surface recombination rate switches from being limited by electrons to holes. Equations describing the surface saturation current density, J 0s, during this regime are also derived in this work.
Simple liquid models with corrected dielectric constants
Fennell, Christopher J.; Li, Libo; Dill, Ken A.
2012-01-01
Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations – water, carbon tetrachloride, chloroform and dichloromethane. Normally, such solvent models are parameterized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parameterizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parameterizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577
Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
2017-11-01
We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.
Vandana; Batra, Neha; Gope, Jhuma; Singh, Rajbir; Panigrahi, Jagannath; Tyagi, Sanjay; Pathi, P; Srivastava, S K; Rauthan, C M S; Singh, P K
2014-10-21
Thermal ALD deposited Al2O3 films on silicon show a marked difference in surface passivation quality as a function of annealing time (using a rapid thermal process). An effective and quality passivation is realized in short anneal duration (∼100 s) in nitrogen ambient which is reflected in the low surface recombination velocity (SRV <10 cm s(-1)). The deduced values are close to the best reported SRV obtained by the high thermal budget process (with annealing time between 10-30 min), conventionally used for improved surface passivation. Both as-deposited and low thermal budget annealed films show the presence of positive fixed charges and this is never been reported in the literature before. The role of field and chemical passivation is investigated in terms of fixed charge and interface defect densities. Further, the importance of the annealing step sequence in the MIS structure fabrication protocol is also investigated from the view point of its effect on the nature of fixed charges.
NASA Astrophysics Data System (ADS)
Toma, G.; Apel, W. D.; Arteaga, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2010-11-01
Previous EAS investigations have shown that for a fixed primary energy the charged particle density becomes independent of the primary mass at certain (fixed) distances from the shower core. This feature can be used as an estimator for the primary energy. We present results on the reconstruction of the primary energy spectrum of cosmic rays from the experimentally recorded S(500) observable (the density of charged particles at 500 m distance to the shower core) using the KASCADE-Grande detector array. The KASCADE-Grande experiment is hosted by the Karlsruhe Institute for Technology-Campus North, Karlsruhe, Germany, and operated by an international collaboration. The constant intensity cut (CIC) method is applied to evaluate the attenuation of the S(500) observable with the zenith angle and is corrected for. A calibration of S(500) values with the primary energy has been worked out by simulations and was applied to the data to obtain the primary energy spectrum (in the energy range log10[E0/GeV]∈[7.5,9]). The systematic uncertainties induced by different sources are considered. In addition, a correction based on a response matrix is applied to account for the effects of shower-to-shower fluctuations on the spectral index of the reconstructed energy spectrum.
Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties
NASA Astrophysics Data System (ADS)
Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki
2018-01-01
The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.
Drude-type conductivity of charged sphere colloidal crystals: Density and temperature dependence
NASA Astrophysics Data System (ADS)
Medebach, Martin; Jordán, Raquel Chuliá; Reiber, Holger; Schöpe, Hans-Joachim; Biehl, Ralf; Evers, Martin; Hessinger, Dirk; Olah, Julianna; Palberg, Thomas; Schönberger, Ernest; Wette, Patrick
2005-09-01
We report on extensive measurements in the low-frequency limit of the ac conductivity of colloidal fluids and crystals formed from charged colloidal spheres suspended in de-ionized water. Temperature was varied in a range of 5°C<Θ<35°C and the particle number density n between 0.2 and 25μm-3 for the larger, respectively, 2.75 and 210μm-3 for the smaller of two investigated species. At fixed Θ the conductivity increased linearly with increasing n without any significant change at the fluid-solid phase boundary. At fixed n it increased with increasing Θ and the increase was more pronounced for larger n. Lacking a rigorous electrohydrodynamic treatment for counterion-dominated systems we describe our data with a simple model relating to Drude's theory of metal conductivity. The key parameter is an effectively transported particle charge or valence Z*. All temperature dependencies other than that of Z* were taken from literature. Within experimental resolution Z* was found to be independent of n irrespective of the suspension structure. Interestingly, Z* decreases with temperature in near quantitative agreement with numerical calculations.
NASA Astrophysics Data System (ADS)
Xiao, Hai-Qing; Zhou, Chun-Lan; Cao, Xiao-Ning; Wang, Wen-Jing; Zhao, Lei; Li, Hai-Ling; Diao, Hong-Wei
2009-08-01
Al2O3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 1012 cm-2 is detected in the Al2O3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO2 and plasma enhanced chemical vapor deposition SiNx:H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al2O3.
films on silicon at different annealing temperatures
NASA Astrophysics Data System (ADS)
Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su
2013-03-01
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density ( Q f) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Q f can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Q f obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Q f. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiO x /Si interface region decreased with increased temperature. Measurement results of Q f proved that the Al vacancy of the bulk film may not be related to Q f. The defect density in the SiO x region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.
Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.
Keh, Huan J; Ding, Jau M
2003-07-15
An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.
NASA Astrophysics Data System (ADS)
Bartczak, Witold M.; Kroh, Jerzy
The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.
Multi-Skyrmions on AdS2 × S2, rational maps and popcorn transitions
NASA Astrophysics Data System (ADS)
Canfora, Fabrizio; Tallarita, Gianni
2017-08-01
By combining two different techniques to construct multi-soliton solutions of the (3 + 1)-dimensional Skyrme model, the generalized hedgehog and the rational map ansatz, we find multi-Skyrmion configurations in AdS2 ×S2. We construct Skyrmionic multi-layered configurations such that the total Baryon charge is the product of the number of kinks along the radial AdS2 direction and the degree of the rational map. We show that, for fixed total Baryon charge, as one increases the charge density on ∂ (AdS2 ×S2) , it becomes increasingly convenient energetically to have configurations with more peaks in the radial AdS2 direction but a lower degree of the rational map. This has a direct relation with the so-called holographic popcorn transitions in which, when the charge density is high, multi-layered configurations with low charge on each layer are favored over configurations with few layers but with higher charge on each layer. The case in which the geometry is M2 ×S2 can also be analyzed.
Kinetics of electrically and chemically induced swelling in polyelectrolyte gels
NASA Astrophysics Data System (ADS)
Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.
1990-09-01
Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.
Electrical Conductivity of Dense Al, Ti, Fe, Ni, Cu, Mo, Ta, and W Plasmas
2011-06-01
for all but tantalum and titanium shows a minimum at approximately 0.01 times solid density, followed by an increase as the density decreases further...internal energy and specific volume. Conductivity is observed to fall as the plasma expands for fixed internal energy, and for all but tantalum and...plasmas formed from elemental metal wires heated rapidly in a water bath by the electric current from discharge of a charged capacitor . Electrical
Novel technique for online characterization of cartilaginous tissue properties.
Yuan, Tai-Yi; Huang, Chun-Yuh; Yong Gu, Wei
2011-09-01
The goal of tissue engineering is to use substitutes to repair and restore organ function. Bioreactors are an indispensable tool for monitoring and controlling the unique environment for engineered constructs to grow. However, in order to determine the biochemical properties of engineered constructs, samples need to be destroyed. In this study, we developed a novel technique to nondestructively online-characterize the water content and fixed charge density of cartilaginous tissues. A new technique was developed to determine the tissue mechano-electrochemical properties nondestructively. Bovine knee articular cartilage and lumbar annulus fibrosus were used in this study to demonstrate that this technique could be used on different types of tissue. The results show that our newly developed method is capable of precisely predicting the water volume fraction (less than 3% disparity) and fixed charge density (less than 16.7% disparity) within cartilaginous tissues. This novel technique will help to design a new generation of bioreactors which are able to actively determine the essential properties of the engineered constructs, as well as regulate the local environment to achieve the optimal conditions for cultivating constructs.
Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su
2013-03-02
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.
2013-01-01
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C. PMID:23452508
Electrokinetics of diffuse soft interfaces. 1. Limit of low Donnan potentials.
Duval, Jérôme F L; van Leeuwen, Herman P
2004-11-09
The current theoretical approaches to electrokinetics of gels or polyelectrolyte layers are based on the assumption that the position of the very interface between the aqueous medium and the gel phase is well defined. Within this assumption, spatial profiles for the volume fraction of polymer segments (phi), the density of fixed charges in the porous layer (rho fix), and the coefficient modeling the friction to hydrodynamic flow (k) follow a step-function. In reality, the "fuzzy" nature of the charged soft layer is intrinsically incompatible with the concept of a sharp interface and therefore necessarily calls for more detailed spatial representations for phi, rho fix, and k. In this paper, the notion of diffuse interface is introduced. For the sake of illustration, linear spatial distributions for phi and rho fix are considered in the interfacial zone between the bulk of the porous charged layer and the bulk electrolyte solution. The corresponding distribution for k is inferred from the Brinkman equation, which for low phi reduces to Stokes' equation. Linear electrostatics, hydrodynamics, and electroosmosis issues are analytically solved within the context of streaming current and streaming potential of charged surface layers in a thin-layer cell. The hydrodynamic analysis clearly demonstrates the physical incorrectness of the concept of a discrete slip plane for diffuse interfaces. For moderate to low electrolyte concentrations and nanoscale spatial transition of phi from zero (bulk electrolyte) to phi o (bulk gel), the electrokinetic properties of the soft layer as predicted by the theory considerably deviate from those calculated on the basis of the discontinuous approximation by Ohshima.
NASA Astrophysics Data System (ADS)
Patel, Sandeep; Brooks, Charles L.
2005-01-01
We study the bulk and interfacial properties of methanol via molecular dynamics simulations using a CHARMM (Chemistry at HARvard Molecular Mechanics) fluctuating charge force field. We discuss the parametrization of the electrostatic model as part of the ongoing CHARMM development for polarizable protein force fields. The bulk liquid properties are in agreement with available experimental data and competitive with existing fixed-charge and polarizable force fields. The liquid density and vaporization enthalpy are determined to be 0.809 g/cm3 and 8.9 kcal/mol compared to the experimental values of 0.787 g/cm3 and 8.94 kcal/mol, respectively. The liquid structure as indicated by radial distribution functions is in keeping with the most recent neutron diffraction results; the force field shows a slightly more ordered liquid, necessarily arising from the enhanced condensed phase electrostatics (as evidenced by an induced liquid phase dipole moment of 0.7 D), although the average coordination with two neighboring molecules is consistent with the experimental diffraction study as well as with recent density functional molecular dynamics calculations. The predicted surface tension of 19.66±1.03 dyn/cm is slightly lower than the experimental value of 22.6 dyn/cm, but still competitive with classical force fields. The interface demonstrates the preferential molecular orientation of molecules as observed via nonlinear optical spectroscopic methods. Finally, via canonical molecular dynamics simulations, we assess the model's ability to reproduce the vapor-liquid equilibrium from 298 to 423 K, the simulation data then used to obtain estimates of the model's critical temperature and density. The model predicts a critical temperature of 470.1 K and critical density of 0.312 g/cm3 compared to the experimental values of 512.65 K and 0.279 g/cm3, respectively. The model underestimates the critical temperature by 8% and overestimates the critical density by 10%, and in this sense is roughly equivalent to the underlying fixed-charge CHARMM22 force field.
Magnetic properties of confined holographic QCD
NASA Astrophysics Data System (ADS)
Bergman, Oren; Lifschytz, Gilad; Lippert, Matthew
2013-12-01
We investigate the Sakai-Sugimoto model at nonzero baryon chemical potential in a background magnetic field in the confined phase where chiral symmetry is broken. The D8-brane Chern-Simons term holographically encodes the axial anomaly and generates a gradient of the η' meson, which carries a non-vanishing baryon charge. Above a critical value of the chemical potential, there is a second-order phase transition to a mixed phase which includes also ordinary baryonic matter. However, at fixed baryon charge density, the matter is purely η'-gradient above a critical magnetic field.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1983-09-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1984-12-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
NASA Astrophysics Data System (ADS)
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; Otani, Minoru; Wood, Brandon C.
2015-03-01
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic "quantum capacitance" of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulating charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.
48 CFR 2152.216-70 - Fixed price with limited cost redetermination-risk charge.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cost redetermination-risk charge. 2152.216-70 Section 2152.216-70 Federal Acquisition Regulations....216-70 Fixed price with limited cost redetermination—risk charge. As prescribed in 2116.270-1(a), insert the following clause when a risk charge is negotiated: Fixed Price With Limited Cost...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; ...
2015-03-11
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less
High thermal stability of abrupt SiO2/GaN interface with low interface state density
NASA Astrophysics Data System (ADS)
Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi
2018-04-01
The effects of postdeposition annealing (PDA) on the interface properties of a SiO2/GaN structure formed by remote oxygen plasma-enhanced chemical vapor deposition (RP-CVD) were systematically investigated. X-ray photoelectron spectroscopy clarified that PDA in the temperature range from 600 to 800 °C has almost no effects on the chemical bonding features at the SiO2/GaN interface, and that positive charges exist at the interface, the density of which can be reduced by PDA at 800 °C. The capacitance-voltage (C-V) and current density-SiO2 electric field characteristics of the GaN MOS capacitors also confirmed the reduction in interface state density (D it) and the improvement in the breakdown property of the SiO2 film after PDA at 800 °C. Consequently, a high thermal stability of the SiO2/GaN structure with a low fixed charge density and a low D it formed by RP-CVD was demonstrated. This is quite informative for realizing highly robust GaN power devices.
Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions
NASA Astrophysics Data System (ADS)
Netz, R. R.; Orland, H.
2000-02-01
We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.
Counter-ions at single charged wall: Sum rules.
Samaj, Ladislav
2013-09-01
For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.
Chen, Wei J; Keh, Huan J
2013-08-22
An analysis for the quasi-steady electrophoretic motion of a soft particle composed of a charged spherical rigid core and an adsorbed porous layer positioned at the center of a charged spherical cavity filled with an arbitrary electrolyte solution is presented. Within the porous layer, frictional segments with fixed charges are assumed to distribute uniformly. Through the use of the linearized Poisson-Boltzmann equation and the Laplace equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately determined. The modified Stokes and Brinkman equations governing the fluid flow fields outside and inside the porous layer, respectively, are solved subsequently. An explicit formula for the electrokinetic migration velocity of the soft particle in terms of the fixed charge densities on the rigid core surface, in the porous layer, and on the cavity wall is obtained from a balance between its electrostatic and hydrodynamic forces. This formula is valid for arbitrary values of κa, λa, r0/a, and a/b, where κ is the Debye screening parameter, λ is the reciprocal of the length characterizing the extent of flow penetration inside the porous layer, a is the radius of the soft particle, r0 is the radius of the rigid core of the particle, and b is the radius of the cavity. In the limiting cases of r0 = a and r0 = 0, the migration velocity for the charged soft sphere reduces to that for a charged impermeable sphere and that for a charged porous sphere, respectively, in the charged cavity. The effect of the surface charge at the cavity wall on the particle migration can be significant, and the particle may reverse the direction of its migration.
NASA Astrophysics Data System (ADS)
Hafsi, B.; Boubaker, A.; Guerin, D.; Lenfant, S.; Kalboussi, A.; Lmimouni, K.
2017-02-01
Organic field-effect transistors based on poly{[ N, N0- bis(2-octyldodecyl)- naphthalene-1,4,5,8- bis(dicarboximide)-2,6-diyl]-alt-5,50-(2,20-bithiophene)}, [P(NDI2OD-T2)n], were fabricated and characterized. The effect of octadecyltrichlorosilane (OTS) a self-assembled monolayer (SAM) grafted on to a SiO2 gate dielectric was investigated. A significant improvement of the charge mobility ( μ), up to 0.22 cm2/V s, was reached thanks to the OTS treatment. Modifying some technological parameters relating to fabrication, such as solvents, was also studied. We have analyzed the electrical properties of these thin-film transistors by using a two-dimensional drift-diffusion simulator, Integrated System Engineering-Technology Computer Aided Design (ISE-TCAD®). We studied the fixed surface charges at the organic semiconductor/oxide interface and the bulk traps effect. The dependence of the threshold voltage on the density and energy level of the trap states has also been considered. We finally found a good agreement between the output and transfer characteristics for experimental and simulated data.
High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC
NASA Technical Reports Server (NTRS)
Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.
1990-01-01
Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.
NASA Astrophysics Data System (ADS)
Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.
2014-12-01
Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.
The equivalent depth of burst for impact cratering
NASA Technical Reports Server (NTRS)
Holsapple, K. A.
1980-01-01
The concept of modeling an impact cratering event with an explosive event with the explosive buried at some equivalent depth of burst (d.o.b.) is discussed. Various and different ways to define this equivalent d.o.b. are identified. Recent experimental results for a dense quartz sand are used to determine the equivalent d.o.b. for various conditions of charge type, event size, and impact conditions. The results show a decrease in equivalent d.o.b. with increasing energy for fixed impact velocity and a decrease in equivalent d.o.b. with increasing velocity for fixed energy. The values for an iron projectile are on the order of 2-3 projectile radii for energy equal to one ton of TNT, decreasing to about 1.5 radii at a megaton of TNT. The dependence on projectile and target mass density matches that included in common jet-penetration formulas for projectile densities greater than target densities and for the higher energies.
Screening in ionic systems: simulations for the Lebowitz length.
Kim, Young C; Luijten, Erik; Fisher, Michael E
2005-09-30
Simulations of the Lebowitz length, xiL (T, rho), are reported for the restricted primitive model hard-core (diameter a) 1:1 electrolyte for densities rho approximately < 4rho(c) and T(c) approximately < T approximately < 40T(c). Finite-size effects are elucidated for the charge fluctuations in various subdomains that serve to evaluate xiL. On extrapolation to the bulk limit for T approximately > 10T(c) the exact low-density expansions are seen to fail badly when rho > 1/10 rho(c) (with rho(c)a3 approximately = 0.08). At higher densities xiL rises above the Debye length, xiD proportional to square root(T/rho), by 10%-30% (up to rho approximately =1.3rho(c)); the variation is portrayed fairly well by the generalized Debye-Hückel theory. On approaching criticality at fixed rho or fixed T, xiL (T, rho) remains finite with xiL(c) approximately = 0.30a approximately = 1.3xiD(c) but displays a weak entropylike singularity.
Probing the Importance of Charge Flux in Force Field Modeling.
Sedghamiz, Elaheh; Nagy, Balazs; Jensen, Frank
2017-08-08
We analyze the conformational dependence of atomic charges and molecular dipole moments for a selection of ∼900 conformations of peptide models of the 20 neutral amino acids. Based on a set of reference density functional theory calculations, we partition the changes into effects due to changes in bond distances, bond angles, and torsional angles and into geometry and charge flux contributions. This allows an assessment of the limitations of fixed charge force fields and indications for how to design improved force fields. The torsional degrees of freedom are the main contribution to conformational changes of atomic charges and molecular dipole moments, but indirect effects due to change in bond distances and angles account for ∼25% of the variation. Charge flux effects dominate for changes in bond distances and are also the main component of the variation in bond angles, while they are ∼25% compared to the geometry variations for torsional degrees of freedom. The geometry and charge flux contributions to some extent produce compensating effects.
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Hamid, Fatimah A.; Ismail, Razali
2016-12-01
An explicit solution for long-channel surrounding-gate (SRG) MOSFETs is presented from intrinsic to heavily doped body including the effects of interface traps and fixed oxide charges. The solution is based on the core SRGMOSFETs model of the Unified Charge Control Model (UCCM) for heavily doped conditions. The UCCM model of highly doped SRGMOSFETs is derived to obtain the exact equivalent expression as in the undoped case. Taking advantage of the undoped explicit charge-based expression, the asymptotic limits for below threshold and above threshold have been redefined to include the effect of trap states for heavily doped cases. After solving the asymptotic limits, an explicit mobile charge expression is obtained which includes the trap state effects. The explicit mobile charge model shows very good agreement with respect to numerical simulation over practical terminal voltages, doping concentration, geometry effects, and trap state effects due to the fixed oxide charges and interface traps. Then, the drain current is obtained using the Pao-Sah's dual integral, which is expressed as a function of inversion charge densities at the source/drain ends. The drain current agreed well with the implicit solution and numerical simulation for all regions of operation without employing any empirical parameters. A comparison with previous explicit models has been conducted to verify the competency of the proposed model with the doping concentration of 1× {10}19 {{cm}}-3, as the proposed model has better advantages in terms of its simplicity and accuracy at a higher doping concentration.
Log-rise of the resistivity in the holographic Kondo model
NASA Astrophysics Data System (ADS)
Padhi, Bikash; Tiwari, Apoorv; Setty, Chandan; Phillips, Philip W.
2018-03-01
We study a single-channel Kondo effect using a recently developed [1-4] holographic large-N technique. In order to obtain resistivity of this model, we introduce a probe field. The gravity dual of a localized fermionic impurity in 1 +1 -dimensional host matter is constructed by embedding a localized two-dimensional Anti-de Sitter (AdS2 )-brane in the bulk of three-dimensional AdS3 . This helps us construct an impurity charge density which acts as a source to the bulk equation of motion of the probe gauge field. The functional form of the charge density is obtained independently by solving the equations of motion for the fields confined to the AdS2 -brane. The asymptotic solution of the probe field is dictated by the impurity charge density, which in turn affects the current-current correlation functions and hence the resistivity. Our choice of parameters tunes the near-boundary impurity current to be marginal, resulting in a log T behavior in the UV resistivity, as is expected for the Kondo problem. The resistivity at the IR fixed point turns out to be zero, signaling a complete screening of the impurity.
NASA Astrophysics Data System (ADS)
Ling, Zhi Peng; Xin, Zheng; Ke, Cangming; Jammaal Buatis, Kitz; Duttagupta, Shubham; Lee, Jae Sung; Lai, Archon; Hsu, Adam; Rostan, Johannes; Stangl, Rolf
2017-08-01
Passivated contacts for solar cells can be realized using a variety of differently formed ultra-thin tunnel oxide layers. Assessing their interface properties is important for optimization purposes. In this work, we demonstrate the ability to measure the interface defect density distribution D it(E) and the fixed interface charge density Q f for ultra-thin passivation layers operating within the tunnel regime (<2 nm). Various promising tunnel layer candidates [i.e., wet chemically formed SiO x , UV photo-oxidized SiO x , and atomic layer deposited (ALD) AlO x ] are investigated for their potential application forming electron or hole selective tunnel layer passivated contacts. In particular, ALD AlO x is identified as a promising tunnel layer candidate for hole-extracting passivated contact formation, stemming from its high (negative) fixed interface charge density in the order of -6 × 1012 cm-2. This is an order of magnitude higher compared to wet chemically or UV photo-oxidized formed silicon oxide tunnel layers, while keeping the density of interface defect states D it at a similar level (in the order of ˜2 × 1012 cm-2 eV-1). This leads to additional field effect passivation and therefore to significantly higher measured effective carrier lifetimes (˜2 orders of magnitude). A surface recombination velocity of ˜40 cm/s has been achieved for a 1.5 nm thin ALD AlO x tunnel layer prior to capping by an additional hole transport material, like p-doped poly-Si or PEDOT:PSS.
Polarization and interface charge coupling in ferroelectric/AlGaN/GaN heterostructure
NASA Astrophysics Data System (ADS)
Zhang, Min; Kong, Yuechan; Zhou, Jianjun; Xue, Fangshi; Li, Liang; Jiang, Wenhai; Hao, Lanzhong; Luo, Wenbo; Zeng, Huizhong
2012-03-01
Asymmetrical shift behaviors of capacitance-voltage (C-V) curve with opposite direction are observed in two AlGaN/GaN metal-ferroelectric-semiconductor (MFS) heterostructures with Pb(Zr,Ti)O3 and LiNbO3 gate dielectrics. By incorporating the switchable polar nature of the ferroelectric into a self-consistent calculation, the coupling effect between the ferroelectric and the interface charges is disclosed. The opposite initial orientation of ferroelectric dipoles determined by the interface charges is essentially responsible for the different C-V characteristics. A critical fixed charge density of -1.27 × 1013cm-2 is obtained, which plays a key role in the dependence of the C-V characteristic on the ferroelectric polarization. The results pave the way for design of memory devices based on MFS structure with heteropolar interface.
Resolving dispersion and induction components for polarisable molecular simulations of ionic liquids
NASA Astrophysics Data System (ADS)
Pádua, Agílio A. H.
2017-05-01
One important development in interaction potential models, or atomistic force fields, for molecular simulation is the inclusion of explicit polarisation, which represents the induction effects of charged or polar molecules on polarisable electron clouds. Polarisation can be included through fluctuating charges, induced multipoles, or Drude dipoles. This work uses Drude dipoles and is focused on room-temperature ionic liquids, for which fixed-charge models predict too slow dynamics. The aim of this study is to devise a strategy to adapt existing non-polarisable force fields upon addition of polarisation, because induction was already contained to an extent, implicitly, due to parametrisation against empirical data. Therefore, a fraction of the van der Waals interaction energy should be subtracted so that the Lennard-Jones terms only account for dispersion and the Drude dipoles for induction. Symmetry-adapted perturbation theory is used to resolve the dispersion and induction terms in dimers and to calculate scaling factors to reduce the Lennard-Jones terms from the non-polarisable model. Simply adding Drude dipoles to an existing fixed-charge model already improves the prediction of transport properties, increasing diffusion coefficients, and lowering the viscosity. Scaling down the Lennard-Jones terms leads to still faster dynamics and densities that match experiment extremely well. The concept developed here improves the overall prediction of density and transport properties and can be adapted to other models and systems. In terms of microscopic structure of the ionic liquids, the inclusion of polarisation and the down-scaling of Lennard-Jones terms affect only slightly the ordering of the first shell of counterions, leading to small decreases in coordination numbers. Remarkably, the effect of polarisation is major beyond first neighbours, significantly weakening spatial correlations, a structural effect that is certainly related to the faster dynamics of polarisable models.
Light-front representation of chiral dynamics in peripheral transverse densities
Granados, Carlos G.; Weiss, Christian
2015-07-31
The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alarcón, J. M.; Hiller Blin, A. N.; Vicente Vacas, M. J.
2017-05-08
The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. In this paper, we calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b=O(Mmore » $$-1\\atop{π}$$) using methods of relativistic chiral effective field theory (χ EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M$$2\\atop{π}$$ are calculated using relativistic χEFT including octet and decuplet baryons. The χEFT calculations are extended into the ρ meson mass region using an N/D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. Finally, the approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.« less
A managerial approach to allocating indirect fixed costs in health care organizations.
Goldschmidt, Y; Gafni, A
1990-01-01
To allocate indirect fixed costs to the different units in an organization, fixed costs of a supporting service should be charged to the factor that creates the demand for the service (using the dual-rate-charging method) and overhead costs should be charged to the binding constraint of the organization.
Polarizable six-point water models from computational and empirical optimization.
Tröster, Philipp; Lorenzen, Konstantin; Tavan, Paul
2014-02-13
Tröster et al. (J. Phys. Chem B 2013, 117, 9486-9500) recently suggested a mixed computational and empirical approach to the optimization of polarizable molecular mechanics (PMM) water models. In the empirical part the parameters of Buckingham potentials are optimized by PMM molecular dynamics (MD) simulations. The computational part applies hybrid calculations, which combine the quantum mechanical description of a H2O molecule by density functional theory (DFT) with a PMM model of its liquid phase environment generated by MD. While the static dipole moments and polarizabilities of the PMM water models are fixed at the experimental gas phase values, the DFT/PMM calculations are employed to optimize the remaining electrostatic properties. These properties cover the width of a Gaussian inducible dipole positioned at the oxygen and the locations of massless negative charge points within the molecule (the positive charges are attached to the hydrogens). The authors considered the cases of one and two negative charges rendering the PMM four- and five-point models TL4P and TL5P. Here we extend their approach to three negative charges, thus suggesting the PMM six-point model TL6P. As compared to the predecessors and to other PMM models, which also exhibit partial charges at fixed positions, TL6P turned out to predict all studied properties of liquid water at p0 = 1 bar and T0 = 300 K with a remarkable accuracy. These properties cover, for instance, the diffusion constant, viscosity, isobaric heat capacity, isothermal compressibility, dielectric constant, density, and the isobaric thermal expansion coefficient. This success concurrently provides a microscopic physical explanation of corresponding shortcomings of previous models. It uniquely assigns the failures of previous models to substantial inaccuracies in the description of the higher electrostatic multipole moments of liquid phase water molecules. Resulting favorable properties concerning the transferability to other temperatures and conditions like the melting of ice are also discussed.
Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.
Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A
2014-10-21
Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.
NASA Astrophysics Data System (ADS)
To, A.; Hoex, B.
2017-11-01
A novel method for the extraction of fixed interface charge, Qf, and the surface recombination parameters, Sn0 and Sp0, from the injection-level dependent effective minority carrier lifetime measurements is presented. Unlike conventional capacitance-voltage measurements, this technique can be applied to highly doped surfaces provided the surface carrier concentration transitions into strong depletion or inversion with increased carrier injection. By simulating the injection level dependent Auger-corrected inverse lifetime curve of symmetrically passivated and diffused samples after sequential annealing and corona charging, it was revealed that Qf, Sn0, and Sp0 have unique signatures. Therefore, these important electronic parameters, in some instances, can independently be resolved. Furthermore, it was shown that this non-linear lifetime behaviour is exhibited on both p-type and n-type diffused inverted surfaces, by demonstrating the approach with phosphorous diffused n+pn+ structures and boron diffused p+np+ structures passivated with aluminium oxide (AlOx) and silicon nitride, respectively (SiNx). The results show that the approximation of a mid-gap Shockley-Read-Hall defect level with equal capture cross sections is able to, in the samples studied in this work, reproduce the observed injection level dependent lifetime behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A
2017-03-21
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
A new potential for radiation studies of borosilicate glass
NASA Astrophysics Data System (ADS)
Alharbi, Amal F.; Jolley, Kenny; Smith, Roger; Archer, Andrew J.; Christie, Jamieson K.
2017-02-01
Borosilicate glass containing 70 mol% SiO2 and 30 mol% B2O3 is investigated theoretically using fixed charge potentials. An existing potential parameterisation for borosilicate glass is found to give good agreement for the bond angle and bond length distributions compared to experimental values but the optimal density is 30% higher than experiment. Therefore the potential parameters are refitted to give an optimal density of 2.1 g/cm3, in line with experiment. To determine the optimal density, a series of random initial structures are quenched at a rate of 5 × 1012 K/s using constant volume molecular dynamics. An average of 10 such quenches is carried out for each fixed volume. For each quenched structure, the bond angles, bond lengths, mechanical properties and melting points are determined. The new parameterisation is found to give the density, bond angles, bond lengths and Young's modulus comparable with experimental data, however, the melting points and Poisson's ratio are higher than the reported experimental values. The displacement energy thresholds are computed to be similar to those determined with the earlier parameterisation, which is lower than those for ionic crystalline materials.
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
2017-03-16
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Atomistic Molecular Dynamics Simulations of Charged Latex Particle Surfaces in Aqueous Solution.
Li, Zifeng; Van Dyk, Antony K; Fitzwater, Susan J; Fichthorn, Kristen A; Milner, Scott T
2016-01-19
Charged particles in aqueous suspension form an electrical double layer at their surfaces, which plays a key role in suspension properties. For example, binder particles in latex paint remain suspended in the can because of repulsive forces between overlapping double layers. Existing models of the double layer assume sharp interfaces bearing fixed uniform charge, and so cannot describe aqueous binder particle surfaces, which are soft and diffuse, and bear mobile charge from ionic surfactants as well as grafted multivalent oligomers. To treat this industrially important system, we use atomistic molecular dynamics simulations to investigate a structurally realistic model of commercial binder particle surfaces, informed by extensive characterization of particle synthesis and surface properties. We determine the interfacial profiles of polymer, water, bound and free ions, from which the charge density and electrostatic potential can be calculated. We extend the traditional definitions of the inner and outer Helmholtz planes to our diffuse interfaces. Beyond the Stern layer, the simulated electrostatic potential is well described by the Poisson-Boltzmann equation. The potential at the outer Helmholtz plane compares well to the experimental zeta potential. We compare particle surfaces bearing two types of charge groups, ionic surfactant and multivalent oligomers, with and without added salt. Although the bare charge density of a surface bearing multivalent oligomers is much higher than that of a surfactant-bearing surface at realistic coverage, greater counterion condensation leads to similar zeta potentials for the two systems.
Self-force as probe of internal structure
NASA Astrophysics Data System (ADS)
Isoyama, Soichiro; Poisson, Eric
2012-08-01
The self-force acting on a (scalar or electric) charge held in place outside a massive body contains information about the body’s composition, and can therefore be used as a probe of internal structure. We explore this theme by computing the (scalar or electromagnetic) self-force when the body is a spherical ball of perfect fluid in hydrostatic equilibrium, under the assumption that its rest-mass density and pressure are related by a polytropic equation of state. The body is strongly self-gravitating, and all computations are performed in exact general relativity. The dependence on internal structure is best revealed by expanding the self-force in powers of r-10, with r0 denoting the radial position of the charge outside the body. To the leading order, the self-force scales as r-30 and depends only on the square of the charge and the body’s mass; the leading self-force is universal. The dependence on internal structure is seen at the next order, r-50, through a structure factor that depends on the equation of state. We compute this structure factor for relativistic polytropes, and show that for a fixed mass, it increases linearly with the body’s radius in the case of the scalar self-force, and quadratically with the body’s radius in the case of the electromagnetic self-force. In both cases we find that for a fixed mass and radius, the self-force is smaller if the body is more centrally dense, and larger if the mass density is more uniformly distributed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, Joyce; Davidson, Carolyn; Miller, John
Utilities are proposing changes to residential rate structures to address concerns about lost revenue due to increased adoption of distributed solar generation. An investigation of the impacts of increased fixed charges, minimum bills and residential demand charges on PV and non-PV customer bills suggests that minimum bills more accurately capture utilities' revenue requirement than fixed charges, while not acting as a disincentive to efficiency or negatively impacting low-income customers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Armin, E-mail: armin.richter@ise.fraunhofer.de; Benick, Jan; Kimmerle, Achim
2014-12-28
Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal duemore » to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.« less
Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal
Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.
2007-01-01
A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791
13 CFR 120.213 - What fixed interest rates may a Lender charge?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What fixed interest rates may a... BUSINESS LOANS Policies Specific to 7(a) Loans Maturities; Interest Rates; Loan and Guarantee Amounts § 120.213 What fixed interest rates may a Lender charge? (a) Fixed Rates for Guaranteed Loans. A loan may...
Electronic properties of doped and defective NiO: A quantum Monte Carlo study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan
NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewey, J.M.; McMillin, D.J.; Trill, D.
1978-01-01
This volume describes the photogrammetry and analysis of the particle trajectories in blast waves produced by the simultaneous detonation of two spherical 1080-lb (490-kg) Pentolite charges (DIPOLE WEST Shot 8). One of the charges was positioned at a height of 25 feet above smooth ground, and the second charge 50 feet above the first. Photogrammetrical measurements were made of the trajectories of air particle flow tracers (smoke puffs), which had been placed in a vertical grid at heights ranging from 3 to 58 feet above the ground and at radial distances ranging from 25 to 140 feet from the verticalmore » axis through the charges. From the measured particle trajectories, calculations were made, as described in AD-A058 377. From the shock front times-of-arrival, calculations were made of the shock velocities and, in turn, the peak particle velocities, air densities and hydrostatic overpressure immediately behind each shock. Calculations were also made of the variation with time of the particle velocity, density, hydrostatic overpressure, dynamic pressure, and total pressure at several fixed points. Results, presented both graphically and in tables, are compared to results previously calculated for the same experiment using shock front photogrammetry.« less
Electronic properties of doped and defective NiO: A quantum Monte Carlo study
Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan; ...
2017-12-28
NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less
Horn, Paul R; Head-Gordon, Martin
2016-02-28
In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.
On the c-Si/SiO2 interface recombination parameters from photo-conductance decay measurements
NASA Astrophysics Data System (ADS)
Bonilla, Ruy S.; Wilshaw, Peter R.
