Sample records for fixed motor pattern

  1. Probabilistic Motor Sequence Yields Greater Offline and Less Online Learning than Fixed Sequence

    PubMed Central

    Du, Yue; Prashad, Shikha; Schoenbrun, Ilana; Clark, Jane E.

    2016-01-01

    It is well acknowledged that motor sequences can be learned quickly through online learning. Subsequently, the initial acquisition of a motor sequence is boosted or consolidated by offline learning. However, little is known whether offline learning can drive the fast learning of motor sequences (i.e., initial sequence learning in the first training session). To examine offline learning in the fast learning stage, we asked four groups of young adults to perform the serial reaction time (SRT) task with either a fixed or probabilistic sequence and with or without preliminary knowledge (PK) of the presence of a sequence. The sequence and PK were manipulated to emphasize either procedural (probabilistic sequence; no preliminary knowledge (NPK)) or declarative (fixed sequence; with PK) memory that were found to either facilitate or inhibit offline learning. In the SRT task, there were six learning blocks with a 2 min break between each consecutive block. Throughout the session, stimuli followed the same fixed or probabilistic pattern except in Block 5, in which stimuli appeared in a random order. We found that PK facilitated the learning of a fixed sequence, but not a probabilistic sequence. In addition to overall learning measured by the mean reaction time (RT), we examined the progressive changes in RT within and between blocks (i.e., online and offline learning, respectively). It was found that the two groups who performed the fixed sequence, regardless of PK, showed greater online learning than the other two groups who performed the probabilistic sequence. The groups who performed the probabilistic sequence, regardless of PK, did not display online learning, as indicated by a decline in performance within the learning blocks. However, they did demonstrate remarkably greater offline improvement in RT, which suggests that they are learning the probabilistic sequence offline. These results suggest that in the SRT task, the fast acquisition of a motor sequence is driven by concurrent online and offline learning. In addition, as the acquisition of a probabilistic sequence requires greater procedural memory compared to the acquisition of a fixed sequence, our results suggest that offline learning is more likely to take place in a procedural sequence learning task. PMID:26973502

  2. Probabilistic Motor Sequence Yields Greater Offline and Less Online Learning than Fixed Sequence.

    PubMed

    Du, Yue; Prashad, Shikha; Schoenbrun, Ilana; Clark, Jane E

    2016-01-01

    It is well acknowledged that motor sequences can be learned quickly through online learning. Subsequently, the initial acquisition of a motor sequence is boosted or consolidated by offline learning. However, little is known whether offline learning can drive the fast learning of motor sequences (i.e., initial sequence learning in the first training session). To examine offline learning in the fast learning stage, we asked four groups of young adults to perform the serial reaction time (SRT) task with either a fixed or probabilistic sequence and with or without preliminary knowledge (PK) of the presence of a sequence. The sequence and PK were manipulated to emphasize either procedural (probabilistic sequence; no preliminary knowledge (NPK)) or declarative (fixed sequence; with PK) memory that were found to either facilitate or inhibit offline learning. In the SRT task, there were six learning blocks with a 2 min break between each consecutive block. Throughout the session, stimuli followed the same fixed or probabilistic pattern except in Block 5, in which stimuli appeared in a random order. We found that PK facilitated the learning of a fixed sequence, but not a probabilistic sequence. In addition to overall learning measured by the mean reaction time (RT), we examined the progressive changes in RT within and between blocks (i.e., online and offline learning, respectively). It was found that the two groups who performed the fixed sequence, regardless of PK, showed greater online learning than the other two groups who performed the probabilistic sequence. The groups who performed the probabilistic sequence, regardless of PK, did not display online learning, as indicated by a decline in performance within the learning blocks. However, they did demonstrate remarkably greater offline improvement in RT, which suggests that they are learning the probabilistic sequence offline. These results suggest that in the SRT task, the fast acquisition of a motor sequence is driven by concurrent online and offline learning. In addition, as the acquisition of a probabilistic sequence requires greater procedural memory compared to the acquisition of a fixed sequence, our results suggest that offline learning is more likely to take place in a procedural sequence learning task.

  3. Acquired versus innate prey capturing skills in super-precocial live-bearing fish.

    PubMed

    Lankheet, Martin J; Stoffers, Twan; van Leeuwen, Johan L; Pollux, Bart J A

    2016-07-13

    Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero, development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate, evolutionarily acquired patterns. Optimal performance however requires flexible adjustment to an unpredictable environment. To distinguish innate from postnatally developing patterns we analysed over 2000 prey capture events for 28 metallic livebearers (Girardinus metallicus; Poeciliidae), during their first 3 days after birth. We show that the use of synchronous pectoral fin beats for final acceleration and ingestion is fixed and presumably innate. It allows for direct, symmetrical control of swimming speed and direction, while avoiding head yaw. Eye movements and body curvatures, however, change considerably in the first few days, showing that eye-tail coordination requires postnatal development. The results show how successful prey captures for newborn, live-bearing fish are based on a combination of fixed motor programmes and rapid, postnatal development. © 2016 The Author(s).

  4. Development and Plasticity of Cortical Processing Architectures

    NASA Astrophysics Data System (ADS)

    Singer, Wolf

    1995-11-01

    One of the basic functions of the cerebral cortex is the analysis and representation of relations among the components of sensory and motor patterns. It is proposed that the cortex applies two complementary strategies to cope with the combinatorial problem posed by the astronomical number of possible relations: (i) the analysis and representation of frequently occurring, behaviorally relevant relations by groups of cells with fixed but broadly tuned response properties; and (ii) the dynamic association of these cells into functionally coherent assemblies. Feedforward connections and reciprocal associative connections, respectively, are thought to underlie these two operations. The architectures of both types of connections are susceptible to experience-dependent modifications during development, but they become fixed in the adult. As development proceeds, feedforward connections also appear to lose much of their functional plasticity, whereas the synapses of the associative connections retain a high susceptibility to use-dependent modifications. The reduced plasticity of feedforward connections is probably responsible for the invariance of cognitive categories acquired early in development. The persistent adaptivity of reciprocal connections is a likely substrate for the ability to generate representations for new perceptual objects and motor patterns throughout life.

  5. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  6. Brushless direct-current motor with stationary armature and field

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1970-01-01

    Electronically commutated dc motor has an active fixed field winding, and active fixed armature winding, and passive rotor. By use of brushless dc motor switching technique, motor provides continuous controllable and reversible torque without use of sliding contacts.

  7. Species-Specific Diversity of a Fixed Motor Pattern: The Electric Organ Discharge of Gymnotus

    PubMed Central

    Rodríguez-Cattaneo, Alejo; Pereira, Ana Carolina; Aguilera, Pedro A.; Crampton, William G. R.; Caputi, Angel A.

    2008-01-01

    Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of the electrogenic system: a) the variously timed neuronal inputs to different groups of electrocytes; b) the appearance of both rostrally and caudally innervated electrocytes, and c) changes in the responsiveness of the electrocyte membrane. PMID:18461122

  8. The Design of a Four Square Gear Tester for Noise and Vibration Measurements.

    DTIC Science & Technology

    1986-12-01

    Four Square Gear Tester ...... . 25 2.3 The Speed-Torque Relationship of Contraves Blower Ventilated Motor ....... ..................... ... 31 2.4...The Speed-Torque Relationship of Contraves Self- Ventilated Motor ....... ..................... ... 32 2.5 The Contraves Motor...34 2.6 The Contraves Motor Mounted Blower ... ............ ... 35 2.7 The Fixed-Fixed End Condition (to determine the natural frequency of the

  9. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  10. Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry

    PubMed Central

    Song, Hanbing; Hayes, John A.; Vann, Nikolas C.; Wang, Xueying; LaMar, M. Drew

    2016-01-01

    Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consist of interneurons derived from Dbx1-expressing precursors (Dbx1 neurons), but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, the respiratory-related hypoglossal (XII) motor nucleus and XII premotor circuits. In spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by ∼50% after ∼15 cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased to ∼85 neurons. In contrast, cumulatively deleting Dbx1 XII premotor neurons decreased motor output monotonically but did not affect frequency nor stop XII output regardless of the ablation tally. Here, we couple an existing preBötC model with a premotor population in several topological configurations to investigate which one may replicate the laser ablation experiments best. If the XII premotor population is a “small-world” network (rich in local connections with sparse long-range connections among constituent premotor neurons) and connected with the preBötC such that the total number of incoming synapses remains fixed, then the in silico system successfully replicates the in vitro laser ablation experiments. This study proposes a feasible configuration for circuits consisting of Dbx1-derived interneurons that generate inspiratory rhythm and motor pattern. SIGNIFICANCE STATEMENT To produce a breathing-related motor pattern, a brainstem core oscillator circuit projects to a population of premotor interneurons, but the assemblage of this network remains incompletely understood. Here we applied network modeling and numerical simulation to discover respiratory circuit configurations that successfully replicate photonic cell ablation experiments targeting either the core oscillator or premotor network, respectively. If premotor neurons are interconnected in a so-called “small-world” network with a fixed number of incoming synapses balanced between premotor and rhythmogenic neurons, then our simulations match their experimental benchmarks. These results provide a framework of experimentally testable predictions regarding the rudimentary structure and function of respiratory rhythm- and pattern-generating circuits in the brainstem of mammals. PMID:27383596

  11. Motor Controller System For Large Dynamic Range of Motor Operation

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)

    2006-01-01

    A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.

  12. Active balance system and vibration balanced machine

    NASA Technical Reports Server (NTRS)

    White, Maurice A. (Inventor); Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  13. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor); Qiu, Songgang (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  14. Variation in motor output and motor performance in a centrally generated motor pattern

    PubMed Central

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  15. Motor behavior during the first chewing cycle in subjects with fixed tooth- or implant-supported prostheses.

    PubMed

    Grigoriadis, Joannis; Trulsson, Mats; Svensson, Krister G

    2016-04-01

    Appropriate sensory information from periodontal mechanoreceptors (PMRs) is important for optimizing the positioning of food and adjustment of force vectors during precision biting. This study was designed to describe motor behavior during the first cycle of a natural chewing task and to evaluate the role of such sensory input in this behavior. While 10 subjects with natural dentition, 11 with bimaxillary fixed tooth-supported prostheses (TSP) and 10 with bimaxillary fixed implant-supported prostheses (ISP) (mean age 69 [range 61-83]) chewed a total of five hazelnuts, their vertical and lateral jaw movements were recorded. Data obtained during the first chewing cycle of each hazelnut were analyzed. The amplitude of vertical and lateral mandibular movement and duration of jaw opening did not differ between the groups, indicating similar behavior during this part of the chewing cycle. However, only 30% of the subjects in the natural dentate group, but 82% of those in the TSP and 70% in the ISP group exhibited slippage of the hazelnut during jaw closure in at least one of five trials. The TSP and ISP groups also exhibited more irregular and narrower patterns of motion (total lateral/vertical movement = 0.15 and 0.19, respectively, compared to 0.27 for the natural group). Subjects with fixed tooth- or implant-supported prostheses in both jaws show altered behavior, including inadequate control of the hazelnut, during the first chewing cycle. We propose that these differences are due to impairment or absence of sensory signaling from PMRs in these individuals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Predispositions to approach and avoid are contextually sensitive and goal dependent.

    PubMed

    Bamford, Susan; Ward, Robert

    2008-04-01

    The authors show that predispositions to approach and avoid do not consist simply of specific motor patterns but are more abstract functions that produce a desired environmental effect. It has been claimed that evaluating a visual stimulus as positive or negative evokes a specific motor response, extending the arm to negative stimuli, and contracting to positive stimuli. The authors showed that a large congruency effect (participants were faster to approach pleasant and avoid unpleasant stimuli, than to approach unpleasant and avoid pleasant stimuli) could be produced on a novel touchscreen paradigm (Experiment 1), and that the congruency effect could be reversed by spatial (Experiment 2) and nonspatial (Experiment 3) response effects. Thus, involuntary approach and avoid response activations are not fixed, but sensitive to context, and are specifically based on the desired goal. (Copyright) 2008 APA.

  17. Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high-resolution fiber-optic manometry

    PubMed Central

    DINNING, P. G.; WIKLENDT, L.; MASLEN, L.; GIBBINS, I.; PATTON, V.; ARKWRIGHT, J. W.; LUBOWSKI, D. Z.; O'GRADY, G.; BAMPTON, P. A.; BROOKES, S. J.; COSTA, M.

    2015-01-01

    Background Until recently, investigations of the normal patterns of motility of the healthy human colon have been limited by the resolution of in vivo recording techniques. Methods We have used a new, high-resolution fiber-optic manometry system (72 sensors at 1-cm intervals) to record motor activity from colon in 10 healthy human subjects. Key Results In the fasted colon, on the basis of rate and extent of propagation, four types of propagating motor pattern could be identified: (i) cyclic motor patterns (at 2–6/min); (ii) short single motor patterns; (iii) long single motor patterns; and (iv) occasional retrograde, slow motor patterns. For the most part, the cyclic and short single motor patterns propagated in a retrograde direction. Following a 700 kCal meal, a fifth motor pattern appeared; high-amplitude propagating sequences (HAPS) and there was large increase in retrograde cyclic motor patterns (5.6±5.4/2 h vs 34.7±19.8/2 h; p < 0.001). The duration and amplitude of individual pressure events were significantly correlated. Discriminant and multivariate analysis of duration, gradient, and amplitude of the pressure events that made up propagating motor patterns distinguished clearly two types of pressure events: those belonging to HAPS and those belonging to all other propagating motor patterns. Conclusions & Inferences This work provides the first comprehensive description of colonic motor patterns recorded by high-resolution manometry and demonstrates an abundance of retrograde propagating motor patterns. The propagating motor patterns appear to be generated by two independent sources, potentially indicating their neurogenic or myogenic origin. PMID:25131177

  18. The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain.

    PubMed

    Weinhold, Paul S; Stewart, Jason-Dennis N; Liu, Hsin-Yi; Lin, Cheng-Feng; Garrett, William E; Yu, Bing

    2007-08-01

    Studies have shown that women are at higher risk of sustaining noncontact anterior cruciate ligament (ACL) injuries in specific sports. Recent gait studies of athletic tasks have documented that gender differences in knee movement, muscle activation, and external loading patterns exist. The objective of this study was to determine in a knee cadaver model if application of female-specific loading and movement patterns characterised in vivo for a stop-jump task cause higher ACL strains than male patterns. Gender-specific loading patterns of the landing phase of the vertical stop-jump task were applied to seven cadaver knees using published kinetic/kinematic results for recreational athletes. Loads applied consecutively included: tibial compression, quadriceps, hamstrings, external posterior tibial shear, and tibial torque. Knee flexion was fixed based on the kinematic data. Strain of the ACL was monitored by means of a differential variable reluctance transducer installed on the anterior-medial bundle of the ACL. The ACL strain was significantly increased (P<0.05) for the female loading pattern relative to the male loading pattern after the posterior tibial shear force was applied, and showed a similar trend (P=0.1) to be increased after the final tibial torque was applied. This study suggests that female motor control strategies used during the stop-jump task may place higher strains on the ACL than male strategies, thus putting females at greater risk of ACL injury. We believe these results suggest the potential effectiveness of using training programs to modify motor control strategies and thus modify the risk of injury.

  19. Solar tracker motor having a fixed caliper and a translating caliper each with an electromagnetic brake system

    DOEpatents

    Rau, Scott James

    2013-01-29

    Concepts and technologies described herein provide for an accurate and cost-effective method for rotating a solar array disk for tracking the movement of the sun. According to various aspects, a motor includes a fixed caliper and a translating caliper positioned adjacent to one another. Electromagnetically controlled brakes on the translating caliper grip the solar array disk while adjacent, but spaced apart, electromagnets on the fixed caliper and the translating caliper are energized to create an attractive force that pulls the translating caliper with the solar array disk toward the fixed caliper. After reaching the fixed caliper, brakes on the fixed caliper are engaged with the disk, brakes on the translating caliper are released from the disk, and the translating caliper is pushed back to the starting location where the process repeats until the desired rotation is completed.

  20. Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation

    PubMed Central

    Onishi, Hideaki; Miyaguchi, Shota; Kotan, Shinichi; Nakagawa, Masaki; Kirimoto, Hikari

    2018-01-01

    We investigated the effects of different patterns of mechanical tactile stimulation (MS) on corticospinal excitability by measuring the motor-evoked potential (MEP). This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5–20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder. PMID:29849557

  1. Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation.

    PubMed

    Kojima, Sho; Onishi, Hideaki; Miyaguchi, Shota; Kotan, Shinichi; Sasaki, Ryoki; Nakagawa, Masaki; Kirimoto, Hikari; Tamaki, Hiroyuki

    2018-01-01

    We investigated the effects of different patterns of mechanical tactile stimulation (MS) on corticospinal excitability by measuring the motor-evoked potential (MEP). This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5-20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder.

  2. A theory for how sensorimotor skills are learned and retained in noisy and nonstationary neural circuits

    PubMed Central

    Ajemian, Robert; D’Ausilio, Alessandro; Moorman, Helene; Bizzi, Emilio

    2013-01-01

    During the process of skill learning, synaptic connections in our brains are modified to form motor memories of learned sensorimotor acts. The more plastic the adult brain is, the easier it is to learn new skills or adapt to neurological injury. However, if the brain is too plastic and the pattern of synaptic connectivity is constantly changing, new memories will overwrite old memories, and learning becomes unstable. This trade-off is known as the stability–plasticity dilemma. Here a theory of sensorimotor learning and memory is developed whereby synaptic strengths are perpetually fluctuating without causing instability in motor memory recall, as long as the underlying neural networks are sufficiently noisy and massively redundant. The theory implies two distinct stages of learning—preasymptotic and postasymptotic—because once the error drops to a level comparable to that of the noise-induced error, further error reduction requires altered network dynamics. A key behavioral prediction derived from this analysis is tested in a visuomotor adaptation experiment, and the resultant learning curves are modeled with a nonstationary neural network. Next, the theory is used to model two-photon microscopy data that show, in animals, high rates of dendritic spine turnover, even in the absence of overt behavioral learning. Finally, the theory predicts enhanced task selectivity in the responses of individual motor cortical neurons as the level of task expertise increases. From these considerations, a unique interpretation of sensorimotor memory is proposed—memories are defined not by fixed patterns of synaptic weights but, rather, by nonstationary synaptic patterns that fluctuate coherently. PMID:24324147

  3. Characterization of the Decision Network for Wing Expansion in Drosophila Using Targeted Expression of the TRPM8 Channel

    PubMed Central

    Peabody, Nathan C.; Pohl, Jascha B.; Diao, Fengqiu; Vreede, Andrew P.; Sandstrom, David J.; Wang, Howard; Zelensky, Paul K.; White, Benjamin H.

    2009-01-01

    After emergence, adult flies and other insects select a suitable perch and expand their wings. Wing expansion is governed by the hormone bursicon and can be delayed under adverse environmental conditions. How environmental factors delay bursicon release and alter perch selection and expansion behaviors has not been investigated in detail. Here we provide evidence that in Drosophila the motor programs underlying perch selection and wing expansion have different environmental dependencies. Using physical manipulations, we demonstrate that the decision to perch is based primarily on environmental valuations and is incrementally delayed under conditions of increasing perturbation and confinement. In contrast, the all-or-none motor patterns underlying wing expansion are relatively invariant in length regardless of environmental conditions. Using a novel technique for targeted activation of neurons, we show that the highly stereotyped wing expansion motor patterns can be initiated by stimulation of NCCAP, a small network of central neurons that regulates the release of bursicon. Activation of this network using the cold-sensitive rat TRPM8 channel is sufficient to trigger all essential behavioral and somatic processes required for wing expansion. The delay of wing expansion under adverse circumstances thus couples an environmentally-sensitive decision network to a command-like network that initiates a fixed action pattern. Because NCCAP mediates environmentally-insensitive ecdysis-related behaviors in Drosophila development prior to adult emergence, the study of wing expansion promises insights not only into how networks mediate behavioral choices, but also into how decision networks develop. PMID:19295141

  4. Early focus development effort, ultrasonic inspection of fixed housing metal-to-adhesive bondline

    NASA Technical Reports Server (NTRS)

    Hartmann, John K.; Hoskins, Brad R.; Karner, Paul

    1991-01-01

    An ultrasonic technique was developed for the fixed housing metal-to-adhesive bondline that will support the Flight 15 time frame and subsequent motors. The technique has the capability to detect a 1.0 inch diameter unbond with a 90 percent probability of detection (POD) at a 95 percent confidence level. The technique and support equipment will perform within the working envelope dictated by a stacked motor configuration.

  5. The effects of practice on movement distance and final position reproduction: implications for the equilibrium-point control of movements.

    PubMed

    Jaric, S; Corcos, D M; Gottlieb, G L; Ilic, D B; Latash, M L

    1994-01-01

    Predictions of two views on single-joint motor control, namely programming of muscle force patterns and equilibrium-point control, were compared with the results of experiments with reproduction of movement distance and final location during fast unidirectional elbow flexions. Two groups of subjects were tested. The first group practiced movements over a fixed distance (36 degrees), starting from seven different initial positions (distance group, DG). The second group practiced movements from the same seven initial positions to a fixed final location (location group, LG). Later, all the subjects were tested at the practiced task with their eyes closed, and then, unexpectedly for the subjects, they were tested at the other, unpracticed task. In both groups, the task to reproduce final position had lower indices of final position variability than the task to reproduce movement distance. Analysis of the linear regression lines between initial position and final position (or movement distance) also demonstrated a better (more accurate) performance during final position reproduction than during distance reproduction. The data are in a good correspondence with the predictions of the equilibrium-point hypothesis, but not with the predictions of the force-pattern control approach.

  6. Nonpolluting automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoolboom, G.J.; Szabados, B.

    The advantages/disadvantages of energy storage devices, which can provide nonpolluting automobile systems are discussed. Four types of storage devices are identified: electrochemical (batteries); hydrogen; electromechanical (flywheels); and molten salt heat storage. A high-speed flywheel with a small permanent magnet motor/generator has more advantages than any of the other systems and might become a real competitor to the internal combustion engine. A flywheel/motor/generator system for automobiles now becomes practical, because of the technological advances in materials, bearings and solid state control circuits. The motor of choice is the squirrel cage induction motor, specially designed for automobile applications. The preferred controller formore » the induction motor is a forced commutated cycloconverter, which transforms a variable voltage/variable frequency source into a controlled variable-voltage/variable-frequency supply. A modulation strategy of the cycloconverter elements is selected to maintain a unity input displacement factor (power factor) under all conditions of loads voltages and frequencies. The system is similar to that of the existing automobile, if only one motor is used: master controller-controller-motor-gears (fixed)-differential-wheels. In the case of two motors, the mechanical differential is replaced by an electric one: master controller-controller-motor-gears (fixed)-wheel. A four-wheel drive vehicle is obtained when four motors with their own controllers are used. 24 refs.« less

  7. EMG activation patterns associated with high frequency, long-duration intracortical microstimulation of primary motor cortex.

    PubMed

    Griffin, Darcy M; Hudson, Heather M; Belhaj-Saïf, Abderraouf; Cheney, Paul D

    2014-01-29

    The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length-tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved.

  8. EMG Activation Patterns Associated with High Frequency, Long-Duration Intracortical Microstimulation of Primary Motor Cortex

    PubMed Central

    Griffin, Darcy M.; Hudson, Heather M.; Belhaj-Saïf, Abderraouf

    2014-01-01

    The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length–tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved. PMID:24478348

  9. The impact of health plan report cards on managed care enrollment.

    PubMed

    Scanlo, Dennis P; Chernew, Michael; Mclaughlin, Catherine; Solon, Gary

    2002-01-01

    How does the release of health plan performance ratings influence employee health plan choice? A natural experiment at General Motors (GM) Corporation provides valuable evidence on this question. During the 1997 open enrollment period, GM disseminated a health plan report card for the first time. By comparing 1996 and 1997 enrollment patterns, our analysis estimates the impact of the report card information while accounting for fixed, unobserved plan traits. Results indicate that employees are less likely to enroll in plans requiring relatively high out-of-pocket contributions. Results with respect to report card ratings suggest that individuals avoid health plans with many below average ratings.

  10. Risk-sensitivity and the mean-variance trade-off: decision making in sensorimotor control

    PubMed Central

    Nagengast, Arne J.; Braun, Daniel A.; Wolpert, Daniel M.

    2011-01-01

    Numerous psychophysical studies suggest that the sensorimotor system chooses actions that optimize the average cost associated with a movement. Recently, however, violations of this hypothesis have been reported in line with economic theories of decision-making that not only consider the mean payoff, but are also sensitive to risk, that is the variability of the payoff. Here, we examine the hypothesis that risk-sensitivity in sensorimotor control arises as a mean-variance trade-off in movement costs. We designed a motor task in which participants could choose between a sure motor action that resulted in a fixed amount of effort and a risky motor action that resulted in a variable amount of effort that could be either lower or higher than the fixed effort. By changing the mean effort of the risky action while experimentally fixing its variance, we determined indifference points at which participants chose equiprobably between the sure, fixed amount of effort option and the risky, variable effort option. Depending on whether participants accepted a variable effort with a mean that was higher, lower or equal to the fixed effort, they could be classified as risk-seeking, risk-averse or risk-neutral. Most subjects were risk-sensitive in our task consistent with a mean-variance trade-off in effort, thereby, underlining the importance of risk-sensitivity in computational models of sensorimotor control. PMID:21208966

  11. Patterns of Spinal Sensory-Motor Connectivity Prescribed by a Dorsoventral Positional Template

    PubMed Central

    Sürmeli, Gülşen; Akay, Turgay; Ippolito, Gregory; Tucker, Philip W; Jessell, Thomas M

    2011-01-01

    Summary Sensory-motor circuits in the spinal cord are constructed with a fine specificity that coordinates motor behavior, but the mechanisms that direct sensory connections with their motor neuron partners remain unclear. The dorsoventral settling position of motor pools in the spinal cord is known to match the distal-to-proximal position of their muscle targets in the limb, but the significance of invariant motor neuron positioning is unknown. An analysis of sensory-motor connectivity patterns in FoxP1 mutant mice, where motor neuron position has been scrambled, shows that the final pattern of sensory-motor connections is initiated by the projection of sensory axons to discrete dorsoventral domains of the spinal cord without regard for motor neuron subtype, or indeed, the presence of motor neurons. By implication, the clustering and dorsoventral settling position of motor neuron pools serves as a determinant of the pattern of sensory input specificity, and thus motor coordination. PMID:22036571

  12. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding

    PubMed Central

    Vinck, Martin; Batista-Brito, Renata; Knoblich, Ulf; Cardin, Jessica A.

    2015-01-01

    Spontaneous and sensory-evoked cortical activity is highly state-dependent, yet relatively little is known about transitions between distinct waking states. Patterns of activity in mouse V1 differ dramatically between quiescence and locomotion, but this difference could be explained by either motor feedback or a change in arousal levels. We recorded single cells and local field potentials from area V1 in mice head-fixed on a running wheel and monitored pupil diameter to assay arousal. Using naturally occurring and induced state transitions, we dissociated arousal and locomotion effects in V1. Arousal suppressed spontaneous firing and strongly altered the temporal patterning of population activity. Moreover, heightened arousal increased the signal-to-noise ratio of visual responses and reduced noise correlations. In contrast, increased firing in anticipation of and during movement was attributable to locomotion effects. Our findings suggest complementary roles of arousal and locomotion in promoting functional flexibility in cortical circuits. PMID:25892300

  13. Dynamically Timed Electric Motor

    NASA Technical Reports Server (NTRS)

    Casper, Ann M. (Inventor)

    1997-01-01

    A brushless DC motor including a housing having an end cap secured thereto. The housing encloses a rotor. a stator and a rotationally displaceable commutation board having sensors secured thereon and spaced around the periphery of the rotor. An external rotational force is applied to the commutation board for displacement of the sensors to various positions whereby varying feedback signals are generated by the positioning of the sensors relative to the rotating rotor. The commutation board is secured in a fixed position in response to feedback signals indicative of optimum sensor position being determined. The rotation of the commutation board and the securing of the sensors in the desired fixed position is accomplished without requiring the removal of the end cap and with the DC motor operating.

  14. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    PubMed

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.

  15. Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective.

