Sample records for fixed incident angle

  1. Downforce variation dependence of angle of incidence modification for the rear wing of high speed vehicles

    NASA Astrophysics Data System (ADS)

    Tarulescu, R.; Tarulescu, S.; Leahu, C.

    2017-10-01

    The conventional downforce devices (with fixed geometry) of high speed vehicles have parameters such as area, angle of incidence and head resistance coefficients, all with constant values. The downforce is proportional with the square of movement speed and the power consumed for the neutralization of aerodynamic road resistance is proportional with the cube of speed. The authors carried out an analytical study of downforce, adjustable/monitored by optimum incidence (modification of incidence angle of rear wing for performance improvement).

  2. Sagittal focusing Laue monochromator

    DOEpatents

    Zhong,; Zhong, Hanson [Stony Brook, NY; Jonathan, Hastings [Wading River, NY; Jerome, Kao [Stanford, CA; Chi-Chang, Lenhard [Setauket, NY; Anthony, Siddons [Medford, NY; David Peter, Zhong [Cutchogue, NY; Hui, [Coram, NY

    2009-03-24

    An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

  3. Understanding light scattering by a coated sphere part 2: time domain analysis.

    PubMed

    Laven, Philip; Lock, James A

    2012-08-01

    Numerical computations were made of scattering of an incident electromagnetic pulse by a coated sphere that is large compared to the dominant wavelength of the incident light. The scattered intensity was plotted as a function of the scattering angle and delay time of the scattered pulse. For fixed core and coating radii, the Debye series terms that most strongly contribute to the scattered intensity in different regions of scattering angle-delay time space were identified and analyzed. For a fixed overall radius and an increasing core radius, the first-order rainbow was observed to evolve into three separate components. The original component faded away, while the two new components eventually merged together. The behavior of surface waves generated by grazing incidence at the core/coating and coating/exterior interfaces was also examined and discussed.

  4. A method of incident angle estimation for high resolution spectral recovery in filter-array-based spectrometers

    NASA Astrophysics Data System (ADS)

    Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No

    2017-02-01

    In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.

  5. Illumination angle and layer thickness influence on the photo current generation in organic solar cells: A combined simulative and experimental study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mescher, Jan, E-mail: jan.mescher@kit.edu; Mertens, Adrian; Egel, Amos

    2015-07-15

    In most future organic photovoltaic applications, such as fixed roof installations, facade or clothing integration, the solar cells will face the sun under varying angles. By a combined simulative and experimental study, we investigate the mutual interdependencies of the angle of light incidence, the absorber layer thickness and the photon harvesting efficiency within a typical organic photovoltaic device. For thin absorber layers, we find a steady decrease of the effective photocurrent towards increasing angles. For 90-140 nm thick absorber layers, however, we observe an effective photocurrent enhancement, exhibiting a maximum yield at angles of incidence of about 50°. Both effectsmore » mainly originate from the angle-dependent spatial broadening of the optical interference pattern inside the solar cell and a shift of the absorption maximum away from the metal electrode.« less

  6. Illumination angle and layer thickness influence on the photo current generation in organic solar cells: A combined simulative and experimental study

    NASA Astrophysics Data System (ADS)

    Mescher, Jan; Mertens, Adrian; Egel, Amos; Kettlitz, Siegfried W.; Lemmer, Uli; Colsmann, Alexander

    2015-07-01

    In most future organic photovoltaic applications, such as fixed roof installations, facade or clothing integration, the solar cells will face the sun under varying angles. By a combined simulative and experimental study, we investigate the mutual interdependencies of the angle of light incidence, the absorber layer thickness and the photon harvesting efficiency within a typical organic photovoltaic device. For thin absorber layers, we find a steady decrease of the effective photocurrent towards increasing angles. For 90-140 nm thick absorber layers, however, we observe an effective photocurrent enhancement, exhibiting a maximum yield at angles of incidence of about 50°. Both effects mainly originate from the angle-dependent spatial broadening of the optical interference pattern inside the solar cell and a shift of the absorption maximum away from the metal electrode.

  7. Space shuttle: Stability and control effectiveness of the MDAC parametric delta canard booster at Mach 0.38. Volume 1: Canard parametric variations

    NASA Technical Reports Server (NTRS)

    Bradley, D.; Buchholz, R. E.

    1971-01-01

    A 0.015 scale model of a modified version of the MDAC space shuttle booster was tested in the Naval Ship Research and Development Center 7 x 10 foot transonic wind tunnel, to obtain force, static stability, and control effectiveness data. Data were obtained for a cruise Mach Number of 0.38, altitude of 10,000 ft, and Reynolds Number per foot of approximately 2 x one million. The model was tested through an angle of attack range of -4 deg to 15 deg at zero degree angle of sideslip, and at an angle of sideslip range of -6 deg to 6 deg at fixed angles of attack of 0 deg, 6 deg, and 15 deg. Other test variables were elevon deflections, canard deflections, aileron deflections, rudder deflections, wing dihedral angle, canard incidence angle, wing incidence angle, canard position, wing position, wing and canard control flap size and dorsal fin size.

  8. Analytical fitting model for rough-surface BRDF.

    PubMed

    Renhorn, Ingmar G E; Boreman, Glenn D

    2008-08-18

    A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.

  9. High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage

    DTIC Science & Technology

    2012-08-28

    diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with

  10. A Simple Accurate Alternative to the Minimum-Deviation Method for the Determination of the Refractive Index of a Prism.

    ERIC Educational Resources Information Center

    Waldenstrom, S.; Naqvi, K. Razi

    1978-01-01

    Proposes an alternative to the classical minimum-deviation method for determining the refractive index of a prism. This new "fixed angle of incidence method" may find applications in research. (Author/GA)

  11. A Digital Solar Aspect Sensor

    NASA Technical Reports Server (NTRS)

    Albus, James S.

    1961-01-01

    The solar aspect sensor described herein performs the analog-to-digital conversion of data optically. To accomplish this, it uses a binary "Gray code" light mask to produce a digital indication, in vehicle-fixed coordinates, of the elevation and azimuth angles of incident light from the sun. This digital solar aspect sensor system, in Explorer X, provided measurements of both elevation and azimuth angles to +/- 2 degrees at a distance of over 140,000 statute miles.

  12. Dependence of anti-Stokes/Stokes intensity ratios on substrate optical properties for Brillouin light scattering from ultrathin iron films

    NASA Astrophysics Data System (ADS)

    Cochran, J. F.; From, M.; Heinrich, B.

    1998-06-01

    Brillouin light scattering experiments have been used to investigate the intensity of 5145 Å laser light backscattered from spin waves in 20 monolayer thick Fe(001) films. The experiments have shown that the ratio of frequency upshifted light intensity to frequency downshifted light intensity depends upon the material of the substrate used to support the iron films. For a fixed magnetic field and for a fixed angle of incidence of the laser light this intensity ratio is much larger for an iron film deposited on a sulphur passivated GaAs(001) substrate than for an iron film deposited on a Ag(001) substrate. The data have been compared with a calculation that takes into account multiple scattering of the optical waves in the iron film and in a protective gold overlayer. The observations are in qualitative agreement with the theory, except for angles of incidence greater than 60°.

  13. Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, YouLiang; Li, ZhiFeng, E-mail: zfli@mail.sitp.ac.cn; Chen, PingPing

    We report the dependence of the near-field optical modes in metal-insulator-metal quantum well infrared photodetector (MIM-QWIP) on the incident angles. Three optical modes are observed and attributed to the 2nd- and the 3rd-order surface plasmon polariton (SPP) modes and the localized surface polariton (LSP) mode. In addition to the observation of a responsivity enhancement of 14 times by the LSP mode, the varying pattern of the three modes against the incident angle are revealed, in which the LSP mode is fixed while the 2nd SPP mode splits into two branches and the 3rd SPP mode red-shifts. The detailed mechanisms aremore » analyzed and numerically simulated. The results fit the experiments very well, demonstrating the wavevector coupling effect between the incident light and the metal gratings on the SPP modes. Our work will pave the way to fully understanding the influence of incident angles on a detector’s response for applying the MIM-QWIP to focal plane arrays.« less

  14. Kinematics of reflections in subsurface offset and angle-domain image gathers

    NASA Astrophysics Data System (ADS)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry in the inversion scheme for a robust and successful convergence at the optimal velocity model.

  15. Bevalac Ion Beam Characterizations for Single Event Phenomena

    DTIC Science & Technology

    1992-07-16

    should be a prerequisite to any SEP study undertaken at a high energy accelerator site. 13 REFERENCES 1. T. L. Criswell, P. R. Measel and K. L. Wahlin...Wert, P. R. Measel , and W. E. Wilson, "Measurement of SEU Thresholds and Cross Sections at Fixed Incident Angles," IEEE Trans. Nucl. Sci., NS-34. 1316

  16. Results of an experimental investigation to determine separation characteristics for the Orbiter/747 using a 0.0125-scale model (48-0 AX1318I-1 747) in the Ames Research center 14-foot wind tunnel (CA23B), volume 1

    NASA Technical Reports Server (NTRS)

    Esparza, V.

    1976-01-01

    Separation data were obtained at a Mach number of 0.6 and three incidence angles of 4 deg, 6 deg, and 9 deg. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal, lateral and normal separation increments were obtained for fixed 747 angles of attack of 0 deg, 2 deg, and 4 deg while varying orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 deg and 10 deg and horizontal stabilizer deflections of -1 deg and +5 deg. Photographs of tested configurations are shown.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez-González, R.; Martínez-Orozco, J. C.; Madrigal-Melchor, J.

    In this work we use the standard T-matrix method to study the tunneling of Dirac electrons through graphene multilayers. A graphene sheet is deposited on top of slabs of Silicon-Oxide (SiO{sub 2}) and Silicon-Carbide (SiC) substrates, in which we applied the Cantor’s series. We calculate the transmittance as a function of energy for different incident angles and different generations of the Cantor’s series. Comparing the transmittance, we found three types of self-similarity: (a) local - into generations, (b) between incident angles and (c) between generations. We also compute the angular distribution of the transmittance for fixed energies finding a self-similarmore » pattern between generations. To our knowledge is the first time that four different self-similar patterns are presented in Cantor-based multilayers.« less

  18. The dynamics of energy and charge transfer in low and hyperthermal energy ion-solid interactions

    NASA Astrophysics Data System (ADS)

    Ray, Matthew Preston

    The energy and charge transfer dynamics for low and hyperthermal energy (10 eV to 2 keV) alkali and noble gas ions impacting noble metals as a function of incident energy, species and scattering geometry has been studied. The experiments were performed in an ultra-high vacuum scattering chamber attached to a low and hyperthermal energy beamline. The energy transfer was measured for K+ scattered from a Ag(001) surface along the [110] crystalline direction at a fixed laboratory angle of 90°. It was found that as the incident energy is reduced from 100 to 10 eV, the normalized scattered energy increased. Previous measurements have shown a decrease in the normalized energy as the incident ion energy is reduced due to an attractive image force. Trajectory analysis of the data using a classical scattering simulation revealed that instead of undergoing sequential binary collisions as in previous studies, the ion scatters from two surface atoms simultaneously leading to an increased normalized energy. Additionally, charge transfer measurements have been performed for Na + scattering from Ag(001) along the [110] crystalline direction at a fixed laboratory angle of 70°. It was found that over the range of energies used (10 eV to 2 keV), the neutralization probability of the scattered ions varied from ˜30% to ˜70% depending on the incident velocity, consistent with resonant charge transfer. A fully quantum mechanical model that treats electrons independently accurately reproduces the observed data. Measurements of electron-hole pair excitations were used to explore the pathways which a solid uses to dissipate the energy imparted by the incident ion beam. Ultrathin film (10 nm) metal-oxide-semiconductor (Au/SiO2/n-Si) devices were used to detect the electron-hole pairs for cases when the ion deposited all of its translational energy into the solid. The incident ions were incident at an angle normal to the surface of the device to maximize energy deposition and consequently electron-hole pair production. The rectifying metal-oxide-semiconductor device separates the electrons from the holes, allowing a current associated with electron-hole pair production to be measured. In these experiments a number of ion species (He+, Li+ , Ar+, K+) were made incident on multiple devices and the incident energy ranged from 100 eV to 2 keV. It was found that electron-hole pair production increased with incident ion velocity consistent with a kinetic electron excitation model where the electrons in the metal are partially confined to the surface.

  19. Investigation of Single Events Upsets in Silicon and GaAs Structures Using Reaction Calculations

    DTIC Science & Technology

    1994-09-01

    T.L. Criswell, D.L. Oberg, J.L. Wert, P.R. Measel , and W.E. Wilson, "Measurement of SEU Thresholds and Cross Sec- tions at Fixed Incidence Angles...WOOD ATTN: E KUBO ATTN: 0 MULKEY IBM CORP BOEING TECHNICAL & MANAGEMENT SVCS, INC ATTN: DEPT L75 ATTN: E NORMAND IBM CORP ATTN: P R MEASEL ATTN: A

  20. Scattering-Type Surface-Plasmon-Resonance Biosensors

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  1. Dynamic refractometer

    NASA Technical Reports Server (NTRS)

    Curley, Michael J. (Inventor); Sarkisov, Sergey S. (Inventor)

    2008-01-01

    A refractometer computer controls the rotation of a rotary plate upon which are mounted a prism optically coupled via an optical window to a spectroscopic cell holding a resin exhibiting a dynamic refractive index during photocuring. The computer system positions the prism and spectroscopic cell relative to a visible light laser which illuminates the prism-resin interface at selected incidence angles. A photodetector mounted on the plate generates a signal to the computer proportional to intensity of an internally reflected light beam. A curing light is selectively transmitted through the prism and into the photocurable resin. The refractometer determines the intensity of the internally reflected beam a selected incidence angles and determines the effective refractive index curve of the resin at an uncured state and, optionally, at a completely cured state. Next, an amount of uncured resin and selected optical components to be joined by the resin is placed in the spectroscopic cell and irradiated with the UV light. The refractometer is fixed at a selected incidence angle and measures the intensity of an internally reflected light beam of light throughout the cure cycle. The refractometer determines the resin's refractive index of the polymeric mixture by means of extrapolation of a horizontal shift in the effective refractive index curve of the resin from an uncured state to a selected point in the cure cycle.

  2. Deflection and trapping of a counter-rotating vortex pair by a flat plate

    NASA Astrophysics Data System (ADS)

    Nitsche, Monika

    2017-12-01

    The interaction of a counter-rotating vortex pair (dipole) with a flat plate in its path is studied numerically. The vortices are initially separated by a distance D (dipole size) and placed far upstream of a plate of length L . The plate is centered on the dipole path and inclined relative to it at an incident angle βi. At first, the plate is held fixed in place. The vortices approach the plate, travel around it, and then leave as a dipole with unchanged velocity but generally a different travel direction, measured by a transmitted angle βt. For certain plate angles the transmitted angle is highly sensitive to changes in the incident angle. The sensitivity increases as the dipole size decreases relative to the plate length. In fact, for sufficiently small values of D /L , singularities appear: near critical values of βi, the dipole trajectory undergoes a topological discontinuity under changes of βi or D /L . The discontinuity is characterized by a jump in the winding number of one vortex around the plate, and in the time that the vortices take to leave the plate. The jumps occur repeatedly in a self-similar, fractal fashion, within a region near the critical values of βi, showing the existence of incident angles that trap the vortices, which never leave the plate. The number of these trapping regions increases as the parameter D /L decreases, and the dependence of the motion on βi becomes increasingly complex. The simulations thus show that even in this apparently simple scenario, the inviscid dynamics of a two-point-vortex system interacting with a stationary wall is surprisingly rich. The results are then applied to separate an incoming stream of dipoles by an oscillating plate.

  3. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    NASA Astrophysics Data System (ADS)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  4. Results of an experimental investigation to determine separation characteristics for the Orbiter/747 using a 0.0125-scale model (48-0 AX1318I-1 747) in the Ames Research Center 14-foot wind tunnel (CA23B)

    NASA Technical Reports Server (NTRS)

    Esparza, V.

    1976-01-01

    Aerodynamic separation data obtained from a wind tunnel test of an 0.0125-scale SSV Orbiter model of a VC70-000002 Configuration and a 0.0125-scale 747 model was presented. Separation data was obtained at a Mach number of 0.6 and three incidence angles of 4, 6, and 8 degrees. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal, lateral and normal separation increments were obtained for fixed 747 angles of attack of 0, 2, and 4 degrees while varying the orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 and 10 degrees and horizontal stabilizer deflections of -1 and +5 degrees.

  5. Formation and evolution of ripples on ion-irradiated semiconductor surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, M.; Wu, J. H.; Ye, W.

    We have examined the formation and evolution of ripples on focused-ion-beam (FIB) irradiated compound semiconductor surfaces. Using initially normal-incidence Ga{sup +} FIB irradiation of InSb, we tuned the local beam incidence angle (θ{sub eff}) by varying the pitch and/or dwell time. For single-pass FIB irradiation, increasing θ{sub eff} induces morphological evolution from pits and islands to ripples to featureless surfaces. Multiple-pass FIB irradiation of the rippled surfaces at a fixed θ{sub eff} leads to island formation on the ripple crests, followed by nanorod (NR) growth. This ripple-NR transition provides an alternative approach for achieving dense arrays of NRs.

  6. A calibrated iterative reconstruction for quantitative photoacoustic tomography using multi-angle light-sheet illuminations

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Lu, Tong; Zhang, Songhe; Song, Shaoze; Wang, Bingyuan; Li, Jiao; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Quantitative photoacoustic tomography (q-PAT) is a nontrivial technique can be used to reconstruct the absorption image with a high spatial resolution. Several attempts have been investigated by setting point sources or fixed-angle illuminations. However, in practical applications, these schemes normally suffer from low signal-to-noise ratio (SNR) or poor quantification especially for large-size domains, due to the limitation of the ANSI-safety incidence and incompleteness in the data acquisition. We herein present a q-PAT implementation that uses multi-angle light-sheet illuminations and a calibrated iterative multi-angle reconstruction. The approach can acquire more complete information on the intrinsic absorption and SNR-boosted photoacoustic signals at selected planes from the multi-angle wide-field excitations of light-sheet. Therefore, the sliced absorption maps over whole body can be recovered in a measurementflexible, noise-robust and computation-economic way. The proposed approach is validated by the phantom experiment, exhibiting promising performances in image fidelity and quantitative accuracy.

  7. Numerical simulation of the supersonic boundary layer interaction with arbitrary oriented acoustic waves

    NASA Astrophysics Data System (ADS)

    Semenov, A. N.; Gaponov, S. A.

    2017-10-01

    Based the direct numerical simulation in the paper the supersonic flow around of the infinitely thin plate, which was perturbed by the acoustic wave, was investigated. Calculations carried out in the case of small perturbations at the Mach number M=2 and Reynold's numbers Re<600. It is established that the velocity perturbation amplitude within the boundary layer is greater than the amplitude of the external acoustic wave in several times, the maximum amplitude growth is reached 10. At the small sliding and incidence angles the velocity perturbations amplitude increased monotonously with Reynold's numbers. At rather great values of these angles there are maxima in dependences of the velocity perturbations amplitude on the Reynold's number. The oscillations exaltation in the boundary layer by the sound wave more efficiently if the plate is irradiated from above. At the fixed Reynolds's number and frequency there are critical values of the sliding and incidence angles (χ, φ) at which the disturbances excited by a sound wave are maxima. At M=2 it takes place at χ≈ φ ≈30°. The excitation efficiency of perturbations in the boundary layer increases with the Mach number, and it decreases with a frequency.

  8. Light coupling into the Whispering Gallery Modes of a fiber array thin film solar cell for fixed partial Sun tracking

    PubMed Central

    Mariano, Marina; Rodríguez, Francisco J.; Romero-Gomez, Pablo; Kozyreff, Gregory; Martorell, Jordi

    2014-01-01

    We propose the use of whispering gallery mode coupling in a novel configuration based on implementing a thin film cell on the backside of an array of parallel fibers. We performed numerical calculations using the parameters of a thin film organic cell which demonstrate that light coupling becomes more effective as the angle for the incident light relative to the fiber array normal increases up to an optimal angle close to 55 deg. At this angle the power conversion efficiency of the fiber array solar cell we propose becomes 30% times larger than the one from an equivalent planar cell configuration. We demonstrate that the micro fiber array solar cell we propose may perform an effective partial tracking of the sun movement for over 100 degrees without any mechanical help. In addition, in the event that such fiber array cell would be installed with the adequate orientation on a vertical façade, an optimal photon-to-charge conversion would be reached for sunlight incident at 55 deg with respect to the horizon line, very close to the yearly average position for the sun at Latitude of 40 deg.

  9. Slot angle detecting method for fiber fixed chip

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaquan; Wang, Jiliang; Zhou, Chaochao

    2018-04-01

    The slot angle of fiber fixed chip has a significant impact on performance of photoelectric devices. In order to solve the actual engineering problem, this paper put forward a detecting method based on imaging processing. Because the images have very low contrast that is hardly segmented, so this paper proposes imaging segment methods based on edge character. Then get fixed chip edge line slope k2 and calculate the fiber fixed slot line slope k1, which can be used calculating the slot angle. Lastly, test the repeatability and accuracy of system, which show that this method has very fast operation speed and good robustness. Clearly, it is also satisfied to the actual demand of fiber fixed chip slot angle detection.

  10. Influence of laser beam incidence angle on laser lap welding quality of galvanized steels

    NASA Astrophysics Data System (ADS)

    Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan

    2017-11-01

    Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.

  11. [Influence of surface roughness on degree of polarization of biotite plagioclase gneiss varying with viewing angle].

    PubMed

    Xiang, Yun; Yan, Lei; Zhao, Yun-sheng; Gou, Zhi-yang; Chen, Wei

    2011-12-01

    Polarized reflectance is influenced by such factors as its physical and chemical properties, the viewing geometry composed of light incident zenith, viewing zenith and viewing azimuth relative to light incidence, surface roughness and texture, surface density, detection wavelengths, polarization phase angle and so on. In the present paper, the influence of surface roughness on the degree of polarization (DOP) of biotite plagioclase gneiss varying with viewing angle was inquired and analyzed quantitatively. The polarized spectra were measured by ASD FS3 spectrometer on the goniometer located in Northeast Normal University. When the incident zenith angle was fixed at 50 degrees, it was showed that on the rock surfaces with different roughness, in the specular reflection direction, the DOP spectrum within 350-2500 nm increased to the highest value first, and then began to decline varying with viewing zenith angle from 0 degree to 80 degrees. The characterized band (520 +/- 10) nm was picked out for further analysis. The correlation analysis between the peak DOP value of zenith and surface roughness showed that they are in a power function relationship, with the regression equation: y = 0.604x(-0.297), R2 = 0.985 4. The correlation model of the angle where the peak is in and the surface roughness is y = 3.4194x + 51.584, y < 90 degrees , R2 = 0.8177. With the detecting azimuth farther away from 180 degrees azimuth where the maximum DOP exists, the DOP lowers gradually and tends to 0. In the detection azimuth 180 dgrees , the correlation analysis between the peak values of DOP on the (520 =/- 10) nm band for five rocks and their surface roughness indicates a power function, with the regression equation being y = 0.5822x(-0.333), R2 = 0.9843. F tests of the above regression models indicate that the peak value and its corresponding viewing angle correlate much with surface roughness. The study provides a theoretical base for polarization remote sensing, and impels the rock and city architecture discrimination and minerals mapping.

  12. Surface Plasmon Polariton Resonance of Gold, Silver, and Copper Studied in the Kretschmann Geometry: Dependence on Wavelength, Angle of Incidence, and Film Thickness

    NASA Astrophysics Data System (ADS)

    Takagi, Kentaro; Nair, Selvakumar V.; Watanabe, Ryosuke; Seto, Keisuke; Kobayashi, Takayoshi; Tokunaga, Eiji

    2017-12-01

    Surface plasmon polariton (SPP) resonance spectra for noble metals (Au, Ag, and Cu) were comprehensively studied in the Kretschmann attenuated total reflection (ATR) geometry, in the wavelength (λ) range from 300 to 1000 nm with the angle of incidence (θ) ranging from 45 to 60° and the film thickness (d) ranging from 41 to 76 nm. The experimental plasmon resonance spectra were reproduced by a calculation that included the broadening effects as follows: (1) the imaginary part of the bulk dielectric constant, (2) the thickness-dependent radiative coupling of the SPP at the metal-air interface to the prism, (3) the lack of conservation of the wavevector parallel to the interface kx(k||) caused by the surface roughness, (4) scanning λ at a fixed θ (changing both energy and kx at the same time) over the SPP dispersion relation. For Au and Ag, the experimental results were in good agreement with the calculated results using the bulk dielectric constants, showing no film thickness dependence of the plasmon resonance energy. A method to extract the true width of the plasmon resonance from raw ATR spectra is proposed and the results are rigorously compared with those expected from the bulk dielectric function given in the literature. For Au and Ag, the width increases with energy, in agreement with that expected from the relaxation of bulk free electrons including the electron-electron interaction, but there is clear evidence of extra broadening, which is more significant for thinner films, possibly due to relaxation pathways intrinsic to plasmons near the interface. For Cu, the visibility of the plasmon resonance critically depends on the evaporation conditions, and low pressures and fast deposition rates are required. Otherwise, scattering from the surface roughness causes considerable broadening of the plasmon resonance, resulting in an apparently fixed resonance energy without clear incident angle dependence. For Cu, the observed plasmon dispersion agrees well with that expected from the bulk dielectric function even with nominal oxidation of the surface, but the widths at long wavelengths are much larger than those theoretically expected.

  13. Fixed-angle plate osteosynthesis of the patella - an alternative to tension wiring?

    PubMed

    Wild, M; Eichler, C; Thelen, S; Jungbluth, P; Windolf, J; Hakimi, M

    2010-05-01

    The goal of this study is carry out a biomechanical evaluation of the stability of a bilateral, polyaxial, fixed-angle 2.7 mm plate system specifically designed for use on the patella. The results of this approach are then compared to the two currently most commonly used surgical techniques for patella fractures: modified anterior tension wiring with K-wires and cannulated lag screws with anterior tension wiring. A transient biomechanical analysis determining material failure points of all osteosyntheses were conducted on 21 identical left polyurethane foam patellae, which were osteotomized horizontally. Evaluated were load (N), displacement (mm) and run-time (s) as well as elastic modulus (MPa), tensile strength (MPa) and strain at failure (%). With a maximum load capacity of 2396 (SD 492) N, the fixed-angle plate proved to be significantly stronger than the cannulated lag screws with anterior tension wiring (1015 (SD 246) N) and the modified anterior tension wiring (625 (SD 84.9) N). The fixed-angle plate displayed significantly greater stiffness and lower fracture gap dehiscence than the other osteosyntheses. Additionally, osteosynthesis deformation was found to be lower for the fixed-angle plate. A bilateral fixed-angle plate was the most rigid and stable osteosynthesis for horizontal patella fractures with the least amount of fracture gap dehiscence. Further biomechanical trials performed under cycling loading with fresh cadaver specimen should be done to figure out if a fixed-angle plate may be an alternative in the surgical treatment of patella fractures. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations.

    PubMed

    Bao, Hua; Ruan, Xiulin; Fisher, Timothy S

    2010-03-15

    A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.

  15. Vibrational excitation of water by electron impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakoo, M. A.; Winstead, C.; McKoy, V.

    2009-05-15

    Experimental and calculated differential cross sections (DCSs) for electron-impact excitation of the (010) bending mode and unresolved (100) symmetric and (001) antisymmetric stretching modes of water are presented. Measurements are reported at incident energies of 1-100 eV and scattering angles of 10 deg. - 130 deg. and are normalized to the elastic-scattering DCSs for water determined earlier by our group. The calculated cross sections are obtained in the adiabatic approximation from fixed-nuclei, electronically elastic scattering calculations using the Schwinger multichannel method. The present results are compared to available experimental and theoretical data.

  16. Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, F. A.; Larciprete, M. C.; Belardini, A.

    2009-06-22

    We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    BL-6A has been operational since 2011 as a small angle X-ray scattering (SAXS) beamline at the Photon Factory (PF), and beginning in 2013 its old components and systems, which were mainly inside the experimental hutch, have been extensively updated. Both the vacuum-passes located between the sample stage and the detector and the fixed surface plate have been replaced by a new semi-automatic diffractometer. These upgrades allow simultaneous SAXS/WAXS experiments and grazing-incidence small angle X-ray scattering (GISAXS) measurements to be conducted. The hybrid pixel detector PILATUS3 1M is installed for SAXS, and PILATUS 100K is available as a WAXS detector. Additionally,more » a pinhole equipped with a micro-ion chamber is available to realize a lower-background and higher-resolution of low angles. Moreover, in a simultaneous SAXS/WAXS experiment, we developed a new beam stop with an embedded photodiode. Thus, BL-6A has evolved into a multipurpose beamline capable of dealing with various types of samples and experimental techniques.« less

  18. Multiple incidence angle SIR-B experiment over Argentina

    NASA Technical Reports Server (NTRS)

    Cimino, Jobea; Casey, Daren; Wall, Stephen; Brandani, Aldo; Domik, Gitta; Leberl, Franz

    1986-01-01

    The Shuttle Imaging Radar (SIR-B), the second synthetic aperture radar (SAR) to fly aboard a shuttle, was launched on October 5, 1984. One of the primary goals of the SIR-B experiment was to use multiple incidence angle radar images to distinguish different terrain types through the use of their characteristic backscatter curves. This goal was accomplished in several locations including the Chubut Province of southern Argentina. Four descending image acquisitions were collected providing a multiple incidence angle image set. The data were first used to assess stereo-radargrammetric techniques. A digital elevation model was produced using the optimum pair of multiple incidence angle images. This model was then used to determine the local incidence angle of each picture element to generate curves of relative brightness vs. incidence angle. Secondary image products were also generated using the multi-angle data. The results of this work indicate that: (1) various forest species and various structures of a single species may be discriminated using multiple incidence angle radar imagery, and (2) it is essential to consider the variation in backscatter due to a variable incidence angle when analyzing and comparing data collected at varying frequencies and polarizations.

  19. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    NASA Astrophysics Data System (ADS)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  20. Incident angle of saltating particles in wind-blown sand.

    PubMed

    Fu, Lin-Tao; Bo, Tian-Li; Gu, Hai-Hua; Zheng, Xiao-Jing

    2013-01-01

    Incident angle of saltating particles plays a very important role in aeolian events. In this paper, the incident angles of sand particles near the sand bed were measured in wind tunnel. It reveals that the incident angles range widely from 0° to 180° and thereby the means of angles are larger than published data. Surprisingly, it is found the proportion that angles of 5°-15° occupy is far below previous reports. The measuring height is probably the most important reason for the measurement differences between this study and previous investigations.

  1. Novel Tiltmeter for Monitoring Angle Shift In Incident Waves

    DTIC Science & Technology

    2008-12-01

    40th Annual Precise Time and Time Interval (PTTI) Meeting 559   NOVEL TILTMETER FOR MONITORING ANGLE SHIFT IN INCIDENT WAVES S... Tiltmeter For Monitoring Angle Shift In Incident Waves 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...up, any angle change of the incident beam ’θ results in a change of the intensity transmission of the resonator.     A NOVEL ANGLE TILTMETER

  2. Large incidence angle and defocus influence cat's eye retro-reflector

    NASA Astrophysics Data System (ADS)

    Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Yang, Ji-guang; Zheng, Yong-hui

    2014-11-01

    Cat's eye lens make the laser beam retro-reflected exactly to the opposite direction of the incidence beam, called cat's eye effect, which makes rapid acquiring, tracking and pointing of free space optical communication possible. Study the influence of cat's eye effect to cat's eye retro-reflector at large incidence angle is useful. This paper analyzed the process of how the incidence angle and focal shit affect effective receiving area, retro-reflected beam divergence angle, central deviation of cat's eye retro-reflector at large incidence angle and cat's eye effect factor using geometrical optics method, and presented the analytic expressions. Finally, numerical simulation was done to prove the correction of the study. The result shows that the efficiency receiving area of cat's eye retro-reflector is mainly affected by incidence angle when the focal shift is positive, and it decreases rapidly when the incidence angle increases; the retro-reflected beam divergence and central deviation is mainly affected by focal shift, and within the effective receiving area, the central deviation is smaller than beam divergence in most time, which means the incidence beam can be received and retro-reflected to the other terminal in most time. The cat's eye effect factor gain is affected by both incidence angle and focal shift.

  3. Frequency-scanning particle size spectrometer

    NASA Technical Reports Server (NTRS)

    Fymat, A. L. (Inventor)

    1979-01-01

    A particle size spectrometer having a fixed field of view within the forward light scattering cone at an angle theta sub s between approximately 100 and 200 minutes of arc (preferably at 150 minutes), a spectral range extending approximately from 0.2 to 4.0 inverse micrometers, and a spectral resolution between about 0.1 and 0.2 inverse micrometers (preferably toward the lower end of this range of spectral resolution), is employed to determine the distribution of particle sizes, independently of the chemical composition of the particles, from measurements of incident light, at each frequency, sigma (=1/lambda), and scattered light, I(sigma).

  4. Use of Transition Modeling to Enable the Computation of Losses for Variable-Speed Power Turbine

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2012-01-01

    To investigate the penalties associated with using a variable speed power turbine (VSPT) in a rotorcraft capable of vertical takeoff and landing, various analysis tools are required. Such analysis tools must be able to model the flow accurately within the operating envelope of VSPT. For power turbines low Reynolds numbers and a wide range of the incidence angles, positive and negative, due to the variation in the shaft speed at relatively fixed corrected flows, characterize this envelope. The flow in the turbine passage is expected to be transitional and separated at high incidence. The turbulence model of Walters and Leylek was implemented in the NASA Glenn-HT code to enable a more accurate analysis of such flows. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Heat transfer computations were performed because it is a good marker for transition. The final goal is to be able to compute the aerodynamic losses. Armed with the new transition model, total pressure losses for three-dimensional flow of an Energy Efficient Engine (E3) tip section cascade for a range of incidence angles were computed in anticipation of the experimental data. The results obtained form a loss bucket for the chosen blade.

  5. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  6. Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab

    NASA Technical Reports Server (NTRS)

    Bassiri, S.; Papas, C. H.; Engheta, N.

    1988-01-01

    The reflection from and transmission through a semiinfinite chiral medium are analyzed by obtaining the Fresnel equations in terms of parallel- and perpendicular-polarized modes, and a comparison is made with results reported previously. The chiral medium is described electromagnetically by the constitutive relations D = (epsilon)E+i(gamma)B and H = i(gamma)E+(1/mu)B. The constants epsilon, mu and gamma are real and have values that are fixed by the size, the shape, and the spatial distribution of the elements that collectively compose the medium. The conditions are obtained for the total internal reflection of the incident wave from the interface and for the existence of the Brewster angle. The effects of the chirality on the polarization and the intensity of the reflected wave from the chiral half-space are discussed and illustrated by using the Stokes parameters. The propagation of electromagnetic wave through an infinite slab of chiral medium is formulated for oblique incidence and solved analytically for the case of normal incidence.

  7. Electromagnetic and scalar diffraction by a right-angled wedge with a uniform surface impedance

    NASA Technical Reports Server (NTRS)

    Hwang, Y. M.

    1974-01-01

    The diffraction of an electromagnetic wave by a perfectly-conducting right-angled wedge with one surface covered by a dielectric slab or absorber is considered. The effect of the coated surface is approximated by a uniform surface impedance. The solution of the normally incident electromagnetic problem is facilitated by introducing two scalar fields which satisfy a mixed boundary condition on one surface of the wedge and a Neumann of Dirichlet boundary condition on the other. A functional transformation is employed to simplify the boundary conditions so that eigenfunction expansions can be obtained for the resulting Green's functions. The eigenfunction expansions are transformed into the integral representations which then are evaluated asymptotically by the modified Pauli-Clemmow method of steepest descent. A far zone approximation is made to obtain the scattered field from which the diffraction coefficient is found for scalar plane, cylindrical or sperical wave incident on the edge. With the introduction of a ray-fixed coordinate system, the dyadic diffraction coefficient for plane or cylindrical EM waves normally indicent on the edge is reduced to the sum of two dyads which can be written alternatively as a 2 X 2 diagonal matrix.

  8. Beam splitter and method for generating equal optical path length beams

    DOEpatents

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  9. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOEpatents

    Khounsary, A.M.

    1994-02-15

    A double crystal monochromator is described including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced. 11 figures.

  10. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOEpatents

    Khounsary, Ali M.

    1994-01-01

    A double crystal monochromator including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced.

  11. Anterior cruciate ligament reconstruction and cartilage contact forces--A 3D computational simulation.

    PubMed

    Wang, Lianxin; Lin, Lin; Feng, Yong; Fernandes, Tiago Lazzaretti; Asnis, Peter; Hosseini, Ali; Li, Guoan

    2015-12-01

    Clinical outcome studies showed a high incidence of knee osteoarthritis after anterior cruciate ligament reconstruction. Abnormal joint kinematics and loading conditions were assumed as risking factors. However, little is known on cartilage contact forces after the surgery. A validated computational model was used to simulate anatomic and transtibial single-bundle anterior cruciate ligament reconstructions. Two graft fixation angles (0° and 30°) were simulated for each reconstruction. Biomechanics of the knee was investigated in intact, anterior cruciate ligament deficient and reconstructed conditions when the knee was subjected to 134 N anterior load and 400 N quadriceps load at 0°, 30°, 60° and 90° of flexion. The tibial translation and rotation, graft forces, medial and lateral contact forces were calculated. When the graft was fixed at 0°, the anatomic reconstruction resulted in slightly larger lateral contact force at 0° compared to the intact knee while the transtibial technique led to higher contact force at both 0° and 30° under the muscle load. When graft was fixed at 30°, the anatomic reconstruction overstrained the knee at 0° with larger contact forces, while the transtibial technique resulted in slightly larger contact forces at 30°. This study suggests that neither the anatomic nor the transtibial reconstruction can consistently restore normal knee biomechanics at different flexion angles. The anatomic reconstruction may better restore anteroposterior stability and contact force with the graft fixed at 0°. The transtibial technique may better restore knee anteroposterior stability and articular contact force with the graft fixed at 30° of flexion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Incident Angle of Saltating Particles in Wind-Blown Sand

    PubMed Central

    Fu, Lin-Tao; Bo, Tian-Li; Gu, Hai-Hua; Zheng, Xiao-Jing

    2013-01-01

    Incident angle of saltating particles plays a very important role in aeolian events. In this paper, the incident angles of sand particles near the sand bed were measured in wind tunnel. It reveals that the incident angles range widely from 0° to 180° and thereby the means of angles are larger than published data. Surprisingly, it is found the proportion that angles of 5°–15° occupy is far below previous reports. The measuring height is probably the most important reason for the measurement differences between this study and previous investigations. PMID:23874470

  13. Attitude angle effects on Nimbus-7 Scanning Multichannel Microwave Radiometer radiances and geophysical parameter retrievals

    NASA Technical Reports Server (NTRS)

    Macmillan, Daniel S.; Han, Daesoo

    1989-01-01

    The attitude of the Nimbus-7 spacecraft has varied significantly over its lifetime. A summary of the orbital and long-term behavior of the attitude angles and the effects of attitude variations on Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures is presented. One of the principal effects of these variations is to change the incident angle at which the SMMR views the Earth's surface. The brightness temperatures depend upon the incident angle sensitivities of both the ocean surface emissivity and the atmospheric path length. Ocean surface emissivity is quite sensitive to incident angle variation near the SMMR incident angle, which is about 50 degrees. This sensitivity was estimated theoretically for a smooth ocean surface and no atmosphere. A 1-degree increase in the angle of incidence produces a 2.9 C increase in the retrieved sea surface temperature and a 5.7 m/sec decrease in retrieved sea surface wind speed. An incident angle correction is applied to the SMMR radiances before using them in the geophysical parameter retrieval algorithms. The corrected retrieval data is compared with data obtained without applying the correction.

  14. The SIR-B science investigations plan: Introduction

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Shuttle Imaging Radar-B (SIR-B) and its capabilities are described. The SIR-B instrument is an upgraded version of SIR-A that has the additional capability of tilting the antenna mechanically to acquire data at incidence angles that vary from 15 to 60 deg. Like SEASAT and SIR-A, SIR-B will be an L-band (23-cm) HH polarized radar. The variable-incidence-angle capability will allow several experiments. A specific area may be imaged with a variety of incidence angles on successive days. These images can then be registered and used to produce curves of backscatter as a function of incidence angle for various terrain types. These curves can be used ultimately to characterize the terrain. Stereoimaging may also be done in the multiple-incidence-angle mode. In addition, large areas may be imaged and mosaicked together with only slight variations in incidence angle with each swath.

  15. Droplet characteristic measurement in Fourier interferometry imaging and behavior at the rainbow angle.

    PubMed

    Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Gréhan, Gérard

    2013-01-01

    This paper presents the possibility of measuring the three-dimensional (3D) relative locations and diameters of a set of spherical particles and discusses the behavior of the light recorded around the rainbow angle, an essential step toward refractive index measurements. When a set of particles is illuminated by a pulsed incident wave, the particles act as spherical light wave sources. When the pulse duration is short enough to fix the particle location (typically about 10 ns), interference fringes between these different spherical waves can be recorded. The Fourier transform of the fringes divides the complex fringe systems into a series of spots, with each spot characterizing the interference between a pair of particles. The analyses of these spots (in position and shape) potentially allow the measurement of particle characteristics (3D relative position, particle diameter, and particle refractive index value).

  16. Triple Differential Cross Sections for Ionization of Laser-Aligned Mg Atoms by electron impact

    NASA Astrophysics Data System (ADS)

    Amami, Sadek; Madison, Don; Nixon, Kate; Murray, Andrew

    2013-09-01

    3DW (3-body distorted wave) triple differential cross sections have been calculated for electron impact ionization of magnesium atoms aligned by lasers. Calculations have been performed for the kinematics of the experiment performed by Kate Nixon and Andrew Murray at Manchester, England [K. L. Nixon and A. J. Murray 2011 Phys. Rev. Lett. 106, 123201]. An incident projectile was produced with energy of 41.91eV, scattered and ejected electrons were detected with equal energies (E1 =E2 =20eV), the scattered projectile was detected at a fixed angle of 30deg, and the ejected electrons were detected at angles ranging between 0circ; - 180circ; . The theoretical 3DW results will be compared with the experimental data. This work is supported by the US National Science Foundation under Grant.No.PHY-1068237.

  17. Overview of the Shuttle Imaging Radar-B preliminary scientific results

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Cimino, J.; Settle, M.

    1986-01-01

    Data collected with the Shuttle Imaging Radar-B (SIR-B) on the October 5, 1985 Shuttle mission are discussed. The design and capabilities of the sensor which operates in a fixed illumination geometry and has incidence angles between 15 and 60 deg with 1 deg increments are described. Problems encountered with the SIR-B during the mission are examined. the The radar stereo imaging capability of the sensor was verified and three-dimensional images of the earth surface were obtained. The oceanography experiments provided significant data on ocean wave and internal wave patterns, oil spills, and ice zones. The geological images revealed that the sensor can evaluate penetration effect in dry soil from buried receivers and the existence of subsurface dry channels in the Egyptian desert was validated. The use of multiincidence angle imaging to classify terrain units and derive vegetation maps and the development of terrain maps are confirmed.

  18. Spinal Instrumentation in Growing Children Retards the Natural Development of Pelvic Incidence.

    PubMed

    Bekmez, Senol; Demirkiran, Halil Gokhan; Dede, Ozgur; Atici, Yunus; Balioglu, Mehmet Bulent; Kruyt, Moyo; Ward, Timothy; Yazici, Muharrem

    2016-09-22

    Pelvic incidence increases gradually throughout growth until skeletal maturity. Growing rod instrumentation has been suggested to have a stabilizing effect on the development of the normal sagittal spinal alignment. The purpose of this study is to determine the effect of fixed sagittal plane caused by dual growing rod instrumentation on the natural progression of sagittal spinopelvic parameters in children with idiopathic or idiopathic-like early onset scoliosis. Hospital records of children with growing rod instrumentation from 4 separate institutions were reviewed retrospectively. Inclusion criteria were idiopathic or idiopathic-like early onset scoliosis, treatment with dual growing rods with lower instrumented vertebra L4 or upper and more than 2 years of follow-up. Instrumentation levels, magnitudes of major curve, thoracic kyphosis (T2-T12), lumbar lordosis (L1-S1) and pelvic incidence were recorded from preoperative and postoperative standing whole-spine radiographs. Estimated pelvic incidence was also calculated for each patient as if their spines had not been instrumented using the previous normative data. A total of 37 patients satisfied the inclusion criteria. Average age at initial surgery was 7.4±1.8 years (range, 4 to 12 y). Mean follow-up time was 71±26 months (range, 27 to 120 mo). Mean preoperative Cobb angle of 59±13.5 (range, 30 to 86) degrees was reduced to 35.1±17.5 (range, 11 to 78) degrees at the last follow-up. Mean preoperative T2-T12 kyphosis angle was 46.2±14.9 degrees (range, 22 to 84 degrees). At the latest follow-up, it was 44.8±16.2 degrees (range, 11 to 84 degrees) (P=0.93). Mean L1-S1 lordosis angle was 50.5±10.7 degrees (range, 30 to 72 degrees) preoperatively. At the latest follow-up, mean L1-S1 lordosis angle was 48.8±12.7 degrees (range, 26 to 74 degrees) (P=0.29). Mean preoperative pelvic incidence was 45.7±7.9 degrees (range, 30 to 68 degrees). At the latest follow-up, it was 46.7±8.4 degrees (range, 34 to 72 degrees) (P=0.303). The estimated average pelvic incidence was 49.5 degrees (P=0.012). Previously reported developmental changes of the sagittal spinal parameters were not observed in children who underwent posterior spinal instrumentation. Our findings suggest that spinal instrumentation impedes the natural development of the sagittal spinal profile. Level IV-this is a retrospective case-series.

  19. Optimization of radar imaging system parameters for geological analysis

    NASA Technical Reports Server (NTRS)

    Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.

    1981-01-01

    The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.

  20. Flight calibration tests of a nose-boom-mounted fixed hemispherical flow-direction sensor

    NASA Technical Reports Server (NTRS)

    Armistead, K. H.; Webb, L. D.

    1973-01-01

    Flight calibrations of a fixed hemispherical flow angle-of-attack and angle-of-sideslip sensor were made from Mach numbers of 0.5 to 1.8. Maneuvers were performed by an F-104 airplane at selected altitudes to compare the measurement of flow angle of attack from the fixed hemispherical sensor with that from a standard angle-of-attack vane. The hemispherical flow-direction sensor measured differential pressure at two angle-of-attack ports and two angle-of-sideslip ports in diametrically opposed positions. Stagnation pressure was measured at a center port. The results of these tests showed that the calibration curves for the hemispherical flow-direction sensor were linear for angles of attack up to 13 deg. The overall uncertainty in determining angle of attack from these curves was plus or minus 0.35 deg or less. A Mach number position error calibration curve was also obtained for the hemispherical flow-direction sensor. The hemispherical flow-direction sensor exhibited a much larger position error than a standard uncompensated pitot-static probe.

  1. Dependence of reflection and transmission of soliton on angle of incidence at an interface between chalcogenide fibre and gallium nanoparticle film by phase plane trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruka, Preeti, E-mail: preety-naruka@Yyahoo.co.in; Bissa, Shivangi; Nagar, A. K.

    In the present paper, we study propagation of a soliton at an interface formed between special type of chalcogenide fibre and gallium in three different phases with the help of equivalent particle theory. Critical angle of incidence and critical power required for transmission and reflection of soliton beam have investigated. Here it is found that if the incident angle of the beam or initial velocity of the equivalent particle is insufficient to overcome the maximum increase in potential energy then the particle (light beam) is reflected by the interface and if this incident angle is greater than a critical anglemore » then light beam will be transmitted by the interface. From an equation these critical angles for α-gallium, one of a metastable phase and liquid gallium are calculated and concluded that at large incident angles, the soliton is transmitted through the boundary, whereas at small incidence angles the soliton get reflected on keeping the power of incident beam constant. These results are explained by phase plane trajectories of the effective potential which are experimentally as well as theoretically proved.« less

  2. Associations of coagulation factors IX and XI levels with incident coronary heart disease and ischemic stroke: the REGARDS study.

    PubMed

    Olson, N C; Cushman, M; Judd, S E; Kissela, B M; Safford, M M; Howard, G; Zakai, N A

    2017-06-01

    Essentials Coagulation factors (F) IX and XI have been implicated in cardiovascular disease (CVD) risk. We studied associations of FIX and FXI with incident coronary heart disease (CHD) and stroke. Higher FIX antigen was associated with incident CHD risk in blacks but not whites. Higher levels of FIX antigen may be a CHD risk factor among blacks. Background Recent studies have suggested the importance of coagulation factor IX and FXI in cardiovascular disease (CVD) risk. Objectives To determine whether basal levels of FIX or FXI antigen were associated with the risk of incident coronary heart disease (CHD) or ischemic stroke. Patients/Methods The REasons for Geographic And Racial Differences in Stroke (REGARDS) study recruited 30 239 participants across the contiguous USA between 2003 and 2007. In a case-cohort study within REGARDS, FIX and FXI antigen were measured in participants with incident CHD (n = 609), in participants with incident ischemic stroke (n = 538), and in a cohort random sample (n = 1038). Hazard ratios (HRs) for CHD and ischemic stroke risk were estimated with Cox models per standard deviation higher FIX or FXI level, adjusted for CVD risk factors. Results In models adjusting for CHD risk factors, higher FIX levels were associated with incident CHD risk (HR 1.19; 95% confidence interval [CI] 1.01-1.40) and the relationship of higher FXI levels was slightly weaker (HR 1.15; 95% CI 0.97-1.36). When stratified by race, the HR of FIX was higher in blacks (HR 1.39; 95% CI 1.10-1.75) than in whites (HR 1.06; 95% CI 0.86-1.31). After adjustment for stroke risk factors, there was no longer an association of FIX levels with ischemic stroke, whereas the association of FXI levels with ischemic stroke was slightly attenuated. Conclusions Higher FIX antigen levels were associated with incident CHD in blacks but not in whites. FIX levels may increase CHD risk among blacks. © 2017 International Society on Thrombosis and Haemostasis.

  3. Grounded running in quails: simulations indicate benefits of observed fixed aperture angle between legs before touch-down.

    PubMed

    Andrada, Emanuel; Rode, Christian; Blickhan, Reinhard

    2013-10-21

    Many birds use grounded running (running without aerial phases) in a wide range of speeds. Contrary to walking and running, numerical investigations of this gait based on the BSLIP (bipedal spring loaded inverted pendulum) template are rare. To obtain template related parameters of quails (e.g. leg stiffness) we used x-ray cinematography combined with ground reaction force measurements of quail grounded running. Interestingly, with speed the quails did not adjust the swing leg's angle of attack with respect to the ground but adapted the angle between legs (which we termed aperture angle), and fixed it about 30ms before touchdown. In simulations with the BSLIP we compared this swing leg alignment policy with the fixed angle of attack with respect to the ground typically used in the literature. We found symmetric periodic grounded running in a simply connected subset comprising one third of the investigated parameter space. The fixed aperture angle strategy revealed improved local stability and surprising tolerance with respect to large perturbations. Starting with the periodic solutions, after step-down step-up or step-up step-down perturbations of 10% leg rest length, in the vast majority of cases the bipedal SLIP could accomplish at least 50 steps to fall. The fixed angle of attack strategy was not feasible. We propose that, in small animals in particular, grounded running may be a common gait that allows highly compliant systems to exploit energy storage without the necessity of quick changes in the locomotor program when facing perturbations. © 2013 Elsevier Ltd. All rights reserved.

  4. Fluid signatures of rotational discontinuities at Earth's magnetopause

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.

    1983-01-01

    Fluid signatures in the MHD approximation at rotational discontinuities (RD) of finite width called rotational shear layers (RSL) are examined for general flow and magnetic geometries. Analytical and geometrical arguments illustrate that the fluid speed can either go up or down across an RSL for a fixed normal mass flux. The speed profile may or may not be monotonic depending on the boundary conditions. The flow velocity may or may not be field aligned or ""jetting'' as a result of traversing the RSL. In general, significant ""convection'' is expected in the layer. The observable signatures of (MHD) RSL's depend on 7 (boundary condition) parameters are (1) the mass density, (2 to 5) the incident normal and transverse components of the magnetic field and fluid velocity, (6) the angle epsilon between the incident tangential flow velocity and tangential magnetic field, and (7) the size of the magnetic angular rotation implemented by the layer delta phi.

