DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, S; Lu, H; Flanz, J
2015-06-15
Purpose: To ascertain the necessity of a proton gantry, as compared to the feasibility of using a horizontal fixed proton beam-line for treatment with advanced technology. Methods: To calculate the percentage of patients that can be treated with a horizontal fixed beam-line instead of a gantry, we analyze the distributions of beam orientations of our proton gantry patients treated over the past 10 years. We identify three horizontal fixed beam geometries (FIXED, BEND and MOVE) with the patient in lying and/or sitting positions. The FIXED geometry includes only table/chair rotations and translations. In BEND, the beam can be bent up/downmore » for up to 20 degrees. MOVE allows for patient head/body angle adjustment. Based on the analysis, we select eight patients whose plan involves beams which are still challenging to achieve with a horizontal fixed beam. These beams are removed in the pencil beam scanning (PBS) plan optimized for the fixed beam-line (PBS-fix). We generate non-coplanar PBS-gantry plans for comparison, and perform a robustness analysis. Results: The percentage of patients with head-and-neck/brain tumors that can be treated with horizontal fixed beam is 44% in FIXED, 70% in 20-degrees BEND, and 100% in 90-degrees MOVE. For torso regions, 99% of the patients can be treated in 20-degree BEND. The target coverage is more homogeneous with PBS-fix plans compared to the clinical scattering treatment plans. The PBS-fix plans reduce the mean dose to organs-at-risk by a factor of 1.1–28.5. PBS-gantry plans are as good as PBS-fix plans, sometimes marginally better. Conclusion: The majority of the beam orientations can be realized with a horizontal fixed beam-line. Challenging non-coplanar beams can be eliminated with PBS delivery. Clinical implementation of the proposed fixed beam-line requires use of robotic patient positioning, further developments in immobilization, and image guidance. However, our results suggest that fixed beam-lines can be as effective as gantries.« less
McCugh, Ralph
1976-05-25
A nuclear reactor contains an assembly of moderator blocks, laid end-to-end, one on top of another, and alongside one another, which blocks are restrained by vertical beams at each side of the assembly, fixed horizontal beams surrounding the assembly at the top and bottom and springs connecting the fixed horizontal beams and the ends of the vertical beams in such a way as to permit relatively high expansion midway of the height of the assembly while restricting expansion near the top of the assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, M; Balter, P; Beadle, B
Purpose: A fixed horizontal-beam linac, where the patient is treated in a seated position, could lower the overall costs of the treatment unit and room shielding substantially. This design also allows the treatment room and control area to be contained within a reduced space, such as a shipping container. The main application is the introduction of low-cost, high-quality radiation therapy to low- and middle-income regions. Here we consider shielding for upright treatments with a fixed-6MV-beam linac in a shipping container and a conventional treatment vault. Methods: Shielding calculations were done for two treatment room layouts using calculation methods in NCRPmore » Report 151: (1) a shipping container (6m × 2.4m with the remaining space occupied by the console area), and (2) the treatment vault in NCRP 151 (7.8m by 5.4m by 3.4m). The shipping container has a fixed gantry that points in one direction at all times. For the treatment vault, various beam directions were evaluated. Results: The shipping container requires a primary barrier of 168cm concrete (4.5 TVL), surrounded by a secondary barrier of 3.6 TVL. The other walls require between 2.8–3.3 TVL. Multiple shielding calculations were done along the side wall. The results show that patient scatter increases in the forward direction and decreases dramatically in the backward direction. Leakage scatter also varies along the wall, depending largely on the distance between the gantry and the wall. For the treatment room, fixed-beam requires a slightly thicker primary barrier than the conventional linac (0.6 TVL), although this barrier is only needed in the center of one wall. The secondary barrier is different only by 0–0.2 TVL. Conclusion: This work shows that (1) the shipping container option is achievable, using indigenous materials for shielding and (2) upright treatments can be performed in a conventional treatment room with minimal additional shielding. Varian Medical Systems.« less
High accuracy diffuse horizontal irradiance measurements without a shadowband
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlemmer, J.A; Michalsky, J.J.
1995-12-31
The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from total horizontal and direct normal irradiance. This method is in error because of angular (cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular response of the total horizontal pyranometer. Wemore » compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. Results indicate significant improvement in most cases. Remaining disagreement most likely arises from undetected tracking errors and instrument leveling.« less
High accuracy diffuse horizontal irradiance measurements without a shadowband
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlemmer, J.A.; Michalsky, J.J.
1995-10-01
The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from the total horizontal and direct normal irradiance. This method is in error because of the angular (often referred to as cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular responsemore » of the total horizontal pyranometer. The authors compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. The results indicate significant improvement in most cases. The remaining disagreement most likely arises from undetected tracking errors and instrument leveling.« less
NASA Technical Reports Server (NTRS)
Haines, R. F.; Bartz, A. E.; Zahn, J. R.
1972-01-01
The effects of a fixed, intense, one-foot diameter beam of simulated sunlight imaged within the field of view, upon responses to a battery of visual, body balance and stability, eye-hand coordination, and mental tests were studied. Each subject's electrocardiogram and electro-oculograms (vertical and horizontal) were recorded throughout each two-hour testing period within the space-station-like environment. It is possible to say that both subjects adapted to the brightly illuminated white panels in approximately 30 seconds after their first exposure each day and thereafter did not experience ocular fatigue, eye strain, or other kinds of disturbances as a result of these viewing conditions.
New Beamlines For Protein Crystallography At The EMBL-Outstation Hamburg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermes, C.; Gehrmann, T.; Jahn, D.
2004-05-12
Three new beamlines for Protein Crystallography were built up on a bending magnet fan of the DORIS III storage ring. A 10 mrad wide fan of white Synchrotron Radiation (SR) is evenly distributed among 3 individual stations: X12, a central, wavelength-tunable station intended for anomalous scattering experiments (MAD) and fixed wavelength, high intensity stations symmetrically on either side. The fixed wavelength beamlines X11 and X13 comprise triangular, asymmetrically cut Si (111) monochromators as horizontally focusing optical elements. The tunable station is based on a fixed-exit, horizontally focusing double crystal monochromator system. Vertical focusing is achieved on all three lines bymore » trapezoidal shaped, continuous Rh-coated mirrors which can be dynamically bent. In all three lines the X-ray beam can be examined at various points on its way through the optical system by removable screens and PIN-diode based intensity monitors. Purpose built crystallographic end-stations complete the set-up. The design of individual components and their performance will be described.« less
Status of the Proton Therapy Project at IUCF and the Midwest Proton Radiotherapy Institute
NASA Astrophysics Data System (ADS)
Klein, Susan B.
2003-08-01
The first proton therapy patient was successfully treated for astrocytoma using a modified nuclear experimentation beam line and in-house treatment planning in 1993. In 1998, IUCF constructed an eye treatment clinic, and conducted a phase III clinical trial investigating proton radiation treatment of AMD. Treatment was planned using Eyeplan modified to match the IUCF beam characteristics. MPRI was conceptualized in 1996 by a consortium of physicians and physicists. Reconfiguration began in 2000; construction of the achromatic trunk line began in 2001, followed by manufacture of 4 energy selection lines and two fixed horizontal beam treatment lines. Two isocentric, rotational gantries will be installed following completion of the horizontal beam lines. A fifth line will supply the full-time radiation effects research station. Standard proton delivery out of the main stage is specified at 500 nA of 205 MeV. Clinic construction began in April, 2002 and will be completed by mid-December. Design, construction and operation of these proton facilities have been accomplished by the proton therapy group at IUCF.
Double wedge prism based beam deflector for precise laser beam steering
NASA Astrophysics Data System (ADS)
Tyszka, Krzysztof; Dobosz, Marek; Bilaszewski, Tomasz
2018-02-01
Aiming to increase laser beam pointing stability required in interferometric measurements, we designed a laser beam deflector intended for active laser beam stabilization systems. The design is based on two wedge-prisms: the deflecting wedge driven by a tilting piezo-platform and the fixed wedge to compensate initial beam deflection. Our design allows linear beam steering, independently in the horizontal or vertical direction, with resolution of less than 1 μrad in a range of more than 100 μrad, and no initial deflection of the beam. Moreover, the ratio of the output beam deflection angle and the wedge tilt angle is less than 0.1; therefore, the noise influence is significantly reduced in comparison to standard mirror-based deflectors. The theoretical analyses support the designing process and can serve as a guide to wedge-prism selection. The experimental results are in agreement with theory and confirm the advantages of the presented double wedge system.
Nonlinear bending models for beams and plates
Antipov, Y. A.
2014-01-01
A new nonlinear model for large deflections of a beam is proposed. It comprises the Euler–Bernoulli boundary value problem for the deflection and a nonlinear integral condition. When bending does not alter the beam length, this condition guarantees that the deflected beam has the original length and fixes the horizontal displacement of the free end. The numerical results are in good agreement with the ones provided by the elastica model. Dynamic and two-dimensional generalizations of this nonlinear one-dimensional static model are also discussed. The model problem for an inextensible rectangular Kirchhoff plate, when one side is clamped, the opposite one is subjected to a shear force, and the others are free of moments and forces, is reduced to a singular integral equation with two fixed singularities. The singularities of the unknown function are examined, and a series-form solution is derived by the collocation method in terms of the associated Jacobi polynomials. The procedure requires solving an infinite system of linear algebraic equations for the expansion coefficients subject to the inextensibility condition. PMID:25294960
Computed Fixed Beam Horizontal Coverage as Related to Redundancy in the AN/SQS-26CX Sonar Equipment
1964-12-21
signal, either from the transducer element in transmit, A_ or the preamplifier in receive, no matter which stave subassembly is defective. 3...100 00 100 200 300 400 400 x- -500 X4 -9 PASIV ARA N.1 -eo 1ɘ 8 72 7 6 2 4 2 B25 -RCO~c DWG.A74 -II CONFIDE NTIAL AUSTON, TEXAS 32/4SKC CONFIDENTIAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Susu, E-mail: syan5@mgh.harvard.edu; Lu, Hsiao-Ming; Flanz, Jay
2016-05-01
Purpose: To retrospectively analyze the beam approaches used in gantry-based proton treatments, and to reassess the practical advantages of the gantry, compared with beam approaches that are achievable without a gantry, in the context of present-day technology. Methods and Materials: We reviewed the proton therapy plans of 4332 patients treated on gantries at our hospital, delivered by the double scattering technique (n=4228) and, more recently, pencil beam scanning (PBS) (n=104). Beam approaches, relative to the patient frame, were analyzed individually to identify cases that could be treated without a gantry. Three treatment configurations were considered, with the patient in lying position,more » sitting position, or both. The FIXED geometry includes a fixed horizontal portal. The BEND geometry enables a limited vertical inflection of the beam by up to 20°. The MOVE geometry allows for flexibility of the patient head and body setup. Results: The percentage of patients with head and neck tumors that could be treated without a gantry using double scattering was 44% in FIXED, 70% in 20° BEND, and 100% in 90° MOVE. For torso regions, 99% of patients could be treated in 20° BEND. Of 104 PBS treatments, all but 1 could be reproduced with FIXED geometry. The only exception would require a 10° BEND capability. Note here that the PBS treatments were applied to select anatomic sites, including only 2 patients with skull-base tumors. Conclusions: The majority of practical beam approaches can be realized with gantry-less delivery, aided by limited beam bending and patient movements. Practical limitations of the MOVE geometry, and treatments requiring a combination of lying and sitting positions, may lower the percentage of head and neck patients who could be treated without a gantry. Further investigation into planning, immobilization, and imaging is needed to remove the practical limitations and to facilitate proton treatment without a gantry.« less
A CBCT study of the gravity-induced movement in rotating rabbits
NASA Astrophysics Data System (ADS)
Barber, Jeffrey; Shieh, Chun-Chien; Counter, William; Sykes, Jonathan; Bennett, Peter; Ahern, Verity; Corde, Stéphanie; Heng, Soo-Min; White, Paul; Jackson, Michael; Liu, Paul; Keall, Paul J.; Feain, Ilana
2018-05-01
Fixed-beam radiotherapy systems with subjects rotating about a longitudinal (horizontal) axis are subject to gravity-induced motion. Limited reports on the degree of this motion, and any deformation, has been reported previously. The purpose of this study is to quantify the degree of anatomical motion caused by rotating a subject around a longitudinal axis, using cone-beam CT (CBCT). In the current study, a purpose-made longitudinal rotating was aligned to a Varian TrueBeam kV imaging system. CBCT images of three live rabbits were acquired at fixed rotational offsets of the cradle. Rigid and deformable image registrations back to the original position were used to quantify the motion experienced by the subjects under rotation. In the rotation offset CBCTs, the mean magnitude of rigid translations was 5.7 ± 2.7 mm across all rabbits and all rotations. The translation motion was reproducible between multiple rotations within 2.1 mm, 1.1 mm, and 2.8 mm difference for rabbit 1, 2, and 3, respectively. The magnitude of the mean and absolute maximum deformation vectors were 0.2 ± 0.1 mm and 5.4 ± 2.0 mm respectively, indicating small residual deformations after rigid registration. In the non-rotated rabbit 4DCBCT, respiratory diaphragm motion up to 5 mm was observed, and the variation in respiratory motion as measured from a series of 4DCBCT scans acquired at each rotation position was small. The principle motion of the rotated subjects was rigid translational motion. The deformation of the anatomy under rotation was found to be similar in scale to normal respiratory motion. This indicates imaging and treatment of rotated subjects with fixed-beam systems can use rigid registration as the primary mode of motion estimation. While the scaling of deformation from rabbits to humans is uncertain, these proof-of-principle results indicate promise for fixed-beam treatment systems.
NASA Astrophysics Data System (ADS)
Helmbrecht, S.; Baumann, M.; Enghardt, W.; Fiedler, F.; Krause, M.; Lühr, A.
2016-11-01
Purpose: particle therapy has the potential to improve radiooncology. With more and more facilities coming into operation, also the interest for research at proton beams increases. Though many centers provide beam at an experimental room, some of them do not feature a device for radiation field shaping, a so called nozzle. Therefore, a robust and cost-effective double-scattering system for horizontal proton beamlines has been designed and implemented. Materials and methods: the nozzle is based on the double scattering technique. Two lead scatterers, an aluminum ridge-filter and two brass collimators were optimized in a simulation study to form a laterally homogeneous 10 cm × 10 cm field with a spread-out Bragg-peak (SOBP). The parts were mainly manufactured using 3D printing techniques and the system was set up at OncoRay's experimental beamline. Measurement of the radiation field were carried out using a water phantom. Results: high levels of dose homogeneity were found in lateral (dose variation ΔD/D < ±2%) as well as in beam direction (ΔD/D < ± 3% in the SOBP). The system has already been used for radiobiology and physical experiments. Conclusion: the presented setup allows for creating clinically realistic extended radiation fields at fixed horizontal proton beamlines and is ready to use for internal and external users. The excellent performance combined with the simplistic design let it appear as a valuable option for proton therapy centers intending to foster their experimental portfolio.
Inclined monochromator for high heat-load synchrotron x-ray radiation
Khounsary, A.M.
1994-02-15
A double crystal monochromator is described including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced. 11 figures.
Inclined monochromator for high heat-load synchrotron x-ray radiation
Khounsary, Ali M.
1994-01-01
A double crystal monochromator including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced.
SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, F; Tosh, R
2014-06-01
Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface,more » and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.« less
Horizontal atmospheric turbulence, beam propagation, and modeling
NASA Astrophysics Data System (ADS)
Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Judd, K. Peter; Restaino, Sergio R.
2017-05-01
The turbulent effect from the Earth's atmosphere degrades the performance of an optical imaging system. Many studies have been conducted in the study of beam propagation in a turbulent medium. Horizontal beam propagation and correction presents many challenges when compared to vertical due to the far harsher turbulent conditions and increased complexity it induces. We investigate the collection of beam propagation data, analysis, and use for building a mathematical model of the horizontal turbulent path and the plans for an adaptive optical system to use this information to correct for horizontal path atmospheric turbulence.
NASA Astrophysics Data System (ADS)
Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae
2016-05-01
We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.
Straight scaling FFAG beam line
NASA Astrophysics Data System (ADS)
Lagrange, J.-B.; Planche, T.; Yamakawa, E.; Uesugi, T.; Ishi, Y.; Kuriyama, Y.; Qin, B.; Okabe, K.; Mori, Y.
2012-11-01
Fixed field alternating gradient (FFAG) accelerators are recently subject to a strong revival. They are usually designed in a circular shape; however, it would be an asset to guide particles with no overall bend in this type of accelerator. An analytical development of a straight FFAG cell which keeps zero-chromaticity is presented here. A magnetic field law is thus obtained, called "straight scaling law", and an experiment has been conducted to confirm this zero-chromatic law. A straight scaling FFAG prototype has been designed and manufactured, and horizontal phase advances of two different energies are measured. Results are analyzed to clarify the straight scaling law.
Studies of the Twin Helix Parametric-resonance Ionization Cooling Channel with COSY INFINITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.A. Maloney, K.B. Beard, R.P. Johnson, A. Afanasev, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov, B. Erdelyi
2012-07-01
A primary technical challenge to the design of a high luminosity muon collider is an effective beam cooling system. An epicyclic twin-helix channel utilizing parametric-resonance ionization cooling has been proposed for the final 6D cooling stage. A proposed design of this twin-helix channel is presented that utilizes correlated optics between the horizontal and vertical betatron periods to simultaneously focus transverse motion of the beam in both planes. Parametric resonance is induced in both planes via a system of helical quadrupole harmonics. Ionization cooling is achieved via periodically placed wedges of absorbing material, with intermittent rf cavities restoring longitudinal momentum necessarymore » to maintain stable orbit of the beam. COSY INFINITY is utilized to simulate the theory at first order. The motion of particles around a hyperbolic fixed point is tracked. Comparison is made between the EPIC cooling channel and standard ionization cooling effects. Cooling effects are measured, after including stochastic effects, for both a single particle and a distribution of particles.« less
An empirical model for calculation of the collimator contamination dose in therapeutic proton beams
NASA Astrophysics Data System (ADS)
Vidal, M.; De Marzi, L.; Szymanowski, H.; Guinement, L.; Nauraye, C.; Hierso, E.; Freud, N.; Ferrand, R.; François, P.; Sarrut, D.
2016-02-01
Collimators are used as lateral beam shaping devices in proton therapy with passive scattering beam lines. The dose contamination due to collimator scattering can be as high as 10% of the maximum dose and influences calculation of the output factor or monitor units (MU). To date, commercial treatment planning systems generally use a zero-thickness collimator approximation ignoring edge scattering in the aperture collimator and few analytical models have been proposed to take scattering effects into account, mainly limited to the inner collimator face component. The aim of this study was to characterize and model aperture contamination by means of a fast and accurate analytical model. The entrance face collimator scatter distribution was modeled as a 3D secondary dose source. Predicted dose contaminations were compared to measurements and Monte Carlo simulations. Measurements were performed on two different proton beam lines (a fixed horizontal beam line and a gantry beam line) with divergent apertures and for several field sizes and energies. Discrepancies between analytical algorithm dose prediction and measurements were decreased from 10% to 2% using the proposed model. Gamma-index (2%/1 mm) was respected for more than 90% of pixels. The proposed analytical algorithm increases the accuracy of analytical dose calculations with reasonable computation times.
Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen
2017-10-01
The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.
Beam pointing direction changes in a misaligned Porro prism resonator
NASA Astrophysics Data System (ADS)
Lee, Jyh-Fa; Leung, Chung-Yee
1988-07-01
The relative change of the beam pointing direction for a misaligned Porro prism resonator has been analyzed, using an oscillation axis concept for the Porro prism resonator to find the beam direction. Expressions for the beam tilting angles are presented which show that the angular misalignment in the horizontal direction will result in beam tilting in both the horizontal and vertical directions. Good agreement between experimental and theoretical results is found.
NASA Astrophysics Data System (ADS)
Huschauer, A.; Blas, A.; Borburgh, J.; Damjanovic, S.; Gilardoni, S.; Giovannozzi, M.; Hourican, M.; Kahle, K.; Le Godec, G.; Michels, O.; Sterbini, G.; Hernalsteens, C.
2017-06-01
Following a successful commissioning period, the multiturn extraction (MTE) at the CERN Proton Synchrotron (PS) has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS) since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT) extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.
Gantry for medical particle therapy facility
Trbojevic, Dejan [Wading River, NY
2012-05-08
A particle therapy gantry for delivering a particle beam to a patient includes a beam tube having a curvature defining a particle beam path and a plurality of fixed field magnets sequentially arranged along the beam tube for guiding the particle beam along the particle path. In a method for delivering a particle beam to a patient through a gantry, a particle beam is guided by a plurality of fixed field magnets sequentially arranged along a beam tube of the gantry and the beam is alternately focused and defocused with alternately arranged focusing and defocusing fixed field magnets.
A threshold-based fixed predictor for JPEG-LS image compression
NASA Astrophysics Data System (ADS)
Deng, Lihua; Huang, Zhenghua; Yao, Shoukui
2018-03-01
In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.
Design study of beam transport lines for BioLEIR facility at CERN
NASA Astrophysics Data System (ADS)
Ghithan, S.; Roy, G.; Schuh, S.
2017-09-01
The biomedical community has asked CERN to investigate the possibility to transform the Low Energy Ion Ring (LEIR) accelerator into a multidisciplinary, biomedical research facility (BioLEIR) that could provide ample, high-quality beams of a range of light ions suitable for clinically oriented, fundamental research on cell cultures and for radiation instrumentation development. The present LEIR machine uses fast beam extraction to the next accelerator in the chain, eventually leading to the Large Hadron Collider (LHC) . To provide beam for a biomedical research facility, a new slow extraction system must be installed. Two horizontal and one vertical experimental beamlines were designed for transporting the extracted beam to three experimental end-stations. The vertical beamline (pencil beam) was designed for a maximum energy of 75 MeV/u for low-energy radiobiological research, while the two horizontal beamlines could deliver up to 440 MeV/u. One horizontal beamline shall be used preferentially for biomedical experiments and shall provide pencil beam and a homogeneous broad beam, covering an area of 5 × 5 cm2 with a beam homogeneity of ±5%. The second horizontal beamline will have pencil beam only and is intended for hardware developments in the fields of (micro-)dosimetry and detector development. The minimum full aperture of the beamlines is approximately 100 mm at all magnetic elements, to accommodate the expected beam envelopes. Seven dipoles and twenty quadrupoles are needed for a total of 65 m of beamlines to provide the specified beams. In this paper we present the optical design for the three beamlines.
Formation of a uniform ion beam using octupole magnets for BioLEIR facility at CERN
NASA Astrophysics Data System (ADS)
Amin, T.; Barlow, R.; Ghithan, S.; Roy, G.; Schuh, S.
2018-04-01
The possibility to transform the Low Energy Ion Ring (LEIR) accelerator at CERN into a multidisciplinary, biomedical research facility (BioLEIR) was investigated based on a request from the biomedical community. BioLEIR aims to provide a unique facility with a range of fully stripped ion beams (e.g. He, Li, Be, B, C, N, O) and energies suitable for multidisciplinary biomedical, clinically-oriented research. Two horizontal and one vertical beam transport lines have been designed for transporting the extracted beam from LEIR to three experimental end-stations. The vertical beamline was designed for a maximum energy of 75 MeV/u, while the two horizontal beamlines shall deliver up to a maximum energy of 440 MeV/u. A pencil beam of 4.3 mm FWHM (Full Width Half Maximum) as well as a homogeneous broad beam of 40 × 40 mm2, with a beam homogeneity better than ±4%, are available at the first horizontal (H1) irradiation point, while only a pencil beam is available at the second horizontal (H2) and vertical (V) irradiation points. The H1 irradiation point shall be used to conduct systematic studies of the radiation effect from different ion species on cell-lines. The H1 beamline was designed to utilize two octupole magnets which transform the Gaussian beam distribution at the target location into an approximately uniformly distributed rectangular beam. In this paper, we report on the multi-particle tracking calculations performed using MAD-X software suite for the H1 beam optics to arrive at a homogeneous broad beam on target using nonlinear focusing techniques, and on those to create a Gaussian pencil beam on target by adjusting quadrupoles strengths and positions.
Bilbo, E Erin; Marshall, Steven D; Southard, Karin A; Allareddy, Verrasathpurush; Holton, Nathan; Thames, Allyn M; Otsby, Marlene S; Southard, Thomas E
2018-04-18
The long-term skeletal effects of Class II treatment in growing individuals using high-pull facebow headgear and fixed edgewise appliances have not been reported. The purpose of this study was to evaluate the long-term skeletal effects of treatment using high-pull headgear followed by fixed orthodontic appliances compared to an untreated control group. Changes in anteroposterior and vertical cephalometric measurements of 42 Class II subjects (n = 21, mean age = 10.7 years) before treatment, after headgear correction to Class I molar relationship, after treatment with fixed appliances, and after long-term retention (mean 4.1 years), were compared to similar changes in a matched control group (n = 21, mean age = 10.9 years) by multivariable linear regression models. Compared to control, the study group displayed significant long-term horizontal restriction of A-point (SNA = -1.925°, P < .0001; FH-NA = -3.042°, P < .0001; linear measurement A-point to Vertical Reference = -3.859 mm, P < .0001) and reduction of the ANB angle (-1.767°, P < .0001), with no effect on mandibular horizontal growth or maxillary and mandibular vertical skeletal changes. A-point horizontal restriction and forward mandibular horizontal growth accompanied the study group correction to Class I molar, and these changes were stable long term. One phase treatment for Class II malocclusion with high-pull headgear followed by fixed orthodontic appliances resulted in correction to Class I molar through restriction of horizontal maxillary growth with continued horizontal mandibular growth and vertical skeletal changes unaffected. The anteroposterior molar correction and skeletal effects of this treatment were stable long term.
140 W peak power laser system tunable in the LWIR.
Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gerard, Bruno; Ostendorf, Ralf; Rattunde, Marcel; Wagner, Joachim; Lallier, Eric
2017-08-07
We present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm. The OPA demonstrates parametric amplification from 8 µm to 10 µm and achieves output peak powers up to 140 W with spectral linewidths below 3.5 cm -1 . The beam profile quality (M 2 ) remains below 3.4 in both horizontal and vertical directions. Compared to the EC-QCL, the linewidth broadening is attributed to a coupling with the OPA.
SU-C-19A-05: Treatment Chairs for Modern Radiation Therapy Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Court, L; Fullen, D; Tharp, K
2014-06-15
Purpose: Treating patients in a seated position has potential advantages including improved comfort, increased lung volume, and reduced respiratory motion. We compared chair designs for head and neck, thoracic and breast patients for use with either IGRT linacs or a proposed low-cost fixed horizontal beam-line machine. Methods: Three treatment chairs were designed and constructed. Two of the chairs are based on a massage-chair, with the patient angled slightly forwards and knee rests used to minimize intra-fraction slouch. The third chair design is more conventional; the patient is angled backwards, with indexed positioning devices and the ability to attach thermoplastic masks.more » Patient geometries, including PTV location and patient sizes, were extracted from 137 CTs of past patients were used to model the probability of collision between the patient and the linac for various seated positions. All chairs were designed around the weight limits for couches on our linacs. At the time of writing we have just received IRB approval for imaging studies to evaluate comfort, and intra- and interfraction reproducibility. Results: The geometric analysis showed that head and neck patients and thoracic patients could be treated without collision. However, there is very limited space between the patient and the treatment/imaging devices, so careful design of the chair is essential. The position of the treatment target and extended arm positioning means that this is a particular concern for thoracic and breast patients. This was demonstrated for one of the prototype chairs designed for breast treatment where the arm holders would collide with the kV detector. The extra clearance of a dedicated fixed-beam linac would overcome these difficulties. Intra- and inter-fraction reproducibility results will be presented at the meeting. Conclusion: To take advantage of the clinical advantages of seated treatments, appropriate treatment chairs are needed. A dedicate fixed-beam linac may enable more options. This work was partially funded by Varian Medical Systems.« less
Momentum Flux Determination Using the Multi-beam Poker Flat Incoherent Scatter Radar
NASA Technical Reports Server (NTRS)
Nicolls, M. J.; Fritts, D. C.; Janches, Diego; Heinselman, C. J.
2012-01-01
In this paper, we develop an estimator for the vertical flux of horizontal momentum with arbitrary beam pointing, applicable to the case of arbitrary but fixed beam pointing with systems such as the Poker Flat Incoherent Scatter Radar (PFISR). This method uses information from all available beams to resolve the variances of the wind field in addition to the vertical flux of both meridional and zonal momentum, targeted for high-frequency wave motions. The estimator utilises the full covariance of the distributed measurements, which provides a significant reduction in errors over the direct extension of previously developed techniques and allows for the calculation of an error covariance matrix of the estimated quantities. We find that for the PFISR experiment, we can construct an unbiased and robust estimator of the momentum flux if sufficient and proper beam orientations are chosen, which can in the future be optimized for the expected frequency distribution of momentum-containing scales. However, there is a potential trade-off between biases and standard errors introduced with the new approach, which must be taken into account when assessing the momentum fluxes. We apply the estimator to PFISR measurements on 23 April 2008 and 21 December 2007, from 60-85 km altitude, and show expected results as compared to mean winds and in relation to the measured vertical velocity variances.
Emittance matching of a slow extracted beam for a rotating gantry
NASA Astrophysics Data System (ADS)
Fujimoto, T.; Iwata, Y.; Matsuba, S.; Fujita, T.; Sato, S.; Shirai, T.; Noda, K.
2017-09-01
The introduction of a heavy-ion rotating gantry is in progress at the Heavy Ion Medical Accelerator in Chiba (HIMAC) for realizing high-precision cancer therapy using heavy ions. A scanning irradiation method will be applied to this gantry course with 48-430 MeV/u beam energy. In the rotating gantry, the horizontal and vertical beam parameters are coupled by its rotation. To maintain a circular spot shape at the isocenter irrespective of the gantry angle, achieving symmetric phase space distribution of the horizontal and vertical beam at the entrance of the rotating gantry is necessary. Therefore, compensating the horizontal and vertical emittance is necessary. We consider using a thin scatterer method to compensate the emittance. After considering the optical design for emittance matching, the scatterer device is located in the high-energy beam transport line. In the beam commissioning, we confirm that the symmetrical spot shape is obtained at the isocenter without depending on the gantry angle.
Angle Control on the Optima HE/XE Ion Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Edward; Satoh, Shu
2008-11-03
The Optima HE/XE is the latest generation of high energy ion implanter from Axcelis, combining proven RF linear accelerator technology with new single wafer processing. The architecture of the implanter is designed to provide a parallel beam at the wafer plane over the full range of implant energies and beam currents. One of the advantages of this system is the ability to control both the horizontal and vertical implant angles for each implant. Included in the design is the ability to perform in situ measurements of the horizontal and vertical angles of the beam in real time. The method ofmore » the horizontal and vertical angle measurements is described in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubica, Jan; Kwiecien, Arkadiusz; Zajac, Boguslaw
2008-07-08
There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixingmore » are presented and discussed.« less
Characterisation of the muon beams for the Muon Ionisation Cooling Experiment
Adams, D.; Adey, D.; Alekou, A.; ...
2013-10-01
A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 π mm-rad horizontally and 0.6-1.0 π mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.
Anti-terrorist vehicle crash impact energy absorbing barrier
Swahlan, David J.
1989-01-01
An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism.
NASA Astrophysics Data System (ADS)
Sjöqvist, Lars; Allard, Lars; Gustafsson, Ove; Henriksson, Markus; Pettersson, Magnus
2011-11-01
Atmospheric turbulence effects close to ground may affect the performance of laser based systems severely. The variations in the refractive index along the propagation path cause effects such as beam wander, intensity fluctuations (scintillations) and beam broadening. Typical geometries of interest for optics detection include nearly horizontal propagation paths close to the ground and up to kilometre distance to the target. The scintillations and beam wander affect the performance in terms of detection probability and false alarm rate. Of interest is to study the influence of turbulence in optics detection applications. In a field trial atmospheric turbulence effects along a 1 kilometre horizontal propagation path were studied using a diode laser with a rectangular beam profile operating at 0.8 micrometer wavelength. Single-path beam characteristics were registered and analysed using photodetectors arranged in horizontal and vertical directions. The turbulence strength along the path was determined using a scintillometer and single-point ultrasonic anemometers. Strong scintillation effects were observed as a function of the turbulence strength and amplitude characteristics were fitted to model distributions. In addition to the single-path analysis double-path measurements were carried out on different targets. Experimental results are compared with existing theoretical turbulence laser beam propagation models. The results show that influence from scintillations needs to be considered when predicting performance in optics detection applications.
Angle Performance on Optima XE
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Satoh, Shu
2011-01-07
Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were ablemore » to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.« less
Reagan, Ian J; Brumbelow, Matthew L
2017-02-01
A previous open-road experiment indicated that curve-adaptive HID headlights driven with low beams improved drivers' detection of low conspicuity targets compared with fixed halogen and fixed HID low beam systems. The current study used the same test environment and targets to assess whether drivers' detection of targets was affected by the same three headlight systems when using high beams. Twenty drivers search and responded for 60 8×12inch targets of high or low reflectance that were distributed evenly across straight and curved road sections as they drove at 30 mph on an unlit two-lane rural road. The results indicate that target detection performance was generally similar across the three systems. However, one interaction indicated that drivers saw low reflectance targets on straight road sections from further away when driving with the fixed halogen high beam condition compared with curve-adaptive HID high beam headlights and also indicated a possible benefit for the curve-adaptive HID high beams for high reflectance targets placed on the inside of curves. The results of this study conflict with the previous study of low beams, which showed a consistent benefit for the curve-adaptive HID low beams for targets placed on curves compared with fixed HID and fixed halogen low beam conditions. However, a comparison of mean detection distances from the two studies indicated uniformly longer mean target detection distances for participants driving with high beams and implicates the potential visibility benefits for systems that optimize proper high beam use. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sidelooking laser altimeter for a flight simulator
NASA Technical Reports Server (NTRS)
Webster, L. D. (Inventor)
1983-01-01
An improved laser altimeter for a flight simulator which allows measurement of the height of the simulator probe above the terrain directly below the probe tip is described. A laser beam is directed from the probe at an angle theta to the horizontal to produce a beam spot on the terrain. The angle theta that the laser beam makes with the horizontal is varied so as to bring the beam spot into coincidence with a plumb line coaxial with the longitudinal axis of the probe. A television altimeter camera observes the beam spot and has a raster line aligned with the plumb line. Spot detector circuit coupled to the output of the TV camera monitors the position of the beam spot relative to the plumb line.
Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement
NASA Astrophysics Data System (ADS)
Samlan, C. T.; Viswanathan, Nirmal K.
2016-07-01
Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.
HORIZONTAL BEAM HOLE NO. 3. PLUG AND RADIATION DOOR HAVE ...
HORIZONTAL BEAM HOLE NO. 3. PLUG AND RADIATION DOOR HAVE BEEN REMOVED. EXPERIMENTAL APPARATUS WAS INSERTED INTO THE HOLE. NOTE VALVE CUBICLES NEAR FLOOR ON EACH SIDE OF HB-3. INL NEGATIVE NO. 3471. Unknown Photographer, 10/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
The horizontal and vertical cervico-ocular reflexes of the rabbit.
Barmack, N H; Nastos, M A; Pettorossi, V E
1981-11-16
Horizontal and vertical cervico-ocular reflexes of the rabbit (HCOR, VCOR) were evoked by sinusoidal oscillation of the body about the vertical and longitudinal axes while the head was fixed. These reflexes were studied over a frequency range of 0.005-0.800 Hz and at stimulus amplitudes of +/- 10 degrees. When the body of the rabbit was rotated horizontally clockwise around the fixed head, clockwise conjugate eye movements were evoked. When the body was rotated about the longitudinal axis onto the right side, the right eye rotated down and the left eye rotated up. The mean gain of the HCOR (eye velocity/body velocity) rose from 0.21 and 0.005 Hz to 0.27 at 0.020 Hz and then declined to 0.06 at 0.3Hz. The gain of the VCOR was less than the gain of the HCOR by a factor of 2-3. The HCOR was measured separately and in combination with the horizontal vestibulo-ocular reflex (HVOR). These reflexes combine linearly. The relative movements of the first 3 cervical vertebrae during stimulation of the HCOR and VCOR were measured. For the HCOR, the largest angular displacement (74%) occurs between C1 and C2. For the VCOR, the largest relative angular displacement (45%) occurs between C2 and C3. Step horizontal clockwise rotation of the head and body (HVOR) evoked low velocity counterclockwise eye movements followed by fast clockwise (resetting) eye movements. Step horizontal clockwise rotation of the body about the fixed head (HCOR) evoked low velocity clockwise eye movements which were followed by fast clockwise eye movements. Step horizontal clockwise rotation of the head about the fixed body (HCOR + HVOR) evoked low velocity counterclockwise eye movements which were not interrupted by fast clockwise eye movements. These data provide further evidence for a linear combination of independent HCOR and HVOR signals.
Electronic warfare antenna systems - Past and present
NASA Astrophysics Data System (ADS)
Yaw, D.
1981-09-01
In discussing fixed beam arrays, it is noted that an array may be used to create simultaneous fixed beams or to form asymmetric beams of a desired shape. Attention is also given to arrays and beam control, noting that for some electronic warfare applications combinations of broad and narrow beam antenna response are needed. Other topics include ECM jamming antenna techniques and advanced array systems.
Auditory, Vestibular and Cognitive Effects due to Repeated Blast Exposure on the Warfighter
2012-10-01
Gaze Horizontal (Left and Right) Description: The primary purpose of the Gaze Horizontal subtest was to detect nystagmus when the head is fixed and...to detect nystagmus when the head is fixed and the eyes are gazing off center from the primary (straight ahead) gaze position. This test is designed...physiological target area and examiner instructions for testing): Spontaneous Nystagmus Smooth Harmonic Acceleration (.01, .08, .32, .64, 1.75
Stress release structures for actuator beams with a stress gradient
NASA Astrophysics Data System (ADS)
Klaasse, G.; Puers, R.; Tilmans, H. A. C.
2007-10-01
Stress release structures are introduced in fixed-fixed beams or membranes for releasing average stress. The influence of a stress gradient on the initial deformation of a fixed-fixed beam with stress release structures is studied in this paper. The objective is to obtain actuator beams that are insensitive to both the average stress and the stress gradient. The target application for the actuator beam in this study is a surface micromachined variable capacitor with a fixed electrode at the center of the beam. An analytical one-dimensional model is derived which predicts the initial deflection of a fixed-fixed beam with one stress release structure at any location and with two stress release structures, placed symmetrically with respect to the center of the beam at any location. The initial center deflection of the beam with one stress release structure was found from the analytical modeling to be zero for a specific set of parameters, but a negative deflection is always present for this specific configuration, leading to beams that touch the substrate at undesired positions, which implies non-functional devices. The configuration with the two symmetrically placed stress release structures can have zero initial center deflection, according to the analytical model, when the stress release structures are placed at a distance of a quarter of the beam length from the anchor points. Finite-element simulations are performed for both configurations and validate the theory. Deviations from the assumed model result in small initial center deflections, but can be compensated for by a little shift of the stress release structures. Experiments are performed for less ideal configurations with two stress release structures where they are shaped as round meanders. These structures do not fully release the stress and the center deflection therefore depends on the average stress to some extent, as demonstrated by finite element simulations. However, the location can be chosen such that there is an initial center deflection that is close to zero. These experiments are, therefore, in qualitative agreement with the analytical model.
Matsuta, Naohiro; Hiryu, Shizuko; Fujioka, Emyo; Yamada, Yasufumi; Riquimaroux, Hiroshi; Watanabe, Yoshiaki
2013-04-01
The echolocation sounds of Japanese CF-FM bats (Rhinolophus ferrumequinum nippon) were measured while the bats pursued a moth (Goniocraspidum pryeri) in a flight chamber. Using a 31-channel microphone array system, we investigated how CF-FM bats adjust pulse direction and beam width according to prey position. During the search and approach phases, the horizontal and vertical beam widths were ±22±5 and ±13±5 deg, respectively. When bats entered the terminal phase approximately 1 m from a moth, distinctive evasive flight by G. pryeri was sometimes observed. Simultaneously, the bats broadened the beam widths of some emissions in both the horizontal (44% of emitted echolocation pulses) and vertical planes (71%). The expanded beam widths were ±36±7 deg (horizontal) and ±30±9 deg (vertical). When moths began evasive flight, the tracking accuracy decreased compared with that during the approach phase. However, in 97% of emissions during the terminal phase, the beam width was wider than the misalignment (the angular difference between the pulse and target directions). These findings indicate that bats actively adjust their beam width to retain the moving target within a spatial echolocation window during the final capture stages.
The echolocation transmission beam of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis).
Fang, Liang; Wu, Yuping; Wang, Kexiong; Pine, Matthew K; Wang, Ding; Li, Songhai
2017-08-01
While the transmission beam of odontocetes has been described in a number of studies, the majority of them that have measured the transmission beam in two dimensions were focused on captive animals. Within the current study, a dedicated cross hydrophone array with nine elements was used to investigate the echolocation transmission beam of free-ranging Indo-Pacific humpback dolphins. A total of 265 on-axis clicks were analyzed, from which the apparent peak to peak source levels ranged between 168 to 207 dB (mean 184.5 dB ± 6.6 dB). The 3-dB beam width along the horizontal and vertical plane was 9.6° and 7.4°, respectively. Measured separately, the directivity index of the horizontal and vertical plane was 12.6 and 13.5 dB, respectively, and the overall directivity index (both planes combined) was 29.5 dB. The beam shape was slightly asymmetrical along the horizontal and vertical axis. Compared to other species, the characteristics of the transmitting beam of Indo-Pacific humpback dolphins were relatively close to the bottlenose dolphin (Tursiops truncatus), likely due to the similarity in the peak frequency and waveform of echolocation clicks and comparable body sizes of the two species.
Lewis, I.A.D.