2017-04-01
The recombination of electric charge carriers at semiconductor surfaces continues to be a limiting factor in achieving high performance optoelectronic devices, including solar cells, laser diodes, and photodetectors. The theoretical model and a solution algorithm for surface recombination have been previously reported. However, their successful application to experimental data for a wide range of both minority excess carrier concentrations and dielectric fixed charge densities has not previously been shown. Here, a parametrisation for the semiconductor-dielectric interface charge Q i t is used in a Shockley-Read-Hall extended formalism to describe recombination at the c-Si/SiO2 interface, and estimate the physical parameters relating to the interface trap density D i t , and the electron and hole capture cross-sections σ n and σ p . This approach gives an excellent description of the experimental data without the need to invoke a surface damage region in the c-Si/SiO2 system. Band-gap tail states have been observed to limit strongly the effectiveness of field effect passivation. This approach provides a methodology to determine interface recombination parameters in any semiconductor-insulator system using macro scale measuring techniques.
Kelvin-Mach Wake in a Two-Dimensional Fermi Sea
NASA Astrophysics Data System (ADS)
Kolomeisky, Eugene B.; Straley, Joseph P.
2018-06-01
The dispersion law for plasma oscillations in a two-dimensional electron gas in the hydrodynamic approximation interpolates between Ω ∝√{q } and Ω ∝q dependences as the wave vector q increases. As a result, downstream of a charged impurity in the presence of a uniform supersonic electric current flow, a wake pattern of induced charge density and potential is formed whose geometry is controlled by the Mach number M . For 1
Holographic models with anisotropic scaling
NASA Astrophysics Data System (ADS)
Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.
2013-12-01
We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.
Activation energy of negative fixed charges in thermal ALD Al{sub 2}O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kühnhold-Pospischil, S.; Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg; Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg
2016-08-08
A study of the thermally activated negative fixed charges Q{sub tot} and the interface trap densities D{sub it} at the interface between Si and thermal atomic-layer-deposited amorphous Al{sub 2}O{sub 3} layers is presented. The thermal activation of Q{sub tot} and D{sub it} was conducted at annealing temperatures between 220 °C and 500 °C for durations between 3 s and 38 h. The temperature-induced differences in Q{sub tot} and D{sub it} were measured using the characterization method called corona oxide characterization of semiconductors. Their time dependency were fitted using stretched exponential functions, yielding activation energies of E{sub A} = (2.2 ± 0.2) eV and E{submore » A} = (2.3 ± 0.7) eV for Q{sub tot} and D{sub it}, respectively. For annealing temperatures from 350 °C to 500 °C, the changes in Q{sub tot} and D{sub it} were similar for both p- and n-type doped Si samples. In contrast, at 220 °C the charging process was enhanced for p-type samples. Based on the observations described in this contribution, a charging model leading to Q{sub tot} based on an electron hopping process between the silicon and Al{sub 2}O{sub 3} through defects is proposed.« less
Improvement of silicon solar cell efficiency by ion beam sputtered deposition of AlOxNy thin films.
Chen, Sheng-Hui; Hsu, Chun-Che; Wang, Hsuan-Wen; Yeh, Chi-Li; Tseng, Shao-Ze; Lin, Hung-Ju; Lee, Cheng-Chung; Peng, Cheng-Yu
2011-03-20
Negative charge material, AlOxNy, has been fabricated to passivate the surface of p-type silicon. The fabrication of AlOxNy was possible by using ion beam sputtering deposition to deposit AlN thin film on the surface of a p-type silicon wafer and following annealing in oxygen ambient. Capacitance-voltage analysis shows the fixed charge density has increased from 10(11) cm(-2) to 2.26×10(12) cm(-2) after annealing. The solar cell efficiency increased from 15.9% to 17.3%, which is also equivalent to the reduction of surface recombination velocity from 1×10(5) to 32 cm/s.
Fragmentation of organic ions bearing fixed multiple charges observed in MALDI MS.
Lou, Xianwen; Li, Bao; de Waal, Bas F M; Schill, Jurgen; Baker, Matthew B; Bovee, Ralf A A; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W
2018-01-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo-molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI-induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges. Copyright © 2017 John Wiley & Sons, Ltd.
The Dielectric Permittivity of Crystals in the Reduced Hartree-Fock Approximation
NASA Astrophysics Data System (ADS)
Cancès, Éric; Lewin, Mathieu
2010-07-01
In a recent article (Cancès et al. in Commun Math Phys 281:129-177, 2008), we have rigorously derived, by means of bulk limit arguments, a new variational model to describe the electronic ground state of insulating or semiconducting crystals in the presence of local defects. In this so-called reduced Hartree-Fock model, the ground state electronic density matrix is decomposed as {γ = γ^0_per + Q_{ν,\\varepsilon_F}}, where {γ^0_per} is the ground state density matrix of the host crystal and {Q_{ν,\\varepsilon_F}} the modification of the electronic density matrix generated by a modification ν of the nuclear charge of the host crystal, the Fermi level ɛ F being kept fixed. The purpose of the present article is twofold. First, we study in more detail the mathematical properties of the density matrix {Q_{ν,\\varepsilon_F}} (which is known to be a self-adjoint Hilbert-Schmidt operator on {L^2(mathbb{R}^3)}). We show in particular that if {int_{mathbb{R}^3} ν neq 0, Q_{ν,\\varepsilon_F}} is not trace-class. Moreover, the associated density of charge is not in {L^1(mathbb{R}^3)} if the crystal exhibits anisotropic dielectric properties. These results are obtained by analyzing, for a small defect ν, the linear and nonlinear terms of the resolvent expansion of {Q_{ν,\\varepsilon_F}}. Second, we show that, after an appropriate rescaling, the potential generated by the microscopic total charge (nuclear plus electronic contributions) of the crystal in the presence of the defect converges to a homogenized electrostatic potential solution to a Poisson equation involving the macroscopic dielectric permittivity of the crystal. This provides an alternative (and rigorous) derivation of the Adler-Wiser formula.
NASA Astrophysics Data System (ADS)
Scheinert, Susanne; Pernstich, Kurt P.; Batlogg, Bertram; Paasch, Gernot
2007-11-01
It has been demonstrated [K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004)] that a controllable shift of the threshold voltage in pentacene thin film transistors is caused by the use of organosilanes with different functional groups forming a self-assembled monolayer (SAM) on the gate oxide. The observed broadening of the subthreshold region indicates that the SAM creates additional trap states. Indeed, it is well known that traps strongly influence the behavior of organic field-effect transistors (OFETs). Therefore, the so-called "amorphous silicon (a-Si) model" has been suggested to be an appropriate model to describe OFETs. The main specifics of this model are transport of carriers above a mobility edge obeying Boltzmann statistics and exponentially distributed tail states and deep trap states. Here, approximate trap distributions are determined by adjusting two-dimensional numerical simulations to the experimental data. It follows from a systematic variation of parameters describing the trap distributions that the existence of both donorlike and acceptorlike trap distributions near the valence band, respectively, and a fixed negative interface charge have to be assumed. For two typical devices with different organosilanes the electrical characteristics can be described well with a donorlike bulk trap distribution, an acceptorlike interface distribution, and/or a fixed negative interface charge. As expected, the density of the fixed or trapped interface charge depends strongly on the surface treatment of the dielectric. There are some limitations in determining the trap distributions caused by either slow time-dependent processes resulting in differences between transfer and output characteristics, or in the uncertainty of the effective mobility.
Electro-osmotic flow in coated nanocapillaries: a theoretical investigation.
Marini Bettolo Marconi, Umberto; Monteferrante, Michele; Melchionna, Simone
2014-12-14
Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated with charged polymers. The theoretical treatment is based on a three-dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated with a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent to the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determines their dependence on the ionic concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ravinder; Malik, Hitendra K.; Singh, Khushvant
2012-01-15
Main concerns of the present article are to investigate the effects of dust charging and trapped electrons on the solitary structures evolved in an inhomogeneous magnetized plasma. Such a plasma is found to support two types of waves, namely, fast wave and slow wave. Slow wave propagates in the plasma only when the wave propagation angle {theta} satisfies the condition {theta}{>=}tan{sup -1}{l_brace}({radical}((1+2{sigma})-[(n{sub dlh}({gamma}{sub 1}-1))/(1+n{sub dlh}{gamma}{sub 1})])-v{sub 0}/u{sub 0}){r_brace}, where v{sub 0}(u{sub 0}) is the z- (x-) component of ion drift velocity, {sigma} = T{sub i}/T{sub eff}, n{sub dlh} = n{sub d0}/(n{sub el0} + n{sub eh0}), and {gamma}{sub 1}=-(1/{Phi}{sub i0})[(1-{Phi}{sub i0}/1+{sigma}(1-{Phi}{submore » i0}))] together with T{sub i} as ion temperature, n{sub el0}(n{sub eh0}) as the density of trapped (isothermal) electrons, {Phi}{sub i0} as the dust grain (density n{sub d0}) surface potential relative to zero plasma potential, and T{sub eff}=(n{sub elo}+n{sub eho})T{sub el}T{sub eh}/(n{sub elo}T{sub eh}+n{sub eho}T{sub el}), where T{sub el}(T{sub eh}) is the temperature of trapped (isothermal) electrons. Both the waves evolve in the form of density hill type structures in the plasma, confirming that these solitary structures are compressive in nature. These structures are found to attain higher amplitude when the charge on the dust grains is fluctuated (in comparison with the case of fixed charge) and also when the dust grains and trapped electrons are more in number; the same is the case with higher temperature of ions and electrons. Slow solitary structures show weak dependence on the dust concentration. Both types of structures are found to become narrower under the application of stronger magnetic field. With regard to the charging of dust grains, it is observed that the charge gets reduced for the higher trapped electron density and temperature of ions and electrons, and dust charging shows weak dependence on the ion temperature.« less
A charged membrane paradigm at large D
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sayantani; Mandlik, Mangesh; Minwalla, Shiraz; Thakur, Somyadip
2016-04-01
We study the effective dynamics of black hole horizons in Einstein-Maxwell theory in a large number of spacetime dimensions D. We demonstrate that horizon dynamics may be recast as a well posed initial value problem for the motion of a codimension one non gravitational membrane moving in flat space. The dynamical degrees of freedom of this membrane are its shape, charge density and a divergence free velocity field. We determine the equations that govern membrane dynamics at leading order in the large D expansion. Our derivation of the membrane equations assumes that the solution preserves an SO( D - p - 2) isometry with p held fixed as D is taken to infinity. However we are able to cast our final membrane equations into a completely geometric form that makes no reference to this symmetry algebra.
Field-induced dielectric response saturation in $o$ -TaS 3
Ma, Yongchang; Lu, Cuimin; Wang, Xuewei; ...
2016-08-03
The temperature and electric field dependent conductivity spectra of o-TaS 3 sample with 10 μm 2 in cross section were measured. Besides the classical electric threshold E T₋Cl, we observed another novel threshold E T₋N at a larger electric field, where an S-shaped I-V relation revealed. The appearance of E T₋N may be due to the establishment of coherence among small charge-density- wave domains. Under a stable field E > E T-N, a sharp dispersion emerged below kHz. At a fixed temperature, the scattering rate of the charged condensate was extremely small and decreased with increasing field. With decreasing temperature,more » the scattering Fröhlic-mode conductivity would be consistent with the meta-stable state.« less
A Study of the Errors of the Fixed-Node Approximation in Diffusion Monte Carlo
NASA Astrophysics Data System (ADS)
Rasch, Kevin M.
Quantum Monte Carlo techniques stochastically evaluate integrals to solve the many-body Schrodinger equation. QMC algorithms scale favorably in the number of particles simulated and enjoy applicability to a wide range of quantum systems. Advances in the core algorithms of the method and their implementations paired with the steady development of computational assets have carried the applicability of QMC beyond analytically treatable systems, such as the Homogeneous Electron Gas, and have extended QMC's domain to treat atoms, molecules, and solids containing as many as several hundred electrons. FN-DMC projects out the ground state of a wave function subject to constraints imposed by our ansatz to the problem. The constraints imposed by the fixed-node Approximation are poorly understood. One key step in developing any scientific theory or method is to qualify where the theory is inaccurate and to quantify how erroneous it is under these circumstances. I investigate the fixed-node errors as they evolve over changing charge density, system size, and effective core potentials. I begin by studying a simple system for which the nodes of the trial wave function can be solved almost exactly. By comparing two trial wave functions, a single determinant wave function flawed in a known way and a nearly exact wave function, I show that the fixed-node error increases when the charge density is increased. Next, I investigate a sequence of Lithium systems increasing in size from a single atom, to small molecules, up to the bulk metal form. Over these systems, FN-DMC calculations consistently recover 95% or more of the correlation energy of the system. Given this accuracy, I make a prediction for the binding energy of Li4 molecule. Last, I turn to analyzing the fixed-node error in first and second row atoms and their molecules. With the appropriate pseudo-potentials, these systems are iso-electronic, show similar geometries and states. One would expect with identical number of particles involved in the calculation, errors in the respective total energies of the two iso-electronic species would be quite similar. I observe, instead, that the first row atoms and their molecules have errors larger by twice or more in size. I identify a cause for this difference in iso-electronic species. The fixed-node errors in all of these cases are calculated by careful comparison to experimental results, showing that FN-DMC to be a robust tool for understanding quantum systems and also a method for new investigations into the nature of many-body effects.
Riniker, Sereina
2018-03-26
In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.
Caracterisation des mecanismes d'usure en cavitation de revetements HVOF a base de CaviTec
NASA Astrophysics Data System (ADS)
Lavigne, Sebastien
The increasing demand for high performance power conversion systems continuously pushes for improvement in efficiency and power density. This dissertation focuses on a topological effort to efficiently utilize the active and passive devices. In particular, a hybrid approach is adopted, where both capacitors and inductors are used in the voltage conversion and power transfer process. Conventional capacitor-based converters, called switched-capacitor (SC) converters, suffer from poor efficiency due to the inevitable charge redistribution process. With a strategic placement of one or more inductors, the charge redistribution loss can be eliminated by inductively charging/discharging the capacitors, a process called soft-charging operation. As a result, the capacitor size can be greatly reduced without reducing the efficiency. A general analytical framework is presented, which determines whether an arbitrary SC topology is able to achieve full soft-charging operation with a single inductor. For topologies that cannot, a split-phase control technique is introduced, which amends existing two-phase controls to completely eliminate the charge redistribution loss. In addition, alternative placements of inductors are explored to extend the family of hybrid converters. The hybrid converters can have two modes of operation, the fixed-ratio mode and pulse width modulated (PWM) mode. The fixed-conversion-ratio hybrid converters operate in a similar manner to that of a conventional SC converter, with the addition of a soft-charging inductor. The switching frequency of such converters can be adjusted to operate in either zero current switching (ZCS) mode or continuous conduction mode (CCM), which allows for the trade-off of switching loss and conduction loss. It is shown that the capacitor and inductor values can be selected to achieve a minimal passive component volume, which can be significantly smaller than that of a conventional SC converter or a magnetic-based converter. On the other hand, PWM-based hybrid converters generate a PWM rectangular wave as the terminal voltage to the inductor, similar to the operation of a buck converter. In contrast to conventional SC converters, such hybrid converters can achieve lossless and continuous regulation of the output voltage. Compared to buck converters, the required inductor is greatly reduced, as well as the switch stress. A 80-170 V input, 12-24 V output prototype PWM Dickson converter is implemented using GaN switches. The measured peak efficiency is 97%, and high efficiency can be maintained over the entire input and output operating range. In addition, the similarity between multilevel converters (for example, flying capacitor multilevel (FCML) converters) and the PWM-based hybrid SC converters is discussed. Both types of converters can be seen as a hybrid converter which uses both capacitors and inductors for energy transfer. A general framework to compare these converters, along with conventional buck converters, is proposed. In this framework, the power losses (including conduction loss and switching loss) are kept constant, while the total passive component volume is used as the figure of merit. Based on the principle of maximizing energy utilization of passive components, a 7-level FCML converter and an active energy buffer are designed and implemented for single phase dc-ac applications. In addition, the stand-alone system includes a start-up circuitry, EMC filter and auxiliary power supply. The enclosed box achieves a combined power density of 216 W/in3 and an efficiency of 97.4%, and compares favorably against the state-of-the-art designs under the same specification. To further improve the efficiency and power density, soft-switching techniques are investigated and applied on the hybrid converters. A zero voltage switching (ZVS) technique is introduced for both the fixed-ratio mode and the PWM mode operated hybrid converters. The previous hardware prototypes are modified for ZVS operation, and prove the feasibility of simultaneous soft-charging and soft-switching operation. Last but not the least, some of the practical issues associated with the hybrid converter are discussed, such as practical capacitor selection, capacitor voltage balancing and other circuit implementation challenges. Future work based on these topics is given. In summary, these hybrid converters are suited for applications where extreme efficiency and power density are critical. Through efficient utilization of active and passive devices, the hybrid topologies can offer a greater optimization opportunity and ability to take advantage of technology improvement than is possible with conventional designs.
Transverse Densities of Octet Baryons from Chiral Effective Field Theory
Alarcón, Jose Manuel; Hiller Blin, Astrid N.; Weiss, Christian
2017-03-24
Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. In this paper, we calculate the transverse densities of the octet baryons at peripheral distances b=O(M π -1) in an approach that combines chiral effective field theory (χχEFT) and dispersion analysis. The densities are represented as dispersive integrals of the imaginary parts of the baryon electromagnetic form factors in the timelike region (spectral functions). The spectral functions on the two-pion cut at t>4Mmore » $$2\\atop{π}$$ are computed using relativistic χEFT with octet and decuplet baryons in the extended on-mass-shell renormalization scheme. The calculations are extended into the ρ-meson mass region using a dispersive method that incorporates the timelike pion form-factor data. The approach allows us to construct densities at distances b>1 fm with controlled uncertainties. Finally, our results provide insight into the peripheral structure of nucleons and hyperons and can be compared with empirical densities and lattice-QCD calculations.« less
Differential geometry based solvation model. III. Quantum formulation
Chen, Zhan; Wei, Guo-Wei
2011-01-01
Solvation is of fundamental importance to biomolecular systems. Implicit solvent models, particularly those based on the Poisson-Boltzmann equation for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the implicit solvent theory. Recently, we have introduced differential geometry based solvation models which allow the solvent-solute interface to be determined by the variation of a total free energy functional. Atomic fixed partial charges (point charges) are used in our earlier models, which depends on existing molecular mechanical force field software packages for partial charge assignments. As most force field models are parameterized for a certain class of molecules or materials, the use of partial charges limits the accuracy and applicability of our earlier models. Moreover, fixed partial charges do not account for the charge rearrangement during the solvation process. The present work proposes a differential geometry based multiscale solvation model which makes use of the electron density computed directly from the quantum mechanical principle. To this end, we construct a new multiscale total energy functional which consists of not only polar and nonpolar solvation contributions, but also the electronic kinetic and potential energies. By using the Euler-Lagrange variation, we derive a system of three coupled governing equations, i.e., the generalized Poisson-Boltzmann equation for the electrostatic potential, the generalized Laplace-Beltrami equation for the solvent-solute boundary, and the Kohn-Sham equations for the electronic structure. We develop an iterative procedure to solve three coupled equations and to minimize the solvation free energy. The present multiscale model is numerically validated for its stability, consistency and accuracy, and is applied to a few sets of molecules, including a case which is difficult for existing solvation models. Comparison is made to many other classic and quantum models. By using experimental data, we show that the present quantum formulation of our differential geometry based multiscale solvation model improves the prediction of our earlier models, and outperforms some explicit solvation model. PMID:22112067
The QCD Equation of state and critical end-point estimates at O (μB6)
NASA Astrophysics Data System (ADS)
Sharma, Sayantan; Bielefeld-BNL-CCNU Collaboration
2017-11-01
We present results for the QCD Equation of State at non-zero chemical potentials corresponding to the conserved charges in QCD using Taylor expansion upto sixth order in the baryon number, electric charge and strangeness chemical potentials. The latter two are constrained by the strangeness neutrality and a fixed electric charge to baryon number ratio. In our calculations, we use the Highly Improved Staggered Quarks (HISQ) discretization scheme at physical quark masses and at different values of the lattice spacings to control lattice cut-off effects. Furthermore we calculate the pressure along lines of constant energy density, which serve as proxies for the freeze-out conditions and discuss their dependence on μB, which is necessary for hydrodynamic modelling near freezeout. We also provide an estimate of the radius of convergence of the Taylor series from the 6th order coefficients which provides a new constraint on the location of the critical end-point in the T-μB plane of the QCD phase diagram.
Bajpayee, Ambika G.; Wong, Cliff R.; Bawendi, Moungi G.; Frank, Eliot H.; Grodzinsky, Alan J.
2013-01-01
Local drug delivery into cartilage remains a challenge due to its dense extracellular matrix of negatively charged proteoglycans enmeshed within a collagen fibril network. The high negative fixed charge density of cartilage offers the unique opportunity to utilize electrostatic interactions to augment transport, binding and retention of drug carriers. With the goal of developing particle-based drug delivery mechanisms for treating post-traumatic osteoarthritis, our objectives were, first, to determine the size range of a variety of solutes that could penetrate and diffuse through normal cartilage and enzymatically treated cartilage to mimic early stages of OA, and second, to investigate the effects of electrostatic interactions on particle partitioning, uptake and binding within cartilage using the highly positively charged protein, Avidin, as a model. Results showed that solutes having a hydrodynamic diameter ≤ 10 nm can penetrate into the full thickness of cartilage explants while larger sized solutes were trapped in the tissue’s superficial zone. Avidin had a 400-fold higher uptake than its neutral same-sized counterpart, NeutrAvidin, and >90% of the absorbed Avidin remained within cartilage explants for at least 15 days. We report reversible, weak binding (KD ~150 μM) of Avidin to intratissue sites in cartilage. The large effective binding site density (NT ~ 2920 μM) within cartilage matrix facilitates Avidin’s retention, making its structure suitable for particle based drug delivery into cartilage. PMID:24120044
Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.
Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee
2016-10-12
Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .
NASA Astrophysics Data System (ADS)
Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji
2018-06-01
We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.
Laser Wakefield Acceleration Experiments Using HERCULES Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, T.; McGuffey, C.; Dollar, F.
2009-07-25
Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changingmore » the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.« less
Electrostatic persistence length.
Fixman, Marshall
2010-03-11
The persistence length is calculated for polyelectrolyte chains with fixed bond lengths and bond angles (pi-theta), and a potential energy consisting of the screened Coulomb interaction between beads, potential wells alpha phi(i)2 for the dihedral angles phi(i), and coupling terms beta phi(i) phi(i+/-1). This model defines a librating chain that reduces in appropriate limits to the freely rotating or wormlike chains, it can accommodate local crumpling or extreme stiffness, and it is easy to simulate. A planar-quadratic (pq), analytic approximation is based on an expansion of the electrostatic energy in eigenfunctions of the quadratic form that describes the backbone energy, and on the assumption that the quadratic form not only is positive but also adequately confines the chain in an infinite phase space of dihedral angles to the physically unique part with all |phi(i)| < pi. The pq approximation is available under these weak constraints, but the simulations confirm its quantitative accuracy only under the expected condition that alpha is large, that is, for very stiff chains. Stiff chains can also be simulated with small alpha and small theta and compared to an OSF approximation suitably generalized to chains with finite rather than vanishing theta, and increasing agreement with OSF is found the smaller is theta. The two approximations, one becoming exact as alpha --> infinity with fixed theta, the other as theta --> 0 with fixed alpha, are quantitatively similar in behavior, both giving a persistence length P = P0 + aD2 for stiff chains, where D is the Debye length. However, the coefficient apq is about twice the value of aOSF. Under other conditions the simulations show that P may or not be linear in D2 at small or moderate D, depending on the magnitudes of alpha, beta, theta, and the charge density but always becomes linear at large D. Even at a moderately low charge density, corresponding to fewer than 20% of the beads being charged, and with strong crumpling induced by large beta, increasing D dissolves blobs and recovers a linear dependence of P on D2, although a lower power of D gives an adequate fit at moderate D. For the class of models considered, it is concluded that the only universal feature is the asymptotic linearity of P in D2, regardless of flexibility or stiffness.
Yashchenok, Alexey M; Gorin, Dmitry A; Badylevich, Mikhail; Serdobintsev, Alexey A; Bedard, Matthieu; Fedorenko, Yanina G; Khomutov, Gennady B; Grigoriev, Dmitri O; Möhwald, Helmuth
2010-09-21
Optical and electrical properties of polyelectrolyte/iron oxide nanocomposite planar films on silicon substrates were investigated for different amount of iron oxide nanoparticles incorporated in the films. The nanocomposite assemblies prepared by the layer-by-layer assembly technique were characterized by ellipsometry, atomic force microscopy, and secondary ion mass-spectrometry. Absorption spectra of the films reveal a shift of the optical absorption edge to higher energy when the number of deposited layers decreases. Capacitance-voltage and current-voltage measurements were applied to study the electrical properties of metal-oxide-semiconductor structures prepared by thermal evaporation of gold electrodes on nanocomposite films. The capacitance-voltage measurements show that the dielectric constant of the film increases with the number of deposited layers and the fixed charge and the trapped charge densities have a negative sign.
Electro-actuated hydrogel walkers with dual responsive legs.
Morales, Daniel; Palleau, Etienne; Dickey, Michael D; Velev, Orlin D
2014-03-07
Stimuli responsive polyelectrolyte hydrogels may be useful for soft robotics because of their ability to transform chemical energy into mechanical motion without the use of external mechanical input. Composed of soft and biocompatible materials, gel robots can easily bend and fold, interface and manipulate biological components and transport cargo in aqueous solutions. Electrical fields in aqueous solutions offer repeatable and controllable stimuli, which induce actuation by the re-distribution of ions in the system. Electrical fields applied to polyelectrolyte-doped gels submerged in ionic solution distribute the mobile ions asymmetrically to create osmotic pressure differences that swell and deform the gels. The sign of the fixed charges on the polyelectrolyte network determines the direction of bending, which we harness to control the motion of the gel legs in opposing directions as a response to electrical fields. We present and analyze a walking gel actuator comprised of cationic and anionic gel legs made of copolymer networks of acrylamide (AAm)/sodium acrylate (NaAc) and acrylamide/quaternized dimethylaminoethyl methacrylate (DMAEMA Q), respectively. The anionic and cationic legs were attached by electric field-promoted polyion complexation. We characterize the electro-actuated response of the sodium acrylate hydrogel as a function of charge density and external salt concentration. We demonstrate that "osmotically passive" fixed charges play an important role in controlling the bending magnitude of the gel networks. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices and robots in aqueous solutions.
NASA Technical Reports Server (NTRS)
Timokhin, A. N.; Arons, J.
2013-01-01
We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs.We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/j(sub GJ) < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc(sup 2)/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/j(sub GJ) > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(sub GJ) < 0, the system develops similar bursts of pair creation. These discharges are similar to those encountered in previous calculations by Timokhin of pair creation when the surface has a high work function and cannot freely emit charge. In cases (b) and (c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady (stationary with small fluctuations in the rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are small) as a function of the applied current.
Thermal diffusivity and chaos in metals without quasiparticles
NASA Astrophysics Data System (ADS)
Blake, Mike; Davison, Richard A.; Sachdev, Subir
2017-11-01
We study the thermal diffusivity DT in models of metals without quasiparticle excitations ("strange metals"). The many-body quantum chaos and transport properties of such metals can be efficiently described by a holographic representation in a gravitational theory in an emergent curved spacetime with an additional spatial dimension. We find that at generic infrared fixed points DT is always related to parameters characterizing many-body quantum chaos: the butterfly velocity vB and Lyapunov time τL through DT˜vB2τL. The relationship holds independently of the charge density, periodic potential strength, or magnetic field at the fixed point. The generality of this result follows from the observation that the thermal conductivity of strange metals depends only on the metric near the horizon of a black hole in the emergent spacetime and is otherwise insensitive to the profile of any matter fields.
33 CFR Appendix B to Part 277 - Hypothetical Example of Cost Apportionment
Code of Federal Regulations, 2013 CFR
2013-07-01
...) $165,489 I b. Fixed charges (owner's share) 284,460 II A fixed charge such as engineering, design and... new bridge is designed for increased loading and width greater than that of the old bridge. Therefore, the estimated annual maintenance cost was based on a hypothetical bridge designed, but not constructed...
33 CFR Appendix B to Part 277 - Hypothetical Example of Cost Apportionment
Code of Federal Regulations, 2014 CFR
2014-07-01
...) $165,489 I b. Fixed charges (owner's share) 284,460 II A fixed charge such as engineering, design and... new bridge is designed for increased loading and width greater than that of the old bridge. Therefore, the estimated annual maintenance cost was based on a hypothetical bridge designed, but not constructed...
33 CFR Appendix B to Part 277 - Hypothetical Example of Cost Apportionment
Code of Federal Regulations, 2010 CFR
2010-07-01
...) $165,489 I b. Fixed charges (owner's share) 284,460 II A fixed charge such as engineering, design and... new bridge is designed for increased loading and width greater than that of the old bridge. Therefore, the estimated annual maintenance cost was based on a hypothetical bridge designed, but not constructed...
33 CFR Appendix B to Part 277 - Hypothetical Example of Cost Apportionment
Code of Federal Regulations, 2011 CFR
2011-07-01
...) $165,489 I b. Fixed charges (owner's share) 284,460 II A fixed charge such as engineering, design and... new bridge is designed for increased loading and width greater than that of the old bridge. Therefore, the estimated annual maintenance cost was based on a hypothetical bridge designed, but not constructed...
33 CFR Appendix B to Part 277 - Hypothetical Example of Cost Apportionment
Code of Federal Regulations, 2012 CFR
2012-07-01
...) $165,489 I b. Fixed charges (owner's share) 284,460 II A fixed charge such as engineering, design and... new bridge is designed for increased loading and width greater than that of the old bridge. Therefore, the estimated annual maintenance cost was based on a hypothetical bridge designed, but not constructed...
Thin silicon layer SOI power device with linearly-distance fixed charge islands
NASA Astrophysics Data System (ADS)
Yuan, Zuo; Haiou, Li; Jianghui, Zhai; Ning, Tang; Shuxiang, Song; Qi, Li
2015-05-01
A new high-voltage LDMOS with linearly-distanced fixed charge islands is proposed (LFI LDMOS). A lot of linearly-distanced fixed charge islands are introduced by implanting the Cs or I ion into the buried oxide layer and dynamic holes are attracted and accumulated, which is crucial to enhance the electric field of the buried oxide and the vertical breakdown voltage. The surface electric field is improved by increasing the distance between two adjacent fixed charge islands from source to drain, which lead to the higher concentration of the drift region and a lower on-resistance. The numerical results indicate that the breakdown voltage of 500 V with Ld = 45 μm is obtained in the proposed device in comparison to 209 V of conventional LDMOS, while maintaining low on-resistance. Project supported by the Guangxi Natural Science Foundation of China (No. 2013GXNSFAA019335), the Guangxi Department of Education Project (No.201202ZD041), the China Postdoctoral Science Foundation Project (Nos. 2012M521127, 2013T60566), and the National Natural Science Foundation of China (Nos. 61361011, 61274077, 61464003).
Conformal Dimensions via Large Charge Expansion
NASA Astrophysics Data System (ADS)
Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico
2018-02-01
We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O (2 ) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U (1 ) charge can be obtained via a series expansion in the inverse charge 1 /Q . We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.
Conformal Dimensions via Large Charge Expansion.
Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico
2018-02-09
We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O(2) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U(1) charge can be obtained via a series expansion in the inverse charge 1/Q. We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.
Charge-regularized swelling kinetics of polyelectrolyte gels
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
The swelling kinetics of polyelectrolyte gels with fixed and variable degrees of ionization in salt-free solvent is studied by solving the constitutive equation of motion of the spatially and temporally varying displacement variable. Two methods for the swelling kinetics - the Bulk Modulus Method (BMM), which uses a linear stress-strain relationship (and, hence a bulk modulus), and the Stress Relaxation Method (SRM), which uses a phenomenological expression of osmotic stress, are explored to provide the spatio-temporal profiles for polymer density, osmotic stress, and degree of ionization, along with the time evolution of the gel size. Further, we obtain an analytical expression for the elastic modulus for linearized stress in the limit of small deformations. We match our theoretical profiles with the experiments of swelling of PNIPAM (uncharged) and Imidazolium-based (charged) minigels available in the literature. Ministry of Human Resource Development (MHRD), Government of India.
Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.
Schumaker, M F; Kentler, C J
1998-01-01
We present a far-field analysis of ion diffusion toward a channel embedded in a membrane with a fixed charge density. The Smoluchowski equation, which represents the 3D problem, is approximated by a system of coupled three- and two-dimensional diffusions. The 2D diffusion models the quasi-two-dimensional diffusion of ions in a boundary layer in which the electrical potential interaction with the membrane surface charge is important. The 3D diffusion models ion transport in the bulk region outside the boundary layer. Analytical expressions for concentration and flux are developed that are accurate far from the channel entrance. These provide boundary conditions for a numerical solution of the problem. Our results are used to calculate far-field ion flows corresponding to experiments of Bell and Miller (Biophys. J. 45:279, 1984). PMID:9591651
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad
2011-10-15
We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces.more » As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
..., risk factors, and ratio of earnings to fixed charges. 229.503 Section 229.503 Commodity and Securities... Registration Statement and Prospectus Provisions § 229.503 (Item 503) Prospectus summary, risk factors, and... executive offices. (c) Risk factors. Where appropriate, provide under the caption “Risk Factors” a...
Code of Federal Regulations, 2010 CFR
2010-04-01
..., risk factors, and ratio of earnings to fixed charges. 229.503 Section 229.503 Commodity and Securities... Registration Statement and Prospectus Provisions § 229.503 (Item 503) Prospectus summary, risk factors, and... executive offices. (c) Risk factors. Where appropriate, provide under the caption “Risk Factors” a...
Räsänen, Lasse P; Tanska, Petri; Mononen, Mika E; Lammentausta, Eveliina; Zbýň, Štefan; Venäläinen, Mikko S; Szomolanyi, Pavol; van Donkelaar, Corrinus C; Jurvelin, Jukka S; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K
2016-10-03
The effects of fixed charge density (FCD) and cartilage swelling have not been demonstrated on cartilage mechanics on knee joint level before. In this study, we present how the spatial and local variations of FCD affects the mechanical response of the knee joint cartilage during standing (half of the body weight, 13 minutes) using finite element (FE) modeling. The FCD distribution of tibial cartilage of an asymptomatic subject was determined using sodium ( 23 Na) MRI at 7T and implemented into a 3-D FE-model of the knee joint (Subject-specific model, FCD: 0.18±0.08 mEq/ml). Tissue deformation in the Subject-specific model was validated against experimental, in vivo loading of the joint conducted with a MR-compatible compression device. For comparison, models with homogeneous FCD distribution (homogeneous model) and FCD distribution obtained from literature (literature model) were created. Immediately after application of the load (dynamic response), the variations in FCD had minor effects on cartilage stresses and strains. After 13 minutes of standing, the spatial and local variations in FCD had most influence on axial strains. In the superficial tibial cartilage in the Subject-specific model, axial strains were increased up to +13% due to smaller FCD (mean -11%), as compared to the homogeneous model. Compared to the literature model, those were decreased up to -18% due to greater FCD (mean +7%). The findings demonstrate that the spatial and local FCD variations in cartilage modulates strains in knee joint cartilage. Thereby, the results highlight the mechanical importance of site-specific content of proteoglycans in cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Yimao; Bullock, James; Cuevas, Andres
2015-05-01
This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta2O5) underneath plasma enhanced chemical vapour deposited silicon nitride (SiNx). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta2O5 and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω.cm and n-type 1.0 Ω.cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm2 and 68 fA/cm2 are measured on 150 Ω/sq boron-diffused p+ and 120 Ω/sq phosphorus-diffused n+ c-Si, respectively. Capacitance-voltage measurements reveal a negative fixed insulator charge density of -1.8 × 1012 cm-2 for the Ta2O5 film and -1.0 × 1012 cm-2 for the Ta2O5/SiNx stack. The Ta2O5/SiNx stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.