    PubMed

    Vegter, Riemer J K; de Groot, Sonja; Lamoth, Claudine J; Veeger, Dirkjan Hej; van der Woude, Lucas H V

    2014-01-01

    To gain insight into cyclic motor learning processes, hand rim wheelchair propulsion is a suitable cyclic task, to be learned during early rehabilitation and novel to almost every individual. To propel in an energy efficient manner, wheelchair users must learn to control bimanually applied forces onto the rims, preserving both speed and direction of locomotion. The purpose of this study was to evaluate mechanical efficiency and propulsion technique during the initial stage of motor learning. Therefore, 70 naive able-bodied men received 12-min uninstructed wheelchair practice, consisting of three 4-min blocks separated by 2 min rest. Practice was performed on a motor-driven treadmill at a fixed belt speed and constant power output relative to body mass. Energy consumption and the kinetics of propulsion technique were continuously measured. Participants significantly increased their mechanical efficiency and changed their propulsion technique from a high frequency mode with a lot of negative work to a longer-slower movement pattern with less power losses. Furthermore a multi-level model showed propulsion technique to relate to mechanical efficiency. Finally improvers and non-improvers were identified. The non-improving group was already more efficient and had a better propulsion technique in the first block of practice (i.e., the fourth minute). These findings link propulsion technique to mechanical efficiency, support the importance of a correct propulsion technique for wheelchair users and show motor learning differences.

  16. Dynamically timed electric motor

    NASA Technical Reports Server (NTRS)

    Casper, Ann M. (Inventor)

    1994-01-01

    The invention disclosed in this document is a brushless DC motor including a housing having an end cap secured thereto. The housing encloses a rotor, a stator and a rotationally displaceable commutation board having 5 sensors secured thereon and spaced around the periphery of the rotor. An external rotational force is applied to the commutation board for displacement of the sensors to various positions whereby varying feedback signals are generated by the positioning of the sensors relative to the rotating rotor. The commutation board is secured in a fixed position in response to feedback signals indicative of optimum sensor position being determined. The rotation of the commutation board and the securing of the sensors in the desired fixed position is accomplished without requiring the removal of the 5 end cap and with the DC motor operating.

  17. Clinical Approach to Motor Stereotypies in Autistic Children

    PubMed Central

    2010-01-01

    This is an overview of stereotypic behavior in autistic spectrum disorder (ASD). This repetitive, nonfunctional, fixed pattern of behavior is associated with autism severity but it is not specific for ASD. There are a wide range of behaviors mentioned as stereotypies. It usually starts in early childhood and its severity is associated with outcomes and severity of autism in adolescence and adulthood. It is usually co-morbid with other psychiatric problems and its pathophysiology is not exactly known. Management is most likely behavioral. There are some reports regarding efficacy of antipsychotics for its management. Further studies should be conducted to improve our knowledge about it and our ability to differentiate it from tics. PMID:23056697

  18. Motor modules during adaptation to walking in a powered ankle exoskeleton.

    PubMed

    Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P

    2018-01-03

    Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.

  19. Study on the dynamics responses of a transmission system made from carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hang; Cai, Kun, E-mail: kuicansj@163.com; Wei, Ning

    2015-06-21

    A rotational transmission system from coaxial carbon nanotubes (CNTs) is investigated using a computational molecular dynamics approach. The system consists of a motor from a single-walled carbon nanotube and a bearing from a double-walled carbon nanotube. The motor has a high fixed rotational frequency and the two ends of the outer tube in the bearing are fixed. The inner tube in the bearing works as a rotor. Because of the interlayer friction in the bearing, configurations of the joint between the adjacent ends of motor and rotor have significant effects on rotational transmission properties. Four factors are considered in simulation,more » i.e., the bonding types of atoms (sp{sup 1} and sp{sup 2}) on the ends of motor and rotor, the difference between motor and rotor radii, the rotational speed of motor, and the environmental temperature. It is found that the synchronous transmission happens if the sp{sup 1} atoms on the jointed ends of motor and rotor are bonded each other and become new sp{sup 2} atoms. Therefore, the lower difference between radii of motor and rotor, higher temperature of environment leads to synchronous rotational transmission easily. If the environmental temperature is too low (e.g., <150 K), the end of motor adjacent to rotor is easily under buckling and new sp{sup 2} atoms appear, too. With capped CNTs or higher radii difference between rotor and motor at an appropriate temperature, a stable asynchronous rotation of rotor can be generated, and the rotor's frequency varying linearly with motor's frequency between 230 and 270 GHz. A multi-signal transmission device combined with oscillating and rotational motion is proposed for motor and stator shares a same size in radius.« less

  20. Motor unit recruitment for dynamic tasks: current understanding and future directions.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2009-01-01

    Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.

  1. Spindles and active vortices in a model of confined filament-motor mixtures.

    PubMed

    Head, David A; Briels, Wj; Gompper, Gerhard

    2011-11-16

    Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic activities underpinning macroscopic self-organization in active gels and urge further experiments to help bridge these lengths.

  2. Handwriting Error Patterns of Children with Mild Motor Difficulties.

    ERIC Educational Resources Information Center

    Malloy-Miller, Theresa; And Others

    1995-01-01

    A test of handwriting legibility and 6 perceptual-motor tests were completed by 66 children ages 7-12. Among handwriting error patterns, execution was associated with visual-motor skill and sensory discrimination, aiming with visual-motor and fine-motor skills. The visual-spatial factor had no significant association with perceptual-motor…

  3. Investigation of left and right lateral fluid percussion injury in C57BL6/J mice: In vivo functional consequences

    PubMed Central

    Schurman, Lesley D.; Smith, Terry L.; Morales, Anthony J.; Lee, Nancy N.; Reeves, Thomas M.; Phillips, Linda L.; Lichtman, Aron H.

    2017-01-01

    Although rodent models of traumatic brain injury (TBI) reliably produce cognitive and motor disturbances, behavioral characterization resulting from left and right hemisphere injuries remains unexplored. Here we examined the functional consequences of targeting the left versus right parietal cortex in lateral fluid percussion injury, on Morris water maze (MWM) spatial memory tasks (fixed platform and reversal) and neurological motor deficits (neurological severity score and rotarod). In the MWM fixed platform task, right lateral injury produced a small delay in acquisition rate compared to left. However, injury to either hemisphere resulted in probe trial deficits. In the MWM reversal task, left-right performance deficits were not evident, though left lateral injury produced mild acquisition and probe trial deficits compared to sham controls. Additionally, left and right injury produced similar neurological motor task deficits, impaired righting times, and lesion volumes. Injury to either hemisphere also produced robust ipsilateral, and modest contralateral, morphological changes in reactive microglia and astrocytes. In conclusion, left and right lateral TBI impaired MWM performance, with mild fixed platform acquisition rate differences, despite similar motor deficits, histological damage, and glial cell reactivity. Thus, while both left and right lateral TBI produce cognitive deficits, laterality in mouse MWM learning and memory merits consideration in the investigation of TBI-induced cognitive consequences. PMID:28527714

  4. Investigation of left and right lateral fluid percussion injury in C57BL6/J mice: In vivo functional consequences.

    PubMed

    Schurman, Lesley D; Smith, Terry L; Morales, Anthony J; Lee, Nancy N; Reeves, Thomas M; Phillips, Linda L; Lichtman, Aron H

    2017-07-13

    Although rodent models of traumatic brain injury (TBI) reliably produce cognitive and motor disturbances, behavioral characterization resulting from left and right hemisphere injuries remains unexplored. Here we examined the functional consequences of targeting the left versus right parietal cortex in lateral fluid percussion injury, on Morris water maze (MWM) spatial memory tasks (fixed platform and reversal) and neurological motor deficits (neurological severity score and rotarod). In the MWM fixed platform task, right lateral injury produced a small delay in acquisition rate compared to left. However, injury to either hemisphere resulted in probe trial deficits. In the MWM reversal task, left-right performance deficits were not evident, though left lateral injury produced mild acquisition and probe trial deficits compared to sham controls. Additionally, left and right injury produced similar neurological motor task deficits, impaired righting times, and lesion volumes. Injury to either hemisphere also produced robust ipsilateral, and modest contralateral, morphological changes in reactive microglia and astrocytes. In conclusion, left and right lateral TBI impaired MWM performance, with mild fixed platform acquisition rate differences, despite similar motor deficits, histological damage, and glial cell reactivity. Thus, while both left and right lateral TBI produce cognitive deficits, laterality in mouse MWM learning and memory merits consideration in the investigation of TBI-induced cognitive consequences. Copyright © 2017. Published by Elsevier B.V.

  5. Electromagnetic machines with Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Hanitsch, Rolf

    1989-08-01

    Permanent magnet motors are now becoming more accepted for general use in industrial fixed and variable speed drives. With the application of high-energy permanent magnets, such as Nd-Fe-B, the new motors offer higher efficiency and reduced size and weight compared with wound field energy converters of the same rating.

  6. The advantage of flexible neuronal tunings in neural network models for motor learning

    PubMed Central

    Marongelli, Ellisha N.; Thoroughman, Kurt A.

    2013-01-01

    Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies. PMID:23888141

  7. Relationship between binocular vision, visual acuity, and fine motor skills.

    PubMed

    O'Connor, Anna R; Birch, Eileen E; Anderson, Susan; Draper, Hayley

    2010-12-01

    The aims of this study were to analyze the relationship between the performance on fine motor skills tasks and peripheral and bifoveal sensory fusion, phasic and tonic motor fusion, the level of visual acuity (VA) in the poorer seeing eye, and the interocular VA difference. Subjects aged 12 to 28 years with a range of levels of binocular vision and VA performed three tasks: Purdue pegboard (number of pegs placed in 30 s), bead threading task (with two sizes of bead to increase the difficulty, time taken to thread a fixed number of beads), and a water pouring task (accuracy and time to pour a fixed quantity into five glass cylinders). Ophthalmic measures included peripheral (Worth 4 dot) and bifoveal (4 prism diopter) sensory fusion, phasic (prism bar) and tonic (Risley rotary prism) motor fusion ranges, and monocular VA. One hundred twenty-one subjects with a mean age of 18.8 years were tested; 18.2% had a manifest strabismus. Performance on fine motor skills tasks was significantly better in subjects with sensory and motor fusion compared with those without for most tasks, with significant differences between those with and without all measures of fusion on the pegboard and bead task. Both the acuity in the poorer seeing eye (highest r value of all motor tasks = 0.43) and the interocular acuity difference were statistically significantly related to performance on the motor skill tasks. Both sensory and motor fusion and good VA in both eyes are of benefit in the performance of fine motor skills tasks, with the presence of some binocular vision being beneficial compared with no fusion on certain sensorimotor tasks. This evidence supports the need to maximize fusion and VA outcomes.

  8. A novel method of identifying motor primitives using wavelet decomposition*

    PubMed Central

    Popov, Anton; Olesh, Erienne V.; Yakovenko, Sergiy; Gritsenko, Valeriya

    2018-01-01

    This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of muscle groups caused by the physiological processes of fixed duration, thus enabling the extraction of wavelet modules of arbitrary groups of muscles. Hierarchical clustering and identification of the repeating wavelet modules across subjects and across movements, was used to identify consistent muscle synergies. Results indicate that the most frequently repeated wavelet modules comprised combinations of two muscles that are not traditional agonists and span different joints. We have also found that these wavelet modules were flexibly combined across different movement directions in a pattern resembling directional tuning. This method is extendable to multiple frequency domains and signal modalities.

  9. Improving the discrimination of hand motor imagery via virtual reality based visual guidance.

    PubMed

    Liang, Shuang; Choi, Kup-Sze; Qin, Jing; Pang, Wai-Man; Wang, Qiong; Heng, Pheng-Ann

    2016-08-01

    While research on the brain-computer interface (BCI) has been active in recent years, how to get high-quality electrical brain signals to accurately recognize human intentions for reliable communication and interaction is still a challenging task. The evidence has shown that visually guided motor imagery (MI) can modulate sensorimotor electroencephalographic (EEG) rhythms in humans, but how to design and implement efficient visual guidance during MI in order to produce better event-related desynchronization (ERD) patterns is still unclear. The aim of this paper is to investigate the effect of using object-oriented movements in a virtual environment as visual guidance on the modulation of sensorimotor EEG rhythms generated by hand MI. To improve the classification accuracy on MI, we further propose an algorithm to automatically extract subject-specific optimal frequency and time bands for the discrimination of ERD patterns produced by left and right hand MI. The experimental results show that the average classification accuracy of object-directed scenarios is much better than that of non-object-directed scenarios (76.87% vs. 69.66%). The result of the t-test measuring the difference between them is statistically significant (p = 0.0207). When compared to algorithms based on fixed frequency and time bands, contralateral dominant ERD patterns can be enhanced by using the subject-specific optimal frequency and the time bands obtained by our proposed algorithm. These findings have the potential to improve the efficacy and robustness of MI-based BCI applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information.

    PubMed

    Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano

    2013-01-01

    Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activations, which is designed to help to better understand how these correlations may contribute to generating appropriate motor behavior. The algorithm we propose first divides correlations between muscle synergies into types (noise correlations, quantifying the trial-to-trial covariations of synergy activations at fixed task, and signal correlations, quantifying the similarity of task tuning of the trial-averaged activation coefficients of different synergies), and then uses single-trial methods (task-decoding and information theory) to quantify their overall effect on the task-discriminating information carried by muscle synergy activations. We apply the method to both synchronous and time-varying synergies and exemplify it on electromyographic data recorded during performance of reaching movements in different directions. Our method reveals the robust presence of information-enhancing patterns of signal and noise correlations among pairs of synchronous synergies, and shows that they enhance by 9-15% (depending on the set of tasks) the task-discriminating information provided by the synergy decompositions. We suggest that the proposed methodology could be useful for assessing whether single-trial activations of one synergy depend on activations of other synergies and quantifying the effect of such dependences on the task-to-task differences in muscle activation patterns.

  11. Intraluminal pressure patterns in the human colon assessed by high-resolution manometry

    PubMed Central

    Chen, Ji-Hong; Yu, Yuanjie; Yang, Zixian; Yu, Wen-Zhen; Chen, Wu Lan; Yu, Hui; Kim, Marie Jeong-Min; Huang, Min; Tan, Shiyun; Luo, Hesheng; Chen, Jianfeng; Chen, Jiande D. Z.; Huizinga, Jan D.

    2017-01-01

    Assessment of colonic motor dysfunction is rarely done because of inadequate methodology and lack of knowledge about normal motor patterns. Here we report on elucidation of intraluminal pressure patterns using High Resolution Colonic Manometry during a baseline period and in response to a meal, in 15 patients with constipation, chronically dependent on laxatives, 5 healthy volunteers and 9 patients with minor, transient, IBS-like symptoms but no sign of constipation. Simultaneous pressure waves (SPWs) were the most prominent propulsive motor pattern, associated with gas expulsion and anal sphincter relaxation, inferred to be associated with fast propagating contractions. Isolated pressure transients occurred in most sensors, ranging in amplitude from 5–230 mmHg. Rhythmic haustral boundary pressure transients occurred at sensors about 4–5 cm apart. Synchronized haustral pressure waves, covering 3–5 cm of the colon occurred to create a characteristic intrahaustral cyclic motor pattern at 3–6 cycles/min, propagating in mixed direction. This activity abruptly alternated with erratic patterns resembling the segmentation motor pattern of the small intestine. High amplitude propagating pressure waves (HAPWs) were too rare to contribute to function assessment in most subjects. Most patients, dependent on laxatives for defecation, were able to generate normal motor patterns in response to a meal. PMID:28216670

  12. Characterizing the complexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Barkhaus, Paul E.; Zhang, Xu; Zev Rymer, William

    2011-10-01

    This paper presents a novel application of the approximate entropy (ApEn) measurement for characterizing spontaneous motor unit activity of amyotrophic lateral sclerosis (ALS) patients. High-density surface electromyography (EMG) was used to record spontaneous motor unit activity bilaterally from the thenar muscles of nine ALS subjects. Three distinct patterns of spontaneous motor unit activity (sporadic spikes, tonic spikes and high-frequency repetitive spikes) were observed. For each pattern, complexity was characterized by calculating the ApEn values of the representative signal segments. A sliding window over each segment was also introduced to quantify the dynamic changes in complexity for the different spontaneous motor unit patterns. We found that the ApEn values for the sporadic spikes were the highest, while those of the high-frequency repetitive spikes were the lowest. There is a significant difference in mean ApEn values between two arbitrary groups of the three spontaneous motor unit patterns (P < 0.001). The dynamic ApEn curve from the sliding window analysis is capable of tracking variations in EMG activity, thus providing a vivid, distinctive description for different patterns of spontaneous motor unit action potentials in terms of their complexity. These findings expand the existing knowledge of spontaneous motor unit activity in ALS beyond what was previously obtained using conventional linear methods such as firing rate or inter-spike interval statistics.

  13. Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic

    NASA Astrophysics Data System (ADS)

    González-Carbajal, Javier; Domínguez, Jaime

    2017-11-01

    This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.

  14. Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study

    PubMed Central

    Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David

    2010-01-01

    Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699

  15. Sodium benzoate, a food preservative, induces anxiety and motor impairment in rats.

    PubMed

    Noorafshan, Ali; Erfanizadeh, Mahboobeh; Karbalay-Doust, Saied

    2014-01-01

    To investigate the behavioral characteristics, including anxiety and motor impairment, in sodium benzoate (NaB) treated rats. The study was carried out between July and September 2012 in the Laboratory Animal Center of Shiraz University of Medical Sciences, Shiraz, Iran. The rats were divided into 2 groups receiving distilled water and NaB (200mg/kg/day). All the animals received daily gavages for 4 weeks. At the end of the fourth week, anxiety, and motor function were assessed in elevated plus maze and rotarod test. According to the results, NaB-treated rats spent less time in the open arm and had fewer entrances to the open arms in comparison with the control group (p<0.04). Also, the performance of the NaB-treated rats in fixed and accelerating speed rotarods was impaired, and the riding time (endurance) was lower than the control group (p<0.01). The performance of the NaB-treated rats was impaired in the elevated plus maze, an indicator of anxiety. Their riding time in fixed and accelerating speed rotarods was decreased, indicating motor impairment.

  16. Phase-plane analysis of the totally asymmetric simple exclusion process with binding kinetics and switching between antiparallel lanes

    PubMed Central

    Kuan, Hui-Shun; Betterton, Meredith D.

    2016-01-01

    Motor protein motion on biopolymers can be described by models related to the totally asymmetric simple exclusion process (TASEP). Inspired by experiments on the motion of kinesin-4 motors on antiparallel microtubule overlaps, we analyze a model incorporating the TASEP on two antiparallel lanes with binding kinetics and lane switching. We determine the steady-state motor density profiles using phase-plane analysis of the steady-state mean field equations and kinetic Monte Carlo simulations. We focus on the density-density phase plane, where we find an analytic solution to the mean field model. By studying the phase-space flows, we determine the model’s fixed points and their changes with parameters. Phases previously identified for the single-lane model occur for low switching rate between lanes. We predict a multiple coexistence phase due to additional fixed points that appear as the switching rate increases: switching moves motors from the higher-density to the lower-density lane, causing local jamming and creating multiple domain walls. We determine the phase diagram of the model for both symmetric and general boundary conditions. PMID:27627345

  17. Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks.

    PubMed

    Ebina, Teppei; Masamizu, Yoshito; Tanaka, Yasuhiro R; Watakabe, Akiya; Hirakawa, Reiko; Hirayama, Yuka; Hira, Riichiro; Terada, Shin-Ichiro; Koketsu, Daisuke; Hikosaka, Kazuo; Mizukami, Hiroaki; Nambu, Atsushi; Sasaki, Erika; Yamamori, Tetsuo; Matsuzaki, Masanori

    2018-05-14

    Two-photon imaging in behaving animals has revealed neuronal activities related to behavioral and cognitive function at single-cell resolution. However, marmosets have posed a challenge due to limited success in training on motor tasks. Here we report the development of protocols to train head-fixed common marmosets to perform upper-limb movement tasks and simultaneously perform two-photon imaging. After 2-5 months of training sessions, head-fixed marmosets can control a manipulandum to move a cursor to a target on a screen. We conduct two-photon calcium imaging of layer 2/3 neurons in the motor cortex during this motor task performance, and detect task-relevant activity from multiple neurons at cellular and subcellular resolutions. In a two-target reaching task, some neurons show direction-selective activity over the training days. In a short-term force-field adaptation task, some neurons change their activity when the force field is on. Two-photon calcium imaging in behaving marmosets may become a fundamental technique for determining the spatial organization of the cortical dynamics underlying action and cognition.

  18. Technical Evaluation Motor No. 7 (TEM-7)

    NASA Technical Reports Server (NTRS)

    Hughes, Phil

    1991-01-01

    The Technical Evaluation Motor No. 7 (TEM-7) test was a full-scale, full duration static test firing of a high performance motor-configuration solid rocket motor with nozzle vectoring. The final test report documents the procedures, performance, and results of the static test firing of TEM-7. All observations, discussions, conclusions, and recommendations included in the report are complete and final except for the TEM-7 fixed housing unbond investigation. A presentation and discussion of TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107, Rev A, Space Shuttle Technical Evaluation Motor No. 7 (TEM-7) Static Fire Test Plan are included.

  19. Compositional symbol grounding for motor patterns.

    PubMed

    Greco, Alberto; Caneva, Claudio

    2010-01-01

    We developed a new experimental and simulative paradigm to study the establishing of compositional grounded representations for motor patterns. Participants learned to associate non-sense arm motor patterns, performed in three different hand postures, with non-sense words. There were two group conditions: in the first (compositional), each pattern was associated with a two-word (verb-adverb) sentence; in the second (holistic), each same pattern was associated with a unique word. Two experiments were performed. In the first, motor pattern recognition and naming were tested in the two conditions. Results showed that verbal compositionality had no role in recognition and that the main source of confusability in this task came from discriminating hand postures. As the naming task resulted too difficult, some changes in the learning procedure were implemented in the second experiment. In this experiment, the compositional group achieved better results in naming motor patterns especially for patterns where hand postures discrimination was relevant. In order to ascertain the differential effect, upon this result, of memory load and of systematic grounding, neural network simulations were also made. After a basic simulation that worked as a good model of subjects performance, in following simulations the number of stimuli (motor patterns and words) was increased and the systematic association between words and patterns was disrupted, while keeping the same number of words and syntax. Results showed that in both conditions the advantage for the compositional condition significantly increased. These simulations showed that the advantage for this condition may be more related to the systematicity rather than to the mere informational gain. All results are discussed in connection to the possible support of the hypothesis of a compositional motor representation and toward a more precise explanation of the factors that make compositional representations working.

  20. Output variability across animals and levels in a motor system

    PubMed Central

    Norris, Brian J; Günay, Cengiz; Kueh, Daniel

    2018-01-01

    Rhythmic behaviors vary across individuals. We investigated the sources of this output variability across a motor system, from the central pattern generator (CPG) to the motor plant. In the bilaterally symmetric leech heartbeat system, the CPG orchestrates two coordinations in the bilateral hearts with different intersegmental phase relations (Δϕ) and periodic side-to-side switches. Population variability is large. We show that the system is precise within a coordination, that differences in repetitions of a coordination contribute little to population output variability, but that differences between bilaterally homologous cells may contribute to some of this variability. Nevertheless, much output variability is likely associated with genetic and life history differences among individuals. Variability of Δϕ were coordination-specific: similar at all levels in one, but significantly lower for the motor pattern than the CPG pattern in the other. Mechanisms that transform CPG output to motor neurons may limit output variability in the motor pattern. PMID:29345614

  1. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter

    PubMed Central

    Hoang, T. N. Linh; Neef, Andreas; Paulus, Walter; Sommer, Martin

    2015-01-01

    The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23–44) and 13 adults who stutter (four females, nine males, aged 21–55) were asked to build verbs with the verbal prefix ‘auf’. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a negative correlation between the amount of facilitation and stuttering severity suggests that we discovered a main physiological principle of fluent speech production and its role in stuttering. PMID:25595146

  2. Noise power spectrum of the fixed pattern noise in digital radiography detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong Sik, E-mail: dskim@hufs.ac.kr; Kim, Eun

    Purpose: The fixed pattern noise in radiography image detectors is caused by various sources. Multiple readout circuits with gate drivers and charge amplifiers are used to efficiently acquire the pixel voltage signals. However, the multiple circuits are not identical and thus yield nonuniform system gains. Nonuniform sensitivities are also produced from local variations in the charge collection elements. Furthermore, in phosphor-based detectors, the optical scattering at the top surface of the columnar CsI growth, the grain boundaries, and the disorder structure causes spatial sensitivity variations. These nonuniform gains or sensitivities cause fixed pattern noise and degrade the detector performance, evenmore » though the noise problem can be partially alleviated by using gain correction techniques. Hence, in order to develop good detectors, comparative analysis of the energy spectrum of the fixed pattern noise is important. Methods: In order to observe the energy spectrum of the fixed pattern noise, a normalized noise power spectrum (NNPS) of the fixed pattern noise is considered in this paper. Since the fixed pattern noise is mainly caused by the nonuniform gains, we call the spectrum the gain NNPS. We first asymptotically observe the gain NNPS and then formulate two relationships to calculate the gain NNPS based on a nonuniform-gain model. Since the gain NNPS values are quite low compared to the usual NNPS, measuring such a low NNPS value is difficult. By using the average of the uniform exposure images, a robust measuring method for the gain NNPS is proposed in this paper. Results: By using the proposed measuring method, the gain NNPS curves of several prototypes of general radiography and mammography detectors were measured to analyze their fixed pattern noise properties. We notice that a direct detector, which is based on the a-Se photoconductor, showed lower gain NNPS than the indirect-detector case, which is based on the CsI scintillator. By comparing the gain NNPS curves of the indirect detectors, we could analyze the scintillator properties depending on the techniques for the scintillator surface processing. Conclusions: A robust measuring method for the NNPS of the fixed pattern noise of a radiography detector is proposed in this paper. The method can measure a stable gain NNPS curve, even though the fixed pattern noise level is quite low. From the measured gain NNPS curves, we can compare and analyze the detector properties in terms of producing the fixed pattern noise.« less

  3. Boundary-induced pattern formation from uniform temporal oscillation

    NASA Astrophysics Data System (ADS)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2018-04-01

    Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

  4. Motor/generator and electronic control considerations for energy storage flywheels

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1984-01-01

    A spacecraft electric power supply system is described. Requirements of the system are to accelerate a momentum wheel to a fixed maximum speed when solar energy is available and to maintain a constant voltage on the spacecraft bus under varying loads when solar energy is not available. Candidate motor types, pulse width modulated current control systems, and efficiency considerations are discussed. In addition, the Lunar Roving Vehicle motors are described along with their respective efficiencies.

  5. Crushing motor patterns in drum (Teleostei: Sciaenidae): functional novelties associated with molluscivory.

    PubMed

    Grubich, J R

    2000-10-01

    This study explores the evolution of molluscivory in the marine teleost family Sciaenidae by comparing the motor activity patterns of the pharyngeal muscles of two closely related taxa, the molluscivorous black drum (Pogonias cromis) and the generalist red drum (Sciaenops ocellatus). Muscle activity patterns were recorded simultaneously from eight pharyngeal muscles. Electromyographic (EMG) activity was recorded during feeding on three prey types that varied in shell hardness. Canonical variate and discriminant function analyses were used to describe the distinctness of drum pharyngeal processing behaviors. Discriminant functions built of EMG timing variables were more accurate than muscle activity intensity at identifying cycles by prey type and species. Both drum species demonstrated the ability to modulate pharyngeal motor patterns in response to prey hardness. The mean motor patterns and the canonical variate space of crushing behavior indicated that black drum employed a novel motor pattern during molluscivory. The mollusc-crushing motor pattern of black drum is different from other neoteleost pharyngeal behaviors in lacking upper jaw retraction by the retractor dorsalis muscle. This functional modification suggests that crushing hard-shelled marine bivalves requires a 'vice-like' compression bite in contrast to the shearing forces that are applied to weaker-shelled fiddler crabs by red drum and to freshwater snails by redear sunfish.

  6. Optimization of self-aligned double patterning (SADP)-compliant layout designs using pattern matching for sub-20nm metal routing

    NASA Astrophysics Data System (ADS)

    Wang, Lynn T.-N.; Schroeder, Uwe Paul; Madhavan, Sriram

    2017-03-01

    A pattern-based methodology for optimizing SADP-compliant layout designs is developed based on identifying cut mask patterns and replacing them with pre-characterized fixing solutions. A pattern-based library of difficult-tomanufacture cut patterns with pre-characterized fixing solutions is built. A pattern-based engine searches for matching patterns in the decomposed layouts. When a match is found, the engine opportunistically replaces the detected pattern with a pre-characterized fixing solution. The methodology was demonstrated on a 7nm routed metal2 block. A small library of 30 cut patterns increased the number of more manufacturable cuts by 38% and metal-via enclosure by 13% with a small parasitic capacitance impact of 0.3%.

  7. Development of a drive system for a sequential space camera

    NASA Technical Reports Server (NTRS)

    Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.