1956-05-15
This patent pentains to an electrical pulse amplitude analyzer, capable of accepting input pulses having a separation between adjacent pulses in the order of one microsecond while providing a large number of channels of classification. In its broad aspect the described pulse amplitude analyzer utilizes a storage cathode ray tube und control circuitry whereby the amplitude of the analyzed pulses controls both the intensity and vertical defiection of the beam to charge particular spots in horizontal sectors of the tube face as the beam is moved horizontally across the tube face. As soon as the beam has swept the length of the tube the information stored therein is read out by scanning individually each horizontal sector corresponding to a certain range of pulse amplitudes and applying the output signal from each scan to separate indicating means.
NASA Technical Reports Server (NTRS)
Curley, Michael J. (Inventor); Sarkisov, Sergey S. (Inventor)
2008-01-01
A refractometer computer controls the rotation of a rotary plate upon which are mounted a prism optically coupled via an optical window to a spectroscopic cell holding a resin exhibiting a dynamic refractive index during photocuring. The computer system positions the prism and spectroscopic cell relative to a visible light laser which illuminates the prism-resin interface at selected incidence angles. A photodetector mounted on the plate generates a signal to the computer proportional to intensity of an internally reflected light beam. A curing light is selectively transmitted through the prism and into the photocurable resin. The refractometer determines the intensity of the internally reflected beam a selected incidence angles and determines the effective refractive index curve of the resin at an uncured state and, optionally, at a completely cured state. Next, an amount of uncured resin and selected optical components to be joined by the resin is placed in the spectroscopic cell and irradiated with the UV light. The refractometer is fixed at a selected incidence angle and measures the intensity of an internally reflected light beam of light throughout the cure cycle. The refractometer determines the resin's refractive index of the polymeric mixture by means of extrapolation of a horizontal shift in the effective refractive index curve of the resin from an uncured state to a selected point in the cure cycle.
Global Positioning System Antenna Fixed Height Tripod Adapter
NASA Technical Reports Server (NTRS)
Dinardo, Steven J.; Smith, Mark A.
1997-01-01
An improved Global Positioning em antenna adaptor allows fixed antenna height measurements by removably attaching an adaptor plate to a conventional surveyor's tripod. Antenna height is controlled by an antenna boom which is a fixed length rod. The antenna is attached to one end of the boom. The opposite end of the boom tapers to a point sized to fit into a depression at the center of survey markers. The boom passes through the hollow center of a universal ball joint which is mounted at the center of the adaptor plate so that the point of the rod can be fixed in the marker's central depression. The mountains of the ball joint allow the joint to be moved horizontally in any direction relative to the tripod. When the ball joint is moved horizontally, the angle between the boom and the vertical changes because the boom's position is fixed at its lower end. A spirit level attached to the rod allows an operator to determine when the boom is plumb. The position of the ball joint is adjusted horizontally until the boom is plumb. At that time the antenna is positioned exactly over the center of the monument and the elevation of the antenna is precisely set by the length of the boom.
Variation of Shrinkage Strain within the Depth of Concrete Beams.
Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak
2015-11-16
The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs' equation, which accounts for the change of aggregate volume concentration.
Variation of Shrinkage Strain within the Depth of Concrete Beams
Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak
2015-01-01
The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs’ equation, which accounts for the change of aggregate volume concentration. PMID:28793677
Beam parameter optimization at CLIC using the process e+e- → HZ → Hq q bar at 380 GeV
NASA Astrophysics Data System (ADS)
Andrianala, F.; Raboanary, R.; Roloff, P.; Schulte, D.
2017-01-01
At CLIC and the ILC beam-beam forces lead to the emission of beamstrahlung photons and a reduction of the effective center-of-mass energy. This degradation is controlled by the choice of the horizontal beam size. A reduction of this parameter would increase the luminosity but also the beamstrahlung. In this paper the optimum choice for the horizontal beam size is investigated for one of the most important physics processes. The Higgsstrahlung process e+e- → HZ is identified in a model-independent manner by observing the Z boson and determining the mass against which it is recoiling. The physics analysis for this process is performed for constant running times, assuming different beam size and taking into account the resulting levels of integrated luminosity and the associated luminosity spectra.
Sawers, Andrew; Hafner, Brian J
2018-04-01
To evaluate the feasibility of fixed-width beam walking for assessing balance in lower limb prosthesis users. Cross-sectional. Laboratory. Lower limb prosthesis users. Participants attempted 10 walking trials on three fixed-width beams (18.6, 8.60, and 4.01 wide; 5.5 m long; 3.8 cm high). Beam-walking performance was quantified using the distance walked to balance failure. Heuristic rules applied to each participant's beam-walking distance to classify each beam as "too easy," "too hard," or "appropriately challenging" and determine whether any single beam provided an appropriate challenge to all participants. The number of trials needed to achieve stable beam-walking performance was quantified for appropriately challenging beams by identifying the last inflection point in the slope of each participant's trial-by-trial cumulative performance record. In all, 30 unilateral lower limb prosthesis users participated in the study. Each of the fixed-width beams was either too easy or too hard for at least 33% of the sample. Thus, no single beam was appropriately challenging for all participants. Beam-walking performance was stable by trial 8 for all participants and by trial 6 for 90% of participants. There was no significant difference in the number of trials needed to achieve stable performance among beams ( P = 0.74). Results suggest that a clinical beam-walking test would require multiple beams to evaluate balance across a range of lower limb prosthesis users, emphasizing the need for adaptive or progressively challenging balance tests. While the administrative burden of a multiple-beam balance test may limit clinical feasibility, alternatives to ease this administrative burden are proposed.
A Horizontal Multi-Purpose Microbeam System.
Xu, Y; Randers-Pehrson, G; Marino, S A; Garty, G; Harken, A; Brenner, D J
2018-04-21
A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.
A horizontal multi-purpose microbeam system
NASA Astrophysics Data System (ADS)
Xu, Y.; Randers-Pehrson, G.; Marino, S. A.; Garty, G.; Harken, A.; Brenner, D. J.
2018-04-01
A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.
Deflection-Compensating Beam for use inside a Cylinder
NASA Technical Reports Server (NTRS)
Goodman, Dwight; Myers, Neill; Herren, Kenneth
2008-01-01
A design concept for a beam for a specific application permits variations and options for satisfying competing requirements to minimize certain deflections under load and to minimize the weight of the beam. In the specific application, the beam is required to serve as a motion-controlled structure for supporting a mirror for optical testing in the lower third portion of a horizontal, cylindrical vacuum chamber. The cylindrical shape of the chamber is fortuitous in that it can be (and is) utilized as an essential element of the deflection-minimizing design concept. The beam is, more precisely, a table-like structure comprising a nominally flat, horizontal portion with vertical legs at its ends. The weights of the beam and whatever components it supports are reacted by the contact forces between the lower ends of the legs and the inner cylindrical chamber wall. Whereas the bending moments arising from the weights contribute to a beam deflection that is concave with its lowest point at midlength, the bending moments generated by the contact forces acting on the legs contribute to a beam deflection that is convex with its highest point at midlength. In addition, the bending of the legs in response to the weights causes the lower ends of the legs to slide downward on the cylindrical wall. By taking the standard beam-deflection equations, combining them with the geometric relationships among the legs and the horizontal portion of the beam, and treating the sliding as a component of deflection, it is possible to write an equation for the net vertical deflection as a function of the load and of position along the beam. A summary of major conclusions drawn from the equation characterization is included.
Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens).
Au, W W; Pawloski, J L; Nachtigall, P E; Blonz, M; Gisner, R C
1995-07-01
The echolocation transmission beam pattern of a false killer whale (Pseudorca crassidens) was measured in the vertical and horizontal planes. A vertical array of seven broadband miniature hydrophones was used to measure the beam pattern in the vertical plane and a horizontal array of the same hydrophones was used in the horizontal plane. The measurements were performed in the open waters of Kaneohe Bay, Oahu, Hawaii, while the whale performed a target discrimination task. Four types of signals, characterized by their frequency spectra, were measured. Type-1 signals had a single low-frequency peak at 40 +/- 9 kHz and a low-amplitude shoulder at high frequencies. Type-2 signals had a bimodal frequency characteristic with a primary peak at 46 +/- 7 kHz and a secondary peak at 88 +/- 13 kHz. Type-3 signals were also bimodal but with a primary peak at 100 +/- 7 kHz and a secondary peak at 49 +/- 9 kHz. Type-4 signals had a single high-frequency peak at 104 +/- 7 kHz. The center frequency of the signals were found to be linearly correlated to the peak-to-peak source level, increasing with increasing source level. The major axis of the vertical beam was directed slightly downward between 0 and -5 degrees, in contrast to the +5 to 10 degrees for Tursiops and Delphinapterus. The beam in the horizontal plane was directed forward between 0 degrees and -5 degrees.(ABSTRACT TRUNCATED AT 250 WORDS)
Analysis of the solar radiation data for Beer Sheva, Israel, and its environs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudish, A.I.; Ianetz, A.
The solar radiation climate of Beer Sheva, Israel, is reported upon in detail. The database utilized in this analysis consisted of global radiation on a horizontal surface, normal incidence beam radiation, and global radiation on a south-facing surface tilted at 40{degree}. Monthly-average hourly and daily values are reported for each of these three types of measured radiations, together with the calculated monthly-average daily values for the components of the global radiation, viz. the horizontal beam and diffuse radiations. The monthly-average hourly and daily clearness index values have also been calculated and analyzed. Monthly-average daily frequency distributions of the clearness indexmore » values are reported for each month. The solar radiation climate of Beer Sheva has also been compared to those reported for a number of countries in this region. The annual-average daily global radiation incident on a horizontal surface is 18.91 MG/m{sup 2} and that for normal incidence beam radiation is 21.17 MG/m{sup 2}. The annual-average daily fraction of the horizontal global radiation that is beam is 0.72. The annual-average daily value for the clearness index is 0.587 and the average frequency of clear days annually is 58.6%. The authors conclude, based upon the above analysis, that Beer Sheva and its environs are characterized by relatively high, average-daily irradiation rates, both global and beam, and a relatively high frequency of clear days.« less
Carvalho, Fabíola M; Souza, Rangel C; Barcellos, Fernando G; Hungria, Mariangela; Vasconcelos, Ana Tereza R
2010-02-08
Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle evolution in these microorganisms, although they may act in common stages of host infection. The phylogenetic analysis for many distinct operons involved in these processes emphasizes the relevance of horizontal gene transfer events in the symbiotic and pathogenic similarity.
An active K/Ka-band antenna array for the NASA ACTS mobile terminal
NASA Technical Reports Server (NTRS)
Tulintseff, A.; Crist, R.; Densmore, Art; Sukamto, L.
1993-01-01
An active K/Ka-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz. Satellite tracking for the land-mobile vehicular antenna system involves 'mechanical dithering' of the antenna, where the antenna radiates a fixed beam 46 deg. above the horizon. The antenna is to transmit horizontal polarization and receive vertical polarization at 29.634 plus or minus 0.15 GHz and 19.914 plus or minus 0.15 GHz, respectively. The active array will provide a minimum of 22 dBW EIRP transmit power density and a -8 dB/K deg. receive sensitivity.
An evaluation of the accuracy of some radar wind profiling techniques
NASA Technical Reports Server (NTRS)
Koscielny, A. J.; Doviak, R. J.
1983-01-01
Major advances in Doppler radar measurement in optically clear air have made it feasible to monitor radial velocities in the troposphere and lower stratosphere. For most applications the three dimensional wind vector is monitored rather than the radial velocity. Measurement of the wind vector with a single radar can be made assuming a spatially linear, time invariant wind field. The components and derivatives of the wind are estimated by the parameters of a linear regression of the radial velocities on functions of their spatial locations. The accuracy of the wind measurement thus depends on the locations of the radial velocities. The suitability is evaluated of some of the common retrieval techniques for simultaneous measurement of both the vertical and horizontal wind components. The techniques considered for study are fixed beam, azimuthal scanning (VAD) and elevation scanning (VED).
Measurement and Compensation of BPM Chamber Motion in HLS
NASA Astrophysics Data System (ADS)
Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.
2010-06-01
Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20μm without the compensation of BPM chamber motion in the runtime.
A pepper-pot emittance meter for low-energy heavy-ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kremers, H. R.; Beijers, J. P. M.; Brandenburg, S.
2013-02-15
A novel emittance meter has been developed to measure the four-dimensional, transverse phase-space distribution of a low-energy ion beam using the pepper-pot technique. A characteristic feature of this instrument is that the pepper-pot plate, which has a linear array of holes in the vertical direction, is scanned horizontally through the ion beam. This has the advantage that the emittance can also be measured at locations along the beam line where the beam has a large horizontal divergence. A set of multi-channel plates, scintillation screen, and ccd camera is used as a position-sensitive ion detector allowing a large range of beammore » intensities that can be handled. This paper describes the design, construction, and operation of the instrument as well as the data analysis used to reconstruct the four-dimensional phase-space distribution of an ion beam. Measurements on a 15 keV He{sup +} beam are used as an example.« less
ETS-VI multibeam satellite communications systems
NASA Astrophysics Data System (ADS)
Kawai, Makoto; Tanaka, Masayoshi; Ohtomo, Isao
1989-10-01
The fixed and mobile satellite communications systems of the Japanese Engineering Test Satellite-VI (ETS-VI) are described. The system requirements are outlined along with the system configuration. The ETS-VI multibeam system employs three frequency bands. When used for Ka-band fixed communications, it covers the Japanese main islands with thirteen 0.3-degree-wide spot beam. Four of the beams are active for ETS-VI. When used for S-band mobile communications, five beams cover the area within 200 nautical miles from the Japanese coast. The C-band beam for fixed communications covers the central area of the Japanese main islands with a single beam. The onboard antenna system is described along with the transponders and their associated onboard systems. A discussion of the system technology follows, covering the TDMA transmisssion system, the relay function, rainfall compensation, and the antenna and propagation performance.
Treatment planning for heavy ion radiotherapy: clinical implementation and application.
Jäkel, O; Krämer, M; Karger, C P; Debus, J
2001-04-01
The clinical implementation and application of a novel treatment planning system (TPS) for scanned ion beams is described, which is in clinical use for carbon ion treatments at the German heavy ion facility (GSI). All treatment plans are evaluated on the basis of biologically effective dose distributions. For therapy control, in-beam positron emission tomography (PET) and an online monitoring system for the beam intensity and position are used. The absence of a gantry restricts the treatment plans to horizontal beams. Most of the treatment plans consist of two nearly opposing lateral fields or sometimes orthogonal fields. In only a very few cases a single beam was used. For patients with very complex target volumes lateral and even distal field patching techniques were applied. Additional improvements can be achieved when the patient's head is fixed in a tilted position, in order to achieve sparing of the organs at risk. In order to test the stability of dose distributions in the case of patient misalignments we routinely simulate the effects of misalignments for patients with critical structures next to the target volume. The uncertainties in the range calculation are taken into account by a margin around the target volume of typically 2-3 mm, which can, however, be extended if the simulation demonstrates larger deviations. The novel TPS developed for scanned ion beams was introduced into clinical routine in December 1997 and was used for the treatment planning of 63 patients with head and neck tumours until July 2000. Planning strategies and methods were developed for this tumour location that facilitate the treatment of a larger number of patients with the scanned heavy ion beam in a clinical setting. Further developments aim towards a simultaneous optimization of the treatment field intensities and more effective procedures for the patient set-up. The results demonstrate that ion beams can be integrated into a clinical environment for treatment planning and delivery.
NASA Technical Reports Server (NTRS)
Cliff, W. C.; Huffaker, R. M.; Dahm, W. K.; Thomson, J. A. L.; Lawrence, T. R.; Krause, M. C.; Wilson, D. J. (Inventor)
1976-01-01
A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed.
Preparation of a primary argon beam for the CERN fixed target physics.
Küchler, D; O'Neil, M; Scrivens, R; Thomae, R
2014-02-01
The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.
Energy harvesting from controlled buckling of piezoelectric beams
NASA Astrophysics Data System (ADS)
Ansari, M. H.; Karami, M. Amin
2015-11-01
A piezoelectric vibration energy harvester is presented that can generate electricity from the weight of passing cars or crowds. The energy harvester consists of a piezoelectric beam, which buckles when the device is stepped on. The energy harvester can have a horizontal or vertical configuration. In the vertical (direct) configuration, the piezoelectric beam is vertical and directly sustains the weight of the vehicles or people. In the horizontal (indirect) configuration, the vertical weight is transferred to a horizontal axial force through a scissor-like mechanism. Buckling of the beam results in significant stresses and, thus, large power production. However, if the beam’s buckling is not controlled, the beam will fracture. To prevent this, the axial deformation is constrained to limit the deformations of the beam. In this paper, the energy harvester is analytically modeled. The considered piezoelectric beam is a general non-uniform beam. The natural frequencies, mode shapes, and the critical buckling force corresponding to each mode shape are calculated. The electro-mechanical coupling and the geometric nonlinearities are included in the model. The design criteria for the device are discussed. It is demonstrated that a device, realized with commonly used piezoelectric patches, can generate tens of milliwatts of power from passing car traffic. The proposed device could also be implemented in the sidewalks or integrated in shoe soles for energy generation. One of the key features of the device is its frequency up-conversion characteristics. The piezoelectric beam undergoes free vibrations each time the weight is applied to or removed from the energy harvester. The frequency of the free vibrations is orders of magnitude larger than the frequency of the load. The device is, thus, both efficient and insensitive to the frequency of the force excitations.
NASA Astrophysics Data System (ADS)
Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.
2016-11-01
As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.
Measurement and Compensation of BPM Chamber Motion in HLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J. W.; Sun, B. G.; Cao, Y.
2010-06-23
Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS.more » The horizontal drifts of beam orbit have been really suppressed within 20{mu}m without the compensation of BPM chamber motion in the runtime.« less
Kudish, Avraham I; Harari, Marco; Evseev, Efim G
2011-10-01
The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB radiation does penetrate this supposedly 'protective or comfort zone'. As a result, it is imperative to either apply sunscreen or cover up the exposed body surfaces even when under such shading devices. © 2011 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ody, A.; Musumeci, P.; Maxson, J.
In this study we discuss the application of the flat beam transform to generate beams suitable for injection into slab-symmetric dielectric laser-driven accelerators (DLAs). A study of the focusing requirements to keep the particles within the tight apertures characterizing these accelerators shows the benefits of employing ultralow beam emittances. The slab geometry of the many dielectric accelerating structures strongly favors the use of flat beams with large ratio between vertical and horizontal emittances. We employ particle tracking simulations to study the application of the flat beam transform for two injector designs, a DC non relativistic photogun and a 1.6 cellmore » S-band RF photoinjector, obtaining in both cases emittance ratios between the horizontal and vertical plane in excess of 100 in agreement with simple analytical estimates. The 4 MeV RF photoinjector study-case can be directly applied to the UCLA Pegasus beamline and shows normalized emittances down to < 3 nm in the vertical dimension for beam charges up to 20 fC, enabling a two-stage DLA experiment.« less
Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.
1993-01-01
The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.
A simple ion implanter for material modifications in agriculture and gemmology
NASA Astrophysics Data System (ADS)
Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.
2015-12-01
In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.
42. Fixed Span; General View of the Floor Beam, Stringer, ...
42. Fixed Span; General View of the Floor Beam, Stringer, & Lateral Bracing System; looking S. (from near to far: 6L & R, 5L & R, 4 L & R). - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA
High peak-power laser system tuneable from 8 to 10 μm
NASA Astrophysics Data System (ADS)
Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gérard, Bruno; Ostendorf, Ralf; Wagner, Joachim; Lallier, Eric
2017-04-01
A high peak-power rapidly tuneable laser system in the long-wave infrared is obtained using an external cavity quantum-cascade laser (EC-QCL) broadly tuneable from 8 to 10 μm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs). To provide an efficient amplification, the nonlinear crystal is pumped by a pulsed fiber laser source. With a pump laser source tuneable around 2 μm, quasi phase-matching remains satisfied with a fixed grating period in the OP-GaAs crystal when the EC-QCL wavelength is swept from 8 to 10 μm. The OPA demonstrates parametric amplification from 8 to 10 μm and achieves output peak powers up to 140 W, with spectral linewidths below 3.5 cm-1 and a beam profile quality (M2) below 3.4 in both horizontal and vertical directions.
Flat electron beam sources for DLA accelerators
Ody, A.; Musumeci, P.; Maxson, J.; ...
2016-10-26
In this study we discuss the application of the flat beam transform to generate beams suitable for injection into slab-symmetric dielectric laser-driven accelerators (DLAs). A study of the focusing requirements to keep the particles within the tight apertures characterizing these accelerators shows the benefits of employing ultralow beam emittances. The slab geometry of the many dielectric accelerating structures strongly favors the use of flat beams with large ratio between vertical and horizontal emittances. We employ particle tracking simulations to study the application of the flat beam transform for two injector designs, a DC non relativistic photogun and a 1.6 cellmore » S-band RF photoinjector, obtaining in both cases emittance ratios between the horizontal and vertical plane in excess of 100 in agreement with simple analytical estimates. The 4 MeV RF photoinjector study-case can be directly applied to the UCLA Pegasus beamline and shows normalized emittances down to < 3 nm in the vertical dimension for beam charges up to 20 fC, enabling a two-stage DLA experiment.« less
Emittance and lifetime measurement with damping wigglers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G. M.; Shaftan, T., E-mail: shaftan@bnl.gov; Cheng, W. X.
National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects inmore » the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.« less
Preparation of a primary argon beam for the CERN fixed target physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Küchler, D., E-mail: detlef.kuchler@cern.ch; O’Neil, M.; Scrivens, R.
2014-02-15
The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar{sup 11+} beam from the 14.5 GHz ECR ion source and the linear acceleratormore » (Linac3) at CERN.« less
Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Kissick, D. J.; Venugopalan, N.
Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam's susceptibility to higher frequency position oscillations. In this article, we show that a 1 mu m amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensitymore » at optimal alignment.« less
Effects of line-of-sight velocity on spaced-antenna measurements, part 3.5A
NASA Technical Reports Server (NTRS)
Royrvik, O.
1984-01-01
Horizontal wind velocities in the upper atmosphere, particularly the mesosphere, have been measured using a multitude of different techniques. Most techniques are based on stated or unstated assumptions about the wind field that may or may not be true. Some problems with the spaced antenna drifts (SAD) technique that usually appear to be overlooked are investigated. These problems are not unique to the SAD technique; very similar considerations apply to measurement of horizontal wind using multiple-beam Doppler radars as well. Simply stated, the SAD technique relies on scattering from multiple scatterers within an antenna beam of fairly large beam width. The combination of signals with random phase gives rise to an interference pattern on the ground. This pattern will drift across the ground with a velocity twice that of the ionospheric irregularities from which the radar signals are scattered. By using spaced receivers and measuring time delays of the signal fading in different antennas, it is possible to estimate the horizontal drift velocities.
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Westberg, David J.
2014-01-01
The DIRINDEX model was designed to estimate hourly solar beam irradiances from hourly global horizontal irradiances. This model was applied to the NASA GEWEX SRB(Rel. 3.0) 3-hourly global horizontal irradiance data to derive3-hourly global maps of beam, or direct normal, irradiance for the period from January 2000 to December 2005 at the 1 deg. x 1 deg. resolution. The DIRINDEX model is a combination of the DIRINT model, a quasi-physical global-to-beam irradiance model based on regression of hourly observed data, and a broadband simplified version of the SOLIS clear-sky beam irradiance model. In this study, the input variables of the DIRINDEX model are 3-hourly global horizontal irradiance, solar zenith angle, dew-point temperature, surface elevation, surface pressure, sea-level pressure, aerosol optical depth at 700 nm, and column water vapor. The resulting values of the 3-hourly direct normal irradiance are then used to compute daily and monthly means. The results are validated against the ground-based BSRN data. The monthly means show better agreement with the BSRN data than the results from an earlier endeavor which empirically derived the monthly mean direct normal irradiance from the GEWEX SRB monthly mean global horizontal irradiance. To assimilate the observed information into the final results, the direct normal fluxes from the DIRINDEX model are adjusted according to the comparison statistics in the latitude-longitude-cosine of solar zenith angle phase space, in which the inverse-distance interpolation is used for the adjustment. Since the NASA Surface meteorology and Solar Energy derives its data from the GEWEX SRB datasets, the results discussed herein will serve to extend the former.
Improved double-pass michelson interferometer
NASA Technical Reports Server (NTRS)
Schindler, R. A.
1978-01-01
Interferometer design separates beams by offsetting centerlines of cat's-eye retroreflectors vertically rather than horizontally. Since beam splitter is insensitive to minimum-thickness condition in this geometry, relatively-low-cost, optically flat plate can be used.
NASA Astrophysics Data System (ADS)
Sukrawa, Made
2017-11-01
Experimental and analytical researches on the effect of web opening in steel beams have been repeatedly reported in literature because of the advantages gain from the many function of the opening. Most of the research on this area, however, did not consider deformation and stress in the beam due to axial force. In seismic design of steel structure, the axial force in the beam could be significantly high and therefore worth considering. In this study a beam extracted from a braced frame structure was analyzed using finite element models to investigate the effect of combined bending and axial forces on the deformation and stresses in the vicinity of the opening. Large size of square, rectangular, and circular openings of the same depth were reinforced and placed in pair, symmetrical to the concentrated load at mid span of the beam. Four types of reinforcement were used, all around (AA), short horizontal (SH), long horizontal (LH), and doubler plate (DP). The effect of axial load was also investigated using rigid frame model loaded vertically and laterally. Validation of the modelling technique was done prior to the parametric study. It was revealed that the axial force significantly contributes to the stress concentration near the hole. Stiffener of circular shape was effective to improve the stress distribution around the circular opening. For square and rectangular openings, however, the horizontal stiffener, extended beyond the edge of opening, performed better than the other type of stiffeners.
National Institute of Standards and Technology Data Gateway
SRD 166 MEMS Calculator (Web, free access) This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.
TRACKING SIMULATIONS NEAR HALF-INTEGER RESONANCE AT PEP-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosochkov, Yuri
2003-05-13
Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron and chromatic perturbations which tend to reduce dynamic aperture. In the study, chromatic variation of horizontal tune near the resonance was minimized by optimizing local sextupoles in the Interaction Region. Dynamic aperture was calculated using tracking simulations in LEGO code. Dependence of dynamic aperture on the residual orbit, dispersion and {beta} distortion after correction was investigated.
47 CFR 25.210 - Technical requirements for space stations in the Fixed-Satellite Service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the Fixed-Satellite Service. 25.210 Section 25.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION.../30 GHz band shall employ state-of-the-art full frequency reuse either through the use of orthogonal polarizations within the same beam and/or through the use of spatially independent beams. (e) [Reserved] (f) All...
47 CFR 25.210 - Technical requirements for space stations in the Fixed-Satellite Service.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the Fixed-Satellite Service. 25.210 Section 25.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION.../30 GHz band shall employ state-of-the-art full frequency reuse either through the use of orthogonal polarizations within the same beam and/or through the use of spatially independent beams. (e) [Reserved] (f) All...
47 CFR 25.210 - Technical requirements for space stations in the Fixed-Satellite Service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the Fixed-Satellite Service. 25.210 Section 25.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION.../30 GHz band shall employ state-of-the-art full frequency reuse either through the use of orthogonal polarizations within the same beam and/or through the use of spatially independent beams. (e) [Reserved] (f) All...
Generic simulation of multi-element ladar scanner kinematics in USU LadarSIM
NASA Astrophysics Data System (ADS)
Omer, David; Call, Benjamin; Pack, Robert; Fullmer, Rees
2006-05-01
This paper presents a generic simulation model for a ladar scanner with up to three scan elements, each having a steering, stabilization and/or pattern-scanning role. Of interest is the development of algorithms that automatically generate commands to the scan elements given beam-steering objectives out of the ladar aperture, and the base motion of the sensor platform. First, a straight-forward single-element body-fixed beam-steering methodology is presented. Then a unique multi-element redirective and reflective space-fixed beam-steering methodology is explained. It is shown that standard direction cosine matrix decomposition methods fail when using two orthogonal, space-fixed rotations, thus demanding the development of a new algorithm for beam steering. Finally, a related steering control methodology is presented that uses two separate optical elements mathematically combined to determine the necessary scan element commands. Limits, restrictions, and results on this methodology are presented.
NASA Astrophysics Data System (ADS)
Choi, Hongseok; Park, Jong-Oh; Ko, Seong Young; Park, Sukho; Cho, Sungho; Jung, Won-Gyun; Park, Yong Kyun; Kang, Jung Suk
2016-10-01
This paper describes a robotic patient positioning system (PPS) for a fixed-beam heavy-ion therapy system. In order to extend the limited irradiation angle range of the fixed beam, we developed a 6-degree-of-freedom (6-DOF) serial-link robotic arm and used it as the robotic PPS for the fixed-beam heavy-ion therapy system. This research aims to develop a robotic PPS for use in the Korea Heavy Ion Medical Accelerator (KHIMA) system, which is under development at the Korea Institute of Radiological & Medical Sciences (KIRAMS). In particular, we select constraints and criteria that will be used for designing and evaluating the robotic PPS through full consultation with KIRAMS. In accordance with the constraints and criteria, we develop a 6-DOF serial-link robotic arm that consists of six revolute joints for the robotic PPS, where the robotic arm covers the upper body of a patient as a treatment area and achieves a 15 ° roll and pitch angle in the treatment area without any collision. Various preliminary experiments confirm that the robotic PPS can meet all criteria for extension of the limited irradiation angle range in the treatment area and has a positioning repeatability of 0.275 mm.
Lidar arc scan uncertainty reduction through scanning geometry optimization
NASA Astrophysics Data System (ADS)
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.
2016-04-01
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.
Lidar arc scan uncertainty reduction through scanning geometry optimization
NASA Astrophysics Data System (ADS)
Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.
2015-10-01
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.
Numerical analysis of nonminimum phase zero for nonuniform link design
NASA Technical Reports Server (NTRS)
Girvin, Douglas L.; Book, Wayne J.
1991-01-01
As the demand for light-weight robots that can operate in a large workspace increases, the structural flexibility of the links becomes more of an issue in control. When the objective is to accurately position the tip while the robot is actuated at the base, the system is nonminimum phase. One important characteristic of nonminimum phase systems is system zeros in the right half of the Laplace plane. The ability to pick the location of these nonminimum phase zeros would give the designer a new freedom similar to pole placement. This research targets a single-link manipulator operating in the horizontal plane and modeled as a Euler-Bernoulli beam with pinned-free end conditions. Using transfer matrix theory, one can consider link designs that have variable cross-sections along the length of the beam. A FORTRAN program was developed to determine the location of poles and zeros given the system model. The program was used to confirm previous research on nonminimum phase systems, and develop a relationship for designing linearly tapered links. The method allows the designer to choose the location of the first pole and zero and then defines the appropriate taper to match the desired locations. With the pole and zero location fixed, the designer can independently change the link's moment of inertia about its axis of rotation by adjusting the height of the beam. These results can be applied to the inverse dynamic algorithms that are currently under development.
Numerical analysis of nonminimum phase zero for nonuniform link design
NASA Astrophysics Data System (ADS)
Girvin, Douglas L.; Book, Wayne J.
1991-11-01
As the demand for light-weight robots that can operate in a large workspace increases, the structural flexibility of the links becomes more of an issue in control. When the objective is to accurately position the tip while the robot is actuated at the base, the system is nonminimum phase. One important characteristic of nonminimum phase systems is system zeros in the right half of the Laplace plane. The ability to pick the location of these nonminimum phase zeros would give the designer a new freedom similar to pole placement. This research targets a single-link manipulator operating in the horizontal plane and modeled as a Euler-Bernoulli beam with pinned-free end conditions. Using transfer matrix theory, one can consider link designs that have variable cross-sections along the length of the beam. A FORTRAN program was developed to determine the location of poles and zeros given the system model. The program was used to confirm previous research on nonminimum phase systems, and develop a relationship for designing linearly tapered links. The method allows the designer to choose the location of the first pole and zero and then defines the appropriate taper to match the desired locations. With the pole and zero location fixed, the designer can independently change the link's moment of inertia about its axis of rotation by adjusting the height of the beam. These results can be applied to the inverse dynamic algorithms that are currently under development.
Improvements, upgrades, and plans for Thomson scattering on DIII-D
NASA Astrophysics Data System (ADS)
Carlstrom, T. N.; Du, D.; Glass, F.; Liu, C.; Watkins, M.; McLean, A. G.
2016-10-01
The Thomson scattering diagnostic on DIII-D consists of 3 beam lines that probe vertically, horizontally, and in the divertor region of the tokamak, with 54 spatial locations, edge spatial resolution down to 5 mm, and 10 Nd:YAG lasers. In its 25-year history, the collection lens optics and interference filters degraded and have been replaced, restoring previous performance. In addition, improved calibrations and detector temperature control (+/- 0.1 C) have reduced systematic errors. Cross calibration with the CO2 interferometer and ECE cut-off have improved the density calibration. Improvements to the beam line and lasers have increased the laser energy delivered to the scattering volume in the plasma. Future plans include moving the divertor system to measure regions of high triangularity using in-vessel mirrors to redirect the laser beam; adding a wide angle lens to the horizontal system to view the entire plasma radius near the plasma mid plane; and reversing the direction of the laser beam on the horizontal system to reduce the scattering angle and compressing the spectrum in wavelength space so that higher central Te measurements (<5 KeV) can be made with improved accuracy. Work supported by the US DOE under DE-FC02-04ER54698 and by LLNL under DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokosawa, A.
We summarize activities concerning the Fermilab polarized beams. They include a description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the production at large x, and experiments with polarized beams during the next fixed-target period. 8 refs., 9 figs.
NASA Technical Reports Server (NTRS)
Wilson, R. E.
1981-01-01
Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.
ERIC Educational Resources Information Center
Hadzigeorgiou, Yannis; Anastasiou, Leonidas; Konsolas, Manos; Prevezanou, Barbara
2009-01-01
The purpose of this study was to investigate whether participation in sensorimotor activities by preschool children involving their own bodily balance while walking on a beam over the floor has an effect on their understanding of the mechanical equilibrium of a balance beam. The balance beam consisted of a horizontal stick balancing around its…
Effect of electron beam cooling on transversal and longitudinal emittance of an external proton beam
NASA Astrophysics Data System (ADS)
Kilian, K.; Machner, H.; Magiera, A.; Prasuhn, D.; von Rossen, P.; Siudak, R.; Stein, H. J.; Stockhorst, H.
2018-02-01
Benefits of electron cooling to the quality of extracted ion beams from storage rings are discussed. The transversal emittances of an external proton beam with and without electron cooling at injection energy are measured with the GEM detector assembly. While the horizontal emittance remains the vertical emittance shrinks by the cooling process. The longitudinal momentum variance is also reduced by cooling.
NASA Technical Reports Server (NTRS)
Kohl, R. H.; Flaherty, M. I.; Partin, R. L.
1977-01-01
The optical properties of a wide variety of atmospheric dispersions were studied using a 0.9-micron lidar system which included a GaAs laser stack transmitter emitting a horizontally polarized beam of 4 milliradians vertical divergence and 1.5 milliradians horizontal divergence. A principal means for assessing optical properties was the polarization ratio, that is, the backscattered radiation power perpendicular to the transmitter beam divided by the backscattered radiation power parallel to the beam polarization. The ratio of the backscattered fraction to the attenuation coefficient was also determined. Data on the dispersion properties of black carbon smoke, road dust, fog, fair-weather cumulus clouds, snow and rain were obtained; the adverse effects of sunlight-induced background noise on the readings is also discussed.
Horizontal Axis Levitron--A Physics Demonstration
ERIC Educational Resources Information Center
Michaelis, Max M.
2014-01-01
After a brief history of the Levitron, the first horizontal axis Levitron is reported. Because it is easy to operate, it lends itself to educational physics experiments and analogies. Precession and nutation are visualized by reflecting the beam from a laser pointer off the "spignet". Precession is fundamental to nuclear magnetic…
SPIDER beam dump as diagnostic of the particle beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E.; Consorzio RFX, Corso Stati Uniti 4, Padova 35127
The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography andmore » beam emission spectroscopy.« less
SPIDER beam dump as diagnostic of the particle beam
NASA Astrophysics Data System (ADS)
Zaupa, M.; Dalla Palma, M.; Sartori, E.; Brombin, M.; Pasqualotto, R.
2016-11-01
The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucholz, J.A.
The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.
Fixed-angle plate osteosynthesis of the patella - an alternative to tension wiring?
Wild, M; Eichler, C; Thelen, S; Jungbluth, P; Windolf, J; Hakimi, M
2010-05-01
The goal of this study is carry out a biomechanical evaluation of the stability of a bilateral, polyaxial, fixed-angle 2.7 mm plate system specifically designed for use on the patella. The results of this approach are then compared to the two currently most commonly used surgical techniques for patella fractures: modified anterior tension wiring with K-wires and cannulated lag screws with anterior tension wiring. A transient biomechanical analysis determining material failure points of all osteosyntheses were conducted on 21 identical left polyurethane foam patellae, which were osteotomized horizontally. Evaluated were load (N), displacement (mm) and run-time (s) as well as elastic modulus (MPa), tensile strength (MPa) and strain at failure (%). With a maximum load capacity of 2396 (SD 492) N, the fixed-angle plate proved to be significantly stronger than the cannulated lag screws with anterior tension wiring (1015 (SD 246) N) and the modified anterior tension wiring (625 (SD 84.9) N). The fixed-angle plate displayed significantly greater stiffness and lower fracture gap dehiscence than the other osteosyntheses. Additionally, osteosynthesis deformation was found to be lower for the fixed-angle plate. A bilateral fixed-angle plate was the most rigid and stable osteosynthesis for horizontal patella fractures with the least amount of fracture gap dehiscence. Further biomechanical trials performed under cycling loading with fresh cadaver specimen should be done to figure out if a fixed-angle plate may be an alternative in the surgical treatment of patella fractures. Copyright 2009 Elsevier Ltd. All rights reserved.
An embeddable optical strain gauge based on a buckled beam.
Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie
2017-11-01
We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.
An embeddable optical strain gauge based on a buckled beam
NASA Astrophysics Data System (ADS)
Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie
2017-11-01
We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.
Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback
NASA Astrophysics Data System (ADS)
Do, K. D.
2018-05-01
Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.
Carpenter, Donald A.
1995-01-01
A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.
Carpenter, D.A.
1995-05-23
A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data. 7 Figs.
Comparison of five-axis milling and rapid prototyping for implant surgical templates.
Park, Ji-Man; Yi, Tae-Kyoung; Koak, Jai-Young; Kim, Seong-Kyoon; Park, Eun-Jin; Heo, Seong-Joo
2014-01-01
This study aims to compare and evaluate the accuracy of surgical templates fabricated using coordinate synchronization processing with five-axis milling and design-related processing with rapid prototyping (RP). Master phantoms with 10 embedded gutta-percha cylinders hidden under artificial gingiva were fabricated and imaged using cone beam computed tomography. Vectors of the hidden cylinders were extracted and transferred to those of the planned implants through reverse engineering using virtual planning software. An RP-produced template was fabricated by stereolithography in photopolymer at the RP center according to planned data. Metal sleeves were bonded after holes were bored (group RP). For the milled template, milling coordinates were synchronized using the conversion process for the coordinate synchronization platform located on the model's bottom. Metal bushings were set on holes milled on the five-axis milling machine, on which the model was fixed through the coordinate synchronization plate, and the framework was constructed on the model using orthodontic resin (group CS). A computed tomography image was taken with templates firmly fixed on models using anchor pins (RP) or anchor screws (CS). The accuracy was analyzed via reverse engineering. Differences between the two groups were compared by repeated measures two-factor analysis. From the reverse-engineered image of the template on the experimental model, RP-produced templates showed significantly larger deviations than did milled surgical guides. Maximum deviations of the group RP were 1.58 mm (horizontal), 1.68 mm (vertical), and 8.51 degrees (angular); those of the group CS were 0.68 mm (horizontal), 0.41 mm (vertical), and 3.23 degrees (angular). A comparison of milling and RP template production methods showed that a vector-milled surgical guide had significantly smaller deviations than did an RP-produced template. The accuracy of computer-guided milled surgical templates was within the safety margin of previous studies.
Beam commissioning of a superconducting rotating-gantry for carbon-ion radiotherapy
NASA Astrophysics Data System (ADS)
Iwata, Y.; Fujimoto, T.; Matsuba, S.; Fujita, T.; Sato, S.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saraya, Y.; Tansho, R.; Saotome, N.; Shirai, T.; Noda, K.
2016-10-01
A superconducting rotating-gantry for carbon-ion radiotherapy was developed. This isocentric gantry can transport carbon ions having kinetic energies of between E=430 and 48 MeV/u to an isocenter over an angle of ±180°, and is further capable of performing three-dimensional raster-scanning irradiation. Construction of the entire rotating-gantry system was completed by the end of September 2015. Prior to beam commissioning, phase-space distributions of extracted carbon beams from the synchrotron were deduced by using an empirical method. In this method, phase-space distributions at the extraction channel of the synchrotron were modeled with 8 parameters, and the best parameters were determined so as to minimize a difference between the calculated and measured beam profiles by using a simplex method. Based on the phase-space distributions, beam optics through the beam-transport lines as well as the rotating gantry were designed. Since horizontal and vertical beam emittances, as extracted slowly from the synchrotron, generally differ with each other, a horizontal-vertical beam coupling would occur when the gantry rotates. Thus, the size and shape of beam spots at the isocenter should vary depending on the gantry angle. To compensate for the difference in the emittances, we employed a method to utilize multiple Coulomb scattering of the beam particles by a thin scatterer. Having compensated for the emittances and designed beam optics through the rotating gantry, beam commissioning over various combinations of gantry angles and beam energies was performed. By finely tuning the superconducting quadrupoles of the rotating gantry, we could successfully obtain the designed beam quality, which satisfies the requirements of scanning irradiation.
Convection currents in a water calorimeter.