  5. Concentration of solar radiation by white painted transparent plates.

    PubMed

    Smestad, G; Hamill, P

    1982-04-01

    A simple flat-plate solar concentrator is described in this paper. The device is composed of a white painted transparent plate with a photovoltaic cell fixed to an unpainted area on the bottom of the plate. Light scattering off the white material is either lost or directed to the solar cell. Experimental concentrations of up to 1.9 times the incident solar flux have been achieved using white clays. These values are close to those predicted by theory for the experimental parameters investigated. A theory of the device operation is developed. Using this theory suggestions are made for optimizing the concentrator system. For reasonable choices of cell and plate size and reflectivities of 80% concentrations of over 2x are possible. The concentrator has the advantage over other systems in that the concentration is independent of incidence angle and the concentrator is easy to produce. The device needs no tracking system and will concentrate on a cloudy day.

  6. Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation.

    PubMed

    Larciprete, M C; Bovino, F A; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-07-15

    We present a method, based on noncollinear second-harmonic generation, to evaluate the nonzero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows us to verify if Kleinman's symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from gallium nitride layers are reported. The proposed method does not require an angular scan and thus is useful when the generated signal is strongly affected by sample rotation.

  7. Seven-parameter statistical model for BRDF in the UV band.

    PubMed

    Bai, Lu; Wu, Zhensen; Zou, Xiren; Cao, Yunhua

    2012-05-21

    A new semi-empirical seven-parameter BRDF model is developed in the UV band using experimentally measured data. The model is based on the five-parameter model of Wu and the fourteen-parameter model of Renhorn and Boreman. Surface scatter, bulk scatter and retro-reflection scatter are considered. An optimizing modeling method, the artificial immune network genetic algorithm, is used to fit the BRDF measurement data over a wide range of incident angles. The calculation time and accuracy of the five- and seven-parameter models are compared. After fixing the seven parameters, the model can well describe scattering data in the UV band.

  8. Flight Performance of a Man Portable Guided Projectile Concept

    DTIC Science & Technology

    2014-02-01

    include precision guided technologies. The focus of this study is maneuvering projectiles launched from man portable weapon systems . A novel guided...5 Figure 5. Body-fixed coordinate system and aerodynamic angles...20 Figure 20. Earth and body-fixed coordinate systems and Euler angles. ........................................24

  9. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    PubMed

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  10. Discriminating electromagnetic radiation based on angle of incidence

    DOEpatents

    Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.

    2015-06-16

    The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.

  11. Meta-analysis of the efficacy and safety of combined surgery in the management of eyes with coexisting cataract and open angle glaucoma.

    PubMed

    Jiang, Nan; Zhao, Gui-Qiu; Lin, Jing; Hu, Li-Ting; Che, Cheng-Ye; Wang, Qian; Xu, Qiang; Li, Cui; Zhang, Jie

    2018-01-01

    To conduct a systematic review and quantitative Meta-analysis of the efficacy and safety of combined surgery for the eyes with coexisting cataract and open angle glaucoma. We performed a systematic search of the related literature in the Cochrane Library, PubMed, EMBASE, Web of Science databases, CNKI, CBM and Wan Fang databases, with no limitations on language or publication date. The primary efficacy estimate was identified by weighted mean difference of the percentage of intraocular pressure reduction (IOPR%) from baseline to end-point, the percentage of number of glaucoma medications reduction from pre- to post-operation, and the secondary efficacy evaluations were performed by odds ratio (OR) and 95% confidence interval (CI) for complete and qualified success rate. Besides, ORs were applied to assess the tolerability of adverse incidents. Meta-analyses of fixed or random effect models were performed using RevMan software 5.2 to gather the consequences. Heterogeneity was evaluated by Chi 2 test and the I 2 measure. Ten studies enrolling 3108 patients were included. The combined consequences indicated that both glaucoma and combined cataract and glaucoma surgery significantly decreased IOP. For deep sclerectomy vs deep sclerectomy plus phacoemulsification and canaloplasty vs phaco-canaloplasty, the differences in IOPR% were not all statistically significant while trabeculotomy was detected to gain a quantitatively greater IOPR% compared with trabeculotomy plus phacoemulsification. Furthermore, there was no statistical significance in the complete and qualified success rate, and the rates of adverse incidents for trabeculotomy vs trabeculotomy plus phacoemulsification. Compared with trabeculotomy plus phacoemulsification, trabeculectomy alone is more effective in lowering IOP and the number of glaucoma medications, while the two surgeries can not demonstrate statistical differences in the complete success rate, qualified success rate, or incidence of adverse incidents.

  12. Incident flux angle induced crystal texture transformation in nanostructured molybdenum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.; Lu, T.-M.; Wang, G.-C.

    2012-07-15

    Molybdenum films were observed to undergo a dramatic change in crystal texture orientation when the incident flux angle was varied in an oblique angle sputter deposition on amorphous substrates. Reflection high-energy electron diffraction pole figure and scanning electron microscopy were used to analyze in detail the texture orientation of the films. The normal incident deposition resulted in a fiber texture film with the minimum energy (110) crystal plane parallel to the substrate surface. A (110)[110] biaxial texture was observed for the samples grown with low incident angles of less than 45 Degree-Sign , with respect to the surface normal. Onmore » the other hand, for an oblique angle deposition of larger than 60 Degree-Sign , a (111)[112] biaxial texture was observed and appeared to be consistent with a zone T structure where the geometrically fastest growth [001] direction of a crystal plays a dominant role in defining the texture. We argue that a structural transition had occurred when the incident flux was varied from near normal incidence to a large angle.« less

  13. Near perfect light trapping in 2D metal nanotrench gratings and its application for sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guo, Junpeng; Guo, Hong; Li, Zhitong

    2016-09-01

    In this work, a 2D metallic nano-trench array was fabricated on gold metal surface by using an e-beam lithography patterning and etching process. Optical reflectance from the device was measured at oblique angles of incidence for TE and TM polarization. Near perfect light trapping was observed at different wavelengths for TE and TM polarization at oblique angle of incidence. As angle of incidence increases, light trapping wavelength has a red-shift for TM polarization and blue shift for TE polarization. The fabricated nano-trench device was also investigated for chemical sensor application. It was found that by varying the angle of incidence, the sensitivity changes with opposite trends for TE and TM polarization. Sensor sensitivity increases for TM polarization and decreases for TE polarization with increase of the oblique incident angle.

  14. Multiple incidence angle SIR-B experiment over Argentina Mapping of forest units

    NASA Technical Reports Server (NTRS)

    Cimino, J.; Casey, D.; Wall, S. D.; Brandani, A.; Rabassa, J.

    1986-01-01

    Multiple incidence angle SIR-B data of the Cordon la Grasa region of the Chubut Province of Argentina are used to discriminate various forest types by their relative brightness versus incidence angle signatures. The region consists of several species of Nothofagas which change in canopy structure with elevation, slope, and exposure. In general, the factors that appear to impact the radar response most are canopy structure, density, and ground cover (presence or absence of dead trunks and branches in particular). The results of this work indicate that (1) different forest species, and structures of a single species, may be discriminated using multiple incidence angle radar imagery and (2) it is essential to consider the variation in backscatter due to incidence angle when analyzing the comparing data collected at varying frequencies and polarizations.

  15. Comparison of Alignment Correction Angles Between Fixed-Bearing and Mobile-Bearing UKA.

    PubMed

    Inoue, Atsuo; Arai, Yuji; Nakagawa, Shuji; Inoue, Hiroaki; Yamazoe, Shoichi; Kubo, Toshikazu

    2016-01-01

    Good outcomes have been reported with both fixed-bearing and mobile-bearing unicompartmental knee arthroplasty (UKA). However, overcorrected alignment could induce the progression of arthritis on the non-arthroplasty side. Changes of limb alignment after UKA with both types of bearings (fixed bearing: 24 knees, mobile bearing: 28 knees) were investigated. The mean difference between the preoperative standing femoral-tibial angle (FTA) and postoperative standing FTA was significantly larger in mobile bearing UKA group. In fixed-bearing UKA, there must be some laxity in MCL tension so that a 2-mm tension gauge can be inserted. In mobile-bearing UKA, appropriate MCL tension is needed to prevent bearing dislocation. This difference in MCL tension may have caused the difference in the correction angle between the groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Visible and infrared polarization ratio spectroreflectometer

    NASA Technical Reports Server (NTRS)

    Batten, C. E. (Inventor)

    1980-01-01

    The instrument assists in determining the refractive index and absorption index, at different spectral frequencies, of a solid sample by illuminating the sample at various angles in incidence and measuring the corresponding reflected intensities at various spectral frequencies and polarization angles. The ratio of the intensity of the reflected light for parallel polarized light to that for perpendicular polarized light at two different angles of incidence can be used to determine the optical constants of the sample. The invention involves an apparatus for facilitating the utilization of a wide variety of angles of incidence. The light source and polarizing element are positioned on an outer platform; the sample is positioned on an inner platform. The two platforms rotate about a common axis and cooperate in their rotation such that the sample is rotated one degree for every two degrees of rotation of the light source. This maintains the impingement of the reflected light upon the detector for any angle of incidence without moving or adjusting the detector which allows a continuous change in the angle of incidence.

  17. Surface plasmon resonance sensor using vari-focal liquid lens under angular interrogation

    NASA Astrophysics Data System (ADS)

    Lee, Muyoung; Bang, Yousung; Lee, Jooho; Jang, Wonjae; Won, Yong Hyub

    2017-02-01

    In this paper, a surface plasmon resonance sensor for the detection of refractive index variation is presented. A novel waveguide type surface plasmon resonance sensing configuration with focal length variable liquid lens is introduced. The method of surface plasmon resonance sensor is based on the waveguide type with incident angle variation. The incident angle is varied by using an electrowetting liquid lens which is possible to actively change focal length as applying voltage. The optical system, which is adapted to electrowetting lens can continuously change the incident angle of light from 73 to 78 degrees with compact size. The surface plasmon waves are excited between metal and dielectric interface. The sensing surfaces are prepared by a coating of gold metal above high refractive index glass substrate. The incident light which is 532nm monochromatic light source passes through a noble metal coated substrate to detect intensity with incident angle variation. An analysis to distinguish the contribution of light with various incident angle is focused on the angular characteristics of the surface plasmon sensor under wavelength interrogation. The resonance angle is determined corresponding to sensing material refractive index with high sensitivity. The result suggests that the performance of surface plasmon resonance sensor can be improved by real time varying incident angle. From this presented study, it provides a different approach for angular interrogation surface plasmon resonance sensor and can be miniaturized for a portable device.

  18. Reflective properties of randomly rough surfaces under large incidence angles.

    PubMed

    Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J

    2014-06-01

    The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.

  19. Kinematic comparison between mobile-bearing and fixed-bearing inserts in NexGen legacy posterior stabilized flex total knee arthroplasty.

    PubMed

    Shi, Kenrin; Hayashida, Kenji; Umeda, Naoya; Yamamoto, Kengo; Kawai, Hideo

    2008-02-01

    Femoral component rollback and tibial rotation were evaluated using lateral radiographs taken during passive knee flexion under fluoroscopy in NexGen Legacy Posterior Stabilized Flex (Zimmer, Warsaw, Ind) total knee arthroplasties (TKAs; 30 with mobile insert and 26 with fixed insert). Measured maximal flexion angle demonstrated no significant differences. Femoral component rollback was observed predominantly in TKAs with fixed insert in more than 45 degrees flexion and correlated with maximal flexion angle in each group. Tibial internal rotation was more significant in TKAs with mobile insert in maximal flexion. However, tibial internal rotation from 90 degrees to maximal flexion, which demonstrated correlation with maximal flexion angle in each group, did not show significant difference. The kinematic differences between 2 inserts seemed to have little relevance to the maximal flexion angle.

  20. Anomalous postcritical refraction behavior for certain transversely isotropic media

    USGS Publications Warehouse

    Fa, L.; Brown, R.L.; Castagna, J.P.

    2006-01-01

    Snell's law at the boundary between two transversely isotropic media with a vertical axis of symmetry (VTI media) can be solved by setting up a fourth order polynomial for the sine of the reflection/transmission angles. This approach reveals the possible presence of an anomalous postcritical angle for certain transversely isotropic media. There are thus possibly three incident angle regimes for the reflection/refraction of longitudinal or transverse waves incident upon a VTI medium: precritical, postcritical/preanomalous, and postanomalous. The anomalous angle occurs for certain strongly anisotropic media where the required root to the phase velocity equation must be switched in order to obey Snell's law. The reflection/transmission coefficients, polarization directions, and the phase velocity are all affected by both the anisotropy and the incident angle. The incident critical angles are also effected by the anisotropy. ?? 2006 Acoustical Society of America.

  1. [Reliable fixation of cochlear implant electrode mountings in children and adults--initial experiences with a new titanium clip].

    PubMed

    Müller, J; Schön, F; Helms, J

    1998-04-01

    There is a reported 1% incidence of delayed migration of extrusions of the electrode arrays out of the cochlea. A titanium clip to fix the electrode array of the MED EL Combi 40 Cochlear Implant System is described. The clip is designed and shaped in a double U configuration. The clip material allows easy adaption to the individual anatomical situation. The clip is fixed to a bony bridge at the incus bar and fixes the electrode in a plane parallel to the chorda facial angle. It is closed around the electrode similarly to a stapes piston around the incus. Additional tests which examined the possible risk of damaging the electrode carrier and clinical findings are described. The clip was used in 23 cases with a follow-up period up to 1 year. No signs for dislocation of the electrode were found. In one revision case the clip was covered with a thin mucosal layer. The electrode array showed no signs of damage. Intraoperative findings confirmed the experimental tests on the electrode fixation. The titanium clip facilitates safe and quick fixation of the electrode array and prevents dislocation. its flexibility and shape minimizes the risk of damage.

  2. Influence of incident angle on the decoding in laser polarization encoding guidance

    NASA Astrophysics Data System (ADS)

    Zhou, Muchun; Chen, Yanru; Zhao, Qi; Xin, Yu; Wen, Hongyuan

    2009-07-01

    Dynamic detection of polarization states is very important for laser polarization coding guidance systems. In this paper, a set of dynamic polarization decoding and detection system used in laser polarization coding guidance was designed. Detection process of the normal incident polarized light is analyzed with Jones Matrix; the system can effectively detect changes in polarization. Influence of non-normal incident light on performance of polarization decoding and detection system is studied; analysis showed that changes in incident angle will have a negative impact on measure results, the non-normal incident influence is mainly caused by second-order birefringence and polarization sensitivity effect generated in the phase delay and beam splitter prism. Combined with Fresnel formula, decoding errors of linearly polarized light, elliptically polarized light and circularly polarized light with different incident angles into the detector are calculated respectively, the results show that the decoding errors increase with increase of incident angle. Decoding errors have relations with geometry parameters, material refractive index of wave plate, polarization beam splitting prism. Decoding error can be reduced by using thin low-order wave-plate. Simulation of detection of polarized light with different incident angle confirmed the corresponding conclusions.

  3. Wind-Tunnel Investigation of a Full-Scale Canard-Configured General Aviation Airplane

    NASA Technical Reports Server (NTRS)

    Yip, L. P.

    1985-01-01

    An investigation was conducted in the Langley 30- by 60-Foot Tunnel to determine the aerodynamic characteristics of a powered, full-scale model of a general aviation airplane employing a canard. Although primary emphasis of the investigation was placed on evaluating the aerodynamic performance and the stability and control characteristics of the basic configuration, tests were also conducted to study the following effects of varying the basic configuration: effect of Reynolds number; effect of canard; effect of outboard wing leading-edge droop; effect of center-of-gravity location; effect of elevator trim; effect of landing gear; effect of lateral-directional control; effect of power; effect of fixed transition; effect of water spray; effects of canard incidence, canard airfoil section, and canard position; and effects of winglets and upper winglet size. Additional aspects of the study were to determine the boundary-layer transition characteristics of airfoil surfaces and the effect of fixing the boundary layer to be turbulent by means of a transition strip near the leading edge. The tests were conducted at Reynolds numbers from 0.60 x 10 to the 6th power to 2.25x10 to the 6th power, based on the wing mean aerodynamic chord, at angles of attack from -4.5 deg to 41.5 deg, and at angles of sideslip from -15 deg to 15 deg.

  4. Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Cui, Qingfeng; Piao, Mingxu

    2018-05-01

    The effect of substrate material selection for multilayer diffractive optical elements (MLDOEs) on polychromatic integral diffraction efficiency (PIDE) is studied in the oblique incident situation. A mathematical model of substrate material selection is proposed to obtain the high PIDE with large incident angle. The extended expression of the microstructure heights with consideration of incident angle is deduced to calculate the PIDE difference Δ η bar(λ) for different substrate material combinations. The smaller value of Δ η bar(λ) indicates the more optimal substrate material combination in a wide incident angle range. Based on the deduced mathematical model, different MLDOEs are analyzed in visible and infrared wavebands. The results show that the three-layer DOEs can be applied in larger incident angle situation than the double-layer DOEs in visible waveband. When the two substrate materials are the same, polycarbonate (PC) is more reasonable than poly(methyl methacrylate) (PMMA) as the middle filling optical material for the three-layer DOEs. In the infrared waveband, the PIDE decreases in the LWIR are obviously smaller than that in the MWIR for the same substrate material combination, and the PIDE cannot be calculated when the incident angle larger than critical angle. The analysis results can be used to guide the hybrid optical system design with MLDOEs.

  5. A survey of industry practices regarding shielding of substations against direct lightning strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, A.M.; Wehling, R.J.

    1993-01-01

    A survey of industry practices regarding shielding of substations against direct lightning strokes is presented and analyzed. The survey is based on responses from 114 companies including consultants and utilities both from within and from outside North America. The survey identifies the shielding design methods in use, the factors affecting the selection of a shielding method, the shielding design criteria and the governing factors, the performance of the different shielding methods and miscellaneous related aspects. The survey revealed a large number (35) of shielding failure incidents; 34 of which occurred in systems designed using either the fixed shielding angle methodmore » or Wagner's 1942 method.« less

  6. Measurement of Non-Linear Internal Waves and Their Interaction with Surface Waves using Coherent Real Aperture Radars

    DTIC Science & Technology

    2010-03-08

    frequencies on wind speed and direction is viable at VV polarization at much larger incidence angles than we had thought. At this polarization it works...out to 89 degree incidence angles. By contrast at HH polarization the model underpredicts the NRCS of the sea for incidence angles above about 45...degrees. ● At high grazing angles, HH polarized cross sections maximize upwind and minimize downwind; upwind they are slightly smaller than VV

  7. Binary collision model for neon Auger spectra from neon ion bombardment of the aluminum surface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1986-01-01

    A model is developed to account for the angle-resolved Auger spectra from neon ion bombardment of the aluminum surface recently obtained by Pepper and Aron. The neon is assumed to be excited in a single asymmetric neon-aluminum-collision and scattered back into the vacuum where it emits an Auger electron. The velocity of the Auger electron acquires a Doppler shift by virtue of the emission from a moving source. The dependence of the Auger peak shape and energy on the incident ion energy, angle of incidence and on the angle of Auger electron emission with respect to the surface is presented. Satisfactory agreement with the angle resolved experimental observations is obtained. The dependence of the angle-integrated Auger yield on the incident ion energy and angle of incidence is also obtained and shown to be in satisfactory agreement with available experimental evidence.

  8. Lift hysteresis at stall as an unsteady boundary-layer phenomenon

    NASA Technical Reports Server (NTRS)

    Moore, Franklin K

    1956-01-01

    Analysis of rotating stall of compressor blade rows requires specification of a dynamic lift curve for the airfoil section at or near stall, presumably including the effect of lift hysteresis. Consideration of the magnus lift of a rotating cylinder suggests performing an unsteady boundary-layer calculation to find the movement of the separation points of an airfoil fixed in a stream of variable incidence. The consideration of the shedding of vorticity into the wake should yield an estimate of lift increment proportional to time rate of change of angle of attack. This increment is the amplitude of the hysteresis loop. An approximate analysis is carried out according to the foregoing ideas for a 6:1 elliptic airfoil at the angle of attack for maximum lift. The assumptions of small perturbations from maximum lift are made, permitting neglect of distributed vorticity in the wake. The calculated hysteresis loop is counterclockwise. Finally, a discussion of the forms of hysteresis loops is presented; and, for small reduced frequency of oscillation, it is concluded that the concept of a viscous "time lag" is appropriate only for harmonic variations of angle of attack with time at mean conditions other than maximum lift.

  9. A biomechanical comparison of four fixed-angle dorsal plates in a finite element model of dorsally-unstable radius fracture.

    PubMed

    Knežević, Josip; Kodvanj, Janoš; Čukelj, Fabijan; Pamuković, Frane; Pavić, Arsen

    2017-11-01

    To compare the finite element models of two different composite radius fracture patterns, reduced and stabilised with four different fixed-angle dorsal plates during axial, dorsal and volar loading conditions. Eight different plastic models representing four AO/ASIF type 23-A3 distal radius fractures and four AO/ASIF 23-C2 distal radius fractures were obtained and fixed each with 1 of 4 methods: a standard dorsal non-anatomical fixed angle T-plate (3.5mm Dorsal T-plate, Synthes), anatomical fixed-angle double plates (2.4mm LCP Dorsal Distal Radius, Synthes), anatomical fixed angle T-plate (2.4mm Acu-Loc Dorsal Plate, Acumed) or anatomical variable-angle dorsal T-plate (3.5mm, Dorsal Plate, Zrinski). Composite radius with plate and screws were scanned with a 3D optical scanner and later processed in Abaqus Software to generate the finite element model. All models were axially loaded at 3 points (centrally, volarly and dorsally) with 50 N forces to avoid the appearance of plastic deformations of the models. Total displacements at the end of the bone and the stresses in the bones and plates were determined and compared. Maximal von Mises stress in bone for 3-part fracture models was very similar to that in 2-part fracture models. The biggest difference between models and the largest displacements were seen during volar loading. The stresses in all models were the highest above the fracture gap. The best performance in all parameters tested was with the Zrinski plate and the most modest results were with the Synthes T-plate. There was no significant difference between 2-part (AO/ASIF type 23-A3) and 3-part (AO/ASIF 23-C2) fracture models. Maximal stresses in the plates appeared above the fracture gap; therefore, it is worth considering the development of plates without screw holes above the gap. © 2017 Elsevier Ltd. All rights reserved.

  10. Volar fixed-angle plating of extra-articular distal radius fractures--a biomechanical analysis comparing threaded screws and smooth pegs.

    PubMed

    Weninger, Patrick; Dall'Ara, Enrico; Leixnering, Martin; Pezzei, Christoph; Hertz, Harald; Drobetz, Herwig; Redl, Heinz; Zysset, Philippe

    2010-11-01

    Distal radius fractures represent the most common fractures in adult individuals. Volar fixed-angle plating has become a popular modality for treating unstable distal radius fractures. Most of the plates allow insertion of either threaded locking screws or smooth locking pegs. To date, no biomechanical studies compare locking screws and pegs under axial and torsional loading. Ten Sawbones radii were used to simulate an AO/OTA A3 fracture. Volar fixed-angle plates (Aptus Radius 2.5, Medartis, Switzerland) with threaded locking screws (n = 5) or smooth locking pegs (n = 5) were used to fix the distal metaphyseal fragment. Each specimen was tested under axial compression and under torsional load with a servohydraulic testing machine. Qualitative parameters were recorded as well as axial and torsional stiffness, torsion strength, energy absorbed during monotonic loading and energy absorbed in one cycle. Axial stiffness was comparable between both groups (p = 0.818). If smooth pegs were used, a 17% reduction of torsional stiffness (p = 0.017) and a 12% reduction of minimum torque (p = 0.012) were recorded. A 12% reduction of energy absorbed (p = 0.013) during monotonic loading and unloading was recorded if smooth pegs were used. A 34% reduction of energy absorbed in one cycle (p < 0.007) was recorded if threaded screws were used. Sliding of the pegs out of the distal radius metaphyses of the synthetic bones was recorded at a mean torque of 3.80 Nm ± 0.19 Nm. No sliding was recorded if threaded screws were used. According to the results of this study using Sawbones, volar fixed-angle plates with threaded locking screws alone are mechanically superior to volar fixed-angle plates with smooth locking pegs alone under torsional loading.

  11. Influence of the Angle of Attack on the Aerothermodynamics of the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Edquist, Karl T.; Schoenenberger, Mark

    2006-01-01

    An investigation of the effects of the incidence angle on the aerothermodynamic environments of the Mars Science Laboratory has been conducted. Flight conditions of peak heating, peak deceleration and chute deploy are selected and the effects of the angle of attack on the aerodynamics and aerothermodynamics are analyzed. The investigation found that static aerodynamics are well behaved within the considered range of incidence angles. Leeside laminar and turbulent computed heating rates decrease with incidence, despite the increase in the leeside running length. Stagnation point was found to stay on the conical flank at all angles of attack, and this is linked to the rapid flow expansion around the shoulder. Hypersonic lift to drag ratio is limited by the heating rates in the region of the windside shoulder. The effects of the high angle of incidence on the dynamic aero at low Mach remains to be determined. Influence of the angle of attack on the smooth-wall transition parameter indicates, that higher angle of attack flight may result in delayed turbulence onset, however, a coupled analysis, involving flight trajectory simulation is necessary.

  12. Effects of diurnal, lighting, and angle-of-incidence variation on anterior segment optical coherence tomography (AS-OCT) angle metrics.

    PubMed

    Akil, Handan; Dastiridou, Anna; Marion, Kenneth; Francis, Brian A; Chopra, Vikas

    2017-03-23

    First reported study to assess the effect of diurnal variation on anterior chamber angle measurements, as well as, to re-test the effects of lighting and angle-of-incidence variation on anterior chamber angle (ACA) measurements acquired by time-domain anterior segment optical coherence tomography (AS-OCT). A total of 30 eyes from 15 healthy, normal subjects underwent anterior chamber imaging using a Visante time-domain AS-OCT according to an IRB-approved protocol. For each eye, the inferior angle was imaged twice in the morning (8 am - 10 am) and then again in the afternoon (3 pm - 5 pm), under light meter-controlled conditions with ambient room lighting 'ON' and lights 'OFF', and at 5° angle of incidence increments. The ACA metrics measured for each eye were: angle opening distance (AOD, measured 500 and 750 μm anterior from scleral spur), the trabecular-iris-space area (TISA, measured 500 and 750 μm anterior from scleral spur), and scleral spur angle. Measurements were performed by masked, certified Reading Center graders using the Visante's Internal Measurement Tool. Differences in measurements between morning and afternoon, lighting variations, and angle of incidence were compared. Mean age of the participants was 31.2 years (range 23-58). Anterior chamber angle metrics did not differ significantly from morning to afternoon imaging, or when the angle of incidence was offset by 5° in either direction away from the inferior angle 6 o'clock position. (p-value 0.13-0.93). Angle metrics at the inferior corneal limbus, 6 o'clock position (IC270), with room lighting 'OFF', showed a significant decrease (p < 0.05) compared to room lighting 'ON'. There does not appear to be significant diurnal variation in AS-OCT parameters in normal individuals, but lighting conditions need to be strictly controlled since variation in lighting led to significant variability in AS-OCT parameters. No changes in ACA parameters were noted by varying the angle-of-incidence, which gives confidence in being able to perform longitudinal studies in approximately the same area (plus/minus 5° of original scan location).

  13. Microorganism billiards in closed plane curves.

    PubMed

    Krieger, Madison S

    2016-12-01

    Recent experiments have shown that many species of microorganisms leave a solid surface at a fixed angle determined by steric interactions and near-field hydrodynamics. This angle is completely independent of the incoming angle. For several collisions in a closed body this determines a unique type of billiard system, an aspecular billiard in which the outgoing angle is fixed for all collisions. We analyze such a system using numerical simulation of this billiard for varying tables and outgoing angles, and also utilize the theory of one-dimensional maps and wavefront dynamics. When applicable we cite results from and compare our system to similar billiard systems in the literature. We focus on examples from three broad classes: the ellipse, the Bunimovich billiards, and the Sinai billiards. The effect of a noisy outgoing angle is also discussed.

  14. Incidence loss for a core turbine rotor blade in a two-dimensional cascade

    NASA Technical Reports Server (NTRS)

    Stabe, R. G.; Kline, J. F.

    1974-01-01

    The effect of incidence angle on the aerodynamic performance of an uncooled core turbine rotor blade was investigated experimentally in a two-dimensional cascade. The cascade test covered a range of incidence angles from minus 15 deg to 15 deg in 5-degree increments and a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95. The principal measurements were blade-surface static pressures and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the investigation include blade-surface velocity distribution and overall performance in terms of weight flow and loss for the range of incidence angles and exit velocity ratios investigated. The measured losses are also compared with two common methods of predicting incidence loss.

  15. Incidence loss for fan turbine rotor blade in two-dimensional cascade

    NASA Technical Reports Server (NTRS)

    Kline, J. F.; Moffitt, T. P.; Stabe, R. G.

    1983-01-01

    The effect of incidence angle on the aerodynamic performance of a fan turbine rotor blade was investigated experimentally in a two dimensional cascade. The test covered a range of incidence angles from -15 deg to 10 deg and exit ideal critical velocity ratios from 0.75 to 0.95. The principal measurements were blade-surface static pressures and cross-channel survey of exit total pressure, static pressure, and flow angle. Flow adjacent to surfaces was examined using a visualization technique. The results of the investigation include blade-surface velocity distribution and overall kinetic energy loss coefficients for the incidence angles and exit velocity ratios tested. The measured losses are compared with those from a reference core turbine rotor blade and also with two common analytical methods of predicting incidence loss.

  16. Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations.

    PubMed

    Huang, Xiu Tao; Lu, Cong Hui; Rong, Can Can; Wang, Sheng Ming; Liu, Ming Hai

    2018-04-25

    An ultra-wide-angle THz metamaterial absorber (MA) utilizing sixteen-circular-sector (SCR) resonator for both transverse electric (TE) and transverse magnetic (TM) mode is designed and investigated numerically. At normal incidence, the absorptivity of the proposed MA is higher than 93.7% at 9.05 THz for different polarization angles, due to the rotational symmetry structure of the unit cell. Under oblique incidence, the absorptivity can still exceed 90%, even when the incident angle is up to 70° for both TE and TM mode. Especially, the frequency variation in TE mode is less than 0.25% for different incident angles from 0° to 70°. The electric field (E z ) distributions are used to explain the absorption mechanism. Numerical simulation results show that the high absorption with wide-angle independence stems from fundamental dipole resonance and gap surface plasmons. The broadband deep-infrared MA is also obtained by stacking three metal-dielectric layers. The designed MA has great potential in bolometric pixel elements, biomedical sensors, THz imaging, and solar cells.

  17. Angle-selective all-dielectric Huygens’ metasurfaces

    NASA Astrophysics Data System (ADS)

    Arslan, D.; Chong, K. E.; Miroshnichenko, A. E.; Choi, D.-Y.; Neshev, D. N.; Pertsch, T.; Kivshar, Y. S.; Staude, I.

    2017-11-01

    We experimentally and numerically study the angularly resolved transmission properties of dielectric metasurfaces consisting of silicon nanodisks which support electric and magnetic dipolar Mie-type resonances in the near-infrared spectral range. First, we concentrate on Huygens’ metasurfaces which are characterised by a spectral overlap of the fundamental electric and magnetic dipole resonances of the silicon nanodisks at normal incidence. Huygens’ metasurfaces exhibit a high transmitted intensity over the spectral width of the resonances due to impedance matching, while the transmitted phase shows a variation of 2π as the wavelength is swept across the width of the resonances. We observe that the transmittance of the Huygens’ metasurfaces depends on the incidence angle and is sensitive to polarisation for non-normal incidence. As the incidence angle is increased starting from normal incidence, the two dipole resonances are shifted out of the spectral overlap and the resonant features appear as pronounced transmittance minima. Next, we consider a metasurface with an increased nanodisk radius as compared to the Huygens’ metasurface, which supports spectrally separate electric and magnetic dipole resonances at normal incidence. We show that for TM polarisation, we can shift the resonances of this metasurface into spectral overlap and regain the high resonant transmittance characteristic of Huygens’ metasurfaces at a particular incidence angle. Furthermore, both metasurfaces are demonstrated to reject all TM polarised light incident under angles other than the design overlap angle at their respective operation frequency. Our experimental observations are in good qualitative agreement with numerical calculations.

  18. Maximization of orbiter altitude at ALT interface airspeed, mission planning, mission analysis and software

    NASA Technical Reports Server (NTRS)

    Glenn, G. M.

    1976-01-01

    The determination of the separation initial conditions (i.e. incidence angle) that maximize orbiter altitude at the ALT interface airspeed is considered. Optimum altitude airspeed profiles are generated for each orbiter incidence angle and tailcone configuration. Results show that the highest separation altitude does not result in the highest altitude at ALT interface airspeed. The altitude attainable at ALT interface airspeed should therefore be considered in the selection of the initial conditions (i.e. incidence angle). Without violating any known constraints, the incidence angles that maximize orbiter altitude at the ALT interface airspeeds are 7.0 deg for ALT free flight 1 and 5.5 deg for ALT free flight 6.

  19. Dynamic tailoring of surface plasmon polaritons through incident angle modulation.

    PubMed

    Qiu, Peizhen; Zhang, Dawei; Jing, Ming; Lu, Taiguo; Yu, Binbin; Zhan, Qiwen; Zhuang, Songlin

    2018-04-16

    Dynamic tailoring of the propagating surface plasmon polaritons (SPPs) through incident angle modulation is proposed and numerically demonstrated. The generation and tailoring mechanism of the SPPs are discussed. The relationship formula between the incident angle and the generated SPP wave vector direction is theoretically derived. The correctness of the formula is verified with three different approaches using finite difference time domain method. Using this formula, the generated SPP wave vector direction can be precisely modulated by changing the incident angle. The precise modulation results of two dimensional Bessel-like SPP beam and SPP bottle beam array are given. The results can deepen the understanding of the generation and modulation mechanism of the SPPs.

  20. Oscillating Cascade Aerodynamics at Large Mean Incidence Angles

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.

    1997-01-01

    In a cooperative program with Pratt & Whitney, researchers obtained fundamental separated flow unsteady aerodynamic data in the NASA Lewis Research Center's Oscillating Cascade. These data fill a void that has hindered the understanding and prediction of subsonic and transonic stall flutter. For small-amplitude torsional oscillations, unsteady pressure distributions were measured on airfoils with cross sections representative of an advanced, low-aspect-ratio fan blade. Data were obtained for two mean incidence angles with a subsonic inflow. At high mean incidence angles (alpha = 10 deg), the mean flow separated at the leading edge and reattached at about 40 percent of the chord. For comparison purposes, data were also obtained for a low incidence angle (a = 0 deg) attached flow.

  1. Performance analysis of air-water quantum key distribution with an irregular sea surface

    NASA Astrophysics Data System (ADS)

    Xu, Hua-bin; Zhou, Yuan-yuan; Zhou, Xue-jun; Wang, Lian

    2018-05-01

    In the air-water quantum key distribution (QKD), the irregular sea surface has some influence on the photon polarization state. The wind is considered as the main factor causing the irregularity, so the model of irregular sea surface based on the wind speed is adopted. The relationships of the quantum bit error rate with the wind speed and the initial incident angle are simulated. Therefore, the maximum secure transmission depth of QKD is confirmed, and the limitation of the wind speed and the initial incident angle is determined. The simulation results show that when the wind speed and the initial incident angle increase, the performance of QKD will fall down. Under the intercept-resend attack condition, the maximum safe transmission depth of QKD is up to 105 m. To realize safe communications in the safe diving depth of submarines (100 m), the initial incident angle is requested to be not exceeding 26°, and with the initial incident angle increased, the limitation of wind speed is decreased.

  2. Radiation damage in polymer films from grazing-incidence X-ray scattering measurements

    DOE PAGES

    Vaselabadi, Saeed Ahmadi; Shakarisaz, David; Ruchhoeft, Paul; ...

    2016-02-16

    Grazing-incidence X-ray scattering (GIXS) is widely used to analyze the crystallinity and nanoscale structure in thin polymer films. However, ionizing radiation will generate free radicals that initiate cross-linking and/or chain scission, and structural damage will impact the ordering kinetics, thermodynamics, and crystallinity in many polymers. We report a simple methodology to screen for beam damage that is based on lithographic principles: films are exposed to patterns of x-ray radiation, and changes in polymer structure are revealed by immersing the film in a solvent that dissolves the shortest chains. The experiments are implemented with high throughput using the standard beam linemore » instrumentation and a typical GIXS configuration. The extent of damage (at a fixed radiation dose) depends on a range of intrinsic material properties and experimental variables, including the polymer chemistry and molecular weight, exposure environment, film thickness, and angle of incidence. The solubility switch for common polymers is detected within 10-60 sec at ambient temperature, and we verified that this first indication of damage corresponds with the onset of network formation in glassy polystyrene and a loss of crystallinity in polyalkylthiophenes. Therefore, grazing-incidence x-ray patterning offers an efficient approach to determine the appropriate data acquisition times for any GIXS experiment.« less

  3. Solar Cell Angle of Incidence Corrections

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    The Mars Pathfinder mission has three different solar arrays each of which sees changes in incidence angle during normal operation. When solar array angle of incidence effects was researched little published data was found. The small amount of-published data created a need to obtain and evaluate such data. The donation of the needed data, which was taken in the fall of 1994, was a major factor in the preparation of this paper.

  4. Solar cell angle of incidence corrections

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees from normal which prevented any firm conclusions about extreme angle effects although a trend in the right direction was seen. Measurement errors were estimated and found to be consistent with the conclusions that were drawn. A controlled experiment using coverglasses and cells from the same lots and extending to larger incidence angles would probably lead to further insight into the subject area.

  5. The Southwest Research Institute ultraviolet reflectance chamber (SwURC): a far ultraviolet reflectometer

    NASA Astrophysics Data System (ADS)

    Winters, Gregory S.; Retherford, Kurt D.; Davis, Michael W.; Escobedo, Stephen M.; Bassett, Eric C.; Patrick, Edward L.; Nagengast, Maggie E.; Fairbanks, Matthew H.; Miles, Paul F.; Parker, Joel W.; Gladstone, G. Randall; Slater, David C.; Stern, S. Alan

    2012-10-01

    We designed and assembled a highly capable UV reflectometer chamber and data acquisition system to provide bidirectional scattering data of various surfaces and materials. This chamber was initially conceived to create laboratory-based UV reflectance measurements of water frost on lunar soil/regolith simulants, to support interpretation of UV reflectance data from the Lyman Alpha Mapping Project ("LAMP") instrument on-board the NASA Lunar Reconnaissance Orbiter spacecraft. A deuterium lamp illuminates surfaces and materials at a fixed 45° incident beam angle over the 115 to 200 nm range via a monochromator, while a photomultiplier tube detector is scanned to cover emission angles -85° to +85° (with a gap from -60° to -30°, due to the detector blocking the incident beam). Liquid nitrogen cools the material/sample mount when desired. The chamber can be configured to test a wide range of samples and materials using sample trays and holders. Test surfaces to date include aluminum mirrors, water ice, reflectance standards, and frozen mixtures of water and lunar soil/regolith stimulant. Future UV measurements planned include Apollo lunar samples, meteorite samples, other ices, minerals, and optical surfaces. Since this chamber may well be able to provide useful research data for groups outside Southwest Research Institute, we plan to take requests from and collaborate with others in the UV and surface reflection research community.

  6. Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1989-01-01

    The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  7. Comparison of calcaneal fixation of a retrograde intramedullary nail with a fixed-angle spiral blade versus a fixed-angle screw.

    PubMed

    Klos, Kajetan; Gueorguiev, Boyko; Schwieger, Karsten; Fröber, Rosemarie; Brodt, Steffen; Hofmann, Gunther O; Windolf, Markus; Mückley, Thomas

    2009-12-01

    Retrograde intramedullary nailing is an established technique for tibiotalocalcaneal arthrodesis (TTCA). In poor bone stock (osteoporosis, neuroarthropathy), device fixation in the hindfoot remains a problem. Fixed-angle spiral-blade fixation of the nail in the calcaneus could be useful. In seven matched pairs of human below-knee specimens, bone mineral density (BMD) was determined, and TTCA was performed with an intramedullary nail (Synthes Hindfoot Arthrodesis Nail HAN Expert Nailing System), using a conventional screw plus a fixed-angle spiral blade versus a conventional screw plus a fixed-angle screw, in the calcaneus. The constructs were subjected to quasi-static loading (dorsiflexion/plantarflexion, varus/valgus, rotation) and to cyclic loading to failure. Parameters studied were construct neutral zone (NZ) and range of motion (ROM), and number of cycles to failure. With dorsiflexion/plantarflexion loading, the screw-plus-spiral-blade constructs had a significantly smaller ROM in the quasi-static test (p = 0.028) and early in the cyclic test (p = 0.02); differences in the other parameters were not significant. There was a significant correlation between BMD and cycles to failure for the two-screw constructs (r = 0.94; p = 0.002) and for the screw-plus-spiral-blade constructs (r = 0.86; p = 0.014). In TTCA with a HAN Expert Nailing System, the use of a calcaneal spiral blade can further reduce motion within the construct. This may be especially useful in poor bone stock. Results obtained in this study could be used to guide the operating surgeon's TTCA strategy.

  8. Postlaunch Assessment of the Response Versus Scan Angle for the Thermal Emissive Bands of Visible Infrared Imaging Radiometer Suite On-Board the Suomi National Polar-Orbiting Partnership Satellite

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Chiang, Kwofu

    2017-01-01

    The visible infrared imaging radiometer suite (VIIRS) is a key sensor carried on the Suomi national polar-orbiting partnership (S-NPP) satellite, which was launched in October 2011. It has several on-board calibration components, including a solar diffuser and a solar diffuser stability monitor for the reflective solar bands, a V-groove blackbody for the thermal emissive bands (TEB), and a space view port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to characterize the on-orbit response for all scan angles relative to the calibrator scan angle. Since the RVS is vitally important to the quality of calibrated radiance products, several independent studies were performed to analyze the prelaunch RVS measurement data. A spacecraft level pitch maneuver was scheduled during the first 3 months of intensive Cal/Val. The S-NPP pitch maneuver provided a rare opportunity for VIIRS to make observations of deep space over the entire range of Earth view scan angles, which can be used to characterize the TEB RVS. This study provides our analysis of the pitch maneuver data and assessment of the derived TEB RVS by comparison with prelaunch results. In addition, the stability of the RVS after the first 5 years of operation is examined using observed brightness temperatures (BT) over a clear ocean at various angles of incidence (AOI). To reduce the impact of variations in the BT measurements, the daily overpasses collected over the ocean are screened for cloud contamination, normalized to the results obtained at the blackbody AOI, and averaged each year.

  9. Optical Reflectance Measurements for Commonly Used Reflectors

    NASA Astrophysics Data System (ADS)

    Janecek, Martin; Moses, William W.

    2008-08-01

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.

  10. Angulated Implants for Fabrication of Implant Supported Fixed Partial Denture in the Maxilla

    PubMed Central

    Egbert, Nicholas; Ahuja, Swati; Selecman, Audrey; Wicks, Russell

    2017-01-01

    Until recently, angled abutments have been the only solution to correcting the trajectory of the emergence profile of labially inclined implants in the maxilla. However, the clinical implications of angled abutments reveal several shortcomings. Newly designed angulated implants with a 12-degree restorative platform angulation are an alternative to angled abutments. The purpose of this article was to report a case utilizing new angulated implants (Co-axis, Keystone dental, Burlington, MA, USA) in the premaxilla thereby facilitating fabrication of a multi-unit implant retained fixed dental prosthesis. PMID:29201975

  11. Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules

    DOE PAGES

    Marion, Bill

    2017-03-27

    Here, a numerical method is provided for solving the integral equation for the angle-of-incidence (AOI) correction factor for diffuse radiation incident photovoltaic (PV) modules. The types of diffuse radiation considered include sky, circumsolar, horizon, and ground-reflected. The method permits PV module AOI characteristics to be addressed when calculating AOI losses associated with diffuse radiation. Pseudo code is provided to aid users in the implementation, and results are shown for PV modules with tilt angles from 0° to 90°. Diffuse AOI losses are greatest for small PV module tilt angles. Including AOI losses associated with the diffuse irradiance will improve predictionsmore » of PV system performance.« less

  12. Stable high absorption metamaterial for wide-angle incidence of terahertz wave

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Zeng, Zuoxun; Xiang, Dong; Lv, Tao; Zhang, Guangyong; Yang, Hongwu

    2014-04-01

    We propose a metamaterial based on metallic Jerusalem cross and cross-wire structures for realizing relatively stable high absorption with respect to the wide angle incidence of both polarized terahertz (THz) waves. Numerical simulations are carried out to verify the proposed absorber. For both transverse electric and transverse magnetic polarizations, absorptions around 0.93 THz reach nearly up to unity under normal incidence and maintain above 97% over a wide incidence angle range. The THz absorber can be easily micro-fabricated due to a thickness about 40 times smaller than operating wavelength. The proposed metamaterial is a promising candidate as absorbing element in THz thermal imager, due to its wide angle, stable high absorption and very thin thickness.

  13. Metamaterial Designs for Photovoltaic and IR Focal-Plane-Imaging Array Applications

    DTIC Science & Technology

    2013-03-01

    incident angles above 17 degrees. There also seems to be no Brewster angle (i.e. the angle at which reflection = 0) for the reflection from the MTM...half- space, while glass has as Brewster angle at 56 degrees incident for TM polarized light. 0 5 10 15 20 25 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9...and incident spot beams from an objective lens . The spot beams hitting the detectors are absorbed, but the power of the spot beams falling in between

  14. Energy loss and inelastic diffraction of fast atoms at grazing incidence

    NASA Astrophysics Data System (ADS)

    Roncin, Philippe; Debiossac, Maxime; Oueslati, Hanene; Raouafi, Fayçal

    2018-07-01

    The diffraction of fast atoms at grazing incidence on crystal surfaces (GIFAD) was first interpreted only in terms of elastic diffraction from a perfectly periodic rigid surface with atoms fixed at equilibrium positions. Recently, a new approach has been proposed, referred here as the quantum binary collision model (QBCM). The QBCM takes into account both the elastic and inelastic momentum transfers via the Lamb-Dicke probability. It suggests that the shape of the inelastic diffraction profiles are log-normal distributions with a variance proportional to the nuclear energy loss deposited on the surface. For keV Neon atoms impinging on a LiF(0 0 1) surface under an incidence angle θ , the predictions of the QBCM in its analytic version are compared with numerical trajectory simulations. Some of the assumptions such as the planar continuous form, the possibility to neglect the role of lithium atoms and the influence of temperature are investigated. A specific energy loss dependence ΔE ∝θ7 is identified in the quasi-elastic regime merging progressively to the classical onset ΔE ∝θ3 . The ratio of these two predictions highlights the role of quantum effects in the energy loss.

  15. Analysis of polarization radar returns from ice clouds

    NASA Astrophysics Data System (ADS)

    Battaglia, A.; Sturniolo, O.; Prodi, F.

    Using a modified T-matrix code, some polarimetric single-scattering radar parameters ( Zh,v, LDR h,v, ρhv, ZDR and δhv) from populations of ice crystals in ice phase at 94 GHz, modeled with axisymmetric prolate and oblate spheroidal shapes for a Γ-size distribution with different α parameter ( α=0, 1, 2) and characteristic dimension Lm varying from 0.1 to 1.8 mm, have been computed. Some of the results for different radar elevation angles and different orientation distribution for fixed water content are shown. Deeper analysis has been carried out for pure extensive radar polarimetric variables; all of them are strongly dependent on the shapes (characterised by the aspect ratio), the canting angle and the radar elevation angle. Quantities like ZDR or δhv at side incidence or LDR h and ρhv at vertical incidence can be used to investigate the preferred orientation of the particles and, in some cases, their habits. We analyze scatterplots using couples of pure extensive variables. The scatterplots with the most evident clustering properties for the different habits seem to be those in the ( ZDR [ χ=0°], δhv [ χ=0°]), in the ( ZDR [ χ=0°], LDR h [ χ=90°]) and in the ( ZDR [ χ=0°], ρhv [ χ=90°]) plane. Among these, the most appealing one seems to be that involving ZDR and ρhv variables. To avoid the problem of having simultaneous measurements with a side and a vertical-looking radar, we believe that measurements of these two extensive variables using a radar with an elevation angle around 45° can be an effective instrument to identify different habits. In particular, this general idea can be useful for future space-borne polarimetric radars involved in the studies of high ice clouds. It is also believed that these results can be used in next challenge of developing probabilistic and expert methods for identifying hydrometeor types by W-band radars.

  16. Double differential cross sections of ethane molecule

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev

    2018-05-01

    Partial and total double differential cross sections corresponding to various cations C2H6+, C2H4+, C2H5+, C2H3+, C2H2+, CH3+, H+, CH2+, C2H+, H2+, CH+, H3+, C2+ and C+ produced during the direct and dissociative electron ionization of Ethane (C2H6) molecule have been calculated at fixed impinging electron energies 200 and 500eV by using modified Jain-Khare semi empirical approach. The calculation for double differential cross sections is made as a function of energy loss suffered by primary electron and angle of incident. To the best of my knowledge no other data is available for the comparison.

  17. Parametric Blade Study Test Report Rotor Configuration. Number 2

    DTIC Science & Technology

    1988-11-01

    Incidence Angle (100% N) .............. 51 9 Rotor Relative Inlet Mach Number (100% N) ... 51 1G Rotor Loss Coefficient (100% N) ............. 52 11 Rotor...Diffusion Factor (100% N) ............. 52 12 Rotor Deviation Angle (100% N) .............. 53 13 Stator Incidence Angle (100% N) ............. 53 14...78 50 Stator Deviation Angle (90% N) .............. 79 51 Stator Loss Coefficient (90% N) ............. 79 52 Static Pressure Distribution

  18. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    PubMed

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the stall behavior more gentle. The benefits of using the effector could include care-free operations at high angles of attack during perching and maneuvering flight, especially in gusty conditions.

  19. Electromagnetic backscattering from freak waves in (1 + 1)-dimensional deep-water

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Shen, Tao; William, Perrie; Chen, Wei; Kuang, Hai-Lan

    2010-05-01

    To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1 + 1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles.

  20. Effect of the incidence angle to free space optical communication based on cat-eye modulating retro-reflector

    NASA Astrophysics Data System (ADS)

    Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui; Shan, Cong-miao

    2013-08-01

    Based on the cat-eye effect of optical system, free space optical communication based on cat-eye modulating retro-reflector can build communication link rapidly. Compared to classical free space optical communication system, system based on cat-eye modulating retro-reflector has great advantages such as building communication link more rapidly, a passive terminal is smaller, lighter and lower power consuming. The incident angle is an important factor of cat-eye effect, so it will affect the retro-reflecting communication link. In this paper, the principle and work flow of free space optical communication based on cat-eye modulating retro-reflector were introduced. Then, using the theory of geometric optics, the equivalent model of modulating retro-reflector with incidence angle was presented. The analytical solution of active area and retro-reflected light intensity of cat-eye modulating retro-reflector were given. Noise of PIN photodetector was analyzed, based on which, bit error rate of free space optical communication based on cat-eye modulating retro-reflector was presented. Finally, simulations were done to study the effect of incidence angle to the communication. The simulation results show that the incidence angle has little effect on active area and retro-reflected light intensity when the incidence beam is in the active field angle of cat-eye modulating retro-reflector. With certain system and condition, the communication link can rapidly be built when the incidence light beam is in the field angle, and the bit error rate increases greatly with link range. When link range is smaller than 35Km, the bit error rate is less than 10-16.

  1. Secondary electron emission from electrically charged fluorinated-ethylene-propylene Teflon for normal and non-normal electron incidence. M.S. Thesis; [spacecraft thermal coatings

    NASA Technical Reports Server (NTRS)

    Budd, P. A.