BRST technique for the cosmological density matrix
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.
2013-10-01
The microcanonical density matrix in closed cosmology has a natural definition as a projector on the space of solutions of Wheeler-DeWitt equations, which is motivated by the absence of global non-vanishing charges and energy in spatially closed gravitational systems. Using the BRST/BFV formalism in relativistic phase space of gauge and ghost variables we derive the path integral representation for this projector and the relevant statistical sum. This derivation circumvents the difficulties associated with the open algebra of noncommutative quantum Dirac constraints and the construction/regularization of the physical inner product in the subspace of BRS singlets. This inner product is achieved via the Batalin-Marnelius gauge fixing in the space of BRS-invariant states, which in its turn is shown to be a result of truncation of the BRST/BFV formalism to the "matter" sector of relativistic phase space.
Interface effects on calculated defect levels for oxide defects
NASA Astrophysics Data System (ADS)
Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew
2014-03-01
Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.
Arbabi, Vahid; Pouran, Behdad; Zadpoor, Amir A; Weinans, Harrie
2017-04-23
Osteoarthritis (OA) is a debilitating disease that is associated with degeneration of articular cartilage and subchondral bone. Degeneration of articular cartilage impairs its load-bearing function substantially as it experiences tremendous chemical degradation, i.e. proteoglycan loss and collagen fibril disruption. One promising way to investigate chemical damage mechanisms during OA is to expose the cartilage specimens to an external solute and monitor the diffusion of the molecules. The degree of cartilage damage (i.e. concentration and configuration of essential macromolecules) is associated with collisional energy loss of external solutes while moving across articular cartilage creates different diffusion characteristics compared to healthy cartilage. In this study, we introduce a protocol, which consists of several steps and is based on previously developed experimental micro-Computed Tomography (micro-CT) and finite element modeling. The transport of charged and uncharged iodinated molecules is first recorded using micro-CT, which is followed by applying biphasic-solute and multiphasic finite element models to obtain diffusion coefficients and fixed charge densities across cartilage zones.
Combined electroosmotically and pressure driven flow in soft nanofluidics.
Matin, Meisam Habibi; Ohshima, Hiroyuki
2015-12-15
The present study is devoted to the analysis of mixed electroosmotic and pressure driven flows through a soft charged nanochannel considering boundary slip and constant charge density on the walls of the slit channel. The sources of the fluid flow are the pressure gradient along the channel axis and the electrokinetic effects that trigger an electroosmotic flow under the influence of a uniformly applied electric field. The polyelectrolyte layer (PEL) is denoted as a fixed charge layer (FCL) and the electrolyte ions can be present both inside and outside the PEL i.e., the PEL-electrolyte interface acts as a semi-penetrable membrane. The Poisson-Boltzmann equation is solved assuming the Debye-Hückel linearization for the low electric potential to provide us with analytical closed form solutions for the conservation equations. The conservation equations are solved to obtain the electric potential and velocity distributions in terms of governing dimensionless parameters. The results for the dimensionless electric potential, the dimensionless velocity and Poiseuille number are presented graphically and discussed in detail. Copyright © 2015 Elsevier Inc. All rights reserved.
Surfactant mediated polyelectrolyte self-assembly
Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...
2015-11-25
Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Ashley, Paul R.; Abushagur, Mustafa
2004-01-01
A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.
Improving hot region prediction by parameter optimization of density clustering in PPI.
Hu, Jing; Zhang, Xiaolong
2016-11-01
This paper proposed an optimized algorithm which combines density clustering of parameter selection with feature-based classification for hot region prediction. First, all the residues are classified by SVM to remove non-hot spot residues, then density clustering of parameter selection is used to find hot regions. In the density clustering, this paper studies how to select input parameters. There are two parameters radius and density in density-based incremental clustering. We firstly fix density and enumerate radius to find a pair of parameters which leads to maximum number of clusters, and then we fix radius and enumerate density to find another pair of parameters which leads to maximum number of clusters. Experiment results show that the proposed method using both two pairs of parameters provides better prediction performance than the other method, and compare these two predictive results, the result by fixing radius and enumerating density have slightly higher prediction accuracy than that by fixing density and enumerating radius. Copyright © 2016. Published by Elsevier Inc.
Electric potential calculation in molecular simulation of electric double layer capacitors
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Olmsted, David L.; Asta, Mark; Laird, Brian B.
2016-11-01
For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO4-acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys. 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson’s equation, this method yields better accuracy and no supplemental assumptions.
Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Density and Surface Tension
NASA Astrophysics Data System (ADS)
Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; Lv, Xueming; Bai, Chenguang
2018-03-01
The effects of the Al2O3 concentration and Al2O3/SiO2 ratio on the density and surface tension of molten aluminosilicate CaO-SiO2-Al2O3-9 mass pct MgO-1 mass pct TiO2 slag were investigated at temperatures from 1723 K to 1823 K (1450 °C to 1550 °C) using the Archimedean method and the maximum bubble pressure (MBP) technique, respectively. The mechanism of the changes in density and surface tension with composition was analyzed from the viewpoint of the degree of polymerization in the structure and the types of oxygen species in the melts. At a fixed CaO/SiO2 ratio of 1.20, the density decreased with increasing Al2O3 content up to 25 mass pct, subsequently increasing. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.92 caused an increase in the density at a fixed CaO content, and the density decreased slightly when the Al2O3/SiO2 ratio was greater than 0.92. Based on the structural information, the density decreased when the Al2O3 content enhanced the network structure and increased when the (Q 2 + Q 3)/(Q 0 + Q 1) ratio and structural complexity decreased. The surface tension increased with increasing Al2O3 content and Al2O3/SiO2 ratio. On the one hand, the surface-active component of SiO2 decreased; on the other hand, the concentration of [AlO4]5- tetrahedra and metal cations that act as charge compensators increased at the melt surface. A model based on the anionic and cationic radii and the Butler equation was employed to predict the surface tension, and an iso-surface tension diagram was obtained at 1773 K (1500 °C).
Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Density and Surface Tension
NASA Astrophysics Data System (ADS)
Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; Lv, Xueming; Bai, Chenguang
2018-06-01
The effects of the Al2O3 concentration and Al2O3/SiO2 ratio on the density and surface tension of molten aluminosilicate CaO-SiO2-Al2O3-9 mass pct MgO-1 mass pct TiO2 slag were investigated at temperatures from 1723 K to 1823 K (1450 °C to 1550 °C) using the Archimedean method and the maximum bubble pressure (MBP) technique, respectively. The mechanism of the changes in density and surface tension with composition was analyzed from the viewpoint of the degree of polymerization in the structure and the types of oxygen species in the melts. At a fixed CaO/SiO2 ratio of 1.20, the density decreased with increasing Al2O3 content up to 25 mass pct, subsequently increasing. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.92 caused an increase in the density at a fixed CaO content, and the density decreased slightly when the Al2O3/SiO2 ratio was greater than 0.92. Based on the structural information, the density decreased when the Al2O3 content enhanced the network structure and increased when the ( Q 2 + Q 3)/( Q 0 + Q 1) ratio and structural complexity decreased. The surface tension increased with increasing Al2O3 content and Al2O3/SiO2 ratio. On the one hand, the surface-active component of SiO2 decreased; on the other hand, the concentration of [AlO4]5- tetrahedra and metal cations that act as charge compensators increased at the melt surface. A model based on the anionic and cationic radii and the Butler equation was employed to predict the surface tension, and an iso-surface tension diagram was obtained at 1773 K (1500 °C).
Temperature dependence of the pulse-duration memory effect in NbSe3
NASA Astrophysics Data System (ADS)
Jones, T. C.; Simpson, C. R., Jr.; Clayhold, J. A.; McCarten, J. P.
2000-04-01
The temperature dependence of the oscillatory response of the 59 K charge-density wave in NbSe3 to a sequence of repetitive current pulses was investigated. For 52 K>T>45 K the learned behavior commonly referred to as the pulse-duration memory effect (PDME) is very evident; after training the voltage oscillation always finishes the pulse at a minimum. At lower temperatures the PDME changes qualitatively. In nonswitching samples the voltage oscillation always finishes the pulse increasing. In switching samples there is a conduction delay which becomes fixed after training, but no learning of the duration of the pulse.
Quantum spin circulator in Y junctions of Heisenberg chains
NASA Astrophysics Data System (ADS)
Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.
2018-06-01
We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.
Density functional theory and an experimentally-designed energy functional of electron density.
Miranda, David A; Bueno, Paulo R
2016-09-21
We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.
Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats.
Jackson, Mark P; Truong, Dennis; Brownlow, Milene L; Wagner, Jessica A; McKinley, R Andy; Bikson, Marom; Jankord, Ryan
2017-08-01
A commonly referenced transcranial Direct Current Stimulation (tDCS) safety threshold derives from tDCS lesion studies in the rat and relies on electrode current density (and related electrode charge density) to support clinical guidelines. Concerns about the role of polarity (e.g. anodal tDCS), sub-lesion threshold injury (e.g. neuroinflammatory processes), and role of electrode montage across rodent and human studies support further investigation into animal models of tDCS safety. Thirty-two anesthetized rats received anodal tDCS between 0 and 5mA for 60min through one of three epicranial electrode montages. Tissue damage was evaluated using hemotoxylin and eosin (H&E) staining, Iba-1 immunohistochemistry, and computational brain current density modeling. Brain lesion occurred after anodal tDCS at and above 0.5mA using a 25.0mm 2 electrode (electrode current density: 20.0A/m 2 ). Lesion initially occurred using smaller 10.6mm 2 or 5.3mm 2 electrodes at 0.25mA (23.5A/m 2 ) and 0.5mA (94.2A/m 2 ), respectively. Histological damage was correlated with computational brain current density predictions. Changes in microglial phenotype occurred in higher stimulation groups. Lesions were observed using anodal tDCS at an electrode current density of 20.0A/m 2 , which is below the previously reported safety threshold of 142.9A/m 2 using cathodal tDCS. The lesion area is not simply predicted by electrode current density (and so not by charge density as duration was fixed); rather computational modeling suggests average brain current density as a better predictor for anodal tDCS. Nonetheless, under the assumption that rodent epicranial stimulation is a hypersensitive model, an electrode current density of 20.0A/m 2 represents a conservative threshold for clinical tDCS, which typically uses an electrode current density of 2A/m 2 when electrodes are placed on the skin (resulting in a lower brain current density). Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong
2016-08-01
We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.
Singh, Kunwar Pal; Guo, Chunlei
2017-06-21
The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.
Mass density fluctuations in quantum and classical descriptions of liquid water
NASA Astrophysics Data System (ADS)
Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick; Baer, Marcel D.; Schenter, Gregory K.; Hutter, Jürg; Mundy, Christopher J.
2017-06-01
First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.
Mass density fluctuations in quantum and classical descriptions of liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick
First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and bothmore » the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.« less
2013-01-01
SiOxNy films with a low nitrogen concentration (< 4%) have been prepared on Si substrates at 400°C by atmospheric-pressure plasma oxidation-nitridation process using O2 and N2 as gaseous precursors diluted in He. Interface properties of SiOxNy films have been investigated by analyzing high-frequency and quasistatic capacitance-voltage characteristics of metal-oxide-semiconductor capacitors. It is found that addition of N into the oxide increases both interface state density (Dit) and positive fixed charge density (Qf). After forming gas anneal, Dit decreases largely with decreasing N2/O2 flow ratio from 1 to 0.01 while the change of Qf is insignificant. These results suggest that low N2/O2 flow ratio is a key parameter to achieve a low Dit and relatively high Qf, which is effective for field effect passivation of n-type Si surfaces. PMID:23634872
NASA Astrophysics Data System (ADS)
Cabrera-Tinoco, Hugo Andres; Moreira, Augusto C. L.; de Melo, Celso P.
2018-05-01
We examine the relative contribution of ballistic and elastic cotunneling mechanisms to the charge transport through a single decanedithiol molecule linked to two terminal clusters of gold atoms. For this, we first introduced a conceptual model that permits a generalization of the Breit-Wigner scattering formalism where the cation, anion, and neutral forms of the molecule can participate with different probabilities of the charge transfer process, but in a simultaneous manner. We used a density functional theory treatment and considered the fixed geometry of each charge state to calculate the corresponding eigenvalues and eigenvectors of the extended system for different values of the external electric field. We have found that for the ballistic transport the HOMO and LUMO of the neutral species play a key role, while the charged states give a negligible contribution. On the other hand, an elastic cotunneling charge transfer can occur whenever a molecular orbital (MO) of the cation or anion species, even if localized in just one side of the molecule-gold clusters complex, has energy close to that of a delocalized MO of the neutral species. Under these conditions, a conduction channel is formed throughout the entire system, in a process that is controlled by the degree of resonance between the MOs involved. Our results indicate that while different charge transfer mechanisms contribute to the overall charge transport, quantum effects such as avoided-crossing situations between relevant frontier MOs can be of special importance. In these specific situations, the interchange of spatial localization of two MOs involved in the crossing can open a new channel of charge transfer that otherwise would not be available.
Maxwell's conjecture on three point charges with equal magnitudes
NASA Astrophysics Data System (ADS)
Tsai, Ya-Lun
2015-08-01
Maxwell's conjecture on three point charges states that the number of non-degenerate equilibrium points of the electrostatic field generated by them in R3 is at most four. We prove the conjecture in the cases when three point charges have equal magnitudes and show the number of isolated equilibrium points can only be zero, two, three, or four. Specifically, fixing positions of two positive charges in R3, we know exactly where to place the third positive charge to have two, three, or four equilibrium points. All equilibrium points are isolated and there are no other possibilities for the number of isolated equilibrium points. On the other hand, if both two of the fixed charges have negative charge values, there are always two equilibrium points except when the third positive charge lies in the line segment connecting the two negative charges. The exception cases are when the field contains only a curve of equilibrium points. In this paper, computations assisted by computer involve symbolic and exact integer computations. Therefore, all the results are proved rigorously.
Frequency-Dependent Capacitance of Hydrophobic Membranes Containing Fixed Negative Charges
Ilani, Asher
1968-01-01
Filters containing fixed negative charges were saturated with hydrophobic solvent and interposed between aqueous solutions. The capacitance of such membranes was measured in the frequency range of 0.05-30 kc. The capacitance increased with decrease in frequency. The frequency dependence of the capacitance was sensitive to nature of the cation present and to salt concentration in the aqueous solution. It is suggested that variation of membrane resistivity in the space charge region of the membrane is responsible for this phenomenon. Possible effects of the potential and counterion concentration profiles at the membrane-water interface are discussed. PMID:5699796
Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation
Bathe, Mark; Rutledge, Gregory C.; Grodzinsky, Alan J.; Tidor, Bruce
2005-01-01
The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation type (4- vs. 6-sulfation), sulfation pattern (statistical distribution of sulfate groups along a chain), ionic strength, CS intrinsic stiffness, and steric interactions on CS osmotic pressure are investigated. At physiological ionic strength (0.15 M NaCl), the sulfation type and pattern, as measured by a standard statistical description of copolymerization, are found to have a negligible influence on CS osmotic pressure, which depends principally on the mean volumetric fixed charge density. The intrinsic backbone stiffness characteristic of polysaccharides such as CS, however, is demonstrated to contribute significantly to its osmotic pressure behavior, which is similar to that of a solution of charged rods for the 20-disaccharide chains considered. Steric excluded volume is found to play a negligible role in determining CS osmotic pressure at physiological ionic strength due to the dominance of repulsive intermolecular electrostatic interactions that maintain chains maximally spaced in that regime, whereas at high ionic-strength steric interactions become dominant due to electrostatic screening. Osmotic pressure predictions are compared to experimental data and to well-established theoretical models including the Donnan theory and the Poisson-Boltzmann cylindrical cell model. PMID:16055525
Consideration of Cost of Care in Pediatric Emergency Transfer-An Opportunity for Improvement.
Gattu, Rajender K; De Fee, Ann-Sophie; Lichenstein, Richard; Teshome, Getachew
2017-05-01
Pediatric interhospital transfers are an economic burden to the health care, especially when deemed unnecessary. Physicians may be unaware of the cost implications of pediatric emergency transfers. A cost analysis may be relevant to reduce cost. To characterize children transferred from outlying emergency departments (EDs) to pediatric ED (PED) with a specific focus on transfers who were discharged home in 12 hours or less after transfer without intervention in PED and analyze charges associated with them. Charts of 352 patients (age, 0-18 years) transferred from 31 outlying EDs to PED during July 2009 to June 2010 were reviewed. Data were collected on the range, unit charge and volume of services provided in PED, length of stay, and final disposition. The average charge per patient transfer is calculated based on unit charge times total service units per 1000 patients per year and divided by 1000. Hospital charges were divided into fixed and variable. Of 352 patients transferred, 108 (30.7%) were admitted to pediatric inpatient service, 42 (11.9%) to intensive care; 36 (10.2%) went to the operating room, and 166 (47.2%) were discharged home. The average hospital charge per transfer was US $4843. Most (89%) of the charges were fixed, and 11% were variable. One hundred one (28.7%) patients were discharged home from PED in 12 hours or less without intervention. The hospital charges for these transfers were US $489,143. Significant number of transfers was discharged 12 hours or less without any additional intervention in PED. Fixed charges contribute to majority of total charges. Cost saving can be achieved by preventing unnecessary transfer.
Method for Estimating the Charge Density Distribution on a Dielectric Surface.
Nakashima, Takuya; Suhara, Hiroyuki; Murata, Hidekazu; Shimoyama, Hiroshi
2017-06-01
High-quality color output from digital photocopiers and laser printers is in strong demand, motivating attempts to achieve fine dot reproducibility and stability. The resolution of a digital photocopier depends on the charge density distribution on the organic photoconductor surface; however, directly measuring the charge density distribution is impossible. In this study, we propose a new electron optical instrument that can rapidly measure the electrostatic latent image on an organic photoconductor surface, which is a dielectric surface, as well as a novel method to quantitatively estimate the charge density distribution on a dielectric surface by combining experimental data obtained from the apparatus via a computer simulation. In the computer simulation, an improved three-dimensional boundary charge density method (BCM) is used for electric field analysis in the vicinity of the dielectric material with a charge density distribution. This method enables us to estimate the profile and quantity of the charge density distribution on a dielectric surface with a resolution of the order of microns. Furthermore, the surface potential on the dielectric surface can be immediately calculated using the obtained charge density. This method enables the relation between the charge pattern on the organic photoconductor surface and toner particle behavior to be studied; an understanding regarding the same may lead to the development of a new generation of higher resolution photocopiers.
Complexation of ferric oxide particles with pectins of different charge density.
Milkova, Viktoria; Kamburova, Kamelia; Petkanchin, Ivana; Radeva, Tsetska
2008-09-02
The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.
NASA Astrophysics Data System (ADS)
Shukri, Seyfan Kelil
2017-01-01
We have done Kinetic Monte Carlo (KMC) simulations to investigate the effect of charge carrier density on the electrical conductivity and carrier mobility in disordered organic semiconductors using a lattice model. The density of state (DOS) of the system are considered to be Gaussian and exponential. Our simulations reveal that the mobility of the charge carrier increases with charge carrier density for both DOSs. In contrast, the mobility of charge carriers decreases as the disorder increases. In addition the shape of the DOS has a significance effect on the charge transport properties as a function of density which are clearly seen. On the other hand, for the same distribution width and at low carrier density, the change occurred on the conductivity and mobility for a Gaussian DOS is more pronounced than that for the exponential DOS.
A method to estimate statistical errors of properties derived from charge-density modelling
Lecomte, Claude
2018-01-01
Estimating uncertainties of property values derived from a charge-density model is not straightforward. A methodology, based on calculation of sample standard deviations (SSD) of properties using randomly deviating charge-density models, is proposed with the MoPro software. The parameter shifts applied in the deviating models are generated in order to respect the variance–covariance matrix issued from the least-squares refinement. This ‘SSD methodology’ procedure can be applied to estimate uncertainties of any property related to a charge-density model obtained by least-squares fitting. This includes topological properties such as critical point coordinates, electron density, Laplacian and ellipticity at critical points and charges integrated over atomic basins. Errors on electrostatic potentials and interaction energies are also available now through this procedure. The method is exemplified with the charge density of compound (E)-5-phenylpent-1-enylboronic acid, refined at 0.45 Å resolution. The procedure is implemented in the freely available MoPro program dedicated to charge-density refinement and modelling. PMID:29724964
MODELING PARTICULATE CHARGING IN ESPS
In electrostatic precipitators there is a strong interaction between the particulate space charge and the operating voltage and current of an electrical section. Calculating either the space charge or the operating point when the other is fixed is not difficult, but calculating b...
Thermal conductivity of gaseous and liquid hydrogen
NASA Technical Reports Server (NTRS)
Diller, D. E.; Roder, H. M.
1971-01-01
Normal and para-hydrogen conductivity measurements at temperatures from 200 to 17 deg K, at densities up to 2.6 times critical density, and at pressures to 15 MN/sq m are made. Using new calorimeter, data are analyzed as functions of density at fixed temperatures and of temperature at fixed densities
Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
2015-12-01
The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.
Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization.
Sen, Swati; Kundagrami, Arindam
2015-12-14
The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.
Semiclassical black holes expose forbidden charges and censor divergent densities
NASA Astrophysics Data System (ADS)
Brustein, Ram; Medved, A. J. M.
2013-09-01
Classically, the horizon of a Schwarzschild black hole (BH) is a rigid surface of infinite redshift; whereas the uncertainty principle dictates that the semiclassical (would-be) horizon cannot be fixed in space nor can it exhibit any divergences. We propose that this distinction underlies the BH information-loss paradox, the apparent absence of BH hair, the so-called trans-Planckian problem and the recent "firewall" controversy. We argue that the correct prescription is to first integrate out the fluctuations of the background geometry and only then evaluate matter observables. The basic idea is illustrated using a system of two strongly coupled harmonic oscillators, with the heavier oscillator representing the background. We then apply our proposal to matter fields near a BH horizon, initially treating the matter fields as classical and the background as semiclassical. In this case, the average value of the associated current does not vanish; so that it is possible, in pr inciple, to measure the global charge of the BH. Then the matter is, in addition to the background, treated quantum mechanically. We show that the average energy density of matter as seen by an asymptotic observer is finite and proportional to the BH entropy, rather than divergent. We discuss the implications of our results for the various controversial issues concerning BH physics.
Impact of Alternative Rate Structures on Distributed Solar Customer Electricity Bills
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, Joyce A
Electric utilities are increasingly proposing changes to residential rate structures, in order to address concerns about their inability to recover fixed system costs from customers with grid connected distributed generation. The most common proposals have been to increase fixed charges, set minimum bills or instigate residential demand charges. This presentation provides results of an analysis to explore how these rate design alternatives impact electricity bills for PV and non-PV customers.
On the equilibrium charge density at tilt grain boundaries
NASA Astrophysics Data System (ADS)
Srikant, V.; Clarke, D. R.
1998-05-01
The equilibrium charge density and free energy of tilt grain boundaries as a function of their misorientation is computed using a Monte Carlo simulation that takes into account both the electrostatic and configurational energies associated with charges at the grain boundary. The computed equilibrium charge density increases with the grain-boundary angle and approaches a saturation value. The equilibrium charge density at large-angle grain boundaries compares well with experimental values for large-angle tilt boundaries in GaAs. The computed grain-boundary electrostatic energy is in agreement with the analytical solution to a one-dimensional Poisson equation at high donor densities but indicates that the analytical solution overestimates the electrostatic energy at lower donor densities.
Polarizability effects on the structure and dynamics of ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br; Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM; Ribeiro, Mauro C. C.
2014-04-14
Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibriummore » structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.« less
Nonner, W; Eisenberg, B
1998-01-01
L-type Ca channels contain a cluster of four charged glutamate residues (EEEE locus), which seem essential for high Ca specificity. To understand how this highly charged structure might produce the currents and selectivity observed in this channel, a theory is needed that relates charge to current. We use an extended Poisson-Nernst-Planck (PNP2) theory to compute (mean) Coulombic interactions and thus to examine the role of the mean field electrostatic interactions in producing current and selectivity. The pore was modeled as a central cylinder with tapered atria; the cylinder (i.e., "pore proper") contained a uniform volume density of fixed charge equivalent to that of one to four carboxyl groups. The pore proper was assigned ion-specific, but spatially uniform, diffusion coefficients and excess chemical potentials. Thus electrostatic selection by valency was computed self-consistently, and selection by other features was also allowed. The five external parameters needed for a system of four ionic species (Na, Ca, Cl, and H) were determined analytically from published measurements of thre limiting conductances and two critical ion concentrations, while treating the pore as a macroscopic ion-exchange system in equilibrium with a uniform bath solution. The extended PNP equations were solved with these parameters, and the predictions were compared to currents measured in a variety of solutions over a range of transmembrane voltages. The extended PNP theory accurately predicted current-voltage relations, anomalous mole fraction effects in the observed current, saturation effects of varied Ca and Na concentrations, and block by protons. Pore geometry, dielectric permittivity, and the number of carboxyl groups had only weak effects. The successful prediction of Ca fluxes in this paper demonstrates that ad hoc electrostatic parameters, multiple discrete binding sites, and logistic assumptions of single-file movement are all unnecessary for the prediction of permeation in Ca channels over a wide range of conditions. Further work is needed, however, to understand the atomic origin of the fixed charge, excess chemical potentials, and diffusion coefficients of the channel. The Appendix uses PNP2 theory to predict ionic currents for published "barrier-and-well" energy profiles of this channel. PMID:9726931
Finite-size effects in Luther-Emery phases of Holstein and Hubbard models
NASA Astrophysics Data System (ADS)
Greitemann, J.; Hesselmann, S.; Wessel, S.; Assaad, F. F.; Hohenadler, M.
2015-12-01
The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.
Application of high-quality SiO2 grown by multipolar ECR source to Si/SiGe MISFET
NASA Technical Reports Server (NTRS)
Sung, K. T.; Li, W. Q.; Li, S. H.; Pang, S. W.; Bhattacharya, P. K.
1993-01-01
A 5 nm-thick SiO2 gate was grown on an Si(p+)/Si(0.8)Ge(0.2) modulation-doped heterostructure at 26 C with an oxygen plasma generated by a multipolar electron cyclotron resonance source. The ultrathin oxide has breakdown field above 12 MV/cm and fixed charge density about 3 x 10 exp 10/sq cm. Leakage current as low as 1/micro-A was obtained with the gate biased at 4 V. The MISFET with 0.25 x 25 sq m gate shows maximum drain current of 41.6 mA/mm and peak transconductance of 21 mS/mm.
Albacete, Javier L
2007-12-31
We present predictions for the pseudorapidity density of charged particles produced in central Pb-Pb collisions at the LHC. Particle production in such collisions is calculated in the framework of k(t) factorization. The nuclear unintegrated gluon distributions at LHC energies are determined from numerical solutions of the Balitsky-Kovchegov equation including recently calculated running coupling corrections. The initial conditions for the evolution are fixed by fitting Relativistic Heavy Ion Collider data at collision energies square root[sNN]=130 and 200 GeV per nucleon. We obtain dNch(Pb-Pb)/deta(square root[sNN]=5.5 TeV)/eta=0 approximately 1290-1480.
Shan, Shu-ou; Herschlag, Daniel
1996-01-01
The equilibrium for formation of the intramolecular hydrogen bond (KHB) in a series of substituted salicylate monoanions was investigated as a function of ΔpKa, the difference between the pKa values of the hydrogen bond donor and acceptor, in both water and dimethyl sulfoxide. The dependence of log KHB upon ΔpKa is linear in both solvents, but is steeper in dimethyl sulfoxide (slope = 0.73) than in water (slope = 0.05). Thus, hydrogen bond strength can undergo substantially larger increases in nonaqueous media than aqueous solutions as the charge density on the donor or acceptor atom increases. These results support a general mechanism for enzymatic catalysis, in which hydrogen bonding to a substrate is strengthened as charge rearranges in going from the ground state to the transition state; the strengthening of the hydrogen bond would be greater in a nonaqueous enzymatic active site than in water, thus providing a rate enhancement for an enzymatic reaction relative to the solution reaction. We suggest that binding energy of an enzyme is used to fix the substrate in the low-dielectric active site, where the strengthening of the hydrogen bond in the course of a reaction is increased. PMID:8962076
Determination of detonation parameters for liquid High Explosives
NASA Astrophysics Data System (ADS)
Mochalova, Valentina; Utkin, Alexander
2011-06-01
The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. Von Neumann spike was recorded for these HE and its parameters were determined. The different methods for C-J point determination were used for each HE. For FEFO reaction time τ was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ~ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ~ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump and induction time was not recorded.
Determination of detonation parameters for liquid high explosives
NASA Astrophysics Data System (ADS)
Mochalova, Valentina; Utkin, Alexander
2012-03-01
The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted by means of laser interferometer VISAR. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. The parameters of Von Neumann spike were determined for these HE. The different methods for C-J point determination were used for each HE. For FEFO reaction time t was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ≈ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ≈ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump.
Takae, Kyohei; Onuki, Akira
2013-09-28
We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Charge-density study on layered oxyarsenides (LaO)MAs (M = Mn, Fe, Ni, Zn)
NASA Astrophysics Data System (ADS)
Takase, Kouichi; Hiramoto, Shozo; Fukushima, Tetsuya; Sato, Kazunori; Moriyoshi, Chikako; Kuroiwa, Yoshihiro
2017-12-01
Using synchrotron X-ray powder diffraction, we investigate the charge-density distributions of the layered oxypnictides (LaO)MnAs, (LaO)FeAs, (LaO)NiAs, and (LaO)ZnAs, which are an antiferromagnetic semiconductor, a parent material of an iron-based superconductor, a low-temperature superconductor, and a non-magnetic semiconductor, respectively. For the metallic samples, clear charge densities are observed in both the transition-metal pnictide layers and the rare-earth-oxide layers. However, in the semiconducting samples, there is no finite charge density between the transition-metal element and As. These differences in charge density reflect differences in physical properties. First-principles calculations using density functional theory reproduce the experimental results reasonably well.
NASA Astrophysics Data System (ADS)
Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju
2016-01-01
The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.
Xin, Encheng; Ju, Yong; Yuan, Haiwen
2016-01-01
A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627
Xin, Encheng; Ju, Yong; Yuan, Haiwen
2016-10-20
A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.
Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress
NASA Astrophysics Data System (ADS)
Boukhari, Hamed; Rogti, Fatiha
2016-10-01
The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.
Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
NASA Astrophysics Data System (ADS)
Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10
NASA Technical Reports Server (NTRS)
Balla, R. Jeffrey; Everhart, Joel L.
2012-01-01
In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.
Quantification of surface charge density and its effect on boundary slip.
Jing, Dalei; Bhushan, Bharat
2013-06-11
Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.
NASA Astrophysics Data System (ADS)
Carl, D. A.; Hess, D. W.; Lieberman, M. A.; Nguyen, T. D.; Gronsky, R.
1991-09-01
Thin (3-300-nm) oxides were grown on single-crystal silicon substrates at temperatures from 523 to 673 K in a low-pressure electron cyclotron resonance (ECR) oxygen plasma. Oxides were grown under floating, anodic or cathodic bias conditions, although only the oxides grown under floating or anodic bias conditions are acceptable for use as gate dielectrics in metal-oxide-semiconductor technology. Oxide thickness uniformity as measured by ellipsometry decreased with increasing oxidation time for all bias conditions. Oxidation kinetics under anodic conditions can be explained by negatively charged atomic oxygen, O-, transport limited growth. Constant current anodizations yielded three regions of growth: (1) a concentration gradient dominated regime for oxides thinner than 10 nm, (2) a field dominated regime with ohmic charged oxidant transport for oxide thickness in the range of 10 nm to approximately 100 nm, and (3) a space-charge limited regime for films thicker than approximately 100 nm. The relationship between oxide thickness (xox), overall potential drop (Vox) and ion current (ji) in the space-charge limited transport region was of the form: ji ∝ V2ox/x3ox. Transmission electron microscopy analysis of 5-60-nm-thick anodized films indicated that the silicon-silicon dioxide interface was indistinguishable from that of thermal oxides grown at 1123 K. High-frequency capacitance-voltage (C-V) and ramped bias current-voltage (I-V) studies performed on 5.4-30-nm gate thickness capacitors indicated that the as-grown ECR films had high levels of fixed oxide charge (≳1011 cm-2) and interface traps (≳1012 cm-2 eV-1). The fixed charge level could be reduced to ≊4×1010 cm-2 by a 20 min polysilicon gate activation anneal at 1123 K in nitrogen; the interface trap density at mid-band gap decreased to ≊(1-2)×1011 cm-2 eV-1 after this process. The mean breakdown strength for anodic oxides grown under optimum conditions was 10.87±0.83 MV cm-1. Electrical properties of the 5.4-8-nm gates compared well with thicker films and control dry thermal oxides of similar thicknesses.
Garrido, Nuno M; Jorge, Miguel; Queimada, António J; Gomes, José R B; Economou, Ioannis G; Macedo, Eugénia A
2011-10-14
The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.
Wang, Jimin
2017-06-01
Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point-field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge-fitting procedures from theoretical ESP density obtained from condensed-state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement. © 2017 The Protein Society.
Räsänen, Lasse P; Tanska, Petri; Zbýň, Štefan; van Donkelaar, Corrinus C; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K
2017-08-16
The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium ( 23 Na) MRI into a 3-D FE-model of the knee joint ("Healthy model"). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) ("Early OA" and "Advanced OA" models). In addition, a model without FCD was created ("No FCD" model). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from "Healthy model" to "Early OA" and "Advanced OA" models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by -3 and -13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the "Healthy model", the removal of the FCD altogether in "NoFCD model" resulted in increased mean axial strains by +16% and decreased mean fibril strains by -24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by -9, -20 and -32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Timokhin, A. N.; Arons, J.
2013-02-01
We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/jGJ < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ < 0, the system develops similar bursts of pair creation. These discharges are similar to those encountered in previous calculations by Timokhin of pair creation when the surface has a high work function and cannot freely emit charge. In cases (b) and (c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady (stationary with small fluctuations in the rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are small) as a function of the applied current. The 1D results described here characterize the dependence of acceleration and pair creation on the magnitude and sign of current. The dependence on the spatial distribution of the current is a multi-dimensional problem, possibly exhibiting more chaotic behaviour. We briefly outline possible relations of the electric field fluctuations observed in the polar flows (both with and without pair creation discharges) to direct emission of radio waves, as well as revive the possible relation of the observed limit cycle behaviour to microstructure in the radio emission. Actually modelling these effects requires the multi-dimensional treatment, to be reported in a later paper.
Charge density on thin straight wire, revisited
NASA Astrophysics Data System (ADS)
Jackson, J. D.
2000-09-01
The question of the equilibrium linear charge density on a charged straight conducting "wire" of finite length as its cross-sectional dimension becomes vanishingly small relative to the length is revisited in our didactic presentation. We first consider the wire as the limit of a prolate spheroidal conductor with semi-minor axis a and semi-major axis c when a/c<<1. We then treat an azimuthally symmetric straight conductor of length 2c and variable radius r(z) whose scale is defined by a parameter a. A procedure is developed to find the linear charge density λ(z) as an expansion in powers of 1/Λ, where Λ≡ln(4c2/a2), beginning with a uniform line charge density λ0. We show, for this rather general wire, that in the limit Λ>>1 the linear charge density becomes essentially uniform, but that the tiny nonuniformity (of order 1/Λ) is sufficient to produce a tangential electric field (of order Λ0) that cancels the zeroth-order field that naively seems to belie equilibrium. We specialize to a right circular cylinder and obtain the linear charge density explicitly, correct to order 1/Λ2 inclusive, and also the capacitance of a long isolated charged cylinder, a result anticipated in the published literature 37 years ago. The results for the cylinder are compared with published numerical computations. The second-order correction to the charge density is calculated numerically for a sampling of other shapes to show that the details of the distribution for finite 1/Λ vary with the shape, even though density becomes constant in the limit Λ→∞. We give a second method of finding the charge distribution on the cylinder, one that approximates the charge density by a finite polynomial in z2 and requires the solution of a coupled set of linear algebraic equations. Perhaps the most striking general observation is that the approach to uniformity as a/c→0 is extremely slow.