Schulz, R J; Weinhous, M S
1985-10-01
A flexible, temperature-regulated water calorimeter has been constructed containing two pairs of thermistor sensors at depths of 6.23 and 10.0 cm. It may be irradiated by vertical or horizontal beams, and operated at temperatures in the range from 3 to 40 degrees C. When irradiated at 30 degrees C with a vertically downward 19 MeV electron beam, the responses of the proximal and midline thermistors were in accordance with the depth-dose curve. When irradiated horizontally, the initial patterns of temperature rise were the same, but after about 30 s (4 Gy) the rate of temperature rise decreased at the proximal thermistors and increased at the midline thermistors. Shortly after irradiation, the temperature curve and increased at the midline thermistors. Shortly after irradiation, the temperature curve of the midline thermistors crossed that for the proximal thermistors, a pattern that suggested the presence of convection currents. To test this hypothesis, the calorimeter was operated at 4 degrees C. The temperature patterns for horizontal irradiation became the same as those obtained with vertical beams, thus demonstrating the production of convection currents in water at a temperature of 30 degrees C for temperature gradients as small as 10(-3) degrees C cm-1.
Experience with Round Beam Operation at The Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, A.; Emery, L.; Sajaev, V.
2015-01-01
Very short Touschek lifetime becomes a common issue for next-generation ultra-low emittance storage ring light sources. In order to reach a longer beamlifetime, such amachine often requires operating with a vertical-to-horizontal emittance ratio close to an unity, i.e. a “round beam”. In tests at the APS storage ring, we determined how a round beam can be reached experimentally. Some general issues, such as beam injection, optics measurement and corrections, and orbit correction have been tested also. To demonstrate that a round beam was achieved, the beam size ratio is calibrated using beam lifetime measurement.
Kaminaka, Akihiro; Nakano, Tamaki; Ono, Shinji; Kato, Tokinori; Yatani, Hirofumi
2015-10-01
This study evaluated changes in the horizontal and vertical dimensions of the buccal alveolar bone and soft tissue over a 1-year period following implant prosthesis. Thirty-three participants with no history of guided bone regeneration or soft tissue augmentation underwent dental implant placement with different types of connections. The dimensions of the buccal alveolar bone and soft tissue were evaluated immediately and at 1 year after prosthesis from reconstructions of cross-sectional cone-beam computed tomography images. The vertical and horizontal loss of buccal bone and soft tissue around implants with conical connections were lower than around those with external or internal connections. Statistically significant negative correlations were observed between initial horizontal bone thickness and changes in vertical bone and soft tissue height (p < .05), and between initial horizontal soft tissue thickness and the change in vertical soft tissue height (p < .05). Implants with a conical connection preserve peri-implant alveolar bone and soft tissue more effectively than other connection types. Furthermore, the initial buccal alveolar bone and soft tissue thickness around the implant platform may influence their vertical dimensional changes at 1 year after implant prosthesis. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HUANG,H.; AHRENS, L.; BAI, M.
Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.
Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.
Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen
2011-08-01
A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.
Lidar arc scan uncertainty reduction through scanning geometry optimization
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...
2016-04-13
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less
Lidar arc scan uncertainty reduction through scanning geometry optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less
Practicality of electronic beam steering for MST/ST radars, part 6.2A
NASA Technical Reports Server (NTRS)
Clark, W. L.; Green, J. L.
1984-01-01
Electronic beam steering is described as complex and expensive. The Sunset implementation of electronic steering is described, and it is demonstrated that such systems are cost effective, versatile, and no more complex than fixed beam alternatives, provided three or more beams are needed. The problem of determining accurate meteorological wind components in the presence of spatial variation is considered. A cost comparison of steerable and fixed systems allowing solution of this problem is given. The concepts and relations involved in phase steering are given, followed by the description of the Sunset ST radar steering system. The implications are discussed, references to the competing SAD method are provided, and a recommendation concerning the design of the future Doppler ST/MST systems is made.
Detail of 25' highband reflector screen pole showing the horizontal ...
Detail of 25' high-band reflector screen pole showing the horizontal wood beams and vertical wires hung from ceramic insulators, note the dipole antenna element and 94' low-band reflector screen poles in background, view facing north - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.
2005-01-01
The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.
Pixelated transmission-mode diamond X-ray detector.
Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik
2015-11-01
Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60-100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼ 1 kHz, which leads to an image sampling rate of ∼ 30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5-15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10(-2) to 90 W mm(-2). Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%).
Cummings, Brian J; Engesser-Cesar, Christie; Cadena, Gilbert; Anderson, Aileen J
2007-02-27
Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record of the event, is easily administered, and is unambiguously scored. Although a ladder beam apparatus for mice is available, its use in the assessment of recovery in SCI mice is rare, possibly because normative data for uninjured mice and the type of step misplacements injured mice exhibit is lacking. We report the development of a modified ladder beam instrument and scoring system to measure hindlimb recovery in vertebral T9 contusion spinal cord injured mice. The mouse ladder beam allows for the use of standard parametric statistical tests to assess locomotor recovery. Ladder beam performance is consistent across four strains of mice, there are no sex differences, and inter-rater reliability between observers is high. The ladder beam score is proportional to injury severity and can be used to easily separate mice capable of weight-supported stance up to mice with consistent forelimb to hindlimb coordination. Critically, horizontal ladder beam testing discriminates between mice that score identically in terms of stepping frequency in open-field testing.
Cummings, Brian J.; Engesser-Cesar, Christie; Anderson, Aileen J.
2007-01-01
Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record of the event, is easily administered, and is unambiguously scored. Although a ladder beam apparatus for mice is available, its use in the assessment of recovery in SCI mice is rare, possibly because normative data for uninjured mice and the type of step misplacements injured mice exhibit is lacking. We report the development of a modified ladder beam instrument and scoring system to measure hindlimb recovery in vertebral T9 contusion spinal cord injured mice. The mouse ladder beam allows for the use of standard parametric statistical tests to assess locomotor recovery. Ladder beam performance is consistent across four strains of mice, there are no sex differences, and inter-rater reliability between observers is high. The ladder beam score is proportional to injury severity and can be used to easily separate mice capable of weight-supported stance up to mice with consistent forelimb to hindlimb coordination. Critically, horizontal ladder beam testing discriminates between mice that score identically in terms of stepping frequency in open-field testing. PMID:17197044
Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Kissick, D. J.; Venugopalan, N.
Small X-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation X-ray beamlines is the slow detuning of X-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1 µm amplitude horizontal X-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity atmore » optimal alignment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhymbek, Meiram Erkanatuly; Yessirkegenov, Nurgissa Amankeldiuly; Sadybekov, Makhmud Abdysametovich
2015-09-18
In the current paper, the problem of bending vibrations of a beam in which the binding on the right end is unknown and not available for visual inspection is studied. The main objective is to study an inverse problem: find additional unknown boundary conditions by additional spectral data, i.e., the conditions of fixing the right end of the rod. In this work, unlike many other works, as such additional conditions we choose the first natural frequencies (eigenvalues) of two new problems corresponding to the problem of bending vibrations of a beam with loads of different weights at the central point.
26. Detail view of drum girder with rollers below, resting ...
26. Detail view of drum girder with rollers below, resting on fixed turntable upon masonry center pier. Swing drive shaft (vertical) is turned by level gear of horizontal shaft (protruding through machine room wall), which turns pinion gear toothed to fixed turntable rack below rollers. (Nov. 25, 1988) - University Heights Bridge, Spanning Harlem River at 207th Street & West Harlem Road, New York County, NY
Bolt beam propagation analysis
NASA Astrophysics Data System (ADS)
Shokair, I. R.
BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.
Atsumi, Satoru; Hara, Kunio; Arai, Yuji; Yamada, Manabu; Mizoshiri, Naoki; Kamitani, Aguri; Kubo, Toshikazu
2018-01-01
Abstract Rationale: Considering the risk of osteoarthritis following resection of a horizontally torn meniscus of the knee, repairing and preserving the meniscus as much as possible is preferred. We report 3 cases of restoration of horizontally torn menisci using a novel arthroscopic method we have called “all-inside interleaf vertical suture” that afforded preservation. Patient concerns: The 3 patients (aged 14, 17, and 21 years) had knee pain through sports activity. Diagnoses: All patients had horizontal tears in the posteromedial part of the meniscus. Interventions: The method uses Fast-Fix, whereby a first anchor is inserted from the tibial surface of the tear's superior leaflet and a second anchor is inserted from the femoral surface of the tear's inferior leaflet, and the 2 leaflets are closed using vertical suture. In all cases, the suture knots were embedded between the superior leaflet and inferior leaflet, avoiding contact with the articular cartilage, and superior leaflet and inferior leaflet crimping was good. Outcomes: All 3 were able to resume competing in sport and ≥ 1 year after surgery they had no pain and their postoperative mean Lysholm scores were 99.7. There were no complications or recurrence. On magnetic resonance imaging, the signal intensity of all the horizontal tears was high before surgery but low after surgery, suggesting that the repaired tear was healing. Lessons: The all-inside interleaf vertical suture procedure is a new surgical technique that can repair posteromedial horizontal meniscal tears of the knee of young people by easy crimping of the superior and inferior leaflets without the suture knots causing complications. PMID:29443758
Analytic reconstruction algorithms for triple-source CT with horizontal data truncation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ming; Yu, Hengyong, E-mail: hengyong-yu@ieee.org
2015-10-15
Purpose: This paper explores a triple-source imaging method with horizontal data truncation to enlarge the field of view (FOV) for big objects. Methods: The study is conducted by using theoretical analysis, mathematical deduction, and numerical simulations. The proposed algorithms are implemented in c + + and MATLAB. While the basic platform is constructed in MATLAB, the computationally intensive segments are coded in c + +, which are linked via a MEX interface. Results: A triple-source circular scanning configuration with horizontal data truncation is developed, where three pairs of x-ray sources and detectors are unevenly distributed on the same circle tomore » cover the whole imaging object. For this triple-source configuration, a fan-beam filtered backprojection-type algorithm is derived for truncated full-scan projections without data rebinning. The algorithm is also extended for horizontally truncated half-scan projections and cone-beam projections in a Feldkamp-type framework. Using their method, the FOV is enlarged twofold to threefold to scan bigger objects with high speed and quality. The numerical simulation results confirm the correctness and effectiveness of the developed algorithms. Conclusions: The triple-source scanning configuration with horizontal data truncation cannot only keep most of the advantages of a traditional multisource system but also cover a larger FOV for big imaging objects. In addition, because the filtering is shift-invariant, the proposed algorithms are very fast and easily parallelized on graphic processing units.« less
Analytic reconstruction algorithms for triple-source CT with horizontal data truncation.
Chen, Ming; Yu, Hengyong
2015-10-01
This paper explores a triple-source imaging method with horizontal data truncation to enlarge the field of view (FOV) for big objects. The study is conducted by using theoretical analysis, mathematical deduction, and numerical simulations. The proposed algorithms are implemented in c + + and matlab. While the basic platform is constructed in matlab, the computationally intensive segments are coded in c + +, which are linked via a mex interface. A triple-source circular scanning configuration with horizontal data truncation is developed, where three pairs of x-ray sources and detectors are unevenly distributed on the same circle to cover the whole imaging object. For this triple-source configuration, a fan-beam filtered backprojection-type algorithm is derived for truncated full-scan projections without data rebinning. The algorithm is also extended for horizontally truncated half-scan projections and cone-beam projections in a Feldkamp-type framework. Using their method, the FOV is enlarged twofold to threefold to scan bigger objects with high speed and quality. The numerical simulation results confirm the correctness and effectiveness of the developed algorithms. The triple-source scanning configuration with horizontal data truncation cannot only keep most of the advantages of a traditional multisource system but also cover a larger FOV for big imaging objects. In addition, because the filtering is shift-invariant, the proposed algorithms are very fast and easily parallelized on graphic processing units.
Laser Beam Steering/shaping for Free Space Optical Communication
NASA Technical Reports Server (NTRS)
Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.
2004-01-01
The 2-D Optical Phased Array (OPA) antenna based on a Liquid Crystal On Silicon (LCoS) device can be considered for use in free space optical communication as an active beam controlling device. Several examples of the functionality of the device include: beam steering in the horizontal and elevation direction; high resolution wavefront compensation in a large telescope; and beam shaping with the computer generated kinoform. Various issues related to the diffraction efficiency, steering range, steering accuracy as well as the magnitude of wavefront compensation are discussed.
Preparation for horizontal or vertical dimensions affects the right-left prevalence effect.
Nishimura, Akio; Yokosawa, Kazuhiko
2007-10-01
When stimulus and response simultaneously vary in both horizontal and vertical dimensions, the stimulus-response compatibility effect is often larger for the horizontal dimension. We investigated the role of preparation for each dimension in this right-left prevalence. In Experiment 1, tasks based on horizontal and vertical dimensions were mixed in random order, and the relevant dimension in each trial was cued with a variable cue-target stimulus onset asynchrony (SOA). A right-left prevalence effect was observed only when participants prepared for the upcoming task. Experiment 2 replicated the absence of the prevalence effect for the simultaneous presentation of cue and target using a fixed SOA of 0 msec. In Experiment 3, the right-left prevalence emerged with a 0-msec SOA when participants prepared for e achdimension basedon its frequency. These resultssuggest that participants' internal set can be greater for the horizontal dimension, leading to the right-left prevalence effect.
21 CFR 880.6910 - Wheeled stretcher.
Code of Federal Regulations, 2010 CFR
2010-04-01
... platform mounted on a wheeled frame that is designed to transport patients in a horizontal position. The... frame may be fixed or collapsible for use in an ambulance. (b) Classification. Class II (special...
500 MHz narrowband beam position monitor electronics for electron synchrotrons
NASA Astrophysics Data System (ADS)
Mohos, I.; Dietrich, J.
1998-12-01
Narrowband beam position monitor electronics were developed in the Forschungszentrum Jülich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network.
Studies of the vestibulo-ocular reflex on STS 4, 5 and 6
NASA Technical Reports Server (NTRS)
Thornton, William E.; Pool, Sam L.; Moore, Thomas P.; Uri, John J.
1988-01-01
The vestibulo-ocular reflex (VOR) may be altered by weightlessness. Since this reflex plays a large role in visual stabilization, it was important to document any changes caused by space flight. This is a report on findings on STS-4 through 6 and is part of a larger study of neurosensory adaptation done on STS-4 through 8. Voluntary horizontal head oscillations at 1/3 Hz with amplitude of 30 deg right and left of center were recorded by a potentiometer and compared to eye position recorded by electroculography under the following conditions: eyes open, head fixed, tracking horizontal targets switched 0, 15, and 30 degrees right and left (optokinetic reflex - OKR - and calibration); eyes open and fixed on static external target with oscillation, (vestibulo ocular reflex, eyes closed - VOR EC); eyes open and wearing opaque goggles with target fixed in imagination (vestibulo-ocular reflex, eyes shaded - VOR ES); and eyes open and fixed on a head synchronized target with head oscillation (VOR suppression). No significant changes were found in voluntary head oscillation frequency or amplitude in those with (n=5), and without (n=3), space motion sickness (SMS), with phase of flight or test condition. Variations in head oscillation were too small to have produced detectable changes in test results.
Wang, Dongmiao; He, Xiaotong; Wang, Yanling; Li, Zhongwu; Zhu, Yumin; Sun, Chao; Ye, Jinhai; Jiang, Hongbing; Cheng, Jie
2017-05-01
The aim of the present study was to assess the incidence and risk factors of ERR in second molars with mesially and horizontally impacted mandibular third molars using cone beam computed tomography (CBCT) images from patients in a Chinese tertiary referral hospital. A total number of 216 patients with 362 mesially and horizontally impacted mandibular third molars who were treated at our institution from 2014 to 2015 was retrospectively included. The ERR in second molars was identified on CBCT multiplanar images. The associations between incidence of ERR and multiple clinical parameters were statistically analyzed by Chi-square test. Moreover, the risk factors for ERR in second molars were further assessed by multivariate regression analysis. The overall incidence of ERR in second molars was 20.17 % (73/362) as detected on CBCT images. The presence of ERR significantly associated with patients age and impaction depth of mandibular third molars. However, no significant relationship was found between ERR severity and impaction depth or ERR location. Multivariate regression analyses further revealed age over 35 years and impaction depth as important risk factors affecting the ERR incidence caused by mesial and horizontal impaction of mandibular third molar. ERR in second molar resulted from mesially and horizontally impacted mandibular third molar is not very rare and can be reliably identified via CBCT scan. Given the possibility of ERR associated with third molar impaction, the prophylactic removal of these impacted teeth could be considered especially for those patients with over 35 years and mesially and horizontally impacted teeth.
Online beam energy measurement of Beijing electron positron collider II linear accelerator
NASA Astrophysics Data System (ADS)
Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Online beam energy measurement of Beijing electron positron collider II linear accelerator.
Wang, S; Iqbal, M; Liu, R; Chi, Y
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less
NASA Astrophysics Data System (ADS)
Li, Xiaochen; Li, Xiaoming; Liao, Shijun
2018-01-01
A system of two coupled Faraday waves is experimentally observed at the two interfaces of the three layers of fluids (air, pure ethanol, and silicon oil) in a covered Hele-Shaw cell with periodic vertical vibration. Both the upper and lower Faraday waves are subharmonic, but they coexist in different forms: the upper one vibrates vertically, while the crests of the lower one oscillate horizontally with unchanged wave height, and the troughs of the lower one usually remain in the same place (relative to the basin). Besides, they are strongly coupled: the wave height of the lower Faraday waves is either a linear function (when forcing frequency is fixed) or a parabolic function (when acceleration amplitude is fixed) of that of the upper one with a same wavelength.
NASA Astrophysics Data System (ADS)
Sabitov, L. S.; Kashapov, N. F.; Gilmanshin, I. R.; Strelkov, Yu M.; Khusainov, D. M.
2017-09-01
The development is demountable foundation for support, including separate reinforced concrete blocks in the form of prisms mounted on the surface of the base and pulled together by horizontal strands, and anchor devices for fixing the supports. The reinforced concrete blocks are made in the form of hollow prisms consisting of walls and square bottoms, and the strands are made in the form of bolts that tighten the walls along the top and bottom, while the anchoring devices for fixing the supports are made in the form of anchors on the bottom of the central prism and horizontal spacers between the support and the walls of the prism in its upper part. Numerical studies of the foundation have been carried out and its optimal sizes have been found in the PK Lira SAPR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea
2012-07-02
At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and couplingmore » corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.« less
Pixelated transmission-mode diamond X-ray detector
Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik
2015-01-01
Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼1 kHz, which leads to an image sampling rate of ∼30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10−2 to 90 W mm−2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%). PMID:26524304
Beam shaping to improve the free-electron laser performance at the Linac Coherent Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Y.; Bane, K. L. F.; Colocho, W.
2016-10-27
A new operating mode has been developed for the Linac Coherent Light Source (LCLS) in which we shape the longitudinal phase space of the electron beam. This mode of operation is realized using a horizontal collimator located in the middle of the first bunch compressor to truncate the head and tail of the beam. With this method, the electron beam longitudinal phase space and current profile are reshaped, and improvement in lasing performance can be realized. As a result, we present experimental studies at the LCLS of the beam shaping effects on the free-electron laser performance.
Numerical analysis of right-half plane zeros for a single-link manipulator. M.S. Thesis
NASA Technical Reports Server (NTRS)
Girvin, Douglas Lynn
1992-01-01
The purpose of this research is to further develop an understanding of how nonminimum phase zero location is affected by structural link design. As the demand for light-weight robots that can operate in a large workspace increases, the structural flexibility of the links become more of an issue in controls problems. When the objective is to accurately position the tip while the robot is actuated at the base, the system is nonminimum phase. One important characteristic of nonminimum phase systems is system zeros in the right half of the Laplace plane. The ability to pick the location of these nonminimum phase zeros would give the designer a new freedom similar to pole placement. The research targets a single-link manipulator operating in the horizontal plane and modeled as a Euler-Bernoulli beam with pinned-free end conditions. Using transfer matrix theory, one can consider link designs that have variable cross-sections along the length of the beam. A FORTRAN program was developed to determine the location of poles and zeros given the system model. The program was used to confirm previous research on nonminimum phase systems, and develop a relationship for designing linearly tapered links. The method allows the designer to choose the location of the first pole and zero and then defines the appropriate taper to match the desired locations. With the pole and zero location fixes, the designer can independently change the link's moment of inertia about its axis of rotation by adjusting the height of the beam. These results can be applied to inverse dynamic algorithms currently under development at Georgia Tech.
Monte Carlo modeling of ultrasound probes for image guided radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena, E-mail: bazalova@uvic.ca; Schlosser, Jeffrey; Chen, Josephine
2015-10-15
Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 andmore » 8.0 g/cm{sup 3}. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm{sup 2} beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm{sup 2} beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm{sup 3}, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical orientation. The X6-1 probe in vertical orientation caused the highest attenuation of the 6 and 15 MV beams, which at 10 cm depth accounted for 33% and 43% decrease compared to the respective (15 × 15) cm{sup 2} open fields. The C5-2 probe in horizontal orientation, on the other hand, caused a dose increase of 10% and 53% for the 6 and 15 MV beams, respectively, in the buildup region at 0.5 cm depth. For the X6-1 probe in vertical orientation, the dose at 5 cm depth for the 3-cm diameter 6 MV and 5-cm diameter 15 MV beams was attenuated compared to the corresponding open fields to a greater degree by 65% and 43%, respectively. Conclusions: MC models of two US probes used for real-time image guidance during radiotherapy have been built. Due to the high beam attenuation of the US probes, the authors generally recommend avoiding delivery of treatment beams that intersect the probe. However, the presented MC models can be effectively integrated into US-guided radiotherapy treatment planning in cases for which beam avoidance is not practical due to anatomy geometry.« less
Hydroacoustic estimates of fish biomass and spatial distributions in shallow lakes
NASA Astrophysics Data System (ADS)
Lian, Yuxi; Huang, Geng; Godlewska, Małgorzata; Cai, Xingwei; Li, Chang; Ye, Shaowen; Liu, Jiashou; Li, Zhongjie
2017-03-01
We conducted acoustical surveys with a horizontal beam transducer to detect fish and with a vertical beam transducer to detect depth and macrophytes in two typical shallow lakes along the middle and lower reaches of the Changjiang (Yangtze) River in November 2013. Both lakes are subject to active fish management with annual stocking and removal of large fish. The purpose of the study was to compare hydroacoustic horizontal beam estimates with fish landings. The preliminary results show that the fish distribution patterns differed in the two lakes and were affected by water depth and macrophyte coverage. The hydroacoustically estimated fish biomass matched the commercial catch very well in Niushan Lake, but it was two times higher in Kuilei Lake. However, acoustic estimates included all fish, whereas the catch included only fish >45 cm (smaller ones were released). We were unable to determine the proper regression between acoustic target strength and fish length for the dominant fish species in the two lakes.
A 4 Tesla Superconducting Magnet Developed for a 6 Circle Huber Diffractometer at the XMaS Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, P. B. J.; Brown, S. D.; Bouchenoire, L.
2007-01-19
We report here on the development and testing of a 4 Tesla cryogen free superconducting magnet designed to fit within the Euler cradle of a 6 circle Huber diffractometer, allowing scattering in both the vertical and horizontal planes. The geometry of this magnet allows the field to be applied in three orientations. The first being along the beam direction, the second with the field transverse to the beam direction a horizontal plane and finally the field can be applied vertically with respect to the beam. The magnet has a warm bore and an open geometry of 180 deg. , allowingmore » large access to reciprocal space. A variable temperature insert has been developed, which is capable of working down to a temperature of 1.7 K and operating over a wide range of angles whilst maintaining a temperature stability of a few mK. Initial ferromagnetic diffraction measurements have been carried out on single crystal Tb and Dy samples.« less
Hydroacoustic estimates of fish biomass and spatial distributions in shallow lakes
NASA Astrophysics Data System (ADS)
Lian, Yuxi; Huang, Geng; Godlewska, Małgorzata; Cai, Xingwei; Li, Chang; Ye, Shaowen; Liu, Jiashou; Li, Zhongjie
2018-03-01
We conducted acoustical surveys with a horizontal beam transducer to detect fish and with a vertical beam transducer to detect depth and macrophytes in two typical shallow lakes along the middle and lower reaches of the Changjiang (Yangtze) River in November 2013. Both lakes are subject to active fish management with annual stocking and removal of large fish. The purpose of the study was to compare hydroacoustic horizontal beam estimates with fish landings. The preliminary results show that the fish distribution patterns differed in the two lakes and were affected by water depth and macrophyte coverage. The hydroacoustically estimated fish biomass matched the commercial catch very well in Niushan Lake, but it was two times higher in Kuilei Lake. However, acoustic estimates included all fish, whereas the catch included only fish >45 cm (smaller ones were released). We were unable to determine the proper regression between acoustic target strength and fish length for the dominant fish species in the two lakes.
Beam based alignment and its relevance in Indus-2.
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M L; Agrawal, R K; Yadav, S; Ghodke, A D
2015-09-01
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.
Beam based alignment and its relevance in Indus-2
NASA Astrophysics Data System (ADS)
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M. L.; Agrawal, R. K.; Yadav, S.; Ghodke, A. D.
2015-09-01
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.
Projection x-ray topography system at 1-BM x-ray optics test beamline at the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Liu, Zunping; Trakhtenberg, Emil
2016-07-27
Projection X-ray topography of single crystals is a classic technique for the evaluation of intrinsic crystal quality of large crystals. In this technique a crystal sample and an area detector (e.g., X-ray film) collecting intensity of a chosen crystallographic reflection are translated simultaneously across an X-ray beam collimated in the diffraction scattering plane (e.g., [1, 2]). A bending magnet beamline of a third-generation synchrotron source delivering x-ray beam with a large horizontal divergence, and therefore, a large horizontal beam size at a crystal sample position offers an opportunity to obtain X-ray topographs of large crystalline samples (e.g., 6-inch wafers) inmore » just a few exposures. Here we report projection X-ray topography system implemented recently at 1-BM beamline of the Advanced Photon Source. A selected X-ray topograph of a 6-inch wafer of 4H-SiC illustrates capabilities and limitations of the technique.« less
Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings
NASA Astrophysics Data System (ADS)
Cunha, Americo; Soize, Christian; Sampaio, Rubens
2015-11-01
This work intends to analyze the nonlinear stochastic dynamics of drillstrings in horizontal configuration. For this purpose, it considers a beam theory, with effects of rotatory inertia and shear deformation, which is capable of reproducing the large displacements that the beam undergoes. The friction and shock effects, due to beam/borehole wall transversal impacts, as well as the force and torque induced by bit-rock interaction, are also considered in the model. Uncertainties of bit-rock interaction model are taken into account using a parametric probabilistic approach. Numerical simulations have shown that the mechanical system of interest has a very rich nonlinear stochastic dynamics, which generate phenomena such as bit-bounce, stick-slip, and transverse impacts. A study aiming to maximize the drilling process efficiency, varying drillstring velocities of translation and rotation is presented. Also, the work presents the definition and solution of two optimizations problems, one deterministic and one robust, where the objective is to maximize drillstring rate of penetration into the soil respecting its structural limits.
Mini-beam collimator enables microcrystallography experiments on standard beamlines
Fischetti, Robert F.; Xu, Shenglan; Yoder, Derek W.; Becker, Michael; Nagarajan, Venugopalan; Sanishvili, Ruslan; Hilgart, Mark C.; Stepanov, Sergey; Makarov, Oleg; Smith, Janet L.
2009-01-01
The high-brilliance X-ray beams from undulator sources at third-generation synchrotron facilities are excellent tools for solving crystal structures of important and challenging biological macromolecules and complexes. However, many of the most important structural targets yield crystals that are too small or too inhomogeneous for a ‘standard’ beam from an undulator source, ∼25–50 µm (FWHM) in the vertical and 50–100 µm in the horizontal direction. Although many synchrotron facilities have microfocus beamlines for other applications, this capability for macromolecular crystallography was pioneered at ID-13 of the ESRF. The National Institute of General Medical Sciences and National Cancer Institute Collaborative Access Team (GM/CA-CAT) dual canted undulator beamlines at the APS deliver high-intensity focused beams with a minimum focal size of 20 µm × 65 µm at the sample position. To meet growing user demand for beams to study samples of 10 µm or less, a ‘mini-beam’ apparatus was developed that conditions the focused beam to either 5 µm or 10 µm (FWHM) diameter with high intensity. The mini-beam has a symmetric Gaussian shape in both the horizontal and vertical directions, and reduces the vertical divergence of the focused beam by 25%. Significant reduction in background was achieved by implementation of both forward- and back-scatter guards. A unique triple-collimator apparatus, which has been in routine use on both undulator beamlines since February 2008, allows users to rapidly interchange the focused beam and conditioned mini-beams of two sizes with a single mouse click. The device and the beam are stable over many hours of routine operation. The rapid-exchange capability has greatly facilitated sample screening and resulted in several structures that could not have been obtained with the larger focused beam. PMID:19240333
Evaluation of asymmetric quadrupoles for a non-scaling fixed field alternating gradient accelerator
NASA Astrophysics Data System (ADS)
Lee, Sang-Hun; Park, Sae-Hoon; Kim, Yu-Seok
2017-12-01
A non-scaling fixed field alternating gradient (NS-FFAG) accelerator was constructed, which employs conventional quadrupoles. The possible demerit is the beam instability caused by the variable focusing strength when the orbit radius of the beam changes. To overcome this instability, it was suggested that the asymmetric quadrupole has different current flows in each coil. The magnetic field of the asymmetric quadrupole was found to be more similar to the magnetic field required for the FFAG accelerator than the constructed NS-FFAG accelerator. In this study, a simulation of the beam dynamics was carried out to evaluate the improvement to the beam stability for the NS-FFAG accelerator using the SIMION program. The beam dynamics simulation was conducted with the `hard edge' model; it ignored the fringe field at the end of the magnet. The magnetic field map of the suggested magnet was created using the SIMION program. The lattices for the simulation combined the suggested magnets. The magnets were evaluated for beam stability in the lattices through the SIMION program.
Remotely readable fiber optic compass
Migliori, Albert; Swift, Gregory W.; Garrett, Steven L.
1986-01-01
A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.
Remotely readable fiber optic compass
Migliori, A.; Swift, G.W.; Garrett, S.L.
1985-04-30
A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.
Polarization changes in light beams trespassing anisotropic turbulence.
Korotkova, Olga
2015-07-01
The polarization properties of deterministic or random light with isotropic source correlations propagating in anisotropic turbulence along horizontal paths are considered for the first time and predicted to change on the basis of the second-order coherence theory of beam-like fields and the extended Huygens-Fresnel integral. Our examples illustrate that the beams whose degree of polarization is unaffected by free-space propagation or isotropic turbulence can either decrease or increase on traversing the anisotropic turbulence, depending on the polarization state of the source.
A Parameterized Pattern-Error Objective for Large-Scale Phase-Only Array Pattern Design
2016-03-21
12 4.4 Example 3: Sector Beam w/ Nonuniform Amplitude...fixed uniform amplitude illumination, phase-only optimization can also find application to arrays with fixed but nonuniform tapers. Such fixed tapers...arbitrary element locations nonuniform FFT algorithms exist [43–45] that have the same asymptotic complexity as the conventional FFT, although the
Light guiding properties of soap films
NASA Astrophysics Data System (ADS)
Emile, Janine; Emile, Olivier; Casanova, Federico
2013-02-01
The injection of a laser beam from the side in a horizontal free-standing draining soap film is reported. We observe the self-deflection of the beam that varies in a random way. The film thinning is affected by the injection and depends on the polarization of the light beam, not on the laser power. The liquid in the soap film is ejected towards the meniscus, without modifying its molecular structure. Besides, this injection seems to stabilize the film near the light beam propagation and to destabilize the film in the other zones. Consequences and applications are then discussed.
NASA Technical Reports Server (NTRS)
Hinkley, E. D., Jr.
1981-01-01
Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.
Veligdan, James T.
1993-01-01
Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.
NASA Technical Reports Server (NTRS)
Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis
1993-01-01
Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.
Real Time Computer Control of Neutral Beam Energy and Current During a DIII-D Tokamak Shot
NASA Astrophysics Data System (ADS)
Pawley, C. J.; Pace, D. C.; Rauch, J. M.; Scoville, J. T.
2017-10-01
A new control system has been implemented on DIII-D neutral beams which has been used during the 2016 and 2017 experimental campaign to directly change the beam acceleration voltage (V) and beam current (I) by the Plasma Control System (PCS) during a shot. Small changes in the beam voltage of 1-2 kV can be made in 1 msec or larger changes of up to 20kV in 0.5 seconds. The beam current can be modified by as much as +/-20% at a fixed beam voltage. Since both can be independently and simultaneously changed it is possible to change beam power (IV) at fixed voltage, keep constant power while sweeping beam voltage, or to maintain minimum beam divergence during a beam voltage sweep by changing I simultaneously to keep a constant beam perveance. The limitations of the variability will be presented with required changes in equipment to extend either the speed or range of the controls. Some of the effects on fast ion plasma instabilities or other plasma mode changes made possible by this control will also be presented (see also D.C. Pace, this conference). Design and changes to the control system was performed under General Atomics Internal Research and Development support, while plasma experiments on DIII-D were supported in part by the US Department of Energy under Award No. DE-FC02-04ER54698.
Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.
2013-01-01
An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659
A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy
NASA Astrophysics Data System (ADS)
Winterhalter, C.; Lomax, A.; Oxley, D.; Weber, D. C.; Safai, S.
2018-01-01
The lateral fall-off is crucial for sparing organs at risk in proton therapy. It is therefore of high importance to minimize the penumbra for pencil beam scanning (PBS). Three optimisation approaches are investigated: edge-collimated uniformly weighted spots (collimation), pencil beam optimisation of uncollimated pencil beams (edge-enhancement) and the optimisation of edge collimated pencil beams (collimated edge-enhancement). To deliver energies below 70 MeV, these strategies are evaluated in combination with the following pre-absorber methods: field specific fixed thickness pre-absorption (fixed), range specific, fixed thickness pre-absorption (automatic) and range specific, variable thickness pre-absorption (variable). All techniques are evaluated by Monte Carlo simulated square fields in a water tank. For a typical air gap of 10 cm, without pre-absorber collimation reduces the penumbra only for water equivalent ranges between 4-11 cm by up to 2.2 mm. The sharpest lateral fall-off is achieved through collimated edge-enhancement, which lowers the penumbra down to 2.8 mm. When using a pre-absorber, the sharpest fall-offs are obtained when combining collimated edge-enhancement with a variable pre-absorber. For edge-enhancement and large air gaps, it is crucial to minimize the amount of material in the beam. For small air gaps however, the superior phase space of higher energetic beams can be employed when more material is used. In conclusion, collimated edge-enhancement combined with the variable pre-absorber is the recommended setting to minimize the lateral penumbra for PBS. Without collimator, it would be favourable to use a variable pre-absorber for large air gaps and an automatic pre-absorber for small air gaps.
Continuously variable focal length lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Bernhard W; Chollet, Matthieu C
2013-12-17
A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beammore » through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.« less
A Critical Characteristic in the Transverse Galloping Pattern
Wei, Xiaohui; Long, Yongjun; Wang, Chunlei; Wang, Shigang
2015-01-01
Transverse gallop is a common gait used by a large number of quadrupeds. This paper employs the simplified dimensionless quadrupedal model to discuss the underlying mechanism of the transverse galloping pattern. The model is studied at different running speeds and different values of leg stiffness, respectively. If the horizontal running speed reaches up to a critical value at a fixed leg stiffness, or if the leg stiffness reaches up to a critical value at a fixed horizontal speed, a key property would emerge which greatly reduces the overall mechanical forces of the dynamic system in a proper range of initial pitch angular velocities. Besides, for each horizontal speed, there is an optimal stiffness of legs that can reduce both the mechanical loads and the metabolic cost of transport. Furthermore, different body proportions and landing distance lags of a pair of legs are studied in the transverse gallop. We find that quadrupeds with longer length of legs compared with the length of the body are more suitable to employ the transverse galloping pattern, and the landing distance lag of a pair of legs could reduce the cost of transport and the locomotion frequency. PMID:27087773
2007-06-15
of 2006, the GBU - 39 /B Small Diameter Bomb (SDB) was first employed by Air Force aircraft (Weisgerber 2006). This newly developed munition was...Vertical, Limited horizontal 500# Impact, Delay ≤ 3m GBU-38 JDAM GPS/INS Vertical, Horizontal 500# Proximity, Impact, Delay ~10m GBU - 39 /B...between 5 to 15 nautical miles, though LGB maximum employment range may be further limited by the need to acquire and lase the target. The GBU - 39 offers
Master dye laser oscillator including a specific grating assembly for use therein
Davin, James M.
1992-01-01
A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam.
Master dye laser oscillator including a specific grating assembly for use therein
Davin, J.M.
1992-09-01
A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam. 5 figs.
Saito, Masahide; Sano, Naoki; Ueda, Koji; Shibata, Yuki; Kuriyama, Kengo; Komiyama, Takafumi; Marino, Kan; Aoki, Shinichi; Onishi, Hiroshi
2018-01-01
To evaluate the basic performance of a respiratory gating system using an Elekta linac and an Abches respiratory-monitoring device. The gating system was comprised of an Elekta Synergy linac equipped with a Response TM gating interface module and an Abches respiratory-monitoring device. The latencies from a reference respiratory signal to the resulting Abches gating output signal and the resulting monitor-ion-chamber output signal were measured. Then, the flatness and symmetry of the gated beams were measured using a two-dimensional ionization chamber array for fixed and arc beams, respectively. Furthermore, the beam quality, TPR 20,10 , and the output of the fixed gated beams were also measured using a Farmer chamber. Each of the beam characteristics was compared with each of those for nongated irradiation. The full latencies at beam-on and beam-off for 6-MV gated beams were 336.4 ± 23.4 ms and 87.6 ± 7.1 ms, respectively. The differences in flatness between the gated and nongated beams were within 0.91% and 0.87% for the gun-target and left-right directions, respectively. In the same manner, the beam symmetries were within 0.68% and 0.82%, respectively. The percentage differences in beam quality and beam output were below 1% for a beam-on time range of 1.1-7 s. The latency of the Elekta gating system combined with Abches was found to be acceptable using our measurement method. Furthermore, we demonstrated that the beam characteristics of the gating system using our respiratory indicator were comparable with the nongated beams for a single-arc gated beam delivery. © 2017 American Association of Physicists in Medicine.
Ultrafast transient grating radiation to optical image converter
Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E
2014-11-04
A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.
Perspective of Muon Production Target at J-PARC MLF MUSE
NASA Astrophysics Data System (ADS)
Makimura, Shunsuke; Matoba, Shiro; Kawamura, Naritoshi; Matsuzawa, Yukihiro; Tabe, Masato; Aoyagi, Hiroyuki; Kondo, Hiroto; Kobayashi, Yasuo; Fujimori, Hiroshi; Ikedo, Yutaka; Kadono, Ryosuke; Koda, Akihiro; Kojima, Kenji M.; Miyake, Yasuhiro; Nakamura, Jumpei G.; Oishi, Yu; Okabe, Hirotaka; Shimomura, Koichiro; Strasser, Patrick
A pulsed muon beam with unprecedented intensity will be generated by a 3-GeV 333-microA proton beam on a muon target made of 20-mm thick isotropic graphite at J-PARC MLF MUSE (Muon Science Establishment). The first muon beam was successfully generated on September 26th, 2008. Gradually upgrading the beam intensity, continuous 300-kW proton beam has been operated by a fixed target method without replacements till June of 2014. However, the lifetime of the fixed target was anticipated to be less than 1 year by the proton-irradiation damage of the graphite through 1-MW beam operation. To extend the lifetime, a muon rotating target, in which the radiation damage is distributed to a wider area, was installed in September of 2014, and continuous and stable operation has been successfully performed. Because the muon target becomes highly radioactive by the proton irradiation, the maintenance is conducted by remote handling in the Hot cell. In September of 2015, a scraper No. 1 to collimate the proton beam scattered by the target was replaced for further high-power beam operation. Recently, new developments on monitoring and maintenance of the muon target for higher power operation are in progress. In this article, perspective of muon production target at J-PARC MLF MUSE will be described.
Tunable cavity resonator including a plurality of MEMS beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah
A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.
NASA Astrophysics Data System (ADS)
Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid
2017-02-01
In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.
Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior.
Seelig, Johannes D; Chiappe, M Eugenia; Lott, Gus K; Dutta, Anirban; Osborne, Jason E; Reiser, Michael B; Jayaraman, Vivek
2010-07-01
Drosophila melanogaster is a model organism rich in genetic tools to manipulate and identify neural circuits involved in specific behaviors. Here we present a technique for two-photon calcium imaging in the central brain of head-fixed Drosophila walking on an air-supported ball. The ball's motion is tracked at high resolution and can be treated as a proxy for the fly's own movements. We used the genetically encoded calcium sensor, GCaMP3.0, to record from important elements of the motion-processing pathway, the horizontal-system lobula plate tangential cells (LPTCs) in the fly optic lobe. We presented motion stimuli to the tethered fly and found that calcium transients in horizontal-system neurons correlated with robust optomotor behavior during walking. Our technique allows both behavior and physiology in identified neurons to be monitored in a genetic model organism with an extensive repertoire of walking behaviors.
NASA Astrophysics Data System (ADS)
Avramov-Zamurovic, S.; Nelson, C.
2018-10-01
We report on experiments where spatially partially coherent laser beams with flat top intensity profiles were propagated underwater. Two scenarios were explored: still water and mechanically moved entrained salt scatterers. Gaussian, fully spatially coherent beams, and Multi-Gaussian Schell model beams with varying degrees of spatial coherence were used in the experiments. The main objective of our study was the exploration of the scintillation performance of scalar beams, with both vertical and horizontal polarizations, and the comparison with electromagnetic beams that have a randomly varying polarization. The results from our investigation show up to a 50% scintillation index reduction for the case with electromagnetic beams. In addition, we observed that the fully coherent beam performance deteriorates significantly relative to the spatially partially coherent beams when the conditions become more complex, changing from still water conditions to the propagation through mechanically moved entrained salt scatterers.