    1981-01-01

    The secondary electron emission coefficient was measured for a charged polymer (FEP-Teflon) with normally and obliquely incident primary electrons. Theories of secondary emission are reviewed and the experimental data is compared to these theories. Results were obtained for angles of incidence up to 60 deg in normal electric fields of 1500 V/mm. Additional measurements in the range from 50 to 70 deg were made in regions where the normal and tangential fields were approximately equal. The initial input angles and measured output point of the electron beam could be analyzed with computer simulations in order to determine the field within the chamber. When the field is known, the trajectories can be calculated for impacting electrons having various energies and angles of incidence. There was close agreement between the experimental results and the commonly assumed theoretical model in the presence of normal electric fields for angles of incidence up to 60 deg. High angle results obtained in the presence of tangential electric fields did not agree with the theoretical models.

  2. Wherefore Stoppt Thou Me?

    NASA Image and Video Library

    2015-03-11

    Like the Wedding Guest in the thrall of the Ancient Mariner, we are transfixed by the stunning landscape of today's image and the dramatic story it tells. The large degraded impact crater near the center is Coleridge. It has been pummeled by later impacts, crumpled by the formation of lobate scarps, deeply incised by secondary crater chains, and much of the interior and low-lying portions of the exterior have been infilled by plains volcanism. Samuel Taylor Coleridge (1772-1834) was an English poet, known for The Rime of the Ancient Mariner and Kubla Khan. This image was acquired as part of MDIS's high-incidence-angle base map. The high-incidence-angle base map complements the surface morphology base map of MESSENGER's primary mission that was acquired under generally more moderate incidence angles. High incidence angles, achieved when the Sun is near the horizon, result in long shadows that accentuate the small-scale topography of geologic features. The high-incidence-angle base map was acquired with an average resolution of 200 meters/pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19238

  3. Comparison of experimental and theoretical boundary-layer separation for inlets at incidence angle at low-speed conditions

    NASA Technical Reports Server (NTRS)

    Felderman, E. J.; Albers, J. A.

    1975-01-01

    Comparisons between experimental and theoretical Mach number distributions and separation locations are presented for the internal surfaces of four different subsonic inlet geometries with exit diameters of 13.97 centimeters. The free stream Mach number was held constant at 0.127, the one-dimensional throat Mach number ranged from 0.49 to 0.71, and the incidence angle ranged from 0 deg to 50 deg. Generally good agreement was found between the theoretical and experimental surface Mach number distributions as long as no flow separation existed. At high incidence angles, where separation was obvious in the experimental data, the theory predicted separation on the lip. At lower incidence angles, the theoretical results indicated diffuser separation which was not obvious from the experimental surface Mach number distributions. As incidence angle was varied from 0 deg to 50 deg, the predicted separation location shifted from the diffuser region to the inlet highlight. Relatively small total pressure losses were obtained when the predicted separation location was greater than 0.6 of the distance between the highlight and the diffuser exit.

  4. The Properties of Terrestrial Laser System Intensity for Measuring Leaf Geometries: A Case Study with Conference Pear Trees (Pyrus Communis)

    PubMed Central

    Balduzzi, Mathilde A.F.; Van der Zande, Dimitry; Stuckens, Jan; Verstraeten, Willem W.; Coppin, Pol

    2011-01-01

    Light Detection and Ranging (LiDAR) technology can be a valuable tool for describing and quantifying vegetation structure. However, because of their size, extraction of leaf geometries remains complicated. In this study, the intensity data produced by the Terrestrial Laser System (TLS) FARO LS880 is corrected for the distance effect and its relationship with the angle of incidence between the laser beam and the surface of the leaf of a Conference Pear tree (Pyrus Commmunis) is established. The results demonstrate that with only intensity, this relationship has a potential for determining the angle of incidence with the leaves surface with a precision of ±5° for an angle of incidence smaller than 60°, whereas it is more variable for an angle of incidence larger than 60°. It appears that TLS beam footprint, leaf curvatures and leaf wrinkles have an impact on the relationship between intensity and angle of incidence, though, this analysis shows that the intensity of scanned leaves has a potential to eliminate ghost points and to improve their meshing. PMID:22319374

  5. Experimental investigation of unsteady flows at large incidence angles in a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; King, Aaron J.; Capece, Vincent R.; El-Aini, Yehia M.

    1996-01-01

    The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies up to 0.8 for out-of-phase oscillations at Mach numbers up to 0.8 and chordal incidence angles of 0 deg and 10 deg. For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

  6. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle.

    PubMed

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2016-05-01

    A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers.

  7. ULTRASONIC FLAW DETECTION METHOD AND MEANS

    DOEpatents

    Worlton, D.C.

    1961-08-15

    A method of detecting subsurface flaws in an object using ultrasonic waves is described. An ultnasonic wave of predetermined velocity and frequency is transmitted to engage the surface of the object at a predetermined angle of inci dence thereto. The incident angle of the wave to the surface is determined with respect to phase velocity, incident wave velocity, incident wave frequency, and the estimated depth of the flaw so that Lamb waves of a particular type and mode are induced only in the portion of the object between the flaw and the surface. These Lamb waves are then detected as they leave the object at an angle of exit equal to the angle of incidence. No waves wlll be generated in the object and hence received if no flaw exists beneath the surface. (AEC)

  8. Systematic review of outcomes following fixed angle intramedullary fixation of distal radius fractures.

    PubMed

    Hardman, John; Al-Hadithy, Nawfal; Hester, Thomas; Anakwe, Raymond

    2015-12-01

    There remains little consensus regarding the optimal management of distal radius fractures. Fixed angle volar devices have gained recent popularity, but have also been associated with soft tissue complications. Intramedullary (IM) devices offer fixed angle stabilisation with minimally invasive surgical technique and low, IM profile. No formal review of outcomes could be identified. We conducted a systematic review of clinical studies regarding the use of fixed angle IM devices in acute extra-articular or simple intra-articular distal radius fractures. Preferred Reporting Items for Systematic Reviews (PRISMA) guidance was followed. Numerical data regarding functional scores, ranges of movement, radiological outcomes and complications were pooled to produce aggregate means and standard deviation. A total of 310 titles and abstracts were identified. Fourteen papers remained for analysis. Total patient number was 357, mean age 63.72 years and mean follow-up 12.77 months. Mean functional scores were all rated as 'excellent'. Aggregate means: flexion 53.62°, extension 56.38°, pronation 69.10°, supination 70.29°, ulnar deviation 28.35°, radial deviation 18.12°, radial height 8.98 mm, radial inclination 16.51°, volar tilt 5.35°, ulnar variance 0.66 mm and grip strength 90.37 %. Overall complication rate was 19.6 %. Tendon rupture was unreported. Tendon irritation was 0.88 %. Radial nerve paraesthesia was 11.44 %. Fixed angle IM devices facilitate excellent functional outcomes, with radiological and clinical parameters at least equivalent to volar plate devices. Low rates of tendon irritation and absence of tendon rupture are advantageous. Significant limitations include a lack of application for complex articular injuries and the propensity to cause a transient neuritis of the superficial branch of the radial nerve.

  9. Fixed-angle plates in patella fractures - a pilot cadaver study

    PubMed Central

    2011-01-01

    Objective Modified anterior tension wiring with K-wires and cannulated lag screws with anterior tension wiring are currently the fixation of choice for patellar fractures. Failure of fixation, migration of the wires, postoperative pain and resulting revision surgery, however, are not uncommon. After preliminary biomechanical testing of a new fixed-angle plate system especially designed for fixation of patella fractures the aim of this study was to evaluate the surgical and anatomical feasibility of implanting such a plate-device at the human patella. Methods In six fresh unfixed female cadavers without history of previous fractures around the knee (average age 88.8 years) a bilateral fixed-angle plate fixation of the patella was carried out after previous placement of a transverse central osteotomy. Operative time, intra-operative problems, degree of retropatellar arthritis (following Outerbridge), quality of reduction and existence of any intraarticular screw placement have been raised. In addition, lateral and anteroposterior radiographs of all specimens were made. Results Due to the high average age of 88.8 years no patella showed an unimpaired retropatellar articular surface and all were severely osteoporotic, which made a secure fixation of the reduction forceps during surgery difficult. The operation time averaged 49 minutes (range: 36-65). Although in postoperative X-rays the fracture gap between the fragments was still visible, the analysis of the retropatellar surface showed no residual articular step or dehiscence > 0.5 mm. Also in a total of 24 inserted screws not one intraarticular malposition was found. No intraoperative complications were noticed. Conclusions Osteosynthesis of a medial third patella fracture with a bilateral fixed-angle plate-device is surgically and anatomically feasible without difficulties. Further studies have to depict whether the bilateral fixed-angle plate-osteosynthesis of the patella displays advantages over the established operative procedures. PMID:21345769

  10. View angle effect in LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Kaneko, T.; Engvall, J. L.

    1977-01-01

    The view angle effect in LANDSAT 2 imagery was investigated. The LANDSAT multispectral scanner scans over a range of view angles of -5.78 to 5.78 degrees. The view angle effect, which is caused by differing view angles, could be studied by comparing data collected at different view angles over a fixed location at a fixed time. Since such LANDSAT data is not available, consecutive day acquisition data were used as a substitute: they were collected over the same geographical location, acquired 24 hours apart, with a view angle change of 7 to 8 degrees at a latitude of 35 to 45 degrees. It is shown that there is approximately a 5% reduction in the average sensor response on the second-day acquisitions as compared with the first-day acquisitions, and that the view angle effect differs field to field and crop to crop. On false infrared color pictures the view angle effect causes changes primarily in brightness and to a lesser degree in color (hue and saturation). An implication is that caution must be taken when images with different view angles are combined for classification and a signature extension technique needs to take the view angle effect into account.

  11. Research in the Optical Sciences

    DTIC Science & Technology

    2011-03-21

    concentrators are often characterized by an acceptance angle. Typically, the acceptance angle is specified in the following way. The optical throughput...function of the angle between the incident sunlight and the optical axis of the concentrator . The optical throughput is highest for an incident...shown that the maximum possible acceptance angle is given by max 1arcsin C        , where C is the optical concentration [2

  12. Angle dependent defect modes in a photonic crystal filter doped by high and low temperature superconductor defects

    NASA Astrophysics Data System (ADS)

    Sreejith K., P.; Mathew, Vincent

    2018-05-01

    We have theoretically investigated the incident angle dependent defect modes in a dual channel photonic crystal filter composed of a high and low temperature superconductor defects. It is observed that the defect mode wavelength can be significantly tuned by incident angle for both polarizations. The angle sensitive defect mode property is of particular application in designing narrow band transmission filter.

  13. Orthodontic aligners and root resorption: A systematic review.

    PubMed

    Elhaddaoui, Rajae; Qoraich, Halima Saadia; Bahije, Loubna; Zaoui, Fatima

    2017-03-01

    Root resorption is one of the leading problems in orthodontic treatment. Most earlier studies have assessed the incidence and severity of root resorption following orthodontic treatment using fixed appliances as well as associated factors. However, few studies have assessed these parameters in the context of orthodontic treatment using thermoplastic splints or aligners. The aim of this systematic review was to assess the incidence and severity of root resorption following orthodontic treatment using aligners and associated factors. A comparative analysis was also made with fixed multi-bracket treatments. The data bases consulted were: Medline, Embase, EBSCO Host, Cochrane Library and Science Direct. Our search included meta-analyses, randomized and non-randomized controled trials, cohort studies and descriptive studies published before December 2015 and evidencing a connection with the incidence and severity of root resorption following orthodontic treatment using aligners alone or compared with fixed multi-bracket treatments. Among the 93 selected references, only 3 studies met our selection criteria. The incidence of root resorption ranged between 0 and 46%, of which 6% were severe cases. Relative to fixed multi-bracket non-extraction treatments to correct the same malocclusions, the incidence of resorption ranged between 2% and 50%, of which 22% were severe cases. In both techniques, the incidence of resorption was higher for the maxillary incisors and was not influenced by either age or sex. In malocclusion cases not requiring extractions, orthodontic aligner treatment is possibly associated with a lower incidence of resorption than fixed multi-bracket treatment. Further research encompassing extraction cases is needed to better assess the incidence and severity of root resorption following the use of these removable appliances. Copyright © 2016 CEO. Published by Elsevier Masson SAS. All rights reserved.

  14. Changes of polarimetric scattering characteristics of ALOS PALSAR caused by the 2011 Eruption of Shinmoe-dake Volcano

    NASA Astrophysics Data System (ADS)

    Ohkura, Hiroshi

    Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.

  15. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  16. The Use of Magnetic Orientation as a Pinning Modality for Investigation of Photon-Magnon Interactions in Magnetic Nanoparticle Systems.

    PubMed

    Cuong, Giap Van; Su, Luong Van; Tue, Nguyen Anh; Khanh, Hoang Quoc; Tuan, Nguyen Anh

    2018-06-01

    In this work, an experimental setup to study the dependence of a visible-light transmission through a magnetic granular film on the magnetic field direction was presented. The results measured the transmission (T) of the visible light, with the wavelengths λ were in the range from 560 to 695 nm, by the magnetic nanogranular films Cox-(Al2O3)100-x system, with Co compositions are x = 10 ÷ 45 at.%, as a function of the magnetic field direction were reported. These investigations were carried out under an external magnetic field of H = 400 Oe, which directs to the normal of the sample surface by an angle varied in the range of φ = 0° ÷ 45°, to magnetize the magnetization direction of all the Co particles following this direction. Consequently, the angle φ between the magnetization direction with the incident-light direction, which sets as the optical axis of the system and always keeps fixedly to the normal of the sample surface, is established. The experimental results showed the different dependencies of T on the angle φ, the magnetic field H, the Co composition x, and the wavelength λ. These dependencies attributed to a behavior that relates to so-called photon-magnon interaction.

  17. Development of a robotic patient positioning system with a wide beam-angle range for fixed-beam particle therapy

    NASA Astrophysics Data System (ADS)

    Choi, Hongseok; Park, Jong-Oh; Ko, Seong Young; Park, Sukho; Cho, Sungho; Jung, Won-Gyun; Park, Yong Kyun; Kang, Jung Suk

    2016-10-01

    This paper describes a robotic patient positioning system (PPS) for a fixed-beam heavy-ion therapy system. In order to extend the limited irradiation angle range of the fixed beam, we developed a 6-degree-of-freedom (6-DOF) serial-link robotic arm and used it as the robotic PPS for the fixed-beam heavy-ion therapy system. This research aims to develop a robotic PPS for use in the Korea Heavy Ion Medical Accelerator (KHIMA) system, which is under development at the Korea Institute of Radiological & Medical Sciences (KIRAMS). In particular, we select constraints and criteria that will be used for designing and evaluating the robotic PPS through full consultation with KIRAMS. In accordance with the constraints and criteria, we develop a 6-DOF serial-link robotic arm that consists of six revolute joints for the robotic PPS, where the robotic arm covers the upper body of a patient as a treatment area and achieves a 15 ° roll and pitch angle in the treatment area without any collision. Various preliminary experiments confirm that the robotic PPS can meet all criteria for extension of the limited irradiation angle range in the treatment area and has a positioning repeatability of 0.275 mm.

  18. Factors affecting the impingement angle of fixed- and mobile-bearing total knee replacements: a laboratory study.

    PubMed

    Walker, Peter S; Yildirim, Gokce; Sussman-Fort, Jon; Roth, Jonathan; White, Brian; Klein, Gregg R

    2007-08-01

    Maximum flexion-or impingement angle-is defined as the angle of flexion when the posterior femoral cortex impacts the posterior edge of the tibial insert. We examined the effects of femoral component placement on the femur, the slope angle of the tibial component, the location of the femoral-tibial contact point, and the amount of internal or external rotation. Posterior and proximal femoral placement, a more posterior femoral-tibial contact point, and a more tibial slope all increased maximum flexion, whereas rotation reduced it. A mobile-bearing knee gave results similar to those of the fixed-bearing knee, but there was no loss of flexion in internal or external rotation if the mobile bearing moved with the femur. In the absence of negative factors, a flexion angle of 150 degrees can be reached before impingement.

  19. Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2017-01-01

    This report addresses position corrections made to airspeed and aerodynamic flow angle measurements on fixed-wing aircraft. These corrections remove the effects of angular rates, which contribute to the measurements when the sensors are installed away from the aircraft center of mass. Simplified corrections, which are routinely used in practice and assume small flow angles and angular rates, are reviewed. The exact, nonlinear corrections are then derived. The simplified corrections are sufficient in most situations; however, accuracy diminishes for smaller aircraft that incur higher angular rates, and for flight at high air flow angles. This is demonstrated using both flight test data and a nonlinear flight dynamics simulation of a subscale transport aircraft in a variety of low-speed, subsonic flight conditions.

  20. Development of an angle-scanning spectropolarimeter: Preliminary results

    NASA Astrophysics Data System (ADS)

    Nouri, Sahar A.; Gregory, Don A.; Fuller, Kirk

    2018-02-01

    A fixed-angle spectropolarimeter capable of measuring the Mueller matrix of particle deposits and conventional optical elements over the 300-1100 nm spectral range has been built, calibrated and extensively tested. A second generation of this instrument is being built which can scan from 0° to near 180° in both scattering angle and sample orientation, enabling studies of the bidirectional Mueller matrices of nanoparticle arrays, atmospheric aerosol deposits, and nano- and microstructured surfaces. This system will also provide a much needed metrology capability for fully characterizing the performance of optical devices and device components from the near-infrared through the medium wave ultraviolet. Experimental results taken using the first generation fixed-angle arrangement will be presented along with the rationale for building the second.

  1. A generalized theory of thin film growth

    NASA Astrophysics Data System (ADS)

    Du, Feng; Huang, Hanchen

    2018-03-01

    This paper reports a theory of thin film growth that is generalized for arbitrary incidence angle during physical vapor deposition in two dimensions. The accompanying kinetic Monte Carlo simulations serve as verification. A special theory already exists for thin film growth with zero incidence angle, and another theory also exists for nanorod growth with a glancing angle. The theory in this report serves as a bridge to describe the transition from thin film growth to nanorod growth. In particular, this theory gives two critical conditions in analytical form of critical coverage, ΘI and ΘII. The first critical condition defines the onset when crystal growth or step dynamics stops following the wedding cake model for thin film growth. The second critical condition defines the onset when multiple-layer surface steps form to enable nanorod growth. Further, this theory also reveals a critical incidence angle, below which nanorod growth is impossible. The critical coverages, together with the critical incidence angle, defines a phase diagram of thin growth versus nanorod growth.

  2. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.

    PubMed

    Gao, M; Huang, X; Yang, P; Kattawar, G W

    2013-08-20

    The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.

  3. The effect of vegetation type, microrelief, and incidence angle on radar backscatter

    NASA Technical Reports Server (NTRS)

    Owe, M.; Oneill, P. E.; Jackson, T. J.; Schmugge, T. J.

    1985-01-01

    The NASA/JPL Synthetic Aperture Radar (SAR) was flown over a 20 x 110 km test site in the Texas High Plains regions north of Lubbock during February/March 1984. The effect of incidence angle was investigated by comparing the pixel values of the calibrated and uncalibrated images. Ten-pixel-wide transects along the entire azimuth were averaged in each of the two scenes, and plotted against the calculated incidence angle of the center of each range increment. It is evident from the graphs that both the magnitudes and patterns exhibited by the corresponding transect means of the two images are highly dissimilar. For each of the cross-poles, the uncalibrated image displayed very distinct and systematic positive trends through the entire range of incidence angles. The two like-poles, however, exhibited relatively constant returns. In the calibrated image, the cross-poles exhibited a constant return, while the like-poles demonstrated a strong negative trend across the range of look-angles, as might be expected.

  4. A comparative study on omnidirectional anti-reflection SiO2 nanostructure films coating by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-02-01

    Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional SiO2 nanostructure film coating.

  5. Artificial phototropism based on a photo-thermo-responsive hydrogel

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Hamsini

    Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon absorption. Slopes of 0.82 and 0.56 were observed for the low and high Au NP concentration samples. The rapid and precise incident light tracking of our system has shown the promise in phototropic applications.

  6. Field Experiments on SAR Detection of Film Slicks

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; da Silva, J. C. B.; Kapustin, I.; Sergievskaya, I.

    2013-03-01

    Field experiments on radar detection of film slicks using satellite synthetic aperture radar TerraSAR-X and X-band scatterometer on board a research vessel are described. The experiments were carried out with surfactant films with known physical parameters, the surface tension and the film elasticity, at low to moderate wind conditions and at different radar incidence angles. It is shown that the depression of radar backscatter (contrast) in films slicks for X-band SAR weakly depends on wind velocity/direction, film elasticity and incidence angles within the range of 200-400. Scatterometer contrasts obtained at incidence angles of about 600 are larger than SAR contrasts. Theoretical analysis of radar contrasts for low-to-moderate incidence angles has been carried out based on a hydrodynamic model of wind wave damping due to films and on a composite radar imaging model. The hydrodynamic model takes into account wave damping due to viscoelastic films, wind wave generation and a phenomenological term describing nonlinear limitation of the wind wave spectrum. The radar model takes into account Bragg scattering and specular scattering mechanisms, the latter is usually negligible compared to the Bragg mechanism at moderate incidence angles (larger than 30-35 degrees), but gives noticeable contribution to radar backscattering at smaller incidence angles particularly for slick areas when cm-scale ripples are strongly depressed by films. Calculated radar contrasts in slicks are compared with experiments and it is concluded that development of the model is needed to predict quantitatively observations.

  7. Infrared Measurements of the Emissivity of Seawater and Foam

    NASA Astrophysics Data System (ADS)

    Branch, R.; Chickadel, C.; Jessup, A.; Carini, R. J.

    2012-12-01

    The emissivity of water has been modeled extensively in the infrared (IR) from 2-14 μm for incidence angles from 0-85° [Masuda et al. 1988, Shaw & Marston 2000, Nalli et al. 2001] but very few measurements have been published for grazing incidence angles, wavelengths from 3-5 μm, or of sea foam. Grazing incidence angles are commonly used for ship and shore based operations as well as sea surface scene simulation. Overall, water emissivity models predict a steep decline at for angles greater than 60 degrees [Masuda et al. 1988], while sea foam maintains a higher emissivity [Niclos et al. 2007]. Emissivity of foam has also been found to be smaller than water at mid-wave IR wavelengths and small incidence angles [Salisbury et al. 1993]. Further complication arises from the observations that foam from actively breaking waves appears warmer than surrounding water [Eisner et al. 1962], but residual foam appears cooler [Marmorino and Smith, 2005]. Here we present measurements of emissivity at grazing incidence angles (up to 87.5 degrees incidence) of natural seawater and sea foam. Our measurements are made using a Fourier-transform infrared (FTIR) spectrometer observing under both natural skies and laboratory conditions. In a laboratory wind tunnel we plan to test the effect of varying heat flux on the formation of cooling foam, by varying surface wind speed. Results will be compared with existing spectral emissivity models for water and foam.

  8. Modification of Classical SPM for Slightly Rough Surface Scattering with Low Grazing Angle Incidence

    NASA Astrophysics Data System (ADS)

    Guo, Li-Xin; Wei, Guo-Hui; Kim, Cheyoung; Wu, Zhen-Sen

    2005-11-01

    Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classical perturbation method at grazing angle is overcome for the vertical polarization at a rough Neumann boundary of infinite extent. The derivation of the formulae and the numerical results show that the backscattering cross section depends on the grazing angle to the fourth power for both Neumann and Dirichlet boundary conditions with low grazing angle incidence. Our results can reduce to that of the classical small perturbation method by neglecting the Neumann and Dirichlet boundary conditions. The project supported by National Natural Science Foundation of China under Grant No. 60101001 and the National Defense Foundation of China

  9. Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilitiesa)

    NASA Astrophysics Data System (ADS)

    Szabo, C. I.; Feldman, U.; Seely, J. F.; Curry, J. J.; Hudson, L. T.; Henins, A.

    2010-10-01

    The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

  10. Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry

    DOEpatents

    Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul

    2015-04-07

    A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.

  11. Comparison of Pyranometers and Reference Cells on Fixed and One-Axis Tracking Surfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooraghi, Michael R; Sengupta, Manajit; Vignola, Frank

    A wide variety of sensors are used to monitor the irradiance incident on solar modules to evaluate the performance of photovoltaic (PV) systems. These instruments range from secondary standard pyranometers to photodiode-based pyranometers to reference cells. Although instruments are mounted in the plane of array of the modules, a wide range of results have been obtained. Some of these difference have been assumed to come from systematic uncertainties associated with the irradiance sensors. This study is an attempt to quantify these differences by comparing the output of selected thermopile pyranometers to photodiode-based pyranometers and reference cells on a horizontal surface,more » a fixed-tilt surface, and a one-axis tracking surface. This analysis focuses on clear-sky results from two sites with different climatic conditions. Several important features were observed. Photodiode-based pyranometers and reference cells produce widely different results under clear skies, especially at larger angles of incidence, even though both instruments are based on measuring the short-circuit current of solar cells. The difference is caused by the scattering of light as it passes through the glazing of the reference cell or the diffuser lens of the photodioded-base pyranometer. Both instruments are shown to have similar response to the spectral distribution of the irradiance when compared to the thermopile-based pyranometer, which has a response nearly independent of the wavelength of light used by PV modules.« less

  12. [Spectral Study on the Effects of Angle-Tuned Filter Wedge Angle Parameter to Reflecting Characteristics].

    PubMed

    Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi

    2015-08-01

    Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.

  13. Imaging based refractometer for hyperspectral refractive index detection

    DOEpatents

    Baba, Justin S.; Boudreaux, Philip R.

    2015-11-24

    Refractometers for simultaneously measuring refractive index of a sample over a range of wavelengths of light include dispersive and focusing optical systems. An optical beam including the range of wavelengths is spectrally spread along a first axis and focused along a second axis so as to be incident to an interface between the sample and a prism at a range of angles of incidence including a critical angle for at least one wavelength. An imaging detector is situated to receive the spectrally spread and focused light from the interface and form an image corresponding to angle of incidence as a function of wavelength. One or more critical angles are identified and corresponding refractive indices are determined.

  14. Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles.

    PubMed

    Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun

    2015-07-23

    We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves.

  15. Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles

    PubMed Central

    Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun

    2015-01-01

    We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves. PMID:26202495

  16. Investigation of angular dependence on photonic bandgap for 1-D photonic crystal

    NASA Astrophysics Data System (ADS)

    Nigam, Anjali; Suthar, B.; Bhargava, A.; Vijay, Y. K.

    2018-05-01

    In the present communication, we study the one-dimensional photonic crystal structure. The photonic band structure has been obtained using Plane Wave Expansion Method (PWEM). The studied has been extended to investigate the angular dependence on photonic bandgap for 1-D photonic crystal. The photonic bandgap is same both for TE and TM mode for normal incidence, while both mode move separate with an incidence angle. The photonic bandgap is almost unaffected with angle for TE mode while the bandgap decreases with an incidence angle for TM mode.

  17. Constant- q data representation in Neutron Compton scattering on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Senesi, R.; Pietropaolo, A.; Andreani, C.

    2008-09-01

    Standard data analysis on the VESUVIO spectrometer at ISIS is carried out within the Impulse Approximation framework, making use of the West scaling variable y. The experiments are performed using the time-of-flight technique with the detectors positioned at constant scattering angles. Line shape analysis is routinely performed in the y-scaling framework, using two different (and equivalent) approaches: (1) fitting the parameters of the recoil peaks directly to fixed-angle time-of-flight spectra; (2) transforming the time-of-flight spectra into fixed-angle y spectra, referred to as the Neutron Compton Profiles, and then fitting the line shape parameters. The present work shows that scattering signals from different fixed-angle detectors can be collected and rebinned to obtain Neutron Compton Profiles at constant wave vector transfer, q, allowing for a suitable interpretation of data in terms of the dynamical structure factor, S(q,ω). The current limits of applicability of such a procedure are discussed in terms of the available q-range and relative uncertainties for the VESUVIO experimental set up and of the main approximations involved.

  18. Aerodynamic Measurements of an Incidence Tolerant Blade in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.

    2012-01-01

    An overview of the recent facility modifications to NASA s Transonic Turbine Blade Cascade Facility and aerodynamic measurements on the VSPT incidence-tolerant blade are presented. This work supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 or more variations in VSPT blade incidence angles. The Transonic Turbine Blade Cascade Facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Details of the modifications are described. An incidence-tolerant blade was developed under an RTPAS study contract and tested in the cascade to look at the effects of large incidence angle and Reynolds number variations. Recent test results are presented which include midspan exit total pressure and flow angle measurements obtained at three inlet angles representing the cruise, take-off, and maximum incidence flight mission points. For each inlet angle, data were obtained at five flow conditions with exit Reynolds numbers varying from 2.12 106 to 2.12 105 and two isentropic exit Mach numbers of 0.72 and 0.35. Three-dimensional flowfield measurements were also acquired at the cruise and take-off points. The flowfield measurements were acquired using a five-hole and three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  19. Depolarization in liquid-crystal televisions

    NASA Astrophysics Data System (ADS)

    Pezzaniti, Larry J.; McClain, Stephen C.; Chipman, Russell A.; Lu, Shih-Yau

    1993-12-01

    TVT-6000 liquid crystal television (LCTV) polarization properties have been mapped as a function of biased voltage to the pixel and angle of incidence by a Mueller-matrix imaging polarimeter at 632.8 nm. Operating without polarizers the LCTV shows between 2% to 9% depolarization depending on angle of incidence, the incident polarization state, and the pixel bias voltage.

  20. A conjunct near-surface spectroscopy system for fix-angle and multi-angle continuous measurements of canopy reflectance and sun-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Fan, Yifeng; Zhang, Yongguang; Chou, Shuren; Ju, Weimin; Chen, Jing M.

    2016-09-01

    An automated spectroscopy system, which is divided into fix-angle and multi-angle subsystems, for collecting simultaneous, continuous and long-term measurements of canopy hyper-spectra in a crop ecosystem is developed. The fix-angle subsystem equips two spectrometers: one is HR2000+ (OceanOptics) covering the spectral range 200-1100 nm with 1.0 nm spectral resolution, and another one is QE65PRO (OceanOptics) providing 0.1 nm spectral resolution within the 730-780 nm spectral range. Both spectrometers connect a cosine-corrected fiber-optic fixed up-looking to collect the down-welling irradiance and a bare fiber-optic to measure the up-welling radiance from the vegetation. An inline fiber-optic shutter FOS-2x2-TTL (OceanOptics) is used to switch between input fibers to collect the signal from either the canopy or sky at one time. QE65PRO is used to permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2-A band. The data collection scheme includes optimization of spectrometer integration time to maximize the signal to noise ratio and measurement of instrument dark currency. The multi-angle subsystem, which can help understanding bidirectional reflectance effects, alternatively use HR4000 (OceanOptics) providing 0.1 nm spectral resolution within the 680-800 nm spectral range to measure multi-angle SIF. This subsystem additionally includes a spectrometer Unispec-DC (PPSystems) featuring both up-welling and down-welling channels with 3 nm spectral resolution covering the 300-1100 nm spectral range. Two down-looking fiber-optics are mounted on a rotating device PTU-D46 (FLIR Systems), which can rotate horizontally and vertically at 10° angular step widths. Observations can be used to calculate canopy reflectance, vegetation indices and SIF for monitoring plant physiological processes.

  1. Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu

    2014-03-01

    Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.

  2. The fates of pedicle screws and functional outcomes in a geriatric population following polymethylmethacrylate augmentation fixation for the osteoporotic thoracolumbar and lumbar burst fractures with mean ninety five month follow-up.

    PubMed

    Lin, Hsi-Hsien; Chang, Ming-Chau; Wang, Shih-Tien; Liu, Chien-Lin; Chou, Po-Hsin

    2018-06-01

    Polymethylmethacrylate (PMMA) augmentation is a common method to increase pullout strength fixed for osteoporotic spines. However, few papers evaluated whether these pedicle screws migrated with time and functional outcome in these geriatrics following PMMA-augmented pedicle screw fixation. From March 2006 to September 2008, consecutive 64 patients were retrospectively enrolled. VAS and ODI were used to evaluate functional outcomes. Kyphotic angle at instrumented levels and horizontal and vertical distances (HD and VD) between screw tip and anterior and upper cortexes were evaluated. To avoid bias, we used horizontal and vertical migration index (HMI and VMI) to re-evaluate screw positions with normalization by the mean of superior and inferior endplates or anterior and posterior vertebral body height, respectively. Forty-six patients with 282 PMMA-augmented screws were analyzed with mean follow-up of 95 months. Nine patients were further excluded due to bed-ridden at latest follow-up. Twenty-six females and 11 males with mean T score of - 2.7 (range, - 2.6 to - 4.1) and mean age for operation of 77.6 ± 4.3 years (range, 65 to 86). The serial HD and kyphotic angle statistically progressed with time. The serial VD did not statistically change with time (p = 0.23), and neither HMI nor VMI (p = 0.772 and 0.631). Pre-operative DEXA results did not correlate with kyphotic angle. Most patients (80.4%) maintained similar functional outcomes at latest follow-up. The incidence of screws loosening was 2.7% of patients and 1.4% of screws, respectively. The overall incidences of systemic post-operative co-morbidities were 24.3% with overall 20.2 days for hospitalization. Most patients (80%) remained similar functional outcomes at latest follow-up in spite of kyphosis progression. The incidence of implant failure was not high, but the post-operative systemic co-morbidities were higher, which has to be informed before index surgery.

  3. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces.

    PubMed

    Mou, Nanli; Sun, Shulin; Dong, Hongxing; Dong, Shaohua; He, Qiong; Zhou, Lei; Zhang, Long

    2018-04-30

    Electromagnetic (EM) wave absorption plays a vital role in photonics. While metasurfaces are proposed to absorb EM waves efficiently, most of them exhibit limited bandwidth and fixed functionalities. Here, we propose a broadband and tunable terahertz (THz) absorber based on a graphene-based metasurface, which is constructed by a single layer of closely patterned graphene concentric double rings and a metallic mirror separated by an ultrathin SiO 2 layer. Plasmonic hybridization between two graphene rings significantly enlarges the absorption bandwidth, which can be further tuned by gating the graphene. Moreover, the specific design also makes our device insensitive to the incident angle and polarization state of impinging EM waves. Our results may inspire certain wave-modulation-related applications, such as THz imaging, smart absorber, tunable sensor, etc.

  4. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    PubMed

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  5. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2013-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10(exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  6. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade. Revision 1

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50 deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10 (exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  7. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2012-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 degrees or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83 × 10(exp 5) to 0.85 ×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition

  8. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    PubMed

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  9. Manufacturing Technology Development of Advanced Components for High Power Solid State Lasers

    DTIC Science & Technology

    2010-07-19

    commercially available that can support an intra-cavity wavelength of 1030 nm. Losses were reduced by ensuring that the apex angle provided a Brewster ...in Figure 2.2), one can map the optical path distance distribution near the interface region. An oblique angle may be used to resolve the order of...U:YAG) composite of a 62° incident angle in (A), and a .5% Er:YAG// U:YAG composite of a 20° incident angle in (B) The refractive index difference

  10. Elastic and inelastic scattering of alpha particles from /sup 40,44/Ca over a broad range of energies and angles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbar, T.; Gregoire, G.; Paic, G.

    1978-09-01

    Angular distributions for ..cap alpha.. particle elastic scattering by /sup 40,44/Ca and excitation of the 3.73 MeV 3/sup -/ collective state of /sup 40/Ca were measured for incident energies ranging from 40 to 62 MeV. An extensive optical model analysis of these elastic scattering cross sections and other available data, using squared Woods-Saxon form factors, results in potentials with fixed geometry for both real and imaginary parts and depths with smooth energy behavior over a broad incident energy range. These results are discussed in the frame of the semi-classical approximation developed by Brink and Takigawa. The sensitiveness of the calculatedmore » elastic scattering cross sections to the real part of the potentials as a function of the projectile-target distance has been investigated by means of a notch test. Distorted-wave Born-approximtion calculations for the excitation of the 3.73 MeV 3/sup -/ state of /sup 40/Ca are presented.« less

  11. Application of the wavenumber jump condition to the normal and oblique interaction of a plane acoustic wave and a plane shock

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1977-01-01

    The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.

  12. Optical metasurfaces for high angle steering at visible wavelengths

    DOE PAGES

    Lin, Dianmin; Melli, Mauro; Poliakov, Evgeni; ...

    2017-05-23

    Metasurfaces have facilitated the replacement of conventional optical elements with ultrathin and planar photonic structures. Previous designs of metasurfaces were limited to small deflection angles and small ranges of the angle of incidence. Here, we have created two types of Si-based metasurfaces to steer visible light to a large deflection angle. These structures exhibit high diffraction efficiencies over a broad range of angles of incidence. We have demonstrated metasurfaces working both in transmission and reflection modes based on conventional thin film silicon processes that are suitable for the large-scale fabrication of high-performance devices.

  13. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances

    NASA Technical Reports Server (NTRS)

    Balakamar, P.; Kegerise, Michael A.

    2011-01-01

    Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.

  14. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Junjie; Jia, Hongzhi, E-mail: hzjia@usst.edu.cn

    2015-11-15

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental resultsmore » are consistent and demonstrate the rationality and validity of this method.« less

  15. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, A. F. H.

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 {mu}m wavelength CO{sub 2}-laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadowmore » domains.« less

  16. On the angular dependence of focused laser ablation by nanosecond pulses in solgel and polymer materials

    NASA Astrophysics Data System (ADS)

    George, D. S.; Onischenko, A.; Holmes, A. S.

    2004-03-01

    Focused laser ablation by single laser pulses at varying angles of incidence is studied in two materials of interest: a solgel (Ormocer 4) and a polymer (SU8). For a range of angles (up to 70° from normal), and for low-energy (<20 μJ), 40 ns pulses at 266 nm wavelength, the ablation depth along the direction of the incident laser beam is found to be independent of the angle of incidence. This allows the crater profiles at oblique incidence to be generated directly from the crater profiles at normal incidence by a simple coordinate transformation. This result is of use in the development of simulation tools for direct-write laser ablation. A simple model based on the moving ablation front approach is shown to be consistent with the observed behavior.

  17. Broadband Metamaterial for Nonresonant Matching of Acoustic Waves

    DTIC Science & Technology

    2012-03-28

    35898, USA. Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle ...metamaterial possessing a Brewster -like angle that is completely transparent to sound waves over an ultra-broadband frequency range with .100% bandwidth...Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle , but it is

  18. Prediction of projectile ricochet behavior after water impact.

    PubMed

    Baillargeon, Yves; Bergeron, Guy

    2012-11-01

    Although not very common, forensic investigation related to projectile ricochet on water can be required when undesirable collateral damage occurs. Predicting the ricochet behavior of a projectile is challenging owing to numerous parameters involved: impact velocity, incident angle, projectile stability, angular velocity, etc. Ricochet characteristics of different projectiles (K50 BMG, 0.5-cal Ball M2, 0.5-cal AP-T C44, 7.62-mm Ball C21, and 5.56-mm Ball C77) were studied in a pool. The results are presented to assess projectile velocity after ricochet, ricochet angle, and projectile azimuth angle based on impact velocity or incident angle for each projectile type. The azimuth ranges show the highest variability at low postricochet velocity. The critical ricochet angles were ranging from 15 to 30°. The average ricochet angles for all projectiles were pretty close for all projectiles at 2.5 and 10° incident angles for the range of velocities studied. © 2012 Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of the Department of National Defence.

  19. Oscillating cascade aerodynamics at large mean incidence

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; King, Aaron J.; El-Aini, Yehia M.; Capece, Vincent R.

    1996-01-01

    The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 deg and 10 deg; the Reynolds number was 0.9 x l0(exp 6). For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

  20. Single-layer-coated surfaces with linearized reflectance versus angle of incidence: application to passive and active silicon rotation sensors

    NASA Astrophysics Data System (ADS)

    Azzam, R. M. A.; Howlader, M. M. K.; Georgiou, T. Y.

    1995-08-01

    A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p -polarized, s -polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented.

  1. Reverse design of a bull's eye structure for oblique incidence and wider angular transmission efficiency.

    PubMed

    Yamada, Akira; Terakawa, Mitsuhiro

    2015-04-10

    We present a design method of a bull's eye structure with asymmetric grooves for focusing oblique incident light. The design method is capable of designing transmission peaks to a desired oblique angle with capability of collecting light from a wider range of angles. The bull's eye groove geometry for oblique incidence is designed based on the electric field intensity pattern around an isolated subwavelength aperture on a thin gold film at oblique incidence, calculated by the finite difference time domain method. Wide angular transmission efficiency is successfully achieved by overlapping two different bull's eye groove patterns designed with different peak angles. Our novel design method would overcome the angular limitations of the conventional methods.

  2. Comparison of Posterior Approach With Intramedullary Nailing Versus Lateral Transfibular Approach With Fixed-Angle Plating for Tibiotalocalcaneal Arthrodesis.

    PubMed

    Mulligan, Ryan P; Adams, Samuel B; Easley, Mark E; DeOrio, James K; Nunley, James A

    2017-12-01

    A variety of operative approaches and fixation techniques have been described for tibiotalocalcaneal (TTC) arthrodesis. The intramedullary (IM) nail and lateral, fixed-angle plating are commonly used because of ease of use and favorable biomechanical properties. A lateral, transfibular (LTF) approach allows for direct access to the tibiotalar and subtalar joints, but the posterior, Achilles tendon-splitting (PATS) approach offers a robust soft tissue envelope. The purpose of this study was to compare the results of TTC arthrodesis with either a PATS approach with IM nailing or LTF approach with fixed-angle plating. A retrospective review was performed on all patients who underwent simultaneous TTC arthrodesis with minimum 1 year clinical and radiographic follow up. Patients were excluded if they underwent TTC arthrodesis through an approach other than PATS or LTF, and received fixation without an IM nail or fixed-angle plate. Primary outcomes examined were union rate, revisions, and complications. Thirty-eight patients underwent TTC arthrodesis with a PATS approach and IM nailing, and 28 with a LTF approach and lateral plating. The overall union rate was 71%; 76% (29 of 38 patients) for the PATS/IM nail group, and 64% (18 of 28) for LTF/plating group ( P = .41). Symptomatic nonunion requiring revision arthrodesis occurred in 16% (6 of 38) of the PATS/IM nail group versus 7% (2 of 28) in the LTF/lateral plating group ( P = .45). There were no significant differences in individual tibiotalar or subtalar union rates, superficial wound problems, infection, symptomatic hardware, stress fractures, or nerve irritations. Union, revision, and complication rates were similar for TTC arthrodesis performed with a PATS approach and IM nail compared with an LTF approach and fixed-angle plate in a complex patient population. Both techniques were adequate, especially when prior incisions, preexisting hardware, or deformity preclude options. Level III, retrospective comparative study.

  3. In situ assessment of the contact angles of nanoparticles adsorbed at fluid interfaces by multiple angle of incidence ellipsometry.

    PubMed

    Stocco, Antonio; Su, Ge; Nobili, Maurizio; In, Martin; Wang, Dayang

    2014-09-28

    Here multiple angle of incidence ellipsometry was successfully applied to in situ assess the contact angle and surface coverage of gold nanoparticles as small as 18 nm, coated with stimuli-responsive polymers, at water-oil and water-air interfaces in the presence of NaCl and NaOH, respectively. The interfacial adsorption of the nanoparticles was found to be very slow and took days to reach a fairly low surface coverage. For water-oil interfaces, in situ nanoparticle contact angles agree with the macroscopic equilibrium contact angles of planar gold surfaces with the same polymer coatings, whilst for water-air interfaces, significant differences have been observed.

  4. An excitation wavelength-scanning spectral imaging system for preclinical imaging

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Rajwa, Bartek; Robinson, J. Paul

    2008-02-01

    Small-animal fluorescence imaging is a rapidly growing field, driven by applications in cancer detection and pharmaceutical therapies. However, the practical use of this imaging technology is limited by image-quality issues related to autofluorescence background from animal tissues, as well as attenuation of the fluorescence signal due to scatter and absorption. To combat these problems, spectral imaging and analysis techniques are being employed to separate the fluorescence signal from background autofluorescence. To date, these technologies have focused on detecting the fluorescence emission spectrum at a fixed excitation wavelength. We present an alternative to this technique, an imaging spectrometer that detects the fluorescence excitation spectrum at a fixed emission wavelength. The advantages of this approach include increased available information for discrimination of fluorescent dyes, decreased optical radiation dose to the animal, and ability to scan a continuous wavelength range instead of discrete wavelength sampling. This excitation-scanning imager utilizes an acousto-optic tunable filter (AOTF), with supporting optics, to scan the excitation spectrum. Advanced image acquisition and analysis software has also been developed for classification and unmixing of the spectral image sets. Filtering has been implemented in a single-pass configuration with a bandwidth (full width at half maximum) of 16nm at 550nm central diffracted wavelength. We have characterized AOTF filtering over a wide range of incident light angles, much wider than has been previously reported in the literature, and we show how changes in incident light angle can be used to attenuate AOTF side lobes and alter bandwidth. A new parameter, in-band to out-of-band ratio, was defined to assess the quality of the filtered excitation light. Additional parameters were measured to allow objective characterization of the AOTF and the imager as a whole. This is necessary for comparing the excitation-scanning imager to other spectral and fluorescence imaging technologies. The effectiveness of the hyperspectral imager was tested by imaging and analysis of mice with injected fluorescent dyes. Finally, a discussion of the optimization of spectral fluorescence imagers is given, relating the effects of filter quality on fluorescence images collected and the analysis outcome.

  5. Lower limb alignment characteristics are not associated with running injuries in runners: Prospective cohort study.

    PubMed

    Hespanhol Junior, Luiz Carlos; de Carvalho, Aline Carla Araújo; Costa, Leonardo Oliveira Pena; Lopes, Alexandre Dias

    2016-11-01

    There is conflicting evidence on the association between lower limb alignment characteristics and the incidence of running-related injury (RRI). Therefore, the primary aim of this study was to investigate the association between lower limb alignment characteristics and the incidence proportion of RRI in a convenience sample of recreational runners. A total of 89 recreational runners were included in this prospective cohort study. These participants had been running for at least six months and were injury-free at baseline. Lower limb alignment measurements were conducted in order to calculate lower limb discrepancy, Q-angle, subtalar angle and plantar index. All participants also answered a baseline and biweekly online surveys about their running routine, history of RRI and newly developed RRI over a period of 12 weeks. The prevalence of previous RRI and the 12-week incidence proportion of new RRI were calculated. Logistic regression analysis was performed to estimate the association between lower limb length discrepancy, Q-angle, subtalar angle and plantar ach index with the incidence proportion of RRI. The prevalence of previous RRI was 55.1% (n = 49). The 12-week incidence proportion of new RRI was 27.0% (n = 24). Muscle injuries and tendinopathies were the main types of RRI identified. The lower leg and the knee were the main anatomical regions affected. We did not find significant associations between lower limb length discrepancy, Q-angle, subtalar angle and plantar arch index and injury occurrence.

  6. Comparison and correlation of pelvic parameters between low-grade and high-grade spondylolisthesis.

    PubMed

    Min, Woo-Kie; Lee, Chang-Hwa

    2014-05-01

    This study was retrospectively conducted on 51 patients with L5-S1 spondylolisthesis. This study was conducted to compare a total of 11 pelvic parameters, such as the level of displacement by Meyerding method, lumbar lordosis, sacral inclination, lumbosacral angle, slip angle, S2 inclination, pelvic incidence (PI), L5 inclination, L5 slope, pelvic tilt (PT), and sacral slope (SS) between low-grade and high-grade spondylolisthesis, and to investigate a correlation of the level of displacement by Meyerding method with other pelvic parameters. Pelvic parameters were measured using preoperational erect lateral spinal simple radiographs. The patients were divided into 39 patients with low-grade spondylolisthesis and 12 patients with high-grade spondylolisthesis before analysis. In all patients of both groups, 11 radiographic measurements including the level of displacement by Meyerding method, lumbar lordosis, sacral inclination, lumbosacral angle, slip angle, S2 inclination, PI, L5 inclination, L5 slope, PT, and SS were performed. T test and Pearson correlation analysis were conducted to compare and analyze each measurement. As for the comparison between the 2 groups, a statistically great significance in the level of displacement by Meyerding method, lumbosacral angle, slip angle, L5 incidence, PI, and L5 slope (P≤0.001) was shown. Meanwhile, a statistical significance in the sacral inclination and PT (P<0.05) was also shown. However, no statistical significance in the S2 incidence and SS was shown. A correlation of the level of displacement by Meyerding method with each parameter was analyzed in the both the groups. A high correlation was observed in the lumbar lordosis, lumbosacral angle, slip angle, L5 incidence, and L5 slope (Pearson correlation coefficient, P=0.01), as well as the sacral inclination, PI, and PT (Pearson correlation coefficient, P=0.05). Meanwhile, no correlation was shown in the S2 incidence and SS. A significant difference in the lumbosacral angle, slip angle, L5 incidence, PI, L5 slope, sacral inclination, and PT was shown between the patients with high-grade spondylolisthesis and patients with low-grade spondylolisthesis. Among the aforementioned measurements, the PI showed a significant difference between the 2 groups and also had a significant correlation with the dislocation level in all the patients.

  7. P-Wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments

    USGS Publications Warehouse

    Gangi, A.F.; Wesson, R.L.

    1978-01-01

    An analytic solution is not available for the diffraction of elastic waves by wedges; however, numerical solutions of finite-difference type are available for selected wedge angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured on two-dimensional seismic models for stress-free wedges with wedge angles, ??0, of 10, 30, 60, 90 and 120??. The conversion coefficients show two broad peaks and a minimum as a function of the angle between the wedge face and the direction of the incident P-wave. The minimum occurs for the P wave incident parallel to the wedge face and one maximum is near an incidence angle of 90?? to the wedge face. The amplitude of this maximum, relative to the other, decreases as the wedge angle increases. The asymmetry of the conversion coefficients, CPR(??; ??0), relative to parallel incidence (?? = 0) increases as the wedge angle increases. The locations of the maxima and the minimum as well as the asymmetry can be explained qualitatively. The conversion coefficients are measured with an accuracy of ??5% in those regions where there are no interfering waves. A comparison of the data for the 10?? wedge with the theoretical results for a half plane (0?? wedge) shows good correlation. ?? 1978.

  8. Brief communication: Lumbar lordosis in extinct hominins: implications of the pelvic incidence.

    PubMed

    Been, Ella; Gómez-Olivencia, Asier; Kramer, Patricia A

    2014-06-01

    Recently, interest has peaked regarding the posture of extinct hominins. Here, we present a new method of reconstructing lordosis angles of extinct hominin specimens based on pelvic morphology, more specifically the orientation of the sacrum in relation to the acetabulum (pelvic incidence). Two regression models based on the correlation between pelvic incidence and lordosis angle in living hominoids have been developed. The mean values of the calculated lordosis angles based on these models are 36°-45° for australopithecines, 45°-47° for Homo erectus, 27°-34° for the Neandertals and the Sima de los Huesos hominins, and 49°-51° for fossil H. sapiens. The newly calculated lordosis values are consistent with previously published values of extinct hominins (Been et al.: Am J Phys Anthropol 147 (2012) 64-77). If the mean values of the present nonhuman hominoids are representative of the pelvic and lumbar morphology of the last common ancestor between humans and nonhuman hominoids, then both pelvic incidence and lordosis angle dramatically increased during hominin evolution from 27° ± 5 to 22° ± 3 (respectively) in nonhuman hominoids to 54° ± 10 and 51° ± 11 in modern humans. This change to a more human-like configuration appeared early in the hominin evolution as the pelvis and spines of both australopithecines and H. erectus show a higher pelvic incidence and lordosis angle than nonhuman hominoids. The Sima de los Huesos hominins and Neandertals show a derived configuration with a low pelvic incidence and lordosis angle. Copyright © 2014 Wiley Periodicals, Inc.

  9. Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium

    NASA Astrophysics Data System (ADS)

    Wang, Lihong; Jacques, Steven L.

    1995-05-01

    A simple and quick approach is used to measure the reduced scattering coefficient ( mu s `) of a semi-infinite turbid medium having a much smaller absorption coefficient than mu s`. A laser beam with an oblique angle of incidence to the medium causes the center of the diffuse reflectance that is several transport mean-free paths away from the incident point to shift away from the point of incidence by an amount Delta x. This amount is used to compute mu s` by mu s` = sin( alpha i)/(n Delta x), where n is the refractive index of the turbid medium divided by that of the incident medium and alpha i is the angle of incidence measured from the surface normal. For a turbid medium having an absorption coefficient comparable with mu s `, a revision to the above formula is made. This method is tested theoretically by Monte Carlo simulations and experimentally by a video reflectometer.