Du, Huiwen; Li, Denghua; Wang, Yibing; Wang, Chenxuan; Zhang, Dongdong; Yang, Yan-lian; Wang, Chen
2013-08-29
We report here the measurement of the temperature-dependent surface charge density of purple membrane (PM) by using electrostatic force microscopy (EFM). The surface charge density was measured to be 3.4 × 10(5) e/cm(2) at room temperature and reaches the minimum at around 52 °C. The initial decrease of the surface charge density could be attributed to the reduced dipole alignment because of the thermally induced protein mobility in PM. The increase of charge density at higher temperature could be ascribed to the weakened interaction between proteins and the lipids, which leads to the exposure of the charged amino acids. This work could be a benefit to the direct assessment of the structural stability and electric properties of biological membranes at the nanoscale.
DOT National Transportation Integrated Search
1975-03-01
parametric variation of demand density was used to compare service level and cost of two alternative systems for providing low density feeder service. Supply models for fixed route and flexible route service were developed and applied to determine ra...
Effect of PECVD SiNx/SiOyNx-Si interface property on surface passivation of silicon wafer
NASA Astrophysics Data System (ADS)
Jia, Xiao-Jie; Zhou, Chun-Lan; Zhu, Jun-Jie; Zhou, Su; Wang, Wen-Jing
2016-12-01
It is studied in this paper that the electrical characteristics of the interface between SiOyNx/SiNx stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiOyNx layer on interface parameters, such as interface state density Dit and fixed charge Qf, and the surface passivation quality of silicon are observed. Capacitance-voltage measurements reveal that inserting a thin SiOyNx layer between the SiNx and the silicon wafer can suppress Qf in the film and Dit at the interface. The positive Qf and Dit and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiOyNx film increasing. Prepared by deposition at a low temperature and a low ratio of N2O/SiH4 flow rate, the SiOyNx/SiNx stacks result in a low effective surface recombination velocity (Seff) of 6 cm/s on a p-type 1 Ω·cm-5 Ω·cm FZ silicon wafer. The positive relationship between Seff and Dit suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA050302) and the National Natural Science Foundation of China (Grant No. 61306076).
Space and surface charge behavior analysis of charge-eliminated polymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro
1995-12-31
Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less
Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen
2013-04-23
Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.
NASA Astrophysics Data System (ADS)
Dakhel, A. A.; Ali-Mohamed, A. Y.
2007-02-01
Thin tris(acetylacetonato)iron(III) films were prepared by sublimation in vacuum on glass and p-Si substrates. Then comprehensive studies of X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, AC-conductivity, and dielectric permittivity as a function of frequency and temperature have been performed. The prepared films show a polycrystalline of orthorhombic structure. The optical absorption spectrum of the film was identical with that of the bulk powder layer. For electrical measurements of the complex as insulator, sample in form of metal insulator semiconductor (MIS) structure was prepared and characterised by the measurement of the capacitance and AC-conductance as a function of gate voltage. From those measurements, the state density Dit at insulator/semiconductor interface and the density of the fixed charges in the complex film were determined. It was found that Dit was of order 1010 eV-1/cm2 and the surface charge density in the insulator film was of order 1010 cm-2. The frequency dependence of the electrical conductivity and dielectric properties of MIS structures were studied at room temperature. It was observed that the experimental data follow the correlated barrier-hopping (CBH) model, from which the fundamental absorption edge, the cut off hopping distance, and other parameters of the model were determined. It was found that the capacitance of the complex increases as temperature increases. Generally, the present study shows that the tris(acetylacetonato)iron(III) films grown on p-Si is a promising candidate for low-k dielectric applications, it displays low-k value around 2.0.
SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties
NASA Astrophysics Data System (ADS)
Panebianco, Stefano; Dubray, Nöel; Goriely, Stéphane; Hilaire, Stéphane; Lemaître, Jean-François; Sida, Jean-Luc
2014-04-01
Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed.
2017-01-01
Abstract Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point‐field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge‐fitting procedures from theoretical ESP density obtained from condensed‐state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement. PMID:28370507
Novel determinants of the neuronal Cl− concentration
Delpire, Eric; Staley, Kevin J
2014-01-01
It is now a well-accepted view that cation-driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes. PMID:25107928
Furukawa, Yoko; Dale, Jason R
2013-04-08
We investigated the surface characteristics of two strains of Shewanella sp., S. oneidensis MR-1 and S. putrefaciens 200, that were grown under aerobic conditions as well as under anaerobic conditions with trimethylamine oxide (TMAO) as the electron acceptor. The investigation focused on the experimental determination of electrophoretic mobility (EPM) under a range of pH and ionic strength, as well as by subsequent modeling in which Shewanella cells were considered to be soft particles with water- and ion-permeable outermost layers. The soft layer of p200 is significantly more highly charged (i.e., more negative) than that of MR-1. The effect of electron acceptor on the soft particle characteristics of Shewanella sp. is complex. The fixed charge density, which is a measure of the deionized and deprotonated functional groups in the soft layer polymers, is slightly greater (i.e., more negative) for aerobically grown p200 than for p200 grown with TMAO. On the other hand, the fixed charge density of aerobically grown MR1 is slightly less than that of p200 grown with TMAO. The effect of pH on the soft particle characteristics is also complex, and does not exhibit a clear pH-dependent trend. The Shewanella surface characteristics were attributed to the nature of the outermost soft layer, the extracellular polymeric substances (EPS) in case of p200 and lypopolysaccharides (LPS) in case of MR1 which generally lacks EPS. The growth conditions (i.e., aerobic vs. anaerobic TMAO) have an influence on the soft layer characteristics of Shewanella sp. cells. Meanwhile, the clear pH dependency of the mechanical and morphological characteristics of EPS and LPS layers, observed in previous studies through atomic force microscopy, adhesion tests and spectroscopies, cannot be corroborated by the electrohydrodynamics-based soft particle characteristics which does not exhibited a clear pH dependency in this study. While the electrohydrodynamics-based soft-particle model is a useful tool in understanding bacteria's surface properties, it needs to be supplemented with other characterization methods and models (e.g., chemical and micromechanical) in order to comprehensively address all of the surface-related characteristics important in environmental and other aqueous processes.
Investigation of the W and Q 2 dependence of charged pion distributions in μ p scattering
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.
1986-03-01
The W and Q 2 dependence of the fragmentation functions and of the average multiplicity of charged pions is investigated, using data from the NA9 experiment at the CERN SPS on muon-proton scattering at 280 GeV. A significant increase of pion production with increasing W is observed at fixed Q 2, leading to a rise of the average charged pion multiplicity, linear in ln W 2, and of the pion fragmentation function in the central region, i.e. at small | x F |. This increase can be understood from the kinematic widening of the cms rapidity range proportional to ln W 2 and the observed W independent height of the rapidity distribution. At fixed W, a rise of the average charged pion multiplicity with Q 2 is observed. This rise appears to be weaker than that observed for all charged hadrons implying a stronger rise with Q 2 for kaons and protons.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... Amending the Mortgage-Backed Securities Division Fails Charge Rule To Reflect Recommendation of the... change is to amend the existing fails charge rule in FICC's Mortgage-Backed Securities Division (``MBSD... (``TMPG'') relating to the removal of the resolution period for fails charges.\\3\\ \\3\\ The text of the...
NASA Astrophysics Data System (ADS)
Jaouad, A.; Aimez, V.; Aktik, Ç.; Bellatreche, K.; Souifi, A.
2004-05-01
Metal-insulator-semiconductor (MIS) capacitors were fabricated on n-GaAs(100) substrate using (NH4)2S surface passivation and low-frequency plasma-enhanced chemical vapor deposited silicon nitride as gate insulators. The electrical properties of the fabricated MIS capacitors were analyzed using high-frequency capacitance-voltage and conductance-voltage measurements. The high concentration of hydrogen present during low-frequency plasma deposition of silicon nitride enhances the passivation of GaAs surface, leading to the unpinning of the Fermi level and to a good modulation of the surface potential by gate voltage. The electrical properties of the insulator-semiconductor interface are improved after annealing at 450 °C for 60 s, as a significant reduction of the interface fixed charges and of the interface states density is put into evidence. The minimum interface states density was found to be about 3×1011 cm-2 eV-1, as estimated by the Terman method. .
Impact of oxygen precursor flow on the forward bias behavior of MOCVD-Al2O3 dielectrics grown on GaN
NASA Astrophysics Data System (ADS)
Chan, Silvia H.; Bisi, Davide; Liu, Xiang; Yeluri, Ramya; Tahhan, Maher; Keller, Stacia; DenBaars, Steven P.; Meneghini, Matteo; Mishra, Umesh K.
2017-11-01
This paper investigates the effects of the oxygen precursor flow supplied during metalorganic chemical vapor deposition (MOCVD) of Al2O3 films on the forward bias behavior of Al2O3/GaN metal-oxide-semiconductor capacitors. The low oxygen flow (100 sccm) delivered during the in situ growth of Al2O3 on GaN resulted in films that exhibited a stable capacitance under forward stress, a lower density of stress-generated negative fixed charges, and a higher dielectric breakdown strength compared to Al2O3 films grown under high oxygen flow (480 sccm). The low oxygen grown Al2O3 dielectrics exhibited lower gate current transients in stress/recovery measurements, providing evidence of a reduced density of trap states near the GaN conduction band and an enhanced robustness under accumulated gate stress. This work reveals oxygen flow variance in MOCVD to be a strategy for controlling the dielectric properties and performance.
Tamura, Hiroyuki
2016-11-23
Intermolecular exciton transfers and related conical intersections are analyzed by diabatization for time-dependent density functional theory. The diabatic states are expressed as a linear combination of the adiabatic states so as to emulate the well-defined reference states. The singlet exciton coupling calculated by the diabatization scheme includes contributions from the Coulomb (Förster) and electron exchange (Dexter) couplings. For triplet exciton transfers, the Dexter coupling, charge transfer integral, and diabatic potentials of stacked molecules are calculated for analyzing direct and superexchange pathways. We discuss some topologies of molecular aggregates that induce conical intersections on the vanishing points of the exciton coupling, namely boundary of H- and J-aggregates and T-shape aggregates, as well as canceled exciton coupling to the bright state of H-aggregate, i.e., selective exciton transfer to the dark state. The diabatization scheme automatically accounts for the Berry phase by fixing the signs of reference states while scanning the coordinates.
NASA Astrophysics Data System (ADS)
Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian; Zhang, Hanzhong
2011-09-01
The nuclear modification factor RAA(pT) for large transverse momentum pion spectra in Pb+Pb collisions at s=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-pT hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dNch/dη=1584±80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RPbPb(pT) for neutral pions.
Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D
2015-10-08
Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.
Charge Density Waves and the Hidden Nesting of Purple Bronze KMo6O17
NASA Astrophysics Data System (ADS)
Su, Lei; Pereira, Vitor
The layered purple bronze KMo6O17, with its robust triple CDW phase up to high temperatures, became the emblematic example of the ''hidden nesting'' concept. Recent experiments suggest that, on the surface layers, its CDW phase can be stabilized at much higher temperatures, and with a tenfold increase in the electronic gap in comparison with the bulk. Despite such interesting fermiology and properties, the K and Na purple bronzes remain largely unexplored systems, most particularly so at the theoretical level. We introduce the first multi-orbital effective tight-binding model to describe the effect of electron-electron interactions in this system. Upon fixing all the effective hopping parameters in the normal state against an ab-initio band structure, and with only the overall scale of the interactions as sole adjustable parameter, we find that a self-consistent Hartree-Fock solution reproduces extremely well the experimental behavior of the charge density wave (CDW) order parameter in the full range 0 < T < Tc , as well as the precise reciprocal space locations of the partial gap opening and Fermi arc development. The interaction strengths extracted from fitting to the experimental CDW gap are consistent with those derived from an independent Stoner-type analysis This work was supported by the Singapore National Research Foundation under Grant NRF-CRP6-2010-05.
Electron dynamics inside a vacuum tube diode through linear differential equations
NASA Astrophysics Data System (ADS)
González, Gabriel; Orozco, Fco. Javier González; Orozco
2014-04-01
In this paper we analyze the motion of charged particles in a vacuum tube diode by solving linear differential equations. Our analysis is based on expressing the volume charge density as a function of the current density and coordinates only, i.e. ρ=ρ(J,z), while in the usual scheme the volume charge density is expressed as a function of the current density and electrostatic potential, i.e. ρ=ρ(J,V). We show that, in the case of slow varying charge density, the space-charge-limited current is reduced up to 50%. Our approach gives the well-known behavior of the classical current density proportional to the three-halves power of the bias potential and inversely proportional to the square of the gap distance between electrodes, and does not require the solution of the nonlinear differential equation normally associated with the Child-Langmuir formulation.
In-flight calibration of mesospheric rocket plasma probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havnes, Ove; University Studies Svalbard; Hartquist, Thomas W.
Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effectivemore » cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.« less
In-flight calibration of mesospheric rocket plasma probes.
Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E
2011-07-01
Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.
Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A
2016-06-14
Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hirae, Sadao; Kohno, Motohiro; Okada, Hiroshi; Matsubara, Hideaki; Nakatani, Ikuyoshi; Kusuda, Tatsufumi; Sakai, Takamasa
1994-04-01
This paper describes a novel approach to the quantitative characterization of semiconductor surface charging caused by plasma exposures and ion implantations. The problems in conventional evaluation of charging are also discussed. Following the discussions above, the necessity of unified criteria is suggested for efficient development of systems or processes without charging damage. Hence, the charging saturation voltage between a top oxide surface and substrate, V s, and the charging density per unit area per second, ρ0, should be taken as criteria of charging behavior, which effectively represent the charging characteristics of both processes. The unified criteria can be obtained from the exposure time dependence of a net charging density on the thick field oxide. In order to determine V s and ρ0, the analysis using the C-V curve measured in a noncontact method with the metal-air-insulator-semiconductor (MAIS) technique is employed. The total space-charge density in oxide and its centroid can be determined at the same time by analyzing the flat-band voltage (V fb) of the MAIS capacitor as a function of the air gap. The net charge density can be obtained by analyzing the difference between the total space-charge density in oxide before and after charging. Finally, it is shown that charge damage of the large area metal-oxide-semiconductor (MOS) capacitor can be estimated from both V s and ρ0 which are obtained from results for a thick field oxide implanted with As+ and exposed to oxygen plasma.
Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.
Ubbink, Job; Khokhlov, Alexei R
2004-03-15
A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.
System-size convergence of point defect properties: The case of the silicon vacancy
NASA Astrophysics Data System (ADS)
Corsetti, Fabiano; Mostofi, Arash A.
2011-07-01
We present a comprehensive study of the vacancy in bulk silicon in all its charge states from 2+ to 2-, using a supercell approach within plane-wave density-functional theory, and systematically quantify the various contributions to the well-known finite size errors associated with calculating formation energies and stable charge state transition levels of isolated defects with periodic boundary conditions. Furthermore, we find that transition levels converge faster with respect to supercell size when only the Γ-point is sampled in the Brillouin zone, as opposed to a dense k-point sampling. This arises from the fact that defect level at the Γ-point quickly converges to a fixed value which correctly describes the bonding at the defect center. Our calculated transition levels with 1000-atom supercells and Γ-point only sampling are in good agreement with available experimental results. We also demonstrate two simple and accurate approaches for calculating the valence band offsets that are required for computing formation energies of charged defects, one based on a potential averaging scheme and the other using maximally-localized Wannier functions (MLWFs). Finally, we show that MLWFs provide a clear description of the nature of the electronic bonding at the defect center that verifies the canonical Watkins model.
Tajparast, Mohammad; Glavinović, Mladen I
2018-06-06
Bio-membranes as capacitors store electric energy, but their permittivity is low whereas the permittivity of surrounding solution is high. To evaluate the effective capacitance of the membrane/solution system and determine the electric energy stored within the membrane and in the solution, we estimated their electric variables using Poisson-Nernst-Planck simulations. We calculated membrane and solution capacitances from stored electric energy. The effective capacitance was calculated by fitting a six-capacitance model to charges (fixed and ion) and associated potentials, because it cannot be considered as a result of membrane and solution capacitance in series. The electric energy stored within the membrane (typically much smaller than that in the solution), depends on the membrane permittivity, but also on the external electric field, surface charge density, water permittivity and ion concentration. The effect on capacitances is more specific. Solution capacitance rises with greater solution permittivity or ion concentration, but the membrane capacitance (much smaller than solution capacitance) is only influenced by its permittivity. Interestingly, the effective capacitance is independent of membrane or solution permittivity, but rises as the ion concentration increases and surface charge becomes positive. Experimental estimates of membrane capacitance are thus not necessarily a reliable index of its surface area. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gilbert, Joshua D.; Prentice, Boone M.; McLuckey, Scott A.
2015-05-01
The use of ion/ion reactions to effect gas-phase alkylation is demonstrated. Commonly used fixed-charge "onium" cations are well-suited for ion/ion reactions with multiply deprotonated analytes because of their tendency to form long-lived electrostatic complexes. Activation of these complexes results in an SN2 reaction that yields an alkylated anion with the loss of a neutral remnant of the reagent. This alkylation process forms the basis of a general method for alkylation of deprotonated analytes generated via electrospray, and is demonstrated on a variety of anionic sites. SN2 reactions of this nature are demonstrated empirically and characterized using density functional theory (DFT). This method for modification in the gas phase is extended to the transfer of larger and more complex R groups that can be used in later gas-phase synthesis steps. For example, N-cyclohexyl- N'-(2-morpholinoethyl)carbodiimide (CMC) is used to transfer a carbodiimide functionality to a peptide anion containing a carboxylic acid. Subsequent activation yields a selective reaction between the transferred carbodiimide group and a carboxylic acid, suggesting the carbodiimide functionality is retained through the transfer process. Many different R groups are transferable using this method, allowing for new possibilities for charge manipulation and derivatization in the gas phase.
Leijtens, Tomas; Lim, Jongchul; Teuscher, Joël; Park, Taiho; Snaith, Henry J
2013-06-18
Transient mobility spectroscopy (TMS) is presented as a new tool to probe the charge carrier mobility of commonly employed organic and inorganic semiconductors over the relevant range of charge densities. The charge density dependence of the mobility of semiconductors used in hybrid and organic photovoltaics gives new insights into charge transport phenomena in solid state dye sensitized solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical Simulations of Flow Separation Control in Low-Pressure Turbines using Plasma Actuators
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.
2007-01-01
A recently introduced phenomenological model to simulate flow control applications using plasma actuators has been further developed and improved in order to expand its use to complicated actuator geometries. The new modeling approach eliminates the requirement of an empirical charge density distribution shape by using the embedded electrode as a source for the charge density. The resulting model is validated against a flat plate experiment with quiescent environment. The modeling approach incorporates the effect of the plasma actuators on the external flow into Navier Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. The model solves the Maxwell equation to obtain the electric field due to the applied AC voltage at the electrodes and an additional equation for the charge density distribution representing the plasma density. The new modeling approach solves the charge density equation in the computational domain assuming the embedded electrode as a source therefore automatically generating a charge density distribution on the surface exposed to the flow similar to that observed in the experiments without explicitly specifying an empirical distribution. The model is validated against a flat plate experiment with quiescent environment.
Kuechler, Erich R; Giese, Timothy J; York, Darrin M
2016-04-28
To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.
Genesis of charge orders in high temperature superconductors
Tu, Wei-Lin; Lee, Ting-Kuo
2016-01-01
One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy. PMID:26732076
NASA Astrophysics Data System (ADS)
Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang
2010-02-01
To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.
Over-injection and self-oscillations in an electron vacuum diode
NASA Astrophysics Data System (ADS)
Leopold, J. G.; Siman-Tov, M.; Goldman, A.; Krasik, Ya. E.
2017-07-01
We demonstrate a practical means by which one can inject more than the space-charge limiting current into a vacuum diode. This over-injection causes self-oscillations of the space-charge resulting in an electron beam current modulation at a fixed frequency, a reaction of the system to the Coulomb repulsive forces due to charge accumulation.
18 CFR 11.14 - Procedures for establishing charges without an energy gains investigation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... hydrology or project development, that affect headwater benefits. (2) Any procedures that apply to § 11.17(b)(5) of this subpart will apply to any prospectively fixed charges that are continued under this...
18 CFR 11.14 - Procedures for establishing charges without an energy gains investigation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... hydrology or project development, that affect headwater benefits. (2) Any procedures that apply to § 11.17(b)(5) of this subpart will apply to any prospectively fixed charges that are continued under this...
Villeneuve-Faure, C; Boudou, L; Makasheva, K; Teyssedre, G
2017-12-15
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
NASA Astrophysics Data System (ADS)
Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.
2017-12-01
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson’s equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke
Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge density is increased by a higher dose rate and/or lower beam size.« less
Ignitor with stable low-energy thermite igniting system
Kelly, Michael D.; Munger, Alan C.
1991-02-05
A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.
Feng, Shu; Gale, Michael J; Fay, Jonathan D; Faridi, Ambar; Titus, Hope E; Garg, Anupam K; Michaels, Keith V; Erker, Laura R; Peters, Dawn; Smith, Travis B; Pennesi, Mark E
2015-09-01
To describe a standardized flood-illuminated adaptive optics (AO) imaging protocol suitable for the clinical setting and to assess sampling methods for measuring cone density. Cone density was calculated following three measurement protocols: 50 × 50-μm sampling window values every 0.5° along the horizontal and vertical meridians (fixed-interval method), the mean density of expanding 0.5°-wide arcuate areas in the nasal, temporal, superior, and inferior quadrants (arcuate mean method), and the peak cone density of a 50 × 50-μm sampling window within expanding arcuate areas near the meridian (peak density method). Repeated imaging was performed in nine subjects to determine intersession repeatability of cone density. Cone density montages could be created for 67 of the 74 subjects. Image quality was determined to be adequate for automated cone counting for 35 (52%) of the 67 subjects. We found that cone density varied with different sampling methods and regions tested. In the nasal and temporal quadrants, peak density most closely resembled histological data, whereas the arcuate mean and fixed-interval methods tended to underestimate the density compared with histological data. However, in the inferior and superior quadrants, arcuate mean and fixed-interval methods most closely matched histological data, whereas the peak density method overestimated cone density compared with histological data. Intersession repeatability testing showed that repeatability was greatest when sampling by arcuate mean and lowest when sampling by fixed interval. We show that different methods of sampling can significantly affect cone density measurements. Therefore, care must be taken when interpreting cone density results, even in a normal population.
Feng, Shu; Gale, Michael J.; Fay, Jonathan D.; Faridi, Ambar; Titus, Hope E.; Garg, Anupam K.; Michaels, Keith V.; Erker, Laura R.; Peters, Dawn; Smith, Travis B.; Pennesi, Mark E.
2015-01-01
Purpose To describe a standardized flood-illuminated adaptive optics (AO) imaging protocol suitable for the clinical setting and to assess sampling methods for measuring cone density. Methods Cone density was calculated following three measurement protocols: 50 × 50-μm sampling window values every 0.5° along the horizontal and vertical meridians (fixed-interval method), the mean density of expanding 0.5°-wide arcuate areas in the nasal, temporal, superior, and inferior quadrants (arcuate mean method), and the peak cone density of a 50 × 50-μm sampling window within expanding arcuate areas near the meridian (peak density method). Repeated imaging was performed in nine subjects to determine intersession repeatability of cone density. Results Cone density montages could be created for 67 of the 74 subjects. Image quality was determined to be adequate for automated cone counting for 35 (52%) of the 67 subjects. We found that cone density varied with different sampling methods and regions tested. In the nasal and temporal quadrants, peak density most closely resembled histological data, whereas the arcuate mean and fixed-interval methods tended to underestimate the density compared with histological data. However, in the inferior and superior quadrants, arcuate mean and fixed-interval methods most closely matched histological data, whereas the peak density method overestimated cone density compared with histological data. Intersession repeatability testing showed that repeatability was greatest when sampling by arcuate mean and lowest when sampling by fixed interval. Conclusions We show that different methods of sampling can significantly affect cone density measurements. Therefore, care must be taken when interpreting cone density results, even in a normal population. PMID:26325414
Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun
2016-10-01
Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.
NASA Technical Reports Server (NTRS)
Xiao, Yegao; Bhat, Ishwara; Abedin, M. Nurul
2005-01-01
InP/InGaAs avalanche photodiodes (APDs) are being widely utilized in optical receivers for modern long haul and high bit-rate optical fiber communication systems. The separate absorption, grading, charge, and multiplication (SAGCM) structure is an important design consideration for APDs with high performance characteristics. Time domain modeling techniques have been previously developed to provide better understanding and optimize design issues by saving time and cost for the APD research and development. In this work, performance dependences on multiplication layer thickness have been investigated by time domain modeling. These performance characteristics include breakdown field and breakdown voltage, multiplication gain, excess noise factor, frequency response and bandwidth etc. The simulations are performed versus various multiplication layer thicknesses with certain fixed values for the areal charge sheet density whereas the values for the other structure and material parameters are kept unchanged. The frequency response is obtained from the impulse response by fast Fourier transformation. The modeling results are presented and discussed, and design considerations, especially for high speed operation at 10 Gbit/s, are further analyzed.
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles.
Integration of Fixed and Flexible Route Public Transportation Systems, Phase II
DOT National Transportation Integrated Search
2012-01-01
Conventional bus service (with fixed routes and schedules) has lower average cost than flexible bus service (with : demand-responsive routes) at high demand densities. At low demand densities flexible bus service has lower : average costs and provide...
Robust statistical reconstruction for charged particle tomography
Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W
2013-10-08
Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.
ERIC Educational Resources Information Center
Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano
2012-01-01
An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…
[Research on electron density in DC needle-plate corona discharge at atmospheric pressure].
Liu, Zhi-Qiang; Guo, Wei; Liu, Tao-Tao; Wu, Wen-Shuo; Liu, Shu-Min
2013-11-01
Using needle-plate discharge device, corona discharge experiment was done in the atmosphere. Through photo of spot size of light-emitting area, the relationship between the voltage and thickness of corona layer was discussed. When the distance between tip and plate is fixed, the thickness of corona layer increases with the increase in voltage; when the voltage is fixed, the thickness of corona layer decreases with the increase in the distance between tip and plate. As spectral intensity of N2 (C3pi(u)) (337.1 nm)reflects high energy electron density, it was measured with emission spectrometry. The results show that high energy electron density is the biggest near the needle tip and the relationship between high energy electron density and voltage is basically linear increasing. Fixing voltage, high energy electron density decreases with the increase in the distance between tip and plate. When the voltage and the distance between tip and plate are fixed, the high energy electron density increases with the decrease in the curvature radius of needle tip. These results are of great importance for the study of plasma parameters of corona discharge.
NASA Astrophysics Data System (ADS)
Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao
2011-05-01
Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.
Zhou, Han; Li, Fang; Weir, Michael D.; Xu, Hockin H.K.
2013-01-01
Objectives Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Methods Six QAMs were synthesized with CL = 3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond Multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL = 16) was mixed into SBMP at mass fraction = 0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4 hours. Biofilm colony-forming units (CFU) were measured at 2 days. Results Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL = 16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Conclusions Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. PMID:23948394
Zhou, Han; Li, Fang; Weir, Michael D; Xu, Hockin H K
2013-11-01
Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Six QAMs were synthesized with CL=3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL=16) was mixed into SBMP at mass fraction=0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4h. Biofilm colony-forming units (CFU) were measured at 2 days. Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL=16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-01-01
Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322
Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in Cu x TiSe 2
Kogar, A.; de la Pena, G. A.; Lee, Sangjun; ...
2017-01-11
X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cu xTiSe 2 as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. In this paper, the results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x = 0.055(5) . Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up tomore » x = 0.091(6) , the highest copper concentration examined in this study. Lastly, the phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state.« less
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
NASA Astrophysics Data System (ADS)
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-01
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-26
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
WSN-Based Space Charge Density Measurement System
Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong
2017-01-01
It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density. PMID:28052105
WSN-Based Space Charge Density Measurement System.
Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong
2017-01-01
It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.
High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking
Lorenzana, J.; Seibold, G.; Peng, Y. Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.; Konik, R. M.; Thampy, V.; Gu, G. D.; Ghiringhelli, G.; Braicovich, L.
2017-01-01
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates. PMID:29114049
Late effects of 1H irradiation on hippocampal physiology
NASA Astrophysics Data System (ADS)
Kiffer, Frederico; Howe, Alexis K.; Carr, Hannah; Wang, Jing; Alexander, Tyler; Anderson, Julie E.; Groves, Thomas; Seawright, John W.; Sridharan, Vijayalakshmi; Carter, Gwendolyn; Boerma, Marjan; Allen, Antiño R.
2018-05-01
NASA's Missions to Mars and beyond will expose flight crews to potentially dangerous levels of charged-particle radiation. Of all charged nuclei, 1H is the most abundant charged particle in both the galactic cosmic ray (GCR) and solar particle event (SPE) spectra. There are currently no functional spacecraft shielding materials that are able to mitigate the charged-particle radiation encountered in space. Recent studies have demonstrated cognitive injuries due to high-dose 1H exposures in rodents. Our study investigated the effects of 1H irradiation on neuronal morphology in the hippocampus of adult male mice. 6-month-old mice received whole-body exposure to 1H at 0.5 and 1 Gy (150 MeV/n; 0.35-0.55 Gy/min) at NASA's Space Radiation Laboratory in Upton, NY. At 9-months post-irradiation, we tested each animal's open-field exploratory performance. After sacrifice, we dissected the brains along the midsagittal plane, and then either fixed or dissected further and snap-froze them. Our data showed that exposure to 0.5 Gy or 1 Gy 1H significantly increased animals' anxiety behavior in open-field testing. Our micromorphometric analyses revealed significant decreases in mushroom spine density and dendrite morphology in the Dentate Gyrus, Cornu Ammonis 3 and 1 of the hippocampus, and lowered expression of synaptic markers. Our data suggest 1H radiation significantly increased exploration anxiety and modulated the dendritic spine and dendrite morphology of hippocampal neurons at a dose of 0.5 or 1 Gy.
Kristen-Hochrein, Nora; Laschewsky, André; Miller, Reinhard; von Klitzing, Regine
2011-12-15
In the present paper, the influence of the surfactant concentration and the degree of charge of a polymer on foam film properties of oppositely charged polyelectrolyte/surfactant mixtures has been investigated. To verify the assumption that the position of the isoelectric point (IEP) does not change the character of the foam film stabilities, the position of the IEP of the polyelectrolyte/surfactant mixtures has been shifted in two different ways. Within the first series of experiments, the foam film properties were studied using a fixed surfactant concentration of 3 × 10(-5) M in the mixture. Due to the low surfactant concentration, this is a rather dilute system. In the second approach, a copolymer of nonionic and ionic monomer units was used to lower the charge density of the polymer. This gave rise to additional interactions between the polyelectrolyte and the surfactant, which makes the description of the foam film behavior more complex. In both systems, the same characteristics of the foam film stabilities were found: The foam film stability is reduced toward the IEP of the system, followed by a destabilization around the IEP. At polyelectrolyte concentrations above the IEP, foam films are very stable. However, the concentration range where unstable films were formed was rather broad, and the mechanisms leading to the destabilization had different origins. The results were compared with former findings on PAMPS/C(14)TAB mixtures with an IEP of 10(-4) M.
NASA Astrophysics Data System (ADS)
Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.
2017-07-01
The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.
Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conicalmore » intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density – charge migration – between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.« less
NASA Astrophysics Data System (ADS)
Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.
2013-07-01
Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N+-Phenyl, N-Phenyl+). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density - charge migration - between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.
Liu, Jie; Peng, Chunwang; Yu, Gaobo; Zhou, Jian
2015-10-06
The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (±0.05 and ±0.16 C·m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.
Chirality and orbital order in charge density waves
NASA Astrophysics Data System (ADS)
van Wezel, Jasper
2011-12-01
Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density, on the other hand, was discovered only very recently. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we use a Landau order parameter analysis to resolve this paradox, and show that the chiral charge order may be understood as a form of orbital ordering. We discuss the microscopic mechanism driving the transition and show it to be of a general form, thus allowing for a broad class of materials to display this novel type of orbital-ordered chiral charge density wave.
Charged anisotropic matter with linear or nonlinear equation of state
NASA Astrophysics Data System (ADS)
Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi
2010-08-01
Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua’s method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (1019C) and maximum electric field intensities are very large (1023-1024statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.
NASA Astrophysics Data System (ADS)
Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.
2015-11-01
Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.
Characteristics of spacecraft charging in low Earth orbit
NASA Astrophysics Data System (ADS)
Anderson, Phillip C.
2012-07-01
It has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to -2000 V) when encountering intense precipitating electron events (auroral arcs). We present an 11-year study of over 1600 charging events, defined as when the spacecraft charged to levels exceeding 100 V negative during an auroral crossing. The occurrence frequency of events was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma density be low, at most 104 cm-3. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the occurrence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. As a result of this study, we produced a model spectrum for precipitating electrons that can be used as a specification for the low-altitude auroral charging environment. There are implications from this study on a number of LEO satellite programs, including the International Space Station, which does enter the auroral zone, particularly during geomagnetic activity when the auroral boundary can penetrate to very low latitudes. The plasma density in the ISS orbit is usually well above the minimum required density for charging. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for charging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Först, M.; Frano, A.; Kaiser, S.
2014-11-17
In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.
Polymeric and Molecular Materials for Advanced Organic Electronics
2011-07-25
printable variants. All have excellent dielectric and insulating properties, a remarkable ability to minimize trapped charge between thin film transistor... trapped charge density, and hence the corresponding OTFT device performance. Under this program we first discovered that OTFT performance is...deep, high- density charge traps must be overcome for efficient FET operation, it has been postulated that in most OFETs, shallow lower-density (~10
Child-Langmuir flow in a planar diode filled with charged dust impurities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Xiaoyan; Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44870 Bochum; Shukla, Padma Kant
The Child-Langmuir (CL) flow in a planar diode in the presence of stationary charged dust particles is studied. The limiting electron current density and other diode properties, such as the electrostatic potential, the electron flow speed, and the electron number density, are calculated analytically. A comparison of the results with the case without dust impurities reveals that the diode parameters mentioned above decrease with the increase of the dust charge density. Furthermore, it is found that the classical scaling of D{sup -2} (the gap spacing D) for the CL current density remains exactly valid, while the scaling of V{sup 3/2}more » (the applied gap voltage V) can be a good approximation for low applied gap voltage and for low dust charge density.« less
Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites
Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer
2010-01-01
Abstract The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3–16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. Key Words: Mars—Origin of life—Montmorillonite—Mineral catalysis—Layer charge density—X–ray diffractometry. Astrobiology 10, 743–749. PMID:20854214
Kapton charging characteristics: Effects of material thickness and electron-energy distribution
NASA Technical Reports Server (NTRS)
Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.
1985-01-01
Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.
Dakovski, Georgi L.; Lee, Wei -Sheng; Hawthorn, David G.; ...