Ground-to-Ground Optical Communications Demonstration
NASA Technical Reports Server (NTRS)
Biswas, A.; Lee, S.
2000-01-01
A bidirectional horizontal-path optical link was demonstrated between Strawberry Peak (SP), Lake Arrowhead, California, and the JPL Table Mountain Facility (TMF), Wrightwood, California, during June and November of 1998. The 0.6-m telescope at TMF was used to broadcast a 4-beam 780-nm beacon to SP. The JPL-patented Optical Communications Demonstrator (OCD) at SP received the beacon, performed ne tracking to compensate for the atmosphere-induced beacon motion and retransmitted a 844-nm communications laser beam modulated at 40 to 500 Mb/s back to TMF. Characteristics of the horizontal-path atmospheric channel as well as performance of the optical communications link were evaluated. The normalized variance of the irradiance fluctuations or scintillation index delta2/I at either end was determined. At TMF where a single 844-nm beam was received by a 0.6-m aperture, the measured delta2/I covered a wide range from 0.07 to 1.08. A single 780-nm beam delta2/I measured at SP using a 0.09-m aperture yielded values ranging from 0.66 to 1.03, while a combination of four beams reduced the scintillation index due to incoherent averaging to 0.22 to 0.40. This reduction reduced the dynamic range of the fluctuations from 17 to 21 dB to 13 to 14 dB as compared with the OCD tracking sensor dynamic range of 10 dB. Predictions of these values also were made based on existing theories and are compared. Generally speaking, the theoretical bounds were reasonable. Discussions on the probability density function (PDF) of the intensity fluctuations are presented and compared with the measurements made. The lognormal PDF was found to agree for the weak scintillation regime as expected. The present measurements support evidence presented by earlier measurements made using the same horizontal path, which suggests that the aperture averaging effect is better than theoretically predicted.
Lunar orbiting microwave beam power system
NASA Technical Reports Server (NTRS)
Fay, Edgar H.; Cull, Ronald C.
1990-01-01
A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.
Observing a light dark matter beam with neutrino experiments
NASA Astrophysics Data System (ADS)
Deniverville, Patrick; Pospelov, Maxim; Ritz, Adam
2011-10-01
We consider the sensitivity of fixed-target neutrino experiments at the luminosity frontier to light stable states, such as those present in models of MeV-scale dark matter. To ensure the correct thermal relic abundance, such states must annihilate via light mediators, which in turn provide an access portal for direct production in colliders or fixed targets. Indeed, this framework endows the neutrino beams produced at fixed-target facilities with a companion “dark matter beam,” which may be detected via an excess of elastic scattering events off electrons or nuclei in the (near-)detector. We study the high-luminosity proton fixed-target experiments at LSND and MiniBooNE, and determine that the ensuing sensitivity to light dark matter generally surpasses that of other direct probes. For scenarios with a kinetically-mixed U(1)' vector mediator of mass mV, we find that a large volume of parameter space is excluded for mDM˜1-5MeV, covering vector masses 2mDM≲mV≲mη and a range of kinetic mixing parameters reaching as low as κ˜10-5. The corresponding MeV-scale dark matter scenarios motivated by an explanation of the galactic 511 keV line are thus strongly constrained.
NASA Astrophysics Data System (ADS)
Ishkhanyan, M. V.; Karapetyan, A. V.
2010-04-01
We analyze the dynamics of a homogeneous ball on a horizontal plane with friction of all kinds, namely, sliding, spinning, and rolling friction, taken into account. The qualitative-analytic study of the ball dynamics is supplemented with numerical experiments. The problem on the motion of a homogeneous ball on a horizontal plane with friction was apparently first studied in 1758 by I. Euler (Leonard Euler's son) with sliding friction taken into account in the framework of the Coulomb model. I. Euler showed that the ball sliding ceases in finite time, after which the ball uniformly rolls along a fixed straight line and uniformly spins about the vertical. This result has long become classical and is described in many textbooks on theoretical mechanics. In 1998, V. F. Zhuravlev considered the problem of motion of a homogeneous ball on a horizontal plane with sliding and spinning friction taken into account in the framework of the Contensou-Zhuravlev model [1, 2] and showed that the ball sliding and spinning cease simultaneously, after which the ball uniformly rolls along a fixed straight line. The Contensou-Zhuravlev theory was further developed in [3-7]. In the present paper, we consider themotion of a homogeneous ball on a horizontal plane with friction of all kinds taken into account in the framework of the model proposed in [8]. We show that, in one and the same time, both the sliding velocity and the angular velocity of the ball become zero. Our studies are based on the results obtained in [2], the properties of the friction model proposed in [8], and the method for qualitative analysis of dynamics of dissipative systems [9, 10]. The qualitative-analytic study is supplemented with numerical experiments.
The electron accelerator utilized in this treatment process has a potential of 1.5 MeV, rated from 0 to 50 mA, providing radiation doses of 0-850 krad (0-8.5 kGy). The horizontal electron beam is scanned at 200 Hz and impacts the waste stream as it flows over a weir approximately...
Studies of the horizontal vestibulo-ocular reflex on STS 7 and 8
NASA Technical Reports Server (NTRS)
Thornton, William E.; Uri, John J.; Moore, Thomas P.; Pool, Sam L.
1988-01-01
Unpaced voluntary horizontal head oscillation was used to study the Vestibulo-Ocular Reflex (VOR) on Shuttle flights STS 7 and 8. Ten subjects performed head oscillations at 0.33 Hz + or - 30 deg amplitude under the followng conditions: VVOR (visual VOR), eyes open and fixed on a stationary target; VOR-EC, with eyes closed and fixed on the same target in imagination; and VOR-S (VOR suppression), with eyes open and fixed on a head-synchronized target. Effects of weightlessness, flight phase, and Space Motion Sickness (SMS) on head oscillation characteristics were examined. A significant increase in head oscillation frequency was noted inflight in subjects free from SMS. In subjects susceptible to SMS, frequency was reduced during their Symptomatic period. The data also suggest that the amplitude and peak velocity of head oscillation were reduced early inflight. No significant changes were noted in reflex gain or phase in any of the test conditions; however, there was a suggestion of an increase in VVOR and VOR-ES gain early inflight in asymptomatic subjects. A significant difference in VOR-S was found between SMS susceptible and non-susceptible subjects. There is no evidence that any changes in VOR characteristics contributed to SMS.
Improving Plating by Use of Intense Acoustic Beams
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Denofrio, Charles
2003-01-01
An improved method of selective plating of metals and possibly other materials involves the use of directed high-intensity acoustic beams. The beams, typically in the ultrasonic frequency range, can be generated by fixed-focus transducers (see figure) or by phased arrays of transducers excited, variously, by continuous waves, tone bursts, or single pulses. The nonlinear effects produced by these beams are used to alter plating processes in ways that are advantageous.
A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac
NASA Astrophysics Data System (ADS)
Miura, A.; Tamura, J.; Kawane, Y.
2017-07-01
In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.
Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.
2012-12-01
Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)
Fabrication and characterization of tapered graphite/epoxy box beams
NASA Astrophysics Data System (ADS)
Yen, S.-C.; Gopal, P.; Dharani, L. R.
1993-04-01
Graphite/epoxy (T300/934) prepreg is used to fabricate tapered box beams with a taper angle of 2 deg between the top and bottom walls. The prepreg is cured on a segmented steel core using a hot-press. A screw arrangement is used to apply curing pressure in the horizontal direction, while the platens of the hot-press apply pressure in the vertical direction. The inplane bending stiffness of the beam is determined by 3-point bend test and is found to be in agreement with theory.
Guidoboni, G.; Stephenson, E.; Andrianov, S.; ...
2016-07-28
Here, we observe a deuteron beam polarization lifetime near 1000 s in the horizontal plane of a magnetic storage ring (COSY). This long spin coherence time is maintained through a combination of beam bunching, electron cooling, sextupole field corrections, and the suppression of collective effects through beam current limits. This record lifetime is required for a storage ring search for an intrinsic electric dipole moment on the deuteron at a statistical sensitivity level approaching 10 -29 $e$ cm.
Ion-beam nanopatterning: experimental results with chemically-assisted beam
NASA Astrophysics Data System (ADS)
Pochon, Sebastien C. R.
2018-03-01
The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.
Assembly Platform For Use In Outer Space
NASA Technical Reports Server (NTRS)
Rao, Niranjan S.; Buddington, Patricia A.
1995-01-01
Report describes conceptual platform or framework for use in assembling other structures and spacecraft in outer space. Consists of three fixed structural beams comprising central beam and two cross beams. Robotic manipulators spaced apart on platform to provide telerobotic operation of platform by either space-station or ground crews. Platform and attached vehicles function synergistically to achieve maximum performance for intended purposes.
Investigation of ion-beam machining methods for replicated x-ray optics
NASA Technical Reports Server (NTRS)
Drueding, Thomas W.
1996-01-01
The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.
Optimal design of a beam-based dynamic vibration absorber using fixed-points theory
NASA Astrophysics Data System (ADS)
Hua, Yingyu; Wong, Waion; Cheng, Li
2018-05-01
The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.
Li, Zhaoyang; Kurita, Takashi; Miyanaga, Noriaki
2017-10-20
Zigzag and non-zigzag beam waist shifts in a multiple-pass zigzag slab amplifier are investigated based on the propagation of a Gaussian beam. Different incident angles in the zigzag and non-zigzag planes would introduce a direction-dependent waist-shift-difference, which distorts the beam quality in both the near- and far-fields. The theoretical model and analytical expressions of this phenomenon are presented, and intensity distributions in the two orthogonal planes are simulated and compared. A geometrical optics compensation method by a beam with 90° rotation is proposed, which not only could correct the direction-dependent waist-shift-difference but also possibly average the traditional thermally induced wavefront-distortion-difference between the horizontal and vertical beam directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Placidi, M.; Jung, J. -Y.; Ratti, A.
2014-07-25
This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibilitymore » when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.« less
NASA Astrophysics Data System (ADS)
Inaniwa, T.; Kanematsu, N.; Suzuki, M.; Hawkins, R. B.
2015-05-01
Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if the interruption time extends to 30 min or longer. These effects should be considered in carbon-ion radiotherapy treatment planning if a longer dose-delivery procedure time is anticipated.
Moderator Demonstration Facility Design and Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.
2017-02-01
The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producingmore » target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world’s moderator test facilities in that it will be intended to be very prototypic in terms of "moderator illumination" - the spatial variation of the neutron flux entering the moderator itself - as well as capable of testing so-called high-brightness moderators in a wing configuration.« less
A dual polarized antenna system using a meanderline polarizer
NASA Technical Reports Server (NTRS)
Burger, H. A.
1978-01-01
Certain applications of synthetic aperture radars require transmitting on one linear polarization and receiving on two orthogonal linear polarizations for adequate characterization of the surface. To meet the current need at minimum cost, it was desirable to use two identical horizontally polarized shaped beam antennas and to change the polarization of one of them by a polarization conversion plate. The plate was realized as a four-layer meanderline polarizer designed to convert horizontal polarization to vertical.
Field of View Requirements for Carrier Landing Training
1980-06-01
descent is guided by the Fresnel Lens Optical Landing System,(FLOLS) which displays a vertically moveable center iight beam (the " meatball ") which...must be kept aligned with rows of stationary horizontal lights. When the aircraft is above or below the correct glideslope, the meatball is seen as above...or below the horizontal reference lights. If the pilot is viewing a centered meatball , and if the aircraft has the correct AOA, the tailhook will be
NASA Astrophysics Data System (ADS)
Costa, Manuel F.; Almeida, Jose B.
1989-02-01
We will describe in this communication a noncont act method of measuring surface profile, it does not require any surface preparation, and it can be used with a very large range of surfaces from highly reflecting to non reflecting ones and as complex as textile surfaces. This method is reasonably immune to dispersion and diffraction, which usually make very difficult the application of non contact profilometry methods to a wide range of materials and situations, namely on quality control systems in industrial production lines. The method is based on the horizontal shift of the bright spot on a horizontal surface when this is illuminated with an oblique beam and moved vertically. in order to make the profilometry the sample is swept by an oblique light beam and the bright spot position is compared with a reference position. The bright spot must be as small as possible, particularly in very irregular surfaces; so the light beam diameter must be as small as possible and the incidence angle must not be too small. The sensivity of a system based on this method will be given, mostly, by the reception optical system.
Beam based alignment and its relevance in Indus-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M. L.
2015-09-15
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers thatmore » the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.« less
Range-dependence of acoustic channel with traveling sinusoidal surface wave.
Choo, Youngmin; Seong, Woojae; Lee, Keunhwa
2014-04-01
Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.
Ghosh, Ayanjeet; Serrano, Arnaldo L.; Oudenhoven, Tracey A.; Ostrander, Joshua S.; Eklund, Elliot C.; Blair, Alexander F.; Zanni, Martin T.
2017-01-01
Aided by advances in optical engineering, two-dimensional infrared spectroscopy (2D IR) has developed into a promising method for probing structural dynamics in biophysics and material science. We report two new advances for 2D IR spectrometers. First, we report a fully reflective and totally horizontal pulse shaper, which significantly simplifies alignment. Second, we demonstrate the applicability of mid-IR focal plane arrays (FPAs) as suitable detectors in 2D IR experiments. FPAs have more pixels than conventional linear arrays and can be used to multiplex optical detection. We simultaneously measure the spectra of a reference beam, which improves the signal-to-noise by a factor of 4; and two additional beams that are orthogonally polarized probe pulses for 2D IR anisotropy experiments. PMID:26907414
NASA Astrophysics Data System (ADS)
Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun
2015-07-01
Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.
Challenges and Plans for Injection and Beam Dump
NASA Astrophysics Data System (ADS)
Barnes, M.; Goddard, B.; Mertens, V.; Uythoven, J.
The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drueding, T.W.
The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and acceleratemore » ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.« less
Full color laser projection display using Kr-Ar laser (white laser) beam-scanning technology
NASA Astrophysics Data System (ADS)
Kim, Yonghoon; Lee, Hang W.; Cha, Seungnam; Lee, Jin-Ho; Park, Youngjun; Park, Jungho; Hong, Sung S.; Hwang, Young M.
1997-07-01
Full color laser projection display is realized on the large screen using a krypton-argon laser (white laser) as a light source, and acousto-optic devices as light modulators. The main wavelengths of red, green and blue color are 647, 515, and 488 nm separated by dichroic mirrors which are designed to obtain the best performance for the s-polarized beam with the 45 degree incident angle. The separated beams are modulated by three acousto-optic modulators driven by rf drivers which has energy level of 1 watt at 144 MHz and recombined by dichroic mirrors again. Acousto-optic modulators (AOM) are fabricated to satisfy high diffraction efficiency over 80% and fast rising time less than 50 ns at the video bandwidth of 5 MHz. The recombined three beams (RGB) are scanned by polygonal mirrors for horizontal lines and a galvanometer for vertical lines. The photodiode detection for monitoring of rotary polygonal mirrors is adopted in this system for the compensation of the tolerance in the mechanical scanning to prevent the image joggling in the horizontal direction. The laser projection display system described in this paper is expected to apply HDTV from the exploitation of the acousto- optic modulator with the video bandwidth of 30 MHz.
Finneran, James J; Branstetter, Brian K; Houser, Dorian S; Moore, Patrick W; Mulsow, Jason; Martin, Cameron; Perisho, Shaun
2014-10-01
Previous measurements of toothed whale echolocation transmission beam patterns have utilized few hydrophones and have therefore been limited to fine angular resolution only near the principal axis or poor resolution over larger azimuthal ranges. In this study, a circular, horizontal planar array of 35 hydrophones was used to measure a dolphin's transmission beam pattern with 5° to 10° resolution at azimuths from -150° to +150°. Beam patterns and directivity indices were calculated from both the peak-peak sound pressure and the energy flux density. The emitted pulse became smaller in amplitude and progressively distorted as it was recorded farther off the principal axis. Beyond ±30° to 40°, the off-axis signal consisted of two distinct pulses whose difference in time of arrival increased with the absolute value of the azimuthal angle. A simple model suggests that the second pulse is best explained as a reflection from internal structures in the dolphin's head, and does not implicate the use of a second sound source. Click energy was also more directional at the higher source levels utilized at longer ranges, where the center frequency was elevated compared to that of the lower amplitude clicks used at shorter range.
The biosonar field around an Atlantic bottlenose dolphin (Tursiops truncatus).
Au, Whitlow W L; Branstetter, Brian; Moore, Patrick W; Finneran, James J
2012-01-01
The use of remote autonomous passive acoustic recorders (PAR) to determine the distribution of dolphins at a given locations has become very popular. Some investigators are using echolocation clicks to gather information on the presence of dolphins and to identify species. However, in all of these cases, the PAR probably recorded mainly off-axis clicks, even some from behind the animals. Yet there is a very poor understanding of the beam pattern and the click waveform and spectrum from different azimuths around the animal's body. The beam pattern completely around an echo locating dolphin was measured at 16 different but equally spaced angles in the horizontal plane using an 8-hydrophone array in sequence. Eight channels of data were digitized simultaneously at a sampling rate of 500 kHz. The resulting beam patterns in both planes showed a continuous drop off in sound pressure with azimuth around the animal and reached levels below -50 dB relative to the signal recorded on the beam axis. The signals began to break up into two components at angles greater than ± 45° in the horizontal plane. The center frequency dropped off from its maximum at 0° in a non-uniform matter. © 2012 Acoustical Society of America.
Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy
NASA Technical Reports Server (NTRS)
Goldstein, Jeffrey J.
1990-01-01
The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.
Comparing Free-Free and Shaker Table Model Correlation Methods Using Jim Beam
NASA Technical Reports Server (NTRS)
Ristow, James; Smith, Kenneth Wayne, Jr.; Johnson, Nathaniel; Kinney, Jackson
2018-01-01
Finite element model correlation as part of a spacecraft program has always been a challenge. For any NASA mission, the coupled system response of the spacecraft and launch vehicle can be determined analytically through a Coupled Loads Analysis (CLA), as it is not possible to test the spacecraft and launch vehicle coupled system before launch. The value of the CLA is highly dependent on the accuracy of the frequencies and mode shapes extracted from the spacecraft model. NASA standards require the spacecraft model used in the final Verification Loads Cycle to be correlated by either a modal test or by comparison of the model with Frequency Response Functions (FRFs) obtained during the environmental qualification test. Due to budgetary and time constraints, most programs opt to correlate the spacecraft dynamic model during the environmental qualification test, conducted on a large shaker table. For any model correlation effort, the key has always been finding a proper definition of the boundary conditions. This paper is a correlation case study to investigate the difference in responses of a simple structure using a free-free boundary, a fixed boundary on the shaker table, and a base-drive vibration test, all using identical instrumentation. The NAVCON Jim Beam test structure, featured in the IMAC round robin modal test of 2009, was selected as a simple, well recognized and well characterized structure to conduct this investigation. First, a free-free impact modal test of the Jim Beam was done as an experimental control. Second, the Jim Beam was mounted to a large 20,000 lbf shaker, and an impact modal test in this fixed configuration was conducted. Lastly, a vibration test of the Jim Beam was conducted on the shaker table. The free-free impact test, the fixed impact test, and the base-drive test were used to assess the effect of the shaker modes, evaluate the validity of fixed-base modeling assumptions, and compare final model correlation results between these boundary conditions.
Portable work zone barrier-"mobile barriers" mobile barrier trailer : final report, December 2009.
DOT National Transportation Integrated Search
2009-12-01
This work has focused on the fabrication and implementation of the MBT-1 Beam which is a : truck mounted, moveable, expandable beam that provides positive work zone protection : comparable to a fixed concrete barrier. It is specifically intended to e...
Web-based visualization of gridded dataset usings OceanBrowser
NASA Astrophysics Data System (ADS)
Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie
2015-04-01
OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).
Deeb, George R; Laskin, Daniel M; Deeb, Janina Golob
2017-03-01
The purpose of this study was to confirm the efficiency of using a lateral ramus block graft taken at the time of impacted mandibular third molar removal for horizontal ridge augmentation and implant placement. Ten patients had grafts obtained from the lateral aspect of the mandible during impacted third molar removal and placed in areas of horizontal ridge deficiency. Measurements made on cone-beam computerized tomograms after 4 months showed gains of 2.7 to 3.5 mm and 16 implants were placed successfully. In patients with impacted third molars requiring dental implants, simultaneous harvest of a lateral block bone graft is an efficient way of obtaining bone for horizontal ridge augmentation. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Efficient reorientation of a deformable body in space: A free-free beam example
NASA Technical Reports Server (NTRS)
Kolmanovsky, Ilya V.; Mcclamroch, N. Harris
1993-01-01
It is demonstrated that the planar reorientation of a free-free beam in zero gravity space can be accomplished by periodically changing the shape of the beam using internal actuators. A control scheme is proposed in which electromechanical actuators excite the flexible motion of the beam so that it rotates in the desired manner with respect to a fixed inertial reference. The results can be viewed as an extension of previous work to a distributed parameter case.
New Beam Scanning Device for Active Beam Delivery System (BDS) in Proton Therapy
NASA Astrophysics Data System (ADS)
Variale, V.; Mastromarco, M.; Colamaria, F.; Colella, D.
A new Beam Delivery System (BDS) has been studied in the framework of a new proton therapy project, called AMIDERHA. It is characterized by an active scanning system for target irradiation with a pencil beam. The project is based on the use of a Linac with variable final energy and the Robotized Patient Positioning System instead of the traditional gantry. As a consequence, in the active BDS of AMIDERHA a pencil beam scanning system with a relatively long Source to Axis Distance (SAD) can be used. In this contribution, the idea of using a unique new device capable of both horizontal and vertical beam scansion for the AMIDERHA active BDS will be presented and discussed. Furthermore, a preliminary design of that device will be shown, together with the results of simulations.
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.
1980-01-01
The second-degree nonlinear equations of motion for a flexible, twisted, nonuniform, horizontal axis wind turbine blade were developed using Hamilton's principle. A mathematical ordering scheme which was consistent with the assumption of a slender beam was used to discard some higher-order elastic and inertial terms in the second-degree nonlinear equations. The blade aerodynamic loading which was employed accounted for both wind shear and tower shadow and was obtained from strip theory based on a quasi-steady approximation of two-dimensional, incompressible, unsteady, airfoil theory. The resulting equations had periodic coefficients and were suitable for determining the aeroelastic stability and response of large horizontal-axis wind turbine blades.
Fixed-target hadron production experiments
NASA Astrophysics Data System (ADS)
Popov, Boris A.
2015-08-01
Results from fixed-target hadroproduction experiments (HARP, MIPP, NA49 and NA61/SHINE) as well as their implications for cosmic ray and neutrino physics are reviewed. HARP measurements have been used for predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve predictions of the muon yields in EAS and of the atmospheric neutrino fluxes as well as to help in the optimization of neutrino factory and super-beam designs. Recent measurements released by the NA61/SHINE experiment are of significant importance for a precise prediction of the J-PARC neutrino beam used for the T2K experiment and for interpretation of EAS data. These hadroproduction experiments provide also a large amount of input for validation and tuning of hadron production models in Monte-Carlo generators.
Comprehensive study of beam focusing by crystal devices
NASA Astrophysics Data System (ADS)
Scandale, W.; Arduini, G.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Masi, A.; Mirarchi, D.; Montesano, S.; Petrucci, S.; Redaelli, S.; Rossi, R.; Breton, D.; Burmistrov, L.; Dubos, S.; Maalmi, J.; Natochii, A.; Puill, V.; Stocchi, A.; Sukhonos, D.; Bagli, E.; Bandiera, L.; Guidi, V.; Mazzolari, A.; Romagnoni, M.; Murtas, F.; Addesa, F.; Cavoto, G.; Iacoangeli, F.; Galluccio, F.; Afonin, A. G.; Bulgakov, M. K.; Chesnokov, Yu. A.; Durum, A. A.; Maisheev, V. A.; Sandomirskiy, Yu. E.; Yanovich, A. A.; Kolomiets, A. A.; Kovalenko, A. D.; Taratin, A. M.; Smirnov, G. I.; Denisov, A. S.; Gavrikov, Yu. A.; Ivanov, Yu. M.; Lapina, L. P.; Malyarenko, L. G.; Skorobogatov, V. V.; Auzinger, G.; James, T.; Hall, G.; Pesaresi, M.; Raymond, M.
2018-01-01
This paper is devoted to an experimental study of focusing and defocusing positively charged particle beams with the help of specially bent single crystals. Four crystals have been fabricated for this purpose. The studies have been performed at the CERN SPS in 400 GeV /c proton and 180 GeV /c pion beams. The results of measurements of beam envelopes are presented. The rms size of the horizontal profile at the focus was 5-8 times smaller than at the exit of the crystals. The measured focal lengths were 4-21 m. The results of measurements are in good agreement with calculations. Possible applications of focusing crystals in present and future high energy accelerators are discussed.
Infraorbital foramen: horizontal location in relation to ala nasi.
Takahashi, Yasuhiro; Kakizaki, Hirohiko; Nakano, Takashi
2011-01-01
To examine the horizontal location of the infraorbital foramen in relation to the ala nasi. Fifty-six orbits of 28 Japanese cadavers (18 male and 10 female cadavers; average death age, 79.7 years), fixed in 10% buffered formalin, were used. The horizontal distance from the vertical line through the lateral margin of the ala nasi to the medial margin of the infraorbital foramen (the horizontal distance) and the transverse diameter of the infraorbital foramen (the transverse diameter) were examined. Values were compared between genders and sides using Student's t test. The mean horizontal distance was 4.9 mm, with no significant difference between genders (male, 5.2 mm; female, 4.4 mm; p = 0.150) or sides (right, 4.9 mm; left, 4.9 mm; p = 0.944). The mean transverse diameter was 5.5 mm. Although there was no significant difference in this diameter between sides (right, 5.3 mm; left, 5.6 mm; p = 0.358), there was a significant difference between genders (male, 5.7 mm; female, 5.1 mm; p = 0.033). The horizontal distance had no gender difference. This value is available irrespective of gender in surgery.
Improved Electro-Optical Switches
NASA Technical Reports Server (NTRS)
Nelson, Bruce N.; Cooper, Ronald F.
1994-01-01
Improved single-pole, double-throw electro-optical switches operate in switching times less than microsecond developed for applications as optical communication systems and networks of optical sensors. Contain no moving parts. In comparison with some prior electro-optical switches, these are simpler and operate with smaller optical losses. Beam of light switched from one output path to other by applying, to electro-optical crystal, voltage causing polarization of beam of light to change from vertical to horizontal.
Non-deterministic quantum CNOT gate with double encoding
NASA Astrophysics Data System (ADS)
Gueddana, Amor; Attia, Moez; Chatta, Rihab
2013-09-01
We define an Asymmetric Partially Polarizing Beam Splitter (APPBS) to be a linear optical component having different reflectivity (transmittance) coefficients, on the upper and the lower arms, for horizontally and vertically Polarized incident photons. Our CNOT model is composed by two APPBSs, one Half Wave Plate (HWP), two Polarizing Beam Splitters (PBSs), a Beam Splitter (BS) and a -phase rotator for specific wavelength. Control qubit operates with dual rail encoding while target qubit is based on polarization encoding. To perform CNOT operation in 4/27 of the cases, input and target incoming photons are injected with different wavelengths.
A variable partially polarizing beam splitter.
Flórez, Jefferson; Carlson, Nathan J; Nacke, Codey H; Giner, Lambert; Lundeen, Jeff S
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
A variable partially polarizing beam splitter
NASA Astrophysics Data System (ADS)
Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
Beauty and charm production at fixed-target experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erik E. Gottschalk
Fixed-target experiments continue to provide insights into the physics of particle production in strong interactions. The experiments are performed with different types of beam particles of varying energies, and many different target materials. Studies of beauty and charm production are of particular interest, since experimental results can be compared to perturbative QCD calculations. It is in this context that recent results from fixed-target experiments on beauty and charm production will be reviewed.
NASA Astrophysics Data System (ADS)
Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon
2017-11-01
The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.
Mehdizadeh, Mojdeh; Ahmadi, Navid; Jamshidi, Mahsa
2014-11-01
Exact location of the inferior alveolar nerve (IAN) bundle is very important. The aim of this study is to evaluate the relationship between the mandibular third molar and the mandibular canal by cone-beam computed tomography. This was a cross-sectional study with convenience sampling. 94 mandibular CBCTs performed with CSANEX 3D machine (Soredex, Finland) and 3D system chosen. Vertical and horizontal relationship between the mandibular canal and the third molar depicted by 3D, panoramic reformat view of CBCT and cross-sectional view. Cross-sectional view was our gold standard and other view evaluated by it. There were significant differences between the vertical and horizontal relation of nerve and tooth in all views (p < 0.001). The results showed differences in the position of the inferior alveolar nerve with different views of CBCT, so CBCT images are not quite reliable and have possibility of error.
Shahidi, Shoaleh; Zamiri, Barbad; Abolvardi, Masoud; Akhlaghian, Marzieh; Paknahad, Maryam
2018-06-01
Accurate measurement of the available bone height is an essential step in the pre-surgical phase of dental implantation. Panoramic radiography is a unique technique in the pre-surgical phase of dental implantations because of its low cost, relatively low-dose, and availability. This article aimed to assess the reliability of dental panoramic radiographs in the accurate measurement of the vertical bone height with respect to the horizontal location of the alveolar crest. 132 cone-beam computed tomography (CBCT) of the edentulous mandibular molar area and dental panoramic radiograph of 508 patients were selected. Exclusion criteria were bone abnormalities and detectable ideal information on each modality. The alveolar ridge morphology was categorized into 7 types according to the relative horizontal location of the alveolar crest to the mandibular canal based on CBCT findings. The available bone height (ABH) was defined as the distance between the upper border of the mandibular canal and alveolar crest. One oral radiologist and one oral surgeon measured the available bone height twice on each modality with a 7-dayinterval. We found a significant correlation between dental panoramic radiographs and cone-beam computed tomography values (ICC=0.992, p < 0.001). A positive correlation between the horizontal distance of the alveolar crest to the mandibular canal and measured differences between two radiographic modalities had been found (r=0.755, p < 0.001). For each single unit of increase in the horizontal distance of the alveolar crest to the mandibular canal, dental panoramic radiographs showed 0.87 unit of overestimation ( p < 0.001). Dental panoramic radiographs can be employed safely in the pre-surgical phase of dental implantation in posterior alveolus of mandible, especially in routine and simple cases.
Aircraft and satellite passive microwave observations of the Bering Sea ice cover during MIZEX West
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T., Jr.
1986-01-01
Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal ice zone delineating regions of open water, ice compactness, and ice-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a decrease in ice thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year ice types.
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T.; Calhoon, C.
1984-01-01
Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal ice zone delineating regions of open water, ice compactness, and ice-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a decrease in ice thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year sea ice types.
Displacement measurement with over-determined interferometer
NASA Astrophysics Data System (ADS)
Lazar, Josef; Holá, Miroslava; Hrabina, Jan; Buchta, Zdeněk.; Číp, Ondřej; Oulehla, Jindřich
2012-01-01
We present a concept combining traditional displacement incremental interferometry with a tracking refractometer following the fluctuations of the refractive index of air. This concept is represented by an interferometric system of three Michelson-type interferometers where two are arranged in a counter-measuring configuration and the third one is set to measure the changes of the fixed length, here the measuring range of the overall displacement. In this configuration the two counter-measuring interferometers have identical beam paths with proportional parts of the overall one. The fixed interferometer with its geometrical length of the measuring beam linked to a mechanical reference made of a high thermal-stability material (Zerodur) operates as a tracking refractometer monitoring the atmospheric refractive index directly in the beam path of the displacement measuring interferometers. This principle has been demonstrated experimentally through a set of measurements in a temperature controlled environment under slowly changing refractive index of air in comparison with its indirect measurement through Edlen formula. With locking of the laser optical frequency to fixed value of the overall optical length the concept can operate as an interferometric system with compensation of the fluctuations of the refractive index of air.
Physics opportunities with a fixed target experiment at the LHC (AFTER@LHC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjidakis, Cynthia; Anselmino, Mauro; Arnaldi, R.
By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton and lead LHC beams allow one to perform the most energetic fixed-target experiments (AFTER@LHC) and to study p+p and p+A collisions at \\sqrt{s_NN}=115 GeV and Pb+p and Pb+A collisions at \\sqrt{s_NN}=72 GeV. Such studies would address open questions in the domain of the nucleon and nucleus partonic structure at high-x, quark-gluon plasma and, by using longitudinally or transversally polarised targets, spin physics. In this paper, we discuss the physics opportunities of a fixed-target experiment at the LHC and we report on themore » possible technical implementations of a high-luminosity experiment. We finally present feasibility studies for Drell-Yan, open heavy-flavour and quarkonium production, with an emphasis on high-x and spin physics.« less
Beam splitter and method for generating equal optical path length beams
Qian, Shinan; Takacs, Peter
2003-08-26
The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.
Multimode laser beam analyzer instrument using electrically programmable optics.
Marraccini, Philip J; Riza, Nabeel A
2011-12-01
Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M(2). Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M(2) experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.
VERTICAL BEAM SIZE CONTROL IN TLS AND TPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KUO, C.C.; CHEN, J.R.; CHOU, P.J.
2006-06-26
Vertical beam size control is an important issue in the light source operations. The horizontal-vertical betatron coupling and vertical dispersion were measured and corrected to small values in the TLS 1.5 GeV storage ring. Estimated beam sizes are compared with the measured values. By employing an effective transverse damping system, the vertical beam blow-up due to transverse coherent instabilities, such as the fast-ion beam instability, was suppressed. As a result, the light source is very stable. In NSRRC we are designing an ultra low emittance 3-GeV storage ring and its designed vertical beam size could be as small as amore » few microns. The ground and mechanic vibration effects, and coherent instabilities could spoil the expected photon brightness due to blow-up of the vertical beam size if not well taken care of. The contributions of these effects to vertical beam size increase will be evaluated and the counter measures to minimize them will be proposed and reported in this paper.« less
NASA Astrophysics Data System (ADS)
Wells, Jered R.; Segars, W. Paul; Kigongo, Christopher J. N.; Dobbins, James T., III
2011-03-01
This paper describes a recently developed post-acquisition motion correction strategy for application to lower-cost computed tomography (LCCT) for under-resourced regions of the world. Increased awareness regarding global health and its challenges has encouraged the development of more affordable healthcare options for underserved people worldwide. In regions such as sub-Saharan Africa, intermediate level medical facilities may serve millions with inadequate or antiquated equipment due to financial limitations. In response, the authors have proposed a LCCT design which utilizes a standard chest x-ray examination room with a digital flat panel detector (FPD). The patient rotates on a motorized stage between the fixed cone-beam source and FPD, and images are reconstructed using a Feldkamp algorithm for cone-beam scanning. One of the most important proofs-of-concept in determining the feasibility of this system is the successful correction of undesirable motion. A 3D motion correction algorithm was developed in order to correct for potential patient motion, stage instabilities and detector misalignments which can all lead to motion artifacts in reconstructed images. Motion will be monitored by the radiographic position of fiducial markers to correct for rigid body motion in three dimensions. Based on simulation studies, projection images corrupted by motion were re-registered with average errors of 0.080 mm, 0.32 mm and 0.050 mm in the horizontal, vertical and depth dimensions, respectively. The overall absence of motion artifacts in motion-corrected reconstructions indicates that reasonable amounts of motion may be corrected using this novel technique without significant loss of image quality.
NASA Technical Reports Server (NTRS)
Gallo, C.; Kasuba, R.; Pintz, A.; Spring, J.
1986-01-01
The dynamic analysis of a horizontal axis fixed pitch wind turbine generator (WTG) rated at 56 kW is discussed. A mechanical Continuously Variable Transmission (CVT) was incorporated in the drive train to provide variable speed operation capability. One goal of the dynamic analysis was to determine if variable speed operation, by means of a mechanical CVT, is capable of capturing the transient power in the WTG/wind environment. Another goal was to determine the extent of power regulation possible with CVT operation.
The Evaluation of Root Fracture with Cone Beam Computed Tomography (CBCT): An Epidemiological Study.
Doğan, Mehmet-Sinan; Callea, Michele; Kusdhany, Lindawati S; Aras, Ahmet; Maharani, Diah-Ayu; Mandasari, Masita; Adiatman, Melissa; Yavuz, Izzet
2018-01-01
The aim of this study was evaluation of the cone-beam computed tomography (CBCT) image of 50 patients at the ages of 8-15 suspecting root fracture and root fracture occurred, exposed to dental traumatic. In additionally, this study was showed effect of crown fracture on root fracture healing. All of the individuals included in the study were obtained images with the cone-beam computed tomography range of 0,3 voxel and 8.9 seconds.(i-CAT®, Model 17-19, Imaging SciencesInternational, Hatfield, Pa USA).The information obtained from the history and CBCT images of patients were evaluated using chi-square test statistical method the mean and the distribution of the independent variables. 50 children, have been exposed to trauma, was detected root fracture injury in 97 teeth. Horizontal root fracture 63.9% of the 97 tooth, the oblique in 31.9%, both the horizontal and oblique in 1.03%, partial fracture in 2.06% ,and both horizontally and vertical in 1.03% was observed.The most affected teeth, respectively of, are the maxillary central incisor (41.23% left, right, 37.11%), maxillary left lateral incisor (9.27%), maxillary right lateral incisor (11.34%), and mandibular central incisor (1.03%). Crown fractures have negative effects on spontaneous healing of root fractures. CBCT are used selected as an alternative to with conventional radiography for diagnosis of root fractures. In particular, ıt's cross-sectional image is quite useful and has been provided more conveniences seeing the results of diagnosis and treatment for clinician. Key words: Root fracture, CBCT, Epidemiolog.
Nuclear component horizontal seismic restraint
Snyder, Glenn J.
1988-01-01
A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.
Kazimirov, A.; Kohn, V. G.
2010-01-01
X-ray optical schemes capable of producing a highly monochromatic beam with high angular collimation in both the vertical and horizontal planes have been evaluated and utilized to study high-resolution diffraction phenomena in the Renninger (222/113) case of three-beam diffraction in silicon. The effect of the total reflection of the incident beam into the nearly forbidden reflected beam was observed for the first time with the maximum 222 reflectivity at the 70% level. We have demonstrated that the width of the 222 reflection can be varied many times by tuning the azimuthal angle by only a few µrad in the vicinity of the three-beam diffraction region. This effect, predicted theoretically more than 20 years ago, is explained by the enhancement of the 222 scattering amplitude due to the virtual two-stage 000 113 222 process which depends on the azimuthal angle. PMID:20555185
Improved design and in-situ measurements of new beam position monitors for Indus-2
NASA Astrophysics Data System (ADS)
Kumar, M.; Babbar, L. K.; Holikatti, A. C.; Yadav, S.; Tyagi, Y.; Puntambekar, T. A.; Senecha, V. K.
2018-01-01
Beam position monitors (BPM) are important diagnostic devices used in particle accelerators to monitor position of the beam for various applications. Improved version of button electrode BPM has been designed using CST Studio Suite for Indus-2 ring. The new BPMs are designed to replace old BPMs which were designed and installed more than 12 years back. The improved BPMs have higher transfer impedance, resonance free output signal, equal sensitivity in horizontal and vertical planes and fast decaying wakefield as compared to old BPMs. The new BPMs have been calibrated using coaxial wire method. Measurement of transfer impedance and time domain signals has also been performed in-situ with electron beam during Indus-2 operation. The calibration and beam based measurements results showed close agreement with the design parameters. This paper presents design, electromagnetic simulations, calibration result and in-situ beam based measurements of newly designed BPMs.
Phase space manipulation in high-brightness electron beams
NASA Astrophysics Data System (ADS)
Rihaoui, Marwan M.
Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Methods of and apparatus for levitating an eddy current probe
Stone, William J.
1988-05-03
An eddy current probe is supported against the force of gravity with an air earing while being urged horizontally toward the specimen being examined by a spring and displaced horizontally against the force of the spring pneumatically. The pneumatic displacement is accomplished by flowing air between a plenum chamber fixed with respect to the probe and the surface of the specimen. In this way, the surface of the specimen can be examined without making mechanical contact therewith while precisely controlling the distance at which the probe stands-off from the surface of the specimen.
Regional and local networks of horizontal control, Cerro Prieto geothermal area
Massey, B.L.
1979-01-01
The Cerro Prieto geothermal area in the Mexicali Valley 30 km southeast of Mexicali, Baja California, is probably deforming due to (1) the extraction of large volumes of steam and hot water, and (2) active tectonism. Two networks of precise horizontal control were established in Mexicali Valley by the U.S. Geological Survey in 1977 - 1978 to measure both types of movement as they occur. These networks consisted of (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from survey stations on an existing U.S. Geological Survey crustal-strain network north of the international border, and (2) a local net tied to stations in the regional net and encompassing the area of present and planned geothermal production. Survey lines in this net were selected to span areas of probable ground-surface movements in and around the geothermal area. Electronic distance measuring (EDM) instruments, operating with a modulated laser beam, were used to measure the distances between stations in both networks. The regional net was run using a highly precise long-range EDM instrument, helicopters for transportation of men and equipment to inaccessible stations on mountain peaks, and a fixed wing airplane flying along the line of sight. Precision of measurements with this complex long-range system approached 0-2 ppm of line length. The local net was measured with a medium-range EDM instrument requiring minimal ancillary equipment. Precision of measurements with this less complex system approached 3 ppm for the shorter line lengths. The detection and analysis of ground-surface movements resulting from tectonic strains or induced by geothermal fluid withdrawal is dependent on subsequent resurveys of these networks. ?? 1979.
Combined VIS-IR spectrometer with vertical probe beam
NASA Astrophysics Data System (ADS)
Protopopov, V.
2017-12-01
A prototype of a combined visible-infrared spectrometer with a vertical probe beam is designed and tested. The combined spectral range is 0.4-20 μ with spatial resolution 1 mm. Basic features include the ability to measure both visibly transparent and opaque substances, as well as buried structures, such as in semiconductor industry; horizontal orientation of a sample, including semiconductor wafers; and reflection mode of operation, delivering twice the sensitivity compared to the transmission mode.