  10. Auto-calibrated scanning-angle prism-type total internal reflection microscopy for nanometer-precision axial position determination and optional variable-illumination-depth pseudo total internal reflection microscopy

    DOEpatents

    Fang, Ning; Sun, Wei

    2015-04-21

    A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.

  11. Extreme ultraviolet reflector

    DOEpatents

    Newnam, Brian E.

    1990-01-01

    A multi-faceted mirror forms a retroreflector for a resonator loop in a free electron laser (FEL) operating in the XUV (.lambda.=10-100 nm). The number of facets is determined by the angle-of-incidence needed to obtain total external reflectance (TER) from the facet surface and the angle through which the FEL beam is to be turned. Angles-of-incidence greater than the angle for TER may be used to increase the area of the beam incident on the surface and reduce energy absorption density. Suitable surface films having TER in the 10-100 nm range may be formed from a variety of materials, including Al, single-crystal Si, Ag, and Rh. One of the facets is formed as an off-axis conic section to collimate the output beam with minimum astigmatism.

  12. Measurement and interpretation of electron angle at MABE beam stop

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Coleman, P. D.; Poukey, J. W.

    1985-02-01

    The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, was determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15(0) + or - 2(0). A comparison of theta with that expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.

  13. Angle-resolved Auger electron spectra induced by neon ion impact on aluminum

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Aron, P. R.

    1986-01-01

    Auger electron emission from aluminum bombarded with 1 to 5 keV neon ions was studied by angle-resolved electron spectroscopy. The position and shape of the spectral features depended on the incident ion energy, angle of ion incidence, and electron take-off angle with respect to the aluminum surface. These spectral dependencies were interpreted in terms of the Doppler shift given to the Auger electron velocity by the excited atom ejected into the vacuum. For oblique ion incidence it is concluded that a flux of high energy atoms are ejected in a direction close to the projection of the ion beam on the target surface. In addition, a new spectral feature was found and identified as due to Auger emission from excited neon in the aluminum matrix.

  14. Measurement of electron angle at MABE beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1984-01-01

    The mean angle of incidence at the beam stop of a 60 KA, 7 MV annular electron beam, in the 20 kg guide field of the MABE accelerator, is determined. Radiation measured in TLD arrays mounted downstream of the stop is compared with the radiation expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15/sup 0/ +- 2/sup 0/. Comparing theta with that expected from themore » Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.« less

  15. Aerodynamic Design of Axial-flow Compressors. Volume 2

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Available experimental two-dimensional-cascade data for conventional compressor blade sections are correlated. The two-dimensional cascade and some of the principal aerodynamic factors involved in its operation are first briefly described. Then the data are analyzed by examining the variation of cascade performance at a reference incidence angle in the region of minimum loss. Variations of reference incidence angle, total-pressure loss, and deviation angle with cascade geometry, inlet Mach number, and Reynolds number are investigated. From the analysis and the correlations of the available data, rules and relations are evolved for the prediction of the magnitude of the reference total-pressure loss and the reference deviation and incidence angles for conventional blade profiles. These relations are developed in simplified forms readily applicable to compressor design procedures.

  16. Multidirectional volar fixed-angle plating using cancellous locking screws for distal radius fractures--evaluation of three screw configurations in an extra-articular fracture model.

    PubMed

    Weninger, Patrick; Dall'Ara, Enrico; Drobetz, Herwig; Nemec, Wolfgang; Figl, Markus; Redl, Heinz; Hertz, Harald; Zysset, Philippe

    2011-01-01

    Volar fixed-angle plating is a popular treatment for unstable distal radius fractures. Despite the availability of plating systems for treating distal radius fractures, little is known about the mechanical properties of multidirectional fixed-angle plates. The aim of this study was to compare the primary fixation stability of three possible screw configurations in a distal extra-articular fracture model using a multidirectional fixed-angle plate with metaphyseal cancellous screws distally. Eighteen Sawbones radii (Sawbones, Sweden, model# 1027) were used to simulate an extra-articular distal radius fracture according to AO/OTA 23 A3. Plates were fixed to the shaft with one non-locking screw in the oval hole and two locking screws as recommended by the manufacturer. Three groups (n = 6) were defined by screw configuration in the distal metaphyseal fragment: Group 1: distal row of screws only; Group 2: 2 rows of screws, parallel insertion; Group 3: 2 rows of screws, proximal screws inserted with 30° of inclination. Specimens underwent mechanical testing under axial compression within the elastic range and load controlled between 20 N and 200 N at a rate of 40 N/s. Axial stiffness and type of construct failure were recorded. There was no difference regarding axial stiffness between the three groups. In every specimen, failure of the Sawbone-implant-construct occurred as plastic bending of the volar titanium plate when the dorsal wedge was closed. Considering the limitations of the study, the recommendation to use two rows of screws or to place screws in the proximal metaphyseal row with inclination cannot be supported by our mechanical data.

  17. How is sagittal balance acquired during bipedal gait acquisition? Comparison of neonatal and adult pelves in three dimensions. Evolutionary implications.

    PubMed

    Tardieu, Christine; Bonneau, Noémie; Hecquet, Jérôme; Boulay, Christophe; Marty, Catherine; Legaye, Jean; Duval-Beaupère, Geneviève

    2013-08-01

    We compare adult and intact neonatal pelves, using a pelvic sagittal variable, the angle of sacral incidence, which presents significant correlations with vertebral curvature in adults and plays an important role in sagittal balance of the trunk on the lower limbs. Since the lumbar curvature develops in the child in association with gait acquisition, we expect a change in this angle during growth which could contribute to the acquisition of sagittal balance. To understand the mechanisms underlying the sagittal balance in the evolution of human bipedalism, we also measure the angle of incidence of hominid fossils. Fourty-seven landmarks were digitized on 50 adult and 19 intact neonatal pelves. We used a three-dimensional model of the pelvis (DE-VISU program) which calculates the angle of sacral incidence and related functional variables. Cross-sectional data from newborns and adults show that the angle of sacral incidence increases and becomes negatively correlated with the sacro-acetabular distance. During ontogeny the sacrum becomes curved, tends to sink down between the iliac blades as a wedge and moves backward in the sagittal plane relative to the acetabula, thus contributing to the backwards displacement of the center of gravity of the trunk. A chain of correlations links the degree of the sacral slope and of the angle of incidence, which is tightly linked with the lumbar lordosis. We sketch a model showing the coordinated changes occurring in the pelvis and vertebral column during the acquisition of bipedalism in infancy. In the australopithecine pelves, Sts 14 and AL 288-1, and in the Homo erectus Gona pelvis the angle of sacral incidence reaches the mean values of humans. Discussing the incomplete pelves of Ardipithecus ramidus, Australopithecus sediba and the Nariokotome Boy, we suggest how the functional linkage between pelvis and spine, observed in humans, could have emerged during hominid evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Guarnieri, R.; Padilha, L.; Guarnieri, F.; Echer, E.; Makita, K.; Pinheiro, D.; Schuch, A.; Boeira, L.; Schuch, N.

    Ultraviolet radiation type B (UV-B 280-315nm) is well known by its damage to life on Earth, including the possibility of causing skin cancer in humans. However, the atmo- spheric ozone has absorption bands in this spectral radiation, reducing its incidence on Earth's surface. Therefore, the ozone amount is one of the parameters, besides clouds, aerosols, solar zenith angles, altitude, albedo, that determine the UV-B radia- tion intensity reaching the Earth's surface. The total ozone column, in Dobson Units, determined by TOMS spectrometer on board of a NASA satellite, and UV-B radiation measurements obtained by a UV-B radiometer model MS-210W (Eko Instruments) were correlated. The measurements were obtained at the Observatório Espacial do Sul - Instituto Nacional de Pesquisas Espaciais (OES/CRSPE/INPE-MCT) coordinates: Lat. 29.44oS, Long. 53.82oW. The correlations were made using UV-B measurements in fixed solar zenith angles and only days with clear sky were selected in a period from July 1999 to December 2001. Moreover, the mathematic behavior of correlation in dif- ferent angles was observed, and correlation coefficients were determined by linear and first order exponential fits. In both fits, high correlation coefficients values were ob- tained, and the difference between linear and exponential fit can be considered small.

  19. The 3H(d,gamma) Reaction and the 3 H(d,gamma)/ 3H(d, n) Branching Ratio for Ec.m. 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, Cody E.

    The 3H(d, gamma)5He reaction and the 3H(d, gamma)/3H(d, n) branching ratio have been measured using a 500-keV pulsed deuteron beam incident on a titanium tritide target of stopping thickness at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the gamma-rays from neutrons in the bismuth germinate (BGO) gamma-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3H(d, n)alpha reaction using both the pulse-shape discrimination and time-of-flight techniques. A target holder with an ion-implanted silicon detector at a fixed angle of 135° to the beam axis to simultaneously measure alpha-particles as a normalization for the number of neutrons was incorporated to reduce the uncertainty in the neutron yield over the preliminary measurement. The gamma-rays have been measured at laboratory angles of 0°, 4°, 9°, and 15°. Information about the gamma-ray energy distribution for the unbound ground state and first excited state of 5He have been obtained experimentally by comparing the BGO data to Monte Carlo simulations. The reported branching ratios for each angle contain only contributions from the ground-state gamma-ray branch.

  20. Impact of Aspect Ratio, Incident Angle, and Surface Roughness on Windbreak Wakes

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2017-11-01

    Wind-tunnel results are presented on the wakes behind three-dimensional windbreaks in a simulated atmospheric boundary layer. Sheltering by upwind windbreaks, and surface-mounted obstacles (SMOs) in general, is parameterized by the wake-moment coefficient C h , which is a complex function of obstacle geometry and flow conditions. Values of C h are presented for several windbreak aspect ratios, incident angles, and windbreak-height-to-surface-roughness ratios. Lateral wake deflection is further presented for several incident angles and aspect ratios, and compared to a simple analytical formulation including a near- and far-wake solution. It is found that C h does not change with aspect ratios of 10 or greater, though C h may be lower for an aspect ratio of 5. C h is found to change roughly with the cosine of the incident angle, and to depend strongly on windbreak-height-to-surface-roughness ratio. The data broadly support the proposed wake-deflection model.

  1. Acoustic attraction, repulsion and radiation force cancellation on a pair of rigid particles with arbitrary cross-sections in 2D: Circular cylinders example

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-11-01

    The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers. Potential applications concern the prediction of the forces used in acoustically-engineered metamaterials with reconfigurable periodicities, cloaking devices, and liquid crystals to name a few examples.

  2. Flat Retroreflectors

    NASA Technical Reports Server (NTRS)

    Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2018-01-01

    A retroreflector device is described, which includes a lens component operable for focusing radiation, which is incident thereto at an angle of incidence. The retroreflector also includes a mirror component operable for reflecting the radiation focused by the lens component back along the angle of incidence. The lens component and/or the mirror component includes a quasi-periodic array of elements, each of which comprises a dimension smaller than a wavelength of the radiation.

  3. Flat Retroreflectors

    NASA Technical Reports Server (NTRS)

    Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    A retroreflector device is described, which includes a lens component operable for focusing radiation, which is incident thereto at an angle of incidence. The retroreflector also includes a mirror component operable for reflecting the radiation focused by the lens component back along the angle of incidence. The lens component and/or the mirror component includes a quasi-periodic array of elements, each of which comprises a dimension smaller than a wavelength of the radiation.

  4. Femtosecond laser-induced blazed periodic grooves on metals.

    PubMed

    Hwang, Taek Yong; Guo, Chunlei

    2011-07-01

    In this Letter, we generate laser-induced periodic surface structures (LIPSSs) on platinum following femtosecond laser pulse irradiation. For the first time to our knowledge, we study the morphological profile of LIPSSs over a broad incident angular range, and find that the morphological profile of LIPSSs depends significantly on the incident angle of the laser beam. We show that LIPSS grooves become more asymmetric at a larger incident angle, and the morphological profile of LIPSSs formed at an incident angle over 55° eventually resembles that of a blazed grating. Our study suggests that the formation of the blazed groove structures is attributed to the selective ablation of grooves through the asymmetric periodic surface heating following femtosecond pulse irradiation. The blazed grooves are useful for controlling the diffraction efficiency of LIPSSs.

  5. Characterization of Delaminations and Transverse Matrix Cracks in Composite Laminates Using Multiple-Angle Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Appleget, Chelsea D.; Odarczenko, Michael T.

    2012-01-01

    Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar- angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.

  6. Estimation and experimental evaluation of the shortfall of photovoltaic plants in Tunisia: case study of the use of titled surfaces

    NASA Astrophysics Data System (ADS)

    Belkilani, Kaouther; Ben Othman, Afef; Besbes, Mongi

    2018-02-01

    To maximize the production of electrical energy in photovoltaic plants, the best solution is to use sun tracking systems whose panels are permanently exposed to solar radiation to ensure the best angle of inclination. These systems are expensive, their implementation is difficult, and their maintenance is complicated. The fixed inclination of the solar panels is easy to implement but its profitability is minimal. To solve this dilemma, the researchers propose to shift the panel's angle of inclination over predetermined periods. In many countries, weather data measurements are either unavailable or lacking. So to fill this gap, we propose in this paper the development of mathematical models to calculate the best angle of inclination and the period of poise of this angle (month, season or other duration). The theoretical results obtained are validated by experimental tests and are conducted in three regions of Tunisia (North, Center and South). The objective is to determine, for each region, the optimal angle and the duration needed before switching to the next angle depending on the installation of fixed PV panels shortfalls.

  7. Wave scattering from a periodic dielectric surface for a general angle of incidence

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Kong, J. A.

    1982-01-01

    Electromagnetic waves scattered from a periodic dielectric and perfectly conducting surface are studied for a general angle of incidence. It is shown that the one-dimensional corrugated surface can be solved by using two scalar functions: the components of the electric and magnetic fields along the row direction of the surface, and appropriate boundary conditions to obtain simple matrix equations. Results are compared to the case where the incident angle wave vector is perpendicular to the row direction. Numerical results demonstrate that energy conservation and reciprocity are obeyed for scattering by sinusoidal surfaces for the general case, which checks the consistency of the formalism.

  8. Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles.

    PubMed

    Chong, Kok-Keong

    2010-05-15

    To overcome astigmatism has always been a great challenge in designing a heliostat capable of focusing the sunlight on a small receiver throughout the year. In this Letter, a nonimaging focusing heliostat with a dynamic adjustment of facet mirrors in a group manner has been analyzed for optimizing the astigmatic correction in a wide range of incident angles. This what is to the author's knowledge a new heliostat is not only designed to serve the purpose of concentrating sunlight to several hundreds of suns, but also to significantly reduce the variation of the solar flux distribution with the incident angle.

  9. One-way acoustic mirror based on anisotropic zero-index media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Zhong-ming; Liang, Bin, E-mail: liangbin@nju.edu.cn, E-mail: jccheng@nju.edu.cn; Yang, Jing

    2015-11-23

    We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control.

  10. Assessment of ground effects on the propagation of aircraft noise: The T-38A flight experiment

    NASA Technical Reports Server (NTRS)

    Willshire, W. L., Jr.

    1980-01-01

    A flight experiment was conducted to investigate air to ground propagation of sound at gazing angles of incidence. A turbojet powered airplane was flown at altitudes ranging from 10 to 160 m over a 20-microphone array positioned over grass and concrete. The dependence of ground effects on frequency, incidence angle, and slant range was determined using two analysis methods. In one method, a microphone close to the flight path is compared to down range microphones. In the other method, comparisons are made between two microphones which were equidistant from the flight path but positioned over the two surfaces. In both methods, source directivity angle was the criterion by which portions of the microphone signals were compared. The ground effects were largest in the frequency range of 200 to 400 Hz and were found to be dependent on incidence angle and slant range. Ground effects measured for angles of incidence greater than 10 deg to 15 deg were near zero. Measured attenuation increased with increasing slant range for slant ranges less than 750 m. Theoretical predictions were found to be in good agreement with the major details of the measured results.

  11. C- and L-band space-borne SAR incidence angle normalization for efficient Arctic sea ice monitoring

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Geldsetzer, T.; Howell, S.; Yackel, J.; Nandan, V.

    2017-12-01

    C-band Synthetic Aperture Radar (SAR) has been widely used effectively for operational sea ice monitoring, owing to its greater seperability between snow-covered first-year (FYI) and multi-year (MYI) ice types, during winter. However, during the melt season, C-band SAR backscatter contrast reduces between FYI and MYI. To overcome the limitations of C-band, several studies have recommended utlizing L-band SAR, as it has the potential to significantly improve sea ice classification. Given its longer wavelength, L-band can efficiently separate FYI and MYI types, especially during melt season. Therefore, the combination of C- and L-band SAR is an optimal solution for efficient seasonal sea ice monitoring. As SAR acquires images over a range of incidence angles from near-range to far-range, SAR backscatter varies substantially. To compensate this variation in SAR backscatter, incidence angle dependency of C- and L-band SAR backscatter for different FYI and MYI types is crucial to quantify, which is the objective of this study. Time-series SAR imagery from C-band RADARSAT-2 and L-band ALOS PALSAR during winter months of 2010 across 60 sites over the Canadian Arctic was acquired. Utilizing 15 images for each sites during February-March for both C- and L-band SAR, incidence angle dependency was calculated. Our study reveals that L- and C-band backscatter from FYI and MYI decreases with increasing incidence angle. The mean incidence angle dependency for FYI and MYI were estimated to be -0.21 dB/1° and -0.30 dB/1° respectively from L-band SAR, and -0.22 dB/1° and -0.16 dB/1° from C-band SAR, respectively. While the incidence angle dependency for FYI was found to be similar in both frequencies, it doubled in case of MYI from L-band, compared to C-band. After applying the incidence angle normalization method to both C- and L-band SAR images, preliminary results indicate improved sea ice type seperability between FYI and MYI types, with substantially lower number of mixed pixels; thereby offering more reliable sea ice classification accuracies. Research findings from this study can be utilized to improve seasonal sea ice classification with higher accuracy for operational Arctic sea ice monitoring, especially in regions like the Canadian Arctic, where MYI detection is crucial for safer ship navigations.

  12. Effectiveness of Variable-Gain Kalman Filter Based on Angle Error Calculated from Acceleration Signals in Lower Limb Angle Measurement with Inertial Sensors

    PubMed Central

    Watanabe, Takashi

    2013-01-01

    The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors. PMID:24282442

  13. Normal and Tangential Momentum Accommodation for Earth Satellite Conditions

    NASA Technical Reports Server (NTRS)

    Knechtel, Earl D.; Pitts, William C.

    1973-01-01

    Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.

  14. Design and modeling of a measuring device for a TIR-R concentrator

    NASA Astrophysics Data System (ADS)

    Calero, Daniel Pérez; Miñano, Juan Carlos; Benitez, Pablo; Hernandez, Maikel; Cvetkovic, Aleksandra

    2006-08-01

    One of the most usual procedures to measure a concentrator optical efficiency is by direct comparison between the photocurrent generated by the compound concentrator/solar cell and photocurrent that single cell would generate under identical radiation conditions. Unfortunately, such procedure can give a good idea of the generator final performance, but can not indicate the real amount of radiation that will impinge over the cell. This apparent contradiction is based on the fact that once the cell is coupled with the concentrator, rays incidence is not perpendicular, but highly oblique, with an angle that can reach 70 ° or even greater for high concentration devices. The antireflective coating of the cell does not perform well enough for the whole incidence angle and frequency ranges because low cost is other important requirement for the solar cells. In consequence, the generated photocurrent drops for large incidence angles. In our case, a 70% incidence angle could, in the worst case, mean a 34% loss on generated photocurrent. With the aim of correcting such problem a special device has been designed in the framework of a EU funded project called HAMLET. The concept of the device is to substitute the concentrator receptor by a system formed by an optical collimator that would reduce concentration and incidence angle, and a characterized solar cell. The paper gives the results of this measuring procedure.

  15. Ripple formation on atomically flat cleaved Si surface with roughness of 0.038 nm rms by low-energy Ar{sup 1+} ion bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlovy, Shahjada A.; Mahmud, S. F.; Yanagimoto, K.

    The authors have conducted research regarding ripple formation on an atomically flat cleaved Si surface by low-energy Ar{sup +} ion bombardment. The cleaved atomically flat and smooth plane of a Si wafer was obtained by cutting vertically against the orientation of a Si (100) wafer. Next, the cleaved surface was sputtered by a 1 keV Ar{sup +} ion beam at ion-incidence angles of 0 deg., 60 deg., 70 deg., and 80 deg. The results confirm the successful ripple formation at ion-incidence angles of 60 deg. - 80 deg. and that the wavelength of the ripples increases with the increase ofmore » the ion-incidence angle, as well as the inverse of ion doses. The direction of the ripple also changes from perpendicular to parallel to the projection of the ion-beam direction along the surface with the increasing ion-incidence angle. The authors have also observed the dose effects on surface roughness of cleaved Si surface at the ion-incidence angle of 60 deg., where the surface roughness increases with the increased ion dose. Finally, to understand the roughening mechanism, the authors studied the scaling behavior, measured the roughness exponent {alpha}, and compared the evolution of scaling regimes with Cuerno's one-dimensional simulation results.« less

  16. All-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification.

    PubMed

    Liu, Bingyi; Zhao, Jiajun; Xu, Xiaodong; Zhao, Wenyu; Jiang, Yongyuan

    2017-10-23

    Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell's law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for all-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the all-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates inside the metasurface slab. The coiling-up space structures are utilized to build desired acoustic gradient metasurface, and the all-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface, and the all-angle negative reflection characteristic possessed by acoustic gradient metasurface could enable a new degree of the acoustic wave manipulating and be applied in the functional diffractive acoustic elements, such as the all-angle acoustic back reflector.

  17. A method of directly extracting multiwave angle-domain common-image gathers

    NASA Astrophysics Data System (ADS)

    Han, Jianguang; Wang, Yun

    2017-10-01

    Angle-domain common-image gathers (ADCIGs) can provide an effective way for migration velocity analysis and amplitude versus angle analysis in oil-gas seismic exploration. On the basis of multi-component Gaussian beam prestack depth migration (GB-PSDM), an alternative method of directly extracting multiwave ADCIGs is presented in this paper. We first introduce multi-component GB-PSDM, where a wavefield separation is proceeded to obtain the separated PP- and PS-wave seismic records before migration imaging for multiwave seismic data. Then, the principle of extracting PP- and PS-ADCIGs using GB-PSDM is presented. The propagation angle can be obtained using the real-value travel time of Gaussian beam in the course of GB-PSDM, which can be used to calculate the incidence and reflection angles. Two kinds of ADCIGs can be extracted for the PS-wave, one of which is P-wave incidence ADCIGs and the other one is S-wave reflection ADCIGs. In this paper, we use the incident angle to plot the ADCIGs for both PP- and PS-waves. Finally, tests of synthetic examples show that the method introduced here is accurate and effective.

  18. Resonant absorption of electromagnetic waves in transition anisotropic media.

    PubMed

    Kim, Kihong

    2017-11-27

    We study the mode conversion and resonant absorption phenomena occurring in a slab of a stratified anisotropic medium, optical axes of which are tilted with respect to the direction of inhomogeneity, using the invariant imbedding theory of wave propagation. When the tilt angle is zero, mode conversion occurs if the longitudinal component of the permittivity tensor, which is the one in the direction of inhomogeneity in the non-tilted case, varies from positive to negative values within the medium, while the transverse component plays no role. When the tilt angle is nonzero, the wave transmission and absorption show an asymmetry under the sign change of the incident angle in a range of the tilt angle, while the reflection is always symmetric. We calculate the reflectance, the transmittance and the absorptance for several configurations of the permittivity tensor and find that resonant absorption is greatly enhanced when the medium from the incident surface to the resonance region is hyperbolic than when it is elliptic. For certain configurations, the transmittance and absorptance curves display sharp peaks at some incident angles determined by the tilt angle.

  19. Deviation characteristics of specular reflectivity of micro-rough surface from Fresnel's equation

    NASA Astrophysics Data System (ADS)

    Zhang, W. J.; Qiu, J.; Liu, L. H.

    2015-07-01

    Specular reflectivity is an important radiative property in thermal engineering applications and reflection-based optical constant determinations, yet it will be influenced by surface micro-roughness which cannot be completely removed during the polishing process. In this work, we examined the deviation characteristics of the specular reflectivity of micro-rough surfaces from that predicted by the Fresnel's equation under the assumption of smooth surface. The effects of incident angle and relative roughness were numerically investigated for both 1D and 2D micro randomly rough surfaces using full wave analysis under the condition that the relative roughness is smaller than 0.05. For transverse magnetic (TM) wave incidence, it is observed that the deviation of specular reflectivity dramatically rises as the incident angle approaches to the pseudo Brewster's angle, which violates the prediction based on Rayleigh criterion. While for the transverse electric (TE) wave incidence, the deviation of the specular reflectivity is much smaller and decreases monotonically with the increase of incident angle, which agrees with the predication from Rayleigh criterion. Generally, the deviation of specular reflectivity for both TM and TE increases with the relative roughness as commonly expected.

  20. Study of the retardance of a birefringent waveplate at tilt incidence by Mueller matrix ellipsometer

    NASA Astrophysics Data System (ADS)

    Gu, Honggang; Chen, Xiuguo; Zhang, Chuanwei; Jiang, Hao; Liu, Shiyuan

    2018-01-01

    Birefringent waveplates are indispensable optical elements for polarization state modification in various optical systems. The retardance of a birefringent waveplate will change significantly when the incident angle of the light varies. Therefore, it is of great importance to study such field-of-view errors on the polarization properties, especially the retardance of a birefringent waveplate, for the performance improvement of the system. In this paper, we propose a generalized retardance formula at arbitrary incidence and azimuth for a general plane-parallel composite waveplate consisting of multiple aligned single waveplates. An efficient method and corresponding experimental set-up have been developed to characterize the retardance versus the field-of-view angle based on a constructed spectroscopic Mueller matrix ellipsometer. Both simulations and experiments on an MgF2 biplate over an incident angle of 0°-8° and an azimuthal angle of 0°-360° are presented as an example, and the dominant experimental errors are discussed and corrected. The experimental results strongly agree with the simulations with a maximum difference of 0.15° over the entire field of view, which indicates the validity and great potential of the presented method for birefringent waveplate characterization at tilt incidence.

  1. Bright Feature Appears in Titan Kraken Mare

    NASA Image and Video Library

    2014-11-10

    Two Synthetic Aperture Radar (SAR) images from the radar experiment on NASA's Cassini spacecraft show that, between May 2013 and August 2014, a bright feature appeared in Kraken Mare, the largest hydrocarbon sea on Saturn's moon Titan. Researchers think the bright feature is likely representative of something on the hydrocarbon sea's surface, such as waves or floating debris. A similar feature appeared in Ligea Mare, another Titan sea, and was seen to evolve in appearance between 2013 and 2014 (see PIA18430). The image at left was taken on May 23, 2013 at an incidence angle of 56 degrees; the image at right was taken on August 21, 2014 at an incidence angle of 5 degrees. Incidence angle refers to the angle at which the radar beam strikes the surface. http://photojournal.jpl.nasa.gov/catalog/PIA19047

  2. Measurement and interpretation of electron angle at MABE beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1985-02-01

    The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, is determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15/sup 0/ +- 2/sup 0/. Comparing this theta with thatmore » expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.« less

  3. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan

    2016-06-15

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less

  4. Incidence angle normalization of radar backscatter data

    USDA-ARS?s Scientific Manuscript database

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  5. Retrieving atmospheric dust opacity on Mars by imaging spectroscopy at large angles

    NASA Astrophysics Data System (ADS)

    Douté, S.; Ceamanos, X.; Appéré, T.

    2013-09-01

    We propose a new method to retrieve the optical depth of Martian aerosols (AOD) from OMEGA and CRISM hyperspectral imagery at a reference wavelength of 1 μm. Our method works even if the underlying surface is completely made of minerals, corresponding to a low contrast between surface and atmospheric dust, while being observed at a fixed geometry. Minimizing the effect of the surface reflectance properties on the AOD retrieval is the second principal asset of our method. The method is based on the parametrization of the radiative coupling between particles and gas determining, with local altimetry, acquisition geometry, and the meteorological situation, the absorption band depth of gaseous CO2. Because the last three factors can be predicted to some extent, we can define a new parameter β that expresses specifically the strength of the gas-aerosols coupling while directly depending on the AOD. Combining estimations of β and top of the atmosphere radiance values extracted from the observed spectra within the CO2 gas band at 2 μm, we evaluate the AOD and the surface reflectance by radiative transfer inversion. One should note that practically β can be estimated for a large variety of mineral or icy surfaces with the exception of CO2 ice when its 2 μm solid band is not sufficiently saturated. Validation of the proposed method shows that it is reliable if two conditions are fulfilled: (i) the observation conditions provide large incidence or/and emergence angles (ii) the aerosols are vertically well mixed in the atmosphere. Experiments conducted on OMEGA nadir looking observations as well as CRISM multi-angular acquisitions with incidence angles higher than 65° in the first case and 33° in the second case produce very satisfactory results. Finally in a companion paper the method is applied to monitoring atmospheric dust spring activity at high southern latitudes on Mars using OMEGA.

  6. Photometric Characteristics of Lunar Terrains

    NASA Astrophysics Data System (ADS)

    Sato, Hiroyuki; Hapke, Bruce W.; Denevi, Brett W.; Robinson, Mark

    2016-10-01

    The photometric properties of the lunar depend on albedo, surface roughness, porosity, and the internal/external structure of particles. Hapke parameter maps derived using a bidirectional reflectance model [Hapke, 2012] from Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images demonstrated the spatial and spectral variation of the photometric properties of the Moon [Sato et al., 2014]. Using the same methodology, here we present the photometric characteristics of typical lunar terrains, which were not systematically analyzed in the previous study.We selected five representative terrain types: mare, highland, swirls, and two Copernican (fresh) crater ejecta (one mare and one highlands example). As for the datasets, we used ~39 months of WAC repeated observations, and for each image pixel, we computed latitude, longitude, incidence, emission, and phase angles using the WAC GLD100 stereo DTM [Scholten et al., 2012]. To obtain similar phase and incidence angle ranges, all sampling sites are near the equator and in the vicinity of Reiner Gamma. Three free Hapke parameters (single scattering albedo: w, HG2 phase function parameter: c, and angular width of SHOE: hs) were then calculated for the seven bands (321-689 nm). The remaining parameters were fixed by simplifying the model [Sato et al., 2014].The highlands, highland ejecta, and swirl (Reiner Gamma) showed clearly higher w than the mare and mare ejecta. The derived c values were lower (less backscattering) for the swirl and higher (more backscattering) for the highlands (and ejecta) relative to the other sites. Forward scattering materials such as unconsolidated transparent crystalline materials might be relatively enriched in the swirl. In the highlands, anorthositic agglutinates with dense internal scattering could be responsible for the strong backscattering. The mare and mare ejecta showed continuously decreasing c from UV to visible wavelengths. This might be caused by the FeO-rich pyroxene and glass in the mare becoming more translucent at longer wavelengths.

  7. Frequency of technical complications in fixed implant prosthesis: the effect of prosthesis screw emergence correction by CAD-CAM.

    PubMed

    Anitua, Eduardo; Flores, Carlos; Piñas, Laura; Alkhraisat, Mohammad

    2018-06-05

    CAD-CAM technology permits the angular correction of screw emergence into the prosthesis, however there is lack of controlled clinical studies that assess the frequency of technical complications in angled screw channel restorations. This controlled clinical study was designed to assess technical incidences in angled screw channel restorations. Patients having implant prosthesis placed between November, 2014 and December, 2015 were screened. The patients were selected if they received prosthesis with up to 30º correction of the prosthesis screw emergence and had at least one non-angulated prosthesis (screw-retained). All the prostheses were located completely/partially in the posterior region. The frequency of technical complications was the principal variable. A total of 52 patients with a mean age of 62 ± 10 years participated with a total 110 prostheses (55 in the test group and 55 in the control group). A total of 11 technical complications occurred (7 in the test group and 4 in the control group). These differences were not statistically significant. All the prostheses in both groups survived the follow-up. The correction of the screw emergence into the prosthesis has not increased the risk of technical complications in CAD-CAM implant prostheses.

  8. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    PubMed

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  9. The ratioed image film thickness meter

    NASA Astrophysics Data System (ADS)

    Husen, Nicholas M.; Liu, Tianshu; Sullivan, John P.

    2018-06-01

    A technique for measuring the thickness of a fluorescent oil film is presented. Incident light is cast upon the oil film and the intensity of the luminescent signal from the fluorescent dye is ratioed with the intensity of the incident light which is scattered from the surface of the model. The quotient is independent of the intensity of the incident light and proportional to the film thickness. Experiments are presented supporting that for sufficiently thin films the ratio is independent of the intensity of the incident light as well as independent of the angle from which the experiment is imaged and the angle from which the incident light is cast.

  10. Radarclinometry

    USGS Publications Warehouse

    Wildey, R.L.

    1986-01-01

    A mathematical theory and a corresponding algorithm have been developed to derive topographic maps from radar images as photometric arrays. Thus, as radargrammetry is to photogrammetry, so radarclinometry is to photoclinometry. Photoclinometry is endowed with a fundamental indeterminacy principle even for terrain homogeneous in normal albedo. This arises from the fact that the geometric locus of orientations of the local surface normal that is consistent with a given reflected specific-intensity of radiation is more complicated than a fixed line in space. For a radar image, the locus is a cone whose half-angle is the incidence angle and whose axis contains the radar. The indeterminacy is removed throughout a region if one possesses a control profile as a boundary-condition. In the absence of such ground-truth, a point-boundary-condition will suffice only in conjunction with a heuristic assumption, such as that the strike-line runs perpendicularly to the line-of-sight. In the present study I have implemented a more reasonable assumption which I call 'the hypothesis of local cylindricity'. Firstly, a general theory is derived, based solely on the implicit mathematical determinacy. This theory would be directly indicative of procedure if images were completely devoid of systematic error and noise. The theory produces topography by an area integration of radar brightness, starting from a control profile, without need of additional idealistic assumptions. But we have also theorized separately a method of forming this control profile, which method does require an additional assumption about the terrain. That assumption is that the curvature properties of the terrain are locally those of a cylinder of inferable orientation, within a second-order mathematical neighborhood of every point of the terrain. While local strike-and-dip completely determine the radar brightness itself, the terrain curvature determines the brightness-gradient in the radar image. Therefore, the control profile is formed as a line integration of brightness and its local gradient starting from a single point of the terrain where the local orientation of the strike-line is estimated by eye. Secondly, and independently, the calibration curve for pixel brightness versus incidence-angle is produced. I assume that an applicable curve can be found from the literature or elsewhere so that our problem is condensed to that of properly scaling the brightness-axis of the calibration curve. A first estimate is found by equating the average image brightness to the point on the brightness axis corresponding to the complement of the effective radar depression-angle, an angle assumed given. A statistical analysis is then used to correct, on the one hand, for the fact that the average brightness is not the brightness that corresponds to the average incidence angle, as a result of the non-linearity of the calibration curve; and on the other hand, we correct for the fact that the average incidence angle is not the same for a rough surface as it is for a flat surface (and therefore not the complement of the depression angle). Lastly, the practical modifications that were interactively evolved to produce an operational algorithm for treating real data are developed. They are by no means considered optimized at present. Such a possibility is thus far precluded by excessive computer-time. Most noteworthy in this respect is the abandonment of area integration away from a control profile. Instead, the topography is produced as a set of independent line integrations down each of the parallel range lines of the image, using the theory for control-profile formation. An adaptive technique, which now appears excessive, was also employed so that SEASAT images of sand dunes could be processed. In this, the radiometric calibration was iterated to force the endpoints of each profile to zero elevation. A secondary algorithm then employed line-averages of appropriate quantities to adjust the mean t

  11. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.

    PubMed

    Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin

    2015-12-01

    To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at baseline. Copyright © 2015 American Academy of Ophthalmology. All rights reserved.

  12. The Effect of Incidence Angle on Stereo DTM Quality: Simulations in Support of Europa Clipper

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Jorda, L.

    2014-12-01

    Many quality factors for digital topographic models (DTMs) from stereo imaging can be predicted geometrically. For example, pixel scale is related to instantaneous field of view and to range. DTM resolution can be no better than a few times this pixel scale. Even vertical precision is a known function of the pixel scale and convergence angle, providedthe image quality is high enough that automated image matching reaches its optimal precision (~0.2 pixel). The influence of incidence angle is harder to predict. Reduced quality is expected both at low incidence (where topographic shading disappears) and high incidence (where signal/noise ratio is low and shadows occur). This problem is of general interest, but especially critical for the Europa Clipper mission profile. Clipper would obtain a radar sounding profile on each Europa flyby. Stereo images collected simultaneously would be used to produce a DTM needed to distinguish off-nadir surface echos (clutter) from subsurface features. The question is, how much of this DTM strip will be useful, given that incidence angle will vary substantially? We are using simulations to answer this question. We produced a 210 m/post DTM of the Castalia Macula region of Europa from 6 Galileo images by photoclinometry. A low-incidence image was used to correct for albedo variations before photoclinometry. We are using the image simulation software OASIS to generate synthetic stereopairs of the region at a full range of incidence angles. These images will be realistic in terms of image resolution, noise, photometry including albedo variations (based on the low incidence image), and cast shadows. The pairs will then be analyzed with the commercial stereomapping software SOCET SET (® BAE Systems), which we have used for a wide variety of planetary mapping projects. Comparing the stereo-derived DTMs to the input ("truth") DTM will allow us to quantify the dependence of true DTM resolution and vertical precision on illumination, and to document the qualitative ways that DTMs degrade at high and low incidence angles. This methodology is immediately applicable to other planetary targets, and in particular can be used to address how much difference in illumination can be tolerated in stereopairs that are not (as for Clipper) acquired simultaneously.

  13. Torque Compensator for Mirror Mountings

    NASA Technical Reports Server (NTRS)

    Howe, S. D.

    1983-01-01

    Device nulls flexural distributions of pivotal torques. Magnetic compensator for flexing pivot torque consists of opposing fixed and movable magnet bars. Magnetic torque varies nonlinearly as function of angle of tilt of movable bar. Positions of fixed magnets changed to improve magnetic torque linearity.

  14. Ship Air Wake Detection Using a Small Fixed Wing Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Phelps, David M.

    A ship's air wake is dynamically detected using an airborne inertial measurement unit (IMU) and global positioning system (GPS) attached to a fixed wing unmanned aerial system. A fixed wing unmanned aerial system (UAS) was flown through the air wake created by an underway 108 ft (32.9m) long research vessel in pre designated flight paths. The instrumented aircraft was used to validate computational fluid dynamic (CFD) simulations of naval ship air wakes. Computer models of the research ship and the fixed wing UAS were generated and gridded using NASA's TetrUSS software. Simulations were run using Kestrel, a Department of Defense CFD software to validate the physical experimental data collection method. Air wake simulations were run at various relative wind angles and speeds. The fixed wing UAS was subjected to extensive wind tunnel testing to generate a table of aerodynamic coefficients as a function of control surface deflections, angle of attack and sideslip. The wind tunnel experimental data was compared against similarly structured CFD experiments to validate the grid and model of fixed wing UAS. Finally, a CFD simulation of the fixed wing UAV flying through the generated wake was completed. Forces on the instrumented aircraft were calculated from the data collected by the IMU. Comparison of experimental and simulation data showed that the fixed wing UAS could detect interactions with the ship air wake.

  15. The effect of incidence angle on the overall three-dimensional aerodynamic performance of a classical annular airfoil cascade

    NASA Technical Reports Server (NTRS)

    Bergsten, D. E.; Fleeter, S.

    1983-01-01

    To be of quantitative value to the designer and analyst, it is necessary to experimentally verify the flow modeling and the numerics inherent in calculation codes being developed to predict the three dimensional flow through turbomachine blade rows. This experimental verification requires that predicted flow fields be correlated with three dimensional data obtained in experiments which model the fundamental phenomena existing in the flow passages of modern turbomachines. The Purdue Annular Cascade Facility was designed specifically to provide these required three dimensional data. The overall three dimensional aerodynamic performance of an instrumented classical airfoil cascade was determined over a range of incidence angle values. This was accomplished utilizing a fully automated exit flow data acquisition and analysis system. The mean wake data, acquired at two downstream axial locations, were analyzed to determine the effect of incidence angle, the three dimensionality of the cascade exit flow field, and the similarity of the wake profiles. The hub, mean, and tip chordwise airfoil surface static pressure distributions determined at each incidence angle are correlated with predictions from the MERIDL and TSONIC computer codes.

  16. Optimisation of Substrate Angles for Multi-material and Multi-functional Inkjet Printing.

    PubMed

    Vaithilingam, Jayasheelan; Saleh, Ehab; Wildman, Ricky D; Hague, Richard J M; Tuck, Christopher J

    2018-06-13

    Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks of metal nanoparticles to temperature above 100 °C for sintering. It is envisaged that instead of printing a dielectric and a conductive material on the same plane, by printing conductive tracks on an angled dielectric surface, the required number of silver layers and consequently, the exposure of the polymer to high temperature and the build time of the component can be significantly reduced. Conductive tracks printed with a fixed print height (FH) showed significantly better resolution for all angles than the fixed slope (FS) sample where the print height varied to maintain the slope length. The electrical resistance of the tracks remained under 10Ω up to 60° for FH; whereas for the FS samples, the resistance remained under 10Ω for samples up to 45°. Thus by fixing the print height to 4 mm, precise tracks with low resistance can be printed at substrate angles up to 60°. By adopting this approach, the build height "Z" can be quickly attained with less exposure of the polymer to high temperature.

  17. Treating patella fractures with a fixed-angle patella plate-A prospective observational study.

    PubMed

    Wild, Michael; Fischer, Kai; Hilsenbeck, Florian; Hakimi, Mohssen; Betsch, Marcel

    2016-08-01

    Anterior tension wiring using Kirschner wires (K-wires) is still considered the standard treatment for patella fractures, despite its high complication rate. The objective of this prospective clinical study was to evaluate intra- and perioperative complications as well as the clinical outcome of patients with patella fracture treated with a new developed bilateral, polyaxial, fixed-angle 2.7mm patella plate. Between 2011 and 2014 all patients with a patella fracture were included in this prospective study and treated with a fixed-angle patella plate. Avulsion fractures of the inferior or superior pole of the patella were excluded. All fractures were classified according to the AO/OTA fracture classification. During a twelve-month follow up period all intra- and postoperative complications were recorded as well as the time until fracture healing. One year postoperatively the Lysholm Score, the pre- and postoperative Tegner Score, the Hospital for Special Surgery Knee Score (HSS), the Turba Score, the Oxford Knee Score, the Knee injury and Osteoarthritis Outcome Score (KOOS), the Bostman Score and the Iowa Knee Score were surveyed. Altogether, 20 patella fractures in 19 patients were included in this prospective study. The most frequent type of fracture, n=10, was a simple transverse patella fracture (C1), followed by 7 comminuted patella fractures (C3) and 3 T-shaped patella fractures (C2). During the 12-month follow up period two patients treated with the patella plate had a complication. In one patient a superficial wound infection occurred, which was treated successfully with hardware removal and in one patient a fracture dislocation due to an implant failure occurred. X-rays demonstrated complete bony healing in all fractures on average 3.2 months postoperatively. All knee scores showed good to excellent clinical results one year postoperatively. The results of this first clinical study indicate that the fixed-angle patella plate is an effective and safe treatment option for patella fractures with a short operative learning curve. The treatment of communited patella fractures (C3) with a fixed-angle patella plate should be well-considered to avoid distending the indication and biomechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Impact of Ion Bombardment on the Structure and Magnetic Properties of Fe78Si13B9 Amorphous Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Yingwei; Peng, Kun

    2018-06-01

    Amorphous Fe78Si13B9 alloy ribbons were bombarded by ion beams with different incident angles ( θ ). The evolution of the microstructure and magnetic properties of ribbons caused by ion beam bombardment was investigated by x-ray diffraction, transmission electron microscope and vibrating sample magnetometer analysis. Low-incident-angle bombardment led to atomic migration in the short range, and high-incident-angle bombardment resulted in the crystallization of amorphous alloys. Ion bombardment induces magnetic anisotropy and affects magnetic properties. The effective magnetic anisotropy was determined by applying the law of approach to saturation, and it increased with the increase of the ion bombardment angle. The introduction of effective magnetic anisotropy will reduce the permeability and increase the relaxation frequency. Excellent high-frequency magnetic properties can be obtained by selecting suitable ion bombardment parameters.

  19. Shuttle imaging radar views the Earth from Challenger: The SIR-B experiment

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Cimino, J. B.; Holt, B.; Ruzek, M. R.

    1986-01-01

    In October 1984, SIR-B obtained digital image data of about 6.5 million km2 of the Earth's surface. The coverage is mostly of selected experimental test sites located between latitudes 60 deg north and 60 deg south. Programmed adjustments made to the look angle of the steerable radar antenna and to the flight attitude of the shuttle during the mission permitted collection of multiple-incidence-angle coverage or extended mapping coverage as required for the experiments. The SIR-B images included here are representative of the coverage obtained for scientific studies in geology, cartography, hydrology, vegetation cover, and oceanography. The relations between radar backscatter and incidence angle for discriminating various types of surfaces, and the use of multiple-incidence-angle SIR-B images for stereo measurement and viewing, are illustrated with examples. Interpretation of the images is facilitated by corresponding images or photographs obtained by different sensors or by sketch maps or diagrams.

  20. Imaging based refractometers

    DOEpatents

    Baba, Justin S.

    2015-11-24

    Refractometers for simultaneously measuring refractive index of a sample over a range or wavelengths of light include dispersive and focusing optical systems. An optical beam including the rang of wavelengths is spectrally spread along a first axis and focused along a second axis so as to be incident to an interface between the sample and a prism at a range of angles of incidence including a critical angle for at least one wavelength. In some cases, the prism can have a triangle, parallelogram, trapezoid, or other shape. In some cases, the optical beam can be reflected off of multiple interfaces between the prism and the sample. An imaging detector is situated to receive the spectrally spread and focused light from the interface and form an image corresponding to angle of incidence as a function of wavelength. One or more critical angles are indentified and corresponding refractive indices are determined.

  1. Tantalum films with well-controlled roughness grown by oblique incidence deposition

    NASA Astrophysics Data System (ADS)

    Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2005-08-01

    We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.

  2. Formation of Warped Disks by Galactic Flyby Encounters. I. Stellar Disks

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghwan H.; Peirani, Sebastien; Kim, Sungsoo; Ann, Hong Bae; An, Sung-Ho; Yoon, Suk-Jin

    2014-07-01

    Warped disks are almost ubiquitous among spiral galaxies. Here we revisit and test the "flyby scenario" of warp formation, in which impulsive encounters between galaxies are responsible for warped disks. Based on N-body simulations, we investigate the morphological and kinematical evolution of the stellar component of disks when galaxies undergo flyby interactions with adjacent dark matter halos. We find that the so-called "S"-shaped warps can be excited by flybys and sustained for even up to a few billion years, and that this scenario provides a cohesive explanation for several key observations. We show that disk warp properties are governed primarily by the following three parameters: (1) the impact parameter, i.e., the minimum distance between two halos; (2) the mass ratio between two halos; and (3) the incident angle of the flyby perturber. The warp angle is tied up with all three parameters, yet the warp lifetime is particularly sensitive to the incident angle of the perturber. Interestingly, the modeled S-shaped warps are often non-symmetric depending on the incident angle. We speculate that the puzzling U- and L-shaped warps are geometrically superimposed S-types produced by successive flybys with different incident angles, including multiple interactions with a satellite on a highly elongated orbit.

  3. Scanning laser reflection tool for alignment and period measurement of critical-angle transmission gratings

    NASA Astrophysics Data System (ADS)

    Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.

    2017-08-01

    We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.

  4. Enhancing the reproducibility of ocular vestibular evoked myogenic potentials by use of a visual target originating from a head-mounted laser.

    PubMed

    Jerin, Claudia; Bartl, Klaus; Schneider, Erich; Gürkov, Robert

    2015-10-01

    Ocular vestibular evoked myogenic potentials (oVEMPs) represent extraocular muscle activity in response to vestibular stimulation. oVEMP amplitudes are known to increase with increasing upward gaze angle, while the patient fixates a visual target. We investigated two different methods of presenting a visual target during oVEMP recordings. 57 healthy subjects were enrolled in this study. oVEMPs were elicited by 500 Hz air-conducted tone bursts while the subjects were looking upward at a marking which was either fixed on the wall or originated from a head-mounted laser attached to a headband, in either case corresponding to a 35° upward gaze angle. oVEMP amplitudes and latencies did not differ between the subjects looking at the fixed marking and the ones looking at the laser marking. The intra-individual standard deviation of amplitudes obtained by two separate measurements for each subject, however, as a measure of test-retest reliability, was significantly smaller for the laser headband group (0.60) in comparison to the group looking at the fixed marking (0.96; p = 0.007). The intraclass correlation coefficient revealed better test-retest reliability for oVEMP amplitudes when using the laser headband (0.957) than using the fixed marking (0.908). Hence, the use of a visual target originating from a headband enhances the reproducibility of oVEMPs. This might be due to the fact that the laser headband ensures a constant gaze angle and rules out the influence of small involuntary head movements on the gaze angle.

  5. Aerodynamic Measurements of a Variable-Speed Power-Turbine Blade Section in a Transonic Turbine Cascade at Low Inlet Turbulence

    NASA Technical Reports Server (NTRS)

    Flegel-McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2013-01-01

    Aerodynamic measurements obtained in a transonic linear cascade were used to assess the impact of large incidence angle and Reynolds number variations on the 3-D flow field and midspan loss and turning of a 2-D section of a variable-speed power-turbine (VSPT) rotor blade. Steady-state data were obtained for ten incidence angles ranging from +15.8 deg to -51.0 deg. At each angle, data were acquired at five flow conditions with the exit Reynolds number (based on axial chord) varying over an order-of-magnitude from 2.12×10(exp 5) to 2.12×10(exp 6). Data were obtained at the design exit Mach number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the lowest Reynolds number. Midspan total-pressure and exit flow angle data were acquired using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial chord downstream of the blade trailing edge plane. The survey spanned three blade passages. Additionally, three-dimensional half-span flow fields were examined with additional probe survey data acquired at 26 span locations for two key incidence angles of +5.8 deg and -36.7 deg. Survey data near the endwall were acquired with a three-hole boundary-layer probe. The data were integrated to determine average exit total-pressure and flow angle as functions of incidence and flow conditions. The data set also includes blade static pressures measured on four spanwise planes and endwall static pressures. Tests were conducted in the NASA Glenn Transonic Turbine Blade Cascade Facility. The measurements reflect strong secondary flows associated with the high aerodynamic loading levels at large positive incidence angles and an increase in loss levels with decreasing Reynolds number. The secondary flows decrease with negative incidence as the blade becomes unloaded. Transitional flow is admitted in this low inlet turbulence dataset, making it a challenging CFD test case. The dataset will be used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range. deg

  6. Optical hysteresis in SPR structures with amorphous As2S3 film under low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Stafe, M.; Popescu, A. A.; Savastru, D.; Negutu, C.; Vasile, G.; Mihailescu, M.; Ducariu, A.; Savu, V.; Tenciu, D.; Miclos, S.; Baschir, L.; Verlan, V. V.; Bordian, O.; Puscas, N. N.

    2018-03-01

    Optical hysteresis is a fundamental phenomenon that can lead to optical bistability and high-speed signal processing. Here, we present a theoretical and experimental study of the optical hysteresis phenomenon in amorphous As2S3 chalcogenide based waveguide structures under surface plasmon resonance (SPR) conditions. The SPR structure is irradiated with low power CW Ar laser radiation at 514 nm wavelength, with photon energy near the optical band-gap of As2S3, in a Kretschmann-Raether configuration. First, we determined the incidence angle on the SPR structure for resonant coupling of the laser radiation within the waveguide structure. Subsequently, by setting the near resonance incidence angle, we analyzed the variation of the laser power reflected on the SPR structure with incident power. We demonstrated that, by setting the incidence angle at a value slightly smaller than the resonance angle, the increase followed by the decrease of the incident power lead to a wide (up to 60%) hysteresis loop of the reflected power. This behavior is related to the slow and persistent photo-induced modification of the complex refractive index of As2S3 under 514 nm laser irradiation. The experimental and theoretical results are in good agreement, demonstrating the validity of the theoretical model presented here.