    1976-01-01

    Breadboard models of single and dual motor drives for the shutter, claw and magazine of a space camera system were designed and tested. The single motor technique utilizes a single electronically commutated motor to drive the claw and shutter without resorting to a solenoid actuated clutch for pulse operation. Shutter speed is established by a combination of the cinemode speed and the opening of the conventional DAC two piece shutter. Pulse mode operation is obtained by applying power at a fixed clock rate and removing power at an appropriate point in the mechanical cycle such that the motor comes to rest by system friction. The dual motor approach utilizes a stepper motor to drive the shutter and an electronically commutated dc motor to drive the claw and magazine functions. The motors are synchronized electronically.

  8. Visual–Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey

    PubMed Central

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P.; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-01-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual–motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. PMID:25491118

  9. Design of permanent magnet synchronous motor speed control system based on SVPWM

    NASA Astrophysics Data System (ADS)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  10. 16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, J.S.; Burress, T.A.; Lee, S.T.

    2007-10-31

    The reluctance interior permanent magnet (RIPM) motor is currently used by many leading auto manufacturers for hybrid vehicles. The power density for this type of motor is high compared with that of induction motors and switched reluctance motors. The primary drawback of the RIPM motor is the permanent magnet (PM) because during high-speed operation, the fixed PM produces a huge back electromotive force (emf) that must be reduced before the current will pass through the stator windings. This reduction in back-emf is accomplished with a significant direct-axis (d-axis) demagnetization current, which opposes the PM's flux to reduce the flux seenmore » by the stator wires. This may lower the power factor and efficiency of the motor and raise the requirement on the alternate current (ac) power supply; consequently, bigger inverter switching components, thicker motor winding conductors, and heavier cables are required. The direct current (dc) link capacitor is also affected when it must accommodate heavier harmonic currents. It is commonly agreed that, for synchronous machines, the power factor can be optimized by varying the field excitation to minimize the current. The field produced by the PM is fixed and cannot be adjusted. What can be adjusted is reactive current to the d-axis of the stator winding, which consumes reactive power but does not always help to improve the power factor. The objective of this project is to avoid the primary drawbacks of the RIPM motor by introducing brushless field excitation (BFE). This offers both high torque per ampere (A) per core length at low speed by using flux, which is enhanced by increasing current to a fixed excitation coil, and flux, which is weakened at high speed by reducing current to the excitation coil. If field weakening is used, the dc/dc boost converter used in a conventional RIPM motor may be eliminated to reduce system costs. However, BFE supports a drive system with a dc/dc boost converter, because it can further extend the constant power speed range of the drive system and adjust the field for power factor and efficiency gains. Lower core losses at low torque regions, especially at high speeds, are attained by reducing the field excitation. Safety and reliability are increased by weakening the field when a winding short-circuit fault occurs, preventing damage to the motor. For a high-speed motor operating at 16,000-revolutions per minute (rpm), mechanical stress is a challenge. Bridges that link the rotor punching segments together must be thickened for mechanical integrity; consequently, increased rotor flux leakage significantly lowers motor performance. This barrier can be overcome by BFE to ensure sufficient rotor flux when needed.« less

  11. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules

    PubMed Central

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.

    2018-01-01

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510

  12. Vehicle for carrying an object of interest

    DOEpatents

    Zollinger, W.T.; Ferrante, T.A.

    1998-10-13

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

  13. Vehicle for carrying an object of interest

    DOEpatents

    Zollinger, W. Thor; Ferrante, Todd A.

    1998-01-01

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

  14. Multi-functional annular fairing for coupling launch abort motor to space vehicle

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Scotti, Stephen J. (Inventor); Buning, Pieter G. (Inventor); Bauer, Steven X. S. (Inventor); Engelund, Walter C. (Inventor); Schuster, David M. (Inventor)

    2011-01-01

    An annular fairing having aerodynamic, thermal, structural and acoustic attributes couples a launch abort motor to a space vehicle having a payload of concern mounted on top of a rocket propulsion system. A first end of the annular fairing is fixedly attached to the launch abort motor while a second end of the annular fairing is attached in a releasable fashion to an aft region of the payload. The annular fairing increases in diameter between its first and second ends.

  15. Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking

    PubMed Central

    Chvatal, Stacie A.; Ting, Lena H.

    2012-01-01

    The modular control of muscles in groups, often referred to as muscle synergies, has been proposed to provide a motor repertoire of actions for the robust control of movement. However it is not clear whether muscle synergies identified in one task are also recruited by different neural pathways subserving other motor behaviors. We tested the hypothesis that voluntary and reactive modifications to walking in humans result from the recruitment of locomotor muscle synergies. We recorded the activity of 16 muscles in the right leg as subjects walked a 7.5 m path at two different speeds. To elicit a second motor behavior, midway through the path we imposed ramp and hold translation perturbations of the support surface in each of four cardinal directions. Variations in the temporal recruitment of locomotor muscle synergies could account for cycle-by-cycle variations in muscle activity across strides. Locomotor muscle synergies were also recruited in atypical phases of gait, accounting for both anticipatory gait modifications prior to perturbations and reactive feedback responses to perturbations. Our findings are consistent with the idea that a common pool of spatially-fixed locomotor muscle synergies can be recruited by different neural pathways, including the central pattern generator for walking, brainstem pathways for balance control, and cortical pathways mediating voluntary gait modifications. Together with electrophysiological studies, our work suggests that muscle synergies may provide a library of motor subtasks that can be flexibly recruited by parallel descending pathways to generate a variety of complex natural movements in the upper and lower limbs. PMID:22933805

  16. Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke

    PubMed Central

    Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.

    2016-01-01

    Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794

  17. Biomechanics of normal and pathological gait: implications for understanding human locomotor control.

    PubMed

    Winter, D A

    1989-12-01

    The biomechanical (kinetic) analysis of human gait reveals the integrated and detailed motor patterns that are essential in pinpointing the abnormal patterns in pathological gait. In a similar manner, these motor patterns (moments, powers, and EMGs) can be used to identify synergies and to validate theories of CNS control. Based on kinetic and EMG patterns for a wide range of normal subjects and cadences, evidence is presented that both supports and negates the central pattern generator theory of locomotion. Adaptive motor patterns that are evident in peripheral gait pathologies reinforce a strong peripheral rather than a central control. Finally, a three-component subtask theory of human gait is presented and is supported by reference to the motor patterns seen in a normal gait. The identified subtasks are (a) support (against collapse during stance); (b) dynamic balance of the upper body, also during stance; and (c) feedforward control of the foot trajectory to achieve safe ground clearance and a gentle heel contact.

  18. Structure of a human pulmonary acinus.

    PubMed

    Berend, N; Rynell, A C; Ward, H E

    1991-02-01

    The structure of the human pulmonary acinus has been described infrequently. The aim of the study was to determine the branching pattern of respiratory bronchioles and alveolar ducts in a human acinus from the peripheral part of the lung, where space constraints may have affected airway branching patterns. The lungs were obtained from an 18 year old victim of a motor vehicle accident and fixed in inflation under a pressure of 25 cm H2O. A block was cut from the lower edge of the right lower lobe and embedded in plastic. Serial sections were cut and the branching pattern of airways subtended by a terminal bronchiole were followed. The acinus was bounded on two sides by pleura and on the remaining sides by connective tissue septa. The terminal bronchiole divided into two respiratory bronchioles, each of which gave rise to four systems of alveolar ducts. Between successive systems of alveolar ducts the respiratory bronchioles continued as single airways, becoming progressively more alveolated towards the periphery but not subtending further branches of respiratory bronchioles. The duct systems became less complex towards the periphery, near to the edge of the lung. The total volume of the acinus was similar to that found in previous studies. This branching pattern has not been described previously in a human acinus.

  19. 33 CFR 149.409 - How many fire extinguishers are needed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... turbine engines B-II One for each engine. 2 (6) Open electric motors and generators C-II One for each of... fixed system is installed. 2 If the engine is installed on a weather deck or is open to the atmosphere... fans, are exempt. 4 Not required if a fixed foam system is installed in accordance with 46 CFR 108.489. ...

  20. 33 CFR 149.409 - How many fire extinguishers are needed?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... turbine engines B-II One for each engine. 2 (6) Open electric motors and generators C-II One for each of... fixed system is installed. 2 If the engine is installed on a weather deck or is open to the atmosphere... fans, are exempt. 4 Not required if a fixed foam system is installed in accordance with 46 CFR 108.489...

  1. 33 CFR 149.409 - How many fire extinguishers are needed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... turbine engines B-II One for each engine. 2 (6) Open electric motors and generators C-II One for each of... fixed system is installed. 2 If the engine is installed on a weather deck or is open to the atmosphere... fans, are exempt. 4 Not required if a fixed foam system is installed in accordance with 46 CFR 108.489. ...

  2. 33 CFR 149.409 - How many fire extinguishers are needed?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... turbine engines B-II One for each engine. 2 (6) Open electric motors and generators C-II One for each of... fixed system is installed. 2 If the engine is installed on a weather deck or is open to the atmosphere... fans, are exempt. 4 Not required if a fixed foam system is installed in accordance with 46 CFR 108.489...

  3. 33 CFR 149.409 - How many fire extinguishers are needed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... turbine engines B-II One for each engine. 2 (6) Open electric motors and generators C-II One for each of... fixed system is installed. 2 If the engine is installed on a weather deck or is open to the atmosphere... fans, are exempt. 4 Not required if a fixed foam system is installed in accordance with 46 CFR 108.489. ...

  4. Stress-induced thermotolerance of ventilatory motor pattern generation in the locust, Locusta migratoria.

    PubMed

    Newman, Amy E M; Foerster, Melody; Shoemaker, Kelly L; Robertson, R Meldrum

    2003-11-01

    Ventilation is a crucial motor activity that provides organisms with an adequate circulation of respiratory gases. For animals that exist in harsh environments, an important goal is to protect ventilation under extreme conditions. Heat shock, anoxia, and cold shock are environmental stresses that have previously been shown to trigger protective responses. We used the locust to examine stress-induced thermotolerance by monitoring the ability of the central nervous system to generate ventilatory motor patterns during a subsequent heat exposure. Preparations from pre-stressed animals had an increased incidence of motor pattern recovery following heat-induced failure, however, prior stress did not alter the characteristics of the ventilatory motor pattern. During constant heat exposure at sub-lethal temperatures, we observed a protective effect of heat shock pre-treatment. Serotonin application had similar effects on motor patterns when compared to prior heat shock. These studies are consistent with previous studies that indicate prior exposure to extreme temperatures and hypoxia can protect neural operation against high temperature stress. They further suggest that the protective mechanism is a time-dependent process best revealed during prolonged exposure to extreme temperatures and is mediated by a neuromodulator such as serotonin.

  5. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.

    PubMed

    Aoi, Shinya; Funato, Tetsuro

    2016-03-01

    Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Post-decomposition optimizations using pattern matching and rule-based clustering for multi-patterning technology

    NASA Astrophysics Data System (ADS)

    Wang, Lynn T.-N.; Madhavan, Sriram

    2018-03-01

    A pattern matching and rule-based polygon clustering methodology with DFM scoring is proposed to detect decomposition-induced manufacturability detractors and fix the layout designs prior to manufacturing. A pattern matcher scans the layout for pre-characterized patterns from a library. If a pattern were detected, rule-based clustering identifies the neighboring polygons that interact with those captured by the pattern. Then, DFM scores are computed for the possible layout fixes: the fix with the best score is applied. The proposed methodology was applied to two 20nm products with a chip area of 11 mm2 on the metal 2 layer. All the hotspots were resolved. The number of DFM spacing violations decreased by 7-15%.

  7. Variations in motor unit recruitment patterns occur within and between muscles in the running rat (Rattus norvegicus).

    PubMed

    Hodson-Tole, E F; Wakeling, J M

    2007-07-01

    Motor units are generally considered to follow a set, orderly pattern of recruitment within each muscle with activation occurring in the slowest through to the fastest units. A growing body of evidence, however, suggests that recruitment patterns may not always follow such an orderly sequence. Here we investigate whether motor unit recruitment patterns vary within and between the ankle extensor muscles of the rat running at 40 cm s(-1) on a level treadmill. In the past it has been difficult to quantify motor unit recruitment patterns during locomotion; however, recent application of wavelet analysis techniques has made such detailed analysis of motor unit recruitment possible. Here we present methods for quantifying the interplay of fast and slow motor unit recruitment based on their myoelectric signals. Myoelectric data were collected from soleus, plantaris and medial gastrocnemius muscles representing populations of slow, mixed and fast fibres, respectively, and providing a good opportunity to relate myoelectric frequency content to motor unit recruitment patterns. Following wavelet transformation, principal component analysis quantified signal intensity and relative frequency content. Significant differences in signal frequency content occurred between different time points within a stride (P<0.001). We optimised high- and low-frequency wavelets to the major signals from the fast and slow motor units. The goodness-of-fit of the optimised wavelets to the signal intensity was high for all three muscles (r2>0.98). The low-frequency band had a significantly better fit to signals from the soleus muscle (P<0.001), while the high-frequency band had a significantly better fit to the medial gastrocnemius (P<0.001).

  8. Permanent magnet DC motor control by using arduino and motor drive module BTS7960

    NASA Astrophysics Data System (ADS)

    Syukriyadin, S.; Syahrizal, S.; Mansur, G.; Ramadhan, H. P.

    2018-05-01

    This study proposes a control system for permanent magnet DC (PMDC) motor. PMDC drive control system has two critical parameters: control and monitoring. Control system includes rotation speed control and direction of rotation of motor using motor drive module BTS7960. The PWM signal has a fixed frequency of waves with varying duty cycles (between 0% and 100%), so the motor rotation can be regulated gradually using a potentiometer already programmed on the Arduino Uno board. The motor rotation direction setting uses the H-bridge circuit method using a 3-way switch to set the direction of forward-reverse rotation of the motor. The monitoring system includes measurements of rotational speed, current, and voltage. Motor rotation speed can be adjusted from the armature voltage settings through the duty cycle PWM setting so that the motor speed can be increased or decreased by the desired duty cycle. From the unload PMDC motor test results it has also been shown that the torque of the motor is relatively constant when there is a change in speed from low rpm to high rpm or vice versa.

  9. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment

    PubMed Central

    Mantilla, Carlos B.; Seven, Yasin B.; Sieck, Gary C.

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation, but are also active in other non-ventilatory behaviors, including coughing, sneezing, vomiting, defecation and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely-distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. PMID:24746055

  10. Visual-Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey.

    PubMed

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-10-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.

  11. The design of RFID convey or belt gate systems using an antenna control unit.

    PubMed

    Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan

    2011-01-01

    This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.

  12. The Design of RFID Convey or Belt Gate Systems Using an Antenna Control Unit

    PubMed Central

    Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan

    2011-01-01

    This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance. PMID:22164119

  13. Patterns of Weakness, Classification of Motor Neuron Disease & Clinical Diagnosis of Sporadic ALS

    PubMed Central

    Statland, Jeffrey M.; Barohn, Richard J.; McVey, April L.; Katz, Jonathan; Dimachkie, Mazen M.

    2015-01-01

    Synopsis When approaching the patient with suspected motor neuron disease (MND) the pattern of weakness on exam helps distinguish MND from other diseases of peripheral nerves, the neuromuscular junction, or muscle. MND is a clinical diagnosis supported by findings on electrodiagnostic testing, in the absence of other abnormalities on neuroimaging or serological testing. MNDs exist on a spectrum: from a pure lower motor neuron; to mixed upper and lower motor neuron; to a pure upper motor neuron variant in addition to regional variants restricted to the arms, legs or bulbar region. Amyotrophic lateral sclerosis (ALS) is a progressive mixed upper and lower motor neuron disorder, most commonly sporadic (~85%), which is invariably fatal. The only FDA approved treatments for ALS are riluzole, which prolongs life by about 3 months, and dextromethorphan/quinidine which provides symptomatic relief for pseudobulbar affect (inappropriate bouts of laughter or crying). Here we describe a pattern approach to identifying motor neuron disease, and clinical features of sporadic ALS. PMID:26515618

  14. The effects of morphine on fixed-interval patterning and temporal discrimination.

    PubMed Central

    Odum, A L; Schaal, D W

    2000-01-01

    Changes produced by drugs in response patterns under fixed-interval schedules of reinforcement have been interpreted to result from changes in temporal discrimination. To examine this possibility, this experiment determined the effects of morphine on the response patterning of 4 pigeons during a fixed-interval 1-min schedule of food delivery with interpolated temporal discrimination trials. Twenty of the 50 total intervals were interrupted by choice trials. Pecks to one key color produced food if the interval was interrupted after a short time (after 2 or 4.64 s). Pecks to another key color produced food if the interval was interrupted after a long time (after 24.99 or 58 s). Morphine (1.0 to 10.0 mg/kg) decreased the index of curvature (a measure of response patterning) during fixed intervals and accuracy during temporal discrimination trials. Accuracy was equally disrupted following short and long sample durations. Although morphine disrupted temporal discrimination in the context of a fixed-interval schedule, these effects are inconsistent with interpretations of the disruption of response patterning as a selective overestimation of elapsed time. The effects of morphine may be related to the effects of more conventional external stimuli on response patterning. PMID:11029024

  15. Dynamical origin of complex motor patterns

    NASA Astrophysics Data System (ADS)

    Alonso, L. M.; Alliende, J. A.; Mindlin, G. B.

    2010-11-01

    Behavior emerges as the nervous system generates motor patterns in charge of driving a peripheral biomechanical device. For several cases in the animal kingdom, it has been identified that the motor patterns used in order to accomplish a diversity of tasks are the different solutions of a simple, low dimensional nonlinear dynamical system. Yet, motor patterns emerge from the interaction of an enormous number of individual dynamical units. In this work, we study the dynamics of the average activity of a large set of coupled excitable units which are periodically forced. We show that low dimensional, yet non trivial dynamics emerges. As a case study, we analyze the air sac pressure patterns used by domestic canaries during song, which consists of a succession of repetitions of different syllable types. We show that the pressure patterns used to generate different syllables can be approximated by the solutions of the investigated model. In this way, we are capable of integrating different description scales of our problem.

  16. Spatial noise in microdisplays for near-to-eye applications

    NASA Astrophysics Data System (ADS)

    Hastings, Arthur R., Jr.; Draper, Russell S.; Wood, Michael V.; Fellowes, David A.

    2011-06-01

    Spatial noise in imaging systems has been characterized and its impact on image quality metrics has been addressed primarily with respect to the introduction of this noise at the sensor component. However, sensor fixed pattern noise is not the only source of fixed pattern noise in an imaging system. Display fixed pattern noise cannot be easily mitigated in processing and, therefore, must be addressed. In this paper, a thorough examination of the amount and the effect of display fixed pattern noise is presented. The specific manifestation of display fixed pattern noise is dependent upon the display technology. Utilizing a calibrated camera, US Army RDECOM CERDEC NVESD has developed a microdisplay (μdisplay) spatial noise data collection capability. Noise and signal power spectra were used to characterize the display signal to noise ratio (SNR) as a function of spatial frequency analogous to the minimum resolvable temperature difference (MRTD) of a thermal sensor. The goal of this study is to establish a measurement technique to characterize μdisplay limiting performance to assist in proper imaging system specification.

  17. Thermal and vibration dynamic analysis of an induction motor using optical fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Sousa, Kleiton d. M.; Dreyer, Uilian J.; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2015-09-01

    In this paper it is presented the results of temperature and vibration measurements in a Three-phase Induction Motor (TIM) running at no-load condition. Vibration and temperature analysis are the most successful techniques used for condition monitoring of induction motors. The vibration is measured using two FBGs installed inside of the motor between two subsequent stator teeth. The motor spectrum of vibration when power is at 60 Hz presents the frequencies 60 Hz, 120 Hz, 180 Hz, and 240 Hz as theoretically expected. For the temperature measurement two FBGs are encapsulated in an alumina tube fixed along the stator. The results show 0.9°C difference between the two FBG caused by the motor ventilation nearer of one FBG. These measurements can be used to determine TIM parameters and still be predictive maintenance tool.

  18. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.

    PubMed

    Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.

  19. Evaluation of Esophageal Motor Function With High-resolution Manometry

    PubMed Central

    2013-01-01

    For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094

  20. A Parameterized Pattern-Error Objective for Large-Scale Phase-Only Array Pattern Design

    DTIC Science & Technology

    2016-03-21

    12 4.4 Example 3: Sector Beam w/ Nonuniform Amplitude...fixed uniform amplitude illumination, phase-only optimization can also find application to arrays with fixed but nonuniform tapers. Such fixed tapers...arbitrary element locations nonuniform FFT algorithms exist [43–45] that have the same asymptotic complexity as the conventional FFT, although the

  1. Generating Spatiotemporal Joint Torque Patterns from Dynamical Synchronization of Distributed Pattern Generators

    PubMed Central

    Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo

    2009-01-01

    Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216

  2. Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons.

    PubMed

    Gaffield, Michael A; Christie, Jason M

    2017-05-03

    Inhibition from molecular layer interneurons (MLIs) is thought to play an important role in cerebellar function by sharpening the precision of Purkinje cell spike output. Yet the coding features of MLIs during behavior are poorly understood. To study MLI activity, we used in vivo Ca 2+ imaging in head-fixed mice during the performance of a rhythmic motor behavior, licking during water consumption. MLIs were robustly active during lick-related movement across a lobule-specific region of the cerebellum showing high temporal correspondence within their population. Average MLI Ca 2+ activity strongly correlated with movement rate but not to the intentional, or unexpected, adjustment of lick position or to sensory feedback that varied with task condition. Chemogenetic suppression of MLI output reduced lick rate and altered tongue movements, indicating that activity of these interneurons not only encodes temporal aspects of movement kinematics but also influences motor outcome pointing to an integral role in online control of rhythmic behavior. SIGNIFICANCE STATEMENT The cerebellum helps fine-tune coordinated motor actions via signaling from projection neurons called Purkinje cells. Molecular layer interneurons (MLIs) provide powerful inhibition onto Purkinje cells, but little is understood about how this inhibitory circuit is engaged during behavior or what type of information is transmitted through these neurons. Our work establishes that MLIs in the lateral cerebellum are broadly activated during movement with calcium activity corresponding to movement rate. We also show that suppression of MLI output slows and disorganizes the precise movement pattern. Therefore, MLIs are an important circuit element in the cerebellum allowing for accurate motor control. Copyright © 2017 the authors 0270-6474/17/374751-15$15.00/0.

  3. Reinforcement Learning of Two-Joint Virtual Arm Reaching in a Computer Model of Sensorimotor Cortex

    PubMed Central

    Neymotin, Samuel A.; Chadderdon, George L.; Kerr, Cliff C.; Francis, Joseph T.; Lytton, William W.

    2014-01-01

    Neocortical mechanisms of learning sensorimotor control involve a complex series of interactions at multiple levels, from synaptic mechanisms to cellular dynamics to network connectomics. We developed a model of sensory and motor neocortex consisting of 704 spiking model neurons. Sensory and motor populations included excitatory cells and two types of interneurons. Neurons were interconnected with AMPA/NMDA and GABAA synapses. We trained our model using spike-timing-dependent reinforcement learning to control a two-joint virtual arm to reach to a fixed target. For each of 125 trained networks, we used 200 training sessions, each involving 15 s reaches to the target from 16 starting positions. Learning altered network dynamics, with enhancements to neuronal synchrony and behaviorally relevant information flow between neurons. After learning, networks demonstrated retention of behaviorally relevant memories by using proprioceptive information to perform reach-to-target from multiple starting positions. Networks dynamically controlled which joint rotations to use to reach a target, depending on current arm position. Learning-dependent network reorganization was evident in both sensory and motor populations: learned synaptic weights showed target-specific patterning optimized for particular reach movements. Our model embodies an integrative hypothesis of sensorimotor cortical learning that could be used to interpret future electrophysiological data recorded in vivo from sensorimotor learning experiments. We used our model to make the following predictions: learning enhances synchrony in neuronal populations and behaviorally relevant information flow across neuronal populations, enhanced sensory processing aids task-relevant motor performance and the relative ease of a particular movement in vivo depends on the amount of sensory information required to complete the movement. PMID:24047323

  4. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    PubMed

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  5. CNT based thermal Brownian motor to pump water in nanodevices

    NASA Astrophysics Data System (ADS)

    Oyarzua, Elton; Zambrano, Harvey; Walther, J. H.

    2016-11-01

    Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by fixing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial asymmetry drive the water flow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed water flow in CNTs of 0.94, 1.4 and 2.0 nm in diameter, reaching a maximum velocity of 5 m/s for a thermal gradient of 3.3 K/nm. The proposed thermal motor is capable of delivering a continuous flow throughout a CNT, providing a useful tool for driving liquids in nanofluidic devices by exploiting thermal gradients. We aknowledge partial support from Fondecyt project 11130559.

  6. Propulsion Wheel Motor for an Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Herrera, Eduardo (Inventor); Farrell, Logan Christopher (Inventor); Guo, Raymond (Inventor); Junkin, Lucien Q. (Inventor); Bluethmann, William J. (Inventor); Vitale, Robert L. (Inventor); Weber, Steven J. (Inventor); Lee, Chunhao J. (Inventor); Eggleston, IV, Raymond Edward (Inventor); Figuered, Joshua M. (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  7. Environmental characteristics associated with pedestrian-motor vehicle collisions in Denver, Colorado.

    PubMed

    Sebert Kuhlmann, Anne K; Brett, John; Thomas, Deborah; Sain, Stephan R

    2009-09-01

    We examined patterns of pedestrian-motor vehicle collisions and associated environmental characteristics in Denver, Colorado. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Spatial analysis revealed global clustering of pedestrian-motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian-motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian-motor vehicle collisions and promoting walking as a routine physical activity.

  8. Changes in Voice Onset Time and Motor Speech Skills in Children following Motor Speech Therapy: Evidence from /pa/ productions

    PubMed Central

    Yu, Vickie Y.; Kadis, Darren S.; Oh, Anna; Goshulak, Debra; Namasivayam, Aravind; Pukonen, Margit; Kroll, Robert; De Nil, Luc F.; Pang, Elizabeth W.

    2016-01-01

    This study evaluated changes in motor speech control and inter-gestural coordination for children with speech sound disorders (SSD) subsequent to PROMPT (Prompts for Restructuring Oral Muscular Phonetic Targets) intervention. We measured the distribution patterns of voice onset time (VOT) for a voiceless stop (/p/) to examine the changes in inter-gestural coordination. Two standardized tests were used (VMPAC, GFTA-2) to assess the changes in motor speech skills and articulation. Data showed positive changes in patterns of VOT with a lower pattern of variability. All children showed significantly higher scores for VMPAC, but only some children showed higher scores for GFTA-2. Results suggest that the proprioceptive feedback provided through PROMPT had a positive influence on motor speech control and inter-gestural coordination in voicing behavior. This set of VOT data for children with SSD adds to our understanding of the speech characteristics underlying motor speech control. Directions for future studies are discussed. PMID:24446799

  9. Does trampolining and anaerobic physical fitness affect sleep?

    PubMed

    Buchegger, J; Fritsch, R; Meier-Koll, A; Riehle, H

    1991-08-01

    The structure of nocturnal sleep of 16 volunteers, participating in the anaerobic sports of trampolining, dancing, and soccer, was monitored by means of polygraphic recordings. Since trampolining requires the acquisition of unfamiliar patterns of motor coordination, it can be considered as a special form of motor learning, whereas the acquisition of motor skills specific for dancing and soccer can be linked with motor patterns of normal biped locomotion. According to this view, an experimental group of 8 volunteers was formed; they participated in a training course of trampolining. In addition, a control group of 8 subjects was recruited, who engaged in one of the other two anaerobic sports. Subjects who had acquired new motor skills during a 13-wk. program in trampolining showed a statistically significant increase in REM-sleep. By contrast, the 8 subjects of the control group showed no considerable changes in REM-sleep. This suggests that efforts in acquiring new and complex motor patterns activate processes specifically involved in the generation of REM stage during nocturnal sleep.

  10. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    NASA Astrophysics Data System (ADS)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  11. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Drosophila.

    PubMed

    Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao

    2017-02-22

    In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B 2 ( shakB 2 ) or ogre 2 , gap-junction mutations in Drosophila , or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system. SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the central pattern-generating circuits in larval Drosophila , providing novel insights into motor circuit control. The experimental system introduced in this study also presents a new approach for studying intersegmentally coordinated locomotion. Unlike traditional electrophysiology methods, this system enables the simultaneous recording and manipulation of populations of neurons that are genetically specified and span multiple segments. Copyright © 2017 the authors 0270-6474/17/372045-16$15.00/0.

  12. Communication Deficits and the Motor System: Exploring Patterns of Associations in Autism Spectrum Disorder (ASD)

    ERIC Educational Resources Information Center

    Mody, M.; Shui, A. M.; Nowinski, L. A.; Golas, S. B.; Ferrone, C.; O'Rourke, J. A.; McDougle, C. J.