Experiments to trap dust particles by a wire simulating an electron beam
NASA Astrophysics Data System (ADS)
Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime
1991-11-01
Motion of trapped dust particles has been previously analyzed using high-energy bremsstrahlung data obtained during dust trapping in the TRISTAN accumulation ring. Because it is difficult to observe the actual motions of dust particles trapped in an electron beam due to the strong synchrotron light background, we carried out experiments to trap sample dust particles with a Cu wire simulating an electron beam. A negative potential was slowly applied to the wire using a high voltage dc power supply. Motions of dust particles trapped by the wire were recorded with a video camera system. In an experiment using a Cu wire (1.5 mm in diameter) with no magnetic field, the charged dust particle made vertical oscillation about the wire. In another experiment using the same wire but with a vertical magnetic field (0.135 T) simulating a bending magnetic field, both vertical and horizontal oscillating motions perpendicular to the wire were observed. Furthermore, it was found that the dust particle moved in the longitudinal direction of the wire in the bending magnetic field. Therefore, it is expected that charged dust particles trapped by the electric field of the electron beam oscillate vertically where there is no magnetic field in the TRISTAN accumulation ring. It is also expected that trapped dust particles where there is a bending magnetic field oscillate horizontally and vertically as the particle drifts in a longitudinal direction along the ring.
Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa
2016-08-08
We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.
Testing light dark matter coannihilation with fixed-target experiments
Izaguirre, Eder; Kahn, Yonatan; Krnjaic, Gordan; ...
2017-09-01
In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coannihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton and electron beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and downscattering as well as decaymore » of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BaBar data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently-proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.« less
Testing light dark matter coannihilation with fixed-target experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izaguirre, Eder; Kahn, Yonatan; Krnjaic, Gordan
In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coannihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton and electron beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and downscattering as well as decaymore » of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BaBar data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently-proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.« less
Testing light dark matter coannihilation with fixed-target experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izaguirre, Eder; Kahn, Yonatan; Krnjaic, Gordan
In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coannihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton and electron beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and down-scattering as well as decaymore » of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BaBar data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently-proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.« less
Schmidt, F.H.; Stone, K.F.
1958-09-01
S>This patent relates to improvements in calutron devices and, more specifically, describes a receiver fer collecting the ion curreot after it is formed into a beam of non-homogeneous isotropic cross-section. The invention embodies a calutron receiver having an ion receiving pocket for separately collecting and retaining ions traveling in a selected portion of the ion beam and anelectrode for intercepting ions traveling in another selected pontion of the ion beam. The electrode is disposed so as to fix the limit of one side of the pontion of the ion beam admitted iato the ion receiving pocket.
Antenna Beam Pattern Characteristics of HAPS User Terminal
NASA Astrophysics Data System (ADS)
Ku, Bon-Jun; Oh, Dae Sub; Kim, Nam; Ahn, Do-Seob
High Altitude Platform Stations (HAPS) are recently considered as a green infrastructure to provide high speed multimedia services. The critical issue of HAPS is frequency sharing with satellite systems. Regulating antenna beam pattern using adaptive antenna schemes is one of means to facilitate the sharing with a space receiver for fixed satellite services on the uplink of a HAPS system operating in U bands. In this letter, we investigate antenna beam pattern characteristics of HAPS user terminals with various values of scan angles of main beam, null position angles, and null width.
The design improvement of horizontal stripline kicker in TPS storage ring
NASA Astrophysics Data System (ADS)
Chou, P. J.; Chan, C. K.; Chang, C. C.; Hsu, K. T.; Hu, K. H.; Kuan, C. K.; Sheng, I. C.
2017-07-01
We plan to replace the existing horizontal stripline kicker of the transverse feedback system with an improved design. Large reflected power was observed at the downstream port of stripline kicker driven by the feedback amplifier. A rapid surge of vacuum pressure was observed when we tested the high current operation in TPS storage ring in April 2016. A burned feedthrough of the horizontal stripline kicker was discovered during a maintenance shutdown. The improved design is targeted to reduce the reflection of driving power from feedback system and to reduce beam induced RF heating. This major modification of the design is described. The results of RF simulation performed with the electromagnetic code GdfidL are reported as well.
High stability integrated Tri-axial fluxgate sensor with suspended technology
NASA Astrophysics Data System (ADS)
Wang, Chen; Teng, Yuntian; Wang, Xiaomei; Fan, Xiaoyong; Wu, Qiong
2017-04-01
The relative geomagnetic record of China Geomagnetic Network of China(GNC) has been digitized, network, meanwhile achieving second data acquisition and storage during after 9th five-year and 10th five-year plan upgraded. Currently the relative record in geomagnetic observatories are generally two sets of the same type instrument with parallel observation, which could distinguish the differential between observation instrument failures and environmental interference, and ensure the continuity and integrity of the observation data. Fluxgate magnetometer has become mainstream equipment for relative geomagnetic record because of its low noise, high sensitivity, and fast response. There is a problem about data inconsistency by the same type of instrument in the same station though few years observation data analysis. The researchers have done a lot of experiments and found three main error sources:1. The instrument performances, due to the limitation of manufacturing and assembly process level it is difficult to ensure the orthogonality of the instrument; other performances of scale, zero offset and temperature coefficient; 2. horizontal error, which introduced by the initial installation process due to horizontal adjustment and pillar tilling due to long-term observations; 3.The observation environment, the temperature and humidity, power supply system. The new fluxgate magnetometer uses special nonmagnetic gimbaled (made by beryllium / bronze material) construction for suspension, so the fluxgate sensor is fixed at the suspended platform in order to automatically keep the horizontal level. The advantage of this design is to eliminate horizontal error introduced by the initial installation process due to horizontal adjustment and pillar tilling due to long-term observations. The signal processing circuit board is fixed on the top of the suspended platform with certain distance to ensure the static and dynamic magnetic field produced by circuit board no effect to the sensor, so we could get flexible instrument due to signal attenuation resulting signal transmission cable limited length.
NASA Astrophysics Data System (ADS)
BOERTJENS, G. J.; VAN HORSSEN, W. T.
2000-08-01
In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.
Study on Transverse Load Distribution of Hinged Hollow Beam
NASA Astrophysics Data System (ADS)
Wang, Weiyue; Zhang, Chao; Wan, Shui
2017-11-01
The bridge is a kind of space structure, when the car load on a part of the bridge, the impact of its load will be transmitted to the surrounding. In this paper, the hinge plate method is used to calculate and analyze the simply supported hollow slab of a certain arch bridge. Considering the hinge plate mounting method is suitable for pouring concrete bridge connecting the longitudinal tongue and groove joints, horizontal beams fabricated separate beam only in the middle between the free flaps or reinforced with steel connection. Therefore, the transverse analysis and calculation of the superstructure of box girder are carried out by using hinge plate method. And mechanical analysis of the transverse beam with finite element software MIDAS Civil grillage method.
Development of beamline U3A for AXAF synchrotron reflectivity calibrations
NASA Astrophysics Data System (ADS)
Burek, Anthony J.; Cobuzzi, J. C.; Fitch, Jonathan J.; Graessle, Dale E.; Ingram, R. H.; Sweeney, J. B.; Blake, Richard L.; Francoeur, R.; Sullivan, E. S.
1998-11-01
We discuss the development of beamline U3A at NSLS for AXAF telescope witness mirror reflectivity calibrations in the 1- 2 keV energy range. The beamline was originally constructed as a white light beamline and has been upgraded with the addition of a monochromator to meet the needs of the AXAF calibration program. The beamline consists of an upstream horizontally focussing gold coated elliptical mirror, a differential pumping section, a sample/filter chamber, a monochromator and a downstream filter set. The mirror is set at a 2 degree incident angle for a nominal high energy cutoff at 2 keV. The monochromator is a separated element, scanning, double crystal/multilayer design having low to moderate energy resolution. A fixed exit beam is maintained through the 7-70 degree Bragg angle range by longitudinal translation of the second scanning crystal. Tracking is achieved by computer control of the scan motors with lookup table positioning of the crystal rotary tables. All motors are in vacuum and there are no motional feedthroughs. Several different multilayer or crystal pairs are co-mounted on the monochromator crystal holders and can be exchanged in situ. Currently installed are a W/Si multilayer pair, beryl, and Na-(beta) alumina allowing energy coverage from 180 eV to 2000 eV. Measurements with Na-(beta) alumina and beryl show that beam impurity less than 0.1 percent can be achieved in the 1-2 keV energy range. Measured resolving powers are E/(Delta) E equals 60 for W/Si, 500-800 for (beta) alumina and 1500 to 3000 for beryl. Initial results suggest that signal to noise and beam purity are adequate in the 1-2 keV region to achieve the 1 percent calibration accuracy required by AXAF. This allows overlap of Ir MV edge data taken on x-ray beamline X8A and with low energy data taken on ALS beamline 6.3.2.
Phased array-fed antenna configuration study: Technology assessment
NASA Technical Reports Server (NTRS)
Croswell, W. F.; Ball, D. E.; Taylor, R. C.
1983-01-01
Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.
McLeod, Euan; Arnold, Craig B
2008-07-10
Current methods for generating Bessel beams are limited to fixed beam sizes or, in the case of conventional adaptive optics, relatively long switching times between beam shapes. We analyze the multiscale Bessel beams created using an alternative rapidly switchable device: a tunable acoustic gradient index (TAG) lens. The shape of the beams and their nondiffracting, self-healing characteristics are studied experimentally and explained theoretically using both geometric and Fourier optics. By adjusting the electrical driving signal, we can tune the ring spacings, the size of the central spot, and the working distance of the lens. The results presented here will enable researchers to employ dynamic Bessel beams generated by TAG lenses.
Narrow linewidth operation of a spectral beam combined diode laser bar.
Zhu, Zhanda; Jiang, Menghua; Cheng, Siqi; Hui, Yongling; Lei, Hong; Li, Qiang
2016-04-20
Our experiment is expected to provide an approach for realizing ultranarrow linewidth for a spectral beam combined diode laser bar. The beams of a diode laser bar are combined in a fast axis after a beam transformation system. With the help of relay optics and a transform lens with a long focal length of 1.5 m, the whole wavelength of a spectral combined laser bar can be narrowed down to 0.48 nm from more than 10 nm. We have achieved 56.7 W cw from a 19-element single bar with an M2 of 1.4 (in horizontal direction)×11.6 (in vertical direction). These parameters are good evidence that all the beams from the diode laser bar are combined together to increase the brightness.
Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Gwanghui; Cho, Moo -Hyun; Namkung, W.
2017-03-09
Here, we report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shapemore » is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less
Beam based measurement of beam position monitor electrode gains
NASA Astrophysics Data System (ADS)
Rubin, D. L.; Billing, M.; Meller, R.; Palmer, M.; Rendina, M.; Rider, N.; Sagan, D.; Shanks, J.; Strohman, C.
2010-09-01
Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ˜0.1%.
Merıç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; özden, Ahmet Utku
2011-11-01
The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone around the implants supporting cantilever fixed partial dentures (CFPDs) as well as in the implant-abutment complex and superstructures. The three-dimensional finite element method was selected to evaluate the stress distribution. CFPDs which was supported by microthread collar structured (MCS) and non-microthread collar structured (NMCS) implants was modeled; 300 N vertical, 150 N oblique and 60 N horizontal forces were applied to the models separately. The stress values in the bone, implant-abutment complex and superstructures were calculated. In the MCS model, higher stresses were located in the cortical bone and implant-abutment complex in the case of vertical load while decreased stresses in cortical bone and implant-abutment complex were noted within horizontal and oblique loading. In the case of vertical load, decreased stresses have been noted in cancellous bone and framework. Upon horizontal and oblique loading, a MCS model had higher stress in cancellous bone and framework than the NMCS model. Higher von Mises stresses have been noted in veneering material for NMCS models. It has been concluded that stress distribution in implant-supported CFPDs correlated with the macro design of the implant collar and the direction of applied force.
NASA Technical Reports Server (NTRS)
Chen, C. C.; Franklin, C. F.
1980-01-01
The frequency reuse capability is demonstrated for a Ku-band multiple beam antenna which provides contiguous low sidelobe spot beams for point-to-point communications between any two points within the continental United States (CONUS), or regional coverage beams for direct broadcast systems. A spot beam antenna in the 14/21 GHz band which provides contiguous overlapping beams covering CONUS and two discrete beams covering Hawaii and Alaska were designed, developed, and tested. Two reflector antennas are required for providing contiguous coverage of CONUS. Each is comprised of one offset parabolic reflector, one flat polarization diplexer, and two separate planar array feeds. This antenna system provides contiguous spot beam coverage of CONUS, utilizing 15 beams. Also designed, developed and demonstrated was a shaped contoured beam antenna system which provides contiguous four time zone coverage of CONUS from a single offset parabolic reflector incorporating one flat polarization diplexer and two separate planar array feeds. The beams which illuminate the eastern time zone and the mountain time zone are horizontally polarized, while the beams which illuminate the central time zone and the pacific time zone are vertically polarized. Frequency reuse is achieved by amplitude and polarization isolation.
Angle performance on optima MDxt
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Kamenitsa, Dennis
2012-11-06
Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightlymore » tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).« less
Heterogeneous MEMS Device Assembly and Integration
2014-04-01
included a camera, a He-Ne laser, attenuation filters, folding mirrors, the micromirror under test (MUT) and the observation plane. The MUT was...non activated mirror (the initial incidence plane) was horizontal. Figure 4: Micromirror characterization setup. The static response of a beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, M. A. Pagnan, E-mail: miguelangel.pagnan@hotmail.com; Mitsoura, E., E-mail: meleni@uaemex.mx; Oviedo, J.O. Hernández
Mycosis fungoides is a cutaneous lymphoma that accounts for 2–3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electronsmore » was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm{sup 2}. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm{sup 2}. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm{sup 2} was obtained, resulting to an effective maximum dose depth (Z{sub ref}) for electrons of 1.4±0.05cm. Using the same experimental data, horizontal and vertical beam profiles were also graphed, showing a horizontal symmetry of ±035%, horizontal flatness of ±3.62%, vertical symmetry of ±2.1% and vertical flatness of ±14.2%. Conclusions: The electron beam was characterized and the data obtained were useful to determine the spatial dose distribution to a SSD of 500±0.5cm, in an area of 200×100cm{sup 2}. Dose profiles were obtained both horizontally and vertically, thus allowing to assess electron beam symmetry and flatness. PDD analysis up to a depth of 9±0.05cm, has made possible to establish the depth of electron penetration, assuring an only skin irradiation treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, N; Chen, C; Gans, S
Purpose: A fixed-beam room could be underutilized in a multi-room proton center. We investigated the use of proton pencil beam scanning (PBS) on a fixed-beam as an alternative for posterior fossa tumor bed (PF-TB) boost treatments which were usually treating on a gantry with uniform scanning. Methods: Five patients were treated with craniospinal irradiation (CSI, 23.4 or 36.0 Gy(RBE)) followed by a PF-TB boost to 54 Gy(RBE) with proton beams. Three PF-TB boost plans were generated for each patient: (1) a uniform scanning (US) gantry plan with 4–7 posterior fields shaped with apertures and compensators (2) a PBS plan usingmore » bi-lateral and vertex fields with a 3-mm planning organ-at-risk volume (PRV) expansion around the brainstem and (3) PBS fields using same beam arrangement but replacing the PRV with robust optimization considering a 3-mm setup uncertainty. Results: A concave 54-Gy(RBE) isodose line surrounding the brainstem could be achieved using all three techniques. The mean V95% of the PTV was 99.7% (range: 97.6% to 100%) while the V100% of the PTV ranged from 56.3% to 93.1% depending on the involvement of the brainstem with the PTV. The mean doses received by 0.05 cm{sup 3} of the brainstem were effectively identical: 54.0 Gy(RBE), 53.4 Gy(RBE) and 53.3 Gy(RBE) for US, PBS optimized with PRV, and PBS optimized with robustness plans respectively. The cochlea mean dose increased by 23% of the prescribed boost dose in average from the bi-lateral fields used in the PBS plan. Planning time for the PBS plan with PRV was 5–10 times less than the US plan and the robustly optimized PBS plan. Conclusion: We have demonstrated that a fixed-beam with PBS can deliver a dose distribution comparable to a gantry plan using uniform scanning. Planning time can be reduced substantially using a PRV around the brainstem instead of robust optimization.« less
"Twisted Beam" SEE Observations of Ionospheric Heating from HAARP
NASA Astrophysics Data System (ADS)
Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.; Han, S.-M.; Pedersen, T. R.; Scales, W. A.
2015-10-01
Nonlinear interactions of high power HF radio waves in the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska is the world's largest heating facility, yielding effective radiated powers in the gigawatt range. New results are present from HAARP experiments using a "twisted beam" excitation mode. Analysis of twisted beam heating shows that the SEE results obtained are identical to more traditional patterns. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region from a pencil beam. The ring heating pattern may be more conducive to the creation of stable artificial airglow layers because of the horizontal structure of the ring. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.
NASA Astrophysics Data System (ADS)
Reshetnyak, V. Yu.; Pinkevych, I. P.; Evans, D. R.
2018-06-01
We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch helix oriented parallel to the cell substrates (so-called uniformly lying helix configuration). Weak and strong light beams incident on the hybrid cell interfere and induce a periodic space-charge field in the photorefractive substrate of the cell, which penetrates into the cholesteric liquid crystal (LC). Due to the flexoelectro-optic effect an interaction of the photorefractive field with the LC flexopolarization causes the spatially periodic modulation of the helix axis in the plane parallel to the cell substrates. Coupling of a weak signal beam with a strong pump beam at the LC permittivity grating, induced by the periodically tilted helix axis, leads to the energy gain of the weak signal beam. Dependence of the signal beam gain coefficient on the parameters of the short-pitch cholesteric LC is studied.
Kuzay, Tuncer M.; Shu, Deming
1995-01-01
A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.
Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor
NASA Astrophysics Data System (ADS)
Hogan, Erik A.; Schaub, Hanspeter
2016-09-01
With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.
Schuler, Hannes; Köppler, Kirsten; Daxböck-Horvath, Sabine; Rasool, Bilal; Krumböck, Susanne; Schwarz, Dietmar; Hoffmeister, Thomas S; Schlick-Steiner, Birgit C; Steiner, Florian M; Telschow, Arndt; Stauffer, Christian; Arthofer, Wolfgang; Riegler, Markus
2016-04-01
Wolbachia is a maternally inherited and ubiquitous endosymbiont of insects. It can hijack host reproduction by manipulations such as cytoplasmic incompatibility (CI) to enhance vertical transmission. Horizontal transmission of Wolbachia can also result in the colonization of new mitochondrial lineages. In this study, we present a 15-year-long survey of Wolbachia in the cherry fruit fly Rhagoletis cerasi across Europe and the spatiotemporal distribution of two prevalent strains, wCer1 and wCer2, and associated mitochondrial haplotypes in Germany. Across most of Europe, populations consisted of either 100% singly (wCer1) infected individuals with haplotype HT1, or 100% doubly (wCer1&2) infected individuals with haplotype HT2, differentiated only by a single nucleotide polymorphism. In central Germany, singly infected populations were surrounded by transitional populations, consisting of both singly and doubly infected individuals, sandwiched between populations fixed for wCer1&2. Populations with fixed infection status showed perfect association of infection and mitochondria, suggesting a recent CI-driven selective sweep of wCer2 linked with HT2. Spatial analysis revealed a range expansion for wCer2 and a large transition zone in which wCer2 splashes appeared to coalesce into doubly infected populations. Unexpectedly, the transition zone contained a large proportion (22%) of wCer1&2 individuals with HT1, suggesting frequent intraspecific horizontal transmission. However, this horizontal transmission did not break the strict association between infection types and haplotypes in populations outside the transition zone, suggesting that this horizontally acquired Wolbachia infection may be transient. Our study provides new insights into the rarely studied Wolbachia invasion dynamics in field populations. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Hopper, Kenneth D; Strollo, Diane C; Mauger, David T
2002-02-01
To determine the sensitivity and specificity of cardiac gated electron-beam computed tomography (CT) and ungated helical CT in detecting and quantifying coronary arterial calcification (CAC) by using a working heart phantom and artificial coronary arteries. A working heart phantom simulating normal cardiac motion and providing attenuation equal to that of an adult thorax was used. Thirty tubes with a 3-mm inner diameter were internally coated with pulverized human cortical bone mixed with epoxy glue to simulate minimal (n = 10), mild (n = 10), or severe (n = 10) calcified plaques. Ten additional tubes were not coated and served as normal controls. The tubes were attached to the same location on the phantom heart and scanned with electron-beam CT and helical CT in horizontal and vertical planes. Actual plaque calcium content was subsequently quantified with atopic spectroscopy. Two blinded experienced radiologic imaging teams, one for each CT system, separately measured calcium content in the model vessels by using a Hounsfield unit threshold of 130 or greater. The sensitivity and specificity of electron-beam CT in detecting CAC were 66.1% and 80.0%, respectively. The sensitivity and specificity of helical CT were 96.4% and 95.0%, respectively. Electron-beam CT was less reliable when vessels were oriented vertically (sensitivity and specificity, 71.4% and 70%; 95% CI: 39.0%, 75.0%) versus horizontally (sensitivity and specificity, 60.7% and 90.0%; 95% CI: 48.0%, 82.0%). When a correction factor was applied, the volume of calcified plaque was statistically better quantified with helical CT than with electron-beam CT (P =.004). Ungated helical CT depicts coronary arterial calcium better than does gated electron-beam CT. When appropriate correction factors are applied, helical CT is superior to electron-beam CT in quantifying coronary arterial calcium. Although further work must be done to optimize helical CT grading systems and scanning protocols, the data of this study demonstrated helical CT's inherent advantage over currently commercially available electron-beam CT systems in CAC detection and quantification.
NASA Technical Reports Server (NTRS)
Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.
1991-01-01
A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanehira, T; Sutherland, K; Matsuura, T
Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generatedmore » and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rosenfield, J; Dong, X
2016-06-15
Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X; Witztum, A; Liang, X
2014-06-15
Purpose: To present a novel technique to deliver passive-scattering proton beam with fixed range and modulation using a 3D printed patient-specific bolus for proton stereotactic radiosurgery and radiotherapy. Methods: A CIRS head phantom was used to simulate a patient with a small brain lesion. A custom bolus was created in the Eclipse Treatment Planning System (TPS) to compensate for the different water equivalent depths from the patient surface to the target from multiple beam directions. To simulate arc therapy, a plan was created on the initial CT using three passive-scattering proton beams with a fixed range and modulations irradiating frommore » different angles. The DICOM-RT structure file of the bolus was exported from the TPS and converted to STL format for 3D printing. The phantom was rescanned with the printed custom bolus and head cup to verify the dose distribution comparing to the initial plan. EBT3 films were placed in the sagital plane of the target to verify the delivered dose distribution. The relative stopping power of the printing material(ABSplus-P430) was measured using the Zebra multi-plate ion chamber. Results: The relative stopping power of the 3D printing material, ABSplus-P430 was 1.05 which is almost water equivalent. The dose difference between verification CT and Initial CT is almost negligible. Film measurement also confirmed the accuracy for this new proton delivery technique. Conclusion: Our method using 3D printed range modifiers simplify the treatment delivery of multiple passive-scattering beams in treatment of small lesion in brain. This technique makes delivery of multiple beam more efficient and can be extended to allow arc therapy with proton beams. The ability to create and construct complex patient specific bolus structures provides a new dimension in creating optimized quality treatment plans not only for proton therapy but also for electron and photon therapy.« less
The Evaluation of Root Fracture with Cone Beam Computed Tomography (CBCT): An Epidemiological Study
Doğan, Mehmet-Sinan; Callea, Michele; Kusdhany, Lindawati S.; Aras, Ahmet; Maharani, Diah-Ayu; Mandasari, Masita; Adiatman, Melissa
2018-01-01
Background The aim of this study was evaluation of the cone-beam computed tomography (CBCT) image of 50 patients at the ages of 8-15 suspecting root fracture and root fracture occurred, exposed to dental traumatic. In additionally, this study was showed effect of crown fracture on root fracture healing. Material and Methods All of the individuals included in the study were obtained images with the cone-beam computed tomography range of 0,3 voxel and 8.9 seconds.(i-CAT®, Model 17-19, Imaging SciencesInternational, Hatfield, Pa USA).The information obtained from the history and CBCT images of patients were evaluated using chi-square test statistical method the mean and the distribution of the independent variables. Results 50 children, have been exposed to trauma, was detected root fracture injury in 97 teeth. Horizontal root fracture 63.9% of the 97 tooth, the oblique in 31.9%, both the horizontal and oblique in 1.03%, partial fracture in 2.06% ,and both horizontally and vertical in 1.03% was observed.The most affected teeth, respectively of, are the maxillary central incisor (41.23% left, right, 37.11%), maxillary left lateral incisor (9.27%), maxillary right lateral incisor (11.34%), and mandibular central incisor (1.03%). Conclusions Crown fractures have negative effects on spontaneous healing of root fractures. CBCT are used selected as an alternative to with conventional radiography for diagnosis of root fractures. In particular, ıt’s cross-sectional image is quite useful and has been provided more conveniences seeing the results of diagnosis and treatment for clinician. Key words:Root fracture, CBCT, Epidemiolog. PMID:29670714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, R.; Dawson, C.; Jao, S.
2016-08-05
Three problems with the eIPMs were corrected during the 2015 summer shutdown. These involved ac coupling and 'negative profiles', detector 'dead zone' created by biasing, and gain control on ramp. With respect to Run 16, problems dealt with included gain depletion on horizontal MCP and rf pickup on profile signals; it was found that the MCP was severely damaged over part of the aperture. Various corrective measures were applied. Some results of these measured obtained during Run 16 are shown. At the end of Run 16 there was a three-day beam run to study polarized proton beams in the AGS.more » Attempts to minimize beam injection errors which increase emittance by using the eIPMs to measure the contribution of injection mismatch to the AGS output beam emittance are recounted. .« less
Limiting effects in double EEX beamline
NASA Astrophysics Data System (ADS)
Ha, G.; Power, J. G.; Conde, M.; Doran, D. S.; Gai, W.
2017-07-01
The double emittance exchange (EEX) beamline is suggested to overcome the large horizontal emittance and transverse jitter issues associated with the single EEX beamline while preserving its powerful phase-space manipulation capability. However, the double EEX beamline also has potential limitations due to coherent synchrotron radiation (CSR) and transverse jitter. The former limitation arises because double EEX uses twice as many bending magnets as single EEX which means stronger CSR effects degrading the beam quality. The latter limitation arises because a longitudinal jitter in front of the first EEX beamline is converted into a transverse jitter in the middle section (between the EEX beamlines) which can cause beam loss or beam degradation. In this paper, we numerically explore the effects of these two limitations on the emittance and beam transport.
Laser-phased-array beam steering based on crystal fiber
NASA Astrophysics Data System (ADS)
Yang, Deng-cai; Zhao, Si-si; Wang, Da-yong; Wang, Zhi-yong; Zhang, Xiao-fei
2011-06-01
Laser-phased-array system provides an elegant means for achieving the inertial-free, high-resolution, rapid and random beam steering. In laser-phased-array system, phase controlling is the most important factor that impacts the system performance. A novel scheme is provided in this paper, the beam steering is accomplished by using crystal fiber array, the difference length between adjacent fiber is fixed. The phase difference between adjacent fiber decides the direction of the output beam. When the wavelength of the input fiber laser is tuned, the phase difference between the adjacent elements has changed. Therefore, the laser beam direction has changed and the beam steering has been accomplished. In this article, based on the proposed scheme, the steering angle of the laser beam is calculated and analyzed theoretically. Moreover, the far-field steering beam quality is discussed.
A Lunar-Based Spacecraft Propulsion Concept - The Ion Beam Sail
NASA Technical Reports Server (NTRS)
Brown, Ian G.; Lane, John E.; Youngquist, Robert C.
2006-01-01
We describe a concept for spacecraft propulsion by means of an energetic ion beam, with the ion source fixed at the spacecraft starting point (e.g., a lunar-based ion beam generator) and not onboard the vessel. This approach avoids the substantial mass penalty associated with the onboard ion source and power supply hardware, and vastly more energetic ion beam systems can be entertained. We estimate the ion beam parameters required for various scenarios, and consider some of the constraints limiting the concept. We find that the "ion beam sail' approach can be viable and attractive for journey distances not too great, for example within the Earth-Moon system, and could potentially provide support for journeys to the inner planets.
The flight planning - flight management connection
NASA Technical Reports Server (NTRS)
Sorensen, J. A.
1984-01-01
Airborne flight management systems are currently being implemented to minimize direct operating costs when flying over a fixed route between a given city pair. Inherent in the design of these systems is that the horizontal flight path and wind and temperature models be defined and input into the airborne computer before flight. The wind/temperature model and horizontal path are products of the flight planning process. Flight planning consists of generating 3-D reference trajectories through a forecast wind field subject to certain ATC and transport operator constraints. The interrelationships between flight management and flight planning are reviewed, and the steps taken during the flight planning process are summarized.
Second harmonic generation of off axial vortex beam in the case of walk-off effect
NASA Astrophysics Data System (ADS)
Chen, Shunyi; Ding, Panfeng; Pu, Jixiong
2016-07-01
Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.
A concept for canceling the leakage field inside the stored beam chamber of a septum magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abliz, M.; Jaski, M.; Xiao, A.
Here, the Advanced Photon Source is in the process of upgrading its storage ring from a double-bend to a multi-bend lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U to keep a constant beam current and to enable a small dynamic aperture. A novel concept that cancels out the effect of leakage field inside the stored beam chamber was introduced in the design of the septum magnet. As a result, the horizontal deflecting angle of the stored beam was reduced to below 1 µrad with a 2 mm septum thickness andmore » 1.06 T normal injection field. The concept helped to minimize the integrated skew quadrupole field and normal sextupole fields inside stored beam chamber as well.« less
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)
1992-01-01
A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.
NASA Astrophysics Data System (ADS)
Cauchi, Marija; Aberle, O.; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cornelis, K.; Dallocchio, A.; Deboy, D.; Lari, L.; Redaelli, S.; Rossi, A.; Salvachua, B.; Mollicone, P.; Sammut, N.
2014-02-01
The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.
A concept for canceling the leakage field inside the stored beam chamber of a septum magnet
Abliz, M.; Jaski, M.; Xiao, A.; ...
2017-12-20
Here, the Advanced Photon Source is in the process of upgrading its storage ring from a double-bend to a multi-bend lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U to keep a constant beam current and to enable a small dynamic aperture. A novel concept that cancels out the effect of leakage field inside the stored beam chamber was introduced in the design of the septum magnet. As a result, the horizontal deflecting angle of the stored beam was reduced to below 1 µrad with a 2 mm septum thickness andmore » 1.06 T normal injection field. The concept helped to minimize the integrated skew quadrupole field and normal sextupole fields inside stored beam chamber as well.« less
X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macrander, Albert; Erdmann, Mark; Kujala, Naresh
2016-07-27
Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatics beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include bothmore » white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.« less
X-ray optics testing beamline 1-BM at the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macrander, Albert, E-mail: atm@anl.gov; Erdmann, Mark; Kujala, Naresh
2016-07-27
Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatic beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include bothmore » white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.« less
Graphene fixed-end beam arrays based on mechanical exfoliation
NASA Astrophysics Data System (ADS)
Li, Peng; You, Zheng; Haugstad, Greg; Cui, Tianhong
2011-06-01
A low-cost mechanical exfoliation method is presented to transfer graphite to graphene for free-standing beam arrays. Nickel film or photoresist is used to peel off and transfer patterned single-layer or multilayer graphene onto substrates with macroscopic continuity. Free-standing graphene beam arrays are fabricated on both silicon and polymer substrates. Their mechanical properties are studied by atomic force microscopy. Finally, a graphene based radio frequency switch is demonstrated, with its pull-in voltage and graphene-silicon junction investigated.
33 CFR 83.21 - Definitions (Rule 21).
Code of Federal Regulations, 2010 CFR
2010-07-01
... horizon of 225 degrees and so fixed as to show the light from right ahead to 22.5 degrees abaft the beam... light over an arc of the horizon of 112.5 degrees and so fixed as to show the light from right ahead to... side lights may be combined in one lantern carried on the fore and aft centerline of the vessel, except...
The Fixed Target Experiment for Studies of Baryonic Matter at the Nuclotron (BM@N)
NASA Astrophysics Data System (ADS)
Kapishin, M. N.
2017-12-01
BM@N (Baryonic Matter at Nuclotron) is the first experiment to be realized at the NICA-Nuclotron accelerator complex. The aim of the BM@N experiment is to study relativistic heavy ion beam interactions with fixed targets. The BM@N setup, results of Monte Carlo simulations, and the BM@N experimental program are presented.
ERIC Educational Resources Information Center
Abbas, K.; Leseman, Z. C.
2012-01-01
A laboratory course on the theory, fabrication, and characterization of microelectromechanical systems (MEMS) devices for a multidisciplinary audience of graduate students at the University of New Mexico, Albuquerque, has been developed. Hands-on experience in the cleanroom has attracted graduate students from across the university's engineering…
29 CFR 1919.2 - Definition of terms.
Code of Federal Regulations, 2010 CFR
2010-07-01
... horizontal plane by guys (vangs). The term includes shear legs. (2) Crane means a mechanical device, intended... integral part of the machine. A crane may be a fixed or mobile machine. (3) Bulk cargo spout means a spout... ton of 2,000 pounds when applied to shore-based material handling devices or to shore-type cranes...
Harmonic and Anharmonic Behaviour of a Simple Oscillator
ERIC Educational Resources Information Center
O'Shea, Michael J.
2009-01-01
We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…
21 CFR 880.5500 - AC-powered patient lift.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered patient lift. 880.5500 Section 880.5500... Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or other...
21 CFR 880.5500 - AC-powered patient lift.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered patient lift. 880.5500 Section 880.5500... Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or other...
Verifying the Hanging Chain Model
ERIC Educational Resources Information Center
Karls, Michael A.
2013-01-01
The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…
Numerical simulation of present day tectonic stress across the Indian subcontinent
NASA Astrophysics Data System (ADS)
Yadav, R.; Tiwari, V. M.
2018-04-01
In situ measurements of maximum horizontal stress (S Hmax) in the Indian subcontinent are limited and do not present regional trends of intraplate stress orientation. The observed orientations of S Hmax vary considerably and often differ from the plate velocity direction. We have simulated orientation and magnitude of S Hmax through finite element modeling incorporating heterogeneities in elastic property of the Indian continent and plain stress approximation to understand the variability of S Hmax. Four different scenarios are tested in simulation: (1) homogeneous plate with fixed plate boundary (2) homogeneous plate with boundary forces (3) heterogeneous plate with fixed boundary (4) heterogeneous plate with boundary forces. The estimated orientation and magnitude of S Hmax with a heterogeneous plate with boundary forces in the Himalayan region and an eastern plate boundary comprising the Indo-Burmese arc and Andaman subduction zone are consistent with measured maximum horizontal stress. This study suggests that plate boundary force varies along the northern Indian plate margin and also provides a constraint on the intraplate stress field in the Indian subcontinent.
Hughes, Jacob B.; Hightower, Joseph E.
2015-01-01
Riverine hydroacoustic techniques are an effective method for evaluating abundance of upstream migrating anadromous fishes. To use these methods in the Roanoke River, North Carolina, at a wide site with uneven bottom topography, we used a combination of split-beam sonar and dual-frequency identification sonar (DIDSON) deployments. We aimed a split-beam sonar horizontally to monitor midchannel and near-bottom zones continuously over the 3-month spring monitoring periods in 2010 and 2011. The DIDSON was rotated between seven cross-channel locations (using a vertical aim) and nearshore regions (using horizontal aims). Vertical deployment addressed blind spots in split-beam coverage along the bottom and provided reliable information about the cross-channel and vertical distributions of upstream migrants. Using a Bayesian framework, we modeled sonar counts within four cross-channel strata and apportioned counts by species using species proportions from boat electrofishing and gill netting. Modeled estimates (95% credible intervals [CIs]) of total upstream migrants in 2010 and 2011 were 2.5 million (95% CI, 2.4–2.6 million) and 3.6 million (95% CI, 3.4–3.9 million), respectively. Results indicated that upstream migrants are extremely shore- and bottom-oriented, suggesting nearshore DIDSON monitoring improved the accuracy and precision of our estimates. This monitoring protocol and model may be widely applicable to river systems regardless of their cross-sectional width or profile.
Design of a side coupled standing wave accelerating tube for NSTRI e-Linac
NASA Astrophysics Data System (ADS)
Zarei, S.; Abbasi Davani, F.; Lamehi Rachti, M.; Ghasemi, F.
2017-09-01
The design and construction of a 6 MeV electron linear accelerator (e-Linac) was defined in the Institute of Nuclear Science and Technology (NSTRI) for cargo inspection and medical applications. For this accelerator, a side coupled standing wave tube resonant at a frequency of 2998.5 MHZ in π/2 mode was selected. In this article, the authors provide a step-by-step explanation of the process of the design for this tube. The design and simulation of the accelerating and coupling cavities were carried out in five steps; (1) separate design of the accelerating and coupling cavities, (2) design of the coupling aperture between the cavities, (3) design of the entire structure for resonance at the nominal frequency, (4) design of the buncher, and (5) design of the power coupling port. At all design stages, in addition to finding the dimensions of the cavity, the impact of construction tolerances and simulation errors on the electromagnetic parameters were investigated. The values obtained for the coupling coefficient, coupling constant, quality factor and capture efficiency are 2.11, 0.011, 16203 and 36%, respectively. The results of beam dynamics study of the simulated tube in ASTRA have yielded a value of 5.14 π-mm-mrad for the horizontal emittance, 5.06 π-mm-mrad for the vertical emittance, 1.17 mm for the horizontal beam size, 1.16 mm for the vertical beam size and 1090 keV for the energy spread of the output beam.
NASA Astrophysics Data System (ADS)
Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN
2017-03-01
In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.
Tilting at wave beams: a new perspective on the St Andrew's Cross
NASA Astrophysics Data System (ADS)
Akylas, T. R.; Kataoka, T.; Ghaemsaidi, S. J.; Holzenberger, N.; Peacock, T.
2017-11-01
The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified fluid of constant buoyancy frequency, is investigated theoretically and experimentally. This forcing arrangement leads to a variant of the classical St Andrew's Cross that has certain unique features: (i) radiation of wave beams is limited due to a lower cut-off frequency set by the cylinder tilt angle to the horizontal; (ii) the response is essentially three-dimensional, as end effects eventually come into play when the cut-off frequency is approached, however long a cylinder might be. These results follow from kinematic considerations and are also confirmed by laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cut-off frequency, where viscous and nonlinear effects are likely to play an important part. This scenario is examined by an asymptotic model as well as experimentally. Supported in part by NSF Grant DMS-1512925.
Micro-beam friction liner and method of transferring energy
Mentesana, Charles [Leawood, KS
2007-07-17
A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.
Benchmarking of measurement and simulation of transverse rms-emittance growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Dong-O
2008-01-01
Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriated tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the measured 100%-rmsemittances behind themore » DTL exceed the simulated values. Comparing measured 90%-rms-emittances to the simulated 95%-rms-emittances gives fair to good agreement instead. The sum of horizontal and vertical emittances is even described well by the codes as long as experimental 90%-rmsemittances are compared to simulated 95%-rms-emittances. Finally, the successful reduction of transverse emittance growth by systematic beam matching is reported.« less
Pettorossi, V E; Ermanno, M; Pierangelo, E; Silvarosa, G
2000-03-01
The influence of gravity in the orientation and slow phase eye velocity of the ocular nystagmus following unilateral damage of the cupula in the ampulla of the horizontal semicircular canal (UHCD) was investigated. The nystagmus was analysed at different sagittal head positions using the x-y infrared eye monitor technique. The nystagmus was almost horizontal at 0 degrees head pitch angle and remained partially fixed in space when the head was pitched upward or downward. The reorientation gain of the slow and quick phases was high (about 0.75) within +/- 45 degrees of head pitch angle, but beyond this range, it decreased greatly. The gain value depended on the lesion extension to otolithic receptors. The absolute value of the slow phase eye velocity of UHCD nystagmus was also modified systematically by the head pitch, showing a reduction in the upward and an increase in the downward.
Evolution of branch points for a laser beam propagating through an uplink turbulent atmosphere.
Ge, Xiao-Lu; Liu, Xuan; Guo, Cheng-Shan
2014-03-24
Evolution of branch points in the distorted optical field is studied when a laser beam propagates through turbulent atmosphere along an uplink path. Two categories of propagation events are mainly explored for the same propagation height: fixed wavelength with change of the turbulence strength and fixed turbulence strength with change of the wavelength. It is shown that, when the beam propagates to a certain height, the density of the branch-points reaches its maximum and such a height changes with the turbulence strength but nearly remains constant with different wavelengths. The relationship between the density of branch-points and the Rytov number is also given. A fitted formula describing the relationship between the density of branch-points and propagation height with different turbulence strength and wavelength is found out. Interestingly, this formula is very similar to the formula used for describing the Blackbody radiation in physics. The results obtained may be helpful for atmospheric optics, astronomy and optical communication.
NASA Astrophysics Data System (ADS)
Li, Chun-Hao; Tsai, Ming-Jong
2009-06-01
A novel diode-pumped Nd:YAG laser system that employs a fixed active laser medium and a pair of quick-change output couplers on a precision linear stage for 1064 or 532 nm wavelength generation is presented. Fixed elements include a rear mirror, an acousto-optical Q-switch, and a diode-pumped solid-state laser (DPSSL). Movable elements for 1064 nm generation include an intra-cavity aperture as a mode selection element (MSE) and an output coupler. Movable elements for 532 nm generation include an intra-cavity frequency conversion with KTP, an intra-cavity aperture as a mode selection element (MSE), and an output coupler. Under stable operating conditions, the 1064 nm configuration produced a beam propagation ratio of 1.18 whereas the 532 nm configuration produced a beam propagation ratio of 1.1, both of which used an intra-cavity MSE with an aperture of 1.2 mm and a length of 5 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.