  7. The nature of crustal boundaries: combined interpretation of wide-angle and normal-incidence seismic data

    NASA Astrophysics Data System (ADS)

    Long, Roger E.; Matthews, Patricia A.; Graham, Daniel P.

    1994-04-01

    After a few seconds two-way traveltime, normal-incidence seismic reflection sections are composed mainly of assemblages of short reflections. Very rarely are seen continuous reflections that might correspond to the Moho or a mid-crustal discontinuity. The inferred continuity of these boundaries has traditionally come from refraction seismology. There is now a body of high quality, coincident wide-angle and normal-incidence seismic data that have been recorded with 50-100 m shot spacing and with high frequency sources (e.g. MOBIL, BABEL). The complexity and characteristics of the wide-angle arrivals seen on these data suggest that they do not originate from continuous boundaries. It is suggested that these arrivals are reflections from the same assemblage of short length reflectors that are responsible for normal-incidence reflections. Seismic velocities below the middle crust may (1) change corresponding to normal-incidence reflectivity, or (2) generally increase with depth with localised sills or lens structures of different velocity accounting for the observed reflections. Wide-angle arrivals that have traditionally been identified as reflections from crustal boundaries (e.g. the mid-crust and Moho) and which were considered indicative of a sharp velocity discontinuity from continuous boundaries, may instead result from a concentration of lamellae.

  8. Numerical Study of Transmission Loss Through a Slow Gas Layer Adjacent to a Plate

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Beck, Benjamin S.; Slagle, Adam C.

    2013-01-01

    This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.

  9. Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2018-02-01

    The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their size parameters. This study provides a complete analytical method and computations for the longitudinal and transverse radiation force components in the multiple scattering of EM plane progressive waves with potential applications in particle manipulation, optically-engineered metamaterials with reconfigurable periodicities and cloaking devices to name a few examples.

  10. Apparent Negative Reflection with the Gradient Acoustic Metasurface by Integrating Supercell Periodicity into the Generalized Law of Reflection.

    PubMed

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-12-05

    As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell's law. However, the critical angle that derived from the generalized Snell's law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device.

  11. The effects of solar incidence angle over digital processing of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.

    1983-01-01

    A technique to extract the topography modulation component from digital data is described. The enhancement process is based on the fact that the pixel contains two types of information: (1) reflectance variation due to the target; (2) reflectance variation due to the topography. In order to enhance the signal variation due to topography, the technique recommends the extraction from original LANDSAT data of the component resulting from target reflectance. Considering that the role of topographic modulation over the pixel information will vary with solar incidence angle, the results of this technique of digital processing will differ from one season to another, mainly in highly dissected topography. In this context, the effects of solar incidence angle over the topographic modulation technique were evaluated. Two sets of MSS/LANDSAT data, with solar elevation angles varying from 22 to 41 deg were selected to implement the digital processing at the Image-100 System. A secondary watershed (Rio Bocaina) draining into Rio Paraiba do Sul (Sao Paulo State) was selected as a test site. The results showed that the technique used was more appropriate to MSS data acquired under higher Sun elevation angles. Topographic modulation components applied to low Sun elevation angles lessens rather than enhances topography.

  12. Retroreflective Phase Retardation Prisms.

    DTIC Science & Technology

    1981-06-01

    resonant cavity of a 1.064 Mm laser. This report shows that it is possible to coat the reflecting surfaces of a porro prism so that incident plane...with controlled phase retardation can be made by coating each reflecting surface of a porro prism with a single dielectric film. The amount of phase...of angle of incidence (n, < n2) S. Phase change on reflection as a function of angle of incidence (n" n ) [RL-0202-’R 6. Porro prism 7. Phase change

  13. Single-backscattering and quasi-single-backscattering of low energy ions from a cold nickel surface: contribution to the ICISS method

    NASA Astrophysics Data System (ADS)

    Soszka, W.

    1992-09-01

    Energy spectra of 5 keV Ne+ and He+ ions backscattered from the cold (100) nickel surface for chosen values of the incidence angles were measured. It was found that the occurrence of the isotope structure of the so-called "single-scattering" peak as well as its position on the energy scale depend on the incidence angle and the target temperature. In comparison to the case of room temperature the "ICISS curve" (the intensity of the single-scattering peak versus the incidence angle) at low temperatures increases up to relatively large angles. The curve in its part shows some structure which is not observed at room temperatures. It has been shown [E.S. Parilis et al., Atomic Collisions in Gases and on Solid Surfaces (FAN, Tashkent, 1988) in Russian] that the doubly scattered ions can have the same energy and exit angle as the singly scattered ions and both components create the quasi-single-scattering peak. The double-scattering component depends in a complex manner on the incidence angle and the target temperature. It is shown that at low temperatures (below 80 K) the intensity of the single-scattering component decreases (a decrease of thermal cross section), and the intensity of the double-scattering component relatively increases. This determines the behaviour of the ICISS curve, which, for low temperatures and light projectiles cannot be treated as a real ICISS curve.

  14. Modification of the morphology and optical properties of SnS films using glancing angle deposition technique

    NASA Astrophysics Data System (ADS)

    Sazideh, M. R.; Dizaji, H. Rezagholipour; Ehsani, M. H.; Moghadam, R. Zarei

    2017-05-01

    Tin sulfide (SnS) films were prepared by thermal evaporation method using Glancing Angle Deposition (GLAD) technique at zero and different oblique incident flux angles (α = 45°, 55°, 65°, 75° and 85°). The physical properties of prepared films were systematically investigated. The X-ray diffraction analysis indicated that the film deposited at α = 0° formed as single phase with an orthorhombic structure. However, the layers became amorphous at α = 45°, 55°, 65°, 75° and 85°. Beside the appearance of amorphous feature in the film prepared at α higher than zero, Sn2S3 phase was also observed. The top and cross-sectional field emission scanning electron microscope (FESEM) images of the samples showed noticeable changes in the structure and morphology of individual nano-plates as a function of incident angle. The band gap and refractive index values of the films were calculated by optical transmission measurements. The optical band-gap values were observed to increase with increasing the incident flux angle. This can be due to presence of Sn2S3 phase observed in the samples produced at α values other than zero. The effective refractive index and porosity exhibit an opposite evolution as the incident angle α rises. At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range.

  15. Low-Angle-Incidence Microchannel Epitaxy of a-Plane GaN Grown by Ammonia-Based Metal-Organic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-04-01

    Low-angle-incidence microchannel epitaxy (LAIMCE) of a-plane GaN was performed using ammonia-based metal-organic molecular beam epitaxy to obtain wide and thin lateral overgrowth over a SiO2 mask. Trimethylgallium (TMG) was supplied perpendicular to the openings cut in the mask with a low incident angle of 5° relative to the substrate plane. The [NH3]/[TMG] ratio (R) dependence of GaN LAIMCE was optimized by varying R from 5 to 30. A wide lateral overgrowth of 3.7 µm with a dislocation density below the transmission electron microscope detection limit was obtained at R=15 for a thickness of 520 nm.

  16. Per-point and per-field contextual classification of multipolarization and multiple incidence angle aircraft L-band radar data

    NASA Technical Reports Server (NTRS)

    Hoffer, Roger M.; Hussin, Yousif Ali

    1989-01-01

    Multipolarized aircraft L-band radar data are classified using two different image classification algorithms: (1) a per-point classifier, and (2) a contextual, or per-field, classifier. Due to the distinct variations in radar backscatter as a function of incidence angle, the data are stratified into three incidence-angle groupings, and training and test data are defined for each stratum. A low-pass digital mean filter with varied window size (i.e., 3x3, 5x5, and 7x7 pixels) is applied to the data prior to the classification. A predominately forested area in northern Florida was the study site. The results obtained by using these image classifiers are then presented and discussed.

  17. Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles.

    PubMed

    Alagappan, G; Wu, P

    2009-07-06

    We demonstrate that a series of one-dimensional photonic crystals made of any dielectric materials, with the periods are distributed in a geometrical progression of a common ratio, r < rc (theta,P), where rc is a structural parameter that depends on the angle of incidence, theta, and polarization, P, is capable of blocking light of any spectral range. If an omni-directional reflection is desired for all polarizations and for all incident angles smaller than thetao, then r < rc (theta(o),p), where p is the polarization with the electric field parallel to the plane of incidence. We present simple and formula like expressions for rc, width of the bandgap, and minimum number of photonic crystals to achieve a perfect light reflection.

  18. Omnidirectional anti-reflection properties of vertically align SiO2 nanorod films prepared by electron beam evaporation with glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-03-01

    Omnidirectional anti-reflection coating nanostructure film have attracted enormous attention for the developments of the optical coating, lenses, light emitting diode, display and photovoltaic. However, fabricated of the omnidirectional antireflection nanostructure film on glass substrate in large area was a challenge topic. In the past two decades, the invention of glancing angle deposition technique as a growth of well-controlled two and three-dimensional morphologies has gained significant attention because of it is simple, fast, cost-effective and high mass production capability. In this present work, the omnidirectional anti-reflection nanostructure coating namely silicon dioxide (SiO2) nanorods has been investigated for optimized high transparent layer at all light incident angle. The SiO2 nanorod films of an optimally low refractive index have been fabricated by electron beam evaporation with the glancing angle deposition technique. The morphological of the prepared sampled were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The optical transmission and omnidirectional property of the SiO2 nanorod films were investigated by UV-Vis-NIR spectrophotometer. The measurement were performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measure were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. The morphological characterization results showed that when the glancing angle deposition technique was applied, the vertically align SiO2 nanorods with partially isolated columnar structure can be constructed due to the enhanced shadowing and limited addtom diffusion effect. The average transmission of the vertically align SiO2 nanorods were higher than the glass substrate reference sample over the visible wavelength range at all incident angle due to the transition in the refractive index profile from air to the nanostructure layer that improved the anti-reflection characteristics.

  19. Shuttle Imaging Radar (SIR-B) investigations of the Canadian shield - Initial Report

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.; Harris, Jeff; Masuoka, Penny M.; Singhroy, Vernon H.; Slaney, Vernon Roy

    1987-01-01

    Two of the 43 Shuttle Imaging Radar (SIR-B) experiments carried out from the 41-G shuttle mission in 1984 involved a 2600-km swath across the Canadian Shield, with the objectives of studying the structure of province boundaries and developing techniques for the geologic use of orbital radar. Despite degraded single incidence angle imagery resulting from system problems, valuable experience has been obtained with data over a test site near Bancroft, Ontario. It has been found that even subdued glaciated topography can be effectively imaged, variations in backscatter being caused by variations in local incidence angle rather than shadowing. It has been demonstrated that small incidence angles are more sensitive to topography than large angles. Backscatter is extremely sensitive to look direction, topographic features nearly normal to the illumination being highlighted, and those nearly parallel to it being suppressed. It is concluded that orbital radar can provide a valuable tool for geologic studies of the Canadian Shield and similar areas, if suitable look angles and at least two look directions can be utilized for each area.

  20. Free-Space Time-Domain Method for Measuring Thin Film Dielectric Properties

    DOEpatents

    Li, Ming; Zhang, Xi-Cheng; Cho, Gyu Cheon

    2000-05-02

    A non-contact method for determining the index of refraction or dielectric constant of a thin film on a substrate at a desired frequency in the GHz to THz range having a corresponding wavelength larger than the thickness of the thin film (which may be only a few microns). The method comprises impinging the desired-frequency beam in free space upon the thin film on the substrate and measuring the measured phase change and the measured field reflectance from the reflected beam for a plurality of incident angles over a range of angles that includes the Brewster's angle for the thin film. The index of refraction for the thin film is determined by applying Fresnel equations to iteratively calculate a calculated phase change and a calculated field reflectance at each of the plurality of incident angles, and selecting the index of refraction that provides the best mathematical curve fit with both the dataset of measured phase changes and the dataset of measured field reflectances for each incident angle. The dielectric constant for the thin film can be calculated as the index of refraction squared.

  1. Laboratory-Based BRDF Calibration of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2007-01-01

    The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.

  2. Almucantar radio telescope report 1: A preliminary study of the capabilities of large partially steerable paraboloidal antennas

    NASA Technical Reports Server (NTRS)

    Usher, P. D.

    1971-01-01

    The almucantar radio telescope development and characteristics are presented. The radio telescope consists of a paraboloidal reflector free to rotate in azimuth but limited in altitude between two fixed angles from the zenith. The fixed angles are designed to provide the capability where sources lying between two small circles parallel with the horizon (almucantars) are accessible at any one instant. Basic geometrical considerations in the almucantar design are presented. The capabilities of the almucantar telescope for source counting and for monitoring which are essential to a resolution of the cosmological problem are described.

  3. Retrieving the polarization information for satellite-to-ground light communication

    NASA Astrophysics Data System (ADS)

    Tao, Qiangqiang; Guo, Zhongyi; Xu, Qiang; Jiao, Weiyan; Wang, Xinshun; Qu, Shiliang; Gao, Jun

    2015-08-01

    In this paper, we have investigated the reconstruction of the polarization states (degree of polarization (DoP) and angle of polarization (AoP)) of the incident light which passed through a 10 km atmospheric medium between the satellite and the Earth. Here, we proposed a more practical atmospheric model in which the 10 km atmospheric medium is divided into ten layers to be appropriate for the Monte Carlo simulation algorithm. Based on this model, the polarization retrieve (PR) method can be used for reconstructing the initial polarization information effectively, and the simulated results demonstrate that the mean errors of the retrieved DoP and AoP are very close to zero. Moreover, the results also show that although the atmospheric medium system is fixed, the Mueller matrices for the downlink and uplink are completely different, which shows that the light transmissions in the two links are irreversible in the layered atmospheric medium system.

  4. Investigation of helicity-dependent photocurrent at room temperature from a Fe/x-AlO x /p-GaAs Schottky junction with oblique surface illumination

    NASA Astrophysics Data System (ADS)

    Roca, Ronel Christian; Nishizawa, Nozomi; Nishibayashi, Kazuhiro; Munekata, Hiro

    2017-04-01

    In view of a study on spin-polarized photodiodes, the helicity-dependent photocurrent (ΔI) in a Fe/γ-AlO x /p-GaAs Schottky diode is measured at room temperature by illuminating a circularly polarized light beam (λ = 785 nm) either horizontally on the cleaved sidewall or at an oblique angle on the top metal surface. The plane of incidence is fixed to be parallel to the magnetization vector of the in-plane magnetized Fe electrode. The conversion efficiency F, which is a relative value of ΔI with respect to the total photocurrent I ph, is determined to be 1.0 × 10-3 and 1.2 × 10-2 for sidewall illumination and oblique-angle illumination, respectively. Experimental data are compared with the results of a model calculation consisting of drift-diffusion and Julliere spin-dependent tunneling transports, from which two conclusions are obtained: the model accounts fairly well for the experimental data without introducing the annihilation of spin-polarized carriers at the γ-AlO x /p-GaAs interface for the oblique-angle illumination, but the model does not fully explain the relatively low F in terms of the surface recombination at the cleaved sidewall in the case of sidewall illumination. Microscopic damage to the tunneling barrier at the cleaved edge would be one possible cause of the reduced F.

  5. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Babaei, J.; Gizzi, L. A.; Londrillo, P.; Mirzanejad, S.; Rovelli, T.; Sinigardi, S.; Turchetti, G.

    2017-04-01

    The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uniform foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse configuration, are comparable. This suggests that parametric scans can be performed with 2D simulations since 3D ones are computationally very expensive, delegating their role only to a correspondence check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the target thickness L and the incidence angle α, with a fixed a0 = 3. A monotonic dependence, on L for normal incidence and on α for fixed L, is found, as in the experimental results for high temporal contrast pulses.

  6. On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kanudula, Max

    2009-01-01

    A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.

  7. Sensitivity of fenestration solar gain to source spectrum and angle of incidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCluney, W.R.

    1996-12-31

    The solar heat gain coefficient (SHGC) is the fraction of solar radiant flux incident on a fenestration system entering a building as heat gain. In general it depends on both the angle of incidence and the spectral distribution of the incident solar radiation. In attempts to improve energy performance and user acceptance of high-performance glazing systems, manufacturers are producing glazing systems with increasing spectral selectivity. This poses potential difficulties for calculations of solar heat gain through windows based upon the use of a single solar spectral weighting function. The sensitivity of modern high-performance glazing systems to both the angle ofmore » incidence and the shape of the incident solar spectrum is examined using a glazing performance simulation program. It is found that as the spectral selectivity of the glazing system increases, the SHGC can vary as the incident spectral distribution varies. The variations can be as great as 50% when using several different representative direct-beam spectra. These include spectra having low and high air masses and a standard spectrum having an air mass of 1.5. The variations can be even greater if clear blue diffuse skylight is considered. It is recommended that the current broad-band shading coefficient method of calculating solar gain be replaced by one that is spectral based.« less

  8. Hi, Hokusai!

    NASA Image and Video Library

    2017-12-08

    This dramatic image features Hokusai in the foreground, famous for its extensive set of rays, some of which extend for over a thousand kilometers across Mercury's surface. The extensive, bright rays indicate that Hokusai is one of the youngest large craters on Mercury. Check out previously featured images to see high-resolution details of its central peaks, rim and ejecta blanket, and impact melt on its floor. This image was acquired as part of MDIS's high-incidence-angle base map. The high-incidence-angle base map complements the surface morphology base map of MESSENGER's primary mission that was acquired under generally more moderate incidence angles. High incidence angles, achieved when the Sun is near the horizon, result in long shadows that accentuate the small-scale topography of geologic features. The high-incidence-angle base map was acquired with an average resolution of 200 meters/pixel. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Divided attention limits perception of 3-D object shapes

    PubMed Central

    Scharff, Alec; Palmer, John; Moore, Cathleen M.

    2013-01-01

    Can one perceive multiple object shapes at once? We tested two benchmark models of object shape perception under divided attention: an unlimited-capacity and a fixed-capacity model. Under unlimited-capacity models, shapes are analyzed independently and in parallel. Under fixed-capacity models, shapes are processed at a fixed rate (as in a serial model). To distinguish these models, we compared conditions in which observers were presented with simultaneous or sequential presentations of a fixed number of objects (The extended simultaneous-sequential method: Scharff, Palmer, & Moore, 2011a, 2011b). We used novel physical objects as stimuli, minimizing the role of semantic categorization in the task. Observers searched for a specific object among similar objects. We ensured that non-shape stimulus properties such as color and texture could not be used to complete the task. Unpredictable viewing angles were used to preclude image-matching strategies. The results rejected unlimited-capacity models for object shape perception and were consistent with the predictions of a fixed-capacity model. In contrast, a task that required observers to recognize 2-D shapes with predictable viewing angles yielded an unlimited capacity result. Further experiments ruled out alternative explanations for the capacity limit, leading us to conclude that there is a fixed-capacity limit on the ability to perceive 3-D object shapes. PMID:23404158

  10. Ground effects on aircraft noise. [near grazing incidence

    NASA Technical Reports Server (NTRS)

    Willshire, W. L., Jr.; Hilton, D. A.

    1979-01-01

    A flight experiment was conducted to investigate air-to-ground propagation of sound near grazing incidence. A turbojet-powered aircraft was flown at low altitudes over the ends of two microphone arrays. An eight-microphone array was positioned along a 1850 m concrete runway. The second array consisted of 12 microphones positioned parallel to the runway over grass. Twenty-eight flights were flown at altitudes ranging from 10 m to 160 m. The acoustic data recorded in the field reduced to one-third-octave band spectra and time correlated with the flight and weather information. A small portion of the data was further reduced to values of ground attenuation as a function of frequency and incidence angle by two different methods. In both methods, the acoustic signals compared originated from identical sources. Attenuation results obtained by using the two methods were in general agreement. The measured ground attenuation was largest in the frequency range of 200 to 400 Hz. A strong dependence was found between ground attenuation and incidence angle with little attenuation measured for angles of incidence greater than 10 to 15 degrees.

  11. Feather Vibration as a Stimulus for Sensing Incipient Separation in Falcon Diving Flight

    DTIC Science & Technology

    2016-07-07

    Thus the bird in streamlined shape has still a good measure to control its attitude to be in the narrow win- dow of safe angle of incidence. This...still a good measure to control its attitude to be around 5deg angle of incidence. Note that this was concluded from wind-tunnel tests, literature and

  12. Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.

    2006-08-01

    Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.

  13. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOEpatents

    Susemihl, Ingo

    1990-01-01

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut.

  14. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOEpatents

    Susemihl, I.

    1990-03-13

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut. 7 figs.

  15. A mathematical procedure to predict optical performance of CPCs

    NASA Astrophysics Data System (ADS)

    Yu, Y. M.; Yu, M. J.; Tang, R. S.

    2016-08-01

    To evaluate the optical performance of a CPC based concentrating photovoltaic system, it is essential to find the angular dependence of optical efficiency of compound parabolic concentrator (CPC-θe ) where the incident angle of solar rays on solar cells is restricted within θe for the radiation over its acceptance angle. In this work, a mathematical procedure was developed to calculate the optical efficiency of CPC-θe for radiation incident at any angle based radiation transfer within CPC-θe . Calculations show that, given the acceptance half-angle (θa ), the annual radiation of full CPC-θe increases with the increase of θe and the CPC without restriction of exit angle (CPC-90) annually collects the most radiation due to large geometry (Ct ); whereas for truncated CPCs with identical θa and Ct , the annual radiation collected by CPC-θe is almost identical to that by CPC-90, even slightly higher. Calculations also indicate that the annual radiation on the absorber of CPC-θe at the angle larger than θe decrease with the increase of θe but always less than that of CPC-90, and this implies that the CPC-θe based PV system is more efficient than CPC-90 based PV system because the radiation on solar cells incident at large angle is poorly converted into electricity.

  16. Significance of occipitoaxial angle in subaxial lesion after occipitocervical fusion.

    PubMed

    Matsunaga, S; Onishi, T; Sakou, T

    2001-01-15

    The significance of occipitoaxial angle in the development of subaxial subluxation after occipitocervical fusion was determined in a minimum 5-year follow-up study performed retrospectively. To clarify the association between the position of the fixed occipital bone and axis and the development of subaxial subluxation. There have been few reports describing the association between the position of fixation of the occipital bone and axis and subaxial lesion in occipitocervical fusion. Thirty-eight patients with rheumatoid arthritis who underwent occipitocervical fusion for irreducible atlantoaxial dislocation were reviewed. The angle between the McGregor line and the inferior surface of the axis (O-C2) was measured in healthy volunteers and patients who had undergone occipitocervical fusion. The association between any changes in the alignment of the cervical vertebrae and the development of subaxial subluxation during follow-up periods was studied. The number of the patients in whom postoperative kyphosis and swan neck deformity developed was only five, but in four (80%) of them, retroversion of the occipital bone was used to increase the O-C2 angle. In 14 patients, in whom anteversion of the occipital bone against the axis was excessive, 12 (86%) patients experienced subaxial subluxation after surgery. In the patients in whom fixed O-C2 angles were in normal range, only one patient developed such abnormal changes in the middle and lower cervical vertebrae. It is necessary to give attention to the position of the fixed occipital bone and axis during procedures of occipitoaxial fusion for patients with rheumatoid arthritis.

  17. 29 CFR 1910.24 - Fixed industrial stairs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... machinery, tanks, and other equipment, and stairs leading to or from floors, platforms, or pits. This..., the angle of which changes with the rise and fall of the base support. (b) Where fixed stairs are... providing the leading edge can be readily identified by personnel descending the stairway and provided the...

  18. Modal propagation angles in ducts with soft walls and their connection with suppressor performance

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1979-01-01

    The angles of propagation of the wave fronts associated with duct modes are derived for a cylindrical duct with soft walls (acoustic suppressors) and a uniform steady flow. The angle of propagation with respect to the radial coordinate (angle of incidence on the wall) is shown to be a better correlating parameter for the optimum wall impedance of spinning modes than the previously used mode cutoff ratio. Both the angle of incidence upon the duct wall and the propagation angle with respect to the duct axis are required to describe the attenuation of a propagating mode. Using the modal propagation angles, a geometric acoustics approach to suppressor acoustic performance was developed. Results from this approximate method were compared to exact modal propagation calculations to check the accuracy of the approximate method. The results are favorable except in the immediate vicinity of the modal optimum impedance where the approximate method yields about one-half of the exact maximum attenuation.

  19. Secondary electron emission from textured surfaces

    NASA Astrophysics Data System (ADS)

    Huerta, C. E.; Patino, M. I.; Wirz, R. E.

    2018-04-01

    In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.

  20. The change in color matches with retinal angle of incidence of the colorimeter beams.

    PubMed

    Alpern, M; Kitahara, H; Fielder, G H

    1987-01-01

    Differences between W.D.W. chromaticities of monochromatic lights obtained with all colorimeter beams incident on the retina "off-axis" and those found for lights striking the retina normally have been studied throughout the visible spectrum on 4 normal trichromats. The results are inconsistent with: (i) the assumption in Weale's theories of the Stiles-Crawford hue shift that the sets of absorption spectra of the visual pigments catching normally and obliquely incident photons are identical, and (ii) "self-screening" explanations for the change in color with angle of incidence on the retina. The color matching functions of a protanomalous trichromat are inconsistent with the hypothesis that the absorption spectra of the visual pigments catching normally incident photons in his retina are those catching obliquely incident photons in the normal retina.

  1. Giant enhancement of reflectance due to the interplay between surface confined wave modes and nonlinear gain in dielectric media.

    PubMed

    Kim, Sangbum; Kim, Kihong

    2017-12-11

    We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.

  2. CORRECTIONS ASSOCIATED WITH ON-PHANTOM CALIBRATIONS OF NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Hawkes, N P; Thomas, D J; Taylor, G C

    2016-09-01

    The response of neutron personal dosemeters as a function of neutron energy and angle of incidence is typically measured by mounting the dosemeters on a slab phantom and exposing them to neutrons from an accelerator-based or radionuclide source. The phantom is placed close to the source (75 cm) so that the effect of scattered neutrons is negligible. It is usual to mount several dosemeters on the phantom together. Because the source is close, the source distance and the neutron incidence angle vary significantly over the phantom face, and each dosemeter may receive a different dose equivalent. This is particularly important when the phantom is angled away from normal incidence. With accelerator-produced neutrons, the neutron energy and fluence vary with emission angle relative to the charged particle beam that produces the neutrons, contributing further to differences in dose equivalent, particularly when the phantom is located at other than the straight-ahead position (0° to the beam). Corrections for these effects are quantified and discussed in this article. © Crown copyright 2015.

  3. Potential application of a homogeneous and anisotropic slab as an angle insensitive absorbing material

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Liu, Chang; Liu, Xiaoning; Niu, Tiaoming; Wang, Jing; Mei, Zhonglei; Qin, Jiayong

    2017-06-01

    In this paper, a flat and incident angle independence absorbing material is proposed and numerically verified in the optical spectrum. A homogeneous and anisotropic dielectric slab as a non-reflecting layer is first reviewed, and a feasible realization strategy of the slab is then given by using layered isotropic materials. When the loss components of the constitutive materials are not zero, the slab will work as an angle insensitive absorbing layer, and the absorption rate augments with increase of the losses. As the numerical verifications, the field distributions of a metallic cylinder and a triangular metallic object individually covered by the designed absorbing layer are demonstrated. The simulation results show that the designed absorbing layer can efficiently absorb the incident waves with the property of incident angle independence at the operation frequency. This homogeneous slab can be used in one and two dimensional situations for the realization of an invisibility cloak, a carpet cloak and even a skin cloak, if it is used to conformally cover target objects.

  4. Tunable valley polarization by a gate voltage when an electron tunnels through multiple line defects in graphene.

    PubMed

    Liu, Zhe; Jiang, Liwei; Zheng, Yisong

    2015-02-04

    By means of an appropriate wave function connection condition, we study the electronic structure of a line defect superlattice of graphene with the Dirac equation method. We obtain the analytical dispersion relation, which can simulate well the tight-binding numerical result about the band structure of the superlattice. Then, we generalize this theoretical method to study the electronic transmission through a potential barrier where multiple line defects are periodically patterned. We find that there exists a critical incident angle which restricts the electronic transmission through multiple line defects within a specific incident angle range. The critical angle depends sensitively on the potential barrier height, which can be modulated by a gate voltage. As a result, non-trivial transmissions of K and K' valley electrons are restricted, respectively, in two distinct ranges of the incident angle. Our theoretical result demonstrates that a gate voltage can act as a feasible measure to tune the valley polarization when electrons tunnel through multiple line defects.

  5. Apparent Negative Reflection with the Gradient Acoustic Metasurface by Integrating Supercell Periodicity into the Generalized Law of Reflection

    PubMed Central

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-01-01

    As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell’s law. However, the critical angle that derived from the generalized Snell’s law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device. PMID:27917909

  6. A simulation study on the mode conversion process from slow Z-mode to LO mode by the tunneling effect and variations of beaming angle

    NASA Astrophysics Data System (ADS)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2014-12-01

    For a particular angle of incidence wave, it is possible for a slow Z-mode wave incident on an inhomogeneous plasma slab to be converted into an LO mode wave. But for another wave normal angle of the incident wave, it has been considered impossible, since an evanescence region exists between two mode branches. In this case we expect that the mode conversion takes place through the tunneling effect. We investigate the effect of the spatial scale of the density gradient on the mode conversion efficiency in an inhomogeneous plasma where the mode conversion can occur only by the tunneling effect. We use the computer simulation solving Maxwell's equations and the motion of a cold electron fluid. By considering the steepness of the density gradient, the simulation results show the efficient mode conversion could be expected even in the case that the mismatch of the refractive indexes prevents the close coupling of plasma waves. Also, we show for these cases the beaming angle does not correspond to Jones' formula. This effect leads to the angles larger and smaller than the angle estimated by the formula. This type of mode conversion process becomes important in a case where the different plasmas form a discontinuity at their contact boundary.

  7. Evolution of the transfer function characterization of surface scatter phenomena

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  8. Effect of rain on Ku-band scatterometer wind measurements

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Shimada, Masanobu

    1991-01-01

    The impact of precipitation on scatterometer wind measurements is investigated. A model is developed which includes the effects of rain attenuation, rain backscatter, and storm horizontal structure. Rain attenuation is found to be the dominant error source at low radar incidence angles and high wind speeds. Volume backscatter from the rain-loaded atmosphere, however, is found to dominate for high incidence angles and low wind speeds.

  9. Characterization of terrestrial solar cells for space applications: Electrical characteristics of thin Westinghouse dendritic web cells as a function of solar intensity, temperature, and incidence angle

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Anspaugh, B. E.

    1985-01-01

    Electrical characteristics of thin (100- and 140-micron) Westinghouse dendritic-web N/P silicon solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. Performance is also shown as a function of solar illlumination angle of incidence for AMO.

  10. Solar concentrator with restricted exit angles

    DOEpatents

    Rabl, Arnulf; Winston, Roland

    1978-12-19

    A device is provided for the collection and concentration of radiant energy and includes at least one reflective side wall. The wall directs incident radiant energy to the exit aperture thereof or onto the surface of energy absorber positioned at the exit aperture so that the angle of incidence of radiant energy at the exit aperture or on the surface of the energy absorber is restricted to desired values.

  11. Is there any place for the variable angle proximal femoral plate? A case matched cohort study against the Dynamic Hip Screw system.

    PubMed

    Tucker, A; Diamond, O; McDonald, S; Johnston, A; Neil, M; Kealey, D; Archbold, P

    2016-10-01

    The Variable angle Martin Plate (MP) is designed to offer patient-specific adaption for the treatment of intertrochanteric hip fractures. Its proposed benefits include optimization of lag screw placement, plate shaft congruence and reduced risk of failure. Often its use has been criticized as representing a poor reduction of the fracture. The purpose of this study was to assess for a poorer quality of reduction, and compare functional outcomes and mortality, using a MP to that of a fixed angle Dynamic Hip Screw (DHS) in a matched cohort of patients. A retrospective review of a prospective fracture database system was undertaken between 1st January 2004 to 31st December 2013. MP patients were matched to a cohort of DHS patients. Outcomes measure were a quality of procedure score(QPS), 1-year mortality rates, reoperation rates, and Barthel Index functional outcome. Minimum follow up was 12 months. A total of 77 Martin Plate patients were identified and case matched. The mean pre- and post-op Neck Shaft Angle (NSA) in the MPs was significantly different (132.97±7.78 Vs 126±8.62; p<0.0001). Conversely, the mean pre op DHS NSA and the mean post op NSA was not (p=0.397). Mean Tip-Apex Distance (TAD) was significantly different between groups; MP mean 26.51±9.09mm vs DHS 23.50±8.14mm (p=0.023). The QPS consisted of 4 variables. A significant inverse relationship between QPS and the incidence of construct related complications exists. TAD>25mm, and a change in AP NSA of >5°conveyed the greatest risk of complications. No difference occurred in complications, nor 12-month mortality. No statistical difference was found in the quality of reduction between MP and DHS in this group of matched patients. QPS demonstrated a significant inverse correlation with implant-related complications. No significant difference was noted in the incidence of complications, Barthel Index functional scores, or 12-month mortality between implants. A rationale exists regarding the use of MPs, particularly in patients with varus NSA. However, planning and adequate reduction are essential regardless of implant choice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ambiguity Resolution for Phase-Based 3-D Source Localization under Fixed Uniform Circular Array.

    PubMed

    Chen, Xin; Liu, Zhen; Wei, Xizhang

    2017-05-11

    Under fixed uniform circular array (UCA), 3-D parameter estimation of a source whose half-wavelength is smaller than the array aperture would suffer from a serious phase ambiguity problem, which also appears in a recently proposed phase-based algorithm. In this paper, by using the centro-symmetry of UCA with an even number of sensors, the source's angles and range can be decoupled and a novel algorithm named subarray grouping and ambiguity searching (SGAS) is addressed to resolve angle ambiguity. In the SGAS algorithm, each subarray formed by two couples of centro-symmetry sensors can obtain a batch of results under different ambiguities, and by searching the nearest value among subarrays, which is always corresponding to correct ambiguity, rough angle estimation with no ambiguity is realized. Then, the unambiguous angles are employed to resolve phase ambiguity in a phase-based 3-D parameter estimation algorithm, and the source's range, as well as more precise angles, can be achieved. Moreover, to improve the practical performance of SGAS, the optimal structure of subarrays and subarray selection criteria are further investigated. Simulation results demonstrate the satisfying performance of the proposed method in 3-D source localization.

  13. [Aesthetic evaluation of nasolabial angle alteration on the soft tissue profile of skeleton class I].

    PubMed

    Xu, Anxiu; Deng, Feng; Wang, Fenfen; Zhang, Xiangfeng; Zhang, Yi

    2015-10-01

    To study the influence of nasolabial angle alteration on facial profile attractiveness and investigate the perception differences in profile attractiveness among laypeople. A young Chinese female with normal hard and soft tissue cephalometric values was chosen as a research object. Profile photograph was taken in a natural head position. Photoshop software was chosen to rotate the nose tip and upper lip, thus changing the degree and direction of nasolabial angle. A total of 33 different profile pictures were achieved. Thirty-three professional orthodontists and 64 non-professionals were chosen to score these 33 pictures. When the upper lip position was fixed, the profile was considerably attractive because the angle of nasal tip was not changed or altered. When the nasal tip rotation angle was fixed, profiles with a retroclined upper lip were considered significantly attractive by the layperson and professional groups. Regardless of the direction of the nasal tip rotation, the respondents considered the profile with a retroclined upper lip highly attractive. The soft tissue profile with a retroclined upper lip looks considerably attractive in Chinese female populations. Therefore, during an orthodontic treatment, appropriate retraction of the incisor is recommended to improve soft tissue profile attractiveness.

  14. Internal Performance of a Fixed-Shroud Nonaxisymmetric Nozzle Equipped with an Aft-Hood Exhaust Deflector

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.

    1997-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-shroud nonaxisymmetric nozzle equipped with an aft-hood exhaust deflector. Model geometric parameters investigated included nozzle power setting, aft-hood deflector angle, throat area control with the aft-hood deflector deployed, and yaw vector angle. Results indicate that cruise configurations produced peak performance in the range consistent with previous investigations of nonaxisymmetric convergent-divergent nozzles. The aft-hood deflector produced resultant pitch vector angles that were always less than the geometric aft-hood deflector angle when the nozzle throat was positioned upstream of the deflector exit. Significant losses in resultant thrust ratio occurred when the aft-hood deflector was deployed with an upstream throat location. At each aft-hood deflector angle, repositioning the throat to the deflector exit improved pitch vectoring performance and, in some cases, substantially improved resultant thrust ratio performance. Transferring the throat to the deflector exit allowed the flow to be turned upstream of the throat at subsonic Mach numbers, thereby eliminating losses associated with turning supersonic flow. Internal throat panel deflections were largely unsuccessful in generating yaw vectoring.

  15. Damage thresholds for blaze diffraction gratings and grazing incidence optics at an X-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krzywinski, Jacek; Conley, Raymond; Moeller, Stefan

    The Linac Coherent Light Source is upgrading its machine to high repetition rate and to extended ranges. Novel coatings, with limited surface oxidation, which are able to work at the carbon edge, are required. In addition, high-resolution soft X-ray monochromators become necessary. One of the big challenges is to design the mirror geometry and the grating profile to have high reflectivity (or efficiency) and at the same time survive the high peak energy of the free-electron laser pulses. For these reasons the experimental damage threshold, at 900 eV, of two platinum-coated gratings with different blazed angles has been investigated. The gratingsmore » were tested at 1° grazing incidence. To validate a model for which the damage threshold on the blaze grating can be estimated by calculating the damage threshold of a mirror with an angle of incidence identical to the angle of incidence on the grating plus the blaze angle, tests on Pt-coated substrates have also been performed. The results confirmed the prediction. Uncoated silicon, platinum and SiB 3 (both deposited on a silicon substrate) were also investigated. In general, the measured damage threshold at grazing incidence is higher than that calculated under the assumption that there is no energy transport from the volume where the photons are absorbed. However, it was found that, for the case of the SiB 3 coating, the grazing incidence condition did not increase the damage threshold, indicating that the energy transport away from the extinction volume is negligible.« less

  16. Damage thresholds for blaze diffraction gratings and grazing incidence optics at an X-ray free-electron laser

    DOE PAGES

    Krzywinski, Jacek; Conley, Raymond; Moeller, Stefan; ...

    2018-01-01

    The Linac Coherent Light Source is upgrading its machine to high repetition rate and to extended ranges. Novel coatings, with limited surface oxidation, which are able to work at the carbon edge, are required. In addition, high-resolution soft X-ray monochromators become necessary. One of the big challenges is to design the mirror geometry and the grating profile to have high reflectivity (or efficiency) and at the same time survive the high peak energy of the free-electron laser pulses. For these reasons the experimental damage threshold, at 900 eV, of two platinum-coated gratings with different blazed angles has been investigated. The gratingsmore » were tested at 1° grazing incidence. To validate a model for which the damage threshold on the blaze grating can be estimated by calculating the damage threshold of a mirror with an angle of incidence identical to the angle of incidence on the grating plus the blaze angle, tests on Pt-coated substrates have also been performed. The results confirmed the prediction. Uncoated silicon, platinum and SiB 3 (both deposited on a silicon substrate) were also investigated. In general, the measured damage threshold at grazing incidence is higher than that calculated under the assumption that there is no energy transport from the volume where the photons are absorbed. However, it was found that, for the case of the SiB 3 coating, the grazing incidence condition did not increase the damage threshold, indicating that the energy transport away from the extinction volume is negligible.« less

  17. Laboratory-Based Bidirectional Reflectance Distribution Functions of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2008-01-01

    Laboratory-based bidirectional reflectance distribution functions of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg, 10 deg, and 30 deg; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg. and 180 deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0o incident angle and 12% at 30 deg. incident angle. The fitted BRDF data shows a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  18. Concurrent segregation and erosion effects in medium-energy iron beam patterning of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Lorenz, K.; Palomares, F. J.; Muñoz, A.; Castro, M.; Muñoz-García, J.; Cuerno, R.; Vázquez, L.

    2018-07-01

    We have bombarded crystalline silicon targets with a 40 keV Fe+ ion beam at different incidence angles. The resulting surfaces have been characterized by atomic force, current-sensing and magnetic force microscopies, scanning electron microscopy, and x-ray photoelectron spectroscopy. We have found that there is a threshold angle smaller than 40° for the formation of ripple patterns, which is definitely lower than those frequently reported for noble gas ion beams. We compare our observations with estimates of the value of the critical angle and of additional basic properties of the patterning process, which are based on a continuum model whose parameters are obtained from binary collision simulations. We have further studied experimentally the ripple structures and measured how the surface slopes change with the ion incidence angle. We explore in particular detail the fluence dependence of the pattern for an incidence angle value (40°) close to the threshold. Initially, rimmed holes appear randomly scattered on the surface, which evolve into large, bug-like structures. Further increasing the ion fluence induces a smooth, rippled background morphology. By means of microscopy techniques, a correlation between the morphology of these structures and their metal content can be unambiguously established.

  19. Propagation of partially coherent fields through planar dielectric boundaries using angle-impact Wigner functions I. Two dimensions.

    PubMed

    Petruccelli, Jonathan C; Alonso, Miguel A

    2007-09-01

    We examine the angle-impact Wigner function (AIW) as a computational tool for the propagation of nonparaxial quasi-monochromatic light of any degree of coherence past a planar boundary between two homogeneous media. The AIWs of the reflected and transmitted fields in two dimensions are shown to be given by a simple ray-optical transformation of the incident AIW plus a series of corrections in the form of differential operators. The radiometric and leading six correction terms are studied for Gaussian Schell-model fields of varying transverse width, transverse coherence, and angle of incidence.

  20. Supersonic aerodynamic characteristics of a maneuvering canard-controlled missile with fixed and free-rolling tail fins

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel investigations were conducted on a generic cruciform canard-controlled missile configuration. The model featured fixed or free-rolling tail-fin afterbodies to provide an expanded aerodynamic data base with particular emphasis on alleviating large induced rolling moments and/or for providing canard roll control throughout the entire test angle-of-attack range. The tests were conducted in the NASA Langley Unitary Plan Wind Tunnel at Mach numbers from 2.50 to 3.50 at a constant Reynolds number per foot of 2.00 x 10 to the 6th. Selected test results are presented to show the effects of a fixed or free-rolling tail-fin afterbody on the static longitudinal and lateral-directional aerodynamic characteristics of a canard-controlled missile with pitch, yaw, and roll control at model roll angles of 0 deg and 45 deg.

  1. Angle-depended photocurrent characteristics of cascade photoelectric converters on the base of homogeneous semiconductor

    NASA Astrophysics Data System (ADS)

    Arbuzov, Yuri D.; Evdokimov, Vladimir M.; Shepovalova, Olga V.

    2018-05-01

    Angle-dependent spectral photoresponse characteristics for theoretically perfect and physically implementable tunnel cascade (multi-junction) photoelectric converters (PC), for example high-voltage planar PV cells, have been studied as functions of technological parameters and number of single PCs in cascade. Angle-dependent spectral photoresponse characteristics values for real cascade silicon structures have been determined in visible and ultraviolet radiation spectra. Characteristic values of radiation incidence angle corresponding to the twofold photocurrent reduction in relation to normal incidence have been found depending on the number of single PCs in cascade, `dead' layer thickness of tunnel junction and photosensitivity of the base PC. The possibility and practicability of solar trackers use in PV systems with proposed PCs under study have been evaluated.

  2. IMRT treatment of anal cancer with a scrotal shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Rodney C., E-mail: Rodney.Hood@duke.edu; Wu, Q. Jackie; McMahon, Ryan

    The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palomore » Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device.« less

  3. Demonstration of a Three-dimensional Negative Index Medium Operated at Multiple-angle Incidences by Monolithic Metallic Hemispherical Shells

    NASA Astrophysics Data System (ADS)

    Yeh, Ting-Tso; Huang, Tsung-Yu; Tanaka, Takuo; Yen, Ta-Jen

    2017-04-01

    We design and construct a three-dimensional (3D) negative index medium (NIM) composed of gold hemispherical shells to supplant an integration of a split-ring resonator and a discrete plasmonic wire for both negative permeability and permittivity at THz gap. With the proposed highly symmetric gold hemispherical shells, the negative index is preserved at multiple incident angles ranging from 0° to 85° for both TE and TM waves, which is further evidenced by negative phase flows in animated field distributions and outweighs conventional fishnet structures with operating frequency shifts when varying incident angles. Finally, the fabrication of the gold hemispherical shells is facilitated via standard UV lithographic and isotropic wet etching processes and characterized by μ-FTIR. The measurement results agree the simulated ones very well.

  4. Comparison of predicted and measured low-speed performance of two 51 centimeter-diameter inlets at incidence angle

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1973-01-01

    Theoretical and experimental internal flow characteristics of two 51-cm-diameter inlets are compared. Theoretical flow characteristics along the inlet surface were obtained from an axisymmetric potential flow and boundary layer analysis. The experimental data were obtained from low-speed tests of a high-bypass-ratio turbofan engine simulator. Comparisons between calculated internal surface pressure distributions and experimental data are presented for a free-system velocity of 45 m/sec and for incidence angles from 0 deg to 50 deg. Analysis of boundary layer separation on the inlet lip at incidence angle is the major emphasis of this report. Theoretical boundary layer shape factors, skin friction coefficients, and velocity profiles in the boundary layer are presented, along with the location of the transition region. Theoretical and experimental separation locations are also discussed.

  5. Analysis of multiple incidence angle SIR-B data for determining forest stand characteristics

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.; Lozano-Garcia, D. F.; Gillespie, D. D.; Mueller, P. W.; Ruzek, M. J.

    1986-01-01

    For the first time in the U.S. space program, digital synthetic aperture radar (SR) data were obtained from different incidence angles during Space Shuttle Mission 41-G. Shuttle Imaging Radar-B (SIR-B) data were obtained at incidence angles of 58 deg., 45 deg., and 28 deg., on October 9, 10, and 11, 1984, respectively, for a predominantly forested study area in northern Florida. Cloud-free LANDSAT Thematic Mapper (T.M.) data were obtained over the same area on October 12. The SIR-B data were processed and then digitally registered to the LANDSAT T.M. data by scientists at the Jet Propulsion Laboratory. This is the only known digitally registered SIR-B and T.M. data set for which the data were obtained nearly simultaneously. The data analysis of this information is discussed.

  6. The revised solar array synthesis computer program

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.

  7. Apollo 11 and 16 Soil Bi-directional Solar Reflectance Measurements, Models and LRO Diviner Observations

    NASA Astrophysics Data System (ADS)

    Foote, E. J.; Paige, D. A.; Shepard, M. K.; Johnson, J. R.; Biggar, S. F.; Greenhagen, B. T.; Allen, C.

    2010-12-01

    We have compared laboratory solar reflectance measurements of Apollo 11 and 16 soil samples to Lunar Reconnaissance Orbiter (LRO) Diviner orbital albedo measurements at the Apollo landing sites. The soil samples are two representative end member samples from the moon, low albedo lunar maria (sample 10084) and high albedo lunar highlands (sample 68810). Bidirectional reflectance distribution function (BRDF) measurements of the soil samples were conducted at Bloomsburg University (BUG) and at the University of Arizona [1,2]. We collected two different types of BUG datasets: a standard set of BRDF measurements at incidence angles of 0-60°, emission angles of 0-80°, and phase angles of 3-140°, and a high-incidence angle set of measurements along and perpendicular to the principal plane at incidence angles of 0-75° and phase angles of 3-155°. The BUG measurements generated a total of 765 data points in four different filters 450, 550, 750 and 950 nm. The Blacklab measurements were acquired at incidence angles of 60-88°, emission angles 60-82°, and phase angles of 17-93° at wavelengths of 455, 554, 699, 949nm. The BUG data were fit to two BRDF models: Hapke’s model [3] as described by Johnson et al, 2010 [4], and a simplified empirical function. The fact that both approaches can satisfactorily fit the BUG data is not unexpected, given the similarities between the functions and their input parameters, and the fact that the BRDF for dark lunar soil is dominated by the single scattering phase functions of the individual soil particles. To compare our lunar sample measurements with LRO Diviner data [5], we selected all daytime observations acquired during the first year of operation within 3 km square boxes centered at the landing sites. We compared Diviner Channel 1 (0.3 - 3 µm) Lambert albedos with model calculated Lambert albedos of the lunar samples at the same photometric angles. In general, we found good agreement between the laboratory and Diviner measurements, particularly at intermediate incidence angles. We are currently reconciling any differences observed between our two datasets to provide mutual validation, and to better understand the Diviner solar reflectance measurements in terms of lunar regolith properties. [1] Shepard, M.K., Solar System Remote Sensing Symposium, #4004, LPI, 2002; [2] Biggar, S.F. et al, Proc. Soc. Photo-Opt. Instrum. Eng. 924:232-240, 1988; [3] Hapke, B. Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, 1993; [4] Johnson J.R. et al, Fall AGU 2010; [5] Paige, D.A. et al, Space Science Reviews, 150:125-160, 2010;

  8. Polarization sensitivity of ordered and random antireflective surface structures in silica and spinel

    NASA Astrophysics Data System (ADS)

    Frantz, J. A.; Selby, J.; Busse, L. E.; Shaw, L. B.; Aggarwal, I. D.; Sanghera, J. S.

    2018-02-01

    Both ordered and random anti-reflective surface structures (ARSS) have been shown to increase the transmission of an optical surface to >99.9%. These structures are of great interest as an alternative to traditional thin film anti-reflection (AR) coatings for a variety of reasons. Unlike traditional AR coatings, they are patterned directly into the surface of an optic rather than deposited on its surface and are thus not prone to the delamination under thermal cycling that can occur with thin film coatings. Their laser-induced damage thresholds can also be considerably higher. In addition, they provide AR performance over a larger spectral and angular range. It has been previously demonstrated that random ARSSs in silica are remarkably insensitive to incident polarization, with nearly zero variation in transmittance with respect to polarization of the incident beam at fixed wavelength for angles of incidence up to at least 30°. In this work, we evaluate polarization sensitivity of ARSS as a function of wavelength for both random and ordered ARSS. We demonstrate that ordered ARSS is significantly more sensitive to polarization than random ARSS and explain the reason for this difference. In the case of ordered ARSS, we observe significant differences as a function of wavelength, with the transmittance of s- and p-polarized light diverging near the diffraction edge. We present results for both silica and spinel samples and discuss differences observed for these two sets of samples.

  9. Test of the Angle Detecting Inclined Sensor (ADIS) Technique for Measuring Space Radiation

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.; McLaughlin, K. R.

    2008-12-01

    In February 2008 we exposed an Angle Detecting Inclined Sensor (ADIS) prototype to beams of 150 MeV/u 78Kr and fragments at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). ADIS is a highly innovative and uniquely simple detector configuration used to determine the angles of incidence of heavy ions in energetic charged particle instruments. Corrections for angle of incidence are required for good charge and mass separation. An ADIS instrument is under development to fly on the GOES-R series of weather satellites. The prototype tested consisted of three ADIS detectors, two of which were inclined at an angle to the telescope axis, forming the initial detectors in a five-detector telescope stack. By comparing the signals from the ADIS detectors, the angle of incidence may be determined and a pathlength correction applied to charge and mass determinations. Thus, ADIS replaces complex position sensing detectors with a system of simple, reliable and robust Si detectors. Accelerator data were taken at multiple angles to both primary and secondary beams with a spread of energies. This test instrument represents an improvement over the previous ADIS prototype in that it used oval inclined detectors and a much lower-mass support structure, thus reducing the number of events passing through dead material. We will present the results of this test. The ADIS instrument development project was partially funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).

  10. Polarimetric Imaging for the Detection of Disturbed Surfaces

    DTIC Science & Technology

    2009-06-01

    9 Figure 4. Rayleigh Roughness Criterion as a Function of Incident Angle ......................10 Figure 5. Definition of Geometrical...Terms (after Egan & Hallock, 1966).....................11 Figure 6. Haleakala Ash Depolarization for (a) °0 Viewing Angle and (b) °60 Viewing... Angle (from Egan et al., 1968)..........................................................13 Figure 7. Basalt Depolarization at (a) °0 Viewing Angle and

  11. Reflectance and optical constants for Cer-Vit from 250 to 1050 A

    NASA Technical Reports Server (NTRS)

    Osantowski, J. F.