2015-06-24
We utilize intense, single-cycle terahertz pulses to induce collective excitations in the charge-density-wave-ordered underdoped cuprate YBa 2Cu 3O 6+x. These excitations manifest themselves as pronounced coherent oscillations of the optical reflectivity in the transient state, accompanied by minimal incoherent quasiparticle relaxation dynamics. The oscillations occur at frequencies consistent with soft phonon energies associated with the charge-density-wave, but vanish above the superconducting transition temperature rather than that at the charge-density-wave transition. These results indicate an intimate relationship of the terahertz excitation with the underlying charge-density-wave and the superconducting condensate itself.
In-situ investigations of the ionosphere of comet 67P
NASA Astrophysics Data System (ADS)
Eriksson, A. I.; Edberg, N. J. T.; Odelstad, E.; Vigren, E.; Engelhardt, I.; Henri, P.; Lebreton, J.-P.; Galand, M.; Carr, C. M.; Koenders, C.; Nilsson, H.; Broiles, T.; Rubin, M.
2015-10-01
Since arrival of Rosetta at its target comet 67P/Churyumov-Gerasimenko in August 2014, the plasma environment has been dominated by ionized gas emanating from the comet nucleus rather than by solar wind plasma. This was evident early on from the strong modulation seen with Rosetta's position in a reference frame fixed to the rotating nucleus, with higher plasma densities observed when the spacecraft is above the neck region and when the comet exposes maximum area to the sun. In this respect, Rosetta is inside the comet ionosphere, providing excellent in situ investigation opportunities for the instruments of the Rosetta Plasma Consortium (RPC). In contrast to the often modelled scenario for a very active comet, the Langmuir probe instrument (RPC-LAP) finds electron temperatures mainly in the range of tens of thousand kelvin around this less active comet. This can be attributed to the lower density of neutral gas, meaning little cooling of recently produced electrons. A side effect of this is that the spacecraft charges negatively when within about 100 km from the nucleus. Interesting in itself, this also may point to similar charging for dust grains in the coma, with implications for the detection of the smallest particles and possibly for processes like electrostatic fragmentation. The inner coma also proves to be very dynamic, with large variations not only with latitude and longitude in a comet frame, but also with the solar wind and various wave phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Bullock, James; Cuevas, Andres
2015-05-18
This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta{sub 2}O{sub 5}) underneath plasma enhanced chemical vapour deposited silicon nitride (SiN{sub x}). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta{sub 2}O{sub 5} and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω·cm and n-type 1.0 Ω·cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm{sup 2} and 68 fA/cm{sup 2} are measured on 150 Ω/sq boron-diffused p{sup +} and 120 Ω/sq phosphorus-diffused n{sup +} c-Si, respectively. Capacitance–voltage measurements reveal a negativemore » fixed insulator charge density of −1.8 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5} film and −1.0 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5}/SiN{sub x} stack. The Ta{sub 2}O{sub 5}/SiN{sub x} stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.« less
Particle in cell simulation of peaking switch for breakdown evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.
2014-07-01
Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (withoutmore » peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
... Login ID and FIX Login ID to $500 per month for regular access and $1000 per month for Sponsored User... a FIX fee of $1200 for a minimum of two monthly login IDs (so, $600 for one), or a fee of $2,400 for... to increase the fees charged for a CMI Login ID and FIX Login ID to $500 per month for regular access...
Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero
2017-08-01
The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station’s density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles. PMID:26575845
New scheme for color confinement and violation of the non-Abelian Bianchi identities
NASA Astrophysics Data System (ADS)
Suzuki, Tsuneo; Ishiguro, Katsuya; Bornyakov, Vitaly
2018-02-01
A new scheme for color confinement in QCD due to violation of the non-Abelian Bianchi identities is proposed. The violation of the non-Abelian Bianchi identities (VNABI) Jμ is equal to Abelian-like monopole currents kμ defined by the violation of the Abelian-like Bianchi identities. Although VNABI is an adjoint operator satisfying the covariant conservation law DμJμ=0 , it satisfies, at the same time, the Abelian-like conservation law ∂μJμ=0 . The Abelian-like conservation law ∂μJμ=0 is also gauge-covariant. There are N2-1 conserved magnetic charges in the case of color S U (N ). The charge of each component of VNABI is quantized à la Dirac. The color-invariant eigenvalues λμ of VNABI also satisfy the Abelian conservation law ∂μλμ=0 and the magnetic charges of the eigenvalues are also quantized à la Dirac. If the color invariant eigenvalues condense in the QCD vacuum, each color component of the non-Abelian electric field Ea is squeezed by the corresponding color component of the solenoidal current Jμa. Then only the color singlets alone can survive as a physical state and non-Abelian color confinement is realized. This confinement picture is completely new in comparison with the previously studied monopole confinement scenario based on an Abelian projection after some partial gauge-fixing, where Abelian neutral states can survive as physical. To check if the scenario is realized in nature, numerical studies are done in the framework of lattice field theory by adopting pure S U (2 ) gauge theory for simplicity. Considering Jμ(x )=kμ(x ) in the continuum formulation, we adopt an Abelian-like definition of a monopole following DeGrand-Toussaint as a lattice version of VNABI, since the Dirac quantization condition of the magnetic charge is satisfied on lattice partially. To reduce severe lattice artifacts, we introduce various techniques of smoothing the thermalized vacuum. Smooth gauge fixings such as the maximal center gauge (MCG), block-spin transformations of Abelian-like monopoles and extraction of physically important infrared long monopole loops are adopted. We also employ the tree-level tadpole improved gauge action of S U (2 ) gluodynamics. With these various improvements, we measure the density of lattice VNABI: ρ (a (β ),n )=∑ μ ,sn √{∑ a (kμa(sn))2 }/(4 √{3 }Vnb3) , where kμa(sn) is an n blocked monopole in the color direction a , n is the number of blocking steps, Vn=V /n4 (b =n a (β )) is the lattice volume (spacing) of the blocked lattice. Beautiful and convincing scaling behaviors are seen when we plot the density ρ (a (β ),n ) versus b =n a (β ). A single universal curve ρ (b ) is found from n =1 to n =12 , which suggests that ρ (a (β ),n ) is a function of b =n a (β ) alone. The universal curve seems independent of a gauge fixing procedure used to smooth the lattice vacuum since the scaling is obtained in all gauges adopted. The scaling, if it exists also for n →∞ , shows that the lattice definition of VNABI has the continuum limit and the new confinement scenario is realized.
Miao, H.; Lorenzana, J.; Seibold, G.; ...
2017-11-07
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, H.; Lorenzana, J.; Seibold, G.
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less
Emergence of charge density waves and a pseudogap in single-layer TiTe2.
Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C
2017-09-11
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.
Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua
2004-04-15
A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.
Riedy, L W; Walter, J S
1996-06-01
The safe charge injection density for pulsing of 316LVM electrodes has been reported to be 40 microC/cm2. However, only 20 microC/cm2 is available for nonfaradic charge transfer and double layer charge injection. Therefore, we evaluated long term pulsing at 20 microC/cm2 with capacitor coupling.
Ropers, M H; Novales, B; Boué, F; Axelos, M A V
2008-11-18
The binding of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to a negatively charged natural polysaccharide (pectin) at air-solution interfaces was investigated on single interfaces and in foams, versus the linear charge densities of the polysaccharide. Besides classical methods to investigate polymer/surfactant systems, we applied, for the first time concerning these systems, the analogy between the small angle neutron scattering by foams and the neutron reflectivity of films to measure in situ film thicknesses of foams. CTAB/pectin foam films are much thicker than the pure surfactant foam film but similar for high- and low-charged pectin/CTAB systems despite the difference in structure of complexes at interfaces. The improvement of the foam properties of CTAB bound to pectin is shown to be directly related to the formation of pectin-CTAB complexes at the air-water interface. However, in opposition to surface activity, there is no specific behavior for the highly charged pectin: foam properties depend mainly upon the bulk charge concentration, while the interfacial behavior is mainly governed by the charge density of pectin. For the highly charged pectin, specific cooperative effects between neighboring charged sites along the chain are thought to be involved in the higher surface activity of pectin/CTAB complexes. A more general behavior can be obtained at lower charge density either by using a low-charged pectin or by neutralizing the highly charged pectin in decreasing pH.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge
NASA Astrophysics Data System (ADS)
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-01
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-19
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
Øien, Alf H; Wiig, Helge
2016-07-07
Interstitial exclusion refers to the limitation of space available for plasma proteins and other macromolecules based on collagen and negatively charged glycosaminoglycans (GAGs) in the interstitial space. It is of particular importance to interstitial fluid and plasma volume regulation. Here we present a novel mechanical and mathematical model of the dynamic interactions of structural elements within the interstitium of the dermis at the microscopic level that may explain volume exclusion of charged and neutral macroparticles. At this level, the interstitium is considered to consist of elements called extracellular matrix (ECM) cells, again containing two main interacting structural components on a fluid background including anions and cations setting up osmotic forces: one smaller GAG component, having an intrinsic expansive electric force, and one bigger collagen component, having an intrinsic elastic force. Because of size differences, the GAG component interacts with a fraction of the collagen component only at normal hydration. This fraction, however, increases with rising hydration as a consequence of the modeled form of the interaction force between the GAGs and collagen. Collagen is locally displaced at variable degrees as hydration changes. Two models of GAGs are considered, having largely different geometries which demands different, but related, forms of GAG-collagen interaction forces. The effects of variable fixed charges on GAGs and of GAG density in tissue are evaluated taking into account observed volume exclusion properties of charged macromolecules as a function of tissue hydration. The presented models may improve our biophysical understanding of acting forces influencing tissue fluid dynamics. Such knowledge is significant when evaluating the transport of electrically charged and neutral macromolecules into and through the interstitium, and therefore to drug uptake and the therapeutic effects of macromolecular agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ligand-induced dependence of charge transfer in nanotube–quantum dot heterostructures
Wang, Lei; Han, Jinkyu; Sundahl, Bryan; ...
2016-07-01
As a model system to probe ligand-dependent charge transfer in complex composite heterostructures, we fabricated double-walled carbon nanotube (DWNT) – CdSe quantum dot (QD) composites. Whereas the average diameter of the QDs probed was kept fixed at ~4.1 nm and the nanotubes analyzed were similarly oxidatively processed, by contrast, the ligands used to mediate the covalent attachment between the QDs and DWNTs were systematically varied to include p-phenylenediamine (PPD), 2-aminoethanethiol (AET), and 4-aminothiophenol (ATP). Herein, we have put forth a unique compilation of complementary data from experiment and theory, including results from transmission electron microscopy (TEM), near-edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, Raman spectroscopy, electrical transport measurements, and theoretical modeling studies, in order to fundamentally assess the nature of the charge transfer between CdSe QDs and DWNTs, as a function of the structure of various, intervening bridging ligand molecules. Specifically, we correlated evidence of charge transfer as manifested by changes and shifts associated with NEXAFS intensities, Raman peak positions, and threshold voltages both before and after CdSe QD deposition onto the underlying DWNT surface. Importantly, for the first time ever in these types of nanoscale composite systems, we have sought to use theoretical modeling to justify and account for our experimental results. Finally, our overall data suggest that (i) QD coverage density on the DWNTs varies, based upon the different ligand pendant groups used and that (ii) the presence of a π-conjugated carbon framework within the ligands themselves and the electron affinity of the pendant groups collectively play important roles in the resulting charge transfer from QDs to the underlying CNTs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, Peter; Jacobson, Arne; Mills, Evan
Creation of light for work, socializing, and general illumination is a fundamental application of technology around the world. For those who lack access to electricity, an emerging and diverse range of LED based lighting products hold promise for replacing and/or augmenting their current fuel-based lighting sources that are costly and dirty. Along with analysis of environmental factors, economic models for total cost-ofownership of LED lighting products are an important tool for studying the impacts of these products as they emerge in markets of developing countries. One important metric in those models is the minimum illuminance demanded by end-users for amore » given task before recharging the lamp or replacing batteries. It impacts the lighting service cost per unit time if charging is done with purchased electricity, batteries, or charging services. The concept is illustrated in figure 1: LED lighting products are generally brightest immediately after the battery is charged or replaced and the illuminance degrades as the battery is discharged. When a minimum threshold level of illuminance is reached, the operational time for the battery charge cycle is over. The cost to recharge depends on the method utilized; these include charging at a shop at a fixed price per charge, charging on personal grid connections, using solar chargers, and purchasing dry cell batteries. This Research Note reports on the observed"charge-triggering" illuminance level threshold for night market vendors who use LED lighting products to provide general and task oriented illumination. All the study participants charged with AC power, either at a fixed-price charge shop or with electricity at their home.« less
47 CFR 69.123 - Density pricing zones for special access and switched transport.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Density pricing zones for special access and...) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.123 Density pricing zones... price cap regulation may establish any number of density zones within a study area that is used for...
Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study.
Pastré, David; Piétrement, Olivier; Fusil, Stéphane; Landousy, Fabrice; Jeusset, Josette; David, Marie-Odile; Hamon, Loïc; Le Cam, Eric; Zozime, Alain
2003-10-01
The adsorption of DNA molecules onto a flat mica surface is a necessary step to perform atomic force microscopy studies of DNA conformation and observe DNA-protein interactions in physiological environment. However, the phenomenon that pulls DNA molecules onto the surface is still not understood. This is a crucial issue because the DNA/surface interactions could affect the DNA biological functions. In this paper we develop a model that can explain the mechanism of the DNA adsorption onto mica. This model suggests that DNA attraction is due to the sharing of the DNA and mica counterions. The correlations between divalent counterions on both the negatively charged DNA and the mica surface can generate a net attraction force whereas the correlations between monovalent counterions are ineffective in the DNA attraction. DNA binding is then dependent on the fractional surface densities of the divalent and monovalent cations, which can compete for the mica surface and DNA neutralizations. In addition, the attraction can be enhanced when the mica has been pretreated by transition metal cations (Ni(2+), Zn(2+)). Mica pretreatment simultaneously enhances the DNA attraction and reduces the repulsive contribution due to the electrical double-layer force. We also perform end-to-end distance measurement of DNA chains to study the binding strength. The DNA binding strength appears to be constant for a fixed fractional surface density of the divalent cations at low ionic strength (I < 0.1 M) as predicted by the model. However, at higher ionic strength, the binding is weakened by the screening effect of the ions. Then, some equations were derived to describe the binding of a polyelectrolyte onto a charged surface. The electrostatic attraction due to the sharing of counterions is particularly effective if the polyelectrolyte and the surface have nearly the same surface charge density. This characteristic of the attraction force can explain the success of mica for performing single DNA molecule observation by AFM. In addition, we explain how a reversible binding of the DNA molecules can be obtained with a pretreated mica surface.
NASA Astrophysics Data System (ADS)
Tang, Hengjing; Wu, Xiaoli; Xu, Qinfei; Liu, Hongyang; Zhang, Kefeng; Wang, Yang; He, Xiangrong; Li, Xue; Gong, Hai Mei
2008-03-01
The fabrication of Au/SiNx/InP metal-insulator-semiconductor (MIS) diodes has been achieved by depositing a layer of SiNx on the (NH4)2Sx-treated n-InP. The SiNx layer was deposited at 200 °C using plasma-enhanced chemical vapor deposition (PECVD). The effect of passivation on the InP surface before and after annealing was evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements, and Auger electron spectroscopy (AES) analysis was used to investigate the depth profiles of several atoms. The results indicate that the SiNx passivation layer exhibits good insulative characteristics. The annealing process causes distinct inter-diffusion in the SiNx/InP interface and contributes to the decrease of the fixed charge density and minimum interface state density, which are 1.96 × 1012 cm-2 and 7.41 × 1011 cm-2 eV-1, respectively. A 256 × 1 InP/InGaAs/InP heterojunction photodiode, fabricated with sulfidation and SiNx passivation layer, has good response uniformity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Lori; Davidson, Carolyn; McLaren, Joyce
With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset,more » on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.« less
"Squishy capacitor" model for electrical double layers and the stability of charged interfaces.
Partenskii, Michael B; Jordan, Peter C
2009-07-01
Negative capacitance (NC), predicted by various electrical double layer (EDL) theories, is critically reviewed. Physically possible for individual components of the EDL, the compact or diffuse layer, it is strictly prohibited for the whole EDL or for an electrochemical cell with two electrodes. However, NC is allowed for the artificial conditions of sigma control, where an EDL is described by the equilibrium electric response of electrolyte to a field of fixed, and typically uniform, surface charge-density distributions, sigma. The contradiction is only apparent; in fact local sigma cannot be set independently, but is established by the equilibrium response to physically controllable variables, i.e., applied voltage phi (phi control) or total surface charge q (q control). NC predictions in studies based on sigma control signify potential instabilities and phase transitions for physically realizable conditions. Building on our previous study of phi control [M. B. Partenskii and P. C. Jordan, Phys. Rev. E 77, 061117 (2008)], here we analyze critical behavior under q control, clarifying the basic picture using an exactly solvable "squishy capacitor" toy model. We find that phi can change discontinuously in the presence of a lateral transition, specify stability conditions for an electrochemical cell, analyze the origin of the EDL's critical point in terms of compact and diffuse serial contributions, and discuss perspectives and challenges for theoretical studies not limited by sigma control.
Moya, A A
2015-02-21
This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
... Expand the Applicability of the Fails Charge to Agency Debt Securities Transactions October 26, 2011... the fails charge to Agency debt securities transactions. II. Self-Regulatory Organization's Statement... Federal Reserve Bank of New York (the ``FRBNY''), has been addressing the persistent settlement fails in...
18 CFR 11.8 - Adjustment of annual charges.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Adjustment of annual charges. 11.8 Section 11.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... in effect as fixed unless changed as authorized by law. [51 FR 24318, July 3, 1986] ...
18 CFR 11.8 - Adjustment of annual charges.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Adjustment of annual charges. 11.8 Section 11.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... in effect as fixed unless changed as authorized by law. [51 FR 24318, July 3, 1986] ...
18 CFR 11.8 - Adjustment of annual charges.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Adjustment of annual charges. 11.8 Section 11.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... in effect as fixed unless changed as authorized by law. [51 FR 24318, July 3, 1986] ...
18 CFR 11.8 - Adjustment of annual charges.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Adjustment of annual charges. 11.8 Section 11.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... in effect as fixed unless changed as authorized by law. [51 FR 24318, July 3, 1986] ...
18 CFR 11.8 - Adjustment of annual charges.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Adjustment of annual charges. 11.8 Section 11.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... in effect as fixed unless changed as authorized by law. [51 FR 24318, July 3, 1986] ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Information concerning interest rates, amortization... UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS INTEREST RATES, TERMS, CONDITIONS, AND APPROVAL AUTHORITY Interest Rates, Amortization, Guarantee Fee, Annual Charge...
Tailoring charge density and hydrogen bonding of imidazolium copolymers for efficient gene delivery.
Allen, Michael H; Green, Matthew D; Getaneh, Hiwote K; Miller, Kevin M; Long, Timothy E
2011-06-13
Conventional free radical polymerization with subsequent postpolymerization modification afforded imidazolium copolymers with controlled charge density and side chain hydroxyl number. Novel imidazolium-containing copolymers where each permanent cation contained one or two adjacent hydroxyls allowed precise structure-transfection efficiency studies. The degree of polymerization was identical for all copolymers to eliminate the influence of molecular weight on transfection efficiency. DNA binding, cytotoxicity, and in vitro gene transfection in African green monkey COS-7 cells revealed structure-property-transfection relationships for the copolymers. DNA gel shift assays indicated that higher charge densities and hydroxyl concentrations increased DNA binding. As the charge density of the copolymers increased, toxicity of the copolymers also increased; however, as hydroxyl concentration increased, cytotoxicity remained constant. Changing both charge density and hydroxyl levels in a systematic fashion revealed a dramatic influence on transfection efficiency. Dynamic light scattering of the polyplexes, which were composed of copolymer concentrations required for the highest luciferase expression, showed an intermediate DNA-copolymer binding affinity. Our studies supported the conclusion that cationic copolymer binding affinity significantly impacts overall transfection efficiency of DNA delivery vehicles, and the incorporation of hydroxyl sites offers a less toxic and effective alternative to more conventional highly charged copolymers.
Quantum crystallographic charge density of urea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Quantum crystallographic charge density of urea
Wall, Michael E.
2016-06-08
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Charge-density-shear-moduli relationships in aluminum-lithium alloys.
Eberhart, M
2001-11-12
Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.
How to Estimate Demand Charge Savings from PV on Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter J; Bird, Lori A
Rooftop photovoltaic (PV) systems are compensated through retail electricity tariffs - and for commercial and industrial customers, these are typically comprised of three components: a fixed monthly charge, energy charges, and demand charges. Of these, PV's ability to reduce demand charges has traditionally been the most difficult to estimate. In this fact sheet we explain the basics of demand charges, and provide a new method that a potential customer or PV developer can use to estimate a range of potential demand charge savings for a proposed PV system. These savings can then be added to other project cash flows, inmore » assessing the project's financial performance.« less
Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals
Kerns, Raymond L.; Mankin, Charles J.
1968-01-01
Previous investigations have demonstrated the influences of interlayer cation composition, relative humidity, temperature, and magnitude of interlayer surface charge on the interlayer hydration of montmorillonites and vermiculites. It has been suggested that the sites of layer charge deficiencies may also have an influence upon the amount of hydration that can take place in the interlayers of expandable clay minerals. If the interlayer cation-to-layer bonds are considered as ideally electrostatic, the magnitude of the forces resisting expansion may be expressed as a form of Coulomb's law. If this effect is significant, expandable structures in which the charge-deficiency sites are predominantly in the tetrahedral sheet should have less pronounced swelling properties than should structures possessing charge deficiencies located primarily in the octahedral sheet.Three samples that differed in location of layer charge sites were selected for study. An important selection criterion was a non-correlation between tetrahedral charge sites and high surface-charge density, and between octahedral charge sites and low surface-charge density.The effects of differences in interlayer cation composition were eliminated by saturating portions of each sample with the same cations. Equilibrium (001) d values at controlled constant humidities were used as a measure of the relative degree of interlayer hydration.Although no correlation could be made between the degree of interlayer hydration and total surface-charge density, the investigation does not eliminate total surface-charge density as being significant to the swelling properties of three-sheet clay-mineral structures. The results do indicate a correlation between more intense expandability and predominance of charge deficiencies in the octahedral sheet. Conversely, less intense swelling behavior is associated with predominantly tetrahedral charge deficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steigies, C. T.; Barjatya, A.
Langmuir probes are standard instruments for plasma density measurements on many sounding rockets. These probes can be operated in swept-bias as well as in fixed-bias modes. In swept-bias Langmuir probes, contamination effects are frequently visible as a hysteresis between consecutive up and down voltage ramps. This hysteresis, if not corrected, leads to poorly determined plasma densities and temperatures. With a properly chosen sweep function, the contamination parameters can be determined from the measurements and correct plasma parameters can then be determined. In this paper, we study the contamination effects on fixed-bias Langmuir probes, where no hysteresis type effect is seenmore » in the data. Even though the contamination is not evident from the measurements, it does affect the plasma density fluctuation spectrum as measured by the fixed-bias Langmuir probe. We model the contamination as a simple resistor-capacitor circuit between the probe surface and the plasma. We find that measurements of small scale plasma fluctuations (meter to sub-meter scale) along a rocket trajectory are not affected, but the measured amplitude of large scale plasma density variation (tens of meters or larger) is attenuated. From the model calculations, we determine amplitude and cross-over frequency of the contamination effect on fixed-bias probes for different contamination parameters. The model results also show that a fixed bias probe operating in the ion-saturation region is affected less by contamination as compared to a fixed bias probe operating in the electron saturation region.« less
NASA Astrophysics Data System (ADS)
Zou, You-Hao; Zhang, Jian-Bo; Xiong, Guang-Yi; Chen, Ying; Liu, Chuan; Liu, Yu-Bin; Ma, Jian-Ping
2017-10-01
The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 163×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion. Supported by National Natural Science Foundation of China (NSFC) (11335001, 11275169, 11075167), It is also supported in part by the DFG and the NSFC (11261130311) through funds provided to the Sino-German CRC 110 "Symmetries and the Emergence of Structure in QCD". This work was also funded in part by National Basic Research Program of China (973 Program) (2015CB856700)
Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2007-01-01
We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
Electron teleportation and statistical transmutation in multiterminal Majorana islands
NASA Astrophysics Data System (ADS)
Michaeli, Karen; Landau, L. Aviad; Sela, Eran; Fu, Liang
2017-11-01
We study a topological superconductor island with spatially separated Majorana modes coupled to multiple normal-metal leads by single-electron tunneling in the Coulomb blockade regime. We show that low-temperature transport in such a Majorana island is carried by an emergent charge-e boson composed of a Majorana mode and an electronic excitation in leads. This transmutation from Fermi to Bose statistics has remarkable consequences. For noninteracting leads, the system flows to a non-Fermi-liquid fixed point, which is stable against tunnel couplings anisotropy or detuning away from the charge-degeneracy point. As a result, the system exhibits a universal conductance at zero temperature, which is a fraction of the conductance quantum, and low-temperature corrections with a universal power-law exponent. In addition, we consider Majorana islands connected to interacting one-dimensional leads, and find different stable fixed points near and far from the charge-degeneracy point.
Alternative route to charge density wave formation in multiband systems
Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A.; Kemper, Alexander F.; Devereaux, Thomas P.; Chu, Jiun-Haw; Analytis, James G.; Fisher, Ian R.; Degiorgi, Leonardo
2013-01-01
Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron–lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe3. Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron–phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors. PMID:23248317
Alternative route to charge density wave formation in multiband systems.
Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A; Kemper, Alexander F; Devereaux, Thomas P; Chu, Jiun-Haw; Analytis, James G; Fisher, Ian R; Degiorgi, Leonardo
2013-01-02
Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondi, Robert J., E-mail: rjbondi@sandia.gov; Fox, Brian P.; Marinella, Matthew J.
2016-03-28
First-principles calculations of electrical conductivity (σ{sub o}) are revisited to determine the atomistic origin of its stochasticity in a distribution generated from sampling 14 ab-initio molecular dynamics configurations from 10 independently quenched models (n = 140) of substoichiometric amorphous Ta{sub 2}O{sub 5}, where each structure contains a neutral O monovacancy (V{sub O}{sup 0}). Structural analysis revealed a distinct minimum Ta-Ta separation (dimer/trimer) corresponding to each V{sub O}{sup 0} location. Bader charge decomposition using a commonality analysis approach based on the σ{sub o} distribution extremes revealed nanostructural signatures indicating that both the magnitude and distribution of cationic charge on the Ta subnetwork havemore » a profound influence on σ{sub o}. Furthermore, visualization of local defect structures and their electron densities reinforces these conclusions and suggests σ{sub o} in the amorphous oxide is best suppressed by a highly charged, compact Ta cation shell that effectively screens and minimizes localized V{sub O}{sup 0} interaction with the a-Ta{sub 2}O{sub 5} network; conversely, delocalization of V{sub O}{sup 0} corresponds to metallic character and high σ{sub o}. The random network of a-Ta{sub 2}O{sub 5} provides countless variations of an ionic configuration scaffold in which small perturbations affect the electronic charge distribution and result in a fixed-stoichiometry distribution of σ{sub o}; consequently, precisely controlled and highly repeatable oxide fabrication processes are likely paramount for advancement of resistive memory technologies.« less
NASA Astrophysics Data System (ADS)
Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.
1998-08-01
A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.
Correlation between the extent of catalytic activity and charge density of montmorillonites.
Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer
2010-09-01
The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.
Efficient mixing scheme for self-consistent all-electron charge density
NASA Astrophysics Data System (ADS)
Shishidou, Tatsuya; Weinert, Michael
2015-03-01
In standard ab initio density-functional theory calculations, the charge density ρ is gradually updated using the ``input'' and ``output'' densities of the current and previous iteration steps. To accelerate the convergence, Pulay mixing has been widely used with great success. It expresses an ``optimal'' input density ρopt and its ``residual'' Ropt by a linear combination of the densities of the iteration sequences. In large-scale metallic systems, however, the long range nature of Coulomb interaction often causes the ``charge sloshing'' phenomenon and significantly impacts the convergence. Two treatments, represented in reciprocal space, are known to suppress the sloshing: (i) the inverse Kerker metric for Pulay optimization and (ii) Kerker-type preconditioning in mixing Ropt. In all-electron methods, where the charge density does not have a converging Fourier representation, treatments equivalent or similar to (i) and (ii) have not been described so far. In this work, we show that, by going through the calculation of Hartree potential, one can accomplish the procedures (i) and (ii) without entering the reciprocal space. Test calculations are done with a FLAPW method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir
2015-06-15
The effect of deposition temperature (T{sub dep}) and subsequent annealing time (t{sub anl}) of atomic layer deposited aluminum oxide (Al{sub 2}O3) films on silicon surface passivation (in terms of surface recombination velocity, SRV) is investigated. The pristine samples (as-deposited) show presence of positive fixed charges, Q{sub F}. The interface defect density (D{sub it}) decreases with increase in T{sub dep} which further decreases with t{sub anl} up to 100s. An effective surface passivation (SRV<8 cm/s) is realized for T{sub dep} ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized bymore » high thermal budget process (t{sub anl} between 10 to 30 min)« less
Suppression of high pT hadrons in Pb + Pb collisions at \\sqrt{s} = 2.76 TeV
NASA Astrophysics Data System (ADS)
Zhang, Hanzhong; Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian
2011-12-01
The nuclear modification factor RAA(pT) for large pT hadrons in central Pb + Pb collisions at \\sqrt{s}=2.76 TeV/n is calculated within the next-to-leading order perturbative QCD parton model with medium-modified fragmentation functions and agree well with the new data. The jet transport parameter that controls medium modification is assumed to be proportional to the initial parton density and the coefficient is fixed by the RHIC data. The charged hadron multiplicity dNch/dη = 1584 ± 80 in central Pb + Pb collisions from the ALICE experiment at the LHC is used to determine both the jet transport parameter and the initial condition for (3+1)D ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RAA(pT).
NASA Technical Reports Server (NTRS)
Klenzing, J.; Rowland, D.
2012-01-01
A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.
NASA Astrophysics Data System (ADS)
Choi, Jaesuk; Song, Jun Tae; Jang, Ho Seong; Choi, Min-Jae; Sim, Dong Min; Yim, Soonmin; Lim, Hunhee; Jung, Yeon Sik; Oh, Jihun
2017-01-01
Photoelectrochemical (PEC) water splitting has emerged as a potential pathway to produce sustainable and renewable chemical fuels. Here, we present a highly active Cu2O/TiO2 photocathode for H2 production by enhancing the interfacial band-edge energetics of the TiO2 layer, which is realized by controlling the fixed charge density of the TiO2 protection layer. The band-edge engineered Cu2O/TiO2 (where TiO2 was grown at 80 °C via atomic layer deposition) enhances the photocurrent density up to -2.04 mA/cm2 at 0 V vs. RHE under 1 sun illumination, corresponding to about a 1,200% enhancement compared to the photocurrent density of the photocathode protected with TiO2 grown at 150 °C. Moreover, band-edge engineering of the TiO2 protection layer prevents electron accumulation at the TiO2 layer and enhances both the Faraday efficiency and the stability for hydrogen production during the PEC water reduction reaction. This facile control over the TiO2/electrolyte interface will also provide new insight for designing highly efficient and stable protection layers for various other photoelectrodes such as Si, InP, and GaAs. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Yoshiba, Shuhei; Tanitsu, Katsuya; Suda, Yoshiyuki; Kamisako, Koichi
2017-06-01
Passivation films or antireflection coatings are generally prepared using costly vacuum or high-temperature processes. Thus, we report the preparation of TiO x -SiO x composite films by novel spin coatable solutions for the synthesis of low-cost passivation coating materials. The desired films were formed by varying the mixing ratios of TiO x and SiO x , and the resulting films exhibited excellent surface passivation properties. For the p-type wafer, an optimal effective surface recombination velocity (S eff) of 93 cm/s was achieved at \\text{TiO}x:\\text{SiO}x = 6:4, while a surface recombination current density (J 0s) of 195 fA/cm2 was obtained. In contrast, for the n-type wafer, an S eff of 27 cm/s and a J 0s of 38 fA/cm2 were achieved at \\text{TiO}x:\\text{SiO}x = 8:2. This excellent surface passivation effect could be attributed to the low interface state density and high positive fixed charge density. Furthermore, the thickness of the interfacial SiO x layer was determined to be important for obtaining the desired surface passivation effect.
Emergence of charge density waves and a pseudogap in single-layer TiTe 2
Chen, P.; Pai, Woei Wu; Chan, Y. -H.; ...
2017-09-11
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less
NASA Astrophysics Data System (ADS)
Aguir, K.; Fennouh, A.; Carchano, H.; Lollman, D.
1995-10-01
Heterojunctions were fabricated by deposit of amorphous GaAs and GaAsN on c-GaAs. I(V) and C(V) measurements were performed to determine electrical properties of these structures. The a-GaAs/c-GaAs(n) heterojunctions present a p-n junction like behaviour. The characteristics of the a-GaAsN/c-GaAs(n) heterojunctions present a MIS like structure behaviour with some imperfections. A fixed positive charge was detected and a density of interface states of about 10^{11} eV^{-1}cm^{-2} was evaluated. L'étude porte sur des couches minces de GaAs et de GaAsN amorphes déposées par pulvérisation cathodique RF réactive sur des substrats de GaAs cristallin. Les caractéristiques électriques I(V) et C(V) ont été mesurées. Les hétérojonctions a-GaAs/c-GaAs(n) présentent un effet redresseur. Cet effet laisse place à une caractéristique symétrique avec une forte atténuation de l'intensité du courant pour les structures a-GaAsN/cGaAs(n). Les structures réalisées ont alors un comportement semblable à celui d'une structure MIS imparfaite. L'existence d'une charge positive fixe dans le a-GaAsN a été mise en évidence. La densité des états d'interface au milieu de la bande interdite est évaluée à quelques 10^{11} cm^{-2}eV^{-1}.
NASA Astrophysics Data System (ADS)
Yang, Zaixing; Wang, Zhigang; Tian, Xingling; Xiu, Peng; Zhou, Ruhong
2012-01-01
Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.
Yang, Zaixing; Wang, Zhigang; Tian, Xingling; Xiu, Peng; Zhou, Ruhong
2012-01-14
Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.
Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong
2014-10-08
One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.
NASA Astrophysics Data System (ADS)
Mezey, Paul G.
2017-11-01
Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.
A theoretical-electron-density databank using a model of real and virtual spherical atoms.
Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian
2017-08-01
A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.
Effect of current density on electron beam induced charging in MgO
NASA Astrophysics Data System (ADS)
Boughariou, Aicha; Hachicha, Olfa; Kallel, Ali; Blaise, Guy
2005-11-01
It is well known that the presence of space charge in an insulator is correlated with an electric breakdown. Many studies have been carried out on the experimental characterization of space charges. In this paper, we outline the dependence on the current density of the charge-trapping phenomenon in magnesium oxide. Our study was performed with a dedicated scanning electron microscope (SEM) on the electrical property evolution of surface of magnesium oxide (1 0 0) (MgO) single crystal, during a 1.1, 5 and 30 keV electron irradiation. The types of charges trapped on the irradiated areas and the charging kinetics are determined by measuring the total secondary electron emission (SEE) σ during the injection process by means of two complementary detectors. At low energies 1.1 and 5 keV, two different kinds of self-regulated regime (σ = 1) were observed as a function of current density. At 30 keV energy, the electron emission appears to be stimulated by the current density, due to the Poole-Frenkel effect.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Assignments or transfers (all services) Corres & 159 1,015.00 CUT 3. Fixed Satellite Transmit/Receive Earth... 175.00 CGX 4. Fixed Satellite transmit/receive Earth Stations (2 meters or less operating in the 4/6... Only Earth Stations: a. Initial Applications for Registration or License (per station) 312 Main...
33 CFR 67.40-20 - Charges invoiced to owner.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Charges invoiced to owner. 67.40-20 Section 67.40-20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Notification § 67.40-20...