2012-04-16
A sound field beam mapping exercise was conducted to further understand the effects of coarse grained microstructures found in CASS materials on phased array ultrasonic wave propagation. Laboratory measurements were made on three CASS specimens with different microstructures; the specimens were polished and etched to reveal measurable grain sizes, shapes and orientations. Three longitudinal, phased array probes were fixed on a specimen's outside diameter with the sound field directed toward one end (face) of the pipe segment over a fixed range of angles. A point receiver was raster scanned over the surface of the specimen face generating a sound fieldmore » image. A slice of CASS material was then removed from the specimen end and the beam mapping exercise repeated. The sound fields acquired were analyzed for spot size, coherency, and beam redirection. Analyses were conducted between the resulting sound fields and the microstructural characteristics of each specimen.« less
NASA Technical Reports Server (NTRS)
Herr, R. W.
1974-01-01
The effects of several cable suspension configurations on the first free-free flexural frequency of uniform beams have been determined by experiment and analysis. The results of this study confirm that in general the larger the test vehicle the larger is the flexural frequency measurement error attributable to a given cable suspension configuration. For horizontally oriented beams representing modern aerospace vehicles of average size and flexibility, the restraining effects of all but the shortest support cables were minor. The restraining effects of support cables of moderate length attached near the base of vertically oriented vehicles were overshadowed by the effects of beam compression due to gravity.
The University of Texas M.D. Anderson Cancer Center Proton Therapy Facility
NASA Astrophysics Data System (ADS)
Smith, Alfred; Newhauser, Wayne; Latinkic, Mitchell; Hay, Amy; McMaken, Bruce; Styles, John; Cox, James
2003-08-01
The University of Texas M.D. Anderson Cancer Center (MDACC), in partnership with Sanders Morris Harris Inc., a Texas-based investment banking firm, and The Styles Company, a developer and manager of hospitals and healthcare facilities, is building a proton therapy facility near the MDACC main complex at the Texas Medical Center in Houston, Texas USA. The MDACC Proton Therapy Center will be a freestanding, investor-owned radiation oncology center offering state-of-the-art proton beam therapy. The facility will have four treatment rooms: three rooms will have rotating, isocentric gantries and the fourth treatment room will have capabilities for both large and small field (e.g. ocular melanoma) treatments using horizontal beam lines. There will be an additional horizontal beam room dedicated to physics research and development, radiation biology research, and outside users who wish to conduct experiments using proton beams. The first two gantries will each be initially equipped with a passive scattering nozzle while the third gantry will have a magnetically swept pencil beam scanning nozzle. The latter will include enhancements to the treatment control system that will allow for the delivery of proton intensity modulation treatments. The proton accelerator will be a 250 MeV zero-gradient synchrotron with a slow extraction system. The facility is expected to open for patient treatments in the autumn of 2005. It is anticipated that 675 patients will be treated during the first full year of operation, while full capacity, reached in the fifth year of operation, will be approximately 3,400 patients per year. Treatments will be given up to 2-shifts per day and 6 days per week.
A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology
NASA Astrophysics Data System (ADS)
Yi, Zhenxiang; Liao, Xiaoping
2013-03-01
In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8-12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed-fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than -25 dB and an insertion loss of around 0.1 dB at 8-12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW-1 at 8, 10 and 12 GHz, respectively.
NASA Astrophysics Data System (ADS)
Ploykrachang, K.; Hasegawa, J.; Kondo, K.; Fukuda, H.; Oguri, Y.
2014-07-01
We have developed a micro-XRF system based on a proton-induced quasimonochromatic X-ray (QMXR) microbeam for in vivo measurement of biological samples. A 2.5-MeV proton beam impinged normally on a Cu foil target that was slightly thicker than the proton range. The emitted QMXR behind the Cu target was focused with a polycapillary X-ray half lens. For application to analysis of wet or aquatic samples, we prepared a QMXR beam with an incident angle of 45° with respect to the horizontal plane by using a dipole magnet in order to bend the primary proton beam downward by 45°. The focal spot size of the QMXR microbeam on a horizontal sample surface was evaluated to be 250 × 350 μm by a wire scanning method. A microscope camera with a long working distance was installed perpendicular to the sample surface to identify the analyzed position on the sample. The fluorescent radiation from the sample was collected by a Si-PIN photodiode X-ray detector. Using the setup above, we were able to successfully measure the accumulation and distribution of Co in the leaves of a free-floating aquatic plant on a dilute Co solution surface.
NASA Technical Reports Server (NTRS)
Cornish, C. R.
1988-01-01
The first clear-air observations of vertical velocities in the tropical upper troposphere and lower stratosphere (8-22 km) using the Arecibo 430-MHz radar are presented. Oscillations in the vertical velocity near the Brunt-Vaisala period are observed in the lower stratosphere during the 12-hour observation period. Frequency power spectra from the vertical velocity time series show a slope between -0.5 and -1.0. Vertical wave number spectra computed from the height profiles of vertical velocities have slopes between -1.0 and -1.5. These observed slopes do not agree well with the slopes of +1/3 and -2.5 for frequency and vertical wave number spectra, respectively, predicted by a universal gravity-wave spectrum model. The spectral power of wave number spectra of a radial beam directed 15 deg off-zenith is enhanced by an order of magnitude over the spectral power levels of the vertical beam. This enhancement suggests that other geophysical processes besides gravity waves are present in the horizontal flow. The steepening of the wave number spectrum of the off-vertical beam in the lower stratosphere to near -2.0 is attributed to a quasi-inertial period wave, which was present in the horizontal flow during the observation period.
Teach Deflection Concepts with Hacksaw Blades and Rubber Bands
ERIC Educational Resources Information Center
Roman, Harry T.
2013-01-01
Technology and engineering educators can use a simple hacksaw blade to help students learn about deflection, as that which occurs in a beam. Here the beam is fixed at one end and allowed to deflect in a manner that is easy to see and measure--the hacksaw blade represents a cantilever, an overhanging structure. This simple and very inexpensive…
Linear fixed-field multipass arcs for recirculating linear accelerators
Morozov, V. S.; Bogacz, S. A.; Roblin, Y. R.; ...
2012-06-14
Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting themore » dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. Finally, we present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.« less
NASA Astrophysics Data System (ADS)
Symon, Keith R.
2005-04-01
In the late 1950's and the 1960's the MURA (Midwestern Universities Research Association) working group developed fixed field alternating gradient (FFAG) particle accelerators. FFAG accelerators are a natural corollary of the invention of alternating gradient focusing. The fixed guide field accommodates all orbits from the injection to the final energy. For this reason, the transverse motion in the guide field is nearly decoupled from the longitudinal acceleration. This allows a wide variety of acceleration schemes, using betatron or rf accelerating fields, beam stacking, bucket lifts, phase displacement, etc. It also simplifies theoretical and experimental studies of accelerators. Theoretical studies included an extensive analysis of rf acceleration processes, nonlinear orbit dynamics, and collective instabilities. Two FFAG designs, radial sector and spiral sector, were invented. The MURA team built small electron models of each type, and used them to study orbit dynamics, acceleration processes, orbit instabilities, and space charge limits. A practical result of these studies was the invention of the spiral sector cyclotron. Another was beam stacking, which led to the first practical way of achieving colliding beams. A 50 MeV two-way radial sector model was built in which it proved possible to stack a beam of over 10 amperes of electrons.
Shahidi, Shoaleh; Zamiri, Barbad; Abolvardi, Masoud; Akhlaghian, Marzieh; Paknahad, Maryam
2018-01-01
Statement of the Problem: Accurate measurement of the available bone height is an essential step in the pre-surgical phase of dental implantation. Panoramic radiography is a unique technique in the pre-surgical phase of dental implantations because of its low cost, relatively low-dose, and availability. Purpose: This article aimed to assess the reliability of dental panoramic radiographs in the accurate measurement of the vertical bone height with respect to the horizontal location of the alveolar crest. Materials and Method: 132 cone-beam computed tomography (CBCT) of the edentulous mandibular molar area and dental panoramic radiograph of 508 patients were selected. Exclusion criteria were bone abnormalities and detectable ideal information on each modality. The alveolar ridge morphology was categorized into 7 types according to the relative horizontal location of the alveolar crest to the mandibular canal based on CBCT findings. The available bone height (ABH) was defined as the distance between the upper border of the mandibular canal and alveolar crest. One oral radiologist and one oral surgeon measured the available bone height twice on each modality with a 7-dayinterval. Results: We found a significant correlation between dental panoramic radiographs and cone-beam computed tomography values (ICC=0.992, p< 0.001). A positive correlation between the horizontal distance of the alveolar crest to the mandibular canal and measured differences between two radiographic modalities had been found (r=0.755, p< 0.001). For each single unit of increase in the horizontal distance of the alveolar crest to the mandibular canal, dental panoramic radiographs showed 0.87 unit of overestimation (p< 0.001). Conclusion: Dental panoramic radiographs can be employed safely in the pre-surgical phase of dental implantation in posterior alveolus of mandible, especially in routine and simple cases. PMID:29854881
Indications of Carbon Ion Therapy at CNAO
NASA Astrophysics Data System (ADS)
Orecchia, Roberto; Rossi, Sandro; Fossati, Piero
2009-03-01
CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lung tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fuyu; Collins, William D.; Wehner, Michael F.
High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, andmore » mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.« less
Brodsky, M C; Jenkins, R; Nucci, P
2004-01-01
Background: Strabismus surgery for congenital esotropia can be complicated by the development of a postoperative head tilt. Purpose: To determine the pathophysiology of acquired head tilting following horizontal realignment of the eyes in children with congenital esotropia. Materials and methods: Retrospective analysis of nine children with congenital esotropia who developed unexplained head tilts following horizontal realignment of the eyes. Results: Shortly after strabismus surgery, each child developed a head tilt in association with asymmetrical dissociated vertical divergence (DVD). Five children maintained a head tilt toward the side of the fixing eye (group 1), which did not serve to control the DVD. Four children maintained a head tilt toward the side of the hyperdeviating eye, which served to control the DVD (group 2). Children in group 2 had earlier horizontal muscle surgery and developed better stereopsis than those in group 1, suggesting that the higher degree of single binocular vision and stereopsis in these children may have led to a compensatory torticollis to control an asymmetrical DVD. Conclusions: The onset of an unexpected head tilt after congenital esotropia surgery is usually a postural manifestation of asymmetrical DVD. In this setting, a head tilt toward the side of the fixing eye corresponds with a postural manifestation of the underlying central vestibular imbalance that produces DVD, while a head tilt toward the side of the hyperdeviating eye serves to counteract the hyperdeviation and stabilise binocular vision. PMID:14736789
Pollitz, F.F.
2005-01-01
The M7.9 2002 Denali earthquake, Alaska, is one of the largest strike-slip earthquakes ever recorded. The postseismic GPS velocity field around the 300-km-long rupture is characterized by very rapid horizontal velocity up to ???300 mm/yr for the first 0.1 years and slower but still elevated horizontal velocity up to ???100 mm/yr for the succeeding 1.5 years. I find that the spatial and temporal pattern of the displacement field may be explained by a transient mantle rheology. Representing the regional upper mantle as a Burghers body, I infer steady state and transient viscosities of ??1 = 2.8 ?? 1018 Pa s and ??2 = 1.0 ?? 1017 Pa s, respectively, corresponding to material relaxation times of 1.3 and 0.05 years. The lower crustal viscosity is poorly constrained by the considered horizontal velocity field, and the quoted mantle viscosities assume a steady state lower crust viscosity that is 7??1. Systematic bias in predicted versus observed velocity vectors with respect to a fixed North America during the first 3-6 months following the earthquake is reduced when all velocity vectors are referred to a fixed site. This suggests that the post-Denali GPS time series for the first 1.63 years are shaped by a combination of a common mode noise source during the first 3-6 months plus viscoelastic relaxation controlled by a transient mantle rheology.
Characterization of the Shielded Neutron Source at Triangle Universities Nuclear Laboratory
NASA Astrophysics Data System (ADS)
Hobson, Chad; Finch, Sean; Howell, Calvin; Malone, Ron; Tornow, Wernew
2016-09-01
In 2015, Triangle Universities Nuclear Laboratory rebuilt its shielded neutron source (SNS) with the goal of improving neutron beam collimation and reducing neutron and gamma-ray backgrounds. Neutrons are produced via the 2H(d,n)3He reaction and then collimated by heavy shielding to form a beam. The SNS has the ability to produce both a rectangular and circular neutron beam through use of two collimators with different beam apertures. Our work characterized both the neutron beam profiles as well as the neutron and gamma-ray backgrounds at various locations around the SNS. This characterization was performed to provide researchers who use the SNS with beam parameters necessary to plan and conduct an experiment. Vertical and horizontal beam profiles were measured at two different distances from the neutron production cell by scanning a small plastic scintillator across the face of the beam at various energies for each collimator. Background neutron and gamma-ray intensities were measured using time-of-flight techniques at 10 MeV and 16 MeV with the rectangular collimator. We present results on the position and size of neutron beam as well as on the structure and magnitude of the backgrounds.
Static Analysis of Functionally Graded Composite Beams
NASA Astrophysics Data System (ADS)
Das, S.; Sarangi, S. K.
2016-09-01
This paper presents a study of functionally graded (FG) composite beam. The FG material for the beam is considered to be composed of different layers of homogeneous material. The fiber volume fraction corresponding to each layer is calculated by considering its variation along the thickness direction (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and a beam composed of this FG material is modelled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG beam. The model developed is validated by comparing the results with those numerical results available in literature. Results are presented for simply supported and fixed boundary conditions for the FG beam. The stress distribution across the thickness of the FG composite beam has also been analyzed.
The influence of adhesive on fiber Bragg grating strain sensor
NASA Astrophysics Data System (ADS)
Chen, Jixuan; Gong, Huaping; Jin, Shangzhong; Li, Shuhua
2009-08-01
A fiber Bragg grating (FBG) sensor was fixed on the uniform strength beam with three adhesives, which were modified acrylate, glass glue and epoxy resin. The influence of adhesive on FBG strain sensor was investigated. The strain of FBG sensor was varied by loading weight to the uniform strength beam. The wavelength shift of the FBG sensor fixed by the three kinds of adhesive were measured with different weight at the temperatures 0°C, 10°C, 20°C, 30°C, 40°C. The linearity, sensitivity and their stability at different temperature of FBG sensor which fixed by every kind of adhesives were analyzed. The results show that, the FBG sensor fixed by the modified acrylate has a high linearity, and the linear correlation coefficient is 0.9996. It also has a high sensitivity which is 0.251nm/kg. The linearity and the sensitivity of the FBG sensor have a high stability at different temperatures. The FBG sensor fixed by the glass glue also has a high linearity, and the linear correlation coefficient is 0.9986, but it has a low sensitivity which is only 0.041nm/kg. The linearity and the sensitivity of the FBG sensor fixed by the glass glue have a high stability at different temperatures. When the FBG sensor is fixed by epoxy resin, the sensitivity and linearity is affected significantly by the temperature. When the temperature changes from 0°C to 40°C, the sensitivity decreases from 0.302nm/kg to 0.058nm/kg, and the linear correlation coefficient decreases from 0.9999 to 0.9961.
Optimization methodology for the global 10 Hz orbit feedback in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chuyu; Hulsart, R.; Mernick, K.
To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less
Optimization methodology for the global 10 Hz orbit feedback in RHIC
Liu, Chuyu; Hulsart, R.; Mernick, K.; ...
2018-05-08
To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less
Fernandes, Luís A; Grenier, Jason R; Herman, Peter R; Aitchison, J Stewart; Marques, Paulo V S
2011-06-20
Integrated polarization beam splitters based on birefringent directional couplers are demonstrated. The devices are fabricated in bulk fused silica glass by femtosecond laser writing (300 fs, 150 nJ at 500 kHz, 522 nm). The birefringence was measured from the spectral splitting of the Bragg grating resonances associated with the vertically and horizontally polarized modes. Polarization splitting directional couplers were designed and demonstrated with 0.5 dB/cm propagation losses and -19 dB and -24 dB extinction ratios for the polarization splitting.
Fast global orbit feedback system in PLS-II
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, C.; Kim, J. M.; Kim, K. R.; Lee, E. H.; Lee, J. W.; Lee, T. Y.; Park, C. D.; Shin, S.; Yoon, J. C.; Cho, W. S.; Park, G. S.; Kim, S. C.
2016-12-01
The transverse position of the electron beam in the Pohang Light Source-II is stabilized by the global orbit feedback system. A slow orbit feedback system has been operating at 2 Hz, and a fast orbit feedback (FOFB) system at 813 Hz was installed recently. This FOFB system consists of 96 electron-beam-position monitors, 48 horizontal fast correctors, 48 vertical fast correctors and Versa Module Europa bus control system. We present the design and implementation of the FOFB system and its test result. Simulation analysis is presented and future improvements are suggested.
NASA Astrophysics Data System (ADS)
Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin
2012-04-01
To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.
VUV-soft x-ray beamline for spectroscopy and calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, R.J.; Trela, W.J.; Southworth, S.H.
1986-01-01
We describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Roland circle instrument of the extended grasshopper design (ERG). A post monochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed.
1D silicon refractive lenses for surface scattering with high energy x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, F.; Gutowski, O.; Schroer, C.
2016-07-27
At the high energy X-ray beamline P07 at PETRA III, 1D focusing down to 4 micrometer vertical beam height while preserving a horizontal beam width of 0.5 mm was established by refractive lenses etched into a silicon wafer. A single wafer with 8 different lens structures can cover the full energy range between 50 and 120 keV. For surface diffraction on ultrathin films a factor of 4 in intensity can be achieved compared to the already established Al-compound refractive 2D-lenses.
Kuzay, T.M.; Shu, D.
1995-02-07
A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.
Low-Profile, Dual-Wavelength, Dual-Polarized Antenna
NASA Technical Reports Server (NTRS)
Carswell, James R.
2010-01-01
A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.
Snakes, rotators, serpents and the octahedral group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fieguth, T.
1986-04-01
Specific configurations of horizontal and vertical bending magnets are given that, when acting on the spin polarization vector of a particle beam, generate a group of 24 operators isomorphic to the group of rotational symmetries of a cube, known as the octahedral group. Some of these configurations have the feature of converting transversely polarized beams to longitudinally polarized beams (or vice versa) at the midpoint of the configuration for, in principle, all beam energies. Since the first order optical transfer matrix for each half of these configurations is nearly that of a drift region, the external geometry remains unchanged andmore » midpoint dispersion is not introduced. Changing field strengths and/or polarities allows a configuration to serve as either a Snake(1/sup st/ or 2/sup nd/ kind) or a Rotator, where in both cases the spin polarization is longitudinal at the midpoint. In this conceptualization, emphasis has been placed on electron beams and, indeed, for these beams some practical applications can be envisioned. However, due to the relatively high integrated field strengths required, application of these concepts to proton beams may be more promising.« less
OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim
A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance ofmore » the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.« less
Design of extraction system in BRing at HIAF
NASA Astrophysics Data System (ADS)
Ruan, Shuang; Yang, Jiancheng; Zhang, Jinquan; Shen, Guodong; Ren, Hang; Liu, Jie; Shangguan, Jingbing; Zhang, Xiaoying; Zhang, Jingjing; Mao, Lijun; Sheng, Lina; Yin, Dayu; Wang, Geng; Wu, Bo; Yao, Liping; Tang, Meitang; Cai, Fucheng; Chen, Xiaoqiang
2018-06-01
The Booster Ring (BRing), which is the key part of HIAF (High Intensity heavy ion Accelerator Facility) complex at IMP (Institute of Modern Physics, Chinese Academy of Sciences), can provide uranium (A / q = 7) beam with a wide extraction energy range of 200-800 MeV/u. To fulfill a flexible beam extraction for multi-purpose experiments, both fast and slow extraction systems will be accommodated in the BRing. The fast extraction system is used for extracting short bunched beam horizontally in single-turn. The slow extraction system is used to provide quasi-continuous beam by the third order resonance and RF-knockout scheme. To achieve a compact structure, the two extraction systems are designed to share the same extraction channel. The general design of the fast and slow extraction systems and simulation results are discussed in this paper.
Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals
NASA Astrophysics Data System (ADS)
Marchand, A.; El Hdiy, A.; Troyon, M.; Amiard, G.; Ronda, A.; Berbezier, I.
2012-04-01
Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope—tip in contact mode at a fixed position away from the beam spot of about 0.5 µm. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.
Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle.
Di Lillo, Francesca; Mettivier, Giovanni; Castriconi, Roberta; Sarno, Antonio; Stevenson, Andrew W; Hall, Chris J; Häusermann, Daniel; Russo, Paolo
2018-05-01
The principle of rotational summation of the absorbed dose for breast cancer treatment with orthovoltage X-ray beams was proposed by J. Boone in 2012. Here, use of X-ray synchrotron radiation for image guided external beam rotational radiotherapy treatment of breast cancer is proposed. Tumor irradiation occurs with the patient in the prone position hosted on a rotating bed, with her breast hanging from a hole in the bed, which rotates around a vertical axis passing through the tumor site. Horizontal collimation of the X-ray beam provides for whole breast or partial breast irradiation, while vertical translation of the bed and successive rotations allow for irradiation of the full tumor volume, with dose rates which permit also hypofractionated treatments. In this work, which follows a previous preliminary report, results are shown of a full series of measurements on polyethylene and acrylic cylindrical phantoms carried out at the Australian Synchrotron, confirmed by Geant4 Monte Carlo simulations, intended to demonstrate the proof of principle of the technique. Dose measurements were carried out with calibrated ion chambers, radiochromic films and thermoluminescence dosimeters. The photon energy investigated was 60 keV. Image guidance may occur with the transmitted beam for contrast-enhanced breast computed tomography. For a horizontal beam collimation of 1.5 cm and rotation around the central axis of a 14 cm-diameter polyethylene phantom, a periphery-to-center dose ratio of 14% was measured. The simulations showed that under the same conditions the dose ratio decreases with increasing photon energy down to 10% at 175 keV. These values are comparable with those achievable with conventional megavoltage radiotherapy of breast cancer with a medical linear accelerator. Dose painting was demonstrated with two off-center `cancer foci' with 1.3 Gy and 0.6 Gy target doses. The use of a radiosensitizing agent for dose enhancement is foreseen.
Monte Carlo approaches to sampling forested tracts with lines or points
Harry T. Valentine; Jeffrey H. Gove; Timothy G. Gregoire
2001-01-01
Several line- and point-based sampling methods can be employed to estimate the aggregate dimensions of trees standing on a forested tract or pieces of coarse woody debris lying on the forest floor. Line methods include line intersect sampling, horizontal line sampling, and transect relascope sampling; point methods include variable- and fixed-radius plot sampling, and...
ERIC Educational Resources Information Center
Rebilas, Krzysztof
2013-01-01
Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…
Field efficiency and bias of snag inventory methods
Robert S. Kenning; Mark J. Ducey; John C. Brissette; Jeffery H. Gove
2005-01-01
Snags and cavity trees are important components of forests, but can be difficult to inventory precisely and are not always included in inventories because of limited resources. We tested the application of N-tree distance sampling as a time-saving snag sampling method and compared N-tree distance sampling to fixed-area sampling and modified horizontal line sampling in...
1981-03-01
Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to
29 CFR 1917.120 - Fixed stairways.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be positioned within the range of 30 degrees to 50 degrees to the horizontal with uniform riser.... Riser height shall be from 6 to 7.5 inches (15.24 to 19.05 cm), stair width a minimum of 22 inches (55... stairs having four or more risers shall have stair railings or handrails complying with § 1917.112(c)(1...
29 CFR 1917.120 - Fixed stairways.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be positioned within the range of 30 degrees to 50 degrees to the horizontal with uniform riser.... Riser height shall be from 6 to 7.5 inches (15.24 to 19.05 cm), stair width a minimum of 22 inches (55... stairs having four or more risers shall have stair railings or handrails complying with § 1917.112(c)(1...
29 CFR 1917.120 - Fixed stairways.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be positioned within the range of 30 degrees to 50 degrees to the horizontal with uniform riser.... Riser height shall be from 6 to 7.5 inches (15.24 to 19.05 cm), stair width a minimum of 22 inches (55... stairs having four or more risers shall have stair railings or handrails complying with § 1917.112(c)(1...
29 CFR 1917.120 - Fixed stairways.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be positioned within the range of 30 degrees to 50 degrees to the horizontal with uniform riser.... Riser height shall be from 6 to 7.5 inches (15.24 to 19.05 cm), stair width a minimum of 22 inches (55... stairs having four or more risers shall have stair railings or handrails complying with § 1917.112(c)(1...
A Spatial Re-Consideration of the Early Childhood-School Relationship
ERIC Educational Resources Information Center
Henderson, Linda; Nuttall, Joce; Kriegler, Lili-Ann; Schiele, Helen
2016-01-01
This paper undertakes a spatial examination of the early childhood-school relational space. It theorizes space as a product of interrelationships, moving therefore beyond an understanding of space as fixed and horizontal. Drawing on data from a pilot project with early childhood and junior primary teachers working in an independent (i.e. private,…
Beam response analysis of moving vehicle with half car modeling
NASA Astrophysics Data System (ADS)
Badriyah, A. N.; Arifianto, D.; Susatio, Y.
2016-11-01
There were several tragedies concerning damages of bridge which seem to be sooner than the predicted period. One of hypothesis in this situation is an addition of vibration caused by long vehicle such as super long truck which has huge force transferred into the bridge and its long body causes more vibration due to phase difference of front and rear tire. The selected method which is used in this problem is using a simulation for modeling a bridge- vehicle system using half car vehicle model. The simulation is done using ANSYS Workbench 15.0 with some variation such us the thickness of beam and its supports. There are 3 kind of variation used in the thickness variety which are 2 m, 1 m, and 0.5 m. While in supports variation, we have fixed support, knife-edge support, and slider support. The results show that there is addition of vibration caused by long vehicle. It is proved by an oscillation which is showed in every response of beam's total deformation. Highest total deformation is achieved in slider support beam of 0.5 thicknesses, 1.08 mm in 1.12 second. First ripple seen in responses is at 0.84 second. Meanwhile, response of knife-edge and fixed support beam show a similarity. The ripple in this situation is caused by beat modulation from the front and rear tire.
Bar coded retroreflective target
Vann, Charles S.
2000-01-01
This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.
Vann, Charles S.
2003-09-09
This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.
Low profile, high load vertical rolling positioning stage
Shu, Deming; Barraza, Juan
1996-01-01
A stage or support platform assembly for use in a synchrotron accurately positions equipment to be used in the beam line of the synchrotron. The support platform assembly includes an outer housing in which is disposed a lifting mechanism having a lifting platform or stage at its upper extremity on which the equipment is mounted. A worm gear assembly is located in the housing and is adapted to raise and lower a lifting shaft that is fixed to the lifting platform by an anti-binding connection. The lifting platform is moved vertically as the lifting shaft is moved vertically. The anti-binding connection prevents the shaft from rotating with respect to the platform, but does permit slight canting of the shaft with respect to the lifting platform so as to eliminate binding and wear due to possible tolerance mismatches. In order to ensure that the lifting mechanism does not move in a horizontal direction as it is moved vertically, at least three linear roller bearing assemblies are arranged around the outer-periphery of the lifting mechanism. One of the linear roller bearing assemblies can be adjusted so that the roller bearings apply a loading force against the lifting mechanism. Alternatively, a cam mechanism can be used to provide such a loading force.
NASA Astrophysics Data System (ADS)
Meaney, Paul M.; Raynolds, Timothy; Geimer, Shireen D.; Potwin, Lincoln; Paulsen, Keith D.
2004-07-01
We are developing a scanned focused ultrasound system for hyperthermia treatment of breast cancer. Focused ultrasound has significant potential as a therapy delivery device because it can focus sufficient heating energy below the skin surface with minimal damage to intervening tissue. However, as a practical therapy system, the focal zone is generally quite small and requires either electronic (in the case of a phased array system) or mechanical steering (for a fixed bowl transducer) to cover a therapeutically useful area. We have devised a simple automated steering system consisting of a focused bowl transducer supported by three vertically movable rods which are connected to computer controlled linear actuators. This scheme is particularly attractive for breast cancer hyperthermia where the support rods can be fed through the base of a liquid coupling tank to treat tumors within the breast while coupled to our noninvasive microwave thermal imaging system. A MATLAB routine has been developed for controlling the rod motion such that the beam focal point scans a horizontal spiral and the subsequent heating zone is cylindrical. In coordination with this effort, a 3D finite element thermal model has been developed to evaluate the temperature distributions from the scanned focused heating. In this way, scanning protocols can be optimized to deliver the most uniform temperature rise to the desired location.
A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.
Fischer, D; de la Fuente, G F; Jansen, M
2012-04-01
The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Junqueira Leão, Rodrigo; Raffaelo Baldo, Crhistian; Collucci da Costa Reis, Maria Luisa; Alves Trabanco, Jorge Luiz
2018-03-01
The building blocks of particle accelerators are magnets responsible for keeping beams of charged particles at a desired trajectory. Magnets are commonly grouped in support structures named girders, which are mounted on vertical and horizontal stages. The performance of this type of machine is highly dependent on the relative alignment between its main components. The length of particle accelerators ranges from small machines to large-scale national or international facilities, with typical lengths of hundreds of meters to a few kilometers. This relatively large volume together with micrometric positioning tolerances make the alignment activity a classical large-scale dimensional metrology problem. The alignment concept relies on networks of fixed monuments installed on the building structure to which all accelerator components are referred. In this work, the Sirius accelerator is taken as a case study, and an alignment network is optimized via computational methods in terms of geometry, densification, and surveying procedure. Laser trackers are employed to guide the installation and measure the girders’ positions, using the optimized network as a reference and applying the metric developed in part I of this paper. Simulations demonstrate the feasibility of aligning the 220 girders of the Sirius synchrotron to better than 0.080 mm, at a coverage probability of 95%.
Finnish Meteorological Institute Doppler Lidar
Ewan OConnor
2015-03-27
This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.
Portable Multi Hydrophone Array for Field and Laboratory Measurements of Odontocete Acoustic Signals
2014-09-30
false killer whale . Our analysis will also be conducted with current passive acoustic monitoring detectors and classifiers in order to assess if the...obtain horizontal and vertical beam patterns of acoustic signals of a false killer whale and a bottlenose dolphin. The data is currently being
Merfeld, D M; Zupan, L H; Gifford, C A
2001-04-01
All linear accelerometers, including the otolith organs, respond equivalently to gravity and linear acceleration. To investigate how the nervous system resolves this ambiguity, we measured perceived roll tilt and reflexive eye movements in humans in the dark using two different centrifugation motion paradigms (fixed radius and variable radius) combined with two different subject orientations (facing-motion and back-to-motion). In the fixed radius trials, the radius at which the subject was seated was held constant while the rotation speed was changed to yield changes in the centrifugal force. In variable radius trials, the rotation speed was held constant while the radius was varied to yield a centrifugal force that nearly duplicated that measured during the fixed radius condition. The total gravito-inertial force (GIF) measured by the otolith organs was nearly identical in the two paradigms; the primary difference was the presence (fixed radius) or absence (variable radius) of yaw rotational cues. We found that the yaw rotational cues had a large statistically significant effect on the time course of perceived tilt, demonstrating that yaw rotational cues contribute substantially to the neural processing of roll tilt. We also found that the orientation of the subject relative to the centripetal acceleration had a dramatic influence on the eye movements measured during fixed radius centrifugation. Specifically, the horizontal vestibuloocular reflex (VOR) measured in our human subjects was always greater when the subject faced the direction of motion than when the subjects had their backs toward the motion during fixed radius rotation. This difference was consistent with the presence of a horizontal translational VOR response induced by the centripetal acceleration. Most importantly, by comparing the perceptual tilt responses to the eye movement responses, we found that the translational VOR component decayed as the subjective tilt indication aligned with the tilt of the GIF. This was true for both the fixed radius and variable radius conditions even though the time course of the responses was significantly different for these two conditions. These findings are consistent with the hypothesis that the nervous system resolves the ambiguous measurements of GIF into neural estimates of gravity and linear acceleration. More generally, these findings are consistent with the hypothesis that the nervous system uses internal models to process and interpret sensory motor cues.
Effect of occlusion, directionality and age on horizontal localization
NASA Astrophysics Data System (ADS)
Alworth, Lynzee Nicole
Localization acuity of a given listener is dependent upon the ability discriminate between interaural time and level disparities. Interaural time differences are encoded by low frequency information whereas interaural level differences are encoded by high frequency information. Much research has examined effects of hearing aid microphone technologies and occlusion separately and prior studies have not evaluated age as a factor in localization acuity. Open-fit hearing instruments provide new earmold technologies and varying microphone capabilities; however, these instruments have yet to be evaluated with regard to horizontal localization acuity. Thus, the purpose of this study is to examine the effects of microphone configuration, type of dome in open-fit hearing instruments, and age on the horizontal localization ability of a given listener. Thirty adults participated in this study and were grouped based upon hearing sensitivity and age (young normal hearing, >50 years normal hearing, >50 hearing impaired). Each normal hearing participant completed one localization experiment (unaided/unamplified) where they listened to the stimulus "Baseball" and selected the point of origin. Hearing impaired listeners were fit with the same two receiver-in-the-ear hearing aids and same dome types, thus controlling for microphone technologies, type of dome, and fitting between trials. Hearing impaired listeners completed a total of 7 localization experiments (unaided/unamplified; open dome: omnidirectional, adaptive directional, fixed directional; micromold: omnidirectional, adaptive directional, fixed directional). Overall, results of this study indicate that age significantly affects horizontal localization ability as younger adult listeners with normal hearing made significantly fewer localization errors than older adult listeners with normal hearing. Also, results revealed a significant difference in performance between dome type; however, upon further examination was not significant. Therefore, results examining type of dome should be viewed with caution. Results examining microphone configuration and microphone configuration by dome type were not significant. Moreover, results evaluating performance relative to unaided (unamplified) were not significant. Taken together, these results suggest open-fit hearing instruments, regardless of microphone or dome type, do not degrade horizontal localization acuity within a given listener relative to their 'older aged' normal hearing counterparts in quiet environments.
Controlling X-ray beam trajectory with a flexible hollow glass fibre.
Tanaka, Yoshihito; Nakatani, Takashi; Onitsuka, Rena; Sawada, Kei; Takahashi, Isao
2014-01-01
A metre-length flexible hollow glass fibre with 20 µm-bore and 1.5 mm-cladding diameters for transporting a synchrotron X-ray beam and controlling the trajectory has been examined. The large cladding diameter maintains a moderate curvature to satisfy the shallow glancing angle of total reflection. The observed transmission efficiency was more than 20% at 12.4 keV. As a demonstration, a wide-area scan of a synchrotron radiation beam was performed to identify the elements for a fixed metal film through its absorption spectra.
Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovino, F. A.; Larciprete, M. C.; Belardini, A.
2009-06-22
We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.
Prefocused objective-pinhole unit for beam expanding and spatial filtering.
Antes, G P
1973-03-01
A beam-expanding and spatial-filtering device, the prefocused objective-pinhole unit (POP unit), is presented. The design is primarily aimed at greater simplicity in handling and construction than the commercially available lens-pinhole spatial filters (LPSF), for once the pinhole is fixed in the correct position with respect to the objective, the alignment of the whole unit can be made an easy matter.
Mode coupling enhancement by astigmatism compensation in a femtosecond laser cavity
NASA Astrophysics Data System (ADS)
Castro-Olvera, Gustavo; Garduño-Mejía, Jesus; Rosete-Aguilar, Martha; Roman-Moreno, Carlos J.
2016-09-01
In this work we present a numerical analysis of the mode coupling between the pump-beam and the laser-beam in a Ti:Sapphire crystal used as a gain medium of a femtosecond laser. Using the Matrix ABCD and propagation gaussian beam models, we obtained an optimal configuration for compensate the astigmatism in the output beam laser. Also we analysed pump-beam propagation and got the settings to fix the astigmatism in the crystal. Furthermore we apply this configuration to a homemade femtosecond laser, accomplishing an overall efficiency of laser to 20% in continuum wave (CW) and 16% in mode looking (ML) operation. The femtosecond laser have 30 nm bandwidth to FWHM at 810 nm corresponding 30fs.
Beam splitter phase shifts: Wave optics approach
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Degiorgio, Vittorio
2017-10-01
We investigate the phase relationships between transmitted and reflected waves in a lossless beam splitter having a multilayer structure, using the matrix approach as outlined in classical optics books. Contrarily to the case of the quantum optics formalism generally employed to describe beam splitters, these matrices are not unitary. In this note we point out the existence of general relations among the elements of the transfer matrix that describes the multilayer beam splitter. Such relations, which are independent of the detailed structure of the beam splitter, fix the phase shifts between reflected and transmitted waves. It is instructive to see how the results obtained by Zeilinger by using spinor algebra and Pauli matrices can be easily derived from our general relations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, A; Underwood, T; Wo, J
2016-06-15
Purpose: Anal cancer patients treated using a posterior proton beam may be at risk of vaginal wall injury due to the increased linear energy transfer (LET) and relative biological effectiveness (RBE) at the beam distal edge. We investigate the vaginal dose received. Methods: Five patients treated for anal cancer with proton pencil beam scanning were considered, all treated to a prescription dose of 54 Gy(RBE) over 28–30 fractions. Dose and LET distributions were calculated using the Monte Carlo simulation toolkit TOPAS. In addition to the standard assumption of a fixed RBE of 1.1, variable RBE was considered via the applicationmore » of published models. Dose volume histograms (DVHs) were extracted for the planning treatment volume (PTV) and vagina, the latter being used to calculate the vaginal normal tissue complication probability (NTCP). Results: Compared to the assumption of a fixed RBE of 1.1, the variable RBE model predicts a dose increase of approximately 3.3 ± 1.7 Gy at the end of beam range. NTCP parameters for the vagina are incomplete in the current literature, however, inferring value ranges from the existing data we use D{sub 50} = 50 Gy and LKB model parameters a=1–2 and m=0.2–0.4. We estimate the NTCP for the vagina to be 37–48% and 42–47% for the fixed and variable RBE cases, respectively. Additionally, a difference in the dose distribution was observed between the analytical calculation and Monte Carlo methods. We find that the target dose is overestimated on average by approximately 1–2%. Conclusion: For patients treated with posterior beams, the vaginal wall may coincide with the distal end of the proton beam and may receive a substantial increase in dose if variable RBE models are applied compared to using the current clinical standard of RBE equal to 1.1. This could potentially lead to underestimating toxicities when treating with protons.« less
Calculating ground water transit time of horizontal flow through leaky aquifers.
Braunsfurth, Angelika C; Schneider, Wilfried
2008-01-01
The calculation of ground water transit times is one important factor in ground water protection. In this paper, we present an analytical solution for the transit time for a Dupuit-type flow system applicable to saturated flow through a horizontal leaky aquifer discharging to a downgradient fixed-head boundary under steady-state conditions. We investigate the influence of leakage when comparing the resulting travel times of our model based on head-dependent leakage with the commonly used model with no leakage and a simplified model with constant leakage. The results show significant differences in the position of the water divide and transit time, suggesting that leakage cannot be ignored.
Evaluating video digitizer errors
NASA Astrophysics Data System (ADS)
Peterson, C.
2016-01-01
Analog output video cameras remain popular for recording meteor data. Although these cameras uniformly employ electronic detectors with fixed pixel arrays, the digitization process requires resampling the horizontal lines as they are output in order to reconstruct the pixel data, usually resulting in a new data array of different horizontal dimensions than the native sensor. Pixel timing is not provided by the camera, and must be reconstructed based on line sync information embedded in the analog video signal. Using a technique based on hot pixels, I present evidence that jitter, sync detection, and other timing errors introduce both position and intensity errors which are not present in cameras which internally digitize their sensors and output the digital data directly.
Using the in-line component for fixed-wing EM 1D inversion
NASA Astrophysics Data System (ADS)
Smiarowski, Adam
2015-09-01
Numerous authors have discussed the utility of multicomponent measurements. Generally speaking, for a vertical-oriented dipole source, the measured vertical component couples to horizontal planar bodies while the horizontal in-line component couples best to vertical planar targets. For layered-earth cases, helicopter EM systems have little or no in-line component response and as a result much of the in-line signal is due to receiver coil rotation and appears as noise. In contrast to this, the in-line component of a fixed-wing airborne electromagnetic (AEM) system with large transmitter-receiver offset can be substantial, exceeding the vertical component in conductive areas. This paper compares the in-line and vertical response of a fixed-wing airborne electromagnetic (AEM) system using a half-space model and calculates sensitivity functions. The a posteriori inversion model parameter uncertainty matrix is calculated for a bathymetry model (conductive layer over more resistive half-space) for two inversion cases; use of vertical component alone is compared to joint inversion of vertical and in-line components. The joint inversion is able to better resolve model parameters. An example is then provided using field data from a bathymetry survey to compare the joint inversion to vertical component only inversion. For each inversion set, the difference between the inverted water depth and ship-measured bathymetry is calculated. The result is in general agreement with that expected from the a posteriori inversion model parameter uncertainty calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, C.; Jaski, Y.; Powers, T.
2007-01-19
A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam.The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits' accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, C.; Jaski, Y.; Maser, J.