    1974-01-01

    The reflectance for a bowl-feed polished Cer-Vit sample was measured at nine wavelengths and five angles of incidence from 15 to 85 deg. Optical constants were derived by the reflectance-vs-angle-of-incidence method and compared to previously reported values for ultralow-expansion fused silica and several other glasses. Surface-roughness corrections of the reflectance data and optical constants are discussed.

  12. The Effect of Illumination on Stereo DTM Quality: Simulations in Support of Europa Exploration

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Jorda, L.

    2016-06-01

    We have investigated how the quality of stereoscopically measured topography degrades with varying illumination, in particular the ranges of incidence angles and illumination differences over which useful digital topographic models (DTMs) can be recovered. Our approach is to make high-fidelity simulated image pairs of known topography and compare DTMs from stereoanalysis of these images with the input data. Well-known rules of thumb for horizontal resolution (>3-5 pixels) and matching precision (~0.2-0.3 pixels) are generally confirmed, but the best achievable resolution at high incidence angles is ~15 pixels, probably as a result of smoothing internal to the matching algorithm. Single-pass stereo imaging of Europa is likely to yield DTMs of consistent (optimal) quality for all incidence angles ≤85°, and certainly for incidence angles between 40° and 85°. Simulations with pairs of images in which the illumination is not consistent support the utility of shadow tip distance (STD) as a measure of illumination difference, but also suggest new and simpler criteria for evaluating the suitability of stereopairs based on illumination geometry. Our study was motivated by the needs of a mission to Europa, but the approach and (to first order) the results described here are relevant to a wide range of planetary investigations.

  13. Evolution of the ischio-iliac lordosis during natural growth and its relation with the pelvic incidence.

    PubMed

    Schlösser, Tom P C; Janssen, Michiel M A; Vrtovec, Tomaž; Pernuš, Franjo; Oner, F Cumhur; Viergever, Max A; Vincken, Koen L; Castelein, René M

    2014-07-01

    Human fully upright ambulation, with fully extended hips and knees, and the body's center of gravity directly above the hips, is unique in nature, and distinguishes humans from all other mammalians. This bipedalism is made possible by the development of a lordosis between the ischium and ilium; it allows to ambulate in this unique bipedal manner, without sacrificing forceful extension of the legs. This configuration in space introduces unique biomechanical forces with relevance for a number of spinal conditions. The aim of this study was to quantify the development of this lordosis between ischium and ilium in the normal growing and adult spine and to evaluate its correlation with the well-known clinical parameter, pelvic incidence. Consecutive series of three-dimensional computed tomography scans of the abdomen of 189 children and 310 adults without spino-pelvic pathologies were used. Scan indications were trauma screening or acute abdominal pathology. Using previously validated image processing techniques, femoral heads, center of the sacral endplate and the axes of the ischial bones were semi-automatically identified. A true sagittal view of the pelvis was automatically reconstructed, on which ischio-iliac angulation and pelvic incidence were calculated. The ischio-iliac angle was defined as the angle between the axes of the ischial bones and the line from the midpoint of the sacral endplate to the center of the femoral heads. A wide natural variation of the ischio-iliac angle (3°-46°) and pelvic incidence (14°-77°) was observed. Pearson's analysis demonstrated a significant correlation between the ischio-iliac angle and pelvic incidence (r = 0.558, P < 0.001). Linear regression analysis revealed that ischio-iliac angle, as well as pelvic incidence, increases during childhood (+7° and +10°, respectively) and becomes constant after adolescence. The development of the ischio-iliac lordosis is unique in nature, is in harmonious continuity with the highly individual lumbar lordosis and defines the way the human spine is biomechanically loaded. The practical parameter that reflects this is the pelvic incidence; both values increase during growth and remain stable in adulthood.

  14. Gradient metasurface for four-direction anomalous reflection in terahertz

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Jiang, Yannan

    2018-06-01

    In this paper, a four-direction anomalous reflection metasurface is proposed. The basic cells comprise of squares and circles, which are designed at various sizes and arranged in a super cell at regular spacing. Then, properly combining super cells molds a square phase gradient metasurface (PGM). It is mounted on an optical thickness gold mirror, which inhibits all light transmission. Markedly different from previously reported metasurfaces, the square PGM is characterized by four-direction reflection beams. It takes into consideration the normal incidence and the oblique incidence. For the normal incidence, that the degrees of the four reflection angles are identical is due to the x, - x, y and - y directional discontinuous phase gradients, and lies on the symmetric structure in the xoy plane, which is then revealed by the surface current distribution. Incident angles varying from -20° to 20°, the reflection angles are demonstrated in the oblique incidence. Moreover, the PGM is polarization-independent. The performance is attributed to the symmetry of structure, which is verified by Radar cross section. Simulated results prove that our method offers a simple and effective strategy for metasurface design in terahertz. The proposed PGM can aid in focused beams, steering beams, and shaped beams.

  15. Aerodynamic Measurements of a Variable-Speed Power-Turbine Blade Section in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2014-01-01

    The purpose of this thesis is to document the impact of incidence angle and Reynolds number variations on the three-dimensional flow field and midspan loss and turning of a two-dimensional section of a variable-speed power-turbine (VSPT) rotor blade. Aerodynamic measurements were obtained in a transonic linear cascade at NASA Glenn Research Center in Cleveland, Ohio. Steady-state data were obtained for 10 incidence angles ranging from +15.8deg to -51.0deg. At each angle, data were acquired at five flow conditions with the exit Reynolds number (based on axial chord) varying over an order-of-magnitude from 2.12×105 to 2.12×106. Data were obtained at the design exit Mach number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the lowest Reynolds number. Midspan tota lpressure and exit flow angle data were acquired using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial-chord downstream of the blade trailing edge plane. The survey spanned three blade passages. Additionally, three-dimensional half-span flow fields were examined with additional probe survey data acquired at 26 span locations for two key incidence angles of +5.8deg and -36.7deg. Survey data near the endwall were acquired with a three-hole boundary-layer probe. The data were integrated to determine average exit total-pressure and flow angle as functions of incidence and flow conditions. The data set also includes blade static pressures measured on four spanwise planes and endwall static pressures.

  16. 75. FIRST TEST SHOT OF THE VAL AT THE DEDICATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. FIRST TEST SHOT OF THE VAL AT THE DEDICATION CEREMONIES AS SEEN FROM A FIXED CAMERA STATION, May 7, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  17. Cyclic coordinate descent: A robotics algorithm for protein loop closure.

    PubMed

    Canutescu, Adrian A; Dunbrack, Roland L

    2003-05-01

    In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and fail to converge. We present an algorithm developed originally for inverse kinematics applications in robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast, closing loops of length 8 in 0.037 sec on average.

  18. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  19. Individual case photogrammetric calibration of the Hirschberg Ratio (HR) for corneal light reflection test strabometry.

    PubMed

    Romano, Paul E

    2006-01-01

    The HR (prism diopters [PD] per mm of corneal light reflection test [CLRT] asymmetry for strabometry) varies in humans from 14 to 24 PD/mm, but is totally unpredictable. Photo(grammetric) HR calibration in (of) each case facilitates acceptable strabometry precision and accuracy. Take 3 flash photos of the patient with both the preferred eye and then the deviating eye fixating straight ahead and then again with the deviation eye fixing at (+/-5-10 PD) the strabismic angle on a metric rule (stick) one meter away from the camera lens (where 1 cm = 1 PD). On these 3 photos, make four precise measurements of the position of the CLR with reference to the limbus: In the deviating eye fixing straight ahead and fixating at the angle of deviation. Divide the mm difference in location into the change in the angle of fixation to determine the HR for this patient at this angle. Then determine the CLR position in both the deviating eye and the fixing eye in the straight ahead primary position picture. Apply the calculated calibrated HR to the asymmetry of the CLRs in primary position to determine the true strabismic deviation. This imaging method insures accurate Hirschberg CLRT strabometry in each case, determining the deviation in "free space", under conditions of normal binocular viewing, uncontaminated by the artifacts or inaccuracies of other conventional strabometric methods or devices. So performed, the Hirschberg CLRT is the gold standard of strabometry.

  20. Decreasing pelvic incidence is associated with greater risk of cam morphology

    PubMed Central

    Fowers, C. A.; Yuh, R. T.; Gebhart, J. J.; Salata, M. J.; Liu, R. W.

    2016-01-01

    Objectives The spinopelvic relationship (including pelvic incidence) has been shown to influence pelvic orientation, but its potential association with femoroacetabular impingement has not been thoroughly explored. The purpose of this study was to prove the hypothesis that decreasing pelvic incidence is associated with increased risk of cam morphology. Methods Two matching cohorts were created from a collection of cadaveric specimens with known pelvic incidences: 50 subjects with the highest pelvic incidence (all subjects > 60°) and 50 subjects with the lowest pelvic incidence (all subjects < 35°). Femoral version, acetabular version, and alpha angles were directly measured from each specimen bilaterally. Cam morphology was defined as alpha angle > 55°. Differences between the two cohorts were analysed with a Student’s t-test and the difference in incidence of cam morphology was assessed using a chi-squared test. The significance level for all tests was set at p < 0.05. Results Cam morphology was identified in 47/100 (47%) femurs in the cohort with pelvic incidence < 35° and in only 25/100 (25%) femurs in the cohort with pelvic incidence > 60° (p = 0.002). The mean alpha angle was also greater in the cohort with pelvic incidence < 35° (mean 53.7°, sd 10.7° versus mean 49.7°, sd 10.6°; p = 0.008). Conclusions Decreased pelvic incidence is associated with development of cam morphology. We propose a novel theory wherein subjects with decreased pelvic incidence compensate during gait (to maintain optimal sagittal balance) through anterior pelvic tilt, creating artificial anterior acetabular overcoverage and recurrent impingement that increases risk for cam morphology. Cite this article: W. Z. Morris, C. A. Fowers, R. T. Yuh, J. J. Gebhart, M. J. Salata, R. W. Liu. Decreasing pelvic incidence is associated with greater risk of cam morphology. Bone Joint Res 2016;5:387–392. DOI: 10.1302/2046-3758.59.BJR-2016-0028.R1. PMID:27650107

  1. Extracting the pair distribution function of liquids and liquid-vapor surfaces by grazing incidence x-ray diffraction mode.

    PubMed

    Vaknin, David; Bu, Wei; Travesset, Alex

    2008-07-28

    We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.

  2. [Reducing the Incidence of Phlebitis Related to Intravenous Injection in Pediatric Patients].

    PubMed

    Cho, Yen-Hua; Yen, Li-Ling; Yu, Kai-Ling; Chang, Chun-Chu; Chen, Hsuen-Ling

    2015-06-01

    Peripheral venous catheter (PVC) is commonly used to provide nutrition and medicine to pediatric inpatients. Phlebitis is a common side effect of PVC insertion. Over 90% of pediatric patients in the paedi-atric medical ward at the Chang Gung Memorial Hospital (CGMH) receive PVC insertion, with an incident rate of phlebitis of 5.07%. Common cause factors of phlebitis are: insufficient sterilization time, inappropriate methods used to fix the PVC, the use of fixtures that loosen easily, high re-fix rates, and inadequate wound care after catheter removal. The purpose of this project was to reduce the incidence rate of PVC-insertion-related phlebitis in children from 5.07% to 2.5%. A one-week clinical observation identified the re-inserting / re-fixing of existing PVCs as the principal cause of phlebitis in the CGMH paediatric ward. Therefore, the researchers modified the catheter care bundle based on a review of the literature and the suggestions of clinical pediatric experts. Modifications included applying 2% chlorhexidine to sterilize the insertion site; using a new, non-woven fabric splint to fix the PVC site; providing cartoon-themed waterproof dressings for the first bath after the removal of the PVC; and setting standard operating procedures (SOPs) for PVC insertion and catheter removal. After applying these modifications, the incident rate of phlebitis in children with PVC insertions decreased from 5.07% to 2.08%. The application of 2% chlorhexidine reduces the waiting time for sterilization; the purpose-designed splint strengthens the fixation of the PVC; and the development of the SOPs for PVC insertion and post-removal catheter care reduces the risk of phlebitis. The combination of these strategies effectively reduces the incidence of phlebitis and improves the nursing care quality.

  3. Microwave Power Combiners for Signals of Arbitrary Amplitude

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce; Hoppe, Daniel

    2009-01-01

    Schemes for combining power from coherent microwave sources of arbitrary (unequal or equal) amplitude have been proposed. Most prior microwave-power-combining schemes are limited to sources of equal amplitude. The basic principle of the schemes now proposed is to use quasi-optical components to manipulate the polarizations and phases of two arbitrary-amplitude input signals in such a way as to combine them into one output signal having a specified, fixed polarization. To combine power from more than two sources, one could use multiple powercombining stages based on this principle, feeding the outputs of lower-power stages as inputs to higher-power stages. Quasi-optical components suitable for implementing these schemes include grids of parallel wires, vane polarizers, and a variety of waveguide structures. For the sake of brevity, the remainder of this article illustrates the basic principle by focusing on one scheme in which a wire grid and two vane polarizers would be used. Wire grids are the key quasi-optical elements in many prior equal-power combiners. In somewhat oversimplified terms, a wire grid reflects an incident beam having an electric field parallel to the wires and passes an incident beam having an electric field perpendicular to the wires. In a typical prior equal-power combining scheme, one provides for two properly phased, equal-amplitude signals having mutually perpendicular linear polarizations to impinge from two mutually perpendicular directions on a wire grid in a plane oriented at an angle of 45 with respect to both beam axes. The wires in the grid are oriented to pass one of the incident beams straight through onto the output path and to reflect the other incident beam onto the output path along with the first-mentioned beam.

  4. Low speed tests of a fixed geometry inlet for a tilt nacelle V/STOL airplane

    NASA Technical Reports Server (NTRS)

    Syberg, J.; Koncsek, J. L.

    1977-01-01

    Test data were obtained with a 1/4 scale cold flow model of the inlet at freestream velocities from 0 to 77 m/s (150 knots) and angles of attack from 45 deg to 120 deg. A large scale model was tested with a high bypass ratio turbofan in the NASA/ARC wind tunnel. A fixed geometry inlet is a viable concept for a tilt nacelle V/STOL application. Comparison of data obtained with the two models indicates that flow separation at high angles of attack and low airflow rates is strongly sensitive to Reynolds number and that the large scale model has a significantly improved range of separation-free operation.

  5. Visualization of Individual Images in Patterned Organic-Inorganic Multilayers Using GISAXS-CT.

    PubMed

    Ogawa, Hiroki; Nishikawa, Yukihiro; Takenaka, Mikihito; Fujiwara, Akihiko; Nakanishi, Yohei; Tsujii, Yoshinobu; Takata, Masaki; Kanaya, Toshiji

    2017-05-16

    Using grazing-incidence small-angle scattering (GISAXS) with computed tomography (CT), we have individually reconstructed the spatial distribution of a thin gold (Au) layer buried under a thin poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) layer. Owing to the difference between total reflection angles of Au and PS-b-P2VP, the scattering profiles for Au nanoparticles and self-assembled nanostructures of PS-b-P2VP could be independently obtained by changing the X-ray angle of incidence. Reconstruction of scattering profiles allows one to separately characterize spatial distributions in Au and PS-b-P2VP nanostructures.

  6. Theory and tests of a thermal ion detector sensitive only at Near-normal incidence

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.

    1981-01-01

    Measurements of thermal ions are influenced by factors such as spacecraft potential, velocity, angle of attack, and sheath size. A theory is presented for the response of an instrument which accepts ions only within a small angle of incidence from normal. Although a more general theory is available and forms the basis of this one, the small angle restriction allows a simpler formulation which does not depend on sheath size. Furthermore, practical instruments are easily designed around this restriction. Laboratory tests verify that such instruments respond as expected and they illustrate how design details influence perturbations from the ideal response characteristics.

  7. Indoor test for thermal performance evaluation on the Sunworks (air) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on a Sunworks single glazed air solar collector under simulated conditions are described. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed.

  8. Measurements of the reflection factor of flat ground surfaces

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Myles, M. M.; Ver, I. L.

    1977-01-01

    Measurements are made of the reflection factors of asphalt, concrete, and sod at oblique angles of incidence. Initial measurements were carried out in an anechoic chamber to eliminate the effects of wind and temperature gradients. These were followed by measurements made outdoors over a wider frequency range. Data are presented for the magnitudes of the reflection factors of asphalt, concrete, and sod at angles of incidence of 38 deg and 45 deg.

  9. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  10. Unusual Thermal Stability of High-Entropy Alloy Amorphous Structure

    DTIC Science & Technology

    2012-06-20

    incident angle X - ray diffractometer (GIAXRD, RIGAKU D/MAX2500) with Cu Kα radiation and at the incident angle of 1°. The surface morphology and...microanalyzer (EPMA, JEOL JAX-8800). The crystallographic structures of as-deposited and annealed metallic films were characterized utilizing a glancing ...field image and selected-area- diffraction (SAD) patterns of (a) 800 °C-, (b) 850 °C- and (c) 900 °C-annealed alloy thin films, respectively. Both

  11. Grating angle magnification enhanced angular sensor and scanner

    NASA Technical Reports Server (NTRS)

    Sun, Ke-Xun (Inventor); Byer, Robert L. (Inventor)

    2009-01-01

    An angular magnification effect of diffraction is exploited to provide improved sensing and scanning. This effect is most pronounced for a normal or near-normal incidence angle in combination with a grazing diffraction angle, so such configurations are preferred. Angular sensitivity can be further enhanced because the width of the diffracted beam can be substantially less than the width of the incident beam. Normal incidence configurations with two symmetric diffracted beams are preferred, since rotation and vertical displacement can be readily distinguished. Increased sensitivity to vertical displacement can be provided by incorporating an interferometer into the measurement system. Quad cell detectors can be employed to provide sensitivity to rotation about the grating surface normal. A 2-D grating can be employed to provide sensitivity to angular displacements in two different planes (e.g., pitch and yaw). Combined systems can provide sensitivity to vertical displacement and to all three angular degrees of freedom.

  12. "Feathered" fractal surfaces to minimize secondary electron emission for a wide range of incident angles

    NASA Astrophysics Data System (ADS)

    Swanson, Charles; Kaganovich, Igor D.

    2017-07-01

    Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a "feathered" surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow angles of incidence more effectively than velvet. We find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.

  13. Unsteady pressure measurements on a biconvex airfoil in a transonic oscillating cascade

    NASA Technical Reports Server (NTRS)

    Shaw, L. M.; Boldman, D. R.; Buggele, A. E.; Buffum, D. H.

    1985-01-01

    Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfroils were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence and angle of 0 deg and A Mach number of 0.65 in order to obtain results in a shock-free compressible flowfield. Subsequent tests were performed at an incidence angle of 7 deg and Mach number of 0.8 in order to observe the surface pressures with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and -90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semi-chord reduced frequencies up to about 0.5 at a Mach number of 0.8). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.

  14. Parity-time-symmetric teleportation

    NASA Astrophysics Data System (ADS)

    Ra'di, Y.; Sounas, D. L.; Alù, A.; Tretyakov, S. A.

    2016-06-01

    We show that electromagnetic plane waves can be fully "teleported" through thin, nearly fully reflective sheets, assisted by a pair of parity-time-symmetric lossy and active sheets in front and behind the screen. The proposed structure is able to almost perfectly absorb incident waves over a wide range of frequency and incidence angles, while waves having a specific frequency and incidence angle are replicated behind the structure in synchronization with the input signal. It is shown that the proposed structure can be designed to teleport waves at any desired frequency and incidence angle. Furthermore, we generalize the proposed concept to the case of teleportation of electromagnetic waves over electrically long distances, enabling full absorption at one surface and the synthesis of the same signal at another point located electrically far away from the first surface. The physical principle behind this selective teleportation is discussed, and similarities and differences with tunneling and cloaking concepts based on PT symmetry are investigated. From the application point of view, the proposed structure works as an extremely selective filter, both in frequency and spatial domains.

  15. Theory of Mach reflection of detonation at glancing incidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bdzil, John Bohdan; Short, Mark

    In this paper, we present a theory for Mach reflection of a detonation undergoing glancing incidence reflection off of a rigid wall. Our focus is on condensed-phase explosives, which we describe with a constant adiabatic gamma equation of state and an irreversible and either state-independent or weakly state-dependent reaction rate. We consider two detonation models: (1) the instantaneous reaction heat-release Chapman–Jouguet (CJ) limit and (2) the spatially resolved reaction heat-release Zeldovich–von Neumann–Dmore » $$\\ddot{Ø}$$ring (ZND) limit, where here we only consider that a small fraction of the detonation energy release is spatially resolved (the SRHR limit). We observe a three-shock reflection in the CJ limit case, with a Mach shock that is curved. In addition, we develop an analytical expression for the triple-point track angle as a function of the angle of incidence. For the SRHR model, we observe a smooth lead shock, akin to von Neumann reflection, with no reflected shock in the reaction zone. Only at larger angles of incidence is a three-shock Mach reflection observed.« less

  16. Theory of Mach reflection of detonation at glancing incidence

    DOE PAGES

    Bdzil, John Bohdan; Short, Mark

    2016-12-06

    In this paper, we present a theory for Mach reflection of a detonation undergoing glancing incidence reflection off of a rigid wall. Our focus is on condensed-phase explosives, which we describe with a constant adiabatic gamma equation of state and an irreversible and either state-independent or weakly state-dependent reaction rate. We consider two detonation models: (1) the instantaneous reaction heat-release Chapman–Jouguet (CJ) limit and (2) the spatially resolved reaction heat-release Zeldovich–von Neumann–Dmore » $$\\ddot{Ø}$$ring (ZND) limit, where here we only consider that a small fraction of the detonation energy release is spatially resolved (the SRHR limit). We observe a three-shock reflection in the CJ limit case, with a Mach shock that is curved. In addition, we develop an analytical expression for the triple-point track angle as a function of the angle of incidence. For the SRHR model, we observe a smooth lead shock, akin to von Neumann reflection, with no reflected shock in the reaction zone. Only at larger angles of incidence is a three-shock Mach reflection observed.« less

  17. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    PubMed

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  18. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  19. Calculation of gas turbine characteristic

    NASA Astrophysics Data System (ADS)

    Mamaev, B. I.; Murashko, V. L.

    2016-04-01

    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  20. Small Angle Neutron Scattering (sans) Studies on "SIDE-END FIXED" and "SIDE-ON FIXED" Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Hardouin, F.; Noirez, L.; Keller, P.; Leroux, N.; Cotton, J. P.

    The following sections are included: * Introduction * Experimental * Results and discussion * Determination of the backbone conformation in the nematic and smectic A phases of "side-end fixed" L.C. polymethacrylates (PMA) or polyacrylates (PA) * Determination of the global and backbone conformation in the nematic and smectic A phases of "side-end fixed" L.C. polysiloxanes (PMS) * Determination of the backbone conformation in the unique nematic phase (without smectic A phase) or in the reentrant nematic phase (below smectic A phase) of "side-end fixed" L.C. polyacrylates (PA) * Determination of the global conformation in the nematic phase of "side-on fixed" L.C. polysiloxanes (PMS) * Determination of the global conformation in the nematic phase of "diluted side-on fixed" L.C. copolysiloxanes * Determination of the backbone conformation in the nematic phase of "side-on fixed" L.C. polyacrylates * Conclusions * References

  1. Assessment of BRDF effect of Kunlun Mountain glacier on Tibetan Plateau as a potential pseudo-invariant calibration site

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Hu, Xiuqing; Chen, Lin

    2017-09-01

    Calibration is a critical step to ensure data quality and to meet the requirement of quantitative remote sensing in a broad range of scientific applications. One of the least expensive and increasingly popular methods of on-orbit calibration is the use of pseudo invariant calibration sites (PICS). A spatial homogenous and temporally stable area of 34 km2 in size around the center of Kunlun Mountain (KLM) over Tibetan Plateau (TP) was identified by our previous study. The spatial and temporal coefficient of variation (CV) this region was better than 4% for the reflective solar bands. In this study, the BRDF impacts of KLM glacier on MODIS observed TOA reflectance in band 1 (659 nm) are examined. The BRDF impact of KLM glacier with respect to the view zenith angle is studied through using the observations at a fixed solar zenith angle, and the effect with respect to the sun zenith angle is studied based on the observations collected at the same view angle. Then, the two widely used BRDF models are applied to our test data to simulate the variations of TOA reflectance due to the changes in viewing geometry. The first one is Ross-Li model, which has been used to produce the MODIS global BRDF albedo data product. The second one is snow surface BRDF model, which has been used to characterize the bidirectional reflectance of Antarctic snow. Finally, the accuracy and effectiveness of these two different BRDF models are tested through comparing the model of simulated TOA reflectance with the observed one. The results show that variations of the reflectances at a fixed solar zenith angle are close to the lambertian pattern, while those at a fixed sensor zenith angle are strongly anisotropic. A decrease in solar zenith angle from 50º to 20º causes an increase in reflectance by the level of approximated 50%. The snow surface BRDF model performs much better than the Ross-Li BRDF model to re-produce the Bi-Directional Reflectance of KLM glacier. The RMSE of snow surface BRDF model is 3.60%, which is only half of the RMSE when using Ross-Li model.

  2. Cockpit Window Edge Proximity Effects on Judgements of Horizon Vertical Displacement

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1984-01-01

    To quantify the influence of a spatially fixed edge on vertical displacement threshold, twenty-four males (12 pilots, 12 non-pilots) were presented a series of forced choice, paired comparison trials in which a 32 deg arc wide, thin, luminous horizontal stimulus line moved smoothly downward through five angles from a common starting position within a three second-long period. The five angles were 1.4, 1.7, 2, 2.3, and 2.6 deg. Each angle was presented paired with itself and the other four angles in all combinations in random order. For each pair of trials the observer had to choose which trial possessed the largest displacement. A confidence response also was made. The independent variable was the angular separation between the lower edge of a stable 'window' aperture through which the stimulus was seen to move and the lowest position attained by the stimulus. It was found that vertical displacement accuracy is inversely related to the angle separating the stimulus and the fixed window edge (p = .05). In addition, there is a strong tendency for pilot confidence to be lower than that of non-pilots for each of the three angular separations. These results are discussed in erms of selected cockpit features and as they relate to how pilots judge changes in aircraft pitch attitude.

  3. An Innovate Robotic Endoscope Guidance System for Transnasal Sinus and Skull Base Surgery: Proof of Concept.

    PubMed

    Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J

    2017-12-01

    Objective  Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods  The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results  Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion  The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.

  4. Optimal Ski Jump

    ERIC Educational Resources Information Center

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  5. An angle-by-angle approach to predicting broadband high-frequency sound fields in rectangular enclosures with experimental comparison.

    PubMed

    Franzoni, Linda P; Elliott, Christopher M

    2003-10-01

    Experiments were performed on an elongated rectangular acoustic enclosure with different levels of absorptive material placed on side walls and an end wall. The acoustic source was a broadband high-frequency sound from a loudspeaker flush-mounted to an end wall of the enclosure. Measurements of sound-pressure levels were averaged in cross sections of the enclosure and then compared to theoretical results. Discrepancies between the experimental results and theoretical predictions that treated all incidence angles as equally probable led to the development of an angle-by-angle approach. The new approach agrees well with the experimentally obtained values. In addition, treating the absorptive material as bulk reacting rather than point reacting was found to significantly change the theoretical value for the absorption coefficient and to improve agreement with experiment. The new theory refines an earlier theory based on power conservation and locally diffuse assumptions. Furthermore, the new theory includes both the angle of incidence effects on the resistive and reactive properties of the absorptive material, and the effects of angle filtering, i.e., that reflecting waves associated with shallow angles become relatively stronger than those associated with steep angles as a function of distance from the source.

  6. Terrace retro-reflector array for poloidal polarimeter on ITER.

    PubMed

    Imazawa, R; Kawano, Y; Ono, T; Kusama, Y

    2011-02-01

    A new concept of a terrace retro-reflector array (TERRA) as part of the poloidal polarimeter for ITER is proposed in this paper. TERRA reflects a laser light even from a high incident angle in the direction of the incident-light path, while a conventional retro-reflector array cannot. Besides, TERRA can be installed in a smaller space than a corner-cube retro-reflector. In an optical sense, TERRA is equivalent to a Littrow grating, the blaze angle of which varies, depending on the incident angle. The reflected light generates a bright and dark fringe, and the bright fringe is required to travel along the incident-light path to achieve the objects of laser-aided diagnostics. In order to investigate the propagation properties of laser light reflected by TERRA, we have developed a new diffraction formula. Conditions for the propagation of the bright fringe in the direction of the incident light have been obtained using the Littrow grating model and have been confirmed in a simulation applying the new diffraction formula. Finally, we have designed laser transmission optics using TERRA for the ITER poloidal polarimeter and have calculated the light propagation of the system. The optical design obtains a high transmission efficiency, with 88.6% of the incident power returned. These results demonstrate the feasibility of applying TERRA to the ITER poloidal polarimeter.

  7. Dynamics of magnetized plasma sheaths around a trench

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatami, M. M., E-mail: m-hatami@kntu.ac.ir

    2016-08-15

    Considering a magnetized plasma sheath, the temporal evolution of the ion properties (the incident ion flux, the ion impact angle, and the incident ion dose) around a rectangular trench is studied numerically. Our results show that the ion flux along the bottom surface greatly reduces in the presence of magnetic field and its uniformity improves, but the magnetic field does not considerably affect the ion flux along the sidewall. In addition, the thickness of the plasma sheath increases by increasing the magnetic field while its conformality to the target surface reduces faster. Moreover, it is shown that any increase inmore » the magnitude (inclination angle) of the magnetic field causes a decrease (an increase) in the angle of incidence of ions on the bottom and sidewall surfaces. Furthermore, in the presence of magnetic field, the ions strike nearly normal to the surface of the bottom while they become less oblique along the sidewall surface. In addition, contrary to the corners of the trench, it is found that the magnetic field greatly affects the incident ion dose at the center of the trench surfaces. Also, it is shown that the incident ion dose along the sidewall is the highest near the center of the sidewall in both magnetized and magnetic-free cases. However, uniformity of the incident ion dose along the sidewall is better than that along the bottom in both magnetized and unmagnetized plasma sheath.« less

  8. Analysis of forward scattering of an acoustical zeroth-order Bessel beam from rigid complicated (aspherical) structures

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chai, Yingbin; Gong, Zhixiong; Marston, Philip L.

    2017-10-01

    The forward scattering from rigid spheroids and endcapped cylinders with finite length (even with a large aspect ratio) immersed in a non-viscous fluid under the illumination of an idealized zeroth-order acoustical Bessel beam (ABB) with arbitrary angles of incidence is calculated and analyzed in the implementation of the T-matrix method (TTM). Based on the present method, the incident coefficients of expansion for the incident ABB are derived and simplifying methods are proposed for the numerical accuracy and computational efficiency according to the geometrical symmetries. A home-made MATLAB software package is constructed accordingly, and then verified and validated for the ABB scattering from rigid aspherical obstacles. Several numerical examples are computed for the forward scattering from both rigid spheroids and finite cylinder, with particular emphasis on the aspect ratios, the half-cone angles of ABBs, the incident angles and the dimensionless frequencies. The rectangular patterns of target strength in the (β, θs) domain (where β is the half-cone angle of the ABB and θs is the scattered polar angle) and local/total forward scattering versus dimensionless frequency are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by rigid spheroids and finite cylinders. The ray diagrams in geometrical models for the scattering in the forward half-space and the optical cross-section theorem help to interpret the scattering mechanisms of ABBs. This research work may provide an alternative for the partial wave series solution under certain circumstances interacting with ABBs for complicated obstacles and benefit some related works in optics and electromagnetics.

  9. KC-135A Winglet Flight Flutter Program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1982-01-01

    The evaluation techniques, results and conclusions for the flight flutter testing conducted on a KC-135A airplane configured with and without winglets are discussed. Test results are presented for the critical symmetric and antisymmetric modes for a fuel distribution that consisted of 10,000 pounds in each wing main tank and empty reserve tanks. The results indicated that a lightly damped oscillation was experienced for a winglet configuration of a 0 deg cant and -4 deg incidence. The effects of cant and incidence angle variation on the critical modes are also discussed. Lightly damped oscillations were not encountered for any other winglet cant and incidence angles tested.

  10. Novel concept of enzyme selective nicotinamide adenine dinucleotide (NAD)-modified inhibitors based on enzyme taxonomy from the diphosphate conformation of NAD.

    PubMed

    Fujii, Mikio; Kitagawa, Yasuyuki; Iida, Shui; Kato, Keisuke; Ono, Machiko

    2015-11-15

    The dihedral angle θ of the diphosphate part of NAD(P) were investigated to distinguish the differences in the binding-conformation of NAD(P) to enzymes and to create an enzyme taxonomy. Furthermore, new inhibitors with fixed dihedral angles showed that enzymes could recognize the differences in the dihedral angle θ. We suggest the taxonomy and the dihedral angle θ are important values for chemists to consider when designing inhibitors and drugs that target enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Prototyping and Characterization of an Adjustable Skew Angle Single Gimbal Control Moment Gyroscope

    DTIC Science & Technology

    2015-03-01

    performance, and an analysis of the test results is provided. In addition to the standard battery of CMG performance tests that were planned, a...objectives for this new CMG is to provide comparable performance to the Andrews CMGs, the values in Table 1 will be used for output torque comparison...essentially fixed at 53.4°. This specific skew angle value is not the problem, as this is one commonly used CMG skew angle for satellite systems. The real

  12. Magnetic Rotational Spectroscopy with Nanorods to Probe Time-Dependent Rheology of Microdroplets (Postprint)

    DTIC Science & Technology

    2012-05-10

    this angle depends linearly on time, α = 2πf t, where f is the frequency of the rotating magnetic field. We assume that the magnetization vector M is... vector B (Figure 1). In order to derive an equation governing the nanorod rotation, it is convenient to count its revolutions with respect to the fixed... vector directed perpendicularly to the plane of the nanorod rotation.27,28 Substituting the definition of angle φ(t) through the angles α(t) and θ(t

  13. Surveillance Using Multiple Unmanned Aerial Vehicles

    DTIC Science & Technology

    2009-03-01

    BATCAM wingspan was 21” vs Jodeh’s 9.1 ft, the BATCAM’s propulsion was electric vs. Jodeh’s gas engine, cameras were body fixed vs. gimballed, and...3.1: BATCAM Camera FOV Angles Angle Front Camera Side Camera Depression Angle 49◦ 39◦ horizontal FOV 48◦ 48◦ vertical FOV 40◦ 40◦ by a quiet electric ...motor. The batteries can be recharged with a car cigarette lighter in less than an hour. Assembly of the wing airframe takes less than a minute, and

  14. Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources

    DTIC Science & Technology

    2010-05-01

    ability of the fixed- angle curved mirrors in the Z- cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the...duty cycle at varying PRFs. 20 Table 4: Thermal Lensing Power at 1 kHz PRF, 1 W peak power, Q-switched Laser PRF (kHz) Thermal lens power (m-1...with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an angle . To counteract this

  15. Indoor test for thermal performance evaluation of Libbey-Owens-Ford solar collector. [using a solar simulator

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    The thermal performance of a flat plate solar collector that uses liquid as the heat transfer medium was investigated under simulated conditions. The test conditions and thermal performance data obtained during the tests are presented in tabular form, as well as in graphs. Data obtained from a time constant test and incident angle modifier test, conducted to determine transient effect and the incident angle effect on the collector, are included.

  16. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  17. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  18. Standardized solar simulator tests of flat plate solar collectors. 1: Soltex collector with two transparent covers

    NASA Technical Reports Server (NTRS)

    Simon, F.

    1975-01-01

    A Soltex flat plate solar collector was tested with a solar simulator for inlet temperatures of 77 to 201 F, flux levels of 240 and 350 Btu/hr-sq ft, a collant flow rate of 10.5 lb/hr sq ft, and incident angles of 0 deg, 41.5 deg, and 65.2 deg. Collector performance is correlated in terms of inlet temperature, flux level, and incident angle.

  19. Femtosecond laser-induced herringbone patterns

    NASA Astrophysics Data System (ADS)

    Garcell, Erik M.; Lam, Billy; Guo, Chunlei

    2018-06-01

    Femtosecond laser-induced herringbone patterns are formed on copper (Cu). These novel periodic structures are created following s-polarized, large incident angle, femtosecond laser pulses. Forming as slanted and axially symmetric laser-induced periodic surface structures along the side walls of ablated channels, the result is a series of v-shaped structures that resemble a herringbone pattern. Fluence mapping, incident angle studies, as well as polarization studies have been conducted and provide a clear understanding of this new structure.

  20. Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Vandemark, D. C.; Hines, D. E.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Jensen, J.; Lee, S.; Fandry, C.

    1999-01-01

    For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the 36 GHz (8.3 mm) NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 deg roll attitude, interrogating off-nadir incidence angles from -15 deg through nadir to +29 deg. The aircraft turned azimuthally through 810 deg in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 m to 65 m). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. A unique feature of this experiment was the use of a nadir-directed low-gain horn antenna (35 deg beamwidth) to acquire azimuthally integrated backscattered power data versus incidence angle before and after the turn data.

  1. Incident detection on an arterial roadway

    DOT National Transportation Integrated Search

    1997-01-01

    Presented here is the development of an automatic incident detection algorithm for use on Lakeshore Boulevard, Toronto, Canada, based on volume or occupancy data recorded from fixed-loop detectors. Four prospective logics were based on 20-sec interva...

  2. Modeling Radar Scattering by Planetary Regoliths for Varying Angles of Incidence

    NASA Astrophysics Data System (ADS)

    Prem, P.; Patterson, G. W.; Zimmerman, M. I.

    2017-12-01

    Bistatic radar observations can play an important role in characterizing the texture and composition of planetary regoliths. Multiple scattering within a closely-packed particulate medium, such as a regolith, can lead to a response referred to as the Coherent Backscatter Opposition Effect (CBOE), associated with an increase in the intensity of backscattered radiation and an increase in Circular Polarization Ratio (CPR) at small bistatic angles. The nature of the CBOE is thought to depend not only on regolith properties, but also on the angle of incidence (Mishchenko, 1992). The latter factor is of particular interest in light of recent radar observations of the Moon over a range of bistatic and incidence angles by the Mini-RF instrument (on board the Lunar Reconnaissance Orbiter), operating in bistatic mode with a ground-based transmitter at the Arecibo Observatory. These observations have led to some intriguing results that are not yet well-understood ­- for instance, the lunar South Polar crater Cabeus shows an elevated CPR at only some combinations of incidence angle/bistatic angle, a potential clue to the depth distribution of water ice at the lunar poles (Patterson et al., 2017). Our objective in this work is to develop a model for radar scattering by planetary regoliths that can assist in the interpretation of Mini-RF observations. We approach the problem by coupling the Multiple Sphere T-Matrix (MSTM) code of Mackowski and Mishchenko (2011) to a Monte Carlo radiative transfer model. The MSTM code is based on the solution of Maxwell's equations for the propagation of electromagnetic waves in the presence of a cluster of scattering/absorbing spheres, and can be used to model the scattering of radar waves by an aggregation of nominal regolith particles. The scattering properties thus obtained serve as input to the Monte Carlo model, which is used to simulate radar scattering at larger spatial scales. The Monte Carlo approach has the advantage of being able to readily accommodate varying incidence angles, as well as heterogeneities in regolith composition and properties - factors that may be of interest in both lunar and other contexts. We will report on the development and validation of the coupled MSTM-Monte Carlo model, and discuss its application to problems of interest.

  3. Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation

    NASA Astrophysics Data System (ADS)

    Hauser, DanièLe; Caudal, GéRard

    1996-11-01

    The analysis of synthetic aperture radar observations over the ocean to derive the directional spectra of the waves is based upon a complex transfer function which is the sum of three terms: tilt modulation, hydrodynamic modulation, and velocity bunching effect. Both the hydrodynamic and the velocity bunching terms are still poorly known. Here we focus on the hydrodynamic part of the transfer function, from an experimental point of view. In this paper a new method is proposed to estimate the hydrodynamic modulation. The approach consists in analyzing observations obtained with an airborne real-aperture radar (called RESSAC). This radar (C band, HH polarized, broad beam of 14° × 3°) was used during the SEMAPHORE experiment, in two different modes. From the first mode (incidence angles from 7° to 21°) the directional spectra of the long waves are deduced under the assumption that the hydrodynamic modulation can be neglected (small incidence angles) and validated against in situ measurements. From the second mode (incidence angle from 27° to 41°) the amplitude and phase of the hydrodynamic modulation are deduced by combining the measured signal modulation spectrum at a mean incidence angle of 34° and the directional wave spectrum obtained from the first mode. The results, obtained in four different wind-wave cases of the SEMAPHORE experiment, show that the modulus of the hydrodynamic modulation is larger than that of the tilt modulation. Furthermore, we find that the modulus of the hydrodynamic transfer function is several times larger (by a factor 2-12) than the theoretical value proposed in previous works and 1.5-2.5 larger than experimental values reported in recent papers. The phase of the hydrodynamic modulation is found to be close to zero for waves propagating at an angle from the wind direction and between -20° and -40° for waves propagating along the wind direction. This indicates a significant influence of the wind-wave angle on the phase of the hydrodynamic modulation, in agreement with experimental results reported in recent papers.

  4. SU-E-T-44: Angular Dependence of Surface Dose Enhancement Measured On Several Inhomogeneities Using Radiochromic EBT3 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, A; Schoenfeld, A; Poppinga, D

    Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm{sup 3} were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurementsmore » were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat.« less

  5. SU-E-T-494: Influence of Proton Track-Cell Nucleus Incidence Angle On Relative Biological Effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pater, P; Backstrom, G; Enger, S

    2015-06-15

    Purpose: To explain a Monte Carlo (MC) simulation artifact whereby differences in relative biological effectiveness (RBE) in the induction of initial double strand breaks are observed as a function of the proton track incidence angles in a geometric cell nucleus model. Secondly, to offer an alternative isotropic irradiation procedure to mitigate this effect. Methods: MC tracks of 1 MeV protons were generated in an event-by-event mode. They were overlaid on a cylindrical model of a cell nucleus containing 6×109 nucleotide base pairs. The tracks incidence angle θ with respect to the cell nucleus’s axis was varied in 10 degrees intervals,more » each time generating one hundred fractions of ∼2 Gy. Strand breaks were scored in the modeled DNA sugar-phosphate groups and further sub-classified into single or double strand breaks (ssbs or dsbs). For each angle, an RBE for the induction of initial dsbs with reference to Co-60 was calculated. Results: Our results show significant angular dependencies of RBE, with maximum values for incidence angles parallel to the nucleus central axis. Further examination shows that the higher cross-sections for the creation of dsbs is due to the preferential alignment of tracks with geometrical sub-parts of the cell nucleus model, especially the nucleosomes containing the sugar-phosphate groups. To alleviate the impact of this simulation artifact, an average RBE was calculated with a procedure based on a weighted sampling of the angular data. Conclusion: This work demonstrates a possible numerical artifact in estimated RBE if the influence of the particle incidence angle is not correctly taken into account. A correction procedure is presented to better conform the simulations to real-life experimental conditions. We would like to acknowledge support from the Fonds de recherche du Quebec Sante (FRQS), from the CREATE Medical Physics Research Training Network grant (number 432290) of NSERC, support from NSERC under grants RGPIN 397711-11 and RGPIN-2014-06475 and support from the CIHR under grants MOP-114910, MOP-136774 and MOP-102550.« less

  6. A review of rigid body response on sting supported models at high angles of incidence

    NASA Astrophysics Data System (ADS)

    Mabey, D. G.; Welsh, B. L.; Pyne, C. R.

    The new requirement to test wind tunnel models of combat aircraft at high angles of incidence and high kinetic pressures has led to a review of the factors controlling the model stability. The review suggested that dangerous motions might occur (possibly without prior warning) on models at high angles of incidence unless special preventive measures were taken. An internal tuned damper and balance bump stops were recommended to limit the responses. The bump stops would also prevent the moment limits of the strain gauge balance from being exceeded. The effectiveness of both devices was confirmed by tests on a swept wing model which experienced dangerous bending oscillations in a vertical plane at a Mach number of 0.50 in the incidence range from about 27-29° together with dangerous yawing oscillations in a horizontal plane above an incidence of about 35°. Further research is recommended to ensure the safety of other models. For sting supported models in a conventional wind tunnel, it is shown by analysis that the structural damping in the sting bending mode needs to be about 4 to 6% critical damping. In a cryogenic wind tunnel corresponding levels would need to be 7 to 10% critical damping because of the possibility of increased negative aerodynamic damping relative to ambient conditions.

  7. Background noise levels measured in the NASA Lewis 9- by 15-foot low-speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Dittmar, James H.; Hall, David G.; Kee-Bowling, Bonnie

    1994-01-01

    The acoustic capability of the NASA Lewis 9 by 15 Foot Low Speed Wind Tunnel has been significantly improved by reducing the background noise levels measured by in-flow microphones. This was accomplished by incorporating streamlined microphone holders having a profile developed by researchers at the NASA Ames Research Center. These new holders were fabricated for fixed mounting on the tunnel wall and for an axially traversing microphone probe which was mounted to the tunnel floor. Measured in-flow noise levels in the tunnel test section were reduced by about 10 dB with the new microphone holders compared with those measured with the older, less refined microphone holders. Wake interference patterns between fixed wall microphones were measured and resulted in preferred placement patterns for these microphones to minimize these effects. Acoustic data from a model turbofan operating in the tunnel test section showed that results for the fixed and translating microphones were equivalent for common azimuthal angles, suggesting that the translating microphone probe, with its significantly greater angular resolution, is preferred for sideline noise measurements. Fixed microphones can provide a local check on the traversing microphone data quality, and record acoustic performance at other azimuthal angles.

  8. Lighting Condition Analysis for Mars' Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, available energy per unit area for sun tracking arrays, and available energy per unit area for fixed arrays (constrained by incident angle). The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian spring and fall seasons and no eclipses during the Martian summer and winter seasons; solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.

  9. Comparison of Pyranometers and Reference Cells on Fixed and One-axis Tracking Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooraghi, Michael R; Sengupta, Manajit; Vignola, Frank

    Photovoltaic (PV) system perfomance is monitored by a wide variety of sensors. These instruments range from secondary standard pyranometers to photodiode-based pyranometers to reference cells. Although instruments are mounted in the plane of array of the modules a wide range of results have been obtained. Some of these difference have been assumed to come from systematic uncertainties associated with the irradiance sensors. This study is an attempt to quantify these differences by comparing the output of selected thermopile-based pyranometers to photodiode-based pyranometers and reference cells on a horizontal surface, a fixed-tilt surface, and a one-axis tracking surface. This analysis focusesmore » on clear-sky results from two sites with different climatic conditions. Several important features were observed. Photodiode-based pyranometers and reference cells produce widely different results under clear skies, especially at larger angles-of-incidence even though both instruments are based on measuring the short circuit current of solar cells. The difference is caused by the scattering of light as it passes through the glazing of the reference cell or the diffuser lens of the photodioded- base pyranometer. Both instruments are shown to have similar response to the spectral distribution of the irradiance when compared to the thermopile-based pyranometer that has a response nearly independent of the wavelength of light used by PV modules.« less

  10. Sailplane Glide Performance and Control Using Fixed and Articulating Winglets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Colling, James David

    1995-01-01

    An experimental study was conducted to investigate the effects of controllable articulating winglets on glide performance and yawing moments of high performance sailplanes. Testing was conducted in the Texas A&M University 7 x 10 foot Low Speed Wind Tunnel using a full-scale model of the outboard 5.6 feet of a 15 meter class high performance sailplane wing. Different wing tip configurations could be easily mounted to the wing model. A winglet was designed in which the cant and toe angles as well as a rudder on the winglet could be adjusted to a range of positions. Cant angles used in the investigation consisted of 5, 25, and 40 degrees measured from the vertical axis. Toe-out angles ranged from 0 to 22.5 degrees. A rudder on the winglet was used to study the effects of changing the camber of the winglet airfoil on wing performance and wing yawing moments. Rudder deflections consisted of-10, 0, and 10 degrees. Test results for a fixed geometry winglet and a standard wing tip are presented to show the general behavior of winglets on sailplane wings, and the effects of boundary-layer turbulators on the winglets are also presented. By tripping the laminar boundary-layer to turbulent before laminar separation occurs, the wing performance was increased at low Reynolds numbers. The effects on the lift and drag, yawing moment, pitching moment, and wing root bending moment of the model are presented. Oil flows were used on the wing model with the fixed geometry winglet and the standard wing tip to visualize flow directions and areas of boundary layer transition. A cant angle of 25 degrees and a toe-out angle of 2.5 degrees provided an optimal increase in wing performance for the cant and toe angles tested. Maximum performance was obtained when the winglet rudder remained in the neutral position of zero degrees. By varying the cant, toe, and rudder angles from their optimized positions, wing performance decreases. Although the winglet rudder proved to be more effective in increasing the yawing moment compared to varying the cant and toe angles, the amount of increased yawing moment was insignificant when compared to that produced by the vertical tail. A rudder on the winglet was determined to be ineffective for providing additional yaw control.

  11. Tests of a 1/7-Scale Semispan Model of the XB-35 Airplane in the Langley 19-Foot Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Teplitz, Jerome; Kayten, Gerald G.; Cancro, Patrick A.

    1946-01-01

    A 1/7 scale semispan model of the XB-35 airplane was tested in the Langley 10 foot pressure tunnel, primarily for the purpose of investigating the effectiveness of a leading-edge slot for alleviation of stick-fixed longitudinal instability at high angles of attack caused by early tip stalling and a device for relief of stick-free instability caused by elevon up-floating tendencies at high angles of attack. Results indicated that the slot was not adequate to provide the desired improvement in stick-fixed stability. The tab-flipper device provided improvement in stick-free stability abd two of the linkage combinations tested gave satisfactory variations of control force with airspeed for all conditions except that in which the wing-tip "pitch-control" flap was fully deflected. However, the improvement in control force characteristics was accompanied by a detrimental effect on stick-fixed stability because of the pitching moments produced by the elevon tab deflection.

  12. Precision measurements of g1 of the proton and of the deuteron with 6 GeV electrons

    NASA Astrophysics Data System (ADS)

    Prok, Y.; Bosted, P.; Kvaltine, N.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Giovanetti, K. L.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guler, N.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S.; Jiang, X.; Jo, H. S.; Joo, K.; Kalantarians, N.; Keith, C.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Peng, P.; Phillips, J. J.; Pierce, J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Smith, C.; Smith, G.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at laboratory angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual deep inelastic region kinematics, Q2>1 GeV2 and the final-state invariant mass W >2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative quantum chromodynamics, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  13. Precision measurements of g1 of the proton and the deuteron with 6 GeV electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prok, Yelena; Bosted, Peter; Kvaltine, Nicholas

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up tomore » 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.« less

  14. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-01-01

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.

  15. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-06-18

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.

  16. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction

    PubMed Central

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-01

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves. PMID:28106090

  17. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction.

    PubMed

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-20

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves.

  18. A Theoretical Basis for the Scaling Law of Broadband Shock Noise Intensity in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    A theoretical basis for the scaling of broadband shock noise intensity In supersonic jets was formulated considering linear shock-shear wave interaction. Modeling of broadband shock noise with the aid of shock-turbulence interaction with special reference to linear theories is briefly reviewed. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process with the noise generation contribution from off-peak incident angles being relatively unimportant. The proposed hypothesis satisfactorily explains the well-known scaling law for the broadband shock-associated noise in supersonic jets.

  19. Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams

    NASA Astrophysics Data System (ADS)

    Chung, Jin-Beom; Kim, Jae-Sung; Kim, In-Ah; Lee, Jeong-Woo

    2012-10-01

    This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.