    2017-01-01

    Many children with autism spectrum disorder (ASD) have notable difficulties in motor, speech and language domains. The connection between motor skills (oral-motor, manual-motor) and speech and language deficits reported in other developmental disorders raises important questions about a potential relationship between motor skills and…

  13. Motor control by precisely timed spike patterns

    PubMed Central

    Srivastava, Kyle H.; Holmes, Caroline M.; Vellema, Michiel; Pack, Andrea R.; Elemans, Coen P. H.; Nemenman, Ilya; Sober, Samuel J.

    2017-01-01

    A fundamental problem in neuroscience is understanding how sequences of action potentials (“spikes”) encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior—namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision. PMID:28100491

  14. "ATP1A3" Mutations in Infants: A New Rapid-Onset Dystonia-Parkinsonism Phenotype Characterized by Motor Delay and Ataxia

    ERIC Educational Resources Information Center

    Brashear, Allison; Mink, Jonathan W.; Hill, Deborah F.; Boggs, Niki; McCall, W. Vaughn; Stacy, Mark A.; Snively, Beverly; Light, Laney S.; Sweadner, Kathleen J.; Ozelius, Laurie J.; Morrison, Leslie

    2012-01-01

    We report new clinical features of delayed motor development, hypotonia, and ataxia in two young children with mutations (R756H and D923N) in the "ATP1A3" gene. In adults, mutations in "ATP1A3" cause rapid-onset dystonia-Parkinsonism (RDP, DYT12) with abrupt onset of fixed dystonia. The parents and children were examined and videotaped, and…

  15. Integration of sensory force feedback is disturbed in CRPS-related dystonia.

    PubMed

    Mugge, Winfred; van der Helm, Frans C T; Schouten, Alfred C

    2013-01-01

    Complex regional pain syndrome (CRPS) is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. The origin of this movement disorder is poorly understood, although recent insights suggest involvement of disturbed force feedback. Assessment of sensorimotor integration may provide insight into the pathophysiology of fixed dystonia. Sensory weighting is the process of integrating and weighting sensory feedback channels in the central nervous system to improve the state estimate. It was hypothesized that patients with CRPS-related dystonia bias sensory weighting of force and position toward position due to the unreliability of force feedback. The current study provides experimental evidence for dysfunctional sensory integration in fixed dystonia, showing that CRPS-patients with fixed dystonia weight force and position feedback differently than controls do. The study shows reduced force feedback weights in CRPS-patients with fixed dystonia, making it the first to demonstrate disturbed integration of force feedback in fixed dystonia, an important step towards understanding the pathophysiology of fixed dystonia.

  16. Expendable solid rocket motor upper stages for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Davis, H. P.; Jones, C. M.

    1974-01-01

    A family of expendable solid rocket motor upper stages has been conceptually defined to provide the payloads for the Space Shuttle with performance capability beyond the low earth operational range of the Shuttle Orbiter. In this concept-feasibility assessment, three new solid rocket motors of fixed impulse are defined for use with payloads requiring levels of higher energy. The conceptual design of these motors is constrained to limit thrusting loads into the payloads and to conserve payload bay length. These motors are combined in various vehicle configurations with stage components derived from other programs for the performance of a broad range of upper-stage missions from spin-stabilized, single-stage transfers to three-axis stabilized, multistage insertions. Estimated payload delivery performance and combined payload mission loading configurations are provided for the upper-stage configurations.

  17. An SCR inverter for electric vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.

    1980-01-01

    An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.

  18. Patterns of anterior and posterior muscle chain interactions during high performance long-hang elements in gymnastics.

    PubMed

    von Laßberg, Christoph; Rapp, Walter; Krug, Jürgen

    2014-06-01

    In a prior study with high level gymnasts we could demonstrate that the neuromuscular activation pattern during the "whip-like" leg acceleration phases (LAP) in accelerating movement sequences on high bar, primarily runs in a consecutive succession from the bar (punctum fixum) to the legs (punctum mobile). The current study presents how the neuromuscular activation is represented during movement sequences that immediately follow the LAP by the antagonist muscle chain to generate an effective transfer of momentum for performing specific elements, based on the energy generated by the preceding LAP. Thirteen high level gymnasts were assessed by surface electromyography during high performance elements on high bar and parallel bars. The results show that the neuromuscular succession runs primarily from punctum mobile towards punctum fixum for generating the transfer of momentum. Additionally, further principles of neuromuscular interactions between the anterior and posterior muscle chain during such movement sequences are presented. The findings complement the understanding of neuromuscular activation patterns during rotational movements around fixed axes and will help to form the basis of more direct and better teaching methods regarding earlier optimization and facilitation of the motor learning process concerning fundamental movement requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Motor facilitation during real-time movement imitation in Parkinson's disease: a virtual reality study.

    PubMed

    Robles-García, Verónica; Arias, Pablo; Sanmartín, Gabriel; Espinosa, Nelson; Flores, Julian; Grieve, Kenneth L; Cudeiro, Javier

    2013-12-01

    Impaired temporal stability and poor motor unit recruitment are key impairments in Parkinsonian motor control during a whole spectrum of rhythmic movements, from simple finger tapping to gait. Therapies based on imitation can be designed for patients with motor impairments and virtual-reality (VR) offers a new perspective. Motor actions are known to depend upon the dopaminergic system, whose involvement in imitation is unknown. We sought to understand this role and the underlying possibilities for motor rehabilitation, by observing the execution of different motor-patterns during imitation in a VR environment in subjects with and without dopaminergic deficits. 10 OFF-dose idiopathic Parkinson's Disease patients (PD), 9 age-matched and 9 young-subjects participated. Subjects performed finger-tapping at their "comfort" and "slow-comfort" rates, while immersed in VR presenting their "avatar" in 1st person perspective. Imitation was evaluated by asking subjects to replicate finger-tapping patterns different to their natural one. The finger-pattern presented matched their comfort and comfort-slow rates, but without a pause on the table (continuously moving). Patients were able to adapt their finger-tapping correctly, showing that in comparison with the control groups, the dopaminergic deficiency of PD did not impair imitation. During imitation the magnitude of EMG increased and the temporal variability of movement decreased. PD-patients have unaltered ability to imitate instructed motor-patterns, suggesting that a fully-functional dopaminergic system is not essential for such imitation. It should be further investigated if imitation training over a period of time induces positive off-line motor adaptations with transfer to non-imitation tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1.

    PubMed

    Dasen, Jeremy S; De Camilli, Alessandro; Wang, Bin; Tucker, Philip W; Jessell, Thomas M

    2008-07-25

    The precision with which motor neurons innervate target muscles depends on a regulatory network of Hox transcription factors that translates neuronal identity into patterns of connectivity. We show that a single transcription factor, FoxP1, coordinates motor neuron subtype identity and connectivity through its activity as a Hox accessory factor. FoxP1 is expressed in Hox-sensitive motor columns and acts as a dose-dependent determinant of columnar fate. Inactivation of Foxp1 abolishes the output of the motor neuron Hox network, reverting the spinal motor system to an ancestral state. The loss of FoxP1 also changes the pattern of motor neuron connectivity, and in the limb motor axons appear to select their trajectories and muscle targets at random. Our findings show that FoxP1 is a crucial determinant of motor neuron diversification and connectivity, and clarify how this Hox regulatory network controls the formation of a topographic neural map.

  1. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.

    PubMed

    Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu

    2015-05-01

    We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination. © 2015 Wiley Periodicals, Inc.

  2. Tensegrity and motor-driven effective interactions in a model cytoskeleton

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter G.

    2012-04-01

    Actomyosin networks are major structural components of the cell. They provide mechanical integrity and allow dynamic remodeling of eukaryotic cells, self-organizing into the diverse patterns essential for development. We provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity, and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. We model the actomyosin system as a motorized cat's cradle consisting of a crosslinked network of nonlinear elastic filaments subjected to spatially anti-correlated motor kicks acting on motorized (fibril) crosslinks. The phase diagram suggests there can be arrested phase separation which provides a natural explanation for the aggregation and coalescence of actomyosin condensates. Simulation studies confirm the theoretical picture that a nonequilibrium many-body system driven by correlated motor kicks can behave as if it were at an effective equilibrium, but with modified interactions that account for the correlation of the motor driven motions of the actively bonded nodes. Regular aster patterns are observed both in Brownian dynamics simulations at effective equilibrium and in the complete stochastic simulations. The results show that large-scale contraction requires correlated kicking.

  3. Insights into the mechanisms underlying colonic motor patterns

    PubMed Central

    Dinning, Phil G.; Brookes, Simon J.; Costa, Marcello

    2016-01-01

    Abstract In recent years there have been significant technical and methodological advances in our ability to record the movements of the gastrointestinal tract. This has led to significant changes in our understanding of the different types of motor patterns that exist in the gastrointestinal tract (particularly the large intestine) and in our understanding of the mechanisms underlying their generation. Compared with other tubular smooth muscle organs, a rich variety of motor patterns occurs in the large intestine. This reflects a relatively autonomous nervous system in the gut wall, which has its own unique population of sensory neurons. Although the enteric nervous system can function independently of central neural inputs, under physiological conditions bowel motility is influenced by the CNS: if spinal pathways are disrupted, deficits in motility occur. The combination of high resolution manometry and video imaging has improved our knowledge of the range of motor patterns and provided some insight into the neural and mechanical factors underlying propulsion of contents. The neural circuits responsible for the generation of peristalsis and colonic migrating motor complexes have now been identified to lie within the myenteric plexus and do not require inputs from the mucosa or submucosal ganglia for their generation, but can be modified by their activity. This review will discuss the recent advances in our understanding of the different patterns of propagating motor activity in the large intestine of mammals and how latest technologies have led to major changes in our understanding of the mechanisms underlying their generation. PMID:26990133

  4. Object-directed imitation in autism spectrum disorder is differentially influenced by motoric task complexity, but not social contextual cues.

    PubMed

    Chetcuti, Lacey; Hudry, Kristelle; Grant, Megan; Vivanti, Giacomo

    2017-11-01

    We examined the role of social motivation and motor execution factors in object-directed imitation difficulties in autism spectrum disorder. A series of to-be-imitated actions was presented to 35 children with autism spectrum disorder and 20 typically developing children on an Apple ® iPad ® by a socially responsive or aloof model, under conditions of low and high motor demand. There were no differences in imitation performance (i.e. the number of actions reproduced within a fixed sequence), for either group, in response to a model who acted socially responsive or aloof. Children with autism spectrum disorder imitated the high motor demand task more poorly than the low motor demand task, while imitation performance for typically developing children was equivalent across the low and high motor demand conditions. Furthermore, imitative performance in the autism spectrum disorder group was unrelated to social reciprocity, though positively associated with fine motor coordination. These results suggest that difficulties in object-directed imitation in autism spectrum disorder are the result of motor execution difficulties, not reduced social motivation.

  5. Associations between tongue movement pattern consistency and formant movement pattern consistency in response to speech behavioral modificationsa)

    PubMed Central

    Mefferd, Antje S.

    2016-01-01

    The degree of speech movement pattern consistency can provide information about speech motor control. Although tongue motor control is particularly important because of the tongue's primary contribution to the speech acoustic signal, capturing tongue movements during speech remains difficult and costly. This study sought to determine if formant movements could be used to estimate tongue movement pattern consistency indirectly. Two age groups (seven young adults and seven older adults) and six speech conditions (typical, slow, loud, clear, fast, bite block speech) were selected to elicit an age- and task-dependent performance range in tongue movement pattern consistency. Kinematic and acoustic spatiotemporal indexes (STI) were calculated based on sentence-length tongue movement and formant movement signals, respectively. Kinematic and acoustic STI values showed strong associations across talkers and moderate to strong associations for each talker across speech tasks; although, in cases where task-related tongue motor performance changes were relatively small, the acoustic STI values were poorly associated with kinematic STI values. These findings suggest that, depending on the sensitivity needs, formant movement pattern consistency could be used in lieu of direct kinematic analysis to indirectly examine speech motor control. PMID:27908069

  6. Environmental Characteristics Associated With Pedestrian–Motor Vehicle Collisions in Denver, Colorado

    PubMed Central

    Sebert Kuhlmann, Anne K.; Thomas, Deborah; R. Sain, Stephan

    2009-01-01

    Objectives. We examined patterns of pedestrian–motor vehicle collisions and associated environmental characteristics in Denver, Colorado. Methods. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Results. Spatial analysis revealed global clustering of pedestrian–motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. Conclusions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian–motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian–motor vehicle collisions and promoting walking as a routine physical activity. PMID:19608966

  7. Human's choices in situations of time-based diminishing returns.

    PubMed Central

    Hackenberg, T D; Axtell, S A

    1993-01-01

    Three experiments examined adult humans' choices in situations with contrasting short-term and long-term consequences. Subjects were given repeated choices between two time-based schedules of points exchangeable for money: a fixed schedule and a progressive schedule that began at 0 s and increased by 5 s with each point delivered by that schedule. Under "reset" conditions, choosing the fixed schedule not only produced a point but it also reset the requirements of the progressive schedule to 0 s. In the first two experiments, reset conditions alternated with "no-reset" conditions, in which progressive-schedule requirements were independent of fixed-schedule choices. Experiment 1 entailed choices between a progressive-interval schedule and a fixed-interval schedule, the duration of which varied across conditions. Switching from the progressive- to the fixed-interval schedule was systematically related to fixed-interval size in 4 of 8 subjects, and in all subjects occurred consistently sooner in the progressive-schedule sequence under reset than under no-reset procedures. The latter result was replicated in a second experiment, in which choices between progressive- and fixed-interval schedules were compared with choices between progressive- and fixed-time schedules. In Experiment 3, switching patterns under reset conditions were unrelated to variations in intertrial interval. In none of the experiments did orderly choice patterns depend on verbal descriptions of the contingencies or on schedule-controlled response patterns in the presence of the chosen schedules. The overall pattern of results indicates control of choices by temporarily remote consequences, and is consistent with versions of optimality theory that address performance in situations of diminishing returns. PMID:8315364

  8. Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research.

    PubMed

    Plummer, Prudence; Eskes, Gail; Wallace, Sarah; Giuffrida, Clare; Fraas, Michael; Campbell, Grace; Clifton, Kerrylee; Skidmore, Elizabeth R

    2013-12-01

    Cognitive-motor interference (CMI) is evident when simultaneous performance of a cognitive task and a motor task results in deterioration in performance in one or both of the tasks, relative to performance of each task separately. The purpose of this review is to present a framework for categorizing patterns of CMI and to examine the specific patterns of CMI evident in published studies comparing single-task and dual-task performance of cognitive and motor tasks during gait and balance activities after stroke. We also examine the literature for associations between patterns of CMI and a history of falls, as well as evidence for the effects of rehabilitation on CMI after stroke. Overall, this review suggests that during gait activities with an added cognitive task, people with stroke are likely to demonstrate significant decrements in motor performance only (cognitive-related motor interference), or decrements in both motor and cognitive performance (mutual interference). In contrast, patterns of CMI were variable among studies examining balance activities. Comparing people poststroke with and without a history of falls, patterns and magnitude of CMI were similar for fallers and nonfallers. Longitudinal studies suggest that conventional rehabilitation has minimal effects on CMI during gait or balance activities. However, early-phase pilot studies suggest that dual-task interventions may reduce CMI during gait performance in community-dwelling stroke survivors. It is our hope that this innovative and critical examination of the existing literature will highlight the limitations in current experimental designs and inform improvements in the design and reporting of dual-task studies in stroke. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. fMRI-based Multivariate Pattern Analyses Reveal Imagery Modality and Imagery Content Specific Representations in Primary Somatosensory, Motor and Auditory Cortices.

    PubMed

    de Borst, Aline W; de Gelder, Beatrice

    2017-08-01

    Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Lack of sex effect on brain activity during a visuomotor response task: functional MR imaging study.

    PubMed

    Mikhelashvili-Browner, Nina; Yousem, David M; Wu, Colin; Kraut, Michael A; Vaughan, Christina L; Oguz, Kader Karli; Calhoun, Vince D

    2003-03-01

    As more individuals are enrolled in clinical functional MR imaging (fMRI) studies, an understanding of how sex may influence fMRI-measured brain activation is critical. We used fixed- and random-effects models to study the influence of sex on fMRI patterns of brain activation during a simple visuomotor reaction time task in the group of 26 age-matched men and women. We evaluated the right visual, left visual, left primary motor, left supplementary motor, and left anterior cingulate areas. Volumes of activations did not significantly differ between the groups in any defined regions. Analysis of variance failed to show any significant correlations between sex and volumes of brain activation in any location studied. Mean percentage signal-intensity changes for all locations were similar between men and women. A two-way t test of brain activation in men and women, performed as a part of random-effects modeling, showed no significant difference at any site. Our results suggest that sex seems to have little influence on fMRI brain activation when we compared performance on the simple reaction-time task. The need to control for sex effects is not critical in the analysis of this task with fMRI.

  11. Changes in the neural control of a complex motor sequence during learning

    PubMed Central

    Otchy, Timothy M.; Goldberg, Jesse H.; Aronov, Dmitriy; Fee, Michale S.

    2011-01-01

    The acquisition of complex motor sequences often proceeds through trial-and-error learning, requiring the deliberate exploration of motor actions and the concomitant evaluation of the resulting performance. Songbirds learn their song in this manner, producing highly variable vocalizations as juveniles. As the song improves, vocal variability is gradually reduced until it is all but eliminated in adult birds. In the present study we examine how the motor program underlying such a complex motor behavior evolves during learning by recording from the robust nucleus of the arcopallium (RA), a motor cortex analog brain region. In young birds, neurons in RA exhibited highly variable firing patterns that throughout development became more precise, sparse, and bursty. We further explored how the developing motor program in RA is shaped by its two main inputs: LMAN, the output nucleus of a basal ganglia-forebrain circuit, and HVC, a premotor nucleus. Pharmacological inactivation of LMAN during singing made the song-aligned firing patterns of RA neurons adultlike in their stereotypy without dramatically affecting the spike statistics or the overall firing patterns. Removing the input from HVC, on the other hand, resulted in a complete loss of stereotypy of both the song and the underlying motor program. Thus our results show that a basal ganglia-forebrain circuit drives motor exploration required for trial-and-error learning by adding variability to the developing motor program. As learning proceeds and the motor circuits mature, the relative contribution of LMAN is reduced, allowing the premotor input from HVC to drive an increasingly stereotyped song. PMID:21543758

  12. Planning multiple movements within a fixed time limit: The cost of constrained time allocation in a visuo-motor task

    PubMed Central

    Zhang, Hang; Wu, Shih-Wei; Maloney, Laurence T.

    2010-01-01

    S.-W. Wu, M. F. Dal Martello, and L. T. Maloney (2009) evaluated subjects' performance in a visuo-motor task where subjects were asked to hit two targets in sequence within a fixed time limit. Hitting targets earned rewards and Wu et al. varied rewards associated with targets. They found that subjects failed to maximize expected gain; they failed to invest more time in the movement to the more valuable target. What could explain this lack of response to reward? We first considered the possibility that subjects require training in allocating time between two movements. In Experiment 1, we found that, after extensive training, subjects still failed: They did not vary time allocation with changes in payoff. However, their actual gains equaled or exceeded the expected gain of an ideal time allocator, indicating that constraining time itself has a cost for motor accuracy. In a second experiment, we found that movements made under externally imposed time limits were less accurate than movements made with the same timing freely selected by the mover. Constrained time allocation cost about 17% in expected gain. These results suggest that there is no single speed–accuracy tradeoff for movement in our task and that subjects pursued different motor strategies with distinct speed–accuracy tradeoffs in different conditions. PMID:20884550

  13. [Complications of tracheostomy in patients with severe motor and intellectual disabilities and their management].

    PubMed

    Kotani, Haruko; Hino, Hiroyuki; Takechi, Tomoki; Shiraishi, Taisuke; Ogura, Hideo

    2005-11-01

    Some patient with severe motor and intellectual disabilities have a narrow mediastinum due to severe scoliosis or thoracic deformity. Complication of tracheostomy in these patients, such as granulation of the lower end of the cannula and tracheo-innominate artery fistulae, are difficult to treat. The causes of recurrent respiratory distress after tracheostomy in four patients with severe motor and intellectual disabilities were investigated, and its management was evaluated based on chest CT and bronchoscopy. In all patients, the lower end of the cannula was in contact with the site of tracheal stenosis, accompanied by granulation with arterial pulsation. In three patients, tracheomalacia as a complication of tracheostomy was also noted. In three patients, changing the cannula to fix its lower end proximally to the lesion, combined with stent placement in one patient with tracheomalacia, resulted in regression of the granulation and respiratory distress. However, one patient with severe tracheomalacia, who had been treated by stent placement alone, died of tracheo-innominate artery fistula. To prevent complications of tracheostomy in patients with severe motor and intellectual disabilities, it is important to select cannulas with a suitable length and angle. In the absence of severe tracheomalacia, use of custom-made short cannulas that can be fixed proximally to the site of stenosis and to the proximity of arteries are appropriate for this purpose.

  14. Abnormal motor patterns in the framework of the equilibrium-point hypothesis: a cause for dystonic movements?

    PubMed

    Latash, M L; Gutman, S R

    1994-01-01

    Until now, the equilibrium-point hypothesis (lambda model) of motor control has assumed nonintersecting force-length characteristics of the tonic stretch reflex for individual muscles. Limited data from animal experiments suggest, however, that such intersections may occur. We have assumed the possibility of intersection of the characteristics of the tonic stretch reflex and performed a computer simulation of movement trajectories and electromyographic patterns. The simulation has demonstrated, in particular, that a transient change in the slope of the characteristic of an agonist muscle may lead to temporary movement reversals, hesitations, oscillations, and multiple electromyographic bursts that are typical of movements of patients with dystonia. The movement patterns of three patients with idiopathic dystonia during attempts at fast single-joint movements (in the elbow, wrist, and ankle) were recorded and compared with the results of the computer simulation. This approach considers that motor disorders in dystonia result from faulty control patterns that may not correlate with any morphological or neurophysiological changes. It provides a basis for the high variability of dystonic movements. The uniqueness of abnormal motor patterns in dystonia, that precludes statistical analysis across patients, may result from subtle differences in the patterns of intersecting characteristics of the tonic stretch reflex. The applicability of our analysis to disordered multijoint movement patterns is discussed.

  15. Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.

    PubMed

    Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J

    2016-05-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. © 2016 Musselman et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Market Analysis and Consumer Impacts Source Document. Part II. Review of Motor Vehicle Market and Consumer Expenditures on Motor Vehicle Transportation

    DOT National Transportation Integrated Search

    1980-12-01

    This source document on motor vehicle market analysis and consumer impacts consists of three parts. Part II consists of studies and review on: motor vehicle sales trends; motor vehicle fleet life and fleet composition; car buying patterns of the busi...

  17. Testing promotes effector transfer.

    PubMed

    Boutin, Arnaud; Panzer, Stefan; Salesse, Robin N; Blandin, Yannick

    2012-11-01

    The retrieval of information from memory during testing has recently been shown to promote transfer in the verbal domain. Motor-related research, however, has ignored testing as a relevant method to enhance motor transfer. We thus investigated whether testing has the potential to induce generalised motor memories by favouring effector transfer. Participants were required to reproduce a spatial-temporal pattern of elbow extensions and flexions with their dominant right arm. We tested the ability of participants to transfer the original pattern (extrinsic transformation; i.e., goal-based configuration) or the mirrored pattern (intrinsic transformation; i.e., movement-based configuration) to the unpractised non-dominant left arm. To evaluate how testing affects motor transfer at 24-h testing, participants were either administered an initial testing session during early practice (early testing group) or shortly after the end of practice (late testing group; i.e., no alternation between practice and testing sessions). No initial testing session was completed for the control group. We found better effector transfer at 24-h testing for the early testing group for both extrinsic and intrinsic transformations of the movement pattern when compared with the control group, while no testing benefit was observed for the late testing group. This indicates that testing positively affects motor learning, yielding enhanced long-term transfer capabilities. We thus demonstrate the critical role of retrieval practice via testing during the process of motor memory encoding, and provide the conditions under which testing effectively contributes to the generalisation of motor memories. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture.

    PubMed

    Trivedi, Chintan A; Bollmann, Johann H

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  19. Comparison of extrinsic and intrinsic neuromodulation in two central pattern generator circuits in invertebrates.

    PubMed

    Katz, P S

    1998-05-01

    There are many sources of modulatory input to CPGs and other types of neuronal circuits. These inputs can change the properties of cells and synapses and dramatically alter the production of motor patterns. Sometimes this enables the production of motor patterns by the circuit. At other times, the modulation allows alternate motor patterns to be produced by a single circuit. Modulatory neurones have fast as well as slow actions. In some cases, such as with GPR, the two types of effects are due to the release of co-transmitters. In other cases, such as with the DSIs, a single substance can act at different receptors to cause fast and slow postsynaptic actions. The effect of a neuromodulatory neurone is determined by the type of receptor on the target neurone. Thus a single modulatory neurone evokes a suite of actions in a circuit and thereby produces a co-ordinated output. Extrinsic and intrinsic sources of neuromodulation have different sets of constraints acting upon them. For example, extrinsic neuromodulation can easily be used for motor pattern selection; a different pattern is produced depending upon which modulatory inputs are active. However, intrinsic neuromodulation is not well suited to that task. Instead, it is useful for self-organizing properties and experience-dependent effects. One clear conclusion from this work and other work in the field is that neuromodulation by neurones intrinsic and extrinsic to CPGs is not uncommon (Katz, 1995; Katz & Frost, 1996). It is part of the normal process of motor pattern generation. As such, it needs to be considered when discussing mechanisms for neuronal circuit actions.

  20. Dorsal and ventral aspects of the most caudal medullary reticular formation have differential roles in modulation and formation of the respiratory motor pattern in rat.

    PubMed

    Jones, Sarah E; Stanić, Davor; Dutschmann, Mathias

    2016-12-01

    The respiratory pattern generator of mammals is anatomically organized in lateral respiratory columns (LRCs) within the brainstem. LRC compartments serve specific functions in respiratory pattern and rhythm generation. While the caudal medullary reticular formation (cMRF) has respiratory functions reportedly related to the mediation of expulsive respiratory reflexes, it remains unclear whether neurons of the cMRF functionally belong to the LRC. In the present study we specifically investigated the respiratory functions of the cMRF. Tract tracing shows that the cMRF has substantial connectivity with key compartments of the LRC, particularly the parafacial respiratory group and the Kölliker-Fuse nuclei. These neurons have a loose topography and are located in the ventral and dorsal cMRF. Systematic mapping of the cMRF with glutamate stimulation revealed potent respiratory modulation of the respiratory motor pattern from both dorsal and ventral injection sites. Pharmacological inhibition of the cMRF with the GABA-receptor agonist isoguvacine produced significant and robust changes to the baseline respiratory motor pattern (decreased laryngeal post-inspiratory and abdominal expiratory motor activity, delayed inspiratory off-switch and increased respiratory frequency) after dorsal cMRF injection, while ventral injections had no effect. The present data indicate that the ventral cMRF is not an integral part of the respiratory pattern generator and merely serves as a relay for sensory and/or higher command-related modulation of respiration. On the contrary, the dorsal aspect of the cMRF clearly has a functional role in respiratory pattern formation. These findings revive the largely abandoned concept of a dorsal respiratory group that contributes to the generation of the respiratory motor pattern.

  1. Microtubules and motor proteins: Mechanically regulated self-organization in vivo

    NASA Astrophysics Data System (ADS)

    Vogel, S. K.; Pavin, N.; Maghelli, N.; Jülicher, F.; Tolić-Nørrelykke, I. M.

    2009-11-01

    A key aspect of life is sexual reproduction, which requires concerted movement. For successful mixing of the genetic material, molecular motors move the nucleus back and forth inside the cell. How motors work together to produce these large-scale movements, however, remains a mystery. To answer this question, we studied nuclear movement in fission yeast, which is driven by motor proteins pulling on microtubules. We show that motor proteins dynamically redistribute from one part of the cell to the other, generating asymmetric patterns of motors and, consequently, of forces that generate movement. By combining quantitative live cell imaging and laser ablation with a theoretical model, we find that this dynamic motor redistribution occurs purely as a result of changes in the mechanical strain sensed by the motor proteins. Our work therefore demonstrates that spatio-temporal pattern formation within a cell can occur as a result of mechanical cues (Vogel et al., 2009), which differs from conventional molecular signaling, as well as from self-organization based on a combination of biochemical reactions and diffusion.