33 CFR 67.40-20 - Charges invoiced to owner.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Charges invoiced to owner. 67.40-20 Section 67.40-20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Notification § 67.40-20...
Central depression of nuclear charge density distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu Yanyun; Ren Zhongzhou; Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000
The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of {sup 46}Ar and {sup 44}S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in {sup 46}Ar and {sup 44}S prefer to occupy the 1d{sub 3/2} state rather than the 2s{sub 1/2} state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of {sup 46}Armore » and {sup 44}S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.« less
On the dependence of charge density on surface curvature of an isolated conductor
NASA Astrophysics Data System (ADS)
Bhattacharya, Kolahal
2016-03-01
A study of the relation between the electrostatic charge density at a point on a conducting surface and the curvature of the surface (at that point) is presented. Two major papers in the scientific literature on this topic are reviewed and the apparent discrepancy between them is resolved. Hence, a step is taken towards obtaining a general analytic formula for relating the charge density with surface curvature of conductors. The merit of this formula and its limitations are discussed.
Gravity dual of spin and charge density waves
NASA Astrophysics Data System (ADS)
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2014-12-01
At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.
Pair density waves in superconducting vortex halos
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Edkins, Stephen D.; Hamidian, Mohammad H.; Davis, J. C. Séamus; Fradkin, Eduardo; Kivelson, Steven A.
2018-05-01
We analyze the interplay between a d -wave uniform superconducting and a pair-density-wave (PDW) order parameter in the neighborhood of a vortex. We develop a phenomenological nonlinear sigma model, solve the saddle-point equation for the order-parameter configuration, and compute the resulting local density of states in the vortex halo. The intertwining of the two superconducting orders leads to a charge density modulation with the same periodicity as the PDW, which is twice the period of the charge density wave that arises as a second harmonic of the PDW itself. We discuss key features of the charge density modulation that can be directly compared with recent results from scanning tunneling microscopy and speculate on the role PDW order may play in the global phase diagram of the hole-doped cuprates.
Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani
2017-12-01
Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.
Light-front representation of chiral dynamics with Δ isobar and large-N c relations
Granados, C.; Weiss, C.
2016-06-13
Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O(M π –1) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Δ isobars and implement relations basedmore » on the large-N c limit of QCD. We derive the wave function overlap formulas for the Δ contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguities with higher-spin particles in the light-front time-ordered approach. We study the interplay of πN and πΔ intermediate states in the quantum-mechanical picture of the densities in a transversely polarized nucleon. We show that the correct N c-scaling of the charge and magnetization densities emerges as the result of the particular combination of currents generated by intermediate states with degenerate N and Δ. The off-shell behavior of the chiral EFT is summarized in contact terms and can be studied easily. As a result, the methods developed here can be applied to other peripheral densities and to moments of the nucleon's generalized parton distributions.« less
Atomistic and molecular effects in electric double layers at high surface charges
Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali
2015-06-16
Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djara, V.; Cherkaoui, K.; Negara, M. A.
2015-11-28
An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g}more » measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.« less
A Novel Method for Measuring Electrical Conductivity of High Insulating Oil Using Charge Decay
NASA Astrophysics Data System (ADS)
Wang, Z. Q.; Qi, P.; Wang, D. S.; Wang, Y. D.; Zhou, W.
2016-05-01
For the high insulating oil, it is difficult to measure the conductivity precisely using voltammetry method. A high-precision measurementis proposed for measuring bulk electrical conductivity of high insulating oils (about 10-9--10-15S/m) using charge decay. The oil is insulated and charged firstly, and then grounded fully. During the experimental procedure, charge decay is observed to show an exponential law according to "Ohm" theory. The data of time dependence of charge density is automatically recorded using an ADAS and a computer. Relaxation time constant is fitted from the data using Gnuplot software. The electrical conductivity is calculated using relaxation time constant and dielectric permittivity. Charge density is substituted by electric potential, considering charge density is difficult to measure. The conductivity of five kinds of oils is measured. Using this method, the conductivity of diesel oil is easily measured to beas low as 0.961 pS/m, as shown in Fig. 5.
NASA Astrophysics Data System (ADS)
Hu, Bo
2015-08-01
Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.
Development of high energy density electrical double layer capacitors
NASA Astrophysics Data System (ADS)
Devarajan, Thamarai selvi
Electrochemical Double Layer capacitors (EDLCs) have shown themselves as a viable energy storage alternative. EDLCs have high power density, faster charge/discharge, wide operating temperature and long cycle life compared to batteries since it stores charge by physical separation. Despites all their advantages, their low energy density stand as a bottleneck for capacitors. This research aims to increase the energy density of EDLC without compromising the power density. Energy is proportional to the square of cell voltage. Cell voltage is mainly dependent on electrolyte breakdown. Electrolytes also provide ions for charge separation and conduction. Therefore various electrolytes (Solutes and Solvents) which can give high concentration, solubility and decomposition potential were characterized in the first part of the research. In that study, a novel ionic liquid OPBF4 had higher capacitance and comparable voltage window compared to commercial TEABF4 in Acetonitrile. However, the increased polarity of the fixed ring O-atom and the ion-ion interaction in OPBF4 was responsible for lowering its conductivity. Oxygenated ionic compounds with alkyl groups had lower stability due to beta elimination between two electron withdrawing atoms. Volume based thermodynamics and quantum chemical calculations were used to calculate ion size, HOMO/LUMO energies, and free energy changes and establish relationship with capacitance, redox potential and melting points respectively. In addition free energy of fusion was used to predict the melting point. Ion size had correlation with capacitance due to compact double layer formation. Free energy changes did not explain the differences in melting point and predicted dielectric constant was inconsistent with the polarity. This is presumably due to using Van der Waals volume instead of crystal structure volume and insufficient incorporation of polarization term. The HOMO/LUMO energies gave direct relation between oxidation and reduction potential at 1mA/cm 2. A brief study on non-polar co-solvents for EDLC was studied. Among the solvents studied, fluorinated solvents had low melting point and viscosity due to incorporation of asymmetry. However, because of low dielectric constant, TEABF4 is insoluble and had to be mixed with other solvents. The mixed fluorinated solvents had slightly higher voltage window due to decreased donicity of lone pairs of electrons. The second approach to increasing energy density is to increase capacitance. Capacitance is mainly dependent on surface area and porosity of electrodes. Nanostructured materials which can offer multiple charge storage are currently of interest. Hence, novel NiSi nanotubes were studied as electrodes for supercapacitor applications. Silicon material has high capacity and these inert electrodes can enable higher capacitance by controlling the porosity and functional groups in specific electrolytes. The Silicon wafers were made porous by anodization using hydrofluoric acid. In order to improve the conductivity, the porous silicon was doped, then plated with Ni using electroless plating method and annealed to form nickel mono silicide. Gold was deposited on the back side of the electrode to enhance conductivity. Our porous NiSi electrodes gave capacitance of about 1185muF /cm2 in 0.5 M H 2SO4. Further investigation of oxide formation and modification of functional groups will help achieve higher capacitance.
Galaxy growth from redshift 5 to 0 at fixed comoving number density
NASA Astrophysics Data System (ADS)
van de Voort, Freeke
2016-10-01
Studying the average properties of galaxies at a fixed comoving number density over a wide redshift range has become a popular observational method, because it may trace the evolution of galaxies statistically. We test this method by comparing the evolution of galaxies at fixed number density and by following individual galaxies through cosmic time (z = 0-5) in cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations project. Comparing progenitors, descendants, and galaxies selected at fixed number density at each redshift, we find differences of up to a factor of 3 for galaxy and interstellar medium (ISM) masses. The difference is somewhat larger for black hole masses. The scatter in ISM mass increases significantly towards low redshift with all selection techniques. We use the fixed number density technique to study the assembly of dark matter, gas, stars, and black holes and the evolution in accretion and star formation rates. We find three different regimes for massive galaxies, consistent with observations: at high redshift the gas accretion rate dominates, at intermediate redshifts the star formation rate is the highest, and at low redshift galaxies grow mostly through mergers. Quiescent galaxies have much lower ISM masses (by definition) and much higher black hole masses, but the stellar and halo masses are fairly similar. Without active galactic nucleus (AGN) feedback, massive galaxies are dominated by star formation down to z = 0 and most of their stellar mass growth occurs in the centre. With AGN feedback, stellar mass is only added to the outskirts of galaxies by mergers and they grow inside-out.
On the correct interpretation of the low voltage regime in intrinsic single-carrier devices.
Röhr, Jason A; Kirchartz, Thomas; Nelson, Jenny
2017-05-24
We discuss the approach of determining the charge-carrier density of a single-carrier device by combining Ohm's law and the Mott-Gurney law. We show that this approach is seldom valid, due to the fact that whenever Ohm's law is applicable the Mott-Gurney law is usually not, and vice versa. We do this using a numerical drift-diffusion solver to calculate the current density-voltage curves and the charge-carrier density, with increasing doping concentration. As this doping concentration is increased to very large values, using Ohm's law becomes a sensible way of measuring the product of mobility and doping density in the sample. However, in the high-doping limit, the current is no longer governed by space-charge and it will no longer be possible to determine the charge-carrier mobility using the Mott-Gurney law. This leaves the value for the mobility as an unknown in the mobility-doping density product in Ohm's law. We also show that, when the charge-carrier mobility for an intrinsic semiconductor is known in advance, the carrier density is underestimated up to many orders of magnitude if Ohm's law is used. We finally seek to establish a window of conditions where the two methods can be combined to yield reasonable results.
NASA Astrophysics Data System (ADS)
Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel
2014-05-01
Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.
Measuring the charge density of a tapered optical fiber using trapped microparticles.
Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji
2016-03-07
We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.
Cost accounting in a surgical unit in a teaching hospital--a pilot study.
Malalasekera, A P; Ariyaratne, M H; Fernando, R; Perera, D; Deen, K I
2003-09-01
Economic constraints remain one of the major limitations on the quality of health care even in industrialised countries. Improvement of quality will require optimising facilities within available resources. Our objective was to determine costs of surgery and to identify areas where cost reduction is possible. 80 patients undergoing routine major and intermediate surgery during a period of 6 months were selected at random. All consumables used and procedures carried out were documented. A unit cost was assigned to each of these. Costing was based on 3 main categories: preoperative (investigations, blood product related costs), operative (anaesthetic charges, consumables and theatre charges) and post-operative (investigations, consumables, hospital stay). Theatre charges included two components: fixed (consumables) and variable (dependent on time per operation). The indirect costs (e.g. administration costs, 'hotel' costs), accounted for 30%, of the total and were lower than similar costs in industrialised nations. The largest contributory factors (median, range) towards total cost were, basic hospital charges (30%; 15 to 63%); theatre charges fixed (23%; 6 to 35%) and variable (14%; 8 to 27%); and anaesthetic charges (15%; 1 to 36%). Cost reduction in patients undergoing surgery should focus on decreasing hospital stay, operating theatre time and anaesthetic expenditure. Although definite measures can be suggested from the study, further studies on these variables are necessary to optimise cost effectiveness of surgical units.
PHEPS: web-based pH-dependent Protein Electrostatics Server
Kantardjiev, Alexander A.; Atanasov, Boris P.
2006-01-01
PHEPS (pH-dependent Protein Electrostatics Server) is a web service for fast prediction and experiment planning support, as well as for correlation and analysis of experimentally obtained results, reflecting charge-dependent phenomena in globular proteins. Its implementation is based on long-term experience (PHEI package) and the need to explain measured physicochemical characteristics at the level of protein atomic structure. The approach is semi-empirical and based on a mean field scheme for description and evaluation of global and local pH-dependent electrostatic properties: protein proton binding; ionic sites proton population; free energy electrostatic term; ionic groups proton affinities (pKa,i) and their Coulomb interaction with whole charge multipole; electrostatic potential of whole molecule at fixed pH and pH-dependent local electrostatic potentials at user-defined set of points. The speed of calculation is based on fast determination of distance-dependent pair charge-charge interactions as empirical three exponential function that covers charge–charge, charge–dipole and dipole–dipole contributions. After atomic coordinates input, all standard parameters are used as defaults to facilitate non-experienced users. Special attention was given to interactive addition of non-polypeptide charges, extra ionizable groups with intrinsic pKas or fixed ions. The output information is given as plain-text, readable by ‘RasMol’, ‘Origin’ and the like. The PHEPS server is accessible at . PMID:16845042
NASA Technical Reports Server (NTRS)
Komatsu, G. K.; Stellen, J. M., Jr.
1976-01-01
Measurements have been made of the high energy thrust ions, (Group I), high angle/high energy ions (Group II), and high angle/low energy ions (Group IV) of a mercury electron bombardment thruster in the angular divergence range from 0 deg to greater than 90 deg. The measurements have been made as a function of thrust ion current, propellant utilization efficiency, bombardment discharge voltage, screen and accelerator grid potential (accel-decel ratio) and neutralizer keeper potential. The shape of the Group IV (charge exchange) ion plume has remained essentially fixed within the range of variation of the engine operation parameters. The magnitude of the charge exchange ion flux scales with thrust ion current, for good propellant utilization conditions. For fixed thrust ion current, charge exchange ion flux increases for diminishing propellant utilization efficiency. Facility effects influence experimental accuracies within the range of propellant utilization efficiency used in the experiments. The flux of high angle/high energy Group II ions is significantly diminished by the use of minimum decel voltages on the accelerator grid. A computer model of charge exchange ion production and motion has been developed. The program allows computation of charge exchange ion volume production rate, total production rate, and charge exchange ion trajectories for "genuine" and "facilities effects" particles. In the computed flux deposition patterns, the Group I and Group IV ion plumes exhibit a counter motion.
DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).
Gaus, Michael; Cui, Qiang; Elstner, Marcus
2012-04-10
The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.
Jarzembska, Katarzyna N; Kamiński, Radosław; Durka, Krzysztof; Woźniak, Krzysztof
2018-05-10
This contribution is devoted to the first electron density studies of a luminescent oxyquinolinato boron complex in the solid state. ortho-Phenylenediboronic acid mixed with 8-hydroxyquinoline in dioxane forms high-quality single crystals via slow solvent evaporation, which allows successful high resolution data collection (sin θ/λ = 1.2 Å -1 ) and charge density distribution modeling. Particular attention has been paid to the boron-oxygen fragment connecting the two parts of the complex, and to the solvent species exhibiting anharmonic thermal motion. The experiment and theory compared rather well in terms of atomic charges and volumes, except for the boron centers. Boron atoms, as expected, constitute the most electron-deficient species in the complex molecule, whereas the neighboring oxygen and carbon atoms are the most significantly negatively charged ones. This part of the molecule appears to be very much involved in the charge transfer occurring between the acid fragment and oxyquinoline moiety leading to the observed fluorescence, as supported by the time-dependent density functional theory (TDDFT) results and the generated transition density maps. TDDFT calculations indicated that p-type atomic orbitals contributing to the HOMO-1, HOMO, and LUMO play the major role in the lowest energy transitions, and enabled further comparison with the charge density features, which is discussed in details. Furthermore, the results confirmed the known fact the Q ligand character is most important for the spectroscopic properties of this class of complexes.
Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes
NASA Astrophysics Data System (ADS)
Stout, Robert F.; Khair, Aditya S.
2017-01-01
We quantify the diffusiophoresis and electrophoresis of a uniformly charged, spherical colloid in a binary electrolyte using modified Poisson-Nernst-Planck equations that account for steric repulsion between finite sized ions. Specifically, we utilize the Bikerman (Bik) lattice gas model and the Carnahan-Starling (CS) and Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equations of state for monodisperse and polydisperse, respectively, hard spheres. We compute the phoretic mobility for weak applied fields using an asymptotic approach for thin diffuse layers, where ion steric effects are expected to be most prevalent. The thin diffuse layer limit requires λD/R →0 , where λD is the Debye screening length and R is the particle radius; this limit is readily attained for micron-sized colloids in concentrated electrolytic solutions. It is well known that the classic Poisson-Boltzmann (PB) model for pointlike, noninteracting ions leads to a prediction of a maximum in both the diffusiophoretic and electrophoretic mobilities with increasing particle zeta potential (at fixed λD/R ). In contrast, we find that ion sterics essentially eliminate this maximum (for reasonably attainable zeta potentials) and increase the mobility relative to PB. Next, we consider the more experimentally relevant case of a particle with a constant surface charge density and vary the electrolyte concentration, neglecting charge regulation on surface active sites. Rather surprisingly, there is little difference between the predictions of the four models (PB, Bik, CS, and BMCSL) for electrophoretic mobility in concentrated solutions, at reasonable surface charge densities (˜1 -10 μ C /cm2 ). This is because as the concentration increases, the zeta potential is reduced (to below the thermal voltage for concentrations above about 1 M) and therefore the diffuse layer structure is largely unaffected by ion sterics. For gradients of symmetric electrolytes (equal diffusivities, charge, and size) diffusiophoresis is also essentially unaffected by ion sterics, with a mobility that approaches zero with increasing concentration, just as in electrophoresis. For gradients of asymmetric electrolytes, the difference in diffusivities of the cation and anions leads to an induced electric field that acts on the charged particle. Importantly, we show that ion sterics leads to an excess contribution to the induced electric field, which increases rapidly with concentration. This increase overwhelms the accompanying decrease in zeta potential. The result is the diffusiophoretic mobility increases with concentration, rather than approaching zero. Therefore, diffusiophoresis could be an appealing alternative transport mechanism to electrophoresis in concentrated electrolyte solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431; Giese, Timothy J.
To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational,more » produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.« less
Charge and Spin Currents in Open-Shell Molecules: A Unified Description of NMR and EPR Observables.
Soncini, Alessandro
2007-11-01
The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.
Experimental and theoretical charge density studies at subatomic resolution.
Fischer, A; Tiana, D; Scherer, W; Batke, K; Eickerling, G; Svendsen, H; Bindzus, N; Iversen, B B
2011-11-17
Analysis of accurate experimental and theoretical structure factors of diamond and silicon reveals that the contraction of the core shell due to covalent bond formation causes significant perturbations of the total charge density that cannot be ignored in precise charge density studies. We outline that the nature and origin of core contraction/expansion and core polarization phenomena can be analyzed by experimental studies employing an extended Hansen-Coppens multipolar model. Omission or insufficient treatment of these subatomic charge density phenomena might yield erroneous thermal displacement parameters and high residual densities in multipolar refinements. Our detailed studies therefore suggest that the refinement of contraction/expansion and population parameters of all atomic shells is essential to the precise reconstruction of electron density distributions by a multipolar model. Furthermore, our results imply that also the polarization of the inner shells needs to be adopted, especially in cases where second row or even heavier elements are involved in covalent bonding. These theoretical studies are supported by direct multipolar refinements of X-ray powder diffraction data of diamond obtained from a third-generation synchrotron-radiation source (SPring-8, BL02B2).
Quantitative nanoscale electrostatics of viruses
NASA Astrophysics Data System (ADS)
Hernando-Pérez, M.; Cartagena-Rivera, A. X.; Lošdorfer Božič, A.; Carrillo, P. J. P.; San Martín, C.; Mateu, M. G.; Raman, A.; Podgornik, R.; de Pablo, P. J.
2015-10-01
Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04274g
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuto, M.; Kewalramani, S.; Wang, S.
2011-02-07
We report an experimental demonstration of a strategy for inducing two-dimensional (2D) crystallization of charged nanoparticles on oppositely charged fluid interfaces. This strategy aims to maximize the interfacial adsorption of nanoparticles, and hence their lateral packing density, by utilizing a combination of weakly charged particles and a high surface charge density on the planar interface. In order to test this approach, we investigated the assembly of cowpea mosaic virus (CPMV) on positively charged lipid monolayers at the aqueous solution surface, by means of in situ X-ray scattering measurements at the liquid-vapor interface. The assembly was studied as a function ofmore » the solution pH, which was used to vary the charge on CPMV, and of the mole fraction of the cationic lipid in the binary lipid monolayer, which set the interface charge density. The 2D crystallization of CPMV occurred in a narrow pH range just above the particle's isoelectric point, where the particle charge was weakly negative, and only when the cationic-lipid fraction in the monolayer exceeded a threshold. The observed 2D crystals exhibited nearly the same packing density as the densest lattice plane within the known 3D crystals of CPMV. The above electrostatic approach of maximizing interfacial adsorption may provide an efficient route to the crystallization of nanoparticles at aqueous interfaces.« less
Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid
Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio
2012-01-01
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898
Effect of pectin charge density on formation of multilayer films with chitosan.
Kamburova, Kamelia; Milkova, Viktoria; Petkanchin, Ivana; Radeva, Tsetska
2008-04-01
The effect of pectin charge density on the formation of multilayer films with chitosan (PEC/CHI) is studied by means of electro-optics. Pectins of low (21%) and high (71%) degrees of esterification, which are inversely proportional to the pectin charge density, are used to form films on colloidal beta-FeOOH particles at pH 4.0 when the CHI is fully ionized. We find that, after deposition of the first 3-4 layers, the film thickness increases linearly with the number of adsorbed layers. However, the increase in the film thickness is larger when the film is terminated with CHI. Irregular increase of the film thickness is more marked for the PEC with higher density of charge. Oscillation in the electrical polarizability of the film-coated particles with the number of deposited layers is also registered in the PEC/CHI films. The charge balance of the multilayers, calculated from electrical polarizability of the film-coated particles, is positive, with larger excess of positive charge within the film constructed from CHI and less charged PEC. This is attributed to the ability of CHI to diffuse into the film at each deposition step. Despite the CHI diffusion, the film thickness increases linearly due to the dissolution of unstable PEC/CHI complexes from the film surface.
NASCAP modelling of environmental-charging-induced discharges in satellites
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.
1979-01-01
The charging and discharging characteristics of a typical geosynchronous satellite experiencing time-varying geomagnetic substorms, in sunlight, were studied utilizing the NASA Charging Analyzer Program (NASCAP). An electric field criteria of 150,000 volts/cm to initiate discharges and transfer of 67 percent of the stored charge was used based on ground test results. The substorm characteristics were arbitrarily chosen to evaluate effects of electron temperature and particle density (which is equivalent to current density). It was found that while there is a minimum electron temperature for discharges to occur, the rate of discharges is dependent on particle density and duration times of the encounter. Hence, it is important to define the temporal variations in the substorm environments.
Patra, Chandra N
2014-11-14
A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.
NASA Astrophysics Data System (ADS)
Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen
2018-03-01
Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... prices of financial products that have maturity dates in the future as part of the volatility model in... Volatility Model in Its Clearing Fund Formula July 2, 2012. I. Introduction On May 15, 2012, the Fixed Income... simulation model currently used to calculate the VaR Charge in GSD's Clearing Fund formula is driven by...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
...) ISE FIX Session Fees The Exchange proposes to charge for legacy ISE \\4\\ Financial Information Exchange...-79). \\5\\ As stated in SR-ISE-2007-79, the ISE used the Financial Information Exchange (FIX) protocol... will provide Members a $0.0031 rebate per share for liquidity added on EDGX if the Member on a daily...
48 CFR 52.247-37 - F.o.b. Vessel, Port of Shipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... conformance with carrier requirements to protect the goods and to ensure assessment of the lowest applicable transportation charge; (2)(i) Deliver the shipment on board the ocean vessel in good order and condition on the date or within the period fixed; and (ii) Pay and bear all charges incurred in placing the shipment...
48 CFR 47.303-9 - F.o.b. vessel, port of shipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... conformance with carrier requirements to protect the goods and to ensure assessment of the lowest applicable transportation charge; (2)(i) Deliver the shipment on board the ocean vessel in good order and condition on the date or within the period fixed; and (ii) Pay and bear all charges incurred in placing the shipment...
48 CFR 47.303-9 - F.o.b. vessel, port of shipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... conformance with carrier requirements to protect the goods and to ensure assessment of the lowest applicable transportation charge; (2)(i) Deliver the shipment on board the ocean vessel in good order and condition on the date or within the period fixed; and (ii) Pay and bear all charges incurred in placing the shipment...
48 CFR 52.247-37 - F.o.b. Vessel, Port of Shipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... conformance with carrier requirements to protect the goods and to ensure assessment of the lowest applicable transportation charge; (2)(i) Deliver the shipment on board the ocean vessel in good order and condition on the date or within the period fixed; and (ii) Pay and bear all charges incurred in placing the shipment...
48 CFR 52.247-37 - F.o.b. Vessel, Port of Shipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... conformance with carrier requirements to protect the goods and to ensure assessment of the lowest applicable transportation charge; (2)(i) Deliver the shipment on board the ocean vessel in good order and condition on the date or within the period fixed; and (ii) Pay and bear all charges incurred in placing the shipment...
48 CFR 47.303-9 - F.o.b. vessel, port of shipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... conformance with carrier requirements to protect the goods and to ensure assessment of the lowest applicable transportation charge; (2)(i) Deliver the shipment on board the ocean vessel in good order and condition on the date or within the period fixed; and (ii) Pay and bear all charges incurred in placing the shipment...
48 CFR 47.303-9 - F.o.b. vessel, port of shipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... conformance with carrier requirements to protect the goods and to ensure assessment of the lowest applicable transportation charge; (2)(i) Deliver the shipment on board the ocean vessel in good order and condition on the date or within the period fixed; and (ii) Pay and bear all charges incurred in placing the shipment...
48 CFR 52.247-37 - F.o.b. Vessel, Port of Shipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... conformance with carrier requirements to protect the goods and to ensure assessment of the lowest applicable transportation charge; (2)(i) Deliver the shipment on board the ocean vessel in good order and condition on the date or within the period fixed; and (ii) Pay and bear all charges incurred in placing the shipment...
Importance of core electrostatic properties on the electrophoresis of a soft particle
NASA Astrophysics Data System (ADS)
De, Simanta; Bhattacharyya, Somnath; Gopmandal, Partha P.
2016-08-01
The impact of the volumetric charged density of the dielectric rigid core on the electrophoresis of a soft particle is analyzed numerically. The volume charge density of the inner core of a soft particle can arise for a dendrimer structure or bacteriophage MS2. We consider the electrokinetic model based on the conservation principles, thus no conditions for Debye length or applied electric field is imposed. The fluid flow equations are coupled with the ion transport equations and the equation for the electric field. The occurrence of the induced nonuniform surface charge density on the outer surface of the inner core leads to a situation different from the existing analysis of a soft particle electrophoresis. The impact of this induced surface charge density together with the double-layer polarization and relaxation due to ion convection and electromigration is analyzed. The dielectric permittivity and the charge density of the core have a significant impact on the particle electrophoresis when the Debye length is in the order of the particle size. We find that by varying the ionic concentration of the electrolyte, the particle can exhibit reversal in its electrophoretic velocity. The role of the polymer layer softness parameter is addressed in the present analysis.
pi-eta mixing and charge symmetry violating NN potential in matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Subhrajyoti; Roy, Pradip; Dutt-Mazumder, Abhee K.
2010-06-15
We construct density-dependent class III charge symmetry violating (CSV) potential caused by the mixing of pi-eta mesons with off-shell corrections. The density dependence enters through the nonvanishing pi-eta mixing driven by both the neutron-proton mass difference and their asymmetric density distribution. The contribution of density-dependent mixing to the CSV potential is found to be appreciably larger than that of the vacuum part.
Method of measuring a profile of the density of charged particles in a particle beam
Hyman, L.G.; Jankowski, D.J.
1975-10-01
A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam.
Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.
Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J
2011-12-28
We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase measurements to be correlated to biomolecular structures in solution, low charge state ions should be analyzed. Further, to determine if different solution conditions give rise to ions of different structure, ions of similar charge state should be compared. Non-denatured protein ion densities are found to be in excellent agreement with non-denatured protein ion densities inferred from prior DMA and drift tube measurements made without charge reduction (all ions with densities in the 0.85-1.10 g cm(-3) range), showing that these ions are not strongly influenced by Coulombic stretching nor by analysis method.
Charged Analogues of Henning Knutsen Type Solutions in General Relativity
NASA Astrophysics Data System (ADS)
Gupta, Y. K.; Kumar, Sachin; Pratibha
2011-11-01
In the present article, we have found charged analogues of Henning Knutsen's interior solutions which join smoothly to the Reissner-Nordstrom metric at the pressure free interface. The solutions are singularity free and analyzed numerically with respect to pressure, energy-density and charge-density in details. The solutions so obtained also present the generalization of A.L. Mehra's solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, AG; Bhadra, S; Hertzberg, BJ
We demonstrate that a simple acoustic time-of-flight experiment can measure the state of charge and state of health of almost any closed battery. An acoustic conservation law model describing the state of charge of a standard battery is proposed, and experimental acoustic results verify the simulated trends; furthermore, a framework relating changes in sound speed, via density and modulus changes, to state of charge and state of health within a battery is discussed. Regardless of the chemistry, the distribution of density within a battery must change as a function of state of charge and, along with density, the bulk modulimore » of the anode and cathode changes as well. The shifts in density and modulus also change the acoustic attenuation in a battery. Experimental results indicating both state-of-charge determination and irreversible physical changes are presented for two of the most ubiquitous batteries in the world, the lithium-ion 18650 and the alkaline LR6 (AA). Overall, a one-or two-point acoustic measurement can be related to the interaction of a pressure wave at multiple discrete interfaces within a battery, which in turn provides insights into state of charge, state of health, and mechanical evolution/degradation.« less
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration
2017-09-01
We present the charged-particle pseudorapidity density in Pb-Pb collisions at √{sNN} = 5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from -3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find 21 400 ± 1 300, while for the most peripheral (80-90%) we find 230 ± 38. This corresponds to an increase of (27 ± 4)% over the results at √{sNN} = 2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations - none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.
Depth profile of halide anions under highly charged biological membrane
NASA Astrophysics Data System (ADS)
Sung, Woongmo; Wang, Wenjie; Lee, Jonggwan; Vaknin, David; Kim, Doseok
2015-03-01
Halide ion (Cl- and I-) distribution under a cationic Langmuir monolayer consisting of 1,2-dipalmitoyl-3 trimethylammonium-propane (DPTAP) molecules was investigated by vibrational sum-frequency generation (VSFG) and X-ray spectroscopy. From VSFG spectra, it was observed that large halide anions (I-) screen surface charge more efficiently so that interfacial water alignment becomes more randomized. On the other hand, number density of ions directly measured by X-ray fluorescence spectroscopy at grazing incidence angle reveals that the ion densities within 6 ~ 8 nm are the same for both I- and Cl-. Since the observed ion densities in both cases are almost equal to the charge density of the DPTAP monolayer, we propose that larger halide anions are attracted closer to the surface making direct binding with the charged headgroups of the molecules in the monolayer, accomplishing charge neutrality in short distance. This direct adsorption of anions also disturbs the monolayer structure both in terms of the conformation of alkyl chains and the vertical configuration of the monolayer, with iodine having the stronger effect. Our study shows that the length scale that ions neutralize a charged interface varies significantly and specifically even between monovalent ions.
Avoiding revenue loss due to 'lesser of' contract clauses.
Stodolak, Frederick; Gutierrez, Henry
2014-08-01
Finance managers seeking to avoid lost revenue attributable to lesser-of-charge-or-fixed-fee (lesser-of) clauses in their contracts should: Identify payer contracts that contain lesser-of clauses. Prepare lesser-of lost-revenue reports for non-bundled and bundled rates. For claims with covered charges below the bundled rate, identify service codes associated with the greatest proportion of total gross revenue and determine new, higher charge levels for those codes. Establish an approach for setting charges for non-bundled fee schedules to address lost-revenue-related issues. Incorporate changes into overall strategic or hospital zero-based pricing modeling and parameters.
NASA Astrophysics Data System (ADS)
Arbañil, José D. V.; Zanchin, Vilson T.
2018-05-01
We study the static equilibrium configurations of uncharged and charged spheres composed by a relativistic polytropic fluid, and we compare with those of spheres composed by a nonrelativistic polytropic fluid, the later case being already studied in a previous work [J. D. Arbañil, P. S. Lemos, and V. T. Zanchin, Phys. Rev. D 88, 084023 (2013), 10.1103/PhysRevD.88.084023]. An equation of state connecting the pressure p and the energy density ρ is assumed. In the nonrelativistic fluid case, the connection is through a nonrelativistic polytropic equation of state, p =ω ργ , with ω and γ being respectively the polytropic constant and the polytropic exponent. In the relativistic fluid case, the connection is through a relativistic polytropic equation of state, p =ω δγ, with δ =ρ -p /(γ -1 ), and δ being the rest-mass density of the fluid. For the electric charge distribution, we assume that the charge density ρe is proportional to the energy density ρ , ρe=α ρ , with α being a constant such that 0 ≤|α |≤1 . The study is developed by integrating numerically the hydrostatic equilibrium equation. Some properties of the charged spheres such as the gravitational mass, the total electric charge, the radius, the surface redshift, and the speed of sound are analyzed by varying the central rest-mass density, the charge fraction, and the polytropic exponent. In addition, some limits that arise in general relativity, such as the Chandrasekhar limit, the Oppenheimer-Volkoff limit, the Buchdahl bound, and the Buchdahl-Andréasson bound are studied. It is confirmed that charged relativistic polytropic spheres with γ →∞ and α →1 saturate the Buchdahl-Andréasson bound, thus indicating that it reaches the quasiblack hole configuration. We show by means of numerical analysis that, as expected, the major differences between the two cases appear in the high energy density region.
Gauge fixing and BFV quantization
NASA Astrophysics Data System (ADS)
Rogers, Alice
2000-01-01
Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao
2018-01-01
With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition.
Ghasem-Zadeh, Ali; Burghardt, Andrew; Wang, Xiao-Fang; Iuliano, Sandra; Bonaretti, Serena; Bui, Minh; Zebaze, Roger; Seeman, Ego
2017-08-01
Individuals differ in forearm length. As microstructure differs along the radius, we hypothesized that errors may occur when sexual and racial dimorphisms are quantified at a fixed distance from the radio-carpal joint. Microstructure was quantified ex vivo in 18 cadaveric radii using high resolution peripheral quantitative computed tomography and in vivo in 158 Asian and Caucasian women and men at a fixed region of interest (ROI), a corrected ROI positioned at 4.5-6% of forearm length and using the fixed ROI adjusted for cross sectional area (CSA), forearm length or height. Secular effects of age were assessed by comparing 38 younger and 33 older women. Ex vivo, similar amounts of bone mass fashioned adjacent cross sections. Larger distal cross sections had thinner porous cortices of lower matrix mineral density (MMD), a larger medullary CSA and higher trabecular density. Smaller proximal cross-sections had thicker less porous cortices of higher MMD, a small medullary canal with little trabecular bone. Taller persons had more distally positioned fixed ROIs which moved proximally when corrected. Shorter persons had more proximally positioned fixed ROIs which moved distally when corrected, so dimorphisms lessened. In the corrected ROIs, in Caucasians, women had 0.6 SD higher porosity and 0.6 SD lower trabecular density than men (p<0.01). In Asians, women had 0.25 SD higher porosity (NS) and 0.5 SD lower trabecular density than men (p<0.05). In women, Asians had 0.8 SD lower porosity and 0.3 SD higher trabecular density than Caucasians (p<0.01). In men, Asians and Caucasians had similar porosity and trabecular density. Results were similar using an adjusted fixed ROI. Adjusting for secular effects of age on forearm length resulted in the age-related increment in porosity increasing from 2.08 SD to 2.48 SD (p<0.05). Assessment of sex, race and age related differences in microstructure requires measurement of anatomically equivalent regions. Copyright © 2017 Elsevier Inc. All rights reserved.