  20. Mickey Mouse Spotted on Mercury!

    NASA Image and Video Library

    2012-06-15

    NASA image acquired: June 03, 2012 This scene is to the northwest of the recently named crater Magritte, in Mercury's south. The image is not map projected; the larger crater actually sits to the north of the two smaller ones. The shadowing helps define the striking "Mickey Mouse" resemblance, created by the accumulation of craters over Mercury's long geologic history. This image was acquired as part of MDIS's high-incidence-angle base map. The high-incidence-angle base map is a major mapping activity in MESSENGER's extended mission and complements the surface morphology base map of MESSENGER's primary mission that was acquired under generally more moderate incidence angles. High incidence angles, achieved when the Sun is near the horizon, result in long shadows that accentuate the small-scale topography of geologic features. The high-incidence-angle base map is being acquired with an average resolution of 200 meters/pixel. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Rapid assessment of pulmonary gas transport with hyperpolarized 129Xe MRI using a 3D radial double golden-means acquisition with variable flip angles.

    PubMed

    Ruppert, Kai; Amzajerdian, Faraz; Hamedani, Hooman; Xin, Yi; Loza, Luis; Achekzai, Tahmina; Duncan, Ian F; Profka, Harrilla; Siddiqui, Sarmad; Pourfathi, Mehrdad; Cereda, Maurizio F; Kadlecek, Stephen; Rizi, Rahim R

    2018-04-22

    To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Influence of cup-center-edge angle on micro-motion at the interface between the cup and host bone in cementless total hip arthroplasty: three-dimensional finite element analysis.

    PubMed

    Kaku, Nobuhiro; Tabata, Tomonori; Tsumura, Hiroshi

    2015-12-01

    We verified the index cup position required for bulk bone grafting instead of morcellized grafting immediately after cementless total hip arthroplasty. Three-dimensional finite element analysis was used to evaluate changes in the volume of the slippage of the cup-host bone interface as micro-motion of the cup at the acetabular bone defect site depending on the cup-center-edge (CE) angle. The conditions of bulk bone grafts were similar to those of cortical bone. Slippage increased with decreasing cup-CE angle. A bulk bone graft tightly fixed to the host bone prevented considerably larger slippage between the cup and host bone. A smaller cup-CE angle increased the impact of the bulk bone graft on slippage. When the cup-CE angle was 0° or -10°, the criterion for slippage in favorable initial fixation in all conditions was <40 μm. Even if transplanted bulk bone is used, unless good fixation is obtained between the host bone, and the cup and bone graft, it is impossible to obtain reliable fixation of the cup with a cup-CE angle <-10° and slippage exceeding 40 μm. Bulk bone grafting tightly fixed to the host bone improves initial the cup-host bone fixation, especially when the cup-CE angle is small, such as <-10°. In clinical practice, negative factors are implicated in the initial fixation of various cups, and sufficient fixation between the host bone and cup or bulk bone graft using a screw is effective when the cup-CE angle is extremely small.

  3. Virtual Compton scattering and neutral pion electroproduction in the resonance region up to the deep inelastic region at backward angles

    NASA Astrophysics Data System (ADS)

    Laveissière, G.; Degrande, N.; Jaminion, S.; Jutier, C.; Todor, L.; Salvo, R. Di; Hoorebeke, L. Van; Alexa, L. C.; Anderson, B. D.; Aniol, K. A.; Arundell, K.; Audit, G.; Auerbach, L.; Baker, F. T.; Baylac, M.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Breton, V.; Breuer, H.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Cavata, C.; Chang, C.-C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dale, D. S.; de Jager, C. W.; de Leo, R.; Deur, A.; D'Hose, N.; Dodge, G. E.; Domingo, J. J.; Elouadrhiri, L.; Epstein, M. B.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Fonvieille, H.; Fournier, G.; Frois, B.; Frullani, S.; Furget, C.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Grenier, P.; Guichon, P. A. M.; Hansen, J. O.; Holmes, R.; Holtrop, M.; Howell, C.; Huber, G. M.; Hyde, C. E.; Incerti, S.; Iodice, M.; Jardillier, J.; Jones, M. K.; Kahl, W.; Kamalov, S.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khayat, M.; Kino, K.; Kox, S.; Kramer, L. H.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Leone, A.; Lerose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Marchand, C.; Marchand, D.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martino, J.; McCormick, K.; McIntyre, J.; Mehrabyan, S.; Merchez, F.; Meziani, Z. E.; Michaels, R.; Miller, G. W.; Mougey, J. Y.; Nanda, S. K.; Neyret, D.; Offermann, E. A. J. M.; Papandreou, Z.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Platchkov, S.; Pomatsalyuk, R.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quémenér, G.; Ransome, R. D.; Ravel, O.; Real, J. S.; Renard, F.; Roblin, Y.; Rowntree, D.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Serdarevic, A.; Smith, T.; Smirnov, G.; Soldi, K.; Sorokin, P.; Souder, P. A.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Tiator, L.; Tieulent, R.; Tomasi-Gustaffson, E.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; de Vyver, R. Van; der Meer, R. L. J. Van; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Watson, J. W.; Weinstein, L. B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B. B.; Zainea, D. G.; Zhang, W.-M.; Zhao, J.; Zhou, Z.-L.

    2009-01-01

    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e'p)γ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q2=1GeV2 and for the Q2 dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2 dependence is smooth. The measured ratio of H(e, e'p)γ to H(e, e'p)π0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to real Compton scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8-1.9 GeV) show a striking Q2 independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.

  4. Analytical and experimental evaluation of a 3-D hypersonic fixed-geometry, swept, mixed compression inlet

    NASA Technical Reports Server (NTRS)

    Agnone, Anthony M.

    1987-01-01

    The performance of a fixed-geometry, swept, mixed compression hypersonic inlet is presented. The experimental evaluation was conducted for a Mach number of 6.0 and for several angles of attack. The measured surface pressures and pitot pressure surveys at the inlet throat are compared to computations using a three-dimensional Euler code and an integral boundary layer theory. Unique features of the intake design, including the boundary layer control, insure a high inlet performance. The experimental data show the inlet has a high mass averaged total pressure recovery, a high mass capture and nearly uniform flow diffusion. The swept inlet exhibits excellent starting characteristics, and high flow stability at angle of attack.

  5. Transonic high Reynolds number stability and control characteristics of a 0.015-scale remotely controlled elevon model (44-0) of the space shuttle orbiter tested in calspan 8-foot TWT (LA70)

    NASA Technical Reports Server (NTRS)

    Parrell, H.; Gamble, J. D.

    1977-01-01

    Transonic Wind Tunnel tests were run on a .015 scale model of the space shuttle orbiter vehicle in the 8-foot transonic wind tunnel. Purpose of the test program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds number. Tests were performed at Mach numbers from .35 to 1.20 and Reynolds numbers from 3,500,000 to 8,200,000 per foot. The high Reynolds number conditions (nominal 8,000,000/foot) were obtained using the ejector augmentation system. Angle of attack was varied from -2 to +20 degrees at sideslip angles of -2, 0, and +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Aileron settings were varied from -5 to +10 degrees at elevon deflections of -10, 0, and +10 degrees. Fixed aileron settings of 0 and 2 degrees in combination with various fixed elevon settings between -20 and +5 degrees were also run at varying angles of attack.

  6. Maximum life spiral bevel reduction design

    NASA Technical Reports Server (NTRS)

    Savage, M.; Prasanna, M. G.; Coe, H. H.

    1992-01-01

    Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.

  7. Design of a nano-layered tunable optical filter

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Awasthi, S. K.; Malaviya, U.; Ojha, S. P.

    2006-12-01

    A novel theory to design tunable band pass filters using one-dimensional nano-photonic structures is proposed. Periodic structures consisting of different dielectrics and semiconductor materials are considered. A detailed mathematical analysis is presented to predict allowed and forbidden bands of wavelengths with variation of angle of incidence and lattice parameters. It is possible to get desired ranges of the electromagnetic spectrum filtered with this structure by changing the incidence angle of light and/or changing the value of the lattice parameters.

  8. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.

    PubMed

    Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying

    2012-07-30

    We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.

  9. Analysis of flight data from a High-Incidence Research Model by system identification methods

    NASA Technical Reports Server (NTRS)

    Batterson, James G.; Klein, Vladislav

    1989-01-01

    Data partitioning and modified stepwise regression were applied to recorded flight data from a Royal Aerospace Establishment high incidence research model. An aerodynamic model structure and corresponding stability and control derivatives were determined for angles of attack between 18 and 30 deg. Several nonlinearities in angles of attack and sideslip as well as a unique roll-dominated set of lateral modes were found. All flight estimated values were compared to available wind tunnel measurements.

  10. Biologically Inspired Radio-Frequency (RF) Direction Finding

    DTIC Science & Technology

    2015-12-15

    estimation of an electromagnetic signal is important for many commercial and military applications including electronic warfare [1] and mobile...without scatter with scatter 1 Incident Angle (degree) 0 30 60 90 R ec ei ve d Pa tte rn (d B ) -62 -60 -58 -56 -54 -52 -50 port1 without scatter...150 without scatter with scatter 2 Incident Angle (degree) 0 30 60 90 R ec ei ve d Pa tte rn (d B ) -52 -50 -48 -46 -44 -42 port1 without scatter

  11. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. P.; Dorofeenko, A. V.; Pukhov, A. A.; Lisyansky, A. A.

    2018-06-01

    We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.

  12. Development of a synthetic aperture radar design approach for wide-swath implementation

    NASA Technical Reports Server (NTRS)

    Jean, B. R.

    1981-01-01

    The first phase of a study program to develop an advanced synthetic aperture radar design concept is presented. Attributes of particular importance for the system design include wide swath coverage, reduced power requirements, and versatility in the selection of frequency, polarization and incident angle. The multiple beam configuration provides imaging at a nearly constant angle of incidence and offers the potential of realizing a wide range of the attributes desired for an orbital imaging radar for Earth resources applications.

  13. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  14. The Incidence and Short Term Functional Effect of Partial PCL Release in Fixed and Mobile Bearing PCL Retaining TKA.

    PubMed

    Schwarzkopf, Ran; Woolwine, Spencer; Josephs, Lee; Scott, Richard D

    2015-12-01

    Posterior cruciate ligament (PCL) release may be required to balance the flexion gap in PCL retaining TKA. This study examines the incidence and functional consequences of PCL release in both fixed and mobile bearing TKA. A consecutive series of 1388 TKAs with 1014 fixed bearing, and 374 mobile bearing implants were reviewed for prevalence of partial PCL release, restoration of potential flexion and objective knee stability at minimum one-year follow-up. Patients receiving mobile bearing inserts were more likely to need partial PCL release (42% versus 17.5%). The occurrence of partial PCL release did not have a significant impact on knee range of motion and subjective knee stability. The need for a partial PCL release appears to be greater in mobile than in fixed bearing. Knees that required a release in both groups demonstrated no difference in restoration of flexion compared with unreleased knees and no adverse effects on flexion stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Enhancement of Dual-Band Reflection-Mode Circular Polarizers Using Dual-Layer Rectangular Frequency Selective Surfaces

    NASA Astrophysics Data System (ADS)

    Fartookzadeh, M.; Mohseni Armaki, S. H.

    2016-10-01

    A new kind of dual-band reflection-mode circular polarizers (RMCPs) is introduced with wide bandwidth and wide-view at the operating frequencies. The proposed RMCPs are based on dual-layer rectangular patches on both sides of a substrate, separated by a foam or air layer from the ground plane. Required TE susceptance of the first layer patches to produce circular polarization is calculated using the equivalent transmission line model. Dimensions of the RMCP are obtained using parametrical study for the two frequency bands, 1.9-2.3 GHz and 7.9-8.3 GHz. In addition, it is indicated that the accepted view angle and bandwidth of the proposed dual-layer RMCP are improved compared with the single layer RMCP, significantly. Moreover, a tradeoff is observed for the dual-layer RMCP on the bandwidths of X band and S band that can be controlled by propagation angle of the incident wave. The proposed RMCP has 30.5 % and 33.7 % bandwidths for less than 3 dB axial ratio with incident angles {\\theta}max=50{\\deg} and {\\theta}min=35{\\deg}. Finally, simulation results are met by the measurement for three angles of the incident wave.

  16. Analysis of normalized radar cross section (sigma-O) signature of Amazon rain forest using SEASAT scatterometer data

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M.; Sweet, J. L.

    1984-01-01

    The normalized radar cross section (NRCS) signature of the Amazon rain forest was SEASAT scatterometer data. Statistics of the measured (NRCS) values were determined from multiple orbit passes for three local time periods. Plots of mean normalized radar cross section, dB against incidence angle as a function of beam and polarization show that less than 0.3 dB relative bias exists between all beams over a range of incidence angle from 30 deg to 53 deg. The backscattered measurements analyzed show the Amazon rain forest to be relatively homogeneous, azimuthally isotropic and insensitive to polarization. The return from the rain forest target appears relatively consistent and stable, except for the small diurnal variation (0.75 dB) that occurs at sunrise. Because of the relative stability of the rain forest target and the scatterometer instrument, the response of versus incidence angle was able to detect errors in the estimated yaw altitude angle. Also, small instrument gain biases in some of the processing channels were detected. This led to the development of an improved NRCS algorithm, which uses a more accurate method for estimating the system noise power.

  17. Nanoscale cellular imaging with scanning angle interference microscopy.

    PubMed

    DuFort, Christopher; Paszek, Matthew

    2014-01-01

    Fluorescence microscopy is among the most widely utilized tools in cell and molecular biology due to its ability to noninvasively obtain time-resolved images of live cells with molecule-specific contrast. In this chapter, we describe a simple high-resolution technique, scanning angle interference microscopy (SAIM), for the imaging and localization of fluorescent molecules with nanometer precision along the optical axis. In SAIM, samples above a reflective surface are sequentially scanned with an excitation laser at varying angles of incidence. Interference patterns generated between the incident and reflected lights result in an emission intensity that depends on the height of a fluorophore above the silicon surface and the angle of the incident radiation. The measured fluorescence intensities are then fit to an optical model to localize the labeled molecules along the z-axis with 5-10 nm precision and diffraction-limited lateral resolution. SAIM is easily implemented on widely available commercial total internal reflection fluorescence microscopes, offering potential for widespread use in cell biology. Here, we describe the setup of SAIM and its application for imaging cellular structures near (<1 μm) the sample substrate. © 2014 Elsevier Inc. All rights reserved.

  18. The complex phase gradient method applied to leaky Lamb waves.

    PubMed

    Lenoir, O; Conoir, J M; Izbicki, J L

    2002-10-01

    The classical phase gradient method applied to the characterization of the angular resonances of an immersed elastic plate, i.e., the angular poles of its reflection coefficient R, was proved to be efficient when their real parts are close to the real zeros of R and their imaginary parts are not too large compared to their real parts. This method consists of plotting the partial reflection coefficient phase derivative with respect to the sine of the incidence angle, considered as real, versus incidence angle. In the vicinity of a resonance, this curve exhibits a Breit-Wigner shape, whose minimum is located at the pole real part and whose amplitude is the inverse of its imaginary part. However, when the imaginary part is large, this method is not sufficiently accurate compared to the exact calculation of the complex angular root. An improvement of this method consists of plotting, in 3D, in the complex angle plane and at a given frequency, the angular phase derivative with respect to the real part of the sine of the incidence angle, considered as complex. When the angular pole is reached, the 3D curve shows a clear-cut transition whose position is easily obtained.

  19. Three-dimensional simulation of rivulet and film flows over an inclined plate: Effects of solvent properties and contact angle

    DOE PAGES

    Singh, Rajesh K.; Galvin, Janine E.; Sun, Xin

    2015-12-10

    We numerically investigated the film flow down an inclined plate using the volume of fluid (VOF) method. The flow simulations have been systematically carried out for a wide range of parameters, such as inlet size, inclination angle, contact angle, flow rates and solvent properties (viscosity and surface tension). Based on the simulation results, scaling theory is proposed for both interfacial area and for film thickness in terms of the Kapitza number (Ka).The Kapitza number is advantageous because it depends only on solvent properties. The Kapitza number decreases with increased solvent viscosity and is fixed for a given fluid. Here, tomore » investigate the effects of solvent properties on interfacial area a small inlet cross-section was used. The interfacial area decreases with increased value of Ka. The time to reach pseudo-steady state of rivulet is also observed to increase with decreasing Ka. For a fixed flow rate, the inlet cross-section has marginal effect on the interfacial area; however, the developed width of the rivulet remains unchanged. In addition to inlet size, flow rate and solvent properties, the impact of contact angle on film thickness and interfacial area was also investigated. The contact angle has negligible effect for a fully wetted plate, but it significantly affects the interfacial area of the rivulet. Finally, a scaling theory for interfacial area in terms of the contact angle and Ka is presented.« less

  20. Association of Baseline Anterior Segment Parameters With the Development of Incident Gonioscopic Angle Closure.

    PubMed

    Nongpiur, Monisha E; Aboobakar, Inas F; Baskaran, Mani; Narayanaswamy, Arun; Sakata, Lisandro M; Wu, Renyi; Atalay, Eray; Friedman, David S; Aung, Tin

    2017-03-01

    Baseline anterior segment imaging parameters associated with incident gonioscopic angle closure, to our knowledge, are unknown. To identify baseline quantitative anterior segment optical coherence tomography parameters associated with the development of incident gonioscopic angle closure after 4 years among participants with gonioscopically open angles at baseline. Three hundred forty-two participants aged 50 years or older were recruited to participate in this prospective, community-based observational study. Participants underwent gonioscopy and anterior segment optical coherence tomography imaging at baseline and after 4 years. Custom image analysis software was used to quantify anterior chamber parameters from anterior segment optical coherence tomography images. Baseline anterior segment optical coherence tomography measurements among participants with gonioscopically open vs closed angles at follow-up. Of the 342 participants, 187 (55%) were women and 297 (87%) were Chinese. The response rate was 62.4%. Forty-nine participants (14.3%) developed gonioscopic angle closure after 4 years. The mean age (SD) at baseline of the 49 participants was 62.9 (8.0) years, 15 (30.6%) were men, and 43 (87.8%) were Chinese. These participants had a smaller baseline angle opening distance at 750 µm (AOD750) (0.15 mm; 95% CI, 0.12-0.18), trabecular iris surface area at 750 µm (0.07 mm2; 95% CI, 0.05-0.08), anterior chamber area (30 mm2; 95% CI, 2.27-3.74), and anterior chamber volume (24.32 mm2; 95% CI, 18.20-30.44) (all P < .001). Baseline iris curvature (-0.08; 95% CI, -0.12 to -0.04) and lens vault (LV) measurements (-0.29 mm; 95% CI, -0.37 to -0.21) were larger among these participants ( all P < .001). A model consisting of the LV and AOD750 measurements explained 38% of the variance in gonioscopic angle closure occurring at 4 years, with LV accounting for 28% of this variance. For every 0.1 mm increase in LV and 0.1 mm decrease in AOD750, the odds of developing gonioscopic angle closure was 1.29 (95% CI, 1.07-1.57) and 3.27 (95% CI, 1.87-5.69), respectively. In terms of per SD change in LV and AOD750, this translates to an odds ratio of 2.14 (95% CI, 2.48-12.34) and 5.53 (95% CI, 1.22-3.77), respectively. A baseline LV cut-off value of >0.56 mm had 64.6% sensitivity and 84.0% specificity for identifying participants who developed angle closure. These findings suggest that smaller AOD750 and larger LV measurements are associated with the development of incident gonioscopic angle closure after 4 years among participants with gonioscopically open angles at baseline.

  1. Development of a Hardware-in-the-Loop Simulator for Control Moment Gyroscope-Based Attitude Control Systems

    DTIC Science & Technology

    2015-12-01

    angular momentum is simply the scalar value projected along the axis of rotation of the momentum wheel (see Figure 1). Since reaction wheels are fixed ...CMGs generate torque by gimbaling a momentum wheel rotating at a nominally fixed rate [2]. The torque output of a CMG is the cross product of the...notably the fixed skew angle of the original system. The goal of this research is to build upon the previous redesign efforts and develop a four-CMG HIL

  2. A fixed energy fixed angle inverse scattering in interior transmission problem

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Hui

    2017-06-01

    We study the inverse acoustic scattering problem in mathematical physics. The problem is to recover the index of refraction in an inhomogeneous medium by measuring the scattered wave fields in the far field. We transform the problem to the interior transmission problem in the study of the Helmholtz equation. We find an inverse uniqueness on the scatterer with a knowledge of a fixed interior transmission eigenvalue. By examining the solution in a series of spherical harmonics in the far field, we can determine uniquely the perturbation source for the radially symmetric perturbations.

  3. Coronal tibial slope is associated with accelerated knee osteoarthritis: data from the Osteoarthritis Initiative.

    PubMed

    Driban, Jeffrey B; Stout, Alina C; Duryea, Jeffrey; Lo, Grace H; Harvey, William F; Price, Lori Lyn; Ward, Robert J; Eaton, Charles B; Barbe, Mary F; Lu, Bing; McAlindon, Timothy E

    2016-07-19

    Accelerated knee osteoarthritis may be a unique subset of knee osteoarthritis, which is associated with greater knee pain and disability. Identifying risk factors for accelerated knee osteoarthritis is vital to recognizing people who will develop accelerated knee osteoarthritis and initiating early interventions. The geometry of an articular surface (e.g., coronal tibial slope), which is a determinant of altered joint biomechanics, may be an important risk factor for incident accelerated knee osteoarthritis. We aimed to determine if baseline coronal tibial slope is associated with incident accelerated knee osteoarthritis or common knee osteoarthritis. We conducted a case-control study using data and images from baseline and the first 4 years of follow-up in the Osteoarthritis Initiative. We included three groups: 1) individuals with incident accelerated knee osteoarthritis, 2) individuals with common knee osteoarthritis progression, and 3) a control group with no knee osteoarthritis at any time. We did 1:1:1 matching for the 3 groups based on sex. Weight-bearing, fixed flexion posterior-anterior knee radiographs were obtained at each visit. One reader manually measured baseline coronal tibial slope on the radiographs. Baseline femorotibial angle was measured on the radiographs using a semi-automated program. To assess the relationship between slope (predictor) and incident accelerated knee osteoarthritis or common knee osteoarthritis (outcomes) compared with no knee osteoarthritis (reference outcome), we performed multinomial logistic regression analyses adjusted for sex. The mean baseline slope for incident accelerated knee osteoarthritis, common knee osteoarthritis, and no knee osteoarthritis were 3.1(2.0), 2.7(2.1), and 2.6(1.9); respectively. A greater slope was associated with an increased risk of incident accelerated knee osteoarthritis (OR = 1.15 per degree, 95 % CI = 1.01 to 1.32) but not common knee osteoarthritis (OR = 1.04, 95 % CI = 0.91 to 1.19). These findings were similar when adjusted for recent injury. Among knees with varus malalignment a greater slope increases the odds of incident accelerated knee osteoarthritis; there is no significant relationship between slope and incident accelerated knee osteoarthritis among knees with normal alignment. Coronal tibial slope, particularly among knees with malalignment, may be an important risk factor for incident accelerated knee osteoarthritis.

  4. General design method of ultra-broadband perfect absorbers based on magnetic polaritons.

    PubMed

    Liu, Yuanbin; Qiu, Jun; Zhao, Junming; Liu, Linhua

    2017-10-02

    Starting from one-dimensional gratings and the theory of magnetic polaritons (MPs), we propose a general design method of ultra-broadband perfect absorbers. Based on the proposed design method, the obtained absorber can keep the spectrum-average absorptance over 99% at normal incidence in a wide range of wavelengths; this work simultaneously reveals the robustness of the absorber to incident angles and polarization angles of incident light. Furthermore, this work shows that the spectral band of perfect absorption can be flexibly extended to near the infrared regime by adjusting the structure dimension. The findings of this work may facilitate the active design of ultra-broadband absorbers based on plasmonic nanostructures.

  5. Specular reflectance of soiled glass mirrors - Study on the impact of incidence angles

    NASA Astrophysics Data System (ADS)

    Heimsath, Anna; Lindner, Philip; Klimm, Elisabeth; Schmid, Tobias; Moreno, Karolina Ordonez; Elon, Yehonatan; Am-Shallem, Morag; Nitz, Peter

    2016-05-01

    The accumulation of dust and soil on the surface of solar reflectors is an important factor reducing the power output of solar power plants. Therefore the effect of accumulated dust on the specular reflectance of solar mirrors should be understood well in order to improve the site-dependent performance prediction. Furthermore, an optimization of the CSP System maintenance, in particular the cleaning cycles, can be achieved. Our measurements show a noticeable decrease of specular reflectance when the angle of incidence is increased. This effect may be explained by shading and blocking mechanisms caused by dirt particles. The main physical causes of radiation loss being absorption and scattering, the near-angle scattering leads to a further decrease of specular reflectance for smaller angles of acceptance. Within this study mirror samples were both outdoor exposed and indoor artificially soiled. For indoor soiling, the mirror samples were artificially soiled in an in-house developed dusting device using both artificial-standardized dust and real dust collected from an arid outdoor test field at the Negev desert. A model function is proposed that approximates the observed reduction of specular reflectance with the incidence angle with a sufficient accuracy and by simple means for this soil type. Hence a first step towards a new approach to improve site dependent performance prediction of solar power plants is taken.

  6. Test of the Angle Detecting Inclined Sensor (ADIS) Technique for Measuring Space Radiation

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.; McLaughlin, K. R.

    2009-12-01

    In February 2008 we exposed an Angle Detecting Inclined Sensor (ADIS) prototype to beams of 150 MeV/u 78Kr and fragments at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). ADIS is a highly innovative and uniquely simple detector configuration used to determine the angles of incidence of heavy ions in energetic charged particle instruments. Corrections for angle of incidence are required for good charge and mass separation. An ADIS instrument is under development to fly on the GOES-R series of weather satellites. The prototype tested consisted of three ADIS detectors, two of which were inclined at an angle to the telescope axis, forming the initial detectors in a five-detector telescope stack. By comparing the signals from the ADIS detectors, the angle of incidence may be determined and a pathlength correction applied to charge and mass determinations. Thus, ADIS replaces complex position sensing detectors with a system of simple, reliable and robust Si detectors. Accelerator data were taken at multiple angles to both primary and secondary beams with a spread of energies. This test instrument represents an improvement over the previous ADIS prototype in that it used oval inclined detectors and a much lower-mass support structure, thus reducing the number of events passing through dead material. These data show a charge peak resolution of 0.18 ± 0.01 e at Br (Z = 35), excellent for such a simple instrument. We will present the results of this test. The ADIS instrument development project was partially funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).

  7. Reflectivity quenching of ESR multilayer polymer film reflector in optically bonded scintillator arrays

    NASA Astrophysics Data System (ADS)

    Loignon-Houle, Francis; Pepin, Catherine M.; Charlebois, Serge A.; Lecomte, Roger

    2017-04-01

    The 3M-ESR multilayer polymer film is a widely used reflector in scintillation detector arrays. As specified in the datasheet and confirmed experimentally by measurements in air, it is highly reflective (> 98 %) over the entire visible spectrum (400-1000 nm) for all angles of incidence. Despite these outstanding characteristics, it was previously found that light crosstalk between pixels in a bonded LYSO scintillator array with ESR reflector can be as high as ∼30-35%. This unexplained light crosstalk motivated further investigation of ESR optical performance. Analytical simulation of a multilayer structure emulating the ESR reflector showed that the film becomes highly transparent to incident light at large angles when surrounded on both sides by materials of refractive index higher than air. Monte Carlo simulations indicate that a considerable fraction (∼25-35%) of scintillation photons are incident at these leaking angles in high aspect ratio LYSO scintillation crystals. The film transparency was investigated experimentally by measuring the scintillation light transmission through the ESR film sandwiched between a scintillation crystal and a photodetector with or without layers of silicone grease. Strong light leakage, up to nearly 30%, was measured through the reflector when coated on both sides with silicone, thus elucidating the major cause of light crosstalk in bonded arrays. The reflector transparency was confirmed experimentally for angles of incidence larger than 60 ° using a custom designed setup allowing illumination of the bonded ESR film at selected grazing angles. The unsuspected ESR film transparency can be beneficial for detector arrays exploiting light sharing schemes, but it is highly detrimental for scintillator arrays designed for individual pixel readout.

  8. Surface dose measurements for highly oblique electron beams.

    PubMed

    Ostwald, P M; Kron, T

    1996-08-01

    Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.

  9. Implementation of rooftop reciculation parameterization into the QUIC fast response urban wind model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagal, N.; Singh, B.; Pardyjak, E. R.

    2004-01-01

    The QUIC (Quick Urban & Industrial Complex) dispersion modeling system has been developed to provide high-resolution wind and concentration fields in cities. The fast response 3D urban wind model QUIC-URB explicitly solves for the flow field around buildings using a suite of empirical parameterizations and mass conservation. This procedure is based on the work of Rockle (1990). The current Rockle (1990) model does not capture the rooftop recirculation region associated with flow separation from the leading edge of an isolated building. According to Banks et al. (2001), there are two forms of separation depending on the incident wind angle. Formore » an incident wind angle within 20{sup o} of perpendicular to the front face of the building, 'bubble separation' occurs in which cylindrical vortices whose axis are orthogonal to the flow are generated along the rooftop surface (see Fig. 1). For a 'corner wind' flow or incident wind angle of 30{sup o} to 70{sup o} of perpendicular to the front face of the building, 'conical' or 'delta wing' vortices form along the roof surface (Fig. 3). In this work, a model for rooftop recirculation is implemented into the QUIC- URB model for the two incident wind angle regimes described above. The parameterizations for the length and height of the recirculation region are from Wilson (1979) for the case of flow perpendicular or near perpendicular to the building and from Banks et al. (2000) for the case of off-angle flow. In this paper, we describe the rooftop algorithms and show how the model results are improved through comparisons to experimental data (Snyder and Lawson 1994).« less

  10. Angular dependence of etch rates in the etching of poly-Si and fluorocarbon polymer using SF6, C4F8, and O2 plasmas

    NASA Astrophysics Data System (ADS)

    Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo

    2004-05-01

    The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF6/poly-Si, a SF6/fluorocarbon polymer, an O2/fluorocarbon polymer, and a C4F8/Si. In the case of SF6/poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O2/polymer decreased and eventually reached much lower values than the cosine values at angles between 30° and 70° when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF6/polymer showed a weak dependence on the process variables. In the case of C4F8/Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed. .

  11. External control of photonic bands in a magnetized cold plasma

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Singh, P. P.; Suthar, B.; Kumar, A.; Thapa, K. B.

    2018-05-01

    In this analysis, the effect of external rectangle-wave-like periodic magnetic field, on photonic bandgaps (PBGs) exhibited by bulk cold plasma, has been illustrated. It is found that the forbidden gap for normal incidence decreases with a decrease in the thickness ratio for a constant magnetic field. A new gap appears for TM polarization at oblique incidence that is attributed to the Bragg's interference of plasma layers and this new gap width depends on the incident angle as well as the magnitude of the magnetic field. There is also a shifting in gap locations depending on the magnitude of the magnetic field. It is demonstrated that external parameters like magnetic field strength and the ratio of two parts of spatial period along with incident angle can tune the PBGs in a magnetized cold plasma.

  12. Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light.

    PubMed

    Bhandari, Anak; Hamre, Børge; Frette, Øvynd; Zhao, Lu; Stamnes, Jakob J; Kildemo, Morten

    2011-06-01

    A Lambert surface would appear equally bright from all observation directions regardless of the illumination direction. However, the reflection from a randomly scattering object generally has directional variation, which can be described in terms of the bidirectional reflectance distribution function (BRDF). We measured the BRDF of a Spectralon white reflectance standard for incoherent illumination at 405 and 680 nm with unpolarized and plane-polarized light from different directions of incidence. Our measurements show deviations of the BRDF for the Spectralon white reflectance standard from that of a Lambertian reflector that depend both on the angle of incidence and the polarization states of the incident light and detected light. The non-Lambertian reflection characteristics were found to increase more toward the direction of specular reflection as the angle of incidence gets larger.

  13. Dwell time, Hartman effect and transport properties in a ferromagnetic phosphorene monolayer

    NASA Astrophysics Data System (ADS)

    Hedayati Kh, Hamed; Faizabadi, Edris

    2018-02-01

    In this paper, spin-dependent dwell time, spin Hartman effect and spin-dependent conductance were theoretically investigated through a rectangular barrier in the presence of an exchange field by depositing a ferromagnetic insulator on the phosphorene layer in the barrier region. The existence of the spin Hartman effect was shown for all energies (energies lower than barrier height) and all incident angles in phosphorene. We also compared our results of the dwell time in the phosphorene structure with similar research performed on graphene. We reported a significant difference between the tunneling time values of incident quasiparticles with spin-up and spin-down. We found that the barrier was almost transparent for incident quasiparticles with a wide range of incident angles and energies higher than the barrier height in phosphorene. We also found that the maximum spin-dependent transmission probability for energies higher than barrier height does not necessarily occur in the zero incident angle. In addition, we showed that the spin conductance for energies higher (lower) than barrier height fluctuates (decays) in terms of barrier thickness. We discovered that, in contrast to graphene, the Klein paradox does not occur in the normal incident in the phosphorene structure. Furthermore, the results demonstrated the achievement of good total conductance at certain thicknesses of the barrier for energies higher than the barrier height. This study could serve as a basis for investigations of the basic physics of tunneling mechanisms and also for using phosphorene as a spin polarizer in designing nanoelectronic devices.

  14. Dwell time, Hartman effect and transport properties in a ferromagnetic phosphorene monolayer.

    PubMed

    Hedayati Kh, Hamed; Faizabadi, Edris

    2018-02-28

    In this paper, spin-dependent dwell time, spin Hartman effect and spin-dependent conductance were theoretically investigated through a rectangular barrier in the presence of an exchange field by depositing a ferromagnetic insulator on the phosphorene layer in the barrier region. The existence of the spin Hartman effect was shown for all energies (energies lower than barrier height) and all incident angles in phosphorene. We also compared our results of the dwell time in the phosphorene structure with similar research performed on graphene. We reported a significant difference between the tunneling time values of incident quasiparticles with spin-up and spin-down. We found that the barrier was almost transparent for incident quasiparticles with a wide range of incident angles and energies higher than the barrier height in phosphorene. We also found that the maximum spin-dependent transmission probability for energies higher than barrier height does not necessarily occur in the zero incident angle. In addition, we showed that the spin conductance for energies higher (lower) than barrier height fluctuates (decays) in terms of barrier thickness. We discovered that, in contrast to graphene, the Klein paradox does not occur in the normal incident in the phosphorene structure. Furthermore, the results demonstrated the achievement of good total conductance at certain thicknesses of the barrier for energies higher than the barrier height. This study could serve as a basis for investigations of the basic physics of tunneling mechanisms and also for using phosphorene as a spin polarizer in designing nanoelectronic devices.

  15. Sun-view angle effects on reflectance factors of corn canopies

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.

    1985-01-01

    The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.

  16. Nonreciprocal optical properties based on magneto-optical materials: n-InAs, GaAs and HgCdTe

    NASA Astrophysics Data System (ADS)

    Wang, Han; Wu, Hao; Zhou, Jian-qiu

    2018-02-01

    Compared with reciprocal optical materials, nonreciprocal materials can break the time reversal and detailed balance due to special nonreciprocal effect, while how its characteristics performing on infrared wavelength have not been paid enough attention. In this paper, the optical properties of three magneto-optical materials was investigated in infrared band, that are n-InAs, GaAs, HgCdTe, based on Finite Difference Time Domain (FDTD) method. The equations of dielectric constant tensor are present and the effect of magnetic field intensity and frequency has been studied in detail. Additionally, the effect of incidence angle at positive and negative directions to the nonreciprocal absorptivity is also investigated. It is found that the nonreciprocal effect is obvious in infrared wavelength, and the nonreciprocal effect could adjust the absorption characteristic, thus be able to tune the absorption for the specific frequency of incident light. In addition to modeling the directional radiative properties at various angles of incidence, the absorption peaks of three materials under different incident angles are also calculated to understand the light absorption and to facilitate the optimal design of high-performance photovoltaic and optical instrument.

  17. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion.

    PubMed

    Zhou, Yixuan; E, Yiwen; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-14

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  18. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-01

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  19. The Effect of Detonation Wave Incidence Angle on the Acceleration of Flyers by Explosives Heavily Laden with Inert Additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David; Higgins, Andrew

    2015-06-01

    The incidence angle of a detonation wave is often assumed to weakly influence the terminal velocity of an explosively driven flyer. For explosives heavily loaded with dense additives, this may not be true due to differences in momentum and energy transfer between detonation products, additive particles, and the flyer. For tangential incidence the particles are first accelerated against the flyer via an expansion fan, whereas they are first accelerated by the detonation wave in the normal case. In the current study we evaluate the effect of normal versus tangential incidence on the acceleration of flyers by nitromethane heavily loaded with a variety of additives. Normal detonation was initiated via an explosively driven slapper. Flyer acceleration was measured with heterodyne laser interferometry (PDV). The influence of wave angle is evaluated by comparing the terminal velocity in the two cases (i.e., normal and grazing) for the heavily loaded mixtures. The decrement in flyer velocity correlated primarily with additive volume fraction and had a weak dependence on additive density or particle size. The Gurney energy of the heterogeneous explosive was observed to increase with flyer mass, presumably due to the timescale over which impinging particles could transfer momentum.

  20. Faraday effect on stimulated Raman scattering in the linear region

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.

    2018-04-01

    The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.

  1. Frustrated Total Internal Reflection: A Simple Application and Demonstration.

    ERIC Educational Resources Information Center

    Zanella, F. P.; Magalhaes, D. V.; Oliveira, M. M.; Bianchi, R. F.; Misoguti, L.; Mendonca, C. R.

    2003-01-01

    Describes the total internal reflection process that occurs when the internal angle of incidence is equal to or greater than the critical angle. Presents a demonstration of the effect of frustrated total internal reflection (FTIR). (YDS)

  2. Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Dolatshahi-Pirouz, A.; Hovgaard, M. B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2008-03-01

    Thin platinum films with well-controlled rough surface morphologies are grown by e-gun evaporation at an oblique angle of incidence between the deposition flux and the substrate normal. Atomic force microscopy is used to determine the root-mean-square value w of the surface roughness on the respective surfaces. From the scaling behavior of w , we find that while the roughness exponent α remains nearly unchanged at about 0.90, the growth exponent β changes from 0.49±0.04 to 0.26±0.01 as the deposition angle approaches grazing incidence. The values of the growth exponent β indicate that the film growth is influenced by both surface diffusion and shadowing effects, while the observed change from 0.49 to 0.26 can be attributed to differences in the relative importance of diffusion and shadowing with the deposition angle.

  3. Anomalous refraction of light through slanted-nanoaperture arrays on metal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Myungji; Jung, Yun Suk; Xi, Yonggang

    2015-09-07

    We report a nanoapertured metal surface that demonstrates anomalous refraction of light for a wide range of incident angles. A nanoslit aperture is designed to serve as a tilted vertical-dipole whose radiation pattern orients to a glancing angle direction to substrate. An array of such slanted nanoslits formed in a metal film redirects an incident beam into the direction of negative refraction angle: the aperture-transmitted wave makes a far-field propagation to the tilt-oriented direction of radiation pattern. The thus-designed nanoaperture array demonstrates the −1st order diffraction (i.e., to the negative refraction-angle direction) with well-suppressed background transmission (the zero-order direct transmissionmore » and other higher-order diffractions). Engineering the radiation pattern of nanoaperture offers an approach to overcoming the limits of conventional diffractive/refractive optics and complementing metasurface-based nano-optics.« less

  4. Leaf movement in Calathea lutea (Marantaceae).

    PubMed

    Herbert, Thomas J; Larsen, Parry B

    1985-09-01

    Calathea lutea is a broad-leaved, secondary successional plant which shows complex leaf movements involving both elevation and folding of the leaf surface about the pulvinus. In the plants studied, mean leaf elevation increased from approximately 34 degrees in the early morning to 70 degrees at noon while the angle of leaf folding increased from 13 degrees to 50 degrees over the same time period. During the period from early morning to noon, these movements resulted in a significant decrease in the cosine of the angle of incidence, a measure of the direct solar radiation intercepted. The observed changes in elevational angle significantly reduce the cosine of angle of incidence while folding does not significantly reduce the fraction of direct solar radiation intercepted during the period of direct exposure of the leaf surface to the solar beam. Since elevational changes seem to account for the reduction in exposure to direct solar radiation, the role of folding remains unclear.

  5. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    PubMed

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  6. Broadband metamaterial for nonresonant matching of acoustic waves

    PubMed Central

    D’Aguanno, G.; Le, K. Q.; Trimm, R.; Alù, A.; Mattiucci, N.; Mathias, A. D.; Aközbek, N.; Bloemer, M. J.

    2012-01-01

    Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media. The nonresonant nature of the impedance matching effectively decouples the front and back surfaces of the metamaterial allowing one to independently tailor the acoustic impedance at each interface. On the contrary, traditional methods for acoustic impedance matching, for example in medical imaging, rely on resonant tunneling through a thin antireflection layer, which is inherently narrowband and angle specific. PMID:22468227

  7. Unsteady aerodynamics of an oscillating cascade in a compressible flow field

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Boldman, Donald R.; Fleeter, Sanford

    1987-01-01

    Fundamental experiments were performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate and quantify the unsteady aerodynamics of a cascade of biconvex airfoils executing torsion-mode oscillations at realistic reduced frequencies. Flush-mounted, high-response miniature pressure transducers were used to measure the unsteady airfoil surface pressures. The pressures were measured for three interblade phase angles at two inlet Mach numbers, 0.65 and 0.80, and two incidence angles, 0 and 7 deg. The time-variant pressures were analyzed by means of discrete Fourier transform techniques, and these unique data were then compared with predictions from a linearized unsteady cascade model. The experimental results indicate that the interblade phase angle had a major effect on the chordwise distributions of the airfoil surface unsteady pressure, and that reduced frequency, incidence angle, and Mach number had a somewhat less significant effect.

  8. Measurement of acoustic properties of the composite materials constituting the main rotor hub of the Agusta-Westland helicopter EH-101 (civil version)

    NASA Astrophysics Data System (ADS)

    Tenti, L.; Denis, R.; Lakestani, F.

    1991-10-01

    The acoustic properties of the EH-101 helicopter rotor hub are tested by characterizing the ultrasonic propagation phenomena in the main directions of the composite materials. The carbon fiber and epoxy resin that make up the rotor hub are measured to determine the attenuation coefficient, phase propagation at normal incidence, and phase propagation as a function of angle of incidence. The speeds are measured for external box and filler samples, and strap samples are discussed separately because of their anisotropic nature and structural importance. Deviations angles of 5 deg cause refraction angles of 10 deg in the deviation of the phase propagation; therefore planar defects with an angle of 10 deg relative to the fiber direction can be easily detected. The method presented is useful in characterizing and locating defects in the composite materials that make up the main rotor hub of helicopters.

  9. Analytical beam-width characteristics of distorted cat-eye reflected beam

    NASA Astrophysics Data System (ADS)

    Zhao, Yanzhong; Shan, Congmiao; Zheng, Yonghui; Zhang, Laixian; Sun, Huayan

    2015-02-01

    The analytical expression of beam-width of distorted cat-eye reflected beam under far-field condition is deduced using the approximate three-dimensional analytical formula for oblique detection laser beam passing through cat-eye optical lens with center shelter, and using the definition of second order moment, Gamma function and integral functions. The laws the variation of divergence angle and astigmatism degree of the reflected light with incident angle, focal shift, aperture size, and center shelter ratio are established by numerical calculation, and physical analysis. The study revealed that the cat-eye reflected beam is like a beam transmitted and collimated by the target optical lens, and has the same characteristics as that of Gaussian beam. A proper choice of positive focal shift would result in a divergence angle smaller than that of no focal shift. The astigmatism is mainly caused by incidence angle.

  10. Low-speed wind tunnel tests of a 50.8-centimeter (20-in.) 1.15-pressure-ratio fan engine model

    NASA Technical Reports Server (NTRS)

    Wesoky, H. L.; Abbott, J. M.; Albers, J. A.; Dietrich, D. A.

    1974-01-01

    At a typical STOL aircraft takeoff and landing velocity, wind tunnel aerodynamic and acoustic measurements demonstrated that an inlet lip-area contraction ratio of 1.35 was superior to a ratio of 1.26 at high incidence angles. A 17 percent reduction in net thrust and an increase of 9 decibels in sound pressure level at the blade passing frequency resulted from inlet flow separation at an incidence angle of 50 deg with the 1.26-contraction-ratio inlet. Reverse-thrust forces obtained with blade rotation through the feathered angle were 1.8 times larger than with blade rotation through the flat angle. Reverse-thrust force was reduced from 30 to 50 percent and sound pressure level increased from 3 to 7 decibels at the blade passing frequency between the wind-tunnel-off condition and a typical STOL aircraft landing velocity.

  11. The effect of impurities and incident angle on the secondary electron emission of Ni(110)

    NASA Astrophysics Data System (ADS)

    Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce E.; Gentile, Charles; Feibush, Eliot

    2015-11-01

    The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incident angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incident angles. Thank you to the Princeton Plasma Physics Laboratory and the Department of Energy for the opportunity to work on this project through the Science Undergraduate Laboratory Internships.

  12. Impact of high power and angle of incidence on prism corrections for visual field loss.

    PubMed

    Jung, Jae-Hyun; Peli, Eli

    2014-01-17

    Prism distortions and spurious reflections are not usually considered when prescribing prisms to compensate for visual field loss due to homonymous hemianopia. Distortions and reflections in the high power Fresnel prisms used in peripheral prism placement can be considerable, and the simplifying assumption that prism deflection power is independent of angle of incidence into the prisms results in substantial errors. We analyze the effects of high prism power and incidence angle on the field expansion, size of the apical scotomas, and image compression/expansion. We analyze and illustrate the effects of reflections within the Fresnel prisms, primarily due to reflections at the bases, and secondarily due to surface reflections. The strength and location of these effects differs materially depending on whether the serrated prismatic surface is placed toward or away from the eye, and this affects the contribution of the reflections to visual confusion, diplopia, false alarms, and loss of contrast. We conclude with suggestions for controlling and mitigating these effects in clinical practice.

  13. Radar response to vegetation. [soil moisture mapping via microwave backscattering

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1975-01-01

    Active microwave measurements of vegetation backscatter were conducted to determine the utility of radar in mapping soil moisture through vegetation and mapping crop types. Using a truck-mounted boom, spectral response data were obtained for four crop types (corn, milo, soybeans, and alfalfa) over the 4-8 GHz frequency band, at incidence angles of 0 to 70 degrees in 10-degree steps, and for all four linear polarization combinations. Based on a total of 125 data sets covering a wide range of soil moisture, content, system design criteria are proposed for each of the aforementioned objectives. Quantitative soil moisture determination was best achieved at the lower frequency end of the 4-8 GHz band using HH polarized waves in the 5- to 15-degree incidence angle range. A combination of low and high frequency measurements are suggested for classifying crop types. For crop discrimination, a dual-frequency dual-polarization (VV and cross) system operating at incidence angles above 40 degrees is suggested.

  14. Verification studies of Seasat-A satellite scatterometer /SASS/ measurements

    NASA Technical Reports Server (NTRS)

    Halberstam, I.

    1981-01-01

    Two comparisons between Seasat-A satellite scatterometer (SASS) data and surface truth, obtained from the Gulf of Alaska Seasat Experiment and the Joint Air-Sea Interaction program, have been made to determine the behavior of SASS and its algorithms. The performance of SASS was first evaluated irrespective of the algorithms employed to convert the SASS data to geophysical parameters, which was done by separating the backscatter measurements into small bins of incidence and azimuth angles and polarity and regression against wind speed measurements. The algorithms were then tested by comparing their predicted slopes and y intercepts with those derived from the regressions, and by comparing each SASS backscatter measurement with the backscatter derived from the algorithms, and the given wind velocity from the observations. It was shown that SASS was insensitive to winds at high incidence angles for horizontal polarizations. Fairly high correlations were found between backscatter and wind speeds. The algorithms functioned well at mid-ranges of incidence angle and backscattering coefficient.

  15. Incident polarization angle and temperature dependence of polarization and spectral response characteristics in optical fiber couplers.

    PubMed

    Namihira, Y; Kawazawa, T; Wakabayashi, H

    1991-03-20

    The incident polarization angle and temperature dependence of the polarization and spectral response characteristics of three different types of fiber coupler are presented. The couplers are (1) the biconicalfused- twisted-taper single-mode fiber (coupler A), (2) the asymmetric-etched-fused-taper wavelength division multiplex (coupler B), and (3) the biconical-polished polarization maintaining fiber (coupler C), respectively. It is confirmed experimentally that the polarization characteristics of couplers A and B vary greatly with temperature, but those of coupler C are independent of temperature. Also, the wavelength dependence characteristics of the power splitting ratio of couplers B and C have almost no change with temperature. However, the wavelength dependence of coupler A is greatly changed with temperature. Comparing couplers A and B, it is postulated that the sinusoidal variations of the polarization state vs the incident polarization angle are due to the stress birefringence caused by the fiber twisting when the fused fiber coupler is fabricated and packaged.

  16. Quantum transport in new two-dimensional heterostructures: Thin films of topological insulators, phosphorene

    NASA Astrophysics Data System (ADS)

    Majidi, Leyla; Zare, Moslem; Asgari, Reza

    2018-06-01

    The unusual features of the charge and spin transport characteristics are investigated in new two-dimensional heterostructures. Intraband specular Andreev reflection is realized in a topological insulator thin film normal/superconducting junction in the presence of a gate electric field. Perfect specular electron-hole conversion is shown for different excitation energy values in a wide experimentally available range of the electric field and also for all angles of incidence when the excitation energy has a particular value. It is further demonstrated that the transmission probabilities of the incoming electrons from different spin subbands to the monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure have different behavior with the angle of incidence and perfect transmission occurs at defined angles of incidence to the proposed structure with different length of the N region, and different alignments of magnetization vectors. Moreover, the sign change of the spin-current density is demonstrated by tuning the chemical potential and exchange field of the F region.

  17. Impact of high power and angle of incidence on prism corrections for visual field loss

    PubMed Central

    Jung, Jae-Hyun; Peli, Eli

    2014-01-01

    Prism distortions and spurious reflections are not usually considered when prescribing prisms to compensate for visual field loss due to homonymous hemianopia. Distortions and reflections in the high power Fresnel prisms used in peripheral prism placement can be considerable, and the simplifying assumption that prism deflection power is independent of angle of incidence into the prisms results in substantial errors. We analyze the effects of high prism power and incidence angle on the field expansion, size of the apical scotomas, and image compression/expansion. We analyze and illustrate the effects of reflections within the Fresnel prisms, primarily due to reflections at the bases, and secondarily due to surface reflections. The strength and location of these effects differs materially depending on whether the serrated prismatic surface is placed toward or away from the eye, and this affects the contribution of the reflections to visual confusion, diplopia, false alarms, and loss of contrast. We conclude with suggestions for controlling and mitigating these effects in clinical practice. PMID:24497649

  18. High frequency estimation of 2-dimensional cavity scattering

    NASA Astrophysics Data System (ADS)

    Dering, R. S.

    1984-12-01

    This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.

  19. Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Haizi; Tu, Wanli; Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com

    2015-04-07

    We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in amore » higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.« less

  20. Radar scattering functions using Itokawa as ground truth

    NASA Astrophysics Data System (ADS)

    Nolan, M.; Bramson, A.; Magri, C.

    2014-07-01

    Determining shape models from radar and lightcurve data is an inverse problem that involves computing the expected radar image that would result from a given shape and viewing geometry. The original work of Hudson [1] used models of radar scattering derived from observations of the terrestrial planets. Hudson verified his results using a laboratory simulation of delay-Doppler imaging. Here we compare radar data to synthetic data using the Hayabusa-derived shape model of Itokawa [2] to model Arecibo and Goldstone radar images [3,4]. The synthetic images match the observations well (see figure), but sometimes have bright pixels on the leading edge (top) of the data that are not seen in the synthetic images. We model the scattering dependence on incidence angle as a function tabulated every 0.1 degrees of incidence angle. The resulting fit is a good match to a cos^n θ distribution, but with a strong spike near (but not exactly at) zero incidence. We are studying the details of the low-angle scattering.

  1. The effects of impurities and incidence angle on the secondary electron emission of Ni(110)

    NASA Astrophysics Data System (ADS)

    Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce; Gentile, Charles; Feibush, Eliot

    The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incidence angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incidence angles. Thank you to the Princeton Plasma Physics Laboratory (PPPL) and the Department of Energy (DOE) for the opportunity to work on this project through the Science Undergraduate Laboratory Internships (SULI).