  2. Listening to speech recruits specific tongue motor synergies as revealed by transcranial magnetic stimulation and tissue-Doppler ultrasound imaging

    PubMed Central

    D'Ausilio, A.; Maffongelli, L.; Bartoli, E.; Campanella, M.; Ferrari, E.; Berry, J.; Fadiga, L.

    2014-01-01

    The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor mirroring. Here, we applied TMS to listeners’ tongue motor area in association with ultrasound tissue Doppler imaging to describe fine-grained tongue kinematic synergies evoked by passive listening to speech. Subjects listened to syllables requiring different patterns of dorso-ventral and antero-posterior movements (/ki/, /ko/, /ti/, /to/). Results show that passive listening to speech sounds evokes a pattern of motor synergies mirroring those occurring during speech production. Moreover, mirror motor synergies were more evident in those subjects showing good performances in discriminating speech in noise demonstrating a role of the speech-related mirror system in feed-forward processing the speaker's ongoing motor plan. PMID:24778384

  3. Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface

    NASA Astrophysics Data System (ADS)

    Ikuta, Junya; Kamisetty, Nagendra K.; Shintaku, Hirofumi; Kotera, Hidetoshi; Kon, Takahide; Yokokawa, Ryuji

    2014-06-01

    Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to the glass and dynein to the gold surface using a self-assembled monolayer. The relationship between the ratio of two antagonistic motor numbers and the velocity is derived from a force-velocity relationship for each motor to calculate the detachment force and motor backward velocity. Although the tug-of-war involves >100 motors, values are calculated for a single molecule and reflect the collective dynein and non-collective kinesin functions when they work as a team. This assay would be useful for detailed in vitro analysis of intracellular motility, e.g., mitosis, where a large number of motors with mixed polarities are involved.

  4. Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface

    PubMed Central

    Ikuta, Junya; Kamisetty, Nagendra K.; Shintaku, Hirofumi; Kotera, Hidetoshi; Kon, Takahide; Yokokawa, Ryuji

    2014-01-01

    Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to the glass and dynein to the gold surface using a self-assembled monolayer. The relationship between the ratio of two antagonistic motor numbers and the velocity is derived from a force-velocity relationship for each motor to calculate the detachment force and motor backward velocity. Although the tug-of-war involves >100 motors, values are calculated for a single molecule and reflect the collective dynein and non-collective kinesin functions when they work as a team. This assay would be useful for detailed in vitro analysis of intracellular motility, e.g., mitosis, where a large number of motors with mixed polarities are involved. PMID:24923426

  5. Contribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study

    PubMed Central

    ElBasiouny, Sherif M.; Rymer, W. Zev; Heckman, C. J.

    2012-01-01

    Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of PICs by excitatory synaptic inputs; these features include rate saturation and de-recruitment at a lower level of net excitation than that required for recruitment. However, PIC activation is also influenced by the pattern and spatial distribution of inhibitory inputs that are activated concurrently with excitatory inputs. To estimate the potential contributions of PIC activation and synaptic input patterns to motor unit discharge patterns, we examined the responses of a set of cable motoneuron models to different patterns of excitatory and inhibitory inputs. The models were first tuned to approximate the current- and voltage-clamp responses of low- and medium-threshold spinal motoneurons studied in decerebrate cats and then driven with different patterns of excitatory and inhibitory inputs. The responses of the models to excitatory inputs reproduced a number of features of human motor unit discharge. However, the pattern of rate modulation was strongly influenced by the temporal and spatial pattern of concurrent inhibitory inputs. Thus, even though PIC activation is likely to exert a strong influence on firing rate modulation, PIC activation in combination with different patterns of excitatory and inhibitory synaptic inputs can produce a wide variety of motor unit discharge patterns. PMID:22031773

  6. Comparison of Magnetic Characteristics of Powder Magnetic Core and Evaluation of Motor Characteristics

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Ito, Motoya; Masaki, Ryozo; Yamazaki, Katsuyuki; Asaka, Kazuo; Ishihara, Chio; Ohiwa, Syoji

    A magnetic characteristic measurement, a motor characteristic forecast, and an experimental evaluation of various powder magnetic cores were performed aiming at a fixed quantity grasp when the powder magnetic core was applied to the motor core as the magnetic material. The manufacturing conditions were changed, and magnetic characteristic compares a direct current magnetization characteristic and an iron disadvantageous characteristic with the silicon steel board for a different powder magnetic core. Therefore, though some permeabilities are low, characteristics almost equal to those of a silicon steel board were obtained in the maximum saturation magnetic induction, which confirms that the powder magnetic core in disadvantageous iron in a certain frequency domain, and to confirm disadvantageous iron lowers. Moreover, it has been shown to obtain characteristics almost equal to the silicon steel board when compared in terms of motor efficiency, though some disadvantageous iron increases since the effect when applying to the motor is verified the silicon steel board and the comparison evaluation for the surface type permanent magnet motor.

  7. Dynamic simulation solves process control problem in Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-16

    A dynamic simulation study solved the process control problems for a Saih Rawl, Oman, gas compressor station operated by Petroleum Development of Oman (PDO). PDO encountered persistent compressor failure that caused frequent facility shutdowns, oil production deferment, and gas flaring. It commissioned MSE (Consultants) Ltd., U.K., to find a solution for the problem. Saih Rawl, about 40 km from Qarn Alam, produces oil and associated gas from a large number of low and high-pressure wells. Oil and gas are separated in three separators. The oil is pumped to Qarn Alam for treatment and export. Associated gas is compressed in twomore » parallel trains. Train K-1115 is a 350,000 standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage centrifugal compressor driven by a variable-speed motor. The paper describes tripping and surging problems with the gas compressor and the control simplifications that solved the problem.« less

  8. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    NASA Astrophysics Data System (ADS)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  9. Fixed allocation patterns, rather than plasticity, benefit recruitment and recovery from drought in seedlings of a desert shrub

    PubMed Central

    Zhang, Yao; Li, Yan; Xie, Jiang-Bo

    2016-01-01

    The response of plants to drought is controlled by the interaction between physiological regulation and morphological adjustment. Although recent studies have highlighted the long-term morphological acclimatization of plants to drought, there is still debate on how plant biomass allocation patterns respond to drought. In this study, we performed a greenhouse experiment with first-year seedlings of a desert shrub in control, drought and re-water treatments, to examine their physiological and morphological traits during drought and subsequent recovery. We found that (i) biomass was preferentially allocated to roots along a fixed allometric trajectory throughout the first year of development, irrespective of the variation in water availability; and (ii) this fixed biomass allocation pattern benefited the post-drought recovery. These results suggest that, in a stressful environment, natural selection has favoured a fixed biomass allocation pattern rather than plastic responses to environmental variation. The fixed ‘preferential allocation to root’ biomass suggests that roots may play a critical role in determining the fate of this desert shrub during prolonged drought. As the major organ for resource acquisition and storage, how the root system functions during drought requires further investigation. PMID:27073036

  10. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    PubMed

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-06-01

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  11. EEG signatures of arm isometric exertions in preparation, planning and execution.

    PubMed

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction-dependent planning and execution of isometric motor tasks. The results contribute to our understanding of the functions of different brain regions during voluntary motor tasks and their activity signatures in EEG can shed light on the relationships between large-scale recordings such as EEG and other recordings such as single unit activity and fMRI in this context. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The Motor Subsystem as a Predictor of Success in Young Football Talents: A Person-Oriented Study

    PubMed Central

    Zibung, Marc; Zuber, Claudia; Conzelmann, Achim

    2016-01-01

    Motor tests play a key role in talent selection in football. However, individual motor tests only focus on specific areas of a player’s complex performance. To evaluate his or her overall performance during a game, the current study takes a holistic perspective and uses a person-oriented approach. In this approach, several factors are viewed together as a system, whose state is analysed longitudinally. Based on this idea, six motor tests were aggregated to form the Motor Function subsystem. 104 young, top-level, male football talents were tested three times (2011, 2012, 2013; Mage, t2011 = 12.26, SD = 0.29), and their overall level of performance was determined one year later (2014). The data were analysed using the LICUR method, a pattern-analytical procedure for person-oriented approaches. At all three measuring points, four patterns could be identified, which remained stable over time. One of the patterns found at the third measuring point identified more subsequently successful players than random selection would. This pattern is characterised by above-average, but not necessarily the best, performance on the tests. Developmental paths along structurally stable patterns that occur more often than predicted by chance indicate that the Motor Function subsystem is a viable means of forecasting in the age range of 12–15 years. Above-average, though not necessary outstanding, performance both on fitness and technical tests appears to be particularly promising. These findings underscore the view that a holistic perspective may be profitable in talent selection. PMID:27508929

  13. Implicit motor learning promotes neural efficiency during laparoscopy.

    PubMed

    Zhu, Frank F; Poolton, Jamie M; Wilson, Mark R; Hu, Yong; Maxwell, Jon P; Masters, Rich S W

    2011-09-01

    An understanding of differences in expert and novice neural behavior can inform surgical skills training. Outside the surgical domain, electroencephalographic (EEG) coherence analyses have shown that during motor performance, experts display less coactivation between the verbal-analytic and motor planning regions than their less skilled counterparts. Reduced involvement of verbal-analytic processes suggests greater neural efficiency. The authors tested the utility of an implicit motor learning intervention specifically devised to promote neural efficiency by reducing verbal-analytic involvement in laparoscopic performance. In this study, 18 novices practiced a movement pattern on a laparoscopic trainer with either conscious awareness of the movement pattern (explicit motor learning) or suppressed awareness of the movement pattern (implicit motor learning). In a retention test, movement accuracy was compared between the conditions, and coactivation (EEG coherence) was assessed between the motor planning (Fz) region and both the verbal-analytic (T3) and the visuospatial (T4) cortical regions (T3-Fz and T4-Fz, respectively). Movement accuracy in the conditions was not different in a retention test (P = 0.231). Findings showed that the EEG coherence scores for the T3-Fz regions were lower for the implicit learners than for the explicit learners (P = 0.027), but no differences were apparent for the T4-Fz regions (P = 0.882). Implicit motor learning reduced EEG coactivation between verbal-analytic and motor planning regions, suggesting that verbal-analytic processes were less involved in laparoscopic performance. The findings imply that training techniques that discourage nonessential coactivation during motor performance may provide surgeons with more neural resources with which to manage other aspects of surgery.

  14. Identifying Residual Speech Sound Disorders in Bilingual Children: A Japanese-English Case Study

    PubMed Central

    Preston, Jonathan L.; Seki, Ayumi

    2012-01-01

    Purpose The purposes are to (1) describe the assessment of residual speech sound disorders (SSD) in bilinguals by distinguishing speech patterns associated with second language acquisition from patterns associated with misarticulations, and (2) describe how assessment of domains such as speech motor control and phonological awareness can provide a more complete understanding of SSDs in bilinguals. Method A review of Japanese phonology is provided to offer a context for understanding the transfer of Japanese to English productions. A case study of an 11-year-old is presented, demonstrating parallel speech assessments in English and Japanese. Speech motor and phonological awareness tasks were conducted in both languages. Results Several patterns were observed in the participant’s English that could be plausibly explained by the influence of Japanese phonology. However, errors indicating a residual SSD were observed in both Japanese and English. A speech motor assessment suggested possible speech motor control problems, and phonological awareness was judged to be within the typical range of performance in both languages. Conclusion Understanding the phonological characteristics of L1 can help clinicians recognize speech patterns in L2 associated with transfer. Once these differences are understood, patterns associated with a residual SSD can be identified. Supplementing a relational speech analysis with measures of speech motor control and phonological awareness can provide a more comprehensive understanding of a client’s strengths and needs. PMID:21386046

  15. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice

    PubMed Central

    Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M.; Yamamori, Tetsuo

    2011-01-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice. PMID:21525375

  16. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice.

    PubMed

    Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo

    2011-07-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.

  17. T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input.

    PubMed

    Kim, Haram R; Hong, Su Z; Fiorillo, Christopher D

    2015-01-01

    Although neurons within intact nervous systems can be classified as 'sensory' or 'motor,' it is not known whether there is any general distinction between sensory and motor neurons at the cellular or molecular levels. Here, we extend and test a theory according to which activation of certain subtypes of voltage-gated ion channel (VGC) generate patterns of spikes in neurons of motor systems, whereas VGC are proposed to counteract patterns in sensory neurons. We previously reported experimental evidence for the theory from visual thalamus, where we found that T-type calcium channels (TtCCs) did not cause bursts of spikes but instead served the function of 'predictive homeostasis' to maximize the causal and informational link between retinogeniculate excitation and spike output. Here, we have recorded neurons in brain slices from eight sensory and motor regions of rat thalamus while mimicking key features of natural excitatory and inhibitory post-synaptic potentials. As predicted by theory, TtCC did cause bursts of spikes in motor thalamus. TtCC-mediated responses in motor thalamus were activated at more hyperpolarized potentials and caused larger depolarizations with more spikes than in visual and auditory thalamus. Somatosensory thalamus is known to be more closely connected to motor regions relative to auditory and visual thalamus, and likewise the strength of its TtCC responses was intermediate between these regions and motor thalamus. We also observed lower input resistance, as well as limited evidence of stronger hyperpolarization-induced ('H-type') depolarization, in nuclei closer to motor output. These findings support our theory of a specific difference between sensory and motor neurons at the cellular level.

  18. Motor Stereotypies and Volumetric Brain Alterations in Children with Autistic Disorder

    ERIC Educational Resources Information Center

    Goldman, Sylvie; O'Brien, Liam M.; Filipek, Pauline A.; Rapin, Isabelle; Herbert, Martha R.

    2013-01-01

    Motor stereotypies are defined as patterned, repetitive, purposeless movements. These stigmatizing motor behaviors represent one manifestation of the third core criterion for an Autistic Disorder (AD) diagnosis, and are becoming viewed as potential early markers of autism. Moreover, motor stereotypies might be a tangible expression of the…

  19. Independence of motor unit recruitment and rate modulation during precision force control.

    PubMed

    Kamen, G; Du, D C

    1999-01-01

    The vertebrate motor system chiefly employs motor unit recruitment and rate coding to modulate muscle force output. In this paper, we studied how the recruitment of new motor units altered the firing rate of already-active motor units during precision force production in the first dorsal interosseous muscle. Six healthy adults performed linearly increasing isometric voluntary contractions while motor unit activity and force output were recorded. After motor unit discharges were identified, motor unit firing rates were calculated before and after the instances of new motor unit recruitment. Three procedures were applied to compute motor unit firing rate, including the mean of a fixed number of inter-spike intervals and the constant width weighted Hanning window filter method, as well as a modified boxcar technique. In contrast to previous reports, the analysis of the firing rates of over 200 motor units revealed that reduction of the active firing rates was not a common mechanism used to accommodate the twitch force produced by the recruitment of a new motor unit. Similarly, during de-recruitment there was no tendency for motor unit firing rates to increase immediately following the cessation of activity in other motor units. Considerable consistency in recruitment behavior was observed during repeated contractions. However, firing rates during repeated contractions demonstrated considerably more fluctuation. It is concluded that the neuromuscular system does not use short-term preferential motor unit disfacilitation to effect precise regulation of muscular force output.

  20. Pediatric neurology: the diagnostic process.

    PubMed

    Neville, Brian G R

    2013-01-01

    Pediatric neurology comprises a very large of number of conditions exhibiting symptoms and signs in several functional domains arising from damage and dysfunction to the developing nervous system. The diagnostic process involves ensuring that data from all possible domains are sought including those that are unaffected. The subsequent analysis involves fitting these data into patterns of classical natural history and rigorous investigation of the aspects that do not appear to fit. There may be a pattern of illness that is immediately recognized or something that is a fairly close fit. However, the aim is to develop a pathogenic sequence for the condition particularly so that conditions that have been lumped together for convenience are separated into distinct disease entities. The major presentations of pediatric neurology of fixed central motor impairments (the cerebral palsies), the epilepsies, and the progressive degenerative diseases are in the process of being split into such pathogenic sequences so that definitive treatments and possible primary prevention can be added to aims of simple diagnostic recognition. Much of this is at an early stage and pediatric neurology is still a young and fast developing specialty. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Enhanced Video-Oculography System

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; MacDougall, Hamish G.

    2009-01-01

    A previously developed video-oculography system has been enhanced for use in measuring vestibulo-ocular reflexes of a human subject in a centrifuge, motor vehicle, or other setting. The system as previously developed included a lightweight digital video camera mounted on goggles. The left eye was illuminated by an infrared light-emitting diode via a dichroic mirror, and the camera captured images of the left eye in infrared light. To extract eye-movement data, the digitized video images were processed by software running in a laptop computer. Eye movements were calibrated by having the subject view a target pattern, fixed with respect to the subject s head, generated by a goggle-mounted laser with a diffraction grating. The system as enhanced includes a second camera for imaging the scene from the subject s perspective, and two inertial measurement units (IMUs) for measuring linear accelerations and rates of rotation for computing head movements. One IMU is mounted on the goggles, the other on the centrifuge or vehicle frame. All eye-movement and head-motion data are time-stamped. In addition, the subject s point of regard is superimposed on each scene image to enable analysis of patterns of gaze in real time.

  2. Identifying patterns of motor performance, executive functioning, and verbal ability in preschool children: A latent profile analysis.

    PubMed

    Houwen, Suzanne; Kamphorst, Erica; van der Veer, Gerda; Cantell, Marja

    2018-04-30

    A relationship between motor performance and cognitive functioning is increasingly being recognized. Yet, little is known about the precise nature of the relationship between both domains, especially in early childhood. To identify distinct constellations of motor performance, executive functioning (EF), and verbal ability in preschool aged children; and to explore how individual and contextual variables are related to profile membership. The sample consisted of 119 3- to 4-year old children (62 boys; 52%). The home based assessments consisted of a standardized motor test (Movement Assessment Battery for Children - 2), five performance-based EF tasks measuring inhibition and working memory, and the Receptive Vocabulary subtest from the Wechsler Preschool and Primary Scale of Intelligence Third Edition. Parents filled out the Behavior Rating Inventory of Executive Function - Preschool version. Latent profile analysis (LPA) was used to delineate profiles of motor performance, EF, and verbal ability. Chi-square statistics and multinomial logistic regression analysis were used to examine whether profile membership was predicted by age, gender, risk of motor coordination difficulties, ADHD symptomatology, language problems, and socioeconomic status (SES). LPA yielded three profiles with qualitatively distinct response patterns of motor performance, EF, and verbal ability. Quantitatively, the profiles showed most pronounced differences with regard to parent ratings and performance-based tests of EF, as well as verbal ability. Risk of motor coordination difficulties and ADHD symptomatology were associated with profile membership, whereas age, gender, language problems, and SES were not. Our results indicate that there are distinct subpopulations of children who show differential relations with regard to motor performance, EF, and verbal ability. The fact that we found both quantitative as well as qualitative differences between the three patterns of profiles underscores the need for a person-centered approach with a focus on patterns of individual characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Dominance of the Unaffected Hemisphere Motor Network and Its Role in the Behavior of Chronic Stroke Survivors

    PubMed Central

    Bajaj, Sahil; Housley, Stephen N.; Wu, David; Dhamala, Mukesh; James, G. A.; Butler, Andrew J.

    2016-01-01

    Balance of motor network activity between the two brain hemispheres after stroke is crucial for functional recovery. Several studies have extensively studied the role of the affected brain hemisphere to better understand changes in motor network activity following stroke. Very few studies have examined the role of the unaffected brain hemisphere and confirmed the test–retest reliability of connectivity measures on unaffected hemisphere. We recorded blood oxygenation level dependent functional magnetic resonance imaging (fMRI) signals from nine stroke survivors with hemiparesis of the left or right hand. Participants performed a motor execution task with affected hand, unaffected hand, and both hands simultaneously. Participants returned for a repeat fMRI scan 1 week later. Using dynamic causal modeling (DCM), we evaluated effective connectivity among three motor areas: the primary motor area (M1), the premotor cortex (PMC) and the supplementary motor area for the affected and unaffected hemispheres separately. Five participants’ manual motor ability was assessed by Fugl-Meyer Motor Assessment scores and root-mean square error of participants’ tracking ability during a robot-assisted game. We found (i) that the task performance with the affected hand resulted in strengthening of the connectivity pattern for unaffected hemisphere, (ii) an identical network of the unaffected hemisphere when participants performed the task with their unaffected hand, and (iii) the pattern of directional connectivity observed in the affected hemisphere was identical for tasks using the affected hand only or both hands. Furthermore, paired t-test comparison found no significant differences in connectivity strength for any path when compared with one-week follow-up. Brain-behavior linear correlation analysis showed that the connectivity patterns in the unaffected hemisphere more accurately reflected the behavioral conditions than the connectivity patterns in the affected hemisphere. Above findings enrich our knowledge of unaffected brain hemisphere following stroke, which further strengthens our neurobiological understanding of stroke-affected brain and can help to effectively identify and apply stroke-treatments. PMID:28082882

  4. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator

    PubMed Central

    2017-01-01

    Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50–60 Hz “fast trill” song used by males during courtship. We recorded “fictive vocalizations” in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity. SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from the motor to premotor region. Our results indicate that motor neurons activate this bottom-up connection, and blocking this signal eliminates normal premotor activity. These findings may promote increased awareness of potential involvement of motor neurons in a wider range of CPGs, perhaps clarifying our understanding of network principles underlying motor behaviors in numerous organisms, including humans. PMID:28219984

  5. The UBR-1 ubiquitin ligase regulates glutamate metabolism to generate coordinated motor pattern in Caenorhabditis elegans

    PubMed Central

    Chitturi, Jyothsna; Hung, Wesley; Rahman, Anas M. Abdel; Wu, Min; Lim, Maria A.; Calarco, John; Dennis, James W.

    2018-01-01

    UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult animals generate reversal movements, A-class motor neurons exhibit synchronized activation, preventing body bending. This motor deficit is rescued by removing GOT-1, a transaminase that converts aspartate to glutamate. Both UBR-1 and GOT-1 are expressed and critically required in premotor interneurons of the reversal motor circuit to regulate the motor pattern. ubr-1 and got-1 mutants exhibit elevated and decreased glutamate level, respectively. These results raise an intriguing possibility that UBR proteins regulate glutamate metabolism, which is critical for neuronal development and signaling. PMID:29649217

  6. Behavioral Reactivity and Approach-Withdrawal Bias in Infancy

    PubMed Central

    Hane, Amie Ashley; Fox, Nathan A.; Henderson, Heather A.; Marshall, Peter J.

    2008-01-01

    Seven hundred and seventy nine infants were screened at 4 months of age for motor and emotional reactivity. At age 9 months, infants who showed extreme patterns of motor and negative (n = 75) or motor and positive (n = 73) reactivity and an unselected control group (n = 86) were administered the Laboratory Temperament Assessment Battery (Lab-TAB), and baseline electroencephalogram (EEG) data were collected. Negatively reactive infants showed significantly more avoidance than positively reactive infants and displayed a pattern of right frontal EEG asymmetry. Positively reactive infants exhibited significantly more approach behavior than controls and exhibited a pattern of left frontal asymmetry. Results support the notion that approach-withdrawal bias underlies reactivity in infancy. PMID:18793079

  7. Family patterns of development dyslexia, Part II: Behavioral phenotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, P.H.; Melngailis, I.; Bedrosian, M.

    1995-12-18

    The motor control of bimanual coordination and motor speech was compared between first degree relatives from families with at least 2 dyslexic family members, and families where probands were the only affected family members. Half of affected relatives had motor coordination deficits; and they came from families in which probands also showed impaired motor coordination. By contrast, affected relatives without motor deficits came from dyslexia families where probands did not have motor deficits. Motor coordination deficits were more common and more severe among affected offspring in families where both parents were affected than among affected offspring in families where onlymore » one parent was affected. However, motor coordination deficits were also more common and more severe in affected parents when both parents were affected than among affected parents in families where only one parent was affected. We conclude that impaired temporal resolution in motor action identifies a behavioral phenotype in some subtypes of developmental dyslexia. The observed pattern of transmission for motor deficits and reading impairment in about half of dyslexia families was most congruent with a genetic model of dyslexia in which 2 codominant major genes cosegregate in dyslexia pedigrees where the proband is also motorically impaired. 54 refs., 5 figs., 5 tabs.« less

  8. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

    PubMed

    Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A

    2011-01-01

    The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

  9. Stability and Patterning of Speech Movement Sequences in Children and Adults.

    ERIC Educational Resources Information Center

    Smith, Anne; Goffman, Lisa

    1998-01-01

    A study of 16 children (ages 4 and 7 years) and 8 young adults used an "Optotrak" system to study patterning and stability of speech movements in developing speech motor systems. Results indicate that nonlinear and nonuniform changes occur in components of the speech motor system during development. (Author/CR)

  10. The Motor Core of Speech: A Comparison of Serial Organization Patterns in Infants and Languages.

    ERIC Educational Resources Information Center

    MacNeilage, Peter F.; Davis, Barbara L.; Kinney, Ashlynn; Matyear, Christine L.

    2000-01-01

    Presents evidence for four major design features of serial organization of speech arising from comparison of babbling and early speech with patterns in ten languages. Maintains that no explanation for the design features is available from Universal Grammar; except for intercyclical consonant repetition development, perceptual-motor learning seems…

  11. Neurophysiology of Flight in Wild-Type and a Mutant Drosophila

    PubMed Central

    Levine, Jon D.; Wyman, Robert J.

    1973-01-01

    We report the flight motor output pattern in Drosophila melanogaster and the neural network responsible for it, and describe the bursting motor output pattern in a mutant. There are 26 singly-innervated muscle fibers. There are two basic firing patterns: phase progression, shown by units that receive a common input but have no cross-connections, and phase stability, in which synergic units, receiving a common input and inhibiting each other, fire in a repeating sequence. Flies carrying the mutation stripe cannot fly. Their motor output is reduced to a short duration, high-frequency burst, but the patterning within bursts shows many of the characteristics of the wild type. The mutation is restricted in its effect, as the nervous system has normal morphology by light microscopy and other behaviors of the mutant are normal. Images PMID:4197927

  12. Evidence for a general stiffening motor control pattern in neck pain: a cross sectional study.

    PubMed

    Meisingset, Ingebrigt; Woodhouse, Astrid; Stensdotter, Ann-Katrin; Stavdahl, Øyvind; Lorås, Håvard; Gismervik, Sigmund; Andresen, Hege; Austreim, Kristian; Vasseljen, Ottar

    2015-03-17

    Neck pain is associated with several alterations in neck motion and motor control. Previous studies have investigated single constructs of neck motor control, while few have applied a comprehensive set of tests to investigate cervical motor control. This comparative cross- sectional study aimed to investigate different motor control constructs in neck pain patients and healthy controls. A total of 166 subjects participated in the study, 91 healthy controls (HC) and 75 neck pain patients (NP) with long-lasting moderate to severe neck pain. Neck flexibility, proprioception, head steadiness, trajectory movement control, and postural sway were assessed using a 3D motion tracking system (Liberty). The different constructs of neck motion and motor control were based on tests used in previous studies. Neck flexibility was lower in NP compared to HC, indicated by reduced cervical ROM and conjunct motion. Movement velocity was slower in NP compared to HC. Tests of head steadiness showed a stiffer movement pattern in NP compared to HC, indicated by lower head angular velocity. NP patients departed less from a predictable trajectory movement pattern (figure of eight) compared to healthy controls, but there was no difference for unpredictable movement patterns (the Fly test). No differences were found for postural sway in standing with eyes open and eyes closed. However, NP patients had significantly larger postural sway when standing on a balance pad. Proprioception did not differ between the groups. Largest effect sizes (ES) were found for neck flexibility (ES range: 0.2-0.8) and head steadiness (ES range: 1.3-2.0). Neck flexibility was the only construct that showed a significant association with current neck pain, while peak velocity was the only variable that showed a significant association with kinesiophobia. NP patients showed an overall stiffer and more rigid neck motor control pattern compared to HC, indicated by lower neck flexibility, slower movement velocity, increased head steadiness and more rigid trajectory head motion patterns. Only neck flexibility showed a significant association with clinical features in NP patients.

  13. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    PubMed

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  14. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation

    PubMed Central

    Seven, Yasin B.; Mantilla, Carlos B.

    2014-01-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. PMID:25257864

  15. Forelimb muscle function in pig-nosed turtles, Carettochelys insculpta: testing neuromotor conservation between rowing and flapping in swimming turtles

    PubMed Central

    Rivera, Angela R. V.; Blob, Richard W.