Benetz, B A; Diaconu, E; Bowlin, S J; Oak, S S; Laing, R A; Lass, J H
1999-01-01
Compare corneal endothelial image analysis by Konan SP8000 and Bio-Optics Bambi image-analysis systems. Corneal endothelial images from 98 individuals (191 eyes), ranging in age from 4 to 87 years, with a normal slit-lamp examination and no history of ocular trauma, intraocular surgery, or intraocular inflammation were obtained by the Konan SP8000 noncontact specular microscope. One observer analyzed these images by using the Konan system and a second observer by using the Bio-Optics Bambi system. Three methods of analyses were used: a fixed-frame method to obtain cell density (for both Konan and Bio-Optics Bambi) and a "dot" (Konan) or "corners" (Bio-Optics Bambi) method to determine morphometric parameters. The cell density determined by the Konan fixed-frame method was significantly higher (157 cells/mm2) than the Bio-Optics Bambi fixed-frame method determination (p<0.0001). However, the difference in cell density, although still statistically significant, was smaller and reversed comparing the Konan fixed-frame method with both Konan dot and Bio-Optics Bambi comers method (-74 cells/mm2, p<0.0001; -55 cells/mm2, p<0.0001, respectively). Small but statistically significant morphometric analyses differences between Konan and Bio-Optics Bambi were seen: cell density, +19 cells/mm2 (p = 0.03); cell area, -3.0 microm2 (p = 0.008); and coefficient of variation, +1.0 (p = 0.003). There was no statistically significant difference between these two methods in the percentage of six-sided cells detected (p = 0.55). Cell densities measured by the Konan fixed-frame method were comparable with Konan and Bio-Optics Bambi's morphometric analysis, but not with the Bio-Optics Bambi fixed-frame method. The two morphometric analyses were comparable with minimal or no differences for the parameters that were studied. The Konan SP8000 endothelial image-analysis system may be useful for large-scale clinical trials determining cell loss; its noncontact system has many clinical benefits (including patient comfort, safety, ease of use, and short procedure time) and provides reliable cell-density calculations.
Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Willis, Emily M.; Neergaard Parker, Linda
2014-01-01
Spacecraft charging of the International Space Station (ISS) is dominated by interaction of the US high voltage solar arrays with the F2-region ionosphere plasma environment. ISS solar array charging is enhanced in a high electron density environment due to the increased thermal electron currents to the edges of the solar cells. High electron temperature environments suppress charging due to formation of barrier potentials on the charged solar cell cover glass that restrict the charging currents to the cell edge [Mandell et al., 2003]. Environments responsible for strong solar array charging are therefore characterized by high electron densities and low electron temperatures. In support of the ISS space environmental effects engineering community, we are working to understand a number of features of solar array charging and to determine how well future charging behavior can be predicted from in-situ plasma density and temperature measurements. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that occur at ISS orbital altitudes (approximately 400 km) over time scales of days, the latitudes over which significant variations occur, and the time periods over which the disturbances persist once they start. This presentation provides examples of mid-latitude electron density and temperature disturbances at altitudes relevant to ISS using data sets and tools developed for our ISS plasma environment study. "Mid-latitude" is defined as the extra-tropical region between approx. 30 degrees to approx. 60 degrees magnetic latitude sampled by ISS over its 51.6 degree inclination orbit. We focus on geomagnetic storm periods because storms are well known drivers for disturbances in the ionospheric plasma environment.
Singh, Kiran Pal; Bhattacharjya, Dhrubajyoti; Razmjooei, Fatemeh; Yu, Jong-Sung
2016-01-01
In the race of gaining higher energy density, carbon’s capacity to retain power density is generally lost due to defect incorporation and resistance increment in carbon electrode. Herein, a relationship between charge carrier density/charge movement and supercapacitance performance is established. For this purpose we have incorporated the most defect-free pristine graphene into defective/sacrificial graphene oxide. A unique co-solvent-based technique is applied to get a homogeneous suspension of single to bi-layer graphene and graphene oxide. This suspension is then transformed into a 3D composite structure of pristine graphene sheets (GSs) and defective N-doped reduced graphene oxide (N-RGO), which is the first stable and homogenous 3D composite between GS and RGO to the best of our knowledge. It is found that incorporation of pristine graphene can drastically decrease defect density and thus decrease relaxation time due to improved associations between electrons in GS and ions in electrolyte. Furthermore, N doping is implemented selectively only on RGO and such doping is shown to improve the charge carrier density of the composite, which eventually improves the energy density. After all, the novel 3D composite structure of N-RGO and GS greatly improves energy and power density even at high current density (20 A/g). PMID:27530441
Energy storage device with large charge separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.
High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.
Energy storage device with large charge separation
Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei
2016-04-12
High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.
The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells
Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.; Juška, Gytis; Meredith, Paul; White, Ronald D.; Pivrikas, Almantas
2014-01-01
A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states. PMID:25047086
Structure of Weakly Charged Polyelectrolyte Brushes: Monomer Density Profiles
NASA Astrophysics Data System (ADS)
Borisov, O. V.; Zhulina, E. B.
1997-03-01
The internal structure (the monomer density profiles) of weakly charged polyelectrolyte brushes of different morphologies has been analyzed on the basis of the self-consistent-field approach. In contrast to previous studies based on the local electroneutrality approximation valid for sufficiently strongly charged or densely grafted (“osmotic") brushes we consider the opposite limit of sparse brushes which are unable to retain the counterions inside the brush. We have shown that an exact analytical solution of the SCF-equations is available in the case of a planar brush. In contrast to Gaussian monomer density profile known for “osmotic" polyelectrolyte brushes we have found that weakly charged brushes are characterized by constant monomer density. At the same time free ends of grafted polyions are distributed throughout the brush. Thus, the structural cross-over between polyelectrolyte “mushrooms" and dense brush regimes is established.
NASA Astrophysics Data System (ADS)
Li, Yonghui; Ullrich, Carsten
2013-03-01
The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651
Statistical field theory description of inhomogeneous polarizable soft matter
NASA Astrophysics Data System (ADS)
Martin, Jonathan M.; Li, Wei; Delaney, Kris T.; Fredrickson, Glenn H.
2016-10-01
We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.
Bondi, Robert James; Fox, Brian Philip; Marinella, Matthew J.
2016-03-22
In this study, first-principles calculations of electrical conductivity (σ o) are revisited to determine the atomistic origin of its stochasticity in a distribution generated from sampling 14 ab-initio molecular dynamics configurations from 10 independently quenched models (n = 140) of substoichiometric amorphous Ta 2O 5, where each structure contains a neutral O monovacancy (V O 0). Structural analysis revealed a distinct minimum Ta-Ta separation (dimer/trimer) corresponding to each V O 0 location. Bader charge decomposition using a commonality analysis approach based on the σ o distribution extremes revealed nanostructural signatures indicating that both the magnitude and distribution of cationic chargemore » on the Ta subnetwork have a profound influence on σ o. Furthermore, visualization of local defect structures and their electron densities reinforces these conclusions and suggests σ o in the amorphous oxide is best suppressed by a highly charged, compact Ta cation shell that effectively screens and minimizes localized V O 0 interaction with the a-Ta 2O 5 network; conversely, delocalization of V O 0 corresponds to metallic character and high σ o. The random network of a-Ta 2O 5 provides countless variations of an ionic configuration scaffold in which small perturbations affect the electronic charge distribution and result in a fixed-stoichiometry distribution of σ o; consequently, precisely controlled and highly repeatable oxide fabrication processes are likely paramount for advancement of resistive memory technologies.« less
Statistical field theory description of inhomogeneous polarizable soft matter.
Martin, Jonathan M; Li, Wei; Delaney, Kris T; Fredrickson, Glenn H
2016-10-21
We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, Robert; Laugel, Nicolas; Yu, Jing
Applications of end-tethered polyelectrolyte “brushes” to modify solid surfaces have been developed and studied for their colloidal stabilization and high lubrication properties. Current efforts have expanded into biological realms and stimuli-responsive materials. Our work explores responsive and reversible aspects of polyelectrolyte brush behavior when polyelectrolyte chains interact with oppositely charged multivalent ions and complexes, which act as counterions. There is a significant void in the polyelectrolyte literature regarding interactions with multivalent species. This paper demonstrates that interactions between solid surfaces bearing negatively charged polyelectrolyte brushes are highly sensitive to the presence of trivalent lanthanum, La3+. Lanthanum cations have unique interactionsmore » with polyelectrolyte chains, in part due to their small size and hydration radius which results in a high local charge density. Using La3+ in conjunction with the surface forces apparatus (SFA), adhesion has been observed to reversibly appear and disappear upon the uptake and release, respectively, of these multivalent cations acting as counterions. In media of fixed ionic strength set by monovalent sodium salt, at I0 = 0.003 M and I0 = 0.3 M, the sign of the interaction forces between overlapping brushes changes from repulsive to attractive when La3+ concentrations reach 0.1 mol % of the total ion concentration. These results are also shown to be generally consistent with, but subtlety different from, previous polyelectrolyte brush experiments using trivalent ruthenium hexamine in the role of the multivalent counterion.« less
Modelling charge transfer reactions with the frozen density embedding formalism.
Pavanello, Michele; Neugebauer, Johannes
2011-12-21
The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two π-stacked nucleobase dimers of B-DNA: 5'-GG-3' and 5'-GT-3'. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.
Water Lone Pair Delocalization in Classical and Quantum Descriptions of the Hydration of Model Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remsing, Richard C.; Duignan, Timothy T.; Baer, Marcel D.
Understanding the nature of ionic hydration at a fundamental level has eluded scientists despite intense interest for nearly a century. In particular, the microscopic origins of the asymmetry of ion solvation thermodynamics with respect to the sign of the ionic charge remains a mystery. Here, we determine the response of accurate quantum mechanical water models to strong nanoscale solvation forces arising from excluded volumes and ionic electrostatic fields. This is compared to the predictions of two important limiting classes of classical models of water with fixed point changes, differing in their treatment of "lone-pair" electrons. Using the quantum water modelmore » as our standard of accuracy, we find that a single fixed classical treatment of lone pair electrons cannot accurately describe solvation of both apolar and cationic solutes, underlining the need for a more flexible description of local electronic effects in solvation processes. However, we explicitly show that all water models studied respond to weak long-ranged electrostatic perturbations in a manner that follows macroscopic dielectric continuum models, as would be expected. We emphasize the importance of these findings in the context of realistic ion models, using density functional theory and empirical models, and discuss the implications of our results for quantitatively accurate reduced descriptions of solvation in dielectric media.« less
Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Sheykhi, Ahmad; Hashemi Asl, Doa; Dehyadegari, Amin
2018-06-01
We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature Tc. We find that in each dimension, Tc /ρ 1 / (d - 2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension.
NASA Astrophysics Data System (ADS)
Chan, Silvia H.; Bisi, Davide; Tahhan, Maher; Gupta, Chirag; DenBaars, Steven P.; Keller, Stacia; Zanoni, Enrico; Mishra, Umesh K.
2018-04-01
Al2O3/n-GaN MOS-capacitors grown by metalorganic chemical vapor deposition with in-situ- and ex-situ-formed Al2O3/GaN interfaces were characterized. Capacitors grown entirely in situ exhibited ˜4 × 1012 cm-2 fewer positive fixed charges and up to ˜1 × 1013 cm-2 eV-1 lower interface-state density near the band-edge than did capacitors with ex situ oxides. When in situ Al2O3/GaN interfaces were reformed via the insertion of a 10-nm-thick GaN layer, devices exhibited behavior between the in situ and ex situ limits. These results illustrate the extent to which an in-situ-formed dielectric/GaN gate stack improves the interface quality and breakdown performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokár, K.; Derian, R.; Mitas, L.
Using explicitly correlated fixed-node quantum Monte Carlo and density functional theory (DFT) methods, we study electronic properties, ground-state multiplets, ionization potentials, electron affinities, and low-energy fragmentation channels of charged half-sandwich and multidecker vanadium-benzene systems with up to 3 vanadium atoms, including both anions and cations. It is shown that, particularly in anions, electronic correlations play a crucial role; these effects are not systematically captured with any commonly used DFT functionals such as gradient corrected, hybrids, and range-separated hybrids. On the other hand, tightly bound cations can be described qualitatively by DFT. A comparison of DFT and quantum Monte Carlo providesmore » an in-depth understanding of the electronic structure and properties of these correlated systems. The calculations also serve as a benchmark study of 3d molecular anions that require a balanced many-body description of correlations at both short- and long-range distances.« less
Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC
NASA Astrophysics Data System (ADS)
Hwang, J. J.; Chen, C. K.; Lai, D. Y.
A multi-physics model coupling electrochemical kinetics with fluid dynamics has been developed to simulate the transport phenomena in mono-block-layer built (MOLB) solid oxide fuel cells (SOFC). A typical MOLB module is composed of trapezoidal flow channels, corrugated positive electrode-electrolyte-negative electrode (PEN) plates, and planar inter-connecters. The control volume-based finite difference method is employed for calculation, which is based on the conservation of mass, momentum, energy, species, and electric charge. In the porous electrodes, the flow momentum is governed by a Darcy model with constant porosity and permeability. The diffusion of reactants follows the Bruggman model. The chemistry within the plates is described via surface reactions with a fixed surface-to-volume ratio, tortuosity and average pore size. Species transports as well as the local variations of electrochemical characteristics, such as overpotential and current density distributions in the electrodes of an MOLB SOFC, are discussed in detail.
High-throughput accurate-wavelength lens-based visible spectrometer.
Bell, Ronald E; Scotti, Filippo
2010-10-01
A scanning visible spectrometer has been prototyped to complement fixed-wavelength transmission grating spectrometers for charge exchange recombination spectroscopy. Fast f/1.8 200 mm commercial lenses are used with a large 2160 mm(-1) grating for high throughput. A stepping-motor controlled sine drive positions the grating, which is mounted on a precision rotary table. A high-resolution optical encoder on the grating stage allows the grating angle to be measured with an absolute accuracy of 0.075 arc sec, corresponding to a wavelength error ≤0.005 Å. At this precision, changes in grating groove density due to thermal expansion and variations in the refractive index of air are important. An automated calibration procedure determines all the relevant spectrometer parameters to high accuracy. Changes in bulk grating temperature, atmospheric temperature, and pressure are monitored between the time of calibration and the time of measurement to ensure a persistent wavelength calibration.
NASA Astrophysics Data System (ADS)
Boemer, Dominik; Ponthot, Jean-Philippe
2017-01-01
Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.
2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.
Wang, Xuanye; Christopher, Jason W; Swan, Anna K
2017-10-19
Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Comparison of direct and flow integration based charge density population analyses.
Francisco, E; Martín Pendas, A; Blanco, M A; Costales, A
2007-12-06
Different exhaustive and fuzzy partitions of the molecular electron density (rho) into atomic densities (rho(A)) are used to compute the atomic charges (Q(A)) of a representative set of molecules. The Q(A)'s derived from a direct integration of rho(A) are compared to those obtained from integrating the deformation density rho(def) = rho - rho(0) within each atomic domain. Our analysis shows that the latter methods tend to give Q(A)'s similar to those of the (arbitrary) reference atomic densities rho(A)(0) used in the definition of the promolecular density, rho(0) = SigmaArho(A)(0). Moreover, we show that the basis set independence of these charges is a sign not of their intrinsic quality, as commonly stated, but of the practical insensitivity on the basis set of the atomic domains that are employed in this type of methods.
Perceived beauty of random texture patterns: A preference for complexity.
Friedenberg, Jay; Liby, Bruce
2016-07-01
We report two experiments on the perceived aesthetic quality of random density texture patterns. In each experiment a square grid was filled with a progressively larger number of elements. Grid size in Experiment 1 was 10×10 with elements added to create a variety of textures ranging from 10%-100% fill levels. Participants rated the beauty of the patterns. Average judgments across all observers showed an inverted U-shaped function that peaked near middle densities. In Experiment 2 grid size was increased to 15×15 to see if observers preferred patterns with a fixed density or a fixed number of elements. The results of the second experiment were nearly identical to that of the first showing a preference for density over fixed element number. Ratings in both studies correlated positively with a GIF compression metric of complexity and with edge length. Within the range of stimuli used, observers judge more complex patterns to be more beautiful. Copyright © 2016 Elsevier B.V. All rights reserved.
Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Veenendaal, Michel
2016-09-01
The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. For small long-range interactions, recovery can be slow due to domain formation.« less
Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects
van Veenendaal, Michel
2016-09-01
The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. Finally, for small long-range interactions, recovery can be slow due to domain formation.« less
Song, Jinsuk; Kim, Mahn Won
2010-03-11
Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.
Ishizuka, Ryosuke; Matubayasi, Nobuyuki
2016-02-09
A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields.
Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
Schuss, Z; Nadler, B; Eisenberg, R S
2001-09-01
Permeation of ions from one electrolytic solution to another, through a protein channel, is a biological process of considerable importance. Permeation occurs on a time scale of micro- to milliseconds, far longer than the femtosecond time scales of atomic motion. Direct simulations of atomic dynamics are not yet possible for such long-time scales; thus, averaging is unavoidable. The question is what and how to average. In this paper, we average a Langevin model of ionic motion in a bulk solution and protein channel. The main result is a coupled system of averaged Poisson and Nernst-Planck equations (CPNP) involving conditional and unconditional charge densities and conditional potentials. The resulting NP equations contain the averaged force on a single ion, which is the sum of two components. The first component is the gradient of a conditional electric potential that is the solution of Poisson's equation with conditional and permanent charge densities and boundary conditions of the applied voltage. The second component is the self-induced force on an ion due to surface charges induced only by that ion at dielectric interfaces. The ion induces surface polarization charge that exerts a significant force on the ion itself, not present in earlier PNP equations. The proposed CPNP system is not complete, however, because the electric potential satisfies Poisson's equation with conditional charge densities, conditioned on the location of an ion, while the NP equations contain unconditional densities. The conditional densities are closely related to the well-studied pair-correlation functions of equilibrium statistical mechanics. We examine a specific closure relation, which on the one hand replaces the conditional charge densities by the unconditional ones in the Poisson equation, and on the other hand replaces the self-induced force in the NP equation by an effective self-induced force. This effective self-induced force is nearly zero in the baths but is approximately equal to the self-induced force in and near the channel. The charge densities in the NP equations are interpreted as time averages over long times of the motion of a quasiparticle that diffuses with the same diffusion coefficient as that of a real ion, but is driven by the averaged force. In this way, continuum equations with averaged charge densities and mean-fields can be used to describe permeation through a protein channel.
Charging in the ac Conductance of a Double Barrier Resonant Tunneling Structure
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Saini, Subhash (Technical Monitor)
1998-01-01
There have been many studies of the linear response ac conductance of a double barrier resonant tunneling structure (DBRTS), both at zero and finite dc biases. While these studies are important, they fail to self consistently include the effect of the time dependent charge density in the well. In this paper, we calculate the ac conductance at both zero and finite do biases by including the effect of the time dependent charge density in the well in a self consistent manner. The charge density in the well contributes to both the flow of displacement currents in the contacts and the time dependent potential in the well. We find that including these effects can make a significant difference to the ac conductance and the total ac current is not equal to the simple average of the non-selfconsistently calculated conduction currents in the two contacts. This is illustrated by comparing the results obtained with and without the effect of the time dependent charge density included correctly. Some possible experimental scenarios to observe these effects are suggested.
NASA Astrophysics Data System (ADS)
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link
Lee, Hyung-Min; Ghovanloo, Maysam
2014-01-01
A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of the ac input voltage at its peak. We have fabricated the capacitor charging system prototype in a 0.35-μm 4-metal 2-poly standard CMOS process in 2.1 mm2 of chip area. It can charge four pairs of capacitors sequentially. While receiving 2.7-V peak ac input through a 2-MHz inductive link, the capacitor charging system can charge each pair of 1 μF capacitors up to ±2 V in 420 μs, achieving a high measured charging efficiency of 82%. PMID:24678284
A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link.
Lee, Hyung-Min; Ghovanloo, Maysam
2013-10-01
A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of the ac input voltage at its peak. We have fabricated the capacitor charging system prototype in a 0.35- μ m 4-metal 2-poly standard CMOS process in 2.1 mm 2 of chip area. It can charge four pairs of capacitors sequentially. While receiving 2.7-V peak ac input through a 2-MHz inductive link, the capacitor charging system can charge each pair of 1 μ F capacitors up to ±2 V in 420 μ s, achieving a high measured charging efficiency of 82%.
On Born's Conjecture about Optimal Distribution of Charges for an Infinite Ionic Crystal
NASA Astrophysics Data System (ADS)
Bétermin, Laurent; Knüpfer, Hans
2018-04-01
We study the problem for the optimal charge distribution on the sites of a fixed Bravais lattice. In particular, we prove Born's conjecture about the optimality of the rock salt alternate distribution of charges on a cubic lattice (and more generally on a d-dimensional orthorhombic lattice). Furthermore, we study this problem on the two-dimensional triangular lattice and we prove the optimality of a two-component honeycomb distribution of charges. The results hold for a class of completely monotone interaction potentials which includes Coulomb-type interactions for d≥3 . In a more general setting, we derive a connection between the optimal charge problem and a minimization problem for the translated lattice theta function.
Products of random matrices from fixed trace and induced Ginibre ensembles
NASA Astrophysics Data System (ADS)
Akemann, Gernot; Cikovic, Milan
2018-05-01
We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M ‑ m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.
High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region
NASA Technical Reports Server (NTRS)
Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.
1994-01-01
Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps to refine and extend previous observations; for example, we show that ionospheric contribution to O(+3)) is negligible. Through comparison with model ion trajectories, we interpret the lack of pronounced secondary ion density peaks colocated with the primary density peaks to indicate that: (1) negligible charge exchange occurs at L greater than 7, that is, solar wind secondaries are produced at L less than 7, and (2) solar wind secondaries do not form a significant portion of the plasma sheet population injected into the QTR. We conclude that little of the energetic solar wind secondary ion population is recirculated through the magnetosphere.
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
Spacecraft Charging in Low Temperature Environments
NASA Technical Reports Server (NTRS)
Parker, Linda N.
2007-01-01
Spacecraft charging in plasma and radiation environments is a temperature dependent phenomenon due to the reduction of electrical conductivity in dielectric materials at low temperatures. Charging time constants are proportional to l/conductivity may become very large (on the order of days to years) at low temperatures and accumulation of charge densities in insulators in charging environments traditionally considered benign at ambient temperatures may be sufficient to produce charge densities and electric fields of concern in insulators at low temperatures. Low temperature charging is of interest because a number of spacecraft-primarily infrared astronomy and microwave cosmology observatories-are currently being design, built, and or operated at very cold temperatures on the order of 40K to 100K. This paper reviews the temperature dependence of spacecraft charging processes and material parameters important to charging as a function of temperature with an emphasis on low temperatures regimes.
NASA Astrophysics Data System (ADS)
Vitanov, P.; Harizanova, A.; Ivanova, T.
2014-05-01
ZrO2 and (ZrO2)x(Al2O3)1-x films were deposited by the sol-gel technique on Si substrates. The effect of the Al2O3 additive on the film surface morphology was studied by atomic force microscopy (AFM). The mixed oxide films showed a smoother morphology and lower values of the root-mean-square (RMS) roughness compared to ZrO2. Further, FTIR spectra indicated that ZrO2 underwent crystallization. The electrical measurements of the MIS structure revealed that the presence of Al2O3 and the amorphization affects its dielectric properties. The MIS structure with (ZrO2)x(Al2O3)1-x showed a lower fixed charge (~ 6×1010 cm-2) and an interface state density in the middle of the band gap of 6×1011 eV-1 cm-2). The dielectric constant measured was 22, with the leakage current density decreasing to 2×10-8 A cm-2 at 1×106 V cm-1.
NASA Astrophysics Data System (ADS)
Asmus, Heiner; Staszak, Tristan; Strelnikov, Boris; Lübken, Franz-Josef; Friedrich, Martin; Rapp, Markus
2017-08-01
We present results of in situ measurements of mesosphere-lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs). The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was ˜ 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes > 1 nm were stratified in layers of ˜ 1 km thickness and lying some kilometers apart from each other.
Peng, Bo; Yu, Yang-Xin
2009-10-07
The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, X. M.; Wang, Y. J.; MacAlpine, J. M. K.
The relationship between the calculated charged-particle densities in positive corona, the rate of streamer production, and the photon count from the corona were investigated and found to be closely related. Both the densities of electrons and positive ions peaked at 11.8 kV, near the corona inception voltage; they then fell rapidly before slowly rising again. This behavior was exactly matched by the measured photon count. The calculation of the charged-particle density in a positive corona was achieved by means of a fluid model.
Mamun, A A; Shukla, P K
2009-09-01
Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.
Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2
NASA Astrophysics Data System (ADS)
Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude
2018-03-01
Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.
Shi, Haotian; Poudel, Nirakar; Hou, Bingya; Shen, Lang; Chen, Jihan; Benderskii, Alexander V; Cronin, Stephen B
2018-02-01
We report a novel approach to probe the local ion concentration at graphene/water interfaces using in situ Raman spectroscopy. Here, the upshifts observed in the G band Raman mode under applied electrochemical potentials are used to determine the charge density in the graphene sheet. For voltages up to ±0.8 V vs. NHE, we observe substantial upshifts in the G band Raman mode by as much as 19 cm -1 , which corresponds to electron and hole carrier densities of 1.4 × 10 13 cm -2 and Fermi energy shifts of ±430 meV. The charge density in the graphene electrode is also measured independently using the capacitance-voltage characteristics (i.e., Q = CV), and is found to be consistent with those measured by Raman spectroscopy. From charge neutrality requirements, the ion concentration in solution per unit area must be equal and opposite to the charge density in the graphene electrode. Based on these charge densities, we estimate the local ion concentration as a function of electrochemical potential in both pure DI water and 1 M KCl solutions, which span a pH range from 3.8 to 10.4 for pure DI water and net ion concentrations of ±0.7 mol L -1 for KCl under these applied voltages.
Nanosecond pulsed electric field induced changes in cell surface charge density.
Dutta, Diganta; Palmer, Xavier-Lewis; Asmar, Anthony; Stacey, Michael; Qian, Shizhi
2017-09-01
This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
On Schrödinger's bridge problem
NASA Astrophysics Data System (ADS)
Friedland, S.
2017-11-01
In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.
Distribution of electron density in charged Li@C60 complexes
NASA Astrophysics Data System (ADS)
Sadlej-Sosnowska, Nina; Mazurek, Aleksander P.
2013-08-01
The Letter is an expanded commentary to the paper 'Fullerene as an electron buffer: charge transfer in Li@C60', by Pavanello and co-authors [8]. We calculated the electron density distribution in the space inside and outside the fullerene cage in Li@C60 complexes differing in total charge, based on Gauss's law. It allowed us to determine the charges contained inside surfaces isomorphic with the fullerene cage and contracted or enlarged with respect to the latter. For every complex, a surface was found in the vicinity of the central Li atom such that the charge enclosed within it was equal to +1.
Modelling charge transfer reactions with the frozen density embedding formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavanello, Michele; Neugebauer, Johannes
2011-12-21
The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionalsmore » are used the electronic couplings are grossly overestimated.« less
Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun
2017-10-25
Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.
NASA Astrophysics Data System (ADS)
Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho Kyun; You, Min Youl; Jin, Jun-Eon; Choi, Miri; Cho, Jiung; Kim, Gyu-Tae
2018-02-01
Doping effects in devices based on two-dimensional (2D) materials have been widely studied. However, detailed analysis and the mechanism of the doping effect caused by encapsulation layers has not been sufficiently explored. In this work, we present experimental studies on the n-doping effect in WSe2 field effect transistors (FETs) with a high-k encapsulation layer (Al2O3) grown by atomic layer deposition. In addition, we demonstrate the mechanism and origin of the doping effect. After encapsulation of the Al2O3 layer, the threshold voltage of the WSe2 FET negatively shifted with the increase of the on-current. The capacitance-voltage measurements of the metal insulator semiconductor (MIS) structure proved the presence of the positive fixed charges within the Al2O3 layer. The flat-band voltage of the MIS structure of Au/Al2O3/SiO2/Si was shifted toward the negative direction on account of the positive fixed charges in the Al2O3 layer. Our results clearly revealed that the fixed charges in the Al2O3 encapsulation layer modulated the Fermi energy level via the field effect. Moreover, these results possibly provide fundamental ideas and guidelines to design 2D materials FETs with high-performance and reliability.
Electrical charging effects on the sliding friction of a model nano-confined ionic liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capozza, R.; Vanossi, A.; CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste
2015-10-14
Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number ofmore » IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.« less
Nazir, Safdar; Bernal, Camille; Yang, Kesong
2015-03-11
The highly mobile two-dimensional electron gas (2DEG) formed at the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) is a matter of great interest because of its potential applications in nanoscale solid-state devices. To realize practical implementation of the 2DEG in device design, desired physical properties such as tuned charge carrier density and mobility are necessary. In this regard, polar perovskite-based transition metal oxides can act as doping layers at the interface and are expected to tune the electronic properties of 2DEG of STO-based HS systems dramatically. Herein, we investigated the doping effects of LaTiO3(LTO) layers on the electronic properties of 2DEG at n-type (LaO)(+1)/(TiO2)(0) interface in the LAO/STO HS using spin-polarized density functional theory calculations. Our results indicate an enhancement of orbital occupation near the Fermi energy, which increases with respect to the number of LTO unit cells, resulting in a higher charge carrier density of 2DEG than that of undoped system. The enhanced charge carrier density is attributed to an extra electron introduced by the Ti 3d(1) orbitals from the LTO dopant unit cells. This conclusion is consistent with the recent experimental findings (Appl. Phys. Lett. 2013, 102, 091601). Detailed charge density and partial density of states analysis suggests that the 2DEG in the LTO-doped HS systems primarily comes from partially occupied dyz and dxz orbitals.
Jarzembska, Katarzyna N; Řlepokura, Katarzyna; Kamiński, Radosław; Gutmann, Matthias J; Dominiak, Paulina M; Woźniak, Krzysztof
2017-08-01
Uridine, a nucleoside formed of a uracil fragment attached to a ribose ring via a β-N1-glycosidic bond, is one of the four basic components of ribonucleic acid. Here a new anhydrous structure and experimental charge density distribution analysis of a uridine-5'-monophosphate potassium salt, K(UMPH), is reported. The studied case constitutes the very first structure of a 5'-nucleotide potassium salt according to the Cambridge Structural Database. The excellent crystal quality allowed the collection of charge density data at various temperatures, i.e. 10, 100, 200 and 300 K on one single crystal. Crystal structure and charge density data were analysed thoroughly in the context of related literature-reported examples. Detailed analysis of the charge density distribution revealed elevated anharmonic motion of part of the uracil ring moiety relatively weakly interacting with the neighbouring species. The effect was manifested by alternate positive and negative residual density patterns observed for these atoms, which `disappear' at low temperature. It also occurred that the potassium cation, quite uniformly coordinated by seven O atoms from all molecular fragments of the UMPH - anion, including the O atom from the ribofuranose ring, can be treated as spherical in the charge density model which was supported by theoretical calculations. Apart from the predominant electrostatic interactions, four relatively strong hydrogen bond types further support the stability of the crystal structure. This results in a compact and quite uniform structure (in all directions) of the studied crystal, as opposed to similar cases with layered architecture reported in the literature.
Two-dimensional relativistic space charge limited current flow in the drift space
NASA Astrophysics Data System (ADS)
Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.
2014-04-01
Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.
Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas
2017-11-09
Here in this article, we discuss the nontrivial collective charge excitations (plasmons) of the extended square lattice Hubbard model. Using a fully nonperturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-filling. A modified Backus-Gilbert method is introduced to obtain the spectral functions via numerical analytic continuation. We directly compute the single-particle density of states which demonstrates the formation of Hubbard bands in the strongly correlated phase. The momentum-resolved charge susceptibility also is computed on the basis of the Euclidean charge-density-density correlator. In agreement with previous extended dynamical mean-field theory studies, we find that, atmore » high strength of the electron-electron interaction, the plasmon dispersion develops two branches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas
Here in this article, we discuss the nontrivial collective charge excitations (plasmons) of the extended square lattice Hubbard model. Using a fully nonperturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-filling. A modified Backus-Gilbert method is introduced to obtain the spectral functions via numerical analytic continuation. We directly compute the single-particle density of states which demonstrates the formation of Hubbard bands in the strongly correlated phase. The momentum-resolved charge susceptibility also is computed on the basis of the Euclidean charge-density-density correlator. In agreement with previous extended dynamical mean-field theory studies, we find that, atmore » high strength of the electron-electron interaction, the plasmon dispersion develops two branches.« less
Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Greif, Moritz; Fotakis, Jan. A.; Denicol, Gabriel S.; Greiner, Carsten
2018-06-01
We demonstrate that the diffusion currents do not depend only on gradients of their corresponding charge density, but that the different diffusion charge currents are coupled. This happens in such a way that it is possible for density gradients of a given charge to generate dissipative currents of another charge. Within this scheme, the charge diffusion coefficient is best viewed as a matrix, in which the diagonal terms correspond to the usual charge diffusion coefficients, while the off-diagonal terms describe the coupling between the different currents. In this Letter, we calculate for the first time the complete diffusion matrix for hot and dense nuclear matter, including baryon, electric, and strangeness charges. We find that the baryon diffusion current is strongly affected by baryon charge gradients but also by its coupling to gradients in strangeness. The electric charge diffusion current is found to be strongly affected by electric and strangeness gradients, whereas strangeness currents depend mostly on strange and baryon gradients.
The Transport of Salt and Water across Isolated Rat Ileum
Clarkson, T. W.
1967-01-01
The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854
DOE R&D Accomplishments Database
Chambers, E. E.; Hofstadter, R.
1956-04-01
The structure and size of the proton have been studied by means of the methods of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, 550 Mev. The range of laboratory angles examined has been 30 degrees to 135 degrees. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at 0.77 {plus or minus} 0.10 x 10{sup -13} cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70 x 10{sup -13} cm or an exponential with rms radius 0.80 x 10 {sup -13} cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.
Explicit construction of BRST charge of noncommutative D-brane system
NASA Astrophysics Data System (ADS)
Hong, Soon-Tae
2006-01-01
In the BRST BFV scheme for noncommutative D-branes with constant NS B-field, introducing ghost degrees of freedom we construct the gauge-fixed Hamiltonian and corresponding effective Lagrangian invariant under nilpotent BRST charge. It is also shown that the presence of auxiliary variables introduced via the improved Dirac formalism plays a crucial role in the construction of the BRST invariant Lagrangian.
Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahaman, Farook; Ray, Saibal; Jafry, Abdul Kayum
2010-11-15
We extend the Krori-Barua analysis of the static, spherically symmetric, Einstein-Maxwell field equations and consider charged fluid sources with anisotropic stresses. The inclusion of a new variable (tangential pressure) allows the use of a nonlinear, Chaplygin-type equation of state with coefficients fixed by the matching conditions at the boundary of the source. Some physical features are briefly discussed.
Ickert, Stefanie; Hofmann, Johanna; Riedel, Jens; Beck, Sebastian; Pagel, Kevin; Linscheid, Michael W
2018-04-01
Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n = 15-40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence.
Interacting charges and the classical electron radius
NASA Astrophysics Data System (ADS)
De Luca, Roberto; Di Mauro, Marco; Faella, Orazio; Naddeo, Adele
2018-03-01
The equation of the motion of a point charge q repelled by a fixed point-like charge Q is derived and studied. In solving this problem useful concepts in classical and relativistic kinematics, in Newtonian mechanics and in non-linear ordinary differential equations are revised. The validity of the approximations is discussed from the physical point of view. In particular the classical electron radius emerges naturally from the requirement that the initial distance is large enough for the non-relativistic approximation to be valid. The relevance of this topic for undergraduate physics teaching is pointed out.