2007-01-01
A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less
Method and Apparatus for Measuring Near-Angle Scattering of Mirror Coatings
NASA Technical Reports Server (NTRS)
Chipman, Russell A. (Inventor); Daugherty, Brian J. (Inventor); McClain, Stephen C. (Inventor); Macenka, Steven A. (Inventor)
2013-01-01
Disclosed herein is a method of determining the near angle scattering of a sample reflective surface comprising the steps of: a) splitting a beam of light having a coherence length of greater than or equal to about 2 meters into a sample beam and a reference beam; b) frequency shifting both the sample beam and the reference beam to produce a fixed beat frequency between the sample beam and the reference beam; c) directing the sample beam through a focusing lens and onto the sample reflective surface, d) reflecting the sample beam from the sample reflective surface through a detection restriction disposed on a movable stage; e) recombining the sample beam with the reference beam to form a recombined beam, followed by f) directing the recombined beam to a detector and performing heterodyne analysis on the recombined beam to measure the near-angle scattering of the sample reflective surface, wherein the position of the detection restriction relative to the sample beam is varied to occlude at least a portion of the sample beam to measure the near-angle scattering of the sample reflective surface. An apparatus according to the above method is also disclosed.
A neutron diagnostic for high current deuterium beams.
Rebai, M; Cavenago, M; Croci, G; Dalla Palma, M; Gervasini, G; Ghezzi, F; Grosso, G; Murtas, F; Pasqualotto, R; Cippo, E Perelli; Tardocchi, M; Tollin, M; Gorini, G
2012-02-01
A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45°. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.
A neutron diagnostic for high current deuterium beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebai, M.; Perelli Cippo, E.; Cavenago, M.
2012-02-15
A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thinmore » polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.« less
Flight Dynamics Simulation Modeling and Control of a Large Flexible Tiltrotor Aircraft
2014-09-01
matrix from fixed to rotating coordinate systems u longitudinal aircraft velocity, state-space control vector v elastic beam chordwise displacement /lateral...spectrum active control , including flight control systems, rotor load limiting, and vibration and noisetiltion [1]. The development of a high-order...the flutter response of fixed- wing aircraft. The B-52 CCV ( Controls Configured Vehicle) was one of the first aircraft to demonstrate benefits of active
Isochronous (CW) Non-Scaling FFAGs: Design and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, C.; Berz, M.; Makino, K.
2010-11-04
The drive for higher beam power, high duty cycle, and reliable beams at reasonable cost has focused international attention and design effort on fixed field accelerators, notably Fixed-Field Alternating Gradient accelerators (FFAGs). High-intensity GeV proton drivers encounter duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons. A 10-20 MW proton driver is challenging, if even technically feasible, with conventional accelerators--with the possible exception of a SRF linac, which has a large associated cost and footprint. Recently, the concept of isochronous orbits has been explored and developed for nonscaling FFAGs using powerful new methodologiesmore » in FFAG accelerator design and simulation. The property of isochronous orbits enables the simplicity of fixed RF and, by tailoring a nonlinear radial field profile, the FFAG can remain isochronous beyond the energy reach of cyclotrons, well into the relativistic regime. With isochronous orbits, the machine proposed here has the high average current advantage and duty cycle of the cyclotron in combination with the strong focusing, smaller losses, and energy variability that are more typical of the synchrotron. This paper reports on these new advances in FFAG accelerator technology and presents advanced modeling tools for fixed-field accelerators unique to the code COSY INFINITY.« less
Three dimensional δf simulations of beams in the SSC
NASA Astrophysics Data System (ADS)
Koga, J.; Tajima, T.; Machida, S.
1993-12-01
A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.
Matching optics for Gaussian beams
NASA Technical Reports Server (NTRS)
Gunter, William D. (Inventor)
1991-01-01
A system of matching optics for Gaussian beams is described. The matching optics system is positioned between a light beam emitter (such as a laser) and the input optics of a second optics system whereby the output from the light beam emitter is converted into an optimum input for the succeeding parts of the second optical system. The matching optics arrangement includes the combination of a light beam emitter, such as a laser with a movable afocal lens pair (telescope) and a single movable lens placed in the laser's output beam. The single movable lens serves as an input to the telescope. If desired, a second lens, which may be fixed, is positioned in the beam before the adjustable lens to serve as an input processor to the movable lens. The system provides the ability to choose waist diameter and position independently and achieve the desired values with two simple adjustments not requiring iteration.
Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.
Zou, G Q; Lei, G J; Cao, J Y; Duan, X R
2012-07-01
The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.
Optical Implementation of the Optimal Universal and Phase-Covariant Quantum Cloning Machines
NASA Astrophysics Data System (ADS)
Ye, Liu; Song, Xue-Ke; Yang, Jie; Yang, Qun; Ma, Yang-Cheng
Quantum cloning relates to the security of quantum computation and quantum communication. In this paper, firstly we propose a feasible unified scheme to implement optimal 1 → 2 universal, 1 → 2 asymmetric and symmetric phase-covariant cloning, and 1 → 2 economical phase-covariant quantum cloning machines only via a beam splitter. Then 1 → 3 economical phase-covariant quantum cloning machines also can be realized by adding another beam splitter in context of linear optics. The scheme is based on the interference of two photons on a beam splitter with different splitting ratios for vertical and horizontal polarization components. It is shown that under certain condition, the scheme is feasible by current experimental technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, Martin R., E-mail: mfuchs@bnl.gov; Bhogadi, Dileep K.; Jakoncic, Jean
We present the final design of the x-ray optics and experimental stations of two macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source-II. The microfocusing FMX beamline will deliver a flux of ∼5×10{sup 12} ph/s at 1 Å into a 1 – 20 µm spot, its flux density surpassing current MX beamlines by up to two orders of magnitude. It covers an energy range from 5 – 30 keV. The highly automated AMX beamline is optimized for high throughput, with beam sizes from 4 – 100 µm, an energy range of 5 – 18 keV and a flux atmore » 1 Å of ∼10{sup 13} ph/s. A focus in designing the beamlines lay on achieving high beam stability, for example by implementing a horizontal bounce double crystal monochromator at FMX. A combination of compound refractive lenses and bimorph mirror optics at FMX supports rapid beam size changes. Central components of the in-house developed experimental stations are horizontal axis goniometers with a target sphere of confusion of 100 nm, piezo-slits for dynamic beam size changes during diffraction experiments, dedicated secondary goniometers for data collection from specimen in crystallization plates, and next generation pixel array detectors. FMX and AMX will support a broad range of biomedical structure determination methods from serial crystallography on micron-sized crystals, to structure determination of complexes in large unit cells, to rapid sample screening and room temperature data collection of crystals in trays.« less
Program BB for calculation of PEP corrector strengths for beam-bump excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kheifets, S.
Excitation of a beam-bump (BB) can be effectively used for a number of goals. Since BB is sensitive only to perturbations of elements which are located inside it, errors and their consequencies spaced separately can be singled out and studied one by one. This technique in principle can be used to study the uniformity of the quadrupole distribution around the ring, the beam stays clear size of the machine at different locations, the polarity and probably even the strength of sextupole magnets, alignments of different monitors, etc. It can be used also to increase the beam cross section if thatmore » appears to be desirable. Design of PEP correctors does not allow to use them for excitation of a halfwave BB. The minimum number of correctors which can be used in this situation is three. The situation for horizontal plane is aggravated still more since most of horizontal correctors are hooked in pairs. The presence of sextupole magnets interlacing the correctors makes it necessary to use iterative procedure to find the corrector strengths for BB, since a perturbed orbit is influenced by a field of a sextupole magnet which in turn depends on the perturbed orbit value in the sextupole. Since the strength of sextupoles are rather small as the first guess of corrector strengths for iterative procedure can be taken the linear solution neglecting sextupoles. This paper describes the program BB itself, and some results of calculations with BB for PEP. 3 refs., 4 figs., 6 tabs.« less
Sihota, Ramanjit; Goyal, Amita; Kaur, Jasbir; Gupta, Viney; Nag, Tapas C
2012-01-01
To study ultrastructural changes of the trabecular meshwork in acute and chronic primary angle closure glaucoma (PACG) and primary open angle glaucoma (POAG) eyes by scanning electron microscopy. Twenty-one trabecular meshwork surgical specimens from consecutive glaucomatous eyes after a trabeculectomy and five postmortem corneoscleral specimens were fixed immediately in Karnovsky solution. The tissues were washed in 0.1 M phosphate buffer saline, post-fixed in 1% osmium tetraoxide, dehydrated in acetone series (30-100%), dried and mounted. Normal trabecular tissue showed well-defined, thin, cylindrical uveal trabecular beams with many large spaces, overlying flatter corneoscleral beams and numerous smaller spaces. In acute PACG eyes, the trabecular meshwork showed grossly swollen, irregular trabecular endothelial cells with intercellular and occasional basal separation with few spaces. Numerous activated macrophages, leucocytes and amorphous debris were present. Chronic PACG eyes had a few, thickened posterior uveal trabecular beams visible. A homogenous deposit covered the anterior uveal trabeculae and spaces. Converging, fan-shaped trabecular beam configuration corresponded to gonioscopic areas of peripheral anterior synechiae. In POAG eyes, anterior uveal trabecular beams were thin and strap-like, while those posteriorly were wide, with a homogenous deposit covering and bridging intertrabecular spaces, especially posteriorly. Underlying corneoscleral trabecular layers and spaces were visualized in some areas. In acute PACG a marked edema of the endothelium probably contributes for the acute and marked intraocular pressure (IOP) elevation. Chronically raised IOP in chronic PACG and POAG probably results, at least in part, from decreased aqueous outflow secondary to widening and fusion of adjacent trabecular beams, together with the homogenous deposit enmeshing trabecular beams and spaces.
Influence of gravity on the orientation of vestibular induced quick phases.
Pettorossi, V E; Errico, P; Ferraresi, A; Draicchio, F
1995-01-01
In rabbits and cats the orientation of the quick phases (QPs) of the vestibulo-ocular reflex (VOR) was studied varying the head position in space. At different head tilt positions, QPs induced by step vestibular stimulation disaligned with respect to the stimulus toward the orientation of the earth's horizontal axis. The rabbits' QPs were horizontal during yaw stimulation and remained horizontal in a range of head pitch of +/- 90 degrees (reorientation gain = 1). Therefore, the slow compensatory responses (CSPs) progressively disaligned compared with the QPs. QPs induced by roll stimulation also showed horizontal orientation, although these were rare in the upright position and occurred more frequently when the head was pitched. In cats only the yaw-induced QPs were coplanar with the stimulus, while QPs induced by pitching were mostly oblique. It followed that in either yawing or pitching, the QPs had their end point scattered within a horizontally elongated area of the visual field. When tilting cats in the frontal plane, the orientation of QP trajectories changed with respect to the stimulus so that the end point distribution tended to remain aligned toward the horizontal instead of being fixed in the orbit. The reorientation gain decreased from 1 to 0.5 by increasing the head tilt. On the basis of difference regarding eye implantation and motility it was suggested that the effect of gravity on the orientation of QPs could be aimed at maintaining the interocular axis aligned with the horizon in the rabbit and at orientating the visual scanning system in the horizontal plane in the cat.
The Effect of Pitch, Roll, and Yaw on Airborne Gravity Observations of the NOAA GRAV-D Project
NASA Astrophysics Data System (ADS)
Childers, V. A.; Kanney, J.; Youngman, M.
2017-12-01
Aircraft turbulence can wreak havoc on the gravity measurementby beam-style gravimeters. Prior studies have confirmed the correlation of poor quality airborne gravity data collection to amplified aircraft motion. Motion in the aircraft is the combined effect of the airframe design, the autopilot and its performance, and the weather/wind regime. NOAA's National Geodetic Survey has launched the Gravity for the Redefinition of the American Vertical Datum project (GRAV-D) to provide the foundation for a new national vertical datum by 2022. This project requires collecting airborne gravity data covering the entire country and its holdings. The motion of the aircraft employed in this project is of prime importance because we use a beam-style gravimeter mounted on a gyro-stabilized platform to align the sensor to a time-averaged local vertical. Aircraft turbulence will tend to drive the platform off-level, allowing horizontal forces to map into the vertical gravity measurement. Recently, the GRAV-D project has experimented with two new factors in airborne gravity data collection. The first aspect is the use of the Aurora optionally piloted Centaur aircraft. This aircraft can be flown either with or without a pilot, but the autopilot is specifically designed to be very accurate. Incorporated into the much smaller frame of this aircraft is a new gravimeter developed by Micro-g LaCoste, called the Turnkey Airborne Gravimeter System 7 (TAGS7). This smaller, lighter instrument also has a new design whereby the beam is held fixed in an electromagnetic force field. The result of this new configuration is notably improved data quality in wind conditions higher than can be tolerated by our current system. So, which caused the improvement, the aircraft motion or the new meter? This study will start to tease apart these two effects with recently collected survey data. Specifically, we will compare the motion profile of the Centaur aircraft with other aircraft in the GRAV-D portfolio that we use successfully. In addition, we will investigate the relationship of aircraft motion, as measured by pitch, roll, and yaw, to airborne gravity quality in the Centaur operation as well as measurement aboard other aircraft with the beam-style sensor.
A NOTE ON THE RELATIVE PHOTOSENSORY EFFECT OF POLARIZED LIGHT
Crozier, W. J.; Mangelsdorf, A. F.
1924-01-01
Experiments were made to compare the stimulating effectiveness of vertically and horizontally polarized lights and non-polarized lights of equal intensity upon phototropic movements of the beetle Tetraopes tetraopthalmus; and to compare the effectiveness of two light beams polarized at right angles to one another upon phototropic orientation of the land isopod Cylisticus convexus. Tetraopes is positively, and Cylisticus, negatively phototropic. Tests were also made of the intensities of horizontally and of vertically polarized light required to inhibit stereotropism in larvæ of Tenebrio. Under the conditions of the tests, no certain qualitative effect connected with polarization could be detected. PMID:19872110
Pink-Beam, Highly-Accurate Compact Water Cooled Slits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard
2007-01-19
Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Zakharova, Nadezhda T.
2016-01-01
The numerically exact superposition T-matrix method is used to model far-field electromagnetic scattering by two types of particulate object. Object 1 is a fixed configuration which consists of N identical spherical particles (with N 200 or 400) quasi-randomly populating a spherical volume V having a median size parameter of 50. Object 2 is a true discrete random medium (DRM) comprising the same number N of particles randomly moving throughout V. The median particle size parameter is fixed at 4. We show that if Object 1 is illuminated by a quasi-monochromatic parallel beam then it generates a typical speckle pattern having no resemblance to the scattering pattern generated by Object 2. However, if Object 1 is illuminated by a parallel polychromatic beam with a 10 bandwidth then it generates a scattering pattern that is largely devoid of speckles and closely reproduces the quasi-monochromatic pattern generated by Object 2. This result serves to illustrate the capacity of the concept of electromagnetic scattering by a DRM to encompass fixed quasi-random particulate samples provided that they are illuminated by polychromatic light.
Simultaneous phase-shifting interferometry study based on the common-path Fizeau interferometer
NASA Astrophysics Data System (ADS)
Liu, Feng-wei; Wu, Yong-qian
2014-09-01
A simultaneous phase-shifting interferometry(SPSI) based on the common-path Fizeau interferometer has been discussed.In this system,two orthogonal polarized beams, using as the reference beam and test beam ,are detached by a particular Wollaston prism at a very small angle,then four equal sub-beams are achieved by a combination of three non-polarizing beam splitters(NPBS),and the phase shifts are introduced by four polarizers whose polarization azimuths are 0°, 45°, 90°, 135° with the horizontal direction respectively,the four phase shift interferograms are collected simultaneously by controlling the CCDs working at the same time .The SPSI principle is studied at first,then is the error analysis, finally we emulate the process of surface recovery by four steps phase shifts algorithm,the results indicate that, to ensure the feasibility of the SPSI system, we have to control the polarization azimuth error of the polarizer in +/- 0.5°.
3D beam shape estimation based on distributed coaxial cable interferometric sensor
NASA Astrophysics Data System (ADS)
Cheng, Baokai; Zhu, Wenge; Liu, Jie; Yuan, Lei; Xiao, Hai
2017-03-01
We present a coaxial cable interferometer based distributed sensing system for 3D beam shape estimation. By making a series of reflectors on a coaxial cable, multiple Fabry-Perot cavities are created on it. Two cables are mounted on the beam at proper locations, and a vector network analyzer (VNA) is connected to them to obtain the complex reflection signal, which is used to calculate the strain distribution of the beam in horizontal and vertical planes. With 6 GHz swept bandwidth on the VNA, the spatial resolution for distributed strain measurement is 0.1 m, and the sensitivity is 3.768 MHz mɛ -1 at the interferogram dip near 3.3 GHz. Using displacement-strain transformation, the shape of the beam is reconstructed. With only two modified cables and a VNA, this system is easy to implement and manage. Comparing to optical fiber based sensor systems, the coaxial cable sensors have the advantage of large strain and robustness, making this system suitable for structure health monitoring applications.
Electron Beam Focusing in the Linear Accelerator (linac)
NASA Astrophysics Data System (ADS)
Jauregui, Luis
2015-10-01
To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Raef S.; Ove, Roger; Duan, Jun
2006-10-01
The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanarmore » beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams.« less
Ohnishi, S; Odano, N; Nariyama, N; Saito, K
2004-01-01
In usual personal dosimetry, whole body irradiation is assumed. However, the opportunity of partial irradiation is increasing and the tendencies of protection quantities caused under those irradiation conditions are different. The code system has been developed and effective dose and organ absorbed doses have been calculated in the case of horizontal narrow photon beam irradiated from various directions at three representative body sections, 40, 50 and 60 cm originating from the top of the head. This work covers 24 beam directions, each 15 degrees angle ranging from 0 degrees to 345 degrees, three energy levels, 45 keV, 90 keV and 1.25 MeV, and three beam diameters of 1, 2 and 4 cm. These results show that the beam injected from diagonally front or other specific direction causes peak dose in the case of partial irradiation.
Injector for the University of Maryland Electron Ring (UMER)
NASA Astrophysics Data System (ADS)
Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.
2001-05-01
The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.
Turbulence-induced persistence in laser beam wandering.
Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G
2015-07-01
We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.
Study on the parameters of the scanning system for the 300 keV electron accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leo, K. W.; Chulan, R. M., E-mail: leo@nm.gov.my; Hashim, S. A.
2016-01-22
This paper describes the method to identify the magnetic coil parameters of the scanning system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. In this accelerator, scanning system is required to deflect the energetic electron beam across a titanium foil in vertical and horizontal direction. The excitation current of the magnetic coil is determined by the energy of the electron beam. Therefore, the magnetic coil parameters must be identified to ensure the matching of the beam energy and excitation coil current. As the result, the essential parameters ofmore » the effective lengths for X-axis and Y-axis have been found as 0.1198 m and 0.1134 m and the required excitation coil currents which is dependenton the electron beam energies have be identified.« less
Epicyclic helical channels for parametric resonance ionization cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johson, Rolland Paul; Derbenev, Yaroslav
Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parametermore » range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.« less
de França, Danilo Gonzaga; Morais, Maria Helena; das Neves, Flávio D; Carreiro, Adriana Fonte; Barbosa, Gustavo As
The aim of this study was to evaluate the effectiveness of fabrication methods (computer-aided design/computer-aided manufacture [CAD/CAM], copy-milling, and conventional casting) in the fit accuracy of three-unit, screw-retained fixed dental prostheses. Sixteen three-unit implant-supported screw-retained frameworks were fabricated to fit an in vitro model. Eight frameworks were fabricated using the CAD/CAM system, four in zirconia and four in cobalt-chromium. Four zirconia frameworks were fabricated using the copy-milled system, and four were cast in cobalt-chromium using conventional casting with premachined abutments. The vertical and horizontal misfit at the implant-framework interface was measured using scanning electron microscopy at ×250. The results for vertical misfit were analyzed using Kruskal-Wallis and Mann-Whitney tests. The horizontal misfits were categorized as underextended, equally extended, or overextended. Statistical analysis established differences between groups according to the chi-square test (α = .05). The mean vertical misfit was 5.9 ± 3.6 μm for CAD/CAM-fabricated zirconia, 1.2 ± 2.2 μm for CAD/CAM-fabricated cobalt-chromium frameworks, 7.6 ± 9.2 μm for copy-milling-fabricated zirconia frameworks, and 11.8 (9.8) μm for conventionally fabricated frameworks. The Mann-Whitney test revealed significant differences between all but the zirconia-fabricated frameworks. A significant association was observed between the horizontal misfits and the fabrication method. The percentage of horizontal misfits that were underextended and overextended was higher in milled zirconia (83.3%), CAD/CAM cobaltchromium (66.7%), cast cobalt-chromium (58.3%), and CAD/CAM zirconia (33.3%) frameworks. CAD/CAM-fabricated frameworks exhibit better vertical misfit and low variability compared with copy-milled and conventionally fabricated frameworks. The percentage of interfaces equally extended was higher when CAD/CAM and zirconia were used.
Lee, Woowon; Toussaint, Kimani C
2018-05-31
Environmental-scanning electron microscopy (ESEM) is routinely applied to various biological samples due to its ability to maintain a wet environment while imaging; moreover, the technique obviates the need for sample coating. However, there is limited research carried out on electron-beam (e-beam) induced tissue damage resulting from using the ESEM. In this paper, we use quantitative second-harmonic generation (SHG) microscopy to examine the effects of e-beam exposure from the ESEM on collagenous tissue samples prepared as either fixed, frozen, wet or dehydrated. Quantitative SHG analysis of tissues, before and after ESEM e-beam exposure in low-vacuum mode, reveals evidence of cross-linking of collagen fibers, however there are no structural differences observed in fixed tissue. Meanwhile wet-mode ESEM appears to radically alter the structure from a regular fibrous arrangement to a more random fiber orientation. We also confirm that ESEM images of collagenous tissues show higher spatial resolution compared to SHG microscopy, but the relative tradeoff with collagen specificity reduces its effectiveness in quantifying collagen fiber organization. Our work provides insight on both the limitations of the ESEM for tissue imaging, and the potential opportunity to use as a complementary technique when imaging fine features in the non-collagenous regions of tissue samples.
Distributed estimation of sensors position in underwater wireless sensor network
NASA Astrophysics Data System (ADS)
Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi
2016-05-01
In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.
Matrix Formalism of Synchrobetatron Coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiaobiao; /SLAC
In this paper we present a complete linear synchrobetatron coupling formalism by studying the transfer matrix which describes linear horizontal and longitudinal motions. With the technique established in the linear horizontal-vertical coupling study [D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001 (1999)], we found a transformation to block diagonalize the transfer matrix and decouple the betatron motion and the synchrotron motion. By separating the usual dispersion term from the horizontal coordinate first, we were able to obtain analytic expressions of the transformation under reasonable approximations. We also obtained the perturbations to the betatron tune and themore » Courant-Snyder functions. The closed orbit changes due to finite energy gains at rf cavities and radiation energy losses were also studied by the 5 x 5 extended transfer matrix with the fifth column describing kicks in the 4-dimension phase space.« less
NASA Technical Reports Server (NTRS)
Nagano, M.; Yoshii, H.; Hara, T.; Kamata, K.; Kawaguchi, S.; Kifune, T.
1985-01-01
Muon energy spectrum above 100 TeV was determined by observing the extensive air showers (EAS) from the horizontal direction (HAS). No definite muon originated shower of sizes above 100,000 and zenith angles above 60 deg was observed. The upper limits of HAS intensity is 5x10/12 m/2 s/1 sn/1 above 100,000. It is indicated that the upper limit of muon flux above 100 TeV is about 1.3x10/8 m/2 s/1 sr/1 and is in agreement with that expected from the primary spectrum with a knee assuming scaling in the fragmentation region and 40% protons in the primary beam. The critical energy at which muon flux from prompt processes take over that from the conventional process is higher than 100 Tev at horizontal direction.
Independent control of differently-polarized waves using anisotropic gradient-index metamaterials
Ma, Hui Feng; Wang, Gui Zhen; Jiang, Wei Xiang; Cui, Tie Jun
2014-01-01
We propose a kind of anisotropic gradient-index (GRIN) metamaterials, which can be used to control differently-polarized waves independently. We show that two three- dimensional (3D) planar lenses made of such anisotropic GRIN metamaterials are able to make arbitrary beam deflections for the vertical (or horizontal) polarization but have no response to the horizontal (or vertical) polarization. Then the vertically- and horizontally-polarized waves are separated and controlled independently to deflect to arbitrarily different directions by designing the anisotropic GRIN planar lenses. We make experimental verifications of the lenses using such a special metamaterial, which has both electric and magnetic responses simultaneously to reach approximately equal permittivity and permeability. Hence excellent impedance matching is obtained between the GRIN planar lenses and the air. The measurement results demonstrate good performance on the independent controls of differently-polarized waves, as observed in the numerical simulations. PMID:25231412
NASA Technical Reports Server (NTRS)
Hussein, Z.; Rahmat-Samii, Y.; Kellogg, K.
1997-01-01
This paper presents the design and performance evaluation of a lightweight, composite material, elliptical-aperture, parabolic-reflector antenna. The performance characterization is obtained using the cylindrical near-field measurement facility at JPL as shown. The reflector has been designed and calibrated for the SeaWinds spaceborne scatterometer instrument. The instrument operates at Ku-band and is designed to accurately measure wind speed and direction over Earth's ocean surface. The SeaWinds antenna design requires two linearly polarized independent beams pointed at 40 deg.and 46 deg. from nadir as shown. The inner beam, pointed at 40 deg. from nadir, is horizontally polarized with 1.6 in x 1.8 in required beamwidths in the elevation and azimuth planes, respectively. The outer beam, pointed at 46 deg. from nadir, is vertically polarized with 1.4 in x 1.7 in required beamwidths. Noteworthy, the reflector boresight axis is pointed at 43 deg. from nadir. Both beams are required to have the first sidelobe level below -15 dB relative to the peak of the beam.
Beam tracking simulation in the central region of a 13 MeV PET cyclotron
NASA Astrophysics Data System (ADS)
Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning
2012-06-01
This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.
Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.
Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin
2012-10-08
The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.
Design and Development of Emittance Measurement Device by Using the Pepper-pot Technique
NASA Astrophysics Data System (ADS)
Pakluea, S.; Rimjaem, S.
2017-09-01
Transverse emittance of a charged particle beam is one of the most important properties that reveals the quality of the beam. It is related to charge density, transvers size and angular displacement of the beam in transverse phase space. There are several techniques to measure the transverse emittance value. One of practical methods is the pepper-pot technique, which can measure both horizontal and vertical emittance value in a single measurement. This research concentrates on development of a pepper-pot device to measure the transverse emittance of electron beam produced from an accelerator injector system, which consists of a thermionic cathode RF electron gun and an alpha magnet, at the Plasma and Beam Physics Research Facility, Chiang Mai University. Simulation of beam dynamics was conducted with programs PARMELA, ELEGANT and self-developed codes using C and MATLAB. The geometry, dimensions and location of the pepper-pot as well as its corresponding screen station position were included in the simulation. The result from this study will be used to design and develop a practical pepper-pot experimental station.
New ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul
2012-02-01
The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.
Crossed-beam energy transfer: polarization effects and evidence of saturation
NASA Astrophysics Data System (ADS)
Turnbull, D.; Colaïtis, A.; Follett, R. K.; Palastro, J. P.; Froula, D. H.; Michel, P.; Goyon, C.; Chapman, T.; Divol, L.; Kemp, G. E.; Mariscal, D.; Patankar, S.; Pollock, B. B.; Ross, J. S.; Moody, J. D.; Tubman, E. R.; Woolsey, N. C.
2018-05-01
Recent results on crossed-beam energy transfer are presented. Wavelength tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves (IAWs) with amplitudes up to δ n/n≈ 0.015. Increasing the initial probe intensity to access larger IAW amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam's polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effects in a multibeam situation can dramatically enhance the expected amount of energy transfer.
Emittance measurements for optimum operation of the J-PARC RF-driven H{sup −} ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.
2015-04-08
In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The transverse emittances of the source were measured with various conditions to find out the optimum operation conditions minimizing the horizontal and vertical rms normalized emittances. The transverse emittances were most effectivelymore » reduced by operating the source with the plasma electrode temperature lower than 70°C. The optimum value of the cesium (Cs) density around the beam hole of the plasma electrode seems to be proportional to the plasma electrode temperature. The fine control of the Cs density is indispensable, since the emittances seem to increase proportionally to the excessiveness of the Cs density. Furthermore, the source should be operated with the Cs density beyond a threshold value, since the plasma meniscus shape and the ellipse parameters of the transverse emittances seem to be changed step-function-likely on the threshold Cs value.« less
DAEδALUS and dark matter detection
Kahn, Yonatan; Krnjaic, Gordan; Thaler, Jesse; ...
2015-03-05
Among laboratory probes of dark matter, fixed-target neutrino experiments are particularly well suited to search for light weakly coupled dark sectors. Here in this paper, we show that the DAEδALUS source setup$-$an 800 MeV proton beam impinging on a target of graphite and copper$-$can improve the present LSND bound on dark photon models by an order of magnitude over much of the accessible parameter space for light dark matter when paired with a suitable neutrino detector such as LENA. Interestingly, both DAEδALUS and LSND are sensitive to dark matter produced from off-shell dark photons. We show for the first timemore » that LSND can be competitive with searches for visible dark photon decays and that fixed-target experiments have sensitivity to a much larger range of heavy dark photon masses than previously thought. We review the mechanism for dark matter production and detection through a dark photon mediator, discuss the beam-off and beam-on backgrounds, and present the sensitivity in dark photon kinetic mixing for both the DAEδALUS/LENA setup and LSND in both the on- and off-shell regimes.« less
Measurement and validation of benchmark-quality thick-target tungsten X-ray spectra below 150 kVp.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-11-01
Pulse-height distributions of two constant potential X-ray tubes with fixed anode tungsten targets were measured and unfolded. The measurements employed quantitative alignment of the beam, the use of two different semiconductor detectors (high-purity germanium and cadmium-zinc-telluride), two different ion chamber systems with beam-specific calibration factors, and various filter and tube potential combinations. Monte Carlo response matrices were generated for each detector for unfolding the pulse-height distributions into spectra incident on the detectors. These response matrices were validated for the low error bars assigned to the data. A significant aspect of the validation of spectra, and a detailed characterization of the X-ray tubes, involved measuring filtered and unfiltered beams at multiple tube potentials (30-150 kVp). Full corrections to ion chamber readings were employed to convert normalized fluence spectra into absolute fluence spectra. The characterization of fixed anode pitting and its dominance over exit window plating and/or detector dead layer was determined. An Appendix of tabulated benchmark spectra with assigned error ranges was developed for future reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...
Code of Federal Regulations, 2010 CFR
2010-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...
Code of Federal Regulations, 2012 CFR
2012-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...
Code of Federal Regulations, 2014 CFR
2014-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...
Code of Federal Regulations, 2013 CFR
2013-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...
Effect of scintillometer height on structure parameter of the refractive index of air measurements
USDA-ARS?s Scientific Manuscript database
Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn**2). Cn**2 represents the turbulent strength of the atmosphere and describes the ability of the atmos...
Yoshimine, Shin-Ichiro; Nishihara, Kazuhide; Nozoe, Etsuro; Yoshimine, Masako; Nakamura, Norifumi
2012-12-01
This study evaluated the anatomical characteristics of the maxillary premolars and molars and the maxillary sinus using cone beam computed tomography (CBCT) for dental implant treatment. Ten linear items and 1 angular item on 30 sites in 30 patients were measured on 3-dimensional computed tomography images using CBCT. The vertical relationship between the maxillary sinus and the maxillary molars was classified into 5 categories. The horizontal thickness of the buccal alveolar bone was thinnest on the maxillary first premolars, and the horizontal thickness of the palatal alveolar bone was thickest on the maxillary second molars. Type II was most common on the maxillary first molars. The internal angle at the maxillary premolars was significantly greater than that at the maxillary molars. The internal angle and vertical distance between the apex of the roots and the maxillary sinus floor showed a positive correlation on the maxillary first premolars (P = 0.003). For the selection of an appropriate approach on dental implant treatment, the evaluation of maxillary premolars and molars using of CBCT can be recommended.
Apparatus and method for increasing the bandwidth of a laser beam
Chaffee, Paul H.
1991-01-01
A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.
Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor.
Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail
2017-06-09
We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x -configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered.
Modeling of Adaptive Optics-Based Free-Space Communications Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilks, S C; Morris, J R; Brase, J M
2002-08-06
We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.
Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor
Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail
2017-01-01
We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x-configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered. PMID:28598374
High intensity proton injector for facility of antiproton and ion research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.
The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBTmore » is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.« less
Controlling X-ray beam trajectory with a flexible hollow glass fibre
Tanaka, Yoshihito; Nakatani, Takashi; Onitsuka, Rena; Sawada, Kei; Takahashi, Isao
2014-01-01
A metre-length flexible hollow glass fibre with 20 µm-bore and 1.5 mm-cladding diameters for transporting a synchrotron X-ray beam and controlling the trajectory has been examined. The large cladding diameter maintains a moderate curvature to satisfy the shallow glancing angle of total reflection. The observed transmission efficiency was more than 20% at 12.4 keV. As a demonstration, a wide-area scan of a synchrotron radiation beam was performed to identify the elements for a fixed metal film through its absorption spectra. PMID:24365917
Flow tilt angle measurements using lidar anemometry
NASA Astrophysics Data System (ADS)
Dellwik, Ebba; Mann, Jakob
2010-05-01
A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2 degrees. Other possibilities for utilizing lidars for flow tilt angle and mean vertical velocities are discussed.
Stress analysis in curved composites due to thermal loading
NASA Astrophysics Data System (ADS)
Polk, Jared Cornelius
Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge of such a problem. It was ascertained and proven that the general, non-modified (original) version of classical lamination theory cannot be used for an analytical solution for a simply curved beam or any other structure that would require rotations of laminates out their planes in space. Finite element analysis was used to ascertain stress variations in a simply curved beam. It was verified that these solutions reduce to the flat beam solutions as the radius of curvature of the beams tends to infinity. MATLAB was used to conduct the classical lamination theory numerical analysis. A MATLAB program was written to conduct the finite element analysis for the flat and curved beams, isotropic and composite. It does not require incompatibility techniques used in mechanics of isotropic materials for indeterminate structures that are equivalent to fixed-beam problems. Finally, it has the ability to enable the user to define and create unique elements not accessible in commercial software, and modify finite element procedures to take advantage of new paradigms.
The post-buckling behavior of a beam constrained by springy walls
NASA Astrophysics Data System (ADS)
Katz, Shmuel; Givli, Sefi
2015-05-01
The post-buckling behavior of a beam subjected to lateral constraints is of practical importance in a variety of applications, such as stent procedures, filopodia growth in living cells, endoscopic examination of internal organs, and deep drilling. Even though in reality the constraining surfaces are often deformable, the literature has focused mainly on rigid and fixed constraints. In this paper, we make a first step to bridge this gap through a theoretical and experimental examination of the post-buckling behavior of a beam constrained by a fixed wall and a springy wall, i.e. one that moves laterally against a spring. The response exhibited by the proposed system is much richer compared to that of the fixed-wall system, and can be tuned by choosing the spring stiffness. Based on small-deformation analysis, we obtained closed-form analytical solutions and quantitative insights. The accuracy of these results was examined by comparison to large-deformation analysis. We concluded that the closed-form solution of the small-deformation analysis provides an excellent approximation, except in the highest attainable mode. There, the system exhibits non-intuitive behavior and non-monotonous force-displacement relations that can only be captured by large-deformation theories. Although closed-form solutions cannot be derived for the large-deformation analysis, we were able to reveal general properties of the solution. In the last part of the paper, we present experimental results that demonstrate various features obtained from the theoretical analysis.
STAR Au + Au Fixed Target Results
NASA Astrophysics Data System (ADS)
Meehan, Kathryn; STAR Collaboration
2015-10-01
The RHIC Beam Energy Scan (BES) program was proposed to look for the turn-off of signatures of the quark gluon plasma (QGP), search for a possible QCD critical point, and study the nature of the phase transition between hadronic and partonic matter. The results from the NA49 experiment at CERN have been used to claim that the onset of deconfinement occurs at a collision energy around a center-of-mass energy of 7 GeV, the low end of the BES range. Data from lower energies are needed to test if this onset occurs. The goal of the STAR Fixed-Target Program is to extend the collision energy range in BES II with the same detector to energies that are likely below the onset of deconfinement. Currently, STAR has inserted a gold target into the beam pipe and conducted test runs at center-of-mass energies 3.9 and 4.5 GeV. Tests have been done with both Au and Al beams. First physics results from a Coulomb analysis of Au + Au fixed-target collisions, which are found to be consistent with previous experiments, will be presented. These results demonstrate that STAR has good particle identification capabilities in this novel detector setup. Furthermore, the Coulomb potential, which is sensitive to the Z of the projectile and degree of baryonic stopping, will be compared with published results from the AGS. This material is based upon work supported by the National Science Foundation under Grant No. 1068833.
Abreu, Lucas G; Melgaço, Camilo A; Lages, Elizabeth M B; Abreu, Mauro H N G; Paiva, Saul M
2014-09-01
To evaluate adolescents oral health-related quality of life (OHRQoL) in the first 4 months of fixed orthodontic appliance treatment using parents and caregivers as proxies. Descriptive study. Department of Pediatric Dentistry and Orthodontics at Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. A sample of parents and caregivers of 95 adolescents undergoing orthodontic treatment with a fixed appliance. Participants were required to answer the Brazilian version of the Parental-Caregivers Perceptions Questionnaire (P-CPQ) before adolescent's treatment (T1) and 4 months after bonding of the fixed appliance (T2). Statistical analysis was carried out using the Wilcoxon signed rank test and the Bonferroni correction for the domains of P-CPQ. Among the 95 participants, there were 73 mothers, 18 fathers and 4 were other relations. There was a statistically significant improvement in the overall score as well as in both emotional and social wellbeing subscales (P<0·001). Parents and caregivers report an improvement on their adolescent's OHRQoL in the first 4 months of orthodontic treatment with a fixed appliance. © 2014 British Orthodontic Society.
Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing
NASA Astrophysics Data System (ADS)
Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.
2008-07-01
Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.
Lagrangian flows within reflecting internal waves at a horizontal free-slip surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qi, E-mail: q.zhou@damtp.cam.ac.uk; Diamessis, Peter J.
In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes driftmore » cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.« less
Planar reorientation of a free-free beam in space using embedded electromechanical actuators
NASA Technical Reports Server (NTRS)
Kolmanovsky, Ilya V.; Mcclamroch, N. Harris
1993-01-01
It is demonstrated that the planar reorientation of a free-free beam in zero gravity space can be accomplished by periodically changing the shape of the beam using embedded electromechanical actuators. The dynamics which determine the shape of the free-free beam is assumed to be characterized by the Euler-Bernoulli equation, including material damping, with appropriate boundary conditions. The coupling between the rigid body motion and the flexible motion is explained using the angular momentum expression which includes rotatory inertia and kinematically exact effects. A control scheme is proposed where the embedded actuators excite the flexible motion of the beam so that it rotates in the desired sense with respect to a fixed inertial reference. Relations are derived which relate the average rotation rate to the amplitudes and the frequencies of the periodic actuation signal and the properties of the beam. These reorientation maneuvers can be implemented by using feedback control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.R.; Botts, T.E.; Hertzberg, A.
1981-01-01
Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beamingmore » to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.« less
Effects associated with nanostructure fabrication using in situ liquid cell TEM technology
Chen, Xin; Zhou, Lihui; Wang, Ping; ...
2015-07-28
We studied silicon, carbon, and SiC x nanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems. Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend, with precursor concentrations from pure SiCl 4 to 0 % SiCl 4 in CH 2Cl 2, and electron beamintensity ranges of two orders of magnitude, showing good controllability of the deposition. Secondary electrons contributed to the determination of the lateral sizes of the nanostructures, while the primary beam appeared to have an effect in reducing the vertical growth rate. These results can be used to generatemore » donut-shaped nanostructures. Using a scanning electron beam, line structures with both branched and unbranched morphologies were also obtained. As a result, the liquid-phase electron-beam induced deposition technology is shown to be an effective tool for advanced nanostructured material generation.« less
Calibration of a proton beam energy monitor.
Moyers, M F; Coutrakon, G B; Ghebremedhin, A; Shahnazi, K; Koss, P; Sanders, E
2007-06-01
Delivery of therapeutic proton beams requires an absolute energy accuracy of +/-0.64 to 0.27 MeV for patch fields and a relative energy accuracy of +/-0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial offsets to test the envelope of algorithm accuracy demonstrated a relative accuracy of +/-0.11 MeV for small energy changes between 126 and 250 MeV. These new measurements may serve as a data set for benchmarking range-energy relationships.
Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer
de Visser, Pieter H. B.; Buck-Sorlin, Gerhard H.; van der Heijden, Gerie W. A. M.
2014-01-01
Reduction of energy use for assimilation lighting is one of the most urgent goals of current greenhouse horticulture in the Netherlands. In recent years numerous lighting systems have been tested in greenhouses, yet their efficiency has been very difficult to measure in practice. This simulation study evaluated a number of lighting strategies using a 3D light model for natural and artificial light in combination with a 3D model of tomato. The modeling platform GroIMP was used for the simulation study. The crop was represented by 3D virtual plants of tomato with fixed architecture. Detailed data on greenhouse architecture and lamp emission patterns of different light sources were incorporated in the model. A number of illumination strategies were modeled with the calibrated model. Results were compared to the standard configuration. Moreover, adaptation of leaf angles was incorporated for testing their effect on light use efficiency (LUE). A Farquhar photosynthesis model was used to translate the absorbed light for each leaf into a produced amount of carbohydrates. The carbohydrates produced by the crop per unit emitted light from sun or high pressure sodium lamps was the highest for horizontal leaf angles or slightly downward pointing leaves, and was less for more upward leaf orientations. The simulated leaf angles did not affect light absorption from inter-lighting LED modules, but the scenario with LEDs shining slightly upward (20°) increased light absorption and LUE relative to default horizontal beaming LEDs. Furthermore, the model showed that leaf orientation more perpendicular to the string of LEDs increased LED light interception. The combination of a ray tracer and a 3D crop model could compute optimal lighting of leaves by quantification of light fluxes and illustration by rendered lighting patterns. Results indicate that illumination efficiency increases when the lamp light is directed at most to leaves that have a high photosynthetic potential. PMID:24600461
A concept for canceling the leakage field inside the stored beam chamber of a septum magnet
NASA Astrophysics Data System (ADS)
Abliz, M.; Jaski, M.; Xiao, A.; Jain, A.; Wienands, U.; Cease, H.; Borland, M.; Decker, G.; Kerby, J.