    2013-01-01

    Changes in muscle activation patterns can lead to new locomotor modes; however, neuromotor conservation—the evolution of new forms of locomotion through changes in structure without concurrent changes to underlying motor patterns—has been documented across diverse styles of locomotion. Animals that swim using appendages do so via rowing (anteroposterior oscilations) or flapping (dorsoventral oscilations). Yet few studies have compared motor patterns between these swimming modes. In swimming turtles, propulsion is generated exclusively by limbs. Kinematically, turtles swim using multiple styles of rowing (freshwater species), flapping (sea turtles) and a unique hybrid style with superficial similarity to flapping by sea turtles and characterized by increased dorsoventral motions of synchronously oscillated forelimbs that have been modified into flippers (Carettochelys insculpta). We compared forelimb motor patterns in four species of turtle (two rowers, Apalone ferox and Trachemys scripta; one flapper, Caretta caretta; and Carettochelys) and found that, despite kinematic differences, motor patterns were generally similar among species with a few notable exceptions: specifically, presence of variable bursts for pectoralis and triceps in Trachemys (though timing of the non-variable pectoralis burst was similar), and the timing of deltoideus activity in Carettochelys and Caretta compared with other taxa. The similarities in motor patterns we find for several muscles provide partial support for neuromotor conservation among turtles using diverse locomotor styles, but the differences implicate deltoideus as a prime contributor to flapping limb motions. PMID:23966596

  16. Neurogenic and myogenic motor patterns of rabbit proximal, mid, and distal colon.

    PubMed

    Dinning, P G; Costa, M; Brookes, S J; Spencer, N J

    2012-07-01

    The rabbit colon consists of four distinct regions. The motility of each region is controlled by myogenic and neurogenic mechanisms. Associating these mechanisms with specific motor patterns throughout all regions of the colon has not previously been achieved. Three sections of the colon (the proximal, mid, and distal colon) were removed from euthanized rabbits. The proximal colon consists of a triply teniated region and a single tenia region. Spatio-temporal maps were constructed from video recordings of colonic wall diameter, with associated intraluminal pressure recorded from the aboral end. Hexamethonium (100 μM) and tetrodotoxin (TTX; 0.6 μM) were used to inhibit neural activity. Four distinct patterns of motility were detected: 1 myogenic and 3 neurogenic. The myogenic activity consisted of circular muscle (CM) contractions (ripples) that occurred throughout the colon and propagated in both antegrade (anal) and retrograde (oral) directions. The neural activity of the proximal colon consisted of slowly (0.1 mm/s) propagating colonic migrating motor complexes, which were abolished by hexamethonium. These complexes were observed in the region of the proximal colon with a single band of tenia. In the distal colon, tetrodotoxin-sensitive, thus neurally mediated, but hexamethonium-resistant, peristaltic (anal) and antiperistaltic (oral) contractions were identified. The distinct patterns of neurogenic and myogenic motor activity recorded from isolated rabbit colon are specific to each anatomically distinct region. The regional specificity motor pattern is likely to facilitate orderly transit of colonic content from semi-liquid to solid composition of feces.

  17. Mastery in Goal Scoring, T-Pattern Detection, and Polar Coordinate Analysis of Motor Skills Used by Lionel Messi and Cristiano Ronaldo

    PubMed Central

    Castañer, Marta; Barreira, Daniel; Camerino, Oleguer; Anguera, M. Teresa; Fernandes, Tiago; Hileno, Raúl

    2017-01-01

    Research in soccer has traditionally given more weight to players' technical and tactical skills, but few studies have analyzed the motor skills that underpin specific motor actions. The objective of this study was to investigate the style of play of the world's top soccer players, Cristiano Ronaldo and Lionel Messi, and how they use their motor skills in attacking actions that result in a goal. We used and improved the easy-to-use observation instrument (OSMOS-soccer player) with 9 criteria, each one expanded to build 50 categories. Associations between these categories were investigated by T-pattern detection and polar coordinate analysis. T-pattern analysis detects temporal structures of complex behavioral sequences composed of simpler or directly distinguishable events within specified observation periods (time point series). Polar coordinate analysis involves the application of a complex procedure to provide a vector map of interrelated behaviors obtained from prospective and retrospective sequential analysis. The T-patterns showed that for both players the combined criteria were mainly between the different aspects of motor skills, namely the use of lower limbs, contact with the ball using the outside of the foot, locomotion, body orientation with respect to the opponent goal line, and the criteria of technical actions and the right midfield. Polar coordinate analysis detected significant associations between the same criteria included in the T-patterns as well as the criteria of turning the body, numerical equality with no pressure, and relative numerical superiority. PMID:28553245

  18. CAP, epilepsy and motor events during sleep: the unifying role of arousal.

    PubMed

    Parrino, Liborio; Halasz, Peter; Tassinari, Carlo Alberto; Terzano, Mario Giovanni

    2006-08-01

    Arousal systems play a topical neurophysiologic role in protecting and tailoring sleep duration and depth. When they appear in NREM sleep, arousal responses are not limited to a single EEG pattern but are part of a continuous spectrum of EEG modifications ranging from high-voltage slow rhythms to low amplitude fast activities. The hierarchic features of arousal responses are reflected in the phase A subtypes of CAP (cyclic alternating pattern) including both slow arousals (dominated by the <1Hz oscillation) and fast arousals (ASDA arousals). CAP is an infraslow oscillation with a periodicity of 20-40s that participates in the dynamic organization of sleep and in the activation of motor events. Physiologic, paraphysiologic and pathologic motor activities during NREM sleep are always associated with a stereotyped arousal pattern characterized by an initial increase in EEG delta power and heart rate, followed by a progressive activation of faster EEG frequencies. These findings suggest that motor patterns are already written in the brain codes (central pattern generators) embraced with an automatic sequence of EEG-vegetative events, but require a certain degree of activation (arousal) to become visibly apparent. Arousal can appear either spontaneously or be elicited by internal (epileptic burst) or external (noise, respiratory disturbance) stimuli. Whether the outcome is a physiologic movement, a muscle jerk or a major epileptic attack will depend on a number of ongoing factors (sleep stage, delta power, neuro-motor network) but all events share the common trait of arousal-activated phenomena.

  19. Mastery in Goal Scoring, T-Pattern Detection, and Polar Coordinate Analysis of Motor Skills Used by Lionel Messi and Cristiano Ronaldo.

    PubMed

    Castañer, Marta; Barreira, Daniel; Camerino, Oleguer; Anguera, M Teresa; Fernandes, Tiago; Hileno, Raúl

    2017-01-01

    Research in soccer has traditionally given more weight to players' technical and tactical skills, but few studies have analyzed the motor skills that underpin specific motor actions. The objective of this study was to investigate the style of play of the world's top soccer players, Cristiano Ronaldo and Lionel Messi, and how they use their motor skills in attacking actions that result in a goal. We used and improved the easy-to-use observation instrument (OSMOS-soccer player) with 9 criteria, each one expanded to build 50 categories. Associations between these categories were investigated by T-pattern detection and polar coordinate analysis. T-pattern analysis detects temporal structures of complex behavioral sequences composed of simpler or directly distinguishable events within specified observation periods (time point series). Polar coordinate analysis involves the application of a complex procedure to provide a vector map of interrelated behaviors obtained from prospective and retrospective sequential analysis. The T-patterns showed that for both players the combined criteria were mainly between the different aspects of motor skills, namely the use of lower limbs, contact with the ball using the outside of the foot, locomotion, body orientation with respect to the opponent goal line, and the criteria of technical actions and the right midfield. Polar coordinate analysis detected significant associations between the same criteria included in the T-patterns as well as the criteria of turning the body, numerical equality with no pressure, and relative numerical superiority.

  20. Bilateral transfer phenomenon: A functional magnetic resonance imaging pilot study of healthy subjects.

    PubMed

    Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio

    2016-08-01

    The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.

  1. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.

    PubMed

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2004-05-01

    Recent progress with spinal cord injured (SCI) patients indicates that with training they can recover some locomotor ability. Here we addressed the question of whether locomotor responses developed with training depend on re-activation of the normal motor patterns or whether they depend on learning new motor patterns. To this end we recorded detailed kinematic and EMG data in SCI patients trained to step on a treadmill with body-weight support (BWST), and in healthy subjects. We found that all patients could be trained to step with BWST in the laboratory conditions, but they used new coordinative strategies. Patients with more severe lesions used their arms and body to assist the leg movements via the biomechanical coupling of limb and body segments. In all patients, the phase-relationship of the angular motion of the different lower limb segments was very different from the control, as was the pattern of activity of most recorded muscles. Surprisingly, however, the new motor strategies were quite effective in generating foot motion that closely matched the normal in the laboratory conditions. With training, foot motion recovered the shape, the step-by-step reproducibility, and the two-thirds power relationship between curvature and velocity that characterize normal gait. We mapped the recorded patterns of muscle activity onto the approximate rostrocaudal location of motor neuron pools in the human spinal cord. The reconstructed spatiotemporal maps of motor neuron activity in SCI patients were quite different from those of healthy subjects. At the end of training, the locomotor network reorganized at both supralesional and sublesional levels, from the cervical to the sacral cord segments. We conclude that locomotor responses in SCI patients may not be subserved by changes localized to limited regions of the spinal cord, but may depend on a plastic redistribution of activity across most of the rostrocaudal extent of the spinal cord. Distributed plasticity underlies recovery of foot kinematics by generating new patterns of muscle activity that are motor equivalents of the normal ones.

  2. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    PubMed Central

    Trivedi, Chintan A.; Bollmann, Johann H.

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322

  3. Targeted Prostate Thermal Therapy with Catheter-Based Ultrasound Devices and MR Thermal Monitoring

    NASA Astrophysics Data System (ADS)

    Diederich, Chris; Ross, Anthony; Kinsey, Adam; Nau, Will H.; Rieke, Viola; Butts Pauly, Kim; Sommer, Graham

    2006-05-01

    Catheter-based ultrasound devices have significant advantages for thermal therapy procedures, including potential for precise spatial and dynamic control of heating patterns to conform to targeted volumes. Interstitial and transurethral ultrasound applicators, with associated treatment strategies, were developed for thermal ablation of prostate combined with MR thermal monitoring. Four types of multielement transurethral applicators were devised, each with different levels of selectivity and intended therapeutic goals: sectored tubular transducer devices with fixed directional heating patterns; planar and lightly focused curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Similarly, interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with fixed directional heating patterns (e.g., 180 deg.). In vivo experiments in canine prostate (n=15) under MR temperature imaging were used to evaluate the heating technology and develop treatment strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature contours and thermal dose in multiple slices through the target volume. Sectored transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. The curvilinear applicator produces distinct 2-3 mm wide lesions, and with sequential rotation and modulated dwell time can precisely conform thermal ablation to selected areas or the entire prostate gland. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with directional devices can be used to effectively ablate the posterior peripheral zone of the gland while protecting the rectum. An implant with multi-sectored interstitial devices can effectively control the angular heating pattern without applicator rotation. The MR derived 52 °C and lethal thermal dose contours (t43=240 min) allowed for real-time control of the applicators and effectively defined the extent of thermal damage. Catheter-based ultrasound devices, combined with MR thermal monitoring, can produce relatively fast and precise thermal ablation of prostate, with potential for treatment of cancer or BPH.

  4. Patterns of structural reorganization of the corticospinal tract in children with Sturge-Weber syndrome

    PubMed Central

    Kamson, David O.; Juhász, Csaba; Shin, Joseph; Behen, Michael E.; Guy, William C.; Chugani, Harry T.; Jeong, Jeong-Won

    2014-01-01

    Background Reorganization of the corticospinal tract (CST) after early damage can limit motor deficit. In this study, we explored patterns of structural CST reorganization in children with Sturge-Weber syndrome. Methods Five children (age 1.5-7 years) with motor deficit due to unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). CST segments belonging to hand and leg movements were separated, and their volume was measured by diffusion tensor imaging (DTI) tractography using a recently validated method. CST segmental volumes were normalized and compared between the SWS children and age-matched healthy controls. Volume changes during follow-up were also compared to clinical motor symptoms. Results In the SWS children, hand-related (but not leg-related) CST volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand CST volume changes emerged: (i) Two children with extensive frontal lobe damage showed a CST volume decrease in the lesional hemisphere and a concomitant increase in the non-lesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (ii) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand CST volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. Conclusions DTI tractography can detect differential abnormalities in the hand CST segment both ipsi- and contralateral to the lesion. Interval increase in the CST hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention. PMID:24507695

  5. Patterns of structural reorganization of the corticospinal tract in children with Sturge-Weber syndrome.

    PubMed

    Kamson, David O; Juhász, Csaba; Shin, Joseph; Behen, Michael E; Guy, William C; Chugani, Harry T; Jeong, Jeong-Won

    2014-04-01

    Reorganization of the corticospinal tract after early damage can limit motor deficit. In this study, we explored patterns of structural corticospinal tract reorganization in children with Sturge-Weber syndrome. Five children (age 1.5-7 years) with motor deficit resulting from unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). Corticospinal tract segments belonging to hand and leg movements were separated and their volume was measured by diffusion tensor imaging tractography using a recently validated method. Corticospinal tract segmental volumes were normalized and compared between the Sturge-Weber syndrome children and age-matched healthy controls. Volume changes during follow-up were also compared with clinical motor symptoms. In the Sturge-Weber syndrome children, hand-related (but not leg-related) corticospinal tract volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand corticospinal tract volume changes emerged. (1) Two children with extensive frontal lobe damage showed a corticospinal tract volume decrease in the lesional hemisphere and a concomitant increase in the nonlesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (2) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand corticospinal tract volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. Diffusion tensor imaging tractography can detect differential abnormalities in the hand corticospinal tract segment both ipsi- and contralateral to the lesion. Interval increase in the corticospinal tract hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  7. Effects of motor patterns on water-soluble and membrane proteins and cholinesterase activity in subcellular fractions of rat brain tissue

    NASA Technical Reports Server (NTRS)

    Pevzner, L. Z.; Venkov, L.; Cheresharov, L.

    1980-01-01

    Albino rats were kept for a year under conditions of daily motor load or constant hypokinesia. An increase in motor activity results in a rise in the acetylcholinesterase activity determined in the synaptosomal and purified mitochondrial fractions while hypokinesia induces a pronounced decrease in this enzyme activity. The butyrylcholinesterase activity somewhat decreases in the synaptosomal fraction after hypokinesia but does not change under the motor load pattern. Motor load causes an increase in the amount of synaptosomal water-soluble proteins possessing an intermediate electrophoretic mobility and seem to correspond to the brain-specific protein 14-3-2. In the synaptosomal fraction the amount of membrane proteins with a low electrophoretic mobility and with the cholinesterase activity rises. Hypokinesia, on the contrary, decreases the amount of these membrane proteins.

  8. Dynamical systems techniques reveal the sexual dimorphic nature of motor patterns in birdsong

    NASA Astrophysics Data System (ADS)

    Mendez, J. M.; Alliende, J. A.; Amador, A.; Mindlin, G. B.

    2006-10-01

    In this work we analyze the pressure motor patterns used by canaries (Serinus canaria) during song, both in the cases of males and testosterone treated females. We found a qualitative difference between them which was not obvious from the acoustical features of the uttered songs. We also show the diversity of patterns, both for males and females, to be consistent with a recently proposed model for the dynamics of the oscine respiratory system. The model not only allows us to reproduce qualitative features of the different pressure patterns, but also to account for all the diversity of pressure patterns found in females.

  9. Perceived beauty of random texture patterns: A preference for complexity.

    PubMed

    Friedenberg, Jay; Liby, Bruce

    2016-07-01

    We report two experiments on the perceived aesthetic quality of random density texture patterns. In each experiment a square grid was filled with a progressively larger number of elements. Grid size in Experiment 1 was 10×10 with elements added to create a variety of textures ranging from 10%-100% fill levels. Participants rated the beauty of the patterns. Average judgments across all observers showed an inverted U-shaped function that peaked near middle densities. In Experiment 2 grid size was increased to 15×15 to see if observers preferred patterns with a fixed density or a fixed number of elements. The results of the second experiment were nearly identical to that of the first showing a preference for density over fixed element number. Ratings in both studies correlated positively with a GIF compression metric of complexity and with edge length. Within the range of stimuli used, observers judge more complex patterns to be more beautiful. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui

    2012-04-01

    The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.

  11. Recording In Vivo Human Colonic Motility: What Have We Learnt Over the Past 100 Years?

    PubMed

    Dinning, Phil G

    To understand the abnormalities that underpin functional gut disorders we must first gain insight into the normal patterns of gut motility. While detailed information continually builds on the motor patterns (and mechanisms that control them) of the human esophagus and anorectum, our knowledge of normal and abnormal motility in the more inaccessible regions of the gut remains poor. This particularly true of the human colon. Investigation of in vivo colonic motor patterns is achieved through measures of transit (radiology, scintigraphy and, more recently, "smart pills") or by direct real-time recording of colonic contractility (intraluminal manometry). This short review will provide an overview of findings from the past and present and attempt to piece together the complex nature of colonic motor patterns. In doing so it will build a profile of human colonic motility and determine the likely mechanisms that control this motility.

  12. Critical Motor Number for Fractional Steps of Cytoskeletal Filaments in Gliding Assays

    PubMed Central

    Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan

    2012-01-01

    In gliding assays, filaments are pulled by molecular motors that are immobilized on a solid surface. By varying the motor density on the surface, one can control the number of motors that pull simultaneously on a single filament. Here, such gliding assays are studied theoretically using Brownian (or Langevin) dynamics simulations and taking the local force balance between motors and filaments as well as the force-dependent velocity of the motors into account. We focus on the filament stepping dynamics and investigate how single motor properties such as stalk elasticity and step size determine the presence or absence of fractional steps of the filaments. We show that each gliding assay can be characterized by a critical motor number, . Because of thermal fluctuations, fractional filament steps are only detectable as long as . The corresponding fractional filament step size is where is the step size of a single motor. We first apply our computational approach to microtubules pulled by kinesin-1 motors. For elastic motor stalks that behave as linear springs with a zero rest length, the critical motor number is found to be , and the corresponding distributions of the filament step sizes are in good agreement with the available experimental data. In general, the critical motor number depends on the elastic stalk properties and is reduced to for linear springs with a nonzero rest length. Furthermore, is shown to depend quadratically on the motor step size . Therefore, gliding assays consisting of actin filaments and myosin-V are predicted to exhibit fractional filament steps up to motor number . Finally, we show that fractional filament steps are also detectable for a fixed average motor number as determined by the surface density (or coverage) of the motors on the substrate surface. PMID:22927953

  13. Motor output variability, deafferentation, and putative deficits in kinesthetic reafference in Parkinson's disease.

    PubMed

    Torres, Elizabeth B; Cole, Jonathan; Poizner, Howard

    2014-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder defined by motor impairments that include rigidity, systemic slowdown of movement (bradykinesia), postural problems, and tremor. While the progressive decline in motor output functions is well documented, less understood are impairments linked to the continuous kinesthetic sensation emerging from the flow of motions. There is growing evidence in recent years that kinesthetic problems are also part of the symptoms of PD, but objective methods to readily quantify continuously unfolding motions across different contexts have been lacking. Here we present evidence from a deafferented subject (IW) and a new statistical platform that enables new analyses of motor output variability measured as a continuous flow of kinesthetic reafferent input. Systematic increasing similarities between the patterns of motor output variability in IW and the participants with increasing degrees of PD severity suggest potential deficits in kinesthetic sensing in PD. We propose that these deficits may result from persistent, noisy, and random motor patterns as the disorder progresses. The stochastic signatures from the unfolding motions revealed levels of noise in the motor output fluctuations of these patients bound to decrease the kinesthetic signal's bandwidth. The results are interpreted in light of the concept of kinesthetic reafference ( Von Holst and Mittelstaedt, 1950). In this context, noisy motor output variability from voluntary movements in PD leads to a returning stream of noisy afference caused, in turn, by those faulty movements themselves. Faulty efferent output re-enters the CNS as corrupted sensory motor input. We find here that severity level in PD leads to the persistence of such patterns, thus bringing the statistical signatures of the subjects with PD systematically closer to those of the subject without proprioception.

  14. Motor output variability, deafferentation, and putative deficits in kinesthetic reafference in Parkinson’s disease

    PubMed Central

    Torres, Elizabeth B.; Cole, Jonathan; Poizner, Howard

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder defined by motor impairments that include rigidity, systemic slowdown of movement (bradykinesia), postural problems, and tremor. While the progressive decline in motor output functions is well documented, less understood are impairments linked to the continuous kinesthetic sensation emerging from the flow of motions. There is growing evidence in recent years that kinesthetic problems are also part of the symptoms of PD, but objective methods to readily quantify continuously unfolding motions across different contexts have been lacking. Here we present evidence from a deafferented subject (IW) and a new statistical platform that enables new analyses of motor output variability measured as a continuous flow of kinesthetic reafferent input. Systematic increasing similarities between the patterns of motor output variability in IW and the participants with increasing degrees of PD severity suggest potential deficits in kinesthetic sensing in PD. We propose that these deficits may result from persistent, noisy, and random motor patterns as the disorder progresses. The stochastic signatures from the unfolding motions revealed levels of noise in the motor output fluctuations of these patients bound to decrease the kinesthetic signal’s bandwidth. The results are interpreted in light of the concept of kinesthetic reafference ( Von Holst and Mittelstaedt, 1950). In this context, noisy motor output variability from voluntary movements in PD leads to a returning stream of noisy afference caused, in turn, by those faulty movements themselves. Faulty efferent output re-enters the CNS as corrupted sensory motor input. We find here that severity level in PD leads to the persistence of such patterns, thus bringing the statistical signatures of the subjects with PD systematically closer to those of the subject without proprioception. PMID:25374524

  15. What Do Eye Gaze Metrics Tell Us about Motor Imagery?

    PubMed

    Poiroux, Elodie; Cavaro-Ménard, Christine; Leruez, Stéphanie; Lemée, Jean Michel; Richard, Isabelle; Dinomais, Mickael

    2015-01-01

    Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to "spy" on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.

  16. The overuse of the implant motor: effect on the output torque in overloading condition.

    PubMed

    Lee, Du-Hyeong; Cho, Sung-Am; Lee, Cheong-Hee; Lee, Kyu-Bok

    2015-06-01

    The overloading of the motor affects its performance. The output torque of the implant motor under overloading condition has not been reported. The purpose of this study was to determine the reliability and the tendency of the output torque when an implant motor is consecutively used. Three implant motors were evaluated: SurgicXT/X-SG20L (NSK), INTRAsurg300/CL3-09 (KaVo), and XIP10/CRB26LX (Saeshin). The output torque was measured using an electronic torque gauge fixed with jigs. For the 40 and 50 Ncm torque settings, 300 measurements were taken at 30 rpm. Repeated measures of analysis of variance (ANOVA) and one-way ANOVA were used to compare the torque values within each group and between the groups. As repeating measures, the output torque values decreased gradually compared with the baseline. In within-group analysis, the different torque value from the first measurement appeared earliest in NSK motor, followed in order by Saeshin and KaVo motors. NSK motor showed a different torque decrease between 40 and 50 Ncm settings (p < .05). Intergroup analysis revealed Saeshin motor to have the least deviation from the baseline, followed by KaVo motor. NSK motor had the most inconsistent torque at the 6, 8, 9, and 10 repeat counts (p < .05). The actual torque decreases when the surgical motor is continuously used. The NSK motor showed more significant decreases in torque than KaVo and Saeshin motors in overloading condition. © 2014 Wiley Periodicals, Inc.

  17. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  18. Active-standby servovalue/actuator development

    NASA Technical Reports Server (NTRS)

    Masm, R. K.

    1973-01-01

    A redundant, fail/operate fail/fixed servoactuator was constructed and tested along with electronic models of a servovalve. It was found that a torque motor switch is satisfactory for the space shuttle main engine hydraulic actuation system, and that this system provides an effective failure monitoring technique.

  19. Dynamics of a b-nut failure

    NASA Astrophysics Data System (ADS)

    Zarubin, Peter V.

    1999-06-01

    In August of 1989, the Galileo spacecraft, consisting of an orbiter and probe, was mounted to an Inertial Upper Stage (IUS) rocket stage being readied for flight aboard NASA's Space Shuttle, 'STS-34,' 'Atlantis.' During routine age testing of an IUS igniter fire line circuit, a 'b-nut' failure occurred. On board the Galileo/IUS first stage rocket motor was a b-nut from this failed lot. There was concern that the mission could be jeopardized if the b-nut failed because of the close proximity of the IUS second stage rocket motor nozzle. A fix had to be made to insure mission success. Chemical Systems Division was called upon to provide high- speed motion picture photography at 3000 frames per second to analyze the dynamics of a b-nut failure, and verify that the fix would prevent damage to the second stage nozzle, should a b-nut failure occur. This report will show how displacement and velocity measurements can be made from 16 mm motion picture film.

  20. Electrifying the motor engram: effects of tDCS on motor learning and control

    PubMed Central

    de Xivry, Jean-Jacques Orban; Shadmehr, Reza

    2014-01-01

    Learning to control our movements accompanies neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e. the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: 1) firing rates are increased by anodal polarization and decreased by cathodal polarization, 2) anodal polarization strengthens newly formed associations, and 3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning. PMID:25200178

  1. ‘Life is motion’: multiscale motility of molecular motors

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard; Klumpp, Stefan

    2005-07-01

    Life is intimately related to complex patterns of directed movement. It is quite remarkable that all of this movement is based on filaments and motor molecules which perform mechanical work on the nanometer scale. This article reviews recent theoretical work on the motility of molecular motors and motor particles that bind to cytoskeletal filaments and walk along these filaments in a directed fashion. It is emphasized that these systems exhibit several motility regimes which are well seperated in time. In their bound state, the motor particles move with a typical velocity of about 1 μm/s. The motor cycles underlying this bound motor movement can be understood in terms of driven Brownian ratchets and networks. On larger length and time scales, the motor particles unbind from the filaments and undergo peculiar motor walks consisting of many diffusional encounters with the filaments. If the mutual exclusion (or hardcore repulsion) of these motor particles is taken into account, one finds a variety of cooperative phenomena and self-organized processes: build-up of traffic jams; active structure formation leading to steady states with spatially nonuniform density and current patterns; and active phase transitions between different steady states far from equilibrium. A particularly simple active phase transition with spontaneous symmetry breaking is predicted to occur in systems with two species of motor particles which walk on the filaments in opposite directions.

  2. Electrifying the motor engram: effects of tDCS on motor learning and control.

    PubMed

    Orban de Xivry, Jean-Jacques; Shadmehr, Reza

    2014-11-01

    Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.

  3. 24-h actigraphic monitoring of motor activity, sleeping and eating behaviors in underweight, normal weight, overweight and obese children.

    PubMed

    Martoni, Monica; Carissimi, Alicia; Fabbri, Marco; Filardi, Marco; Tonetti, Lorenzo; Natale, Vincenzo

    2016-12-01

    Within a chronobiological perspective, the present study aimed to describe 24 h of sleep-wake cycle, motor activity, and food intake patterns in different body mass index (BMI) categories of children through 7 days of actigraphic recording. Height and weight were objectively measured for BMI calculation in a sample of 115 Italian primary schoolchildren (10.21 ± 0.48 years, 62.61 % females). According to BMI values, 2.60 % were underweight, 61.70 % were of normal weight, 29.60 % were overweight and 6.10 % were obese. Participants wore a wrist actigraph continuously for 7 days to record motor activity and describe sleep-wake patterns. In addition, participants were requested to push the event-marker button of the actigraph each time they consumed food to describe their circadian eating patterns. BMI group differences were found for sleep quantity (i.e. midpoint of sleep and amplitude), while sleep quality, 24-h motor activity and food intake patterns were similar between groups. Regression analyses showed that BMI was negatively predicted by sleep duration on schooldays. BMI was also predicted by motor activity and by food intake frequencies recorded at particular times of day during schooldays and at the weekend. The circadian perspective seems to provide promising insight into childhood obesity, but this aspect needs to be further explored.

  4. Teaching and Learning in Physical Education for Young Children.

    ERIC Educational Resources Information Center

    Grineski, Steven

    1988-01-01

    Planned physical education experiences should be an integral part of the preschool or kindergarten curriculum to: foster normal motor development, take advantage of children's readiness to develop and practice motor skills, fulfill children's need and desire for movement, and develop fundamental motor patterns. (CB)

  5. Motor cortex embeds muscle-like commands in an untangled population response

    PubMed Central

    Russo, Abigail A.; Bittner, Sean R.; Perkins, Sean M.; Seely, Jeffrey S.; London, Brian M.; Lara, Antonio H.; Miri, Andrew; Marshall, Najja J.; Kohn, Adam; Jessell, Thomas M.; Abbott, Laurence F.; Cunningham, John P.; Churchland, Mark M.