NASA Astrophysics Data System (ADS)
Roh, Jeongkyun; Lee, Taesoo; Kang, Chan-Mo; Kwak, Jeonghun; Lang, Philippe; Horowitz, Gilles; Kim, Hyeok; Lee, Changhee
2017-04-01
We demonstrated modulation of charge carrier densities in all-solution-processed organic field-effect transistors (OFETs) by modifying the injection properties with self-assembled monolayers (SAMs). The all-solution-processed OFETs based on an n-type polymer with inkjet-printed Ag electrodes were fabricated as a test platform, and the injection properties were modified by the SAMs. Two types of SAMs with different dipole direction, thiophenol (TP) and pentafluorobenzene thiol (PFBT) were employed, modifying the work function of the inkjet-printed Ag (4.9 eV) to 4.66 eV and 5.24 eV with TP and PFBT treatments, respectively. The charge carrier densities were controlled by the SAM treatment in both dominant and non-dominant carrier-channel regimes. This work demonstrates that control of the charge carrier densities can be efficiently achieved by modifying the injection property with SAM treatment; thus, this approach can achieve polarity conversion of the OFETs.
Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures
NASA Technical Reports Server (NTRS)
Coffey, Victoria N.; Minow, Joseph I.; Parker, Linda N.; Bui, Them; Wright, Kenneth, Jr.; Koontz, Steven L.; Schneider, T.; Vaughn, J.; Craven, P.
2007-01-01
Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, P.; Pai, Woei Wu; Chan, Y. -H.
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less
Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties
Boyer, T.H.; Singer, P.C.; Aiken, G.R.
2008-01-01
Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.
Organic electrical double layer transistors gated with ionic liquids
NASA Astrophysics Data System (ADS)
Xie, Wei; Frisbie, C. Daniel
2011-03-01
Transport in organic semiconductors gated with several types of ionic liquids has been systematically studied at charge densities larger than 1013 cm-2 . We observe a pronounced maximum in channel conductance for both p-type and n-type organic single crystals which is attributed to carrier localization at the semiconductor-electrolyte interface. Carrier mobility, as well as charge density and dielectric capacitance are determined through displacement current measurement and capacitance-voltage measurement. By using a larger-sized and spherical anion, tris(pentafluoroethyl)trifluorophosphate (FAP), effective carrier mobility in rubrene can be enhanced substantially up to 3.2 cm2 V-1 s -1 . Efforts have been made to maximize the charge density in rubrene single crystals, and at low temperature when higher gate bias can be applied, charge density can more than double the amount of that at room temperature, reaching 8*1013 cm-2 holes (0.4 holes per rubrene molecule). NSF MRSEC program at the University of Minnesota.
Sukhomlinov, Sergey V; Müser, Martin H
2015-12-14
In this work, we study how including charge transfer into force fields affects the predicted elastic and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and numerical calculations, we find that charge transfer generally leads to a negative contribution to the Cauchy pressure, P(C) ≡ C12 - C66, where C12 and C66 are elements of the elastic tensor. This contribution increases in magnitude with pressure for different charge-transfer approaches in agreement with results obtained with density functional theory (DFT). However, details of the charge-transfer models determine the pressure dependence of the longitudinal optical-transverse optical splitting and that for partial charges. These last two quantities increase with density as long as the chemical hardness depends at most weakly on the environment while experiments and DFT find a decrease. In order to reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical (bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally, the adjustable force-field parameters only turn out meaningful, when the expansion is made around ions.
NASA Astrophysics Data System (ADS)
Sukhomlinov, Sergey V.; Müser, Martin H.
2015-12-01
In this work, we study how including charge transfer into force fields affects the predicted elastic and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and numerical calculations, we find that charge transfer generally leads to a negative contribution to the Cauchy pressure, PC ≡ C12 - C66, where C12 and C66 are elements of the elastic tensor. This contribution increases in magnitude with pressure for different charge-transfer approaches in agreement with results obtained with density functional theory (DFT). However, details of the charge-transfer models determine the pressure dependence of the longitudinal optical-transverse optical splitting and that for partial charges. These last two quantities increase with density as long as the chemical hardness depends at most weakly on the environment while experiments and DFT find a decrease. In order to reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical (bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally, the adjustable force-field parameters only turn out meaningful, when the expansion is made around ions.
Nuclear charge radii: density functional theory meets Bayesian neural networks
NASA Astrophysics Data System (ADS)
Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
2016-11-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.
Henderson, Douglas; Silvestre-Alcantara, Whasington; Kaja, Monika; ...
2016-08-18
Here, the density functional theory is applied to a study of the structure and differential capacitance of a planar electric double layer formed by a valency asymmetric mixture of charged dimers and monomers. The dimer consists of two tangentially tethered hard spheres of equal diameters of which one is charged and the other is neutral, while the monomer is a charged hard sphere of the same size. The dimer electrolyte is next to a uniformly charged, smooth planar electrode. The electrode-particle singlet distributions, the mean electrostatic potential, and the differential capacitance for the model double layer are evaluated for amore » 2:1/1:2 valency electrolyte at a given concentration. Important consequences of asymmetry in charges and in ion shapes are (i) a finite, non-zero potential of zero charge, and (ii) asymmetric shaped 2:1 and 1:2 capacitance curves which are not mirror images of each other. Comparisons of the density functional results with the corresponding Monte Carlo simulations show the theoretical predictions to be in good agreement with the simulations overall except near zero surface charge.« less
Chiral charge and orbital order in 1T-TiSe2
NASA Astrophysics Data System (ADS)
van Wezel, Jasper
2012-02-01
Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density on the other hand, was discovered only very recently [1,2]. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we resolve this paradox by identifying the microscopic mechanism underlying the formation of the chiral charge density wave in 1T-TiSe2. It is shown that the emergence of chirality is accompanied by the simultaneous formation of orbital order [3] We show that this type of combined orbital and charge order may in fact be expected to be a generic property of a broad class of charge ordered materials and discuss the prerequisites for finding chiral charge order in other materials. [4pt] [1] J. Ishioka, Y. H. Liu, K. Shimatake, T. Kurosawa, K. Ichimura, Y. Toda, M. Oda and S. Tanda, Phys. Rev. Lett. 105, 176401 (2010). [2] J. van Wezel and P. B. Littlewood, Physics 3, 87 (2010). [3] J. van Wezel, arXiv:1106.1930v1 (2011).
Theoretical prediction of the impact of Auger recombination on charge collection from an ion track
NASA Technical Reports Server (NTRS)
Edmonds, Larry D.
1991-01-01
A recombination mechanism that significantly reduces charge collection from very dense ion tracks in silicon devices was postulated by Zoutendyk et al. The theoretical analysis presented here concludes that Auger recombination is such a mechanism and is of marginal importance for higher density tracks produced by 270-MeV krypton, but of major importance for higher density tracks. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a non-zero limiting value as t yields infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.
Sugihara-Seki, Masako; Akinaga, Takeshi; O-Tani, Hideyuki
2012-01-01
A fluid mechanical and electrostatic model for the transport of solute molecules across the vascular endothelial surface glycocalyx layer (EGL) was developed to study the charge effect on the diffusive and convective transport of the solutes. The solute was assumed to be a spherical particle with a constant surface charge density, and the EGL was represented as an array of periodically arranged circular cylinders of like charge, with a constant surface charge density. By combining the fluid mechanical analyses for the flow around a solute suspended in an electrolyte solution and the electrostatic analyses for the free energy of the interaction between the solute and cylinders based on a mean field theory, we estimated the transport coefficients of the solute across the EGL. Both of diffusive and convective transports are reduced compared to those for an uncharged system, due to the stronger exclusion of the solute that results from the repulsive electrostatic interaction. The model prediction for the reflection coefficient for serum albumin agreed well with experimental observations if the charge density in the EGL is ranged from approximately -10 to -30 mEq/l.
Exactly solvable model of the two-dimensional electrical double layer.
Samaj, L; Bajnok, Z
2005-12-01
We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of pointlike unit charges in the stability-against-collapse regime of reduced inverse temperatures 0< or = beta < 2. If there is a potential difference between the bulk interior of the electrolyte and the grounded electrode, the electrolyte region close to the electrode (known as the electrical double layer) carries some nonzero surface charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet boundary conditions. The exact form-factor and boundary state information gained from the mapping provide asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding saturation hypothesis. It is documented on the nonperturbative result for the asymptotic density profile at a strictly nonzero beta that the Debye-Hückel beta-->0 limit is a delicate issue.
Determination of Transverse Charge Density from Kaon Form Factor Data
NASA Astrophysics Data System (ADS)
Mejia-Ott, Johann; Horn, Tanja; Pegg, Ian; Mecholski, Nicholas; Carmignotto, Marco; Ali, Salina
2016-09-01
At the level of nucleons making up atomic nuclei, among subatomic particles made up of quarks, K-mesons or kaons represent the most simple hadronic system including the heavier strange quark, having a relatively elementary bound state of a quark and an anti-quark as its valence structure. Its electromagnetic structure is then parametrized by a single, dimensionless quantity known as the form factor, the two-dimensional Fourier transform of which yields the quantity of transverse charge density. Transverse charge density, in turn, provides a needed framework for the interpretation of form factors in terms of physical charge and magnetization, both with respect to the propagation of a fast-moving nucleon. To this is added the value of strange quarks in ultimately presenting a universal, process-independent description of nucleons, further augmenting the importance of studying the kaon's internal structure. The pressing character of such research questions directs the present paper, describing the first extraction of transverse charge density from electromagnetic kaon form factor data. The extraction is notably extended to form factor data at recently acquired higher energy levels, whose evaluation could permit more complete phenomenological models for kaon behavior to be proposed. This work was supported in part by NSF Grant PHY-1306227.
In situ antibiofilm effect of glass-ionomer cement containing dimethylaminododecyl methacrylate.
Feng, Jin; Cheng, Lei; Zhou, Xuedong; Xu, Hockin H K; Weir, Michael D; Meyer, Markus; Maurer, Hans; Li, Qian; Hannig, Matthias; Rupf, Stefan
2015-08-01
The aim of this study was to investigate antibiofilm effects of a recently developed glass ionomer cement (GIC) containing dimethylaminododecyl methacrylate (DMADDM) under oral conditions. Biofilms were allowed to form in situ on GIC specimens (n=216) which contained DMADDM (1.1wt.% or 2.2wt.%). Samples without DMADDM served as control (n=108). GIC specimens were fixed on custom made splints and exposed to the oral cavity in six healthy volunteers for 24, 48 and 72h, respectively. Biofilm viability and coverage were analyzed by fluorescence microscopy (FM) and evaluated by red/green ratios and an established scoring system. Bacterial morphology and biofilm accumulation were determined by scanning electron microscopy (SEM). Additionally, material properties as surface charge density of quaternary ammonium groups, surface roughness and DMADDM release were recorded. FM results showed a higher ratio (24h: 0%: 0.5, 1.1%: 1.2, 2.2%: 2.5) of red/green fluorescence on GIC samples containing DMADDM. Biofilm coverage and viability scores were significantly reduced (24h: q1/median/q3 for: 0%: 3/4/5, 1.1%: 2/3/3, 2.2%: 1/2/2) on DMADDM containing samples compared to controls after 24h as well as 48 and 72h in situ (p<0.05). While surface charge density of quaternary ammonium groups and DMADDM release increased with the DMADDM concentration, surface roughness was lowest on specimens containing 2.2wt.% DMADDM. An in situ dental biofilm model was used to evaluate the novel GIC containing DMADDM. This material strongly inhibited biofilms in situ and is promising to prevent bacterial colonization on the surface of restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Recent charge-breeding developments with EBIS/T devices (invited).
Schwarz, S; Lapierre, A
2016-02-01
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10(3) or even 10(4) A/cm(2). These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities. Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL's ReA EBIS/T charge breeder.
Recent charge-breeding developments with EBIS/T devices (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Lapierre, A.
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10{sup 3} or even 10{sup 4} A/cm{sup 2}. These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities.more » Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL’s ReA EBIS/T charge breeder.« less
Analysis of polarization in hydrogen bonded complexes: An asymptotic projection approach
NASA Astrophysics Data System (ADS)
Drici, Nedjoua
2018-03-01
The asymptotic projection technique is used to investigate the polarization effect that arises from the interaction between the relaxed, and frozen monomeric charge densities of a set of neutral and charged hydrogen bonded complexes. The AP technique based on the resolution of the original Kohn-Sham equations can give an acceptable qualitative description of the polarization effect in neutral complexes. The significant overlap of the electron densities, in charged and π-conjugated complexes, impose further development of a new functional, describing the coupling between constrained and non-constrained electron densities within the AP technique to provide an accurate representation of the polarization effect.
Superconducting and charge density wave transition in single crystalline LaPt2Si2
NASA Astrophysics Data System (ADS)
Gupta, Ritu; Dhar, S. K.; Thamizhavel, A.; Rajeev, K. P.; Hossain, Z.
2017-06-01
We present results of our comprehensive studies on single crystalline LaPt2Si2. Pronounced anomaly in electrical resistivity and heat capacity confirms the bulk nature of superconductivity (SC) and charge density wave (CDW) transition in the single crystals. While the charge density wave transition temperature is lower, the superconducting transition temperature is higher in single crystal compared to the polycrystalline sample. This result confirms the competing nature of CDW and SC. Another important finding is the anomalous temperature dependence of upper critical field H C2(T). We also report the anisotropy in the transport and magnetic measurements of the single crystal.
Charged-Particle Multiplicity near Midrapidity in Central Au+Au Collisions at sNN = 56 and 130 GeV
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Barton, D. S.; Basilev, S.; Bates, B. D.; Baum, R.; Betts, R. R.; Białas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Conner, C.; Czyż, W.; Dabrowski, B.; Decowski, M. P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G. A.; Henderson, C.; Hollis, R.; HołyŃski, R.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotuła, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S. G.; Stephans, G. S.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strȩk, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zalewski, K.; Żychowski, P.
2000-10-01
We present the first measurement of pseudorapidity densities of primary charged particles near midrapidity in Au+Au collisions at sNN = 56 and 130 GeV. For the most central collisions, we find the charged-particle pseudorapidity density to be dN/dη\\|\\|η\\|<1 = 408+/-12\\(stat\\)+/-30\\(syst\\) at 56 GeV and 555+/-12\\(stat\\)+/-35\\(syst\\) at 130 GeV, values that are higher than any previously observed in nuclear collisions. Compared to proton-antiproton collisions, our data show an increase in the pseudorapidity density per participant by more than 40% at the higher energy.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun
2018-06-01
The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.
Triboelectric energy harvesting with surface-charge-fixed polymer based on ionic liquid
Sano, Chikako; Mitsuya, Hiroyuki; Ono, Shimpei; Miwa, Kazumoto; Toshiyoshi, Hiroshi; Fujita, Hiroyuki
2018-01-01
Abstract A novel triboelectric energy harvester has been developed using an ionic liquid polymer with cations fixed at the surface. In this report, the fabrication of the device and the characterization of its energy harvesting performance are detailed. An electrical double layer was induced in the ionic liquid polymer precursor to attract the cations to the surface where they are immobilized using a UV-based crosslinking reaction. The finalized polymer is capable of generating an electrical current when contacted by a metal electrode. Using this property, energy harvesting experiments were conducted by cyclically contacting a gold-surface electrode with the charge fixed surface of the polymer. Control experiments verified the effect of immobilizing the cations at the surface. By synthesizing a polymer with the optimal composition ratio of ionic liquid to macromonomer, an output of 77 nW/cm2 was obtained with a load resistance of 1 MΩ at 1 Hz. This tuneable power supply with a μA level current output may contribute to Internet of Things networks requiring numerous sensor nodes at remote places in the environment. PMID:29707070
NASA Astrophysics Data System (ADS)
Leonard, A. W.; McLean, A. G.; Makowski, M. A.; Stangeby, P. C.
2017-08-01
The midplane separatrix density is characterized in response to variations in upstream parallel heat flux density and central density through deuterium gas injection. The midplane density is determined from a high spatial resolution Thomson scattering diagnostic at the midplane with power balance analysis to determine the separatrix location. The heat flux density is varied by scans of three parameters, auxiliary heating, toroidal field with fixed plasma current, and plasma current with fixed safety factor, q 95. The separatrix density just before divertor detachment onset is found to scale consistent with the two-point model when radiative dissipation is taken into account. The ratio of separatrix to pedestal density, n e,sep/n e,ped varies from ⩽30% to ⩾60% over the dataset, helping to resolve the conflicting scaling of core plasma density limit and divertor detachment onset. The scaling of the separatrix density at detachment onset is combined with H-mode power threshold scaling to obtain a scaling ratio of minimum n e,sep/n e,ped expected in future devices.
NASA Astrophysics Data System (ADS)
Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.
2016-01-01
Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.
Visualization of electronic density
Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...
2015-04-22
An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.
Adhesion signals of phospholipid vesicles at an electrified interface.
DeNardis, Nadica Ivošević; Žutić, Vera; Svetličić, Vesna; Frkanec, Ruža
2012-09-01
General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.
Effect of hydration on interstitial distribution of charged albumin in rat dermis in vitro
Wiig, Helge; Tenstad, Olav; Bert, Joel L
2005-01-01
At physiological pH, negatively charged glycosaminoglycans in the extracellular matrix may influence distribution volume of macromolecular probes, a phenomenon of importance for hydration of the interstitium and therefore for body fluid balance. We hypothesized that such charge effect was dependent on hydration. Human serum albumin (HSA) (the pH value for the isoelectric point (pI) = 4.9) was made neutral by cationization (cHSA) (pI = 7.6). Rat dermis was studied in vitro in a specially designed equilibration cell allowing control of hydration. Using a buffer containing labelled native HSA and cHSA, the distribution volumes were calculated relative to that of 51Cr-EDTA, an extracellular tracer. During changes in hydration (H), defined as (wet weight – dry weight) (dry weight)−1), the slope of the equation describing the relationship between extracellular fluid volume (Vx) (in g H2O (g dry weight)−1) and H (Vx = 0.925 H + 0.105) differed significantly from that for available volumes of cHSA (Va,cHSA = 0.624 H – 0.538) and HSA (Va,HSA = 0.518 H – 0.518). A gradual reduction in H led to a reduction in difference between available volumes for the two albumin species. Screening the fixed charges by 1 m NaCl resulted in similar available and excluded volumes of native HSA and neutral cHSA. We conclude that during gradual dehydration, there is a reduced effect of fixed negative charges on interstitial exclusion of charged macromolecules. This effect may be explained by a reduced hydration domain surrounding tissue and probe macromolecules in conditions of increased electrostatic interactions. Furthermore, screening of negative charges suggested that hyaluronan associated with collagen may influence intrafibrillar volume of collagen and thereby available and excluded volume fraction. PMID:16210353
Komsa, Darya N; Staroverov, Viktor N
2016-11-08
Standard density-functional approximations often incorrectly predict that heteronuclear diatomic molecules dissociate into fractionally charged atoms. We demonstrate that these spurious charges can be eliminated by adapting the shape-correction method for Kohn-Sham potentials that was originally introduced to improve Rydberg excitation energies [ Phys. Rev. Lett. 2012 , 108 , 253005 ]. Specifically, we show that if a suitably determined fraction of electron charge is added to or removed from a frontier Kohn-Sham orbital level, the approximate Kohn-Sham potential of a stretched molecule self-corrects by developing a semblance of step structure; if this potential is used to obtain the electron density of the neutral molecule, charge delocalization is blocked and spurious fractional charges disappear beyond a certain internuclear distance.
Adhesion of osteoblasts to a nanorough titanium implant surface
Gongadze, Ekaterina; Kabaso, Doron; Bauer, Sebastian; Slivnik, Tomaž; Schmuki, Patrik; van Rienen, Ursula; Iglič, Aleš
2011-01-01
This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts. PMID:21931478
Electric field mill network products to improve detection of the lightning hazard
NASA Technical Reports Server (NTRS)
Maier, Launa M.
1987-01-01
An electric field mill network has been used at Kennedy Space Center for over 10 years as part of the thunderstorm detection system. Several algorithms are currently available to improve the informational output of the electric field mill data. The charge distributions of roughly 50 percent of all lightning can be modeled as if they reduced the charged cloud by a point charge or a point dipole. Using these models, the spatial differences in the lightning induced electric field changes, and a least squares algorithm to obtain an optimum solution, the three-dimensional locations of the lightning charge centers can be located. During the lifetime of a thunderstorm, dynamically induced charging, modeled as a current source, can be located spatially with measurements of Maxwell current density. The electric field mills can be used to calculate the Maxwell current density at times when it is equal to the displacement current density. These improvements will produce more accurate assessments of the potential electrical activity, identify active cells, and forecast thunderstorm termination.
Quantitative nanoscale electrostatics of viruses.
Hernando-Pérez, M; Cartagena-Rivera, A X; Lošdorfer Božič, A; Carrillo, P J P; San Martín, C; Mateu, M G; Raman, A; Podgornik, R; de Pablo, P J
2015-11-07
Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.
Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda
2006-08-24
The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.
Lu, Huiran; Guccini, Valentina; Kim, Hyeyun; Salazar-Alvarez, German; Lindbergh, Göran; Cornell, Ann
2017-11-01
Carboxylated cellulose nanofibers (CNF) prepared using the TEMPO-route are good binders of electrode components in flexible lithium-ion batteries (LIB). However, the different parameters employed for the defibrillation of CNF such as charge density and degree of homogenization affect its properties when used as binder. This work presents a systematic study of CNF prepared with different surface charge densities and varying degrees of homogenization and their performance as binder for flexible LiFePO 4 electrodes. The results show that the CNF with high charge density had shorter fiber lengths compared with those of CNF with low charge density, as observed with atomic force microscopy. Also, CNF processed with a large number of passes in the homogenizer showed a better fiber dispersibility, as observed from rheological measurements. The electrodes fabricated with highly charged CNF exhibited the best mechanical and electrochemical properties. The CNF at the highest charge density (1550 μmol g -1 ) and lowest degree of homogenization (3 + 3 passes in the homogenizer) achieved the overall best performance, including a high Young's modulus of approximately 311 MPa and a good rate capability with a stable specific capacity of 116 mAh g -1 even up to 1 C. This work allows a better understanding of the influence of the processing parameters of CNF on their performance as binder for flexible electrodes. The results also contribute to the understanding of the optimal processing parameters of CNF to fabricate other materials, e.g., membranes or separators.
Modeling the Electric Potential and Surface Charge Density near Charged Thunderclouds
ERIC Educational Resources Information Center
Neel, Matthew Stephen
2018-01-01
Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and…
The Pulse Response of Electrets to Energetic Ions
1988-09-01
reduction in the low temperature peak for the aged sample. This change is accompanied by a significant increase in the high temperature peak. Ion...density in electron-beam charged FEP does not change under normal conditions while the hole density falls rapidly with aging . Because hole traps are...power, S, and the aver- age energy required to produce a charge carrier pair, W, are constant. By Equation 4-1, the charge, Q, produced by an emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Kavita; Sharma, Suresh C.
2015-02-15
An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.
Closed-loop pulsed helium ionization detector
Ramsey, Roswitha S.; Todd, Richard A.
1987-01-01
A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.
Matrix product density operators: Renormalization fixed points and boundary theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirac, J.I.; Pérez-García, D., E-mail: dperezga@ucm.es; ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well asmore » to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).« less
Fixed Point Learning Based Intelligent Traffic Control System
NASA Astrophysics Data System (ADS)
Zongyao, Wang; Cong, Sui; Cheng, Shao
2017-10-01
Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.
Pryamitsyn, Victor; Ganesan, Venkat
2015-10-28
We study the effective pair interactions between two charged spherical particles in polyelectrolyte solutions using polymer self-consistent field theory. In a recent study [V. Pryamitsyn and V. Ganesan, Macromolecules 47, 6095 (2015)], we considered a model in which the particles possess fixed charge density, the polymers contain a prespecified amount of dissociated charges and, the dielectric constant of the solution was assumed to be homogeneous in space and independent of the polymer concentration. In this article, we present results extending our earlier model to study situations in which either or both the particle and the polymers possess partially dissociable groups. Additionally, we also consider the case when the dielectric constant of the solution depends on the local concentration of the polymers and when the particle's dielectric constant is lower than that of the solvent. For each case, we quantify the polymer-mediated interactions between the particles as a function of the polymer concentrations and the degree of dissociation of the polymer and particles. Consistent with the results of our previous study, we observe that the polymer-mediated interparticle interactions consist of a short-range attraction and a long-range repulsion. The partial dissociablity of the polymer and particles was seen to have a strong influence on the strength of the repulsive portion of the interactions. Rendering the dielectric permittivity to be inhomogeneous has an even stronger effect on the repulsive interactions and results in changes to the qualitative nature of interactions in some parametric ranges.
Zhou, Ying; Yu, Hai; Wanless, Erica J; Jameson, Graeme J; Franks, George V
2009-08-15
Flocs were produced by adding three cationic polymers (10% charge density, 3.0x10(5) g/mol molecular weight; 40% charge density, 1.1x10(5) g/mol molecular weight; and 100% charge density, 1.2x10(5) g/mol molecular weight) to 90 nm diameter silica particles. The shear yield stresses of the consolidated sediment beds from settled and centrifuged flocs were determined via the vane technique. The polymer charge density plays an important role in influencing the shear yield stresses of sediment beds. The shear yield stresses of sediment beds from flocs induced by the 10% charged polymer were observed to increase with an increase in polymer dose, initial solid concentration and background electrolyte concentration at all volume fractions. In comparison, polymer dose has a marginal effect on the shear yield stresses of sediment beds from flocs induced by the 40% and 100% charged polymers. The shear yield stresses of sediments from flocs induced by the 40% charged polymer are independent of salt concentration whereas the addition of salt decreases the shear yield stresses of sediments from flocs induced by the 100% charged polymer. When flocculated at the optimum dose for each polymer (12 mg/g silica for the 10% charged polymer at 0.03 M NaCl, 12 mg/g for 40% and 2 mg/g for 100%), shear yield stress increases as polymer charge increases. The effects observed are related to the flocculation mechanism (bridging, patch attraction or charge neutralisation) and the magnitude of the adhesive force. Comparison of shear and compressive yield stresses show that the network is only slightly weaker in shear than in compression. This is different than many other systems (mainly salt and pH coagulation) which have shear yield stress much less than compressive yield stress. The existing models relating the power law exponent of the volume fraction dependence of the shear yield stress to the network fractal structure are not satisfactory to predict all the experimental behaviour.
Helical patterns of magnetization and magnetic charge density in iron whiskers
NASA Astrophysics Data System (ADS)
Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.
2018-05-01
Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.
Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions
NASA Astrophysics Data System (ADS)
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Olvera de la Cruz, Mónica
2011-08-01
The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-elec-trolytes with different ion sizes.
Phase stability in the two-dimensional anisotropic boson Hubbard Hamiltonian
Ying, T.; Batrouni, G. G.; Rousseau, V. G.; ...
2013-05-15
The two dimensional square lattice hard-core boson Hubbard model with near neighbor interactions has a ‘checkerboard’ charge density wave insulating phase at half-filling and sufficiently large intersite repulsion. When doped, rather than forming a supersolid phase in which long range charge density wave correlations coexist with a condensation of superfluid defects, the system instead phase separates. However, it is known that there are other lattice geometries and interaction patterns for which such coexistence takes place. In this paper we explore the possibility that anisotropic hopping or anisotropic near neighbor repulsion might similarly stabilize the square lattice supersolid. Lastly, by consideringmore » the charge density wave structure factor and superfluid density for different ratios of interaction strength and hybridization in the ˆx and ˆy directions, we conclude that phase separation still occurs.« less
Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring
NASA Astrophysics Data System (ADS)
Nakatsugawa, K.; Fujii, T.; Tanda, S.
2017-09-01
We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.
NASA Astrophysics Data System (ADS)
Cai, Xiuyu; Frisbie, C. Daniel; Leighton, C.
2006-12-01
The authors report the growth, structural and electrical characterizations of SrTiO3 films deposited on conductive SrTiO3:Nb (001) substrates by high pressure reactive rf magnetron sputtering. Optimized deposition parameters yield smooth epitaxial layers of high crystalline perfection with a room temperature dielectric constant ˜200 (for a thickness of 1150Å). The breakdown fields in SrTiO3:Nb /SrTiO3/Ag capacitors are consistent with induced charge densities >1×1014cm-2 for both holes and electrons, making these films ideal for high charge density field effect devices.
Monitoring nonadiabatic avoided crossing dynamics in molecules by ultrafast X-ray diffraction
Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2017-05-26
We examine time-resolved X-ray diffraction from molecules in the gas phase which undergo nonadiabatic avoided-crossing dynamics involving strongly coupled electrons and nuclei. Several contributions to the signal are identified, representing (in decreasing strength) elastic scattering, contributions of the electronic coherences created by nonadiabatic couplings in the avoided crossing regime, and inelastic scattering. The former probes the charge density and delivers direct information on the evolving molecular geometry. The latter two contributions are weaker and carry spatial information through the transition charge densities (off-diagonal elements of the charge-density operator). Furthermore, simulations are presented for the nonadiabatic harpooning process in the excitedmore » state of sodium fluoride.« less
The effect of the ambient plasma conditions on the variation of charge on dust grains
NASA Astrophysics Data System (ADS)
Chakraborty, M.; Kausik, S. S.; Saikia, B. K.; Kakati, M.; Bujarbarua, S.
2003-02-01
An experimental study has been performed into the variation of charge on dust grains with change in the ambient plasma conditons. A dust beam containing submicron sized silver grains was passed through plasma. The dust grains were charged by the plasma particles as well as by primary electrons from the filament. An increase in the filament current increased both the plasma density and the number density of the primary electrons. The grain charge was found out both from the deflection of the dust grains and also from the floating potential. The experimental observations shows that the secondary emission caused by the primary electrons significantly influenced and played a prominent role in the establishment of charge on the grains.
Carnal, Fabrice; Stoll, Serge
2011-10-27
Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adsorption at the nanoparticle surface are systematically investigated. It is shown that the nanoparticle presence significantly modifies chain acid/base and polyelectrolyte conformational properties. The importance of the attractive electrostatic interactions between the chain and the nanoparticle clearly promotes the chain deprotonation leading, at high pH and nanoparticle charge density, to fully wrapped polyelectrolyte at the nanoparticle surface. When the nanoparticle bare charge is overcompensated by the polyelectrolyte charges, counterions and salt particles condense at the surface of the polyelectrolyte-nanoparticle complex to compensate for the excess of charges providing from the adsorbed polyelectrolyte chain. It is also shown that the complex formation is significantly affected by the salt valency. Indeed, with the presence of trivalent salt cations, competition is observed between the nanoparticle and the trivalent cations. As a result, the amount of adsorbed monomers is less important than in the monovalent and divalent case and chain conformations are different due to the collapse of polyelectrolyte segments around trivalent cations out of the nanoparticle adsorption layer.
Liu, Jing; Zhang, Hai-Bo
2014-12-01
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.
Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani
2017-10-14
Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.
Diffusive charge transport in graphene on SiO 2
NASA Astrophysics Data System (ADS)
Chen, J.-H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S.
2009-07-01
We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO 2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density ( σ(n)∝n) in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates; increased dielectric screening reduces the scattering from charged impurities, but increases the scattering from short-range scatterers. We evaluate the effects of the corrugations (ripples) of graphene on SiO 2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity that is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO 2 substrate give rise to an activated, carrier density-dependent resistivity. Together the results paint a complete picture of charge carrier transport in graphene on SiO 2 in the diffusive regime.
Spacecraft dielectric surface charging property determination
NASA Technical Reports Server (NTRS)
Williamson, W. S.
1987-01-01
The charging properties of 127 micron thick polyimide, (a commonly used spacecraft dielectric material) was measured under conditions of irradiation by a low-current-density electron beam with energy between 2 and 14 keV. The observed charging characteristics were consistent with predictions of the NASCAP computer model. The use of low electron current density results in a nonlinearity in the sample-potential versus beam-energy characteristic which is attributed to conduction leakage through the sample. Microdischarges were present at relatively low beam energies.
Charge-exchange plasma generated by an ion thruster
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1977-01-01
The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.
Vikse, Krista; Khairallah, George N; McIndoe, J Scott; O'Hair, Richard A J
2013-05-14
A combination of multistage mass spectrometry experiments and density functional theory (DFT) calculations were used to examine the decarboxylation reactions of a series of metal carboxylate complexes bearing a fixed-charge phosphine ligand, [(O3SC6H4)(C6H5)2PM(I)O2CR](-) (M = Cu, Ag, Au; R = Me, Et, benzyl, Ph). Collision-induced dissociation (CID) of these complexes using an LTQ linear ion mass spectrometer results in three main classes of reactions being observed: (1) decarboxylation; (2) loss of the phosphine ligand; (3) loss of carboxylic acid. The gas-phase unimolecular chemistry of the resultant decarboxylated organometallic ions, [(O3SC6H4)(C6H5)2PM(I)R](-), were also explored using CID experiments, and fragment primarily via loss of the phosphine ligand. Energy-resolved CID experiments on [(O3SC6H4)(C6H5)2PM(I)O2CR](-) (M = Cu, Ag, Au; R = Me, Et, benzyl, Ph) using a Q-TOF mass spectrometer were performed to gain a more detailed understanding of the factors influencing coinage metal-catalyzed decarboxylation and DFT calculations on the major fragmentation pathways aided in interpretation of the experimental results. Key findings are that: (1) the energy required for loss of the phosphine ligand follows the order Ag < Cu < Au; (2) the ease of decarboxylation of the coordinated RCO2 groups follows the order of R: Ph < PhCH2 < Me < Et; (3) in general, copper is best at facilitating decarboxylation, followed by gold then silver. The one exception to this trend is when R = Ph and M = Au which has the highest overall propensity for decarboxylation. The influence of the phosphine ligand on decarboxylation is also considered in comparison with previous studies on metal carboxylates that do not contain a phosphine ligand.
Sulas, Dana B.; Yao, Kai; Intemann, Jeremy J.; ...
2015-09-12
Using an analysis based on Marcus theory, we characterize losses in open-circuit voltage (V OC) due to changes in charge-transfer state energy, electronic coupling, and spatial density of charge-transfer states in a series of polymer/fullerene solar cells. Here, we use a series of indacenodithiophene polymers and their selenium-substituted analogs as electron donor materials and fullerenes as the acceptors. By combining device measurements and spectroscopic studies (including subgap photocurrent, electroluminescence, and, importantly, time-resolved photoluminescence of the charge-transfer state) we are able to isolate the values for electronic coupling and the density of charge-transfer states (NCT), rather than the more commonly measuredmore » product of these values. We find values for NCT that are surprisingly large (~4.5 × 10 21–6.2 × 10 22 cm -3), and we find that a significant increase in N CT upon selenium substitution in donor polymers correlates with lower VOC for bulk heterojunction photovoltaic devices. The increase in N CT upon selenium substitution is also consistent with nanoscale morphological characterization. Using transmission electron microscopy, selected area electron diffraction, and grazing incidence wide-angle X-ray scattering, we find evidence of more intermixed polymer and fullerene domains in the selenophene blends, which have higher densities of polymer/fullerene interfacial charge-transfer states. Our results provide an important step toward understanding the spatial nature of charge-transfer states and their effect on the open-circuit voltage of polymer/fullerene solar cells« less
NASA Astrophysics Data System (ADS)
García-Giménez, Elena; Alcaraz, Antonio; Aguilella, Vicente M.
2010-02-01
We report charge inversion within a nanoscopic biological protein ion channel in salts of multivalent ions. The presence of positive divalent and trivalent counterions reverses the cationic selectivity of the OmpF channel, a general diffusion porin located in the outer membrane of E. coli. We discuss the conditions under which charge inversion can be inferred from the change in sign of the measured quantity, the channel zero current potential. By comparing experimental results in protein channels whose charge has been modified after site-directed mutagenesis, the predictions of current theories of charge inversion are critically examined. It is emphasized that charge inversion does not necessarily increase with the bare surface charge density of the interface and that even this concept of surface charge density may become meaningless in some biological ion channels. Thus, any theory based on electrostatic correlations or chemical binding should explicitly take into account the particular structure of the charged interface.