2018-04-01
The Advanced Photon Source (APS) is planning to upgrade its storage ring from a double-bend achromat to a multi-bend achromat lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U in order to keep the beam current constant and to reduce the dynamic aperture requirements. The injection scheme, combined with the constraints in the booster to storage ring transfer region of the APS-U, results in requiring a septum magnet which deflects the injected 6 GeV electron beam by 89 mrad, while not appreciably disturbing the stored beam. The proposed magnet is straight; however, it is rotated in yaw, roll, and pitch from the stored beam chamber to meet the on-axis swap-out injection requirements for the APS-U lattice. The concept utilizes cancellation of the leakage field inside the 8 mm x 6 mm super-ellipsoidal stored beam chamber. As a result, the horizontal deflection angle of the 6 GeV stored beam is reduced to less than 1 μrad with only a 2-mm-thick septum separating the stored beam and the 1.06 T field seen by the injected beam. This design also helps to minimize the integrated skew quadrupole and normal sextupole fields inside the stored beam chamber.
NASA Astrophysics Data System (ADS)
Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.
2005-08-01
A new concept of using an electrically insulating beam as a constraint is proposed to construct planar spring-like electro-thermal actuators with large displacements. On the basis of this concept, three types of microspring actuators with multi-chevron structures and constraint beams are introduced. The constraint beams in one type (the spring) of these devices are horizontally positioned to restrict the expansion of the active arms in the x-direction, and to produce a displacement in the y-direction only. In the other two types of actuators (the deflector and the contractor), the constraint beams are positioned parallel to the active arms. When the constraint beams are on the inner side of the active arms, the actuator produces an outward deflection in the y-direction. When they are on the outside of the active arms, the actuator produces an inward contraction. Finite-element analysis was used to model the performances. The simulation shows that the displacements of these microspring actuators are all proportional to the number of the chevron sections in series, thus achieving superior displacements to alternative actuators. The displacement of a spring actuator strongly depends on the beam angle, and decreases with increasing the beam angle, the deflector is insensitive to the beam angle, while the displacement of a contractor actuator increases with the beam angle.
Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment
NASA Astrophysics Data System (ADS)
Luo, Jing
Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.
McIlwain, J T
1990-03-01
Saccades evoked electrically from the deep layers of the superior colliculus have been examined in the alert cat with its head fixed. Amplitudes of the vertical and horizontal components varied linearly with the starting position of the eye. The slopes of the linear-regression lines provided an estimate of the sensitivity of these components to initial eye position. In observations on 29 sites in nine cats, the vertical and horizontal components of saccades evoked from a given site were rarely influenced to the same degree by initial eye position. For most sites, the horizontal component was more sensitive than the vertical component. Sensitivities of vertical and horizontal components were lowest near the representations of the horizontal and vertical meridians, respectively, of the collicular retinotopic map, but otherwise exhibited no systematic retinotopic dependence. Estimates of component amplitudes for saccades evoked from the center of the oculomotor range also diverged significantly from those predicted from the retinotopic map. The results of this and previous studies indicate that electrical stimulation of the cat's superior colliculus cannot yield a unique oculomotor map or one that is in register everywhere with the sensory retinotopic map. Several features of these observations suggest that electrical stimulation of the colliculus produces faulty activation of a saccadic control system that computes target position with respect to the head and that small and large saccades are controlled differently.
BATMAN beam properties characterization by the beam emission spectroscopy diagnostic
NASA Astrophysics Data System (ADS)
Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.
2015-04-01
The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.
[Development of polyaxial locking plate screw system of sacroiliac joint].
Fan, Weijie; Xie, Xuesong; Zhou, Shuping; Zhang, Yonghu
2014-09-01
To develop an instrument for sacroiliac joint fixation with less injury and less complications. Firstly, 18 adult pelvic specimens (8 males and 10 females) were used to measure the anatomical data related to the locking plates and locking screws on the sacrum and ilium, and the polyaxial locking plate screw system of the sacroiliac joint was designed according to the anatomic data. This system was made of medical titanium alloy. Then 4 adult male plevic specimens were harvested and the experiment was divided into 3 groups: group A (normal pelvic), group B (the dislocated sacroiliac joint fixed with sacroiliac screws), and group C (the dislocated sacroiliac joint fixed with polyaxial locking plate screw system). The vertical displacement of sacroiliac joint under the condition of 0-700 N vertical load and the horizontal displacement on angle under the condition of 0-12 N·m torsional load were compared among the 3 groups by using the biological material test system. Finally, the simulated application test was performed on 1 adult male cadaveric specimen to observe soft tissue injury and the position of the locking plate and screw by X-ray films. According to the anatomic data of the sacrum and ilium, the polyaxial locking plate screw system of the sacroiliac joint was designed. The biomechanical results showed that the vertical displacement of the sacroiliac joint under the condition of 0-700 N vertical load in group A was significantly bigger than that in group B and group C (P < 0.05), but there was no significant difference between group B and group C (P > 0.05). The horizontal displacement on angle under the condition of 0-12 N·m torsional load in group A was significantly less than that in group B and group C (P < 0.05). The horizontal displacement on angle under the condition of 0-6 N·m torsional load in group B was bigger than that in group C, and the horizontal displacement on angle under the condition of 6-12 N·m torsional load in group B was less than that in group C, but there was no significant difference between group B and group C (P > 0.05). The test of simulating application showed that the specimen suffered less soft tissue injury, and this instrument could be implanted precisely and safely. The polyaxial locking plate screw system of the sacroiliac joint has the advantages of smaller volume and less injury; polyaxial fixation enables flexible adjustment screw direction. The simulated application test shows satisfactory fixing effect.
Comparison of Fixed-Stabilizer, Adjustable-Stabilizer and All-Moveable Horizontal Tails
1945-10-01
the thrust axis and wind direction at Infinity, degrees; primed to indicate that a is corrected for ground interference effects 5 angular ...deflection of control surface, degrees i+- maximum angular deflection of stabilizer measured with reference to thrust axis, degrees hnax...5e maximum negative angular deflection of elevator, degrees E downwash angle at teil, degrees; primed to indicate that e Is
Surprising Behavior of Spinning Tops and Eggs on an Inclined Plane
ERIC Educational Resources Information Center
Cross, Rod
2016-01-01
A spinning top or a spinning hard-boiled egg is fascinating to observe since both objects can remain upright for a relatively long time without falling over. If spun at sufficient speed on a horizontal surface, the spin axis rises to a vertical position and the bottom end tends to remain fixed in position on the surface. If the initial spin is…
Review of the inverse scattering problem at fixed energy in quantum mechanics
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.
NASA Astrophysics Data System (ADS)
Collins, Nathan Scott
Surrey Space Centre (SSC) has been working on an autonomous fixed-wing all-electric vertical take-off and landing (VTOL) aerobot for the exploration of Mars for several years. SSC's previous designs have incorporated separate vertical lift and horizontal pusher rotors as well as a mono tilt-rotor configuration. The Martian aerobot's novel Y-4 tilt-rotor (Y4TR) design is a combination of two previous SSC designs and a step forward for planetary aerobots. The aerobot will fly as a Y4 multi-rotor during vertical flight and as a conventional flying wing during horizontal flight. The more robust Y4TR configuration utilizes two large fixed coaxial counter rotating rotors and two small tilt-rotors for vertical takeoff. The front tilt-rotors rotate during transition flight into the main horizontal flight configuration. The aerobot is a blended wing design with the wings using the "Zagi 10" airfoil blended to a center cover for the coaxial rotors. The open source design and analysis programs XROTOR, CROTOR, Q-BLADE, XFLR5, and OpenVSP were used to design and model the aerobot's four rotors and body. The baseline mission of the Y4TR remains the same as previously reported and will investigate the Isidis Planitia region on Mars over a month long period using optical sensors during flight and a surface science package when landed. During flight operations the aerobot will take off vertically, transition to horizontal flight, fly for around an hour, transition back to vertical flight, and land vertically. The flight missions will take place close to local noon to maximize power production via solar cells during flight. A nonlinear six degree of freedom (6DoF) dynamic model incorporating aerodynamic models of the aerobot's body and rotors has been developed to model the vertical, transition, and horizontal phases of flight. A nonlinear State-Dependent Riccati Equation (SDRE) controller has been developed for each of these flight phases. The nonlinear dynamic model was transformed into a pseudo-linear form based on the states and implemented in the SDRE controller. During transition flight the aerobot is over actuated and the weighted least squares (WLS) method is used for allocation of control effectors. Simulations of the aerobot flying in different configurations were performed to verify the performance of the SDRE controllers, including hover, transition, horizontal flight, altitude changes, and landing scenarios. Results from the simulations show the SDRE controller is a viable option for controlling the novel Y4TR Martian Aerobot.
Xia, Bin; Ma, Shao-Sai; Chen, Ju-Fa; Zhao, Jun; Chen, Bi-Juan; Wang, Fang
2010-06-01
Based on the analysis of dissolved organic carbon (DOC), particulate organic carbon (POC) and particulate nitrogen (PN) of the samples collected from stations in Enteromorpha prolifera outbreak area of the Western South Yellow Sea during the period August 9-13 of 2008, combining with the data of environmental hydrology, the horizontal distribution, source and influential factors of organic carbon and carbon fixed strength of phytoplankton were discussed. The results showed that the concentrations of DOC and POC ranged from 1.55 mg/L to 3.22 mg/L, 0.11 mg/L to 0.68 mg/L, with average values of 2.44 mg/L and 0.27 mg/L. The horizontal distributions of DOC and POC were similar in study area. The concentrations of DOC and POC in coastal area were higher than that in the outer sea and the concentrations of DOC and POC at surface water layer were higher than those at the bottom water layer. There were a positive correlation between POC and TSS, indicating that the concentrations and source of TSS were main factors for the POC. According to the univariate linear regression model between POC and PN, the concentrations of particulate inorganic nitrogen (PIN) were evaluated. Removing the content of PIN in the samples, the average POC/PON values in most coastal waters were less than 8, combining with the values of POC/chlorophyll a, suggesting that the marine primary production were the important source of POC in most coastal waters, and the presence of degraded organic matter which derived from degraded Enteromorph prolifera was in the latter period of green tide outbreak. The results of evaluated carbon fixed strength based on primary productivity showed that carbon fixed strength of phytoplankton in Enteromorpha prolifera outbreak area of the Western South Yellow Sea ranged from 167 mg/(m2 x d) to 2017 mg/(m2 x d), with the average of 730 mg/(m2 x d). The daily carbon fixed quantities of the study area were up to 2.95 x 10(4) t. Then the daily carbon fixed quantities of the Yellow Sea were 28.03 x 10(4) t.
NASA Astrophysics Data System (ADS)
Badham, Katherine Emily
This thesis presents the ability of complete polarization control of light to create a polarization diffraction grating (PDG). This system has the ability to create diffracted light with each order having a separate high-order polarization state in one location on the optical axis. First, an external Excel program is used to create a grating phase profile from userspecified target diffraction orders. High-order vector beams in this PDG are created using a combination of two devices---a liquid crystal spatial light modulator (LC-SLM) manufactured by Seiko Epson, and a tunable q -plate from Citizen Holdings Co. The transmissive SLM is positioned in an optical setup with a reflective architecture allowing control over both the horizontal and vertical components of the laser beam. The SLM has its LC director oriented vertically only affecting the vertically polarized state, however, the optical setup allows modulation of both vertical and horizontal components by the use of a quarter-wave plate (QWP) and a mirror to rotate the polarizations 90 degrees. Each half of the SLM is encoded with an anisotropic phase-only diffraction grating which are superimposed to create a select number of orders with the desired polarization states and equally distributed intensity. The technique of polarimetry is used to confirm the polarization state of each diffraction order. The q-plate is an inhomogeneous birefringent waveplate which has the ability to convert zero-order vector beams into first-order vector beams. The physical placement of this device into the system converts the orders with zero-order polarization states to first-order polarization states. The light vector patterns of each diffraction order confirm which first-order polarization state of is produced. A specially made PDG sextuplicator is encoded onto the SLM to generate six diffraction orders with separate states of polarization.
NASA Astrophysics Data System (ADS)
SONG, O.; JEONG, N.-H.; LIBRESCU, L.
2000-10-01
A number of issues related to the modelling, vibration and stability of anisotropic pretwisted beams rotating at constant angular speed about the longitudinal body-axis fixed in the inertial space are investigated. The analysis is carried out in the framework of a refined theory of thin-walled anisotropic composite beams featuring bending-bending elastic coupling, and encompassing a number of non-classical features such as transverse-shear, anisotropy and pretwist. Special attention is paid to the effect of the spinning speed, pretwist angle, axial compressive load and symmetry/non-symmetry of the beam cross-section on natural frequencies and instability of the structural system. Numerical illustrations highlighting their implication on vibration and stability are displayed and pertinent conclusions are outlined.
HOPI: on-line injection optimization program
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMaire, J L
1977-10-26
A method of matching the beam from the 200 MeV linac to the AGS without the necessity of making emittance measurements is presented. An on-line computer program written on the PDP10 computer performs the matching by modifying independently the horizontal and vertical emittance. Experimental results show success with this method, which can be applied to any matching section.
33 CFR 164.15 - Navigation bridge visibility.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... ports must be such that the field of vision from the navigation bridge conforms as closely as possible... horizontal field of vision must extend over an arc from at least 22.5 degrees abaft the beam on one side of... of vision must extend over an arc from at least 45 degrees on the opposite bow, through dead ahead...
33 CFR 164.15 - Navigation bridge visibility.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... ports must be such that the field of vision from the navigation bridge conforms as closely as possible... horizontal field of vision must extend over an arc from at least 22.5 degrees abaft the beam on one side of... of vision must extend over an arc from at least 45 degrees on the opposite bow, through dead ahead...
Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides
NASA Astrophysics Data System (ADS)
Katz, Oded; Malka, Dror
2017-07-01
In this paper, we demonstrate a compact silicon on insulator (SOI) 1 × 4 optical power splitter using seven horizontal slotted waveguides. Aluminum nitride (AIN) surrounded by silicon (Si) was used to confine the optical field in the slot region. All of the power analysis has been done in transverse magnetic (TM) polarization mode and a compact optical power splitter as short as 14.5 μm was demonstrated. The splitter was designed by using full vectorial beam propagation method (FV-BPM) simulations. Numerical investigations show that this device can work across the whole C-band (1530-1565 nm) with excess loss better than 0.23 dB.
Simulations to study the static polarization limit for RHIC lattice
NASA Astrophysics Data System (ADS)
Duan, Zhe; Qin, Qing
2016-01-01
A study of spin dynamics based on simulations with the Polymorphic Tracking Code (PTC) is reported, exploring the dependence of the static polarization limit on various beam parameters and lattice settings for a practical RHIC lattice. It is shown that the behavior of the static polarization limit is dominantly affected by the vertical motion, while the effect of beam-beam interaction is small. In addition, the “nonresonant beam polarization” observed and studied in the lattice-independent model is also observed in this lattice-dependent model. Therefore, this simulation study gives insights of polarization evolution at fixed beam energies, that are not available in simple spin tracking. Supported by the U.S. Department of Energy (DE-AC02-98CH10886), Hundred-Talent Program (Chinese Academy of Sciences), and National Natural Science Foundation of China (11105164)
Laser beam centering and pointing system
Rushford, Michael Charles
2015-01-13
An optical instrument aligns an optical beam without the need for physical intervention of the instrument within the apparatus or platforms from which the trajectory of the beam to be ascertained. The alignment apparatus and method enable the desired function to be realized without the placement of physical apertures or sensors directly in the path of the beam through the system whose spatial position and slope is to be sought. An image plane provides the observer with a pair of well-defined images that are indicative of the beam centering and pointing alignment parameters. The optical alignment can be realized without the need for referencing to an external or fixed set of coordinates or fiducials. The instrument can therefore service situations where adverse environments would otherwise prohibit the use of such instruments, including regions of high radiation, high temperature, vacuum and/or cryogenic atmospheres.
Ray, Mark D.; Sedlacek, Arthur J.
2003-08-19
A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.
NASA Astrophysics Data System (ADS)
Tran Quoc, Tinh; Khong Trong, Toan; Luong Van, Hai
2018-04-01
In this paper, Improved Moving Element Method (IMEM) is used to analyze the dynamic response of Euler-Bernoulli beam structures on the dynamic foundation model subjected to the moving load. The effects of characteristic foundation model parameters such as Winkler stiffness, shear layer based on the Pasternak model, viscoelastic dashpot and characteristic parameter of mass on foundation. Beams are modeled by moving elements while the load is fixed. Based on the principle of the publicly virtual balancing and the theory of moving element method, the motion differential equation of the system is established and solved by means of the numerical integration based on the Newmark algorithm. The influence of mass on foundation and the roughness of the beam surface on the dynamic response of beam are examined in details.
Dynamic analysis of beam-cable coupled systems using Chebyshev spectral element method
NASA Astrophysics Data System (ADS)
Huang, Yi-Xin; Tian, Hao; Zhao, Yang
2017-10-01
The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.
Experimental investigation of optimum beam size for FSO uplink
NASA Astrophysics Data System (ADS)
Kaushal, Hemani; Kaddoum, Georges; Jain, Virander Kumar; Kar, Subrat
2017-10-01
In this paper, the effect of transmitter beam size on the performance of free space optical (FSO) communication has been determined experimentally. Irradiance profile for varying turbulence strength is obtained using optical turbulence generating (OTG) chamber inside laboratory environment. Based on the results, an optimum beam size is investigated using the semi-analytical method. Moreover, the combined effects of atmospheric scintillation and beam wander induced pointing errors are considered in order to determine the optimum beam size that minimizes the bit error rate (BER) of the system for a fixed transmitter power and link length. The results show that the optimum beam size for FSO uplink depends upon Fried parameter and outer scale of the turbulence. Further, it is observed that the optimum beam size increases with the increase in zenith angle but has negligible effect with the increase in fade threshold level at low turbulence levels and has a marginal effect at high turbulence levels. Finally, the obtained outcome is useful for FSO system design and BER performance analysis.
Optimizing integrated luminosity of future hadron colliders
NASA Astrophysics Data System (ADS)
Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank
2015-10-01
The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).
Nelson, Joshua D; McIff, Terence E; Moodie, Patrick G; Iverson, Jamey L; Horton, Greg A
2010-03-01
Internal fixation of the os calcis is often complicated by prolonged soft tissue management and posterior facet disruption. An ideal calcaneal construct would include minimal hardware prominence, sturdy posterior facet fixation and nominal soft tissue disruption. The purpose of this study was to develop such a construct and provide a biomechanical analysis comparing our technique to a standard internal fixation technique. Twenty fresh-frozen cadaver calcanei were used to create a reproducible Sanders type-IIB calcaneal fracture pattern. One calcaneus of each pair was randomly selected to be fixed using our compressive headless screw technique. The contralateral matched calcaneus was fixed with a nonlocking calcaneal plate in a traditional fashion. Each calcaneus was cyclically loaded at a frequency of 1 Hz for 4000 cycles using an increasing force from 250 N to 1000 N. An Optotrak motion capturing system was used to detect relative motion of the three fracture fragments at eight different points along the fracture lines. Horizontal separation and vertical displacement at the fracture lines was recorded, as well as relative rotation at the primary fracture line. When the data were averaged, there was more horizontal displacement at the primary fracture line of the plate and screw construct compared to the headless screw construct. The headless screw construct also had less vertical displacement at the primary fracture line at every load. On average those fractures fixed with the headless screw technique had less rotation than those fixed with the side plate technique. A new headless screw technique for calcaneus fracture fixation was shown to provide stability as good as, or better than, a standard side plating technique under the axial loading conditions of our model. Although further testing is needed, the stability of the proposed technique is similar to that typically provided by intramedullary fixation. This fixation technique provides a biomechanically stable construct with the potential for a minimally invasive approach and improved post-operative soft tissue healing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venencia, C; Vacca, N; Garrigo, E
Purpose: Spine SBRT treatments require high dose to PTV, located close to OAR. Treatment time should be short due to patient condition. The objective of this work is to compare HybridARC (HA) with sliding windows IMRT treatment modality Methods: A 6MV photon beam with 1000MU/min (SRS beam) produced by a NovalisTX (Varian/BrainLAB) equipped with HDMLC was used. The TPS was iPlan v4.5.3 (BrainLAB). Treatment plans comparison was done for 5 patients. Dose prescription was 27Gy in 3 fractions. HA used 1 arc plus 3 (HA), 5 (HA5) and 8 (HA8) IMRT fields. HA plans used OAR high. Between 60–40% ofmore » the prescribed dose was given by the arc. IMRT plans used 15 beams. Treatment times, MU, CI, V50% and V20% was used for plans comparisons. Results: Assuming IMRT plan as reference, the treatment time was reduced by −14.6% with HA8, −8.6% with HA5 and −23% with HA3. Increasing arc dose proportion in HA (arc MU > 2000) requires 2 or more arcs which increments treatment time. HA3 and HA5 exhibits beam hold off for fixed IMRT fields which in some cases need to be split in 2 segments. MU varied +4% with HA8, +3.7% with HA5 and −5% with HA3. CI increased +5% with HA8, +23% with HA5 and +37% with H3. V50% increased +5% with HA8, +43% with HA5 and +62% with HA3. V20% increased +13.2% with HA8, +7.6% with HA5 and +1% with HA3. OARs doses were keep within tolerances in all plans. Conclusion: HybridARC for spine SBRT with 8 fix IMRT gantry angle shows a treatment time reduction, comparable MU and similar dose conformation to dMLC IMRT. HybridARC with 5 or 3 fix IMRT fields produce undesirable beam hold off, worse dose conformation and increments the total volume with 50% of the prescribed dose.« less
The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow
NASA Astrophysics Data System (ADS)
Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.
2018-02-01
In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.
The general solution to the classical problem of finite Euler Bernoulli beam
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Amba-Rao, C. L.
1977-01-01
An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.
Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K.; Gudonis, Eugenijus; Misiunaite, Ieva
2017-01-01
This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets. PMID:28773024
Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva
2017-06-17
This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.
Laser heterodyne surface profiler
Sommargren, Gary E.
1982-01-01
A method and apparatus is disclosed for testing the deviation of the face of an object from a flat smooth surface using a beam of coherent light of two plane-polarized components, one of a frequency constantly greater than the other by a fixed amount to produce a difference frequency with a constant phase to be used as a reference. The beam also is split into its two components with the separate components directed onto spaced apart points onthe face of the object to be tested for smoothness. The object is rotated on an axis coincident with one component which is directed to the face of the object at the center which constitutes a virtual fixed point. This component also is used as a reference. The other component follows a circular track on the face of the object as the object is rotated. The two components are recombined after reflection to produce a reflected frequency difference of a phase proportional to the difference in path length which is compared with the reference phase to produce a signal proportional to the deviation of the height of the surface along the circular track with respect to the fixed point at the center.
NASA Astrophysics Data System (ADS)
Trzeciak, B.; Da Silva, C.; Ferreiro, E. G.; Hadjidakis, C.; Kikola, D.; Lansberg, J. P.; Massacrier, L.; Seixas, J.; Uras, A.; Yang, Z.
2017-09-01
We outline the case for heavy-ion-physics studies using the multi-TeV lead LHC beams in the fixed-target mode. After a brief contextual reminder, we detail the possible contributions of AFTER@LHC to heavy-ion physics with a specific emphasis on quarkonia. We then present performance simulations for a selection of observables. These show that Υ (nS), J/ψ and ψ (2S) production in heavy-ion collisions can be studied in new energy and rapidity domains with the LHCb and ALICE detectors. We also discuss the relevance to analyse the Drell-Yan pair production in asymmetric nucleus-nucleus collisions to study the factorisation of the nuclear modification of partonic densities and of further quarkonium states to restore their status of golden probes of the quark-gluon plasma formation.
Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan
2016-06-27
We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.
EPICS Controlled Collimator for Controlling Beam Sizes in HIPPO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napolitano, Arthur Soriano; Vogel, Sven C.
2017-08-03
Controlling the beam spot size and shape in a diffraction experiment determines the probed sample volume. The HIPPO - High-Pressure-Preferred Orientation– neutron time-offlight diffractometer is located at the Lujan Neutron Scattering Center in Los Alamos National Laboratories. HIPPO characterizes microstructural parameters, such as phase composition, strains, grain size, or texture, of bulk (cm-sized) samples. In the current setup, the beam spot has a 10 mm diameter. Using a collimator, consisting of two pairs of neutron absorbing boron-nitride slabs, horizontal and vertical dimensions of a rectangular beam spot can be defined. Using the HIPPO robotic sample changer for sample motion, themore » collimator would enable scanning of e.g. cylindrical samples along the cylinder axis by probing slices of such samples. The project presented here describes implementation of such a collimator, in particular the motion control software. We utilized the EPICS (Experimental Physics Interface and Control System) software interface to integrate the collimator control into the HIPPO instrument control system. Using EPICS, commands are sent to commercial stepper motors that move the beam windows.« less
I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.
Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz
2015-05-01
I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.
Barlow, Anders J; Portoles, Jose F; Sano, Naoko; Cumpson, Peter J
2016-10-01
The development of the helium ion microscope (HIM) enables the imaging of both hard, inorganic materials and soft, organic or biological materials. Advantages include outstanding topographical contrast, superior resolution down to <0.5 nm at high magnification, high depth of field, and no need for conductive coatings. The instrument relies on helium atom adsorption and ionization at a cryogenically cooled tip that is atomically sharp. Under ideal conditions this arrangement provides a beam of ions that is stable for days to weeks, with beam currents in the order of picoamperes. Over time, however, this stability is lost as gaseous contamination builds up in the source region, leading to adsorbed atoms of species other than helium, which ultimately results in beam current fluctuations. This manifests itself as horizontal stripe artifacts in HIM images. We investigate post-processing methods to remove these artifacts from HIM images, such as median filtering, Gaussian blurring, fast Fourier transforms, and principal component analysis. We arrive at a simple method for completely removing beam current fluctuation effects from HIM images while maintaining the full integrity of the information within the image.
I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source
Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz
2015-01-01
I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
NASA Astrophysics Data System (ADS)
Méot, F.; Tsoupas, N.; Brooks, S.; Trbojevic, D.
2018-07-01
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. This approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbach cell.
Optimization for minimum sensitivity to uncertain parameters
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw
1994-01-01
A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.
Apparatus for the remote detection of sounds caused by leaks
NASA Technical Reports Server (NTRS)
Shakkottai, Parthasarathy (Inventor); Alwar, Vijayaraghavan (Inventor)
1990-01-01
Two laser beams derived from a laser pass through a furnace and are superposed in a laser spot to produce interference fringes having the same pitch as that of a Ronchi grating printed on a retroreflecting screen. Minute fluctuations of the laser beams caused by sound waves from leaks result in intensity fluctuations of the laser spot when the laser fringes move past the fixed grating. A telescope and photocell arrangement detects the light variations to produce an electrical signal which is amplified and filtered to detect the sound of leaks. This non-contact laser Schlieren microphone is sensitive to sounds all along the path of the beams.
Korotkova, Olga; Avramov-Zamurovic, Svetlana; Malek-Madani, Reza; Nelson, Charles
2011-10-10
A number of field experiments measuring the fluctuating intensity of a laser beam propagating along horizontal paths in the maritime environment is performed over sub-kilometer distances at the United States Naval Academy. Both above the ground and over the water links are explored. Two different detection schemes, one photographing the beam on a white board, and the other capturing the beam directly using a ccd sensor, gave consistent results. The probability density function (pdf) of the fluctuating intensity is reconstructed with the help of two theoretical models: the Gamma-Gamma and the Gamma-Laguerre, and compared with the intensity's histograms. It is found that the on-ground experimental results are in good agreement with theoretical predictions. The results obtained above the water paths lead to appreciable discrepancies, especially in the case of the Gamma-Gamma model. These discrepancies are attributed to the presence of the various scatterers along the path of the beam, such as water droplets, aerosols and other airborne particles. Our paper's main contribution is providing a methodology for computing the pdf function of the laser beam intensity in the maritime environment using field measurements.
NASA Astrophysics Data System (ADS)
Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; Ruan, J.; Eddy, N.; Prieto, P.; Napoly, O.; Carlsten, B. E.; Bishofberger, K.
2018-06-01
We report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ˜100 kHz in the vertical plane and ˜380 kHz in the horizontal plane with up to 600 -μ m amplitudes were observed in a 3-MHz micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC /b . However, the effects were much reduced at 100 pC /b . The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.
Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E
1997-12-30
Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.
Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; ...
2018-06-04
Here, we report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ~100 kHz in the vertical plane and ~380 kHz in the horizontal plane with up to 600-μm amplitudes were observed in a 3-MHzmore » micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC/b. However, the effects were much reduced at 100 pC/b. The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.« less
NASA Astrophysics Data System (ADS)
Corato-Zanarella, Mateus; Dorrah, Ahmed H.; Zamboni-Rached, Michel; Mojahedi, Mo
2018-02-01
We report on the theory and experimental generation of a class of diffraction-attenuation-resistant beams with state of polarization (SOP) and intensity that can be controlled on demand along the propagation direction. This control is achieved by a suitable superposition of Bessel beams, whose parameters are systematically chosen based on closed-form analytic expressions provided by the frozen waves method. Using an amplitude-only spatial light modulator, we experimentally demonstrate three scenarios. In the first, the SOP of a horizontally polarized beam evolves to radial polarization and is then changed to vertical polarization, with the beam intensity held constant. In the second, we simultaneously control the SOP and the longitudinal intensity profile, which is chosen such that the beam's central ring can be switched off over predefined space regions, thus generating multiple foci with different SOPs and at different intensity levels along the propagation. Finally, the ability to control the SOP while overcoming attenuation inside lossy fluids is shown experimentally. We envision our proposed method to be of great interest for many applications, such as optical tweezers, atom guiding, material processing, microscopy, and optical communications.
NASA Astrophysics Data System (ADS)
Rajkumar; Dubey, Rajiv; Debnath, Sanjit K.; Chhachhia, D. P.
2018-05-01
Accuracy in laser beam collimation is very important in systems used for precision measurements. The present work reports a technique for collimation testing of laser beams using two proximately placed holographic optical elements (HOEs). The required HOEs are designed and fabricated such that upon illumination with the test beam, they release two laterally sheared wavefronts, at desired angles from the directly transmitted beam, that superimpose each other to generate straight interference fringes. Deviation from the collimation of the test beam results in orientation of these otherwise horizontal fringes. The novelty of this setup comes from the fact that HOEs are lightweight, as well as easy to fabricate as compared to conventional wedge plates used for collimation testing, and generate high contrast fringes compared to other interferometry, holography, Talbot and Moiré based techniques in a compact manner. The proposed technique is experimentally validated by measuring the orientation of fringes by an angle of 16.4° when a collimating lens of focal length 200 mm is defocused by 600 μm. The accuracy in the setting of this collimation position is obtained to be 10 μm.
NASA Astrophysics Data System (ADS)
Kagoshima, Yasushi; Miyagawa, Takamasa; Kagawa, Saki; Takeda, Shingo; Takano, Hidekazu
2017-08-01
The intensity distribution in phase space of an X-ray synchrotron radiation beamline was measured using a pinhole camera method, in order to verify astigmatism compensation by a Fresnel zone plate focusing optical system. The beamline is equipped with a silicon double crystal monochromator. The beam size and divergence at an arbitrary distance were estimated. It was found that the virtual source point was largely different between the vertical and horizontal directions, which is probably caused by thermal distortion of the monochromator crystal. The result is consistent with our astigmatism compensation by inclining a Fresnel zone plate.
Anchieta, Rodolfo Brunieira; Machado, Lucas Silveira; Hirata, Ronaldo; Bonfante, Estevam Augusto; Coelho, Paulo G
2016-08-01
The aim of this study was to evaluate the probability of survival of cemented and screwed three-unit implant-supported fixed dental prostheses (ISFDP) using different implant-abutment horizontal matching configurations (regular vs switching platforms). One hundred and sixty-eight implants with internal hexagon connection (4 mm diameter, 10 mm length, Emfils; Colosso Evolution System, Itú, SP, Brazil) were selected for this study according to the horizontal implant-abutment matching configuration (regular or switching) and retention method and divided in four groups (n = 21 per group) as follows: 1) regular platform cemented (IRC); 2) or screw-retained (IRS); 3) switched-platform cemented (ISC); or 4) screw-retained (ISS). Regular and platform-switched abutments (Colosso evolution, 4 mm and 3.3 mm, respectively) were torqued, and 84 three-unit metal bridges were fabricated (first molar pontic). Implants were embedded in polymethyl-methacrylate resin and subjected to step-stress accelerated life testing in water. Weibull distribution was used to determine the probability of survival for a mission of 100,000 cycles at 400 N (90% two-sided confidence intervals). Polarized light and scanning electron microscopes were used for fractographic analysis. The β values of 0.50, 1.19, 1.25, and 1.95 for groups IRC, IRS, ISC, and ISS respectively, indicated that fatigue accelerated the failure for all groups, except IRC. The cement-retained groups presented significantly higher probability of survival (IRC - 98%, ISC - 59%) than screw-retained groups (IRS - 23% and ISS - 0%). Screw-retained FDPs exclusively failed by abutment-screw fractures, whereas cement-retained presented implant/screw/abutment fractures. The probability of survival of cement-retained ISFDP was higher than screw-retained, irrespective of implant-abutment horizontal configuration. © 2015 Wiley Periodicals, Inc.
Matzen, Louise Hauge; Schropp, Lars; Spin-Neto, Rubens; Wenzel, Ann
2017-11-01
The aim of the study was to identify risk factors for pathoses related to mandibular third molars observed in cone beam computed tomography. Cone beam computed tomography volumes of 410 mandibular third molars were assessed by 3 observers, according to the angulation and position of the third molar in relation to the second molar. In addition, pathoses (marginal bone loss, resorption of the second molar, increased follicular space and lingual bone perforation) were assessed. Logistic regression analyses were used to test whether the angulation and position of the third molar were risk factors for pathoses. On average, 41% of second molars had resorption; mesioangulated (odds ratio [OR] 11-107; P < .001) and horizontally positioned (OR 13-120; P < .001) third molars located cervically at the second molar (OR 2-3; P < .027) significantly increased the risk. On average, 49% of second molars had marginal bone loss; mesioangulated (OR 16-85; P < .001) and horizontally positioned (OR 61-573; P < .001) third molars increased the risk. For the third molar, an increased follicular space was seen in 25% of cases; distal (OR 5-9; P < .001) and vertical positions (OR 5; P < .002) increased the risk. Lingual bone perforation was not related to a specific angulation. Specific angulations of the mandibular third molar are risk factors for marginal bone loss and resorption of the second molar. Copyright © 2017 Elsevier Inc. All rights reserved.
Performance characterization of a single bi-axial scanning MEMS mirror-based head-worn display
NASA Astrophysics Data System (ADS)
Liang, Minhua
2002-06-01
The NomadTM Personal Display System is a head-worn display (HWD) with a see-through, high-resolution, high-luminance display capability. It is based on a single bi-axial scanning MEMS mirror. In the Nomad HWD system, a red laser diode emits a beam of light that is scanned bi-axially by a single MEMS mirror. A diffractive beam diffuser and an ocular expand the beam to form a 12mm exit pupil for comfortable viewing. The Nomad display has an SVGA (800x600) resolution, 60Hz frame rate, 23-degree horizontal field of view (FOV) and 3:4 vertical to horizontal aspect ratio, a luminance of 800~900 foot-Lamberts, see-through capability, 30mm eye-relief distance, and 1-foot to infinity focusing adjustment. We have characterized the performance parameters, such as field of view, distortion, contrast ratio (4x4 black and white checker board), modulation depth, exit pupil size, eye relief distance, maximum luminance, dynamic range ratio (full-on-to-full-off ratio), dimming ratio, and luminance uniformity at image plane. The Class-1 eye-safety requirements per IEC 60825-1 Amendment 2 (CDRH Laser Notice No. 50) are analyzed and verified by experiments. The paper describes all of the testing methods and set-ups as well as the representative test results. The test results demonstrate that the Nomad display is an eye-safe display product with good image quality and good user ergonomics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, T; Dept. Medical Physics and Bioengineering, University College London; Giantsoudi, D
2015-06-15
Purpose: If a constant RBE of 1.1 is assumed, range-verified anterior oblique (AO) proton beams appear to offer the potential to reduce the mean dose delivered to the rectum, anterior rectal wall and penile bulb by a factor of ∼2 relative to standard bilateral (SB) proton beam arrangements. Additionally, AO proton beams targeted at the prostate avoid the femoral heads and so form a particularly appealing option for patients with hip prostheses. This study investigates LET enhancement at the distal edge of AO SOBPs, applying RBE models to consider the extent to which AO beams lead to hotspots in rectummore » biological dose. Methods: Eight patients were selected, all treated with passively scattered, SB proton beams to 79.2Gy(E) within the prostate and 50.4Gy(E) within the proximal 5–15mm of seminal vesicles. Additional plans utilizing AO beams (±35°) were created in XiO (Elekta) assuming a fixed RBE of 1.1. Voxelised dose and LET distributions were calculated using Monte Carlo (TOPAS). Three different LET/RBE models were applied (Carabe 2012, Wedenberg 2013, McNamara 2015). Results: Across the eight patients, the mean LET within the rectal wall was found to be 3.5(3.2–4.0)keV/µm for the SB plans compared to 10.5(8.6–13.0)keV/µm for the AO plans. Application of the median LET/RBE model to the AO plans, rather than a fixed RBE of 1.1, resulted in an increase of 13.6(11.9–14.7)GyRBE in maximum rectal wall (1cc) RBEw dose, leading to values of 90.4(90.0–91.3)GyRBE. Conclusion: relative to SB proton beams, AO proton beams exhibit substantially increased mean LET values within the rectal wall. For the passively scattered AO beams, modeling indicates that this enhancement is likely to translate into unacceptable RBEw dose hotspots. Whilst no RBE- LET model has yet been fully validated in-vivo, caution must be applied if AO beams are to be considered for prostate patients.« less
Progress of Multi-Beam Long Trace-Profiler Development
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Kilaru, Kiranmayee; Merthe, Daniel J.; Kester, Thomas; McKinney, Wayne R.; Takacs, Peter Z.; Yashchuk, Valeriy V.
2012-01-01
The multi-beam long trace profiler (LTP) under development at NASA s Marshall Space Flight Center[1] is designed to increase the efficiency of metrology of replicated X-ray optics. The traditional LTP operates on a single laser beam that scans along the test surface to detect the slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. As metrology constitutes a significant fraction of the time spent in optics production, an increase in the efficiency of metrology helps in decreasing the cost of fabrication of the x-ray optics and in improving their quality. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. A collaborative feasibility study has been made and specifications were fixed for a multi-beam long trace profiler. The progress made in the development of this metrology system is presented.
Guided bone regeneration using individualized ceramic sheets.
Malmström, J; Anderud, J; Abrahamsson, P; Wälivaara, D-Å; Isaksson, S G; Adolfsson, E
2016-10-01
Guided bone regeneration (GBR) describes the use of membranes to regenerate bony defects. A membrane for GBR needs to be biocompatible, cell-occlusive, non-toxic, and mouldable, and possess space-maintaining properties including stability. The purpose of this pilot study was to describe a new method of GBR using individualized ceramic sheets to perfect bone regeneration prior to implant placement; bone regeneration was assessed using traditional histology and three-dimensional (3D) volumetric changes in the bone and soft tissue. Three patients were included. After full-thickness flap reflection, the individualized ceramic sheets were fixed. The sites were left to heal for 7 months. All patients were evaluated preoperatively and at 7 months postoperative using cone beam computed tomography and 3D optical equipment. Samples of the regenerated bone and soft tissue were collected and analyzed. The bone regenerated in the entire interior volume of all sheets. Bone biopsies revealed newly formed trabecular bone with a lamellar structure. Soft tissue biopsies showed connective tissue with no signs of an inflammatory response. This was considered to be newly formed periosteum. Thus ceramic individualized sheets can be used to regenerate large volumes of bone in both vertical and horizontal directions independent of the bone defect and with good biological acceptance of the material. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Evaluation of Terrestrial Laser Scanner Accuracy in the Control of Hydrotechnical Structures
NASA Astrophysics Data System (ADS)
Muszyński, Zbigniew; Rybak, Jarosław
2017-12-01
In many cases of monitoring or load testing of hydrotechnical structures, the measurement results obtained from dial gauges may be affected by random or systematic errors resulting from the instability of the reference beam. For example, the measurement of wall displacement or pile settlement may be increased (or decreased) by displacements of the reference beam due to ground movement. The application of surveying methods such as high-precision levelling, motorized tacheometry or even terrestrial laser scanning makes it possible to provide an independent reference measurement free from systematic errors. It is very important in the case of walls and piles embedded in the rivers, where the construction of reference structure is even more difficult than usually. Construction of an independent reference system is also complicated when horizontal testing of sheet piles or diaphragm walls are considered. In this case, any underestimation of the horizontal displacement of an anchored or strutted construction leads to an understated value of the strut's load. These measurements are even more important during modernization works and repairs of the hydrotechnical structures. The purpose of this paper is to discuss the possibilities of using modern measurement methods for monitoring of horizontal displacements of an excavation wall. The methods under scrutiny (motorized tacheometry and terrestrial laser scanning) have been compared to classical techniques and described in the context of their practical use on the example hydrotechnical structure. This structure was a temporary cofferdam made from sheet pile wall. The research continuously conducted at Wroclaw University of Science and Technology made it possible to collect and summarize measurement results and practical experience. This paper identifies advantages and disadvantages of both analysed methods and presents a comparison of obtained measurement results of horizontal displacements. In conclusion, some recommendations have been formulated, which are relevant from the point of view of engineering practice.