    2018-01-01

    Summary Primate motor cortex projects to spinal interneurons and motor neurons, suggesting that motor cortex activity may be dominated by muscle-like commands. Extensive observations during reaching lend support to this view, but evidence remains ambiguous and much-debated. To provide a different perspective, we employed a novel behavioral paradigm that affords extensive comparison between time-evolving neural and muscle activity. We found that single motor cortex neurons displayed many muscle-like properties, but the structure of population activity was not muscle-like. Unlike muscle activity, neural activity was structured to avoid ‘tangling’: moments where similar activity patterns led to dissimilar future patterns. Avoidance of tangling was present across tasks and species. Network models revealed a potential reason for this consistent feature: low tangling confers noise robustness. Finally, we were able to predict motor cortex activity from muscle activity alone, by leveraging the hypothesis that muscle-like commands are embedded in additional structure that yields low tangling. PMID:29398358

  6. Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations.

    PubMed

    Houtman, C J; Stegeman, D F; Van Dijk, J P; Zwarts, M J

    2003-09-01

    To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.

  7. Investigation of a rotary ultrasonic motor using a longitudinal vibrator and spiral fin rotor.

    PubMed

    Peng, Taijiang; Wu, Xiaoyu; Liang, Xiong; Shi, Hongyan; Luo, Feng

    2015-08-01

    A Langevin transducer can provide longitudinal vibration with larger amplitude while also possessing a greater fatigue life than other types of piezoelectric vibrators. A novel rotary Ultrasonic Motor (USM) was proposed based on the use of a longitudinal transducer (acting as the stator) and a spiral fin rotor: the front cover of the Langevin transducer was designed as a double-layer cup-shaped structure, with the rotor sustained by the inner-layer, and the bearing cover fixed to the outer-layer; the rotor consisted of a shaft and spiral fins which acted as the elastic coupler. It is different from a traditional traveling USM, because the stator provides longitudinal vibration and the rotor generates the elliptical motion. This paper analyzed the motion locus equation of the fin contact points. Additionally, a theoretical analysis was performed in regards to the mechanism and the motor's rotor motion characteristics, which demonstrates the relationships among the motor's driving force, the torque, the revolution speed, and the motor structure parameters. A motor prototype has been manufactured and surveyed to demonstrate the motor performance. The relationships between the amplitude and the preload on the rotor, the free revolution speed, and the torque of the motor have also been studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. How molecular motors shape the flagellar beat

    PubMed Central

    Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank

    2007-01-01

    Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446

  9. Non-peristaltic patterns of motor activity in the guinea-pig proximal colon.

    PubMed

    Hennig, G W; Gregory, S; Brookes, S J H; Costa, M

    2010-06-01

    The guinea-pig proximal colon contains semi-solid feces which are propelled by intermittent neural peristaltic waves to the distal colon, where solid pellets are formed. Between propulsive periods, complex motor patterns underlie fluid re-absorption and mixing of contents. Spatio-temporal analysis of video recordings were used to investigate neural and myogenic patterns of non-peristaltic motor activity. At low distension (6 cmH(2)O), two major motor patterns were seen. Narrow rings of constriction (abrupt contractions) occurred at 19 cpm. These previously undescribed contractions occurred, almost simultaneously, at many points along the preparation, with a calculated propagation velocity of 110 mm s(-1). They were abolished by hexamethonium and by tetrodotoxin, indicating they were neurally mediated. Inhibition of nitric oxide synthase resulted in increased frequency of 'abrupt contractions' suggesting ongoing inhibitory modulation by endogenous nitric oxide. After tetrodotoxin, another distinct motor pattern was revealed; 'ripples'(1) consisted of shallow rings of contraction, occurring at 18 cpm and propagating at 2.7-2.9 mm s(-1) orally or aborally from multiple initiation sites. The frequency of 'ripples' increased as intraluminal pressure was raised, becoming very irregular at high distensions. L-type calcium channel blockers and openers affected the amplitude of 'ripples'. No frequency gradient of 'ripples' along the proximal colon was detected. This absence explains the multiple initiation sites which often shifted over time, and the oral and aboral propagation of 'ripples'. The interaction of myogenic 'ripples' with neurogenic 'abrupt contractions' generates localized alternating rings of contractions and dilatation, well suited to effective mixing of contents.

  10. Detection of Ludic Patterns in Two Triadic Motor Games and Differences in Decision Complexity

    PubMed Central

    Aguilar, Miguel Pic; Navarro-Adelantado, Vicente; Jonsson, Gudberg K.

    2018-01-01

    The triad is a particular structure in which an ambivalent social relationship takes place. This work is focused on the search of behavioral regularities in the practice of motor games in triad, which is a little known field. For the detection of behavioral patterns not visible to the naked eye, we use Theme. A chasing games model was followed, with rules, and in two different structures (A↔B↔C↔A and A → B → C → A) on four class groups (two for each structure), for a total of 84, 12, and 13 year old secondary school students, 37 girls (44%) and 47 boys (56%). The aim was to examine if the players' behavior, in relation to the triad structure, matches with any ludic behavior patterns. An observational methodology was applied, with a nomothetic, punctual and multidimensional design. The intra and inter-evaluative correlation coefficients and the generalizability theory ensured the quality of the data. A mixed behavioral role system was used (four criteria and 15 categories), and the pattern detection software Theme was applied to detect temporal regularities in the order of event occurrences. The results show that time location of motor responses in triad games was not random. In the “maze” game we detected more complex ludic patterns than the “three fields” game, which might be explained by means of structural determinants such as circulation. This research points out the decisional complexity in motor games, and it confirms the differences among triads from the point of view of motor communication. PMID:29354084

  11. Effects of Stand and Step Training with Epidural Stimulation on Motor Function for Standing in Chronic Complete Paraplegics

    PubMed Central

    Rejc, Enrico; Angeli, Claudia A.; Bryant, Nicole

    2017-01-01

    Abstract Individuals affected by motor complete spinal cord injury are unable to stand, walk, or move their lower limbs voluntarily; this diagnosis normally implies severe limitations for functional recovery. We have recently shown that the appropriate selection of epidural stimulation parameters was critical to promoting full-body, weight-bearing standing with independent knee extension in four individuals with chronic clinically complete paralysis. In the current study, we examined the effects of stand training and subsequent step training with epidural stimulation on motor function for standing in the same four individuals. After stand training, the ability to stand improved to different extents in the four participants. Step training performed afterwards substantially impaired standing ability in three of the four individuals. Improved standing ability generally coincided with continuous electromyography (EMG) patterns with constant levels of ground reaction forces. Conversely, poorer standing ability was associated with more variable EMG patterns that alternated EMG bursts and longer periods of negligible activity in most of the muscles. Stand and step training also differentially affected the evoked potentials amplitude modulation induced by sitting-to-standing transition. Finally, stand and step training with epidural stimulation were not sufficient to improve motor function for standing without stimulation. These findings show that the spinal circuitry of motor complete paraplegics can generate motor patterns effective for standing in response to task-specific training with optimized stimulation parameters. Conversely, step training can lead to neural adaptations resulting in impaired motor function for standing. PMID:27566051

  12. Discharge patterns of human genioglossus motor units during arousal from sleep.

    PubMed

    Wilkinson, Vanessa; Malhotra, Atul; Nicholas, Christian L; Worsnop, Christopher; Jordan, Amy S; Butler, Jane E; Saboisky, Julian P; Gandevia, Simon C; White, David P; Trinder, John

    2010-03-01

    Single motor unit recordings of the human genioglossus muscle reveal motor units with a variety of discharge patterns. Integrated multiunit electromyographic recordings of genioglossus have demonstrated an abrupt increase in the muscle's activity at arousal from sleep. The aim of the present study was to determine the effect of arousal from sleep on the activity of individual motor units as a function of their particular discharge pattern. Genioglossus activity was measured using intramuscular fine-wire electrodes inserted via a percutaneous approach. Arousals from sleep were identified using the ASDA criterion and the genioglossus electromyogram recordings analyzed for single motor unit activity. Sleep research laboratory. Sleep and respiratory data were collected in 8 healthy subjects (6 men). 138 motor units were identified during prearousalarousal sleep: 25% inspiratory phasic, 33% inspiratory tonic, 4% expiratory phasic, 3% expiratory tonic, and 35% tonic. At arousal from sleep inspiratory phasic units significantly increased the proportion of a breath over which they were active, but did not appreciably increase their rate of firing. 80 new units were identified at arousals, 75% were inspiratory, many of which were active for only 1 or 2 breaths. 22% of units active before arousal, particularly expiratory and tonic units, stopped at the arousal. Increased genioglossus muscle activity at arousal from sleep is primarily due to recruitment of inspiratory phasic motor units. Further, activity within the genioglossus motoneuron pool is reorganized at arousal as, in addition to recruitment, approximately 20% of units active before arousals stopped firing.

  13. The Effects of Exercise on the Firing Patterns of Single Motor Units.

    ERIC Educational Resources Information Center

    Cracraft, Joe D.

    In this study, the training effects of static and dynamic exercise programs on the firing patterns of 450 single motor units (SMU) in the human tibialis anterior muscle were investigated. In a six week program, the static group (N=5) participated in daily high intensity, short duration, isometric exercises while the dynamic group (N=5)…

  14. Perturbations of Respiratory Rhythm and Pattern by Disrupting Synaptic Inhibition within Pre-Bötzinger and Bötzinger Complexes123

    PubMed Central

    Koizumi, Hidehiko; Mosher, Bryan; Tariq, Mohammad F.; Zhang, Ruli; Molkov, Yaroslav I.

    2016-01-01

    The pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes are the brainstem compartments containing interneurons considered to be critically involved in generating respiratory rhythm and motor pattern in mammals. Current models postulate that both generation of the rhythm and coordination of the inspiratory-expiratory pattern involve inhibitory synaptic interactions within and between these regions. Both regions contain glycinergic and GABAergic neurons, and rhythmically active neurons in these regions receive appropriately coordinated phasic inhibition necessary for generation of the normal three-phase respiratory pattern. However, recent experiments attempting to disrupt glycinergic and GABAergic postsynaptic inhibition in the pre-BötC and BötC in adult rats in vivo have questioned the critical role of synaptic inhibition in these regions, as well as the importance of the BötC, which contradicts previous physiological and pharmacological studies. To further evaluate the roles of synaptic inhibition and the BötC, we bilaterally microinjected the GABAA receptor antagonist gabazine and glycinergic receptor antagonist strychnine into the pre-BötC or BötC in anesthetized adult rats in vivo and in perfused in situ brainstem–spinal cord preparations from juvenile rats. Muscimol was microinjected to suppress neuronal activity in the pre-BötC or BötC. In both preparations, disrupting inhibition within pre-BötC or BötC caused major site-specific perturbations of the rhythm and disrupted the three-phase motor pattern, in some experiments terminating rhythmic motor output. Suppressing BötC activity also potently disturbed the rhythm and motor pattern. We conclude that inhibitory circuit interactions within and between the pre-BötC and BötC critically regulate rhythmogenesis and are required for normal respiratory motor pattern generation. PMID:27200412

  15. Patterns of motor activity in the isolated nerve cord of the octopus arm.

    PubMed

    Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin

    2006-12-01

    The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension.

  16. Harmonic Fluxes and Electromagnetic Forces of Concentric Winding Brushless Permanent Magnet Motor

    NASA Astrophysics Data System (ADS)

    Ishibashi, Fuminori; Takemasa, Ryo; Matsushita, Makoto; Nishizawa, Takashi; Noda, Shinichi

    Brushless permanent magnet motors have been widely used in home applications and industrial fields. These days, high efficiency and low noise motors are demanded from the view point of environment. Electromagnetic noise and iron loss of the motor are produced by the harmonic fluxes and electromagnetic forces. However, order and space pattern of these have not been discussed in detail. In this paper, fluxes, electromagnetic forces and magneto-motive forces of brushless permanent magnet motors with concentric winding were analyzed analytically, experimentally and numerically. Time harmonic fluxes and time electromagnetic forces in the air gap were measured by search coils on the inner surface of the stator teeth and analyzed by FEM. Space pattern of time harmonic fluxes and time electromagnetic forces were worked out with experiments and FEM. Magneto motive forces due to concentric winding were analyzed with equations and checked by FEM.

  17. Short time sports exercise boosts motor imagery patterns: implications of mental practice in rehabilitation programs

    PubMed Central

    Wriessnegger, Selina C.; Steyrl, David; Koschutnig, Karl; Müller-Putz, Gernot R.

    2014-01-01

    Motor imagery (MI) is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI) in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 min of training are enough to boost MI patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA) but also fronto-parietal and subcortical structures. This supports previous findings that MI has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity. PMID:25071505

  18. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... MCSAC will complete action on Task 10-02, regarding Fatigue Management Plans for Commercial Motor Vehicle Drivers. Additionally, the MCSAC will commence work on Task 11-01, regarding Patterns of Safety... officer, safety director, vehicle maintenance supervisor, and driver supervisor of a motor carrier...

  19. [Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology].

    PubMed

    Berényi, Marianne; Katona, Ferenc; Sanchez, Carmen; Mandujano, Mario

    2011-07-30

    The group or profile of elementary neuromotor patterns is different from the primitive reflex group which is now called the "primitive reflex profile." All these elementary neuromotor patterns are characterized by a high degree of organization, persistence, and stereotypy. In many regards, these patterns are predecessors or precursors of from them the specific human motor patterns which appear spontaneously later as crawling, creeping, sitting, and walking with erect posture. On the basis of our experiences it can be stated that the elementary neuromotor patterns can be activated in all neonates and young infants as congenital motor functions. With regards to their main properties and functional forms, the normal patterns can be divided into two main groups: (1) One group is characterized by lifting of the head and complex chains of movements which are directed to the verticalization of the body; (2) The other group is characterized by complex movements directed to locomotion and change of body position. The neuromotor patterns can be activated by placing the human infant in specific body positions that trigger the vestibulospinal and the reticulospinal systems, the archicerebellum and the basal gangliae. Most of these systems display early myelinisation and are functioning very soon. Many of the elementary neuromotor patterns reflect the most important - spontaneously developing forms of human movements such as sitting upright in space and head elevation crawling and walking. The majority of the human neuromotor patterns are human specific. When the infant is put in an activating position, crawling, sitting up, and walking begin and last as long as the activating position is maintained. Each elementary neuromotor pattern is a repeated, continuous train of complex movements in response to a special activating position. The brainstem is not sufficient to organize these complex movements, the integrity of the basal ganglia is also necessary. Elementary sensorimotor patterns during human ontogenesis reflect phylogenetic develpoment of species specific human functions. During ontogenesis spontaneous motor development gradually arises from these early specific sensorimotor predecessors.. The regular use of the elementary neuromotor patterns for diagnostic puposes has several distinct advantages. The neuromotor patterns have a natural stereotypy in normal infants and, therefore, deflections from this regular pattern may be detected easily, thus, the activation of the elementary neuromotor pattern is a more suitable method for identifying defects in the motor activity of the neonate or young infant than the assessment of the primitive reflexes. The "stiumulus positions," which activate specific movements according to how the human neonate or young infant is positioned, do not activate such motor patterns in neonate or young primates including apes. The characteristic locomotor pattern in these adult primates, including the apes, is swinging and involves brachiation with an extreme prehensility. This species specific motor activity is reflected in the orangutan and gibbon neonates by an early extensive grasp. However, according to our investigations, no crawling, creeping, elementary walk, or sitting up can be activated in them. Neonates grasp the hair of the mother, a vital function for the survival of the young. In contemporary nonhuman primates including apes, the neonate brain is more mature. Thus, pronounced differences can be observed between early motor ontogenesis in the human and all other primates. The earliest human movements are complex performances rather than simple reflexes. The distinction between primitive reflexes and elementary neuromotor patterns is essential. Primitive reflexes are controlled by the brainstem. All can be activated in primates. These reflexes have short durations and contrary to elementary sensorimotor patterns occur only once in response to one stimulus, e.g., one head drop elicits one abduction-adduction of the upper extremities correlated to adduction and flexion of the lower extremities to a lesser degree with the Moro reflex. Elementary neuromotor patterns are much more complex and most of them including elementary walk may be elicited as early as the 19th-20th gestational week, though less perfectly than later.

  20. EFFECTS OF THE FUNGICIDE TRIADMEFON ON FIXED-INTERVAL PERFORMANCE: COMPARISON WITH METHYLPHENIDATE, D-AMPHETAMINE AND CHLORPROMAZINE

    EPA Science Inventory

    Triadimefon is a fungicide that has recently been shown to increase motor activity and also to increase rates of schedule-controlled responding. hese findings indicate that triadimefon resembles psychomotor stimulants. he present experiment was designed to compare triadimefon to ...

  1. Taxi, Jitneys and Poverty

    ERIC Educational Resources Information Center

    Rosenbloom, Sandi

    1970-01-01

    Version of the paper given at The Transportation and Poverty Conference of the American Academy of Arts and Sciences. Argues for revival of jitneys (12-14 capacity motor vehicles, operating on fixed routes, fares zone-rated) to serve ghetto residents and provide employment, too. Taxi company competition also discussed. (KG)

  2. Rapid motor learning in the translational vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Zhou, Wu; Weldon, Patrick; Tang, Bingfeng; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    Motor learning was induced in the translational vestibulo-ocular reflex (TVOR) when monkeys were repeatedly subjected to a brief (0.5 sec) head translation while they tried to maintain binocular fixation on a visual target for juice rewards. If the target was world-fixed, the initial eye speed of the TVOR gradually increased; if the target was head-fixed, the initial eye speed of the TVOR gradually decreased. The rate of learning acquisition was very rapid, with a time constant of approximately 100 trials, which was equivalent to <1 min of accumulated stimulation. These learned changes were consolidated over >or=1 d without any reinforcement, indicating induction of long-term synaptic plasticity. Although the learning generalized to targets with different viewing distances and to head translations with different accelerations, it was highly specific for the particular combination of head motion and evoked eye movement associated with the training. For example, it was specific to the modality of the stimulus (translation vs rotation) and the direction of the evoked eye movement in the training. Furthermore, when one eye was aligned with the heading direction so that it remained motionless during training, learning was not expressed in this eye, but only in the other nonaligned eye. These specificities show that the learning sites are neither in the sensory nor the motor limb of the reflex but in the sensory-motor transformation stage of the reflex. The dependence of the learning on both head motion and evoked eye movement suggests that Hebbian learning may be one of the underlying cellular mechanisms.

  3. High-precision planar magnetic levitation

    NASA Astrophysics Data System (ADS)

    Kim, Won-Jong

    1997-11-01

    This thesis presents the design and implementation of a high-precision magnetically levitated stage with large planar motion capability. This stage is the first which is capable of providing all the motions required for photolithography in semiconductor manufacturing with only one moving part, namely the platen. The platen is driven in all six-degree-of-freedom motions with small adjustments for focusing and alignment and with large planar motions for positioning across the wafer surface. The underlying electromechanical modeling and analysis, mechanical and electrical design, and real-time control of such a high-precision planar magnetic levitator are presented. The platen is levitated without contact by four novel permanent-magnet linear motors that provide both suspension and drive forces. The linear motors consist of Halbach-type magnet arrays attached to the underside of the levitated platen, and coil sets attached to the fixed machine platform. Since all the motor coils are fixed, no wires need to be connected to the moving part. The platen mass of 5.6 kg is supported against gravity by the combined forces of the four motors. Each motor consumes about 5.4 W to lift the platen. Two of the motors drive the stage in the x-direction, and the two other motors drive in the y-direction. The motor forces are coordinated appropriately to control the remaining four degrees of freedom. The present design has a travel of 50 mm in x and y, a travel of 400 μm in z, and is capable of milliradian-scale rotations about each of these three axes. The stage position in the plane is measured with three laser interferometers with sub-nanometer resolution. The stage position out of the plane is measured by three capacitance probes with nanometer resolution. The stage operates with a position noise of 5 nm rms in x and y, and is demonstrating acceleration capabilities in excess of 10 m/s2 (1 g). The control bandwidth of the system is 50 Hz. This design can readily be scaled to travel on the order of 300 mm for the future needs of lithographic systems. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  4. Neural basis of singing in crickets: central pattern generation in abdominal ganglia

    NASA Astrophysics Data System (ADS)

    Schöneich, Stefan; Hedwig, Berthold

    2011-12-01

    The neural mechanisms underlying cricket singing behavior have been the focus of several studies, but the central pattern generator (CPG) for singing has not been localized conclusively. To test if the abdominal ganglia contribute to the singing motor pattern and to analyze if parts of the singing CPG are located in these ganglia, we systematically truncated the abdominal nerve cord of fictively singing crickets while recording the singing motor pattern from a front-wing nerve. Severing the connectives anywhere between terminal ganglion and abdominal ganglion A3 did not preclude singing, although the motor pattern became more variable and failure-prone as more ganglia were disconnected. Singing terminated immediately and permanently after transecting the connectives between the metathoracic ganglion complex and the first unfused abdominal ganglion A3. The contribution of abdominal ganglia for singing pattern generation was confirmed by intracellular interneuron recordings and current injections. During fictive singing, an ascending interneuron with its soma and dendrite in A3 depolarized rhythmically. It spiked 10 ms before the wing-opener activity and hyperpolarized in phase with the wing-closer activity. Depolarizing current injection elicited rhythmic membrane potential oscillations and spike bursts that elicited additional syllables and reliably reset the ongoing chirp rhythm. Our results disclose that the abdominal ganglion A3 is directly involved in generating the singing motor pattern, whereas the more posterior ganglia seem to provide only stabilizing feedback to the CPG circuit. Localizing the singing CPG in the anterior abdominal neuromeres now allows analyzing its circuitry at the level of identified interneurons in subsequent studies.

  5. The neural correlates of learned motor acuity

    PubMed Central

    Yang, Juemin; Caffo, Brian; Mazzoni, Pietro; Krakauer, John W.

    2014-01-01

    We recently defined a component of motor skill learning as “motor acuity,” quantified as a shift in the speed-accuracy trade-off function for a task. These shifts are primarily driven by reductions in movement variability. To determine the neural correlates of improvement in motor acuity, we devised a motor task compatible with magnetic resonance brain imaging that required subjects to make finely controlled wrist movements under visual guidance. Subjects were imaged on day 1 and day 5 while they performed this task and were trained outside the scanner on intervening days 2, 3, and 4. The potential confound of performance changes between days 1 and 5 was avoided by constraining movement time to a fixed duration. After training, subjects showed a marked increase in success rate and a reduction in trial-by-trial variability for the trained task but not for an untrained control task, without changes in mean trajectory. The decrease in variability for the trained task was associated with increased activation in contralateral primary motor and premotor cortical areas and in ipsilateral cerebellum. A global nonlocalizing multivariate analysis confirmed that learning was associated with increased overall brain activation. We suggest that motor acuity is acquired through increases in the number of neurons recruited in contralateral motor cortical areas and in ipsilateral cerebellum, which could reflect increased signal-to-noise ratio in motor output and improved state estimation for feedback corrections, respectively. PMID:24848466

  6. CFD Analysis of the 24-inch JIRAD Hybrid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan; Ungewitter, Ronald; Claflin, Scott

    1996-01-01

    A series of multispecies, multiphase computational fluid dynamics (CFD) analyses of the 24-inch diameter joint government industry industrial research and development (JIRAD) hybrid rocket motor is described. The 24-inch JIRAD hybrid motor operates by injection of liquid oxygen (LOX) into a vaporization plenum chamber upstream of ports in the hydroxyl-terminated polybutadiene (HTPB) solid fuel. The injector spray pattern had a strong influence on combustion stability of the JIRAD motor so a CFD study was initiated to define the injector end flow field under different oxidizer spray patterns and operating conditions. By using CFD to gain a clear picture of the flow field and temperature distribution within the JIRAD motor, it is hoped that the fundamental mechanisms of hybrid combustion instability may be identified and then suppressed by simple alterations to the oxidizer injection parameters such as injection angle and velocity. The simulations in this study were carried out using the General Algorithm for Analysis of Combustion SYstems (GALACSY) multiphase combustion codes. GALACSY consists of a comprehensive set of droplet dynamic submodels (atomization, evaporation, etc.) and a computationally efficient hydrocarbon chemistry package built around a robust Navier-Stokes solver optimized for low Mach number flows. Lagrangian tracking of dispersed particles describes a closely coupled spray phase. The CFD cases described in this paper represent various levels of simplification of the problem. They include: (A) gaseous oxygen with combusting fuel vapor blowing off the walls at various oxidizer injection angles and velocities, (B) gaseous oxygen with combusting fuel vapor blowing off the walls, and (C) liquid oxygen with combusting fuel vapor blowing off the walls. The study used an axisymmetric model and the results indicate that the injector design significantly effects the flow field in the injector end of the motor. Markedly different recirculation patterns are observed in the vaporization chamber as the oxygen velocity and/or spray pattern is varied. The ability of these recirculation patterns to stabilize the diffusion flame above the surface of the solid fuel gives a plausible explanation for the experimentally determined combustion stability characteristics of the JIRAD motor, and suggests how combustion stability can be assured by modifications to the injector design.

  7. Motor Development and Skill Analysis. Connections to Elementary Physical Education.

    ERIC Educational Resources Information Center

    Mielke, Dan; Morrison, Craig

    1985-01-01

    Drawing upon stages of motor development and elements of biomechanics, the authors used anatomical planes as a frame of reference to determine movement patterns and assess readiness to perform movement skills. The combination of determining readiness and analyzing skill enables the teacher to plan proper motor skill activities. (MT)

  8. The most common deviations in the development of hand motoricity in children from birth to one year of age.

    PubMed

    Matijević, Valentina; Secić, Ana; Zivković, Tamara Kauzlarić; Borosak, Jesenka; Kolak, Zeljka; Dimić, Zdenka

    2013-09-01

    The early child development, from birth until the age of one year is, amongst other changes, characterized by intense motor learning. During that period, the voluntary learning patterns evolve from reflexive patterns to coordinated voluntary patterns. All of the child's voluntary movements present active forms in which the child communicates with the environment. In this communication, the hand plays an important role. Its brain representation covers one-third of the entire motor region, situated in the close proximity to the speech region. For this reason, some authors refer to hand as a "speech organ". According to numerous studies, each separate finger also has a relatively large representation in the cerebral cortex, which points to the importance of the fine motor skills development, or precise, highly differentiated movements of hand muscles following the principles of differentiation and hierarchical integration. Development of the fine motor skills in the hand is important for the overall child development, and it also serves as a predictor pointing to immaturity of the central nervous system. The aim of this paper is to present the development of hand motoricity from birth until the age of one year, as well as the most frequent deviations observed in children hospitalized at Children's Department of Rehabilitation, Clinical Department of Rheumatology, Physical Medicine and Rehabilitation, Sestre milosrdnice University Hospital Center.

  9. Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation

    PubMed Central

    Devinney, Michael J.; Nichols, Nicole L.

    2016-01-01

    Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal motor plasticity. Competing mechanisms give rise to phrenic motor facilitation (pMF; a general term including pLTF) depending on the severity of hypoxia within episodes. In contrast, moderate acute sustained hypoxia (mASH) does not elicit pMF. By varying the severity of ASH and targeting competing mechanisms of pMF, we sought to illustrate why moderate AIH (mAIH) elicits pMF but mASH does not. Although mAIH elicits serotonin-dependent pLTF, mASH does not; thus, mAIH-induced pLTF is pattern sensitive. In contrast, severe AIH (sAIH) elicits pLTF through adenosine-dependent mechanisms, likely from greater extracellular adenosine accumulation. Because serotonin- and adenosine-dependent pMF interact via cross talk inhibition, we hypothesized that pMF is obscured because the competing mechanisms of pMF are balanced and offsetting during mASH. Here, we demonstrate the following: (1) blocking spinal A2A receptors with MSX-3 reveals mASH-induced pMF; and (2) sASH elicits A2A-dependent pMF. In anesthetized rats pretreated with intrathecal A2A receptor antagonist injections before mASH (PaO2 = 40–54 mmHg) or sASH (PaO2 = 25–36 mmHg), (1) mASH induced a serotonin-dependent pMF and (2) sASH induced an adenosine-dependent pMF, which was enhanced by spinal serotonin receptor inhibition. Thus, competing adenosine- and serotonin-dependent mechanisms contribute differentially to pMF depending on the pattern/severity of hypoxia. Understanding interactions between these mechanisms has clinical relevance as we develop therapies to treat severe neuromuscular disorders that compromise somatic motor behaviors, including breathing. Moreover, these results demonstrate how competing mechanisms of plasticity can give rise to pattern sensitivity in pLTF. SIGNIFICANCE STATEMENT Intermittent hypoxia elicits pattern-sensitive spinal plasticity and improves motor function after spinal injury or during neuromuscular disease. Specific mechanisms of pattern sensitivity in this form of plasticity are unknown. We provide evidence that competing mechanisms of phrenic motor facilitation mediated by adenosine 2A and serotonin 2 receptors are differentially expressed, depending on the pattern/severity of hypoxia. Understanding how these distinct mechanisms interact during hypoxic exposures differing in severity and duration will help explain interesting properties of plasticity, such as pattern sensitivity, and may help optimize therapies to restore motor function in patients with neuromuscular disorders that compromise movement. PMID:27466333

  10. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    PubMed

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system.