  2. Light transfer through windows with external condensation

    NASA Astrophysics Data System (ADS)

    Zhu, Keyong; Li, Shaoling; Pilon, Laurent

    2018-03-01

    This study investigates systematically light transfer through windows supporting cap-shaped droplets on their external face. The presence of such droplets may have negative effects on the conversion efficiency of solar cells, distorts image quality of lenses, or hinders visibility through windows and windshields. Here, the directional-hemispherical transmittance was predicted by the Monte Carlo ray-tracing method. The droplets were monodisperse or polydisperse randomly distributed on the outside face of optically smooth windows. For nonabsorbing droplets, the diameter and size distribution did not have a significant effect on the window directional-hemispherical transmittance. The latter was nearly independent of contact angle for incident angle θi ≤ 30°. However, the directional-hemispherical transmittance decreased monotonously with increasing incident angle and droplet contact angle for contact angle θc ≤ 70° to reach a minimum at a contact angle θc,min beyond which it increased with increasing contact angle before reaching a plateau at large contact angles. This was attributed to total internal reflection at the back window/air and droplet/air interfaces. For absorbing droplets, the normal-hemispherical transmittance decreased significantly with increasing droplet contact angle, mean diameter, polydispersity, and projected surface area coverage due to strong absorption within the droplets. Moreover, the normal-hemispherical transmittance decreased with increasing contact angle for θc< 90° and remained constant and independent of the droplets' absorption index, mean diameter, and contact angle for θc ≥ 90°. Finally, Analytical expressions for the upper and lower bounds of the normal-hemispherical transmittance as a function of droplet contact angle, optical properties, and projected surface area coverage were derived.

  3. Commande de vol non lineaire d'un drone a voilure fixe par la methode du backstepping

    NASA Astrophysics Data System (ADS)

    Finoki, Edouard

    This thesis describes the design of a non-linear controller for a UAV using the backstepping method. It is a fixed-wing UAV, the NexSTAR ARF from HobbicoRTM. The aim is to find the expressions of the aileron, the elevator, and the rudder deflection in order to command the flight path angle, the heading angle and the sideslip angle. Controlling the flight path angle allows a steady, climb or descent flight, controlling the heading cap allows to choose the heading and annul the sideslip angle allows an efficient flight. A good technical control has to ensure the stability of the system and provide optimal performances. Backstepping interlaces the choice of a Lyapunov function with the design of feedback control. This control technique works with the true non-linear model without any approximation. The procedure is to transform intermediate state variables into virtual inputs which will control other state variables. Advantages of this technique are its recursivity, its minimum control effort and its cascaded structure that allows dividing a high order system into several simpler lower order systems. To design this non-linear controller, a non-linear model of the UAV was used. Equations of motion are very accurate, aerodynamic coefficients result from interpolations between several essential variables in flight. The controller has been implemented in Matlab/Simulink and FlightGear.

  4. Detecting seismic anisotropy across the 410 km discontinuity through polarity and amplitude variations of the underside reflections

    NASA Astrophysics Data System (ADS)

    Saki, Morvarid; Thomas, Christine; Merkel, Sebastien; Wookey, James

    2017-04-01

    We investigate the effect of various types of deformation mechanisms on the reflection coefficients of P and S waves underside reflections off the 410 km discontinuity, to find a diagnostic tool to detect the style of deformation at boundary layers. We calculate the reflection coefficient for P and SH underside reflections depending on the variation in velocity perturbations across the 410 km discontinuity for two deformation scenarios, compression and shear for different azimuths and angles of incidence at the interface. The results show that in the case of an anisotropic olivine layer above an isotropic wadsleyite layer, the P wave reflection coefficient amplitudes are only slightly influenced by the joint effect of angle of incidence and the strength of imposed deformation, without any polarity reversal and for all deformation styles. For the SH wave underside reflections a more complicated behaviour is visible: In compressional deformation, a polarity reversal occurs at distances depending on the incidence angle and the intensity of applied deformation without any azimuthal dependency. However, for shear geometry the azimuth to the direction of deformation appears as an important factor which strongly affects the incidence angle at which the polarity reversal of the reflected S wave occurs. These differences in amplitude and polarity patterns of reflection coefficients of different deformation geometries, especially for S wave at shorter distances allow to detect the style of deformation mechanisms at a boundary layer.

  5. Growth of nano-dots on the grazing incidence mirror surface under FEL irradiation: analytic approach to modeling

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, I. V.; Buzmakov, A. V.; Siewert, F.; Tiedtke, K.; Störmer, M.; Samoylova, L.; Sinn, H.

    2017-05-01

    Simple analytic equation is deduced to explain new physical phenomenon detected experimentally: growth of nano-dots (40-55 nm diameter, 8-13 nm height, 9.4 dots/μm2 surface density) on the grazing incidence mirror surface under the three years irradiation by the free electron laser FLASH (5-45 nm wavelength, 3 degrees grazing incidence angle). The growth model is based on the assumption that the growth of nano-dots is caused by polymerization of incoming hydrocarbon molecules under the action of incident photons directly or photoelectrons knocked out from a mirror surface. The key feature of our approach consists in that we take into account the radiation intensity variation nearby a mirror surface in an explicit form, because the polymerization probability is proportional to it. We demonstrate that the simple analytic approach allows to explain all phenomena observed in experiment and to predict new effects. In particular, we show that the nano-dots growth depends crucially on the grazing angle of incoming beam and its intensity: growth of nano-dots is observed in the limited from above and below intervals of the grazing angle and the radiation intensity. Decrease in the grazing angle by 1 degree only (from 3 to 2 degree) may result in a strong suppression of nanodots growth and their total disappearing. Similarly, decrease in the radiation intensity by several times (replacement of free electron laser by synchrotron) results also in disappearing of nano-dots growth.

  6. BAM/DASS: Data Analysis Software for Sub-Microarcsecond Astrometry Device

    NASA Astrophysics Data System (ADS)

    Gardiol, D.; Bonino, D.; Lattanzi, M. G.; Riva, A.; Russo, F.

    2010-12-01

    The INAF - Osservatorio Astronomico di Torino is part of the Data Processing and Analysis Consortium (DPAC) for Gaia, a cornerstone mission of the European Space Agency. Gaia will perform global astrometry by means of two telescopes looking at the sky along two different lines of sight oriented at a fixed angle, also called basic angle. Knowledge of the basic angle fluctuations at the sub-microarcsecond level over periods of the order of the minute is crucial to reach the mission goals. A specific device, the Basic Angle Monitoring, will be dedicated to this purpose. We present here the software system we are developing to analyze the BAM data and recover the basic angle variations. This tool is integrated into the whole DPAC data analysis software.

  7. Challenges and solutions for high performance SWIR lens design

    NASA Astrophysics Data System (ADS)

    Gardner, M. C.; Rogers, P. J.; Wilde, M. F.; Cook, T.; Shipton, A.

    2016-10-01

    Shortwave infrared (SWIR) cameras are becoming increasingly attractive due to the improving size, resolution and decreasing prices of InGaAs focal plane arrays (FPAs). The rapid development of competitively priced HD performance SWIR cameras has not been matched in SWIR imaging lenses with the result that the lens is now more likely to be the limiting factor in imaging quality than the FPA. Adapting existing lens designs from the visible region by re-coating for SWIR will improve total transmission but diminished image quality metrics such as MTF, and in particular large field angle performance such as vignetting, field curvature and distortion are serious consequences. To meet this challenge original SWIR solutions are presented including a wide field of view fixed focal length lens for commercial machine vision (CMV) and a wide angle, small, lightweight defence lens and their relevant design considerations discussed. Issues restricting suitable glass types will be examined. The index and dispersion properties at SWIR wavelengths can differ significantly from their visible values resulting in unusual glass combinations when matching doublet elements. Materials chosen simultaneously allow athermalization of the design as well as containing matched CTEs in the elements of doublets. Recently, thinned backside-illuminated InGaAs devices have made Vis.SWIR cameras viable. The SWIR band is sufficiently close to the visible that the same constituent materials can be used for AR coatings covering both bands. Keeping the lens short and mass low can easily result in high incidence angles which in turn complicates coating design, especially when extended beyond SWIR into the visible band. This paper also explores the potential performance of wideband Vis.SWIR AR coatings.

  8. Observed angles and geodesic light-cone coordinates

    NASA Astrophysics Data System (ADS)

    Mitsou, Ermis; Scaccabarozzi, Fulvio; Fanizza, Giuseppe

    2018-05-01

    We discuss the interpretation of the angles in the geodesic light-cone (GLC) coordinates. In particular, we clarify the way in which these angles can be identified with the observed ones. We show that, although this identification is always possible in principle, one cannot implement it in the usual gauge-fixing way, i.e. through a set of conditions on the GLC metric. Rather, one needs to invoke a tetrad at the observer and a Cartesian-like coordinate system in order to obtain the desired map globally on the observed sky.

  9. Anisotropic imaging performance in indirect x-ray imaging detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badano, Aldo; Kyprianou, Iacovos S.; Sempau, Josep

    We report on the variability in imaging system performance due to oblique x-ray incidence, and the associated transport of quanta (both x rays and optical photons) through the phosphor, in columnar indirect digital detectors. The analysis uses MANTIS, a combined x-ray, electron, and optical Monte Carlo transport code freely available. We describe the main features of the simulation method and provide some validation of the phosphor screen models considered in this work. We report x-ray and electron three-dimensional energy deposition distributions and point-response functions (PRFs), including optical spread in columnar phosphor screens of thickness 100 and 500 {mu}m, for 19,more » 39, 59, and 79 keV monoenergetic x-ray beams incident at 0 deg., 10 deg., and 15 deg. . In addition, we present pulse-height spectra for the same phosphor thickness, x-ray energies, and angles of incidence. Our results suggest that the PRF due to the phosphor blur is highly nonsymmetrical, and that the resolution properties of a columnar screen in a tomographic, or tomosynthetic imaging system varies significantly with the angle of x-ray incidence. Moreover, we find that the noise due to the variability in the number of light photons detected per primary x-ray interaction, summarized in the information or Swank factor, is somewhat independent of thickness and incidence angle of the x-ray beam. Our results also suggest that the anisotropy in the PRF is not less in screens with absorptive backings, while the noise introduced by variations in the gain and optical transport is larger. Predictions from MANTIS, after additional validation, can provide the needed understanding of the extent of such variations, and eventually, lead to the incorporation of the changes in imaging performance with incidence angle into the reconstruction algorithms for volumetric x-ray imaging systems.« less

  10. Klein tunneling in the α -T3 model

    NASA Astrophysics Data System (ADS)

    Illes, E.; Nicol, E. J.

    2017-06-01

    We investigate Klein tunneling for the α -T3 model, which interpolates between graphene and the dice lattice via parameter α . We study transmission across two types of electrostatic interfaces: sharp potential steps and sharp potential barriers. We find both interfaces to be perfectly transparent for normal incidence for the full range of the parameter α for both interfaces. For other angles of incidence, we find that transmission is enhanced with increasing α . For the dice lattice, we find perfect, all-angle transmission across a potential step for incoming electrons with energy equal to half of the height of the potential step. This is analogous to the "super", all-angle transmission reported for the dice lattice for Klein tunneling across a potential barrier.

  11. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    PubMed

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  12. On Sound Reflection in Superfluid

    NASA Astrophysics Data System (ADS)

    Melnikovsky, L. A.

    2008-02-01

    We consider reflection of first and second sound waves by a rigid flat wall in superfluid. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence.

  13. Improved Time-Lapsed Angular Scattering Microscopy of Single Cells

    NASA Astrophysics Data System (ADS)

    Cannaday, Ashley E.

    By measuring angular scattering patterns from biological samples and fitting them with a Mie theory model, one can estimate the organelle size distribution within many cells. Quantitative organelle sizing of ensembles of cells using this method has been well established. Our goal is to develop the methodology to extend this approach to the single cell level, measuring the angular scattering at multiple time points and estimating the non-nuclear organelle size distribution parameters. The diameters of individual organelle-size beads were successfully extracted using scattering measurements with a minimum deflection angle of 20 degrees. However, the accuracy of size estimates can be limited by the angular range detected. In particular, simulations by our group suggest that, for cell organelle populations with a broader size distribution, the accuracy of size prediction improves substantially if the minimum angle of detection angle is 15 degrees or less. The system was therefore modified to collect scattering angles down to 10 degrees. To confirm experimentally that size predictions will become more stable when lower scattering angles are detected, initial validations were performed on individual polystyrene beads ranging in diameter from 1 to 5 microns. We found that the lower minimum angle enabled the width of this delta-function size distribution to be predicted more accurately. Scattering patterns were then acquired and analyzed from single mouse squamous cell carcinoma cells at multiple time points. The scattering patterns exhibit angular dependencies that look unlike those of any single sphere size, but are well-fit by a broad distribution of sizes, as expected. To determine the fluctuation level in the estimated size distribution due to measurement imperfections alone, formaldehyde-fixed cells were measured. Subsequent measurements on live (non-fixed) cells revealed an order of magnitude greater fluctuation in the estimated sizes compared to fixed cells. With our improved and better-understood approach to single cell angular scattering, we are now capable of reliably detecting changes in organelle size predictions due to biological causes above our measurement error of 20 nm, which enables us to apply our system to future studies of the investigation of various single cell biological processes.

  14. Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal

    NASA Astrophysics Data System (ADS)

    Yue, Chenxi; Tan, Wei; Liu, Jianjun

    2018-05-01

    In this paper, the photonic band gap (PBG) properties of one-dimensional (1D) Thue-Morse photonic quasicrystal (PQC) S4 structure are theoretically investigated by using transfer matrix method in Bragg condition. The effects of the center wavelength, relative permittivity and incident angle on PBG properties are elaborately analyzed. Numerical results reveal that, in the case of normal incidence, the symmetry and periodicity properties of the photonic band structure are presented. As the center wavelength increases, the PBG center frequency and PBG width decrease while the photonic band structure is always symmetrical about the central frequency and the photonic band structure repeats periodically in the expanding observation frequency range. With the decrease of relative permittivity contrast, the PBG width and the relative PBG width gradually decreases until PBG disappears while the symmetry of the photonic band structure always exists. In the case of oblique incidence, as the incident angle increases, multiple narrow PBGs gradually merge into a wide PBG for the TE mode while for the TM mode, the number of PBG continuously decreases and eventually disappears, i.e., multiple narrow PBGs become a wide passband for the TM mode. The research results will provide a reference for the choice of the material, the incident angle for the PBG properties and its applications of 1D Thue-Morse PQC.

  15. Sporotrichosis among children of a hyperendemic area in Peru: an 8-year retrospective study.

    PubMed

    Ramírez Soto, Max C

    2017-08-01

    The clinical and epidemiologic characteristics of pediatric sporotrichosis are poorly understood. To describe the incidence and clinical characteristics of cases of sporotrichosis in children 14 years of age and younger reported in Abancay from 2004 to 2011, stratified according to age. We performed a retrospective review of pediatric patients 14 years of age and younger who were diagnosed with sporotrichosis in a referral center at Abancay, a poor area located in the south central highlands of Peru, to estimate the incidence rates (per 100,000 person-years) according to age and sporotrichosis type (lymphocutaneous and fixed), and clinical characteristics of these patients. Of the 240 pediatric cases identified, 131 (54.6%) were male. The median age at baseline was 6 years. The mean incidence rate was 81.4 cases per 100,000 person-years for the period from 2004 to 2011, and was highest among children ranging in age from 5-9 years. The incidence of lymphocutaneous sporotrichosis and fixed sporotrichosis was 55 and 27 cases per 100,000 person-years, respectively, and the face was the most commonly affected anatomic site. Ninety-six of the 240 patients (40%) reported previous contact with cats, and 46 (19.2%) had a clear history of traumatic inoculation with plant material. The therapeutic response to treatment with potassium iodide was satisfactory. In this retrospective study, we described a high incidence of sporotrichosis in children in the south central highlands of Peru, which increased with age. Lymphocutaneous sporotrichosis was the more common type with an incidence rate twice that of the fixed type. The face was the most commonly affected anatomic site, and infection appeared to be acquired predominantly through contact with cats. © 2017 The International Society of Dermatology.

  16. Correction Capability in the 3 Anatomic Planes of Different Pedicle Screw Designs in Scoliosis Instrumentation.

    PubMed

    Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy

    2017-05-01

    Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of the screw designs.

  17. Mars Express Bistatic Radar Explores Stealth

    NASA Astrophysics Data System (ADS)

    Simpson, Richard A.; Tyler, G. L.; Nolan, M. C.; Pätzold, M.; Häusler, B.

    2006-09-01

    `Stealth' is an area of approximately 2000 x 500 km (E-W by N-S), straddling Mars' equator west of Tharsis and originally mapped at λ=3.5 cm by Muhleman et al. (Science, 253, 1508-1513, 1991). The name 'Stealth' was given because of its low radar backscatter cross section in the 1991 observations. Using transmissions from Mars Express and reception at 70-m antennas of the NASA Deep Space Network (DSN), we have obtained five 'spot' measurements of oblique-incidence forward scattering from Stealth at fixed incidence angles 32°

  18. A Sensitivity Study of the Impact of Installation Parameters and System Configuration on the Performance of Bifacial PV Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, William F; Deline, Christopher A; Asgharzadeh, Amir

    In this paper, we present the effect of installation parameters (tilt angle, height above ground, and albedo) on the bifacial gain and energy yield of three south-facing photovoltaic (PV) system configurations: a single module, a row of five modules, and five rows of five modules utilizing RADIANCE-based ray tracing model. We show that height and albedo have a direct impact on the performance of bifacial systems. However, the impact of the tilt angle is more complicated. Seasonal optimum tilt angles are dependent on parameters such as height, albedo, size of the system, weather conditions, and time of the year. Formore » a single bifacial module installed in Albuquerque, NM, USA (35 degrees N) with a reasonable clearance (~1 m) from the ground, the seasonal optimum tilt angle is lowest (~5 degrees) for the summer solstice and highest (~65 degrees) for the winter solstice. For larger systems, seasonal optimum tilt angles are usually higher and can be up to 20 degrees greater than that for a single module system. Annual simulations also indicate that for larger fixed-tilt systems installed on a highly reflective ground (such as snow or a white roofing material with an albedo of ~81%), the optimum tilt angle is higher than the optimum angle of the smaller size systems. We also show that modules in larger scale systems generate lower energy due to horizon blocking and large shadowing area cast by the modules on the ground. For albedo of 21%, the center module in a large array generates up to 7% less energy than a single bifacial module. To validate our model, we utilize measured data from Sandia National Laboratories' fixed-tilt bifacial PV testbed and compare it with our simulations.« less

  19. Depth-encoded dual beam phase-resolved Doppler OCT for Doppler-angle-independent flow velocity measurement

    NASA Astrophysics Data System (ADS)

    Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua

    2017-02-01

    Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.

  20. Angle-resolved spectral Fabry-Pérot interferometer for single-shot measurement of refractive index dispersion over a broadband spectrum

    NASA Astrophysics Data System (ADS)

    Dong, J. T.; Ji, F.; Xia, H. J.; Liu, Z. J.; Zhang, T. D.; Yang, L.

    2018-01-01

    An angle-resolved spectral Fabry-Pérot interferometer is reported for fast and accurate measurement of the refractive index dispersion of optical materials with parallel plate shape. The light sheet from the wavelength tunable laser is incident on the parallel plate with converging angles. The transmitted interference light for each angle is dispersed and captured by a 2D sensor, in which the rows and the columns are used to simultaneously record the intensities as a function of wavelength and incident angle, respectively. The interferogram, named angle-resolved spectral intensity distribution, is analyzed by fitting the phase information instead of finding the fringe peak locations that present periodic ambiguity. The refractive index dispersion and the physical thickness can be then retrieved from a single-shot interferogram within 18 s. Experimental results of an optical substrate standard indicate that the accuracy of the refractive index dispersion is less than 2.5  ×  10-5 and the relative uncertainty of the thickness is 6  ×  10-5 mm (3σ) due to the high stability and the single-shot measurement of the proposed system.

  1. Konstantinov effect in helium II

    NASA Astrophysics Data System (ADS)

    Melnikovsky, L. A.

    2008-04-01

    The reflection of first and second sound waves by a rigid flat wall in helium II is considered. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at oblique incidence.

  2. Plate Wave Resonance with Air-Coupled Ultrasonics

    NASA Astrophysics Data System (ADS)

    Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.

    2010-02-01

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (θmax) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (θmax) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at θmax.

  3. Microwave Absorption Properties of Co@C Nanofiber Composite for Normal and Oblique Incidence

    NASA Astrophysics Data System (ADS)

    Zhang, Junming; Wang, Peng; Chen, Yuanwei; Wang, Guowu; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-05-01

    Co@C nanofibers have been prepared by an electrospinning technique. Uniform morphology of the nanofibers and good dispersion of the magnetic cobalt nanoparticles in the carbon fiber frame were confirmed by field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The electromagnetic parameters of a composite absorber composed of Co@C nanofibers/paraffin were measured from 2 GHz to 15 GHz. The electromagnetic wave absorption properties were simulated and investigated in the case of normal and oblique incidence. In the normal case, the absorber achieved absorption performance of - 40 dB at 7.1 GHz. When the angle of incidence was increased to 60°, the absorption effect with reflection loss (RL) exceeding - 10 dB could still be obtained. These results demonstrate that the reported Co@C nanofiber absorber exhibits excellent absorption performance over a wide range of angle of incidence.

  4. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    PubMed Central

    Kehres, Jan; Pedersen, Thomas; Masini, Federico; Andreasen, Jens Wenzel; Nielsen, Martin Meedom; Diaz, Ana; Nielsen, Jane Hvolbæk; Hansen, Ole

    2016-01-01

    The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles. PMID:26917133

  5. Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojun; Yang, Helin; Shen, Zhaoyang; Chen, Jiao; Lin, Hail; Yu, Zetai

    2017-09-01

    We present a water-injected all-dielectric metamaterial that can offer an extremely wide bandwidth of electromagnetic absorption and prominent wide incident angle range. Different from conventional metal-dielectric based metamaterial absorbers, the absorption mechanism of the proposed all-dielectric metamaterial absorber is to take advantage of the dispersion of water, rather than electric or/and magnetic resonance, which thoroughly overcomes the defects of narrow bandwidth and oblique incidence from metal-dielectric based metamaterial absorber. The simulated absorption was over 90% in 8.1-22.9 GHz with the relative bandwidth of 95.5% when the incident angle reaches 60°, and the corresponding microwave experiment is performed to support the simulations. The obtained excellent absorption performance reveals a possible application of the proposed absorber, which can be exploited for electromagnetic stealth purposes, especially for electromagnetic stealth of sea targets.

  6. Four-parameter model for polarization-resolved rough-surface BRDF.

    PubMed

    Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D

    2011-01-17

    A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.

  7. Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wang, Zhengping; Shi, Jinhui

    2014-10-01

    A high-Q Fano resonance and giant extrinsic chirality have been demonstrated in an ultrathin Babinet-inverted metasurface composed of asymmetrical split ring apertures (ASRAs) perforated through a metal plate based on the full-wave simulations. The performance of the Fano resonance at normal incidence strongly depends on the asymmetry of the ASRA. The quality factor is larger than 1000 and the local field enhancement is an order of 104. For oblique incidence, giant extrinsic chirality can be achieved in the Babinet-inverted metasurface. It reveals a cross-polarization transmission band with a ripple-free peak and also a spectrum split for large angles of incidence. The electromagnetic response of the metasurface can be easily tuned via angles of incidence and asymmetry. The proposed ASRA metasurface is of importance to develop many metamaterial-based devices, such as filters and circular polarizers.

  8. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  9. Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  10. Grazing incidence reflection coefficients of rhodium, osmium, platinum, and gold from 50 to 300 A

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.; Edelstein, J.; Flint, S. A.

    1985-01-01

    Reflectance measurements were made of several metals illuminated from various angles with light at 14 wavelengths in the interval 46.5-283 A. The metals, Rh, Os, Pt and Au were deposited as 125 A films on a binding substrate through electron beam epitaxy. Measurements were made with a grazing incidence monochromator and a reflectometer. The data generally showed lowered reflectance with increasing angles of illumination and shorter wavelengths. The reflectance peak, however, was located at wavelengths of 100-160 A, particularly at large grazing incidences. The wavelengths correspond with the 5p to epsilon-d transition in all of the elements. Rh displayed the highest overall reflectance, and both Rh and Os were more efficient than Au or Pt.

  11. An invisible medium for circularly polarized electromagnetic waves.

    PubMed

    Tamayama, Y; Nakanishi, T; Sugiyama, K; Kitano, M

    2008-12-08

    We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect. (c) 2008 Optical Society of America

  12. Image synthesis for SAR system, calibration and processor design

    NASA Technical Reports Server (NTRS)

    Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.

    1978-01-01

    The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.

  13. Anomalous electron collimation in HgTe quantum wells with inverted band structure.

    PubMed

    Zou, Y L; Zhang, L B; Song, J T

    2013-02-20

    We investigate the electron collimation behavior in HgTe quantum wells (QWs) with a magnetic-electric barrier induced by a ferromagnetic metal stripe. We find that electrons can transmit perfectly through the magnetic-electric barrier at some specific incidence angles. These angles can be controlled by the tuning gate voltage, local magnetic field and Fermi energy of incident electrons in QWs with appropriate barrier length. This collimation feature can be used to construct momentum filters in HgTe QWs and has potential application in nanodevices.

  14. Incident angle dependence of proton response of CR-39 (TS-16) track detector

    NASA Technical Reports Server (NTRS)

    Oda, K.; Csige, I.; Yamauchi, T.; Miyake, H.; Benton, E. V.

    1993-01-01

    The proton response of the TS-16 type of CR-39 plastic nuclear track detector has been studied with accelerated and fast neutron induced protons in vacuum and in air. The diameters of etched tracks were measured as a function of etching time and the etch rate ratio and the etch induction layer were determined from the growth curve of the diameter using a variable etch rate ratio model. In the case of the accelerated protons in vacuum an anomalous incident angle dependence of the response is observed.

  15. Quasi-cylindrical theory of wing-body interference at supersonic speeds and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N

    1955-01-01

    A theoretical method is presented for calculating the flow field about wing-body combinations employing bodies deviating only slightly in shape from a circular cylinder. The method is applied to the calculation of the pressure field acting between a circular cylindrical body and a rectangular wing. The case of zero body angle of attack and variable wing incidence is considered as well as the case of zero wing incidence and variable body angle of attack. An experiment was performed especially for the purpose of checking the calculative examples.

  16. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  17. Design of a polarization-independent, wide-angle, broadband visible absorber

    NASA Astrophysics Data System (ADS)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    Many optical systems benefit from elements that can absorb a broad range of wavelengths over a wide range of angles, independent of polarization. In this paper, we present a polarization-independent, wide-angle, broadband absorber in the visible regime that exploits strong symmetric and asymmetric resonance modes of electromagnetic dipoles. It makes use of a bilayer cross-pattern structure which is simple, having five layers that include two stacks of metal ribbon in cross-patterns, two dielectric spacers and a metal reflecting layer. Simulations show that the design exhibits a significantly enhanced absorption property when compared to a device with a bilayer metal film structure or any other complex structure of cross-patterns that have no intersection angle. The maximum absorption efficiency of the device is 100% at resonances, and its absorption characteristics can be maintained over a wide range of angles of incidence - up to ± 60° - regardless of the incident polarization. This strategy can, in principle, be applied to other material systems and could be useful in diverse applications, including thermal emitters, photovoltaics and photodetectors.

  18. Evaluation of mandibular angle ostectomy using three-dimensional finite element analysis.

    PubMed

    Song, Jian; Zhu, Songsong; Luo, En; Hu, Jing; Feng, Ge

    2014-07-01

    This study was designed to investigate the stress and the displacement distributions of the mandible after mandibular angle ostectomy (MAO) by means of three-dimensional finite element analysis. On the basis of a female patient with a prominent angle of the mandible, the finite element models were generated by helical computed tomography and related software and were analyzed under muscle forces and 3 kinds of biting conditions, including intercuspal position (ICP), incisal clenching (INC), and right unilateral molar clenching (RMOL). The mandibular stress and displacement distributions were analyzed by Abaqus software. In the model of MAO, the increased stress and the decreased displacement was found in ICP, INC, and RMOL at the area of mandibular angle. The stress and the displacement increased in ICP and RMOL, whereas the others remained unchanged in INC at the area of mandibular condylar neck. The results of this study have shown that MAO could alter biomechanical characteristics in the operated mandible, which suggested that a greater hit on face may lead to a higher incidence rate of condyle fracture and a lower incidence rate of angle fracture after MAO.

  19. Morphology and crystallinity of ZnS nanocolumns prepared by glancing angle deposition.

    PubMed

    Lu, Lifang; Zhang, Fujun; Xu, Zheng; Zhao, Suling; Wang, Yongsheng

    2010-03-01

    ZnS films with different morphologies and nanometer structures were fabricated via high vacuum electron beam deposition by changing the oblique angle alpha between the incoming particle flux and the substrate normal. The morphology and crystallinity of ZnS nanocrystalline films prepared on the substrates at alpha = 0 degrees and 80 degrees were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction. These experimental results show that the ZnS nanocolumn structure was formed at the situation of alpha = 80 degrees. The incidence angle also strongly influenced the crystallinity of thin films. The most intensive diffraction peaks changed from (220) to (111) when the incidence angle was set to 0 degrees and 80 degrees. The dynamic growth process of ZnS films at alpha = 0 degrees and 80 degrees has been analyzed by shadow effect and atomic surface diffusion. The transmittance spectra of the ZnS thin films prepared at different oblique angles were measured, and the transmissivity of ZnS nanocolumn thin films was enhanced compared with ZnS thin films prepared by normal deposition in the visible light range.

  20. Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition.

    PubMed

    Leem, Jung Woo; Yu, Jae Su

    2012-08-27

    We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 μm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 μm at incident light angles (θ inc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λ c) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θ inc of 70°, the ∆λ/λ c was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.

  1. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  2. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    PubMed

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  3. Tables for Supersonic Flow Around Right Circular Cones at Small Angle of Attack

    NASA Technical Reports Server (NTRS)

    Sims, Joseph L.

    1964-01-01

    The solution of supersonic flow fields by the method of characteristics requires that starting conditions be known. Ferri, in reference 1, developed a method-of-characteristics solution for axially symmetric bodies of revolution at small angles of attack. With computing machinery that is now available, this has become a feasible method for computing the aerodynamic characteristics of bodies near zero angle of attack. For sharp-nosed bodies of revolution, the required starting line may be obtained by computing the flow field about a cone at a small angle of attack. This calculation is readily performed using Stone's theory in reference 2. Some solutions of this theory are available in reference 3. However, the manner in which these results are presented, namely in a wind-fixed coordinate system, makes their use somewhat cumbersome. Additionally, as pointed out in reference 4, the flow component perpendicular to the meridian planes was computed incorrectly. The results contained herein have been computed in the same basic manner as those of reference 3 with the correct velocity normal to the meridian planes. Also, all results have been transferred into the body-fixed coordinate system. Therefore, the values tabulated herein may be used, in conjunction with the respective zero-angle-of-attack results of reference 5, as starting conditions for the method-of-characteristics solution of the flow field about axially symmetric bodies of revolution at small angles of attack. As in the zero-angle-of-attack case (ref. 5) the present results have been computed using the ideal gas value of 1.4 for the ratio of the specific heats of air. Solutions are given for cone angles from 2.5 deg to 30 deg in increments of 2.5 deg. For each cone angle, results were computed for a constant series of free-stream Mach numbers from 1.5 to 20. In addition, a solution was computed which yielded the minimum free-stream Mach number for a completely supersonic conical flow field. For cone angles of 27.5 deg and 30 deg, this minimum free-stream Mach number was above 1.5. Consequently, solutions at this Mach number were not computed for these two cone angles.

  4. The effect of polarized light on the organization of collagen secreted by fibroblasts.

    PubMed

    Akilbekova, Dana; Boddupalli, Anuraag; Bratlie, Kaitlin M

    2018-04-01

    Recent studies have demonstrated the beneficial effect of low-power lasers and polarized light on wound healing, inflammation, and the treatment of rheumatologic and neurologic disorders. The overall effect of laser irradiation treatment is still controversial due to the lack of studies on the biochemical mechanisms and the optimal parameters for the incident light that should be chosen for particular applications. Here, we study how NIH/3T3 fibroblasts respond to irradiation with linearly polarized light at different polarization angles. In particular, we examined vascular endothelial growth factor (VEGF) secretion, differentiation to myofibroblasts, and collagen organization in response to 800 nm polarized light at 0°, 45°, 90°, and 135° with a power density of 40 mW/cm 2 for 6 min every day for 6 days. Additional experiments were conducted in which the polarization angle of the incident was changed every day to induce an isotropic distribution of collagen. The data presented here shows that polarized light can upregulate VEGF production, myofibroblast differentiation, and induce different collagen organization in response to different polarization angles of the incident beam. These results are encouraging and demonstrate possible methods for controlling cell response through the polarization angle of the laser light, which has potential for the treatment of wounds.

  5. Properties of seismic absorption induced reflections

    NASA Astrophysics Data System (ADS)

    Zhao, Haixia; Gao, Jinghuai; Peng, Jigen

    2018-05-01

    Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.

  6. Optical and structural properties of cadmium telluride films grown by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Ehsani, M. H.; Rezagholipour Dizaji, H.; Azizi, S.; Ghavami Mirmahalle, S. F.; Siyanaki, F. Hosseini

    2013-08-01

    Cadmium telluride films were grown by the glancing angle deposition (GLAD) technique. The samples were prepared under different incident deposition flux angles (α = 0°, 20° and 70° measured from the normal to the substrate surface). During deposition, the substrate temperature was maintained at room temperature. The structural study was performed using an x-ray diffraction diffractometer. The samples were found to be poly-crystalline with cubic structure for those deposited at α = 0° and 20° and hexagonal structure for the one deposited at 70°. The images of samples obtained by the field emission scanning electron microscopy technique showed that the GLAD method could produce a columnar layer tilted toward the incident deposition flux. The optical properties study by the UV-Vis spectroscopy technique showed that the use of this growth technique affected the optical properties of the films. A higher absorption coefficient in the visible and near-IR spectral range was observed for the sample deposited at α = 70°. This is an important result from the photovoltaic applications point of view where absorber materials with large absorption coefficients are needed. Also, it seems that the sample with a high incident deposition flux angle has the capability of making an n-CdTe/p-CdTe homo-junction.

  7. Intralaryngeal thyroarytaenoid lateralisation using the Fast-Fix 360 system: a canine cadaveric study.

    PubMed

    Stegen, Ludo; Kitshoff, Adriaan M; Van Goethem, Bart; Vandekerckhove, Peter; de Rooster, Hilde

    2015-01-01

    Laryngeal paralysis is a condition in which failure of arytaenoid abduction results in a reduced rima glottidis cross-sectional area. The most commonly performed surgical techniques rely on unilateral abduction of the arytaenoid, requiring a lateral or ventral surgical approach to the larynx. The aim of the study was to investigate a novel minimally invasive intralaryngeal thyroarytaenoid lateralisation technique, using the Fast-Fix 360 meniscal repair system. Larynges were harvested from large breed canine cadavers. With the aid of Kirschner wires placed between the centre of the vocal process and the centre of an imaginary line between the cranial thyroid fissure and the cricothyroid articulation, the mean insertion angle was calculated. The Fast-Fix 360 delivery needle inserted intralaryngeally (n=10), according to a simplified insertion angle (70°), resulted in thyroid penetration (>2.5 mm from margin) in all patients. The Fast-Fix was applied unilaterally at 70° with the first toggle fired on the lateral aspect of the thyroid cartilage and inside the laryngeal cavity on retraction. The suture was tightened. Preprocedural (61.06±9.21 mm2) and postprocedural (138.37±26.12 mm2) rima glottidis cross-sectional area was significantly different (P<0.0001). The mean percentage increase in rima glottidis cross-sectional area was 125.96 per cent (±16.54 per cent). Intralaryngeal thyroarytaenoid laterlisation using the Fast-Fix 360 meniscal repair system ex vivo increased the rima glottidis cross-sectional area significantly.

  8. Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods.

    PubMed

    Sarmah, Nabin; Richards, Bryce S; Mallick, Tapas K

    2011-07-01

    We present a detailed design concept and optical performance evaluation of stationary dielectric asymmetric compound parabolic concentrators (DiACPCs) using ray-tracing methods. Three DiACPC designs, DiACPC-55, DiACPC-66, and DiACPC-77, of acceptance half-angles (0° and 55°), (0° and 66°), and (0° and 77°), respectively, are designed in order to optimize the concentrator for building façade photovoltaic applications in northern latitudes (>55 °N). The dielectric concentrator profiles have been realized via truncation of the complete compound parabolic concentrator profiles to achieve a geometric concentration ratio of 2.82. Ray-tracing simulation results show that all rays entering the designed concentrators within the acceptance half-angle range can be collected without escaping from the parabolic sides and aperture. The maximum optical efficiency of the designed concentrators is found to be 83%, which tends to decrease with the increase in incidence angle. The intensity is found to be distributed at the receiver (solar cell) area in an inhomogeneous pattern for a wide range of incident angles of direct solar irradiance with high-intensity peaks at certain points of the receiver. However, peaks become more intense for the irradiation incident close to the extreme acceptance angles, shifting the peaks to the edge of the receiver. Energy flux distribution at the receiver for diffuse radiation is found to be homogeneous within ±12% with an average intensity of 520 W/m².

  9. Periodic grain-boundary formation in a poly-Si thin film crystallized by linearly polarized Nd:YAG pulse laser with an oblique incident angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaki, Hirokazu; Horita, Susumu

    2005-01-01

    We investigated the periodic grain-boundary formation in the polycrystalline silicon film crystallized by a linearly polarized Nd:YAG (where YAG is yttrium aluminum garnet) pulse laser with an oblique incident angle {theta}{sub i}=25 deg. , compared with the normal incident angle {theta}{sub i}=0. The alignment of the grain boundary was uncontrollable and fluctuated in the case of the oblique incident and large irradiation pulse number while that in the case of the normal incident was performed stably. It was found that the main cause for its low controllability was the nonphase matching between the periodic surface corrugation of the crystallized siliconmore » film and the periodic temperature profile induced by the laser irradiation. Also, it was found that, in the case of {theta}{sub i}=25 deg. , the dominant periodic width of the grain boundary depended on the pulse number N. That is, it was around {lambda}/(1+sin {theta}{sub i}) for small N{approx_equal}10 and {lambda}/(1-sin {theta}{sub i}) for large N{approx_equal}100 at the laser wavelength of {lambda}=532 nm. In order to explain this dependence, we proposed a model to take into account the periodic corrugation height proportional to the molten volume of the silicon film, the impediment in interference between the incident beam and diffracted beam on the irradiated surface due to the corrugation height, and the reduction of the liquid surface roughness during melting-crystallization process due to liquid-silicon viscosity.« less

  10. Compensation for Phase Anisotropy of a Metal Reflector

    NASA Technical Reports Server (NTRS)

    Hong, John

    2007-01-01

    A method of compensation for the polarization- dependent phase anisotropy of a metal reflector has been proposed. The essence of the method is to coat the reflector with multiple thin alternating layers of two dielectrics that have different indices of refraction, so as to introduce an opposing polarization-dependent phase anisotropy. The anisotropy in question is a phenomenon that occurs in reflection of light at other than normal incidence: For a given plane wave having components polarized parallel (p) and perpendicular (s) to the plane of incidence, the phase of s-polarized reflected light differs from the phase p-polarized light by an amount that depends on the angle of incidence and the complex index of refraction of the metal. The magnitude of the phase difference is zero at zero angle of incidence (normal incidence) and increases with the angle of incidence. This anisotropy is analogous to a phase anisotropy that occurs in propagation of light through a uniaxial dielectric crystal. In such a case, another uniaxial crystal that has the same orientation but opposite birefringence can be used to cancel the phase anisotropy. Although it would be difficult to prepare a birefringent material in a form suitable for application to the curved surface of a typical metal reflector in an optical instrument, it should be possible to effect the desired cancellation of phase anisotropy by exploiting the form birefringence of multiple thin dielectric layers. (The term "form birefringence" can be defined loosely as birefringence arising, in part, from a regular array of alternating subwavelength regions having different indices of refraction.)

  11. Characterizing dielectric tensors of anisotropic materials from a single measurement

    NASA Astrophysics Data System (ADS)

    Smith, Paula Kay

    Ellipsometry techniques look at changes in polarization states to measure optical properties of thin film materials. A beam reflected from a substrate measures the real and imaginary parts of the index of the material represented as n and k, respectively. Measuring the substrate at several angles gives additional information that can be used to measure multilayer thin film stacks. However, the outstanding problem in standard ellipsometry is that it uses a limited number of incident polarization states (s and p). This limits the technique to isotropic materials. The technique discussed in this paper extends the standard process to measure anisotropic materials by using a larger set of incident polarization states. By using a polarimeter to generate several incident polarization states and measure the polarization properties of the sample, ellipsometry can be performed on biaxial materials. Use of an optimization algorithm in conjunction with biaxial ellipsometry can more accurately determine the dielectric tensor of individual layers in multilayer structures. Biaxial ellipsometry is a technique that measures the dielectric tensors of a biaxial substrate, single-layer thin film, or multi-layer structure. The dielectric tensor of a biaxial material consists of the real and imaginary parts of the three orthogonal principal indices (n x + ikx, ny +iky and nz + i kz) as well as three Euler angles (alpha, beta and gamma) to describe its orientation. The method utilized in this work measures an angle-of-incidence Mueller matrix from a Mueller matrix imaging polarimeter equipped with a pair of microscope objectives that have low polarization properties. To accurately determine the dielectric tensors for multilayer samples, the angle-of-incidence Mueller matrix images are collected for multiple wavelengths. This is done in either a transmission mode or a reflection mode, each incorporates an appropriate dispersion model. Given approximate a priori knowledge of the dielectric tensor and film thickness, a Jones reflectivity matrix is calculated by solving Maxwell's equations at each surface. Converting the Jones matrix into a Mueller matrix provides a starting point for optimization. An optimization algorithm then finds the best fit dielectric tensor based on the measured angle-of-incidence Mueller matrix image. This process can be applied to polarizing materials, birefringent crystals and the multilayer structures of liquid crystal displays. In particular, the need for such accuracy in liquid crystal displays is growing as their applications in industry evolve.

  12. Efficacy and tolerability of fixed-combination bimatoprost/timolol versus fixed-combination dorzolamide/brimonidine/timolol in patients with primary open-angle glaucoma or ocular hypertension: a multicenter, prospective, crossover study.

    PubMed

    García-López, Alfonso; Paczka, José A; Jiménez-Román, Jesús; Hartleben, Curt

    2014-12-19

    Fixed-combination ocular hypotensives have multiple advantages, but triple-therapy dorzolamide/brimonidine/timolol (dorz/brim/tim) is only available in Latin and South America, and information on its relative efficacy is limited. This study compares the efficacy and tolerability of fixed-combination bimatoprost/timolol (bim/tim) and dorz/brim/tim in Mexican patients with primary open-angle glaucoma or ocular hypertension. In this investigator-masked, crossover study, patients with unmet target intraocular pressure (IOP) on once-daily bim/tim or twice-daily dorz/brim/tim received the opposite medication for 3 months before returning to their pre-baseline medication for 3 months. IOP was evaluated before and after morning instillation at months 2, 3, 5 and 6. Primary endpoints were mean IOP change and Ocular Surface Disease Index© (OSDI) score at each visit. The intent-to-treat population was the a priori analysis population, but due to the number of discontinuations, the per-protocol and intent-to-treat populations were used for the primary efficacy and sensitivity analyses, respectively. Seventy-eight and 56 patients were included in the intent-to-treat and per-protocol populations, respectively. At month 3, statistically significant IOP reductions from baseline were observed in the bim/tim (P < 0.01) and dorz/brim/tim (P < 0.0001) groups, regardless of assessment time. At month 6, patients returned to bim/tim exhibited no significant IOP increase (regardless of assessment time), but patients returned to dorz/brim/tim exhibited a statistically significant IOP increase (P < 0.001) when assessed before instillation of study treatment. Results were similar in both intent-to-treat and per-protocol analysis populations. In the per-protocol analysis, 70% of patients on bim/tim at month 3 had an IOP <14 mm Hg, which declined to 58% (P = 0.0061) at month 6 (ie, after 3 months of dorz/brim/tim treatment). In patients receiving dorz/brim/tim at month 3, 38% had an IOP <14 mm Hg, which remained comparable after return to bim/tim. OSDI scores and incidence of adverse events were similar in both groups. In this first direct comparison of the efficacy of dorz/brim/tim and bim/tim, patients switched from dorz/brim/tim to bim/tim demonstrated improved/lower IOP; when returned to dorz/brim/tim, IOP increased to levels seen at study initiation, suggesting that once-daily bim/tim may have greater IOP-lowering efficacy. Both bim/tim and dorz/brim/tim were well tolerated with minimal ocular surface damage. ClinicalTrials.gov: NCT01737853 (registered October 9, 2012).

  13. Six-degree-of-freedom multi-axes positioning apparatus

    DOEpatents

    Bieg, L.F.X.

    1999-05-11

    A six-degree-of-freedom multi-axes positioning apparatus is comprised of a geometry of six independent angle connectors. Each angle connector connects two fixed length rods to a pivot on one of two opposing platforms. The combination of an angle connector, at least two pivots and at least two rods having free ends connected to the pivots comprises a leg assembly. The spatial location of the upper platform is changed in relation to the lower platform by angular changes within each angle connector. This angular change results in degrees of motion within the apparatus defined as X, Y, Z, Tip, Tilt, and Rotation, or a combination of the above. This invention is known as a ROTOPOD. 9 figs.

  14. Six-degree-of-freedom multi-axes positioning apparatus

    DOEpatents

    Bieg, Lothar F. X.

    1999-01-01

    A six-degree-of-freedom multi-axes positioning apparatus is comprised of a geometry of six independent angle connectors. Each angle connector connects two fixed length rods to a pivot on one of two opposing platforms. The combination of an angle connector, at least two pivots and at least two rods having free ends connected to the pivots comprises a leg assembly. The spatial location of the upper platform is changed in relation to the lower platform by angular changes within each angle connector. This angular change results in degrees of motion within the apparatus defined as X, Y, Z, Tip, Tilt, and Rotation, or a combination of the above. This invention is known as a ROTOPOD.

  15. 16 CFR Table 2 to Part 1512 - Minimum Candlepower per Incident Foot-Candle for Clear Reflector 1

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Minimum Candlepower per Incident Foot-Candle for Clear Reflector 1 2 Table 2 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... 1512—Minimum Candlepower per Incident Foot-Candle for Clear Reflector 1 Observation angle Front, rear...

  16. A generalized technique for using cones and dihedral angles in attitude determination, revision 1

    NASA Technical Reports Server (NTRS)

    Werking, R. D.

    1973-01-01

    Analytic development is presented for a general least squares attitude determination subroutine applicable to spinning satellites. The method is founded on a geometric approach which is completely divorced from considerations relating to particular types and configurations of onboard attitude sensors. Any mix of sensor measurements which can be first transformed (outside the program) to cone or dihedral angle data can be processed. A cone angle is an angle between the spin axis and a known direction line in space; a dihedral angle is an angle between two planes formed by the spin axis and each of two known direction lines. Many different kinds of sensor data can be transformed to these angles, which in turn constitute the actual program inputs, so that the subroutine can be applied without change to a variety of satellite missions. Either a constant or dynamic spin axis model can be handled. The program is also capable of solving for fixed biases in the input angles, in addition to the spin axis attitude solution.

  17. Evaluation of Scaling Methods for Rotorcraft Icing

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Kreeger, Richard E.

    2010-01-01

    This paper reports result of an experimental study in the NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the current recommended scaling methods developed for fixed-wing unprotected surface icing applications might apply to representative rotor blades at finite angle of attack. Unlike the fixed-wing case, there is no single scaling method that has been systematically developed and evaluated for rotorcraft icing applications. In the present study, scaling was based on the modified Ruff method with scale velocity determined by maintaining constant Weber number. Models were unswept NACA 0012 wing sections. The reference model had a chord of 91.4 cm and scale model had a chord of 35.6 cm. Reference tests were conducted with velocities of 76 and 100 kt (39 and 52 m/s), droplet MVDs of 150 and 195 fun, and with stagnation-point freezing fractions of 0.3 and 0.5 at angle of attack of 0deg and 5deg. It was shown that good ice shape scaling was achieved for NACA 0012 airfoils with angle of attack lip to 5deg.

  18. Linear Stability and Instability Patterns in Ion Bombarded Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Madi, Charbel Said

    2011-12-01

    This thesis is a combined experimental and theoretical study of the fundamental physical mechanisms governing nanoscale surface morphology evolution of Ar + ion bombarded silicon surfaces. I experimentally determined the topographical phase diagram resulting from Ar+ ion irradiation of Si surfaces at room temperature in the linear regime of surface dynamics as we vary the control parameters ion beam energy and incidence angle. At all energies, it is characterized by a diverging wavelength bifurcation from a smooth stable surface to parallel mode ripples (wavevector parallel to the projected ion beam on the surface) as the ion beam incidence angle is varied. At sufficiently high angles theta ≈ 85°, I observed perpendicular mode ripples (wavevector perpendicular to the ion beam). Through real-time Grazing-Incidence Small Angle X-ray Scattering, I have definitively established that ion-induced erosion, which is the consensus predominant cause of pattern formation, is not only of the wrong sign to explain the measured curvature coefficients responsible in driving the surface dynamics, but also is so small in magnitude as to be essentially negligible for pattern formation except possibly at the most grazing angles of incidence where both erosion and redistribution effects converge to zero. That the contribution of ion impact induced prompt atomic redistribution effects entirely overwhelms that of erosion in both the stabilizing and destabilizing regimes is of profound significance, as it overturns the erosion-based paradigm that has dominated the pattern formation field for over two decades. In situ wafer curvature measurements using the Multi-beam Optical Stress Sensor system were performed during amorphization of silicon by normal incidence 250 eV ion irradiation. An average compressive saturation stress built up in the amorphous layer was found to be as large as 1.5 GPa. By assuming the ion-induced amorphization layer to be modeled as a viscoelastic film that is anisotropically stressed by ion beam irradiation, we measure the deformation imparted per ion due to anisotropic deformation to be equal to A =1.15x10-16 cm2/ion. Although compressive stress is being injected into a thin viscoelastic ion-stimulated surface layer, the surface is unconditionally stable to topographic perturbations, corroborating the measured experimental phase diagram.

  19. Parachuting from fixed objects: descriptive study of 106 fatal events in BASE jumping 1981-2006.

    PubMed

    Westman, A; Rosén, M; Berggren, P; Björnstig, U

    2008-06-01

    To analyse the characteristics of fatal incidents in fixed object sport parachuting (building, antenna, span, earth (BASE) jumping) and create a basis for prevention. Descriptive epidemiological study. Data on reported fatal injury events (n = 106) worldwide in 1981-2006 retrieved from the BASE fatality list. Human, equipment and environmental factors. Identification of typical fatal incident and injury mechanisms for each of the four fixed object types of BASE jumping (building, antenna, span, earth). Human factors included parachutist free fall instability (loss of body control before parachute deployment), free fall acrobatics and deployment failure by the parachutist. Equipment factors included pilot chute malfunction and parachute malfunction. In cliff jumping (BASE object type E), parachute opening towards the object jumped was the most frequent equipment factor. Environmental factors included poor visibility, strong or turbulent winds, cold and water. The overall annual fatality risk for all object types during the year 2002 was estimated at about one fatality per 60 participants. Participants in BASE jumping should target risk factors with training and technical interventions. The mechanisms described in this study should be used by rescue units to improve the management of incidents.

  20. Scattering of Light and Surface Plasmon Polaritons from Rough Surfaces

    DTIC Science & Technology

    2013-06-14

    Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering.” Waves...device applications. Thus, the negative refraction of a surface plasmon polariton was studied in two papers. In the first [1], all- angle negative... angle of incidence, measured counterclockwise from the negative x1 axis, is . The surface plasmon polariton of frequency transmitted through the

Top