  11. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    PubMed Central

    Broderick, Patricia A.

    2013-01-01

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system. PMID:24961434

  12. Fix success and accuracy of GPS radio collars in old-growth temperate coniferous forests

    USGS Publications Warehouse

    Sager-Fradkin, Kimberly A.; Jenkins, Kurt J.; Hoffman, Robert L.; Happe, P.; Beecham, J.; Wright, R.G.

    2007-01-01

    Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously.

  13. Actigraphically assessed activity in unipolar depression: a comparison of inpatients with and without motor retardation.

    PubMed

    Krane-Gartiser, Karoline; Henriksen, Tone E G; Vaaler, Arne E; Fasmer, Ole Bernt; Morken, Gunnar

    2015-09-01

    To compare the activity patterns of inpatients with unipolar depression, who had been divided into groups with and without motor retardation prior to actigraphy monitoring. Twenty-four-hour actigraphy recordings from 52 consecutively, acutely admitted inpatients with unipolar depression (ICD-10) were compared to recordings from 28 healthy controls. The patients, admitted between September 2011 and April 2012, were separated into 2 groups: 25 with motor retardation and 27 without motor retardation. Twenty-eight healthy controls were also included. Twenty-four-hour recordings, 9-hour daytime sequences, and 64-minute periods of continuous motor activity in the morning and evening were analyzed for mean activity, variability, and complexity. Patients with motor retardation had a reduced mean activity level (P = .04) and higher intraindividual variability, as shown by increased standard deviation (SD) (P = .003) and root mean square successive difference (RMSSD) (P = .025), during 24 hours compared to the patients without motor retardation. Both patient groups demonstrated significantly lower mean activity compared to healthy controls (P < .001) as well as higher SD (P < .02) and RMSSD (P < .001) and a higher RMSSD/SD ratio (P = .04). In the active morning period, the patients without motor retardation displayed significantly increased complexity compared to motor-retarded patients (P = .006). The patients with and without motor retardation differ in activity patterns. Findings in depressed inpatients without motor retardation closely resemble those of inpatients with mania. © Copyright 2015 Physicians Postgraduate Press, Inc.

  14. Mental and Motor Growth Patterns and Growth Velocity of Indian Babies. (Longitudinal Growth of Indian Children). Research Report No. 4.

    ERIC Educational Resources Information Center

    Phatak, Pramila; And Others

    This study reports various aspects of the analyses carried out on the longitudinal data reported in a previous study (PS 007 345) for determining the general growth patterns and growth velocity of mental and motor development. Preliminary analyses focused on the selection of the growth curve, its evaluation in the 208 individual cases, and the…

  15. A Preliminary Analysis of Correlated Evolution in Mammalian Chewing Motor Patterns

    PubMed Central

    Williams, Susan H.; Vinyard, Christopher J.; Wall, Christine E.; Doherty, Alison H.; Crompton, Alfred W.; Hylander, William L.

    2011-01-01

    Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs’ Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands. PMID:21719433

  16. A preliminary analysis of correlated evolution in Mammalian chewing motor patterns.

    PubMed

    Williams, Susan H; Vinyard, Christopher J; Wall, Christine E; Doherty, Alison H; Crompton, Alfred W; Hylander, William L

    2011-08-01

    Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs' Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands.

  17. Using linked data to evaluate collisions with fixed objects in Pennsylvania : Crash Outcome Data Evaluation System (CODES) linked data demonstration project

    DOT National Transportation Integrated Search

    1998-10-01

    This report uses police-reported motor vehicle crash data linked to Emergency Medical Services data and hospital discharge data to evaluate the relative risk of injury posed by specific roadside objects in Pennsylvania. The report focuses primarily o...

  18. The Movement- and Load-Dependent Differences in the EMG Patterns of the Human Arm Muscles during Two-Joint Movements (A Preliminary Study)

    PubMed Central

    Tomiak, Tomasz; Abramovych, Tetiana I.; Gorkovenko, Andriy V.; Vereshchaka, Inna V.; Mishchenko, Viktor S.; Dornowski, Marcin; Kostyukov, Alexander I.

    2016-01-01

    Slow circular movements of the hand with a fixed wrist joint that were produced in a horizontal plane under visual guidance during conditions of action of the elastic load directed tangentially to the movement trajectory were studied. The positional dependencies of the averaged surface EMGs in the muscles of the elbow and shoulder joints were compared for four possible combinations in the directions of load and movements. The EMG intensities were largely correlated with the waves of the force moment computed for a corresponding joint in the framework of a simple geometrical model of the system: arm - experimental setup. At the same time, in some cases the averaged EMGs exit from the segments of the trajectory restricted by the force moment singular points (FMSPs), in which the moments exhibited altered signs. The EMG activities display clear differences for the eccentric and concentric zones of contraction that are separated by the joint angle singular points (JASPs), which present extreme at the joint angle traces. We assumed that the modeled patterns of FMSPs and JASPs may be applied for an analysis of the synergic interaction between the motor commands arriving at different muscles in arbitrary two-joint movements. PMID:27375496

  19. [Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study].

    PubMed

    Reynoso, C; Crespo-Eguílaz, N; Alcázar, J L; Narbona, J

    2015-03-01

    The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  20. Components of Motor Deficiencies in ADHD and Possible Interventions.

    PubMed

    Dahan, Anat; Ryder, Chen Hanna; Reiner, Miriam

    2018-05-15

    There is a growing body of evidence pointing at several types of motor abnormalities found in attention-deficit/hyperactivity disorder (ADHD). In this article we review findings stemming from different paradigms, and suggest an interweaving approach to the different stages involved in the motor regulation process. We start by reviewing various aspects of motor abnormalities found in ADHD and related brain mechanisms. Then, we classify reported motor impairments associated with ADHD, into four classes of motor stages: Attention to the task, motion preparation, motion execution and motion monitoring. Motor abnormalities and corresponding neural activations are analyzed in the context of each of the four identified motor patterns, along with the interactions among them and with other systems. Given the specifications and models of the role of the four motor impairments in ADHD, we ask what treatments correspond to the identified motor impairments. We analyze therapeutic interventions targeting motor difficulties most commonly experienced among individuals with ADHD; first, Neurofeedback training and EMG-biofeedback. As some of the identified components of attention, planning and monitoring have been shown to be linked to abnormal oscillation patterns in the brain, we examine neurofeedback interventions aimed to address these types of oscillations: Theta/beta frequency training and SCP neurofeedback targeted at elevating the CNV component. Additionally we discuss EMG-Biofeedback interventions targeted at feedback on motor activity. Further we review physical activity and motor interventions aimed at improving motor difficulties, associated with ADHD. These kinds of interventions are shown to be helpful not only in aspects of physical ability, but also in enhancing cognition and executive functioning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Detection of EEG-patterns associated with real and imaginary movements using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Runnova, Anastasiya E.; Maksimenko, Vladimir A.; Grishina, Daria S.; Hramov, Alexander E.

    2018-02-01

    Authentic recognition of specific patterns of electroencephalograms (EEGs) associated with real and imagi- nary movements is an important stage for the development of brain-computer interfaces. In experiments with untrained participants, the ability to detect the motor-related brain activity based on the multichannel EEG processing is demonstrated. Using the detrended fluctuation analysis, changes in the EEG patterns during the imagination of hand movements are reported. It is discussed how the ability to recognize brain activity related to motor executions depends on the electrode position.

  2. Design of a zoom lens without motorized optical elements

    NASA Astrophysics Data System (ADS)

    Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin

    2007-05-01

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.

  3. Design of a zoom lens without motorized optical elements.

    PubMed

    Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin

    2007-05-28

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.

  4. Development of the trigeminal motor neurons in parrots: implications for the role of nervous tissue in the evolution of jaw muscle morphology.

    PubMed

    Tokita, Masayoshi; Nakayama, Tomoki

    2014-02-01

    Vertebrates have succeeded to inhabit almost every ecological niche due in large part to the anatomical diversification of their jaw complex. As a component of the feeding apparatus, jaw muscles carry a vital role for determining the mode of feeding. Early patterning of the jaw muscles has been attributed to cranial neural crest-derived mesenchyme, however, much remains to be understood about the role of nonneural crest tissues in the evolution and diversification of jaw muscle morphology. In this study, we describe the development of trigeminal motor neurons in a parrot species with the uniquely shaped jaw muscles and compare its developmental pattern to that in the quail with the standard jaw muscles to uncover potential roles of nervous tissue in the evolution of vertebrate jaw muscles. In parrot embryogenesis, the motor axon bundles are detectable within the muscular tissue only after the basic shape of the muscular tissue has been established. This supports the view that nervous tissue does not primarily determine the spatial pattern of jaw muscles. In contrast, the trigeminal motor nucleus, which is composed of somata of neurons that innervate major jaw muscles, of parrot is more developed compared to quail, even in embryonic stage where no remarkable interspecific difference in both jaw muscle morphology and motor nerve branching pattern is recognized. Our data suggest that although nervous tissue may not have a large influence on initial patterning of jaw muscles, it may play an important role in subsequent growth and maintenance of muscular tissue and alterations in cranial nervous tissue development may underlie diversification of jaw muscle morphology. Copyright © 2013 Wiley Periodicals, Inc.

  5. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  6. Somatotopic Semantic Priming and Prediction in the Motor System

    PubMed Central

    Grisoni, Luigi; Dreyer, Felix R.; Pulvermüller, Friedemann

    2016-01-01

    The recognition of action-related sounds and words activates motor regions, reflecting the semantic grounding of these symbols in action information; in addition, motor cortex exerts causal influences on sound perception and language comprehension. However, proponents of classic symbolic theories still dispute the role of modality-preferential systems such as the motor cortex in the semantic processing of meaningful stimuli. To clarify whether the motor system carries semantic processes, we investigated neurophysiological indexes of semantic relationships between action-related sounds and words. Event-related potentials revealed that action-related words produced significantly larger stimulus-evoked (Mismatch Negativity-like) and predictive brain responses (Readiness Potentials) when presented in body-part-incongruent sound contexts (e.g., “kiss” in footstep sound context; “kick” in whistle context) than in body-part-congruent contexts, a pattern reminiscent of neurophysiological correlates of semantic priming. Cortical generators of the semantic relatedness effect were localized in areas traditionally associated with semantic memory, including left inferior frontal cortex and temporal pole, and, crucially, in motor areas, where body-part congruency of action sound–word relationships was indexed by a somatotopic pattern of activation. As our results show neurophysiological manifestations of action-semantic priming in the motor cortex, they prove semantic processing in the motor system and thus in a modality-preferential system of the human brain. PMID:26908635

  7. The relationship of motor unit size, firing rate and force.

    PubMed

    Conwit, R A; Stashuk, D; Tracy, B; McHugh, M; Brown, W F; Metter, E J

    1999-07-01

    Using a clinical electromyographic (EMG) protocol, motor units were sampled from the quadriceps femoris during isometric contractions at fixed force levels to examine how average motor unit size and firing rate relate to force generation. Mean firing rates (mFRs) and sizes (mean surface-detected motor unit action potential (mS-MUAP) area) of samples of active motor units were assessed at various force levels in 79 subjects. MS-MUAP size increased linearly with increased force generation, while mFR remained relatively constant up to 30% of a maximal force and increased appreciably only at higher force levels. A relationship was found between muscle force and mS-MUAP area (r2 = 0.67), mFR (r2 = 0.38), and the product of mS-MUAP area and mFR (mS-MUAP x mFR) (r2 = 0.70). The results support the hypothesis that motor units are recruited in an orderly manner during forceful contractions, and that in large muscles only at higher levels of contraction ( > 30% MVC) do mFRs increase appreciably. MS-MUAP and mFR can be assessed using clinical EMG techniques and they may provide a physiological basis for analyzing the role of motor units during muscle force generation.

  8. Generation of Adaptive Gait Patterns for Quadruped Robot with CPG Network including Motor Dynamic Model

    NASA Astrophysics Data System (ADS)

    Son, Yurak; Kamano, Takuya; Yasuno, Takashi; Suzuki, Takayuki; Harada, Hironobu

    This paper describes the generation of adaptive gait patterns using new Central Pattern Generators (CPGs) including motor dynamic models for a quadruped robot under various environment. The CPGs act as the flexible oscillators of the joints and make the desired angle of the joints. The CPGs are mutually connected each other, and the sets of their coupling parameters are adjusted by genetic algorithm so that the quadruped robot can realize the stable and adequate gait patterns. As a result of generation, the suitable CPG networks for not only a walking straight gait pattern but also rotation gait patterns are obtained. Experimental results demonstrate that the proposed CPG networks are effective to automatically adjust the adaptive gait patterns for the tested quadruped robot under various environment. Furthermore, the target tracking control based on image processing is achieved by combining the generated gait patterns.

  9. Neural mechanisms of single corrective steps evoked in the standing rabbit

    PubMed Central

    Hsu, L.-J.; Zelenin, P. V.; Lyalka, V. F.; Vemula, M. G.; Orlovsky, G. N.; Deliagina, T. G.

    2017-01-01

    Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement towards the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord. PMID:28215990

  10. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion

    PubMed Central

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments. PMID:26335437

  11. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

    PubMed

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta; Pulver, Stefan R; Nose, Akinao

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.

  12. From intentions to actions: Neural oscillations encode motor processes through phase, amplitude and phase-amplitude coupling.

    PubMed

    Combrisson, Etienne; Perrone-Bertolotti, Marcela; Soto, Juan Lp; Alamian, Golnoush; Kahane, Philippe; Lachaux, Jean-Philippe; Guillot, Aymeric; Jerbi, Karim

    2017-02-15

    Goal-directed motor behavior is associated with changes in patterns of rhythmic neuronal activity across widely distributed brain areas. In particular, movement initiation and execution are mediated by patterns of synchronization and desynchronization that occur concurrently across distinct frequency bands and across multiple motor cortical areas. To date, motor-related local oscillatory modulations have been predominantly examined by quantifying increases or suppressions in spectral power. However, beyond signal power, spectral properties such as phase and phase-amplitude coupling (PAC) have also been shown to carry information with regards to the oscillatory dynamics underlying motor processes. Yet, the distinct functional roles of phase, amplitude and PAC across the planning and execution of goal-directed motor behavior remain largely elusive. Here, we address this question with unprecedented resolution thanks to multi-site intracerebral EEG recordings in human subjects while they performed a delayed motor task. To compare the roles of phase, amplitude and PAC, we monitored intracranial brain signals from 748 sites across six medically intractable epilepsy patients at movement execution, and during the delay period where motor intention is present but execution is withheld. In particular, we used a machine-learning framework to identify the key contributions of various neuronal responses. We found a high degree of overlap between brain network patterns observed during planning and those present during execution. Prominent amplitude increases in the delta (2-4Hz) and high gamma (60-200Hz) bands were observed during both planning and execution. In contrast, motor alpha (8-13Hz) and beta (13-30Hz) power were suppressed during execution, but enhanced during the delay period. Interestingly, single-trial classification revealed that low-frequency phase information, rather than spectral power change, was the most discriminant feature in dissociating action from intention. Additionally, despite providing weaker decoding, PAC features led to statistically significant classification of motor states, particularly in anterior cingulate cortex and premotor brain areas. These results advance our understanding of the distinct and partly overlapping involvement of phase, amplitude and the coupling between them, in the neuronal mechanisms underlying motor intentions and executions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity.

    PubMed

    Dasen, Jeremy S; Tice, Bonnie C; Brenner-Morton, Susan; Jessell, Thomas M

    2005-11-04

    Spinal motor neurons acquire specialized "pool" identities that determine their ability to form selective connections with target muscles in the limb, but the molecular basis of this striking example of neuronal specificity has remained unclear. We show here that a Hox transcriptional regulatory network specifies motor neuron pool identity and connectivity. Two interdependent sets of Hox regulatory interactions operate within motor neurons, one assigning rostrocaudal motor pool position and a second directing motor pool diversity at a single segmental level. This Hox regulatory network directs the downstream transcriptional identity of motor neuron pools and defines the pattern of target-muscle connectivity.

  14. A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers

    PubMed Central

    Wakeling, James M.; Lee, Sabrina S. M.; Arnold, Allison S.; de Boef Miara, Maria; Biewener, Andrew A.

    2012-01-01

    Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle. PMID:22350666

  15. Correlation of white female breast cancer incidence trends with nitrogen dioxide emission levels and motor vehicle density patterns.

    PubMed

    Chen, Fan; Bina, William F

    2012-02-01

    The long-term trend of female breast cancer incidence rates in the United States and some European countries demonstrates a similar pattern: an increasing trend in the last century followed by a declining trend in this century. The well-known risk factors cannot explain this trend. We compared the breast cancer incidence trends obtained from SEER data with the trend of nitrogen dioxides (NOx) emission and monitoring data as well as motor vehicle density data. The upward followed by downward trend of NOx is similar to the breast cancer incidence trend but with an offset of 20 years earlier. Motor vehicles are the major source of NOx emissions. The geographic distribution of motor vehicles density in 1970 in the observed US counties is positively correlated with breast cancer incidence rates (R(2) 0.8418, the correlation coefficient = 0.9175) in 1980-1995. Because both the time trend and geographic pattern are associated with breast cancer incidence rates, further studies on the relationship between breast cancer and air pollution are needed.

  16. Motor cortex is required for learning but not executing a motor skill

    PubMed Central

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  17. Economic decision-making compared with an equivalent motor task.

    PubMed

    Wu, Shih-Wei; Delgado, Mauricio R; Maloney, Laurence T

    2009-04-14

    There is considerable evidence that human economic decision-making deviates from the predictions of expected utility theory (EUT) and that human performance conforms to EUT in many perceptual and motor decision tasks. It is possible that these results reflect a real difference in decision-making in the 2 domains but it is also possible that the observed discrepancy simply reflects typical differences in experimental design. We developed a motor task that is mathematically equivalent to choosing between lotteries and used it to compare how the same subject chose between classical economic lotteries and the same lotteries presented in equivalent motor form. In experiment 1, we found that subjects are more risk seeking in deciding between motor lotteries. In experiment 2, we used cumulative prospect theory to model choice and separately estimated the probability weighting functions and the value functions for each subject carrying out each task. We found no patterned differences in how subjects represented outcome value in the motor and the classical tasks. However, the probability weighting functions for motor and classical tasks were markedly and significantly different. Those for the classical task showed a typical tendency to overweight small probabilities and underweight large probabilities, and those for the motor task showed the opposite pattern of probability distortion. This outcome also accounts for the increased risk-seeking observed in the motor tasks of experiment 1. We conclude that the same subject distorts probability, but not value, differently in making identical decisions in motor and classical form.

  18. Soil N retention and nitrate leaching in three types of dunes in the Mu Us desert of China.

    PubMed

    Jin, Zhao; Zhu, Yajuan; Li, Xiangru; Dong, Yunshe; An, Zhisheng

    2015-09-15

    A large reservoir of soil nitrate in desert subsoil zones has been demonstrated in previous studies; however, information on the subsoil nitrate reservoir and its distribution characteristics in the deserts of China is still limited. This study investigated the distribution patterns of soil total nitrogen (N), nitrate, ammonium, and stable isotopic ratios of (15)N (δ(15)N) in shallow (1 m) and subsoil (5 m) profiles in three types of dunes in the Mu Us desert of China. We found that soil N retention of the fixed and semi-fixed dunes followed a progressive nutrient depletion pattern in shallow soil profiles, whereas the subsoil nitrate of the fixed, semi-fixed and mobile dunes maintained a conservative accumulation pattern. The results indicate that the subsoil of the Mu Us desert may act as a reservoir of available nitrate. Furthermore, a soil δ(15)N analysis indicate that the nitrate content of the fixed dune is likely derived from soil nitrification, whereas the nitrate content in the mobile dune is derived from atmospheric nitrate deposition. Within the context of looming climate change and intensifying human activities, the subsoil nitrate content in the deserts of northern China could become mobilized and increase environmental risks to groundwater.

  19. Critical motor number for fractional steps of cytoskeletal filaments in gliding assays.

    PubMed

    Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan

    2012-01-01

    In gliding assays, filaments are pulled by molecular motors that are immobilized on a solid surface. By varying the motor density on the surface, one can control the number N of motors that pull simultaneously on a single filament. Here, such gliding assays are studied theoretically using brownian (or Langevin) dynamics simulations and taking the local force balance between motors and filaments as well as the force-dependent velocity of the motors into account. We focus on the filament stepping dynamics and investigate how single motor properties such as stalk elasticity and step size determine the presence or absence of fractional steps of the filaments. We show that each gliding assay can be characterized by a critical motor number, N(c). Because of thermal fluctuations, fractional filament steps are only detectable as long as N < N(c). The corresponding fractional filament step size is l/N where l is the step size of a single motor. We first apply our computational approach to microtubules pulled by kinesin-1 motors. For elastic motor stalks that behave as linear springs with a zero rest length, the critical motor number is found to be N(c) = 4, and the corresponding distributions of the filament step sizes are in good agreement with the available experimental data. In general, the critical motor number N(c) depends on the elastic stalk properties and is reduced to N(c) = 3 for linear springs with a nonzero rest length. Furthermore, N(c) is shown to depend quadratically on the motor step size l. Therefore, gliding assays consisting of actin filaments and myosin-V are predicted to exhibit fractional filament steps up to motor number N = 31. Finally, we show that fractional filament steps are also detectable for a fixed average motor number as determined by the surface density (or coverage) of the motors on the substrate surface.

  20. The movement patterns used to rise from a supine position by children with developmental delay and age-related differences in these.

    PubMed

    Hsue, Bih-Jen; Wang, Yun-Er; Chen, Yung-Jung

    2014-09-01

    The purposes of this study were to determine (1) movement patterns and strategies of children with mild to moderate developmental delay (DD) used to rise up and how they differ from those used by age-matched children with typical development (TD), (2) whether the movement patterns differ with age in children with DD, and (3) to determine the developmental sequences for the UE, AX and LE in children with DD and whether they are different from those used by children with TD. Sixty six children with TD and 31 children with DD aged two to six years were recruited. Peabody Developmental Motor Scale II (PDMS-2) was used to determine the motor performance level. The participants were recorded during rising for at least five repetitions. Two trained pediatric physical therapists viewed each video recording and classified the movement patterns of the upper extremities (UE), trunk/axial (AX) and lower extremities (LE) regions using descriptive categories developed by previous researchers. The DD and TD groups were further divided into four subgroups each using a one-year interval. The percentage of occurrence of the each UE, AX and LE movement was determined and compared across subgroups, and between each age-matched pair of TD and DD groups. The results demonstrated that the participants in the TD group clearly followed the proposed developmental sequence and the children with DD followed the developmental sequences but with different maturation speeds and greater variability, especially at the age of three to five years. The most common movement patterns used by the children in each of the DD subgroups were at least one developmental categorical pattern behind those used by the age-matched children with TD before five years old, except for the LE region. In the DD group, the movement patterns had moderate to high correlation with the child's motor performance level, indicating that the children with better motor performances used more developmentally advanced patterns in comparison with those with lower scores. However, besides motor maturity, numerous other intrinsic/extrinsic factors may affect the child's performance of this task. The information obtained in this study would assist therapists when working with the children with DD, so that they can provide individualized treatment rather than guiding all such children toward a single, mature pattern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Altered Connectivity and Action Model Formation in Autism Is Autism

    PubMed Central

    Mostofsky, Stewart H.; Ewen, Joshua B.

    2014-01-01

    Internal action models refer to sensory-motor programs that form the brain basis for a wide range of skilled behavior and for understanding others’ actions. Development of these action models, particularly those reliant on visual cues from the external world, depends on connectivity between distant brain regions. Studies of children with autism reveal anomalous patterns of motor learning and impaired execution of skilled motor gestures. These findings robustly correlate with measures of social and communicative function, suggesting that anomalous action model formation may contribute to impaired development of social and communicative (as well as motor) capacity in autism. Examination of the pattern of behavioral findings, as well as convergent data from neuroimaging techniques, further suggests that autism-associated action model formation may be related to abnormalities in neural connectivity, particularly decreased function of long-range connections. This line of study can lead to important advances in understanding the neural basis of autism and, more critically, can be used to guide effective therapies targeted at improving social, communicative, and motor function. PMID:21467306

  2. Predicting future learning from baseline network architecture.

    PubMed

    Mattar, Marcelo G; Wymbs, Nicholas F; Bock, Andrew S; Aguirre, Geoffrey K; Grafton, Scott T; Bassett, Danielle S

    2018-05-15

    Human behavior and cognition result from a complex pattern of interactions between brain regions. The flexible reconfiguration of these patterns enables behavioral adaptation, such as the acquisition of a new motor skill. Yet, the degree to which these reconfigurations depend on the brain's baseline sensorimotor integration is far from understood. Here, we asked whether spontaneous fluctuations in sensorimotor networks at baseline were predictive of individual differences in future learning. We analyzed functional MRI data from 19 participants prior to six weeks of training on a new motor skill. We found that visual-motor connectivity was inversely related to learning rate: sensorimotor autonomy at baseline corresponded to faster learning in the future. Using three additional scans, we found that visual-motor connectivity at baseline is a relatively stable individual trait. These results suggest that individual differences in motor skill learning can be predicted from sensorimotor autonomy at baseline prior to task execution. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. The articulatory in-out effect resists oral motor interference.

    PubMed

    Lindau, Berit; Topolinski, Sascha

    2018-02-01

    People prefer words with inward directed consonantal patterns (e.g., MENIKA) compared to outward patterns (KENIMA), because inward (outward) articulation movements resemble positive (negative) mouth actions such as swallowing (spitting). This effect might rely on covert articulation simulations, or subvocalizations, since it occurs also under silent reading. We tested to what degree these underlying articulation simulations are disturbed by oral motor interference. In 3 experiments (total N = 465) we interfered with these articulation simulations by employing concurrent oral exercises that induce oral motor noise while judging inward and outward words (chewing gum, Experiment 1; executing meaningless tongue movements, Experiment 2; concurrent verbalizations, Experiment 3). Across several word stimulus types, the articulatory in-out effect was not modulated by these tasks. This finding introduces a theoretically interesting case, because in contrast to many previous demonstrations regarding other motor-preference effects, the covert simulations in this effect are not susceptible to selective motor interference. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Role of the motor system in language knowledge.

    PubMed

    Berent, Iris; Brem, Anna-Katharine; Zhao, Xu; Seligson, Erica; Pan, Hong; Epstein, Jane; Stern, Emily; Galaburda, Albert M; Pascual-Leone, Alvaro

    2015-02-17

    All spoken languages express words by sound patterns, and certain patterns (e.g., blog) are systematically preferred to others (e.g., lbog). What principles account for such preferences: does the language system encode abstract rules banning syllables like lbog, or does their dislike reflect the increased motor demands associated with speech production? More generally, we ask whether linguistic knowledge is fully embodied or whether some linguistic principles could potentially be abstract. To address this question, here we gauge the sensitivity of English speakers to the putative universal syllable hierarchy (e.g., blif ≻ bnif ≻ bdif ≻ lbif) while undergoing transcranial magnetic stimulation (TMS) over the cortical motor representation of the left orbicularis oris muscle. If syllable preferences reflect motor simulation, then worse-formed syllables (e.g., lbif) should (i) elicit more errors; (ii) engage more strongly motor brain areas; and (iii) elicit stronger effects of TMS on these motor regions. In line with the motor account, we found that repetitive TMS pulses impaired participants' global sensitivity to the number of syllables, and functional MRI confirmed that the cortical stimulation site was sensitive to the syllable hierarchy. Contrary to the motor account, however, ill-formed syllables were least likely to engage the lip sensorimotor area and they were least impaired by TMS. Results suggest that speech perception automatically triggers motor action, but this effect is not causally linked to the computation of linguistic structure. We conclude that the language and motor systems are intimately linked, yet distinct. Language is designed to optimize motor action, but its knowledge includes principles that are disembodied and potentially abstract.

  5. Role of the motor system in language knowledge

    PubMed Central

    Berent, Iris; Brem, Anna-Katharine; Zhao, Xu; Seligson, Erica; Pan, Hong; Epstein, Jane; Stern, Emily; Galaburda, Albert M.; Pascual-Leone, Alvaro

    2015-01-01

    All spoken languages express words by sound patterns, and certain patterns (e.g., blog) are systematically preferred to others (e.g., lbog). What principles account for such preferences: does the language system encode abstract rules banning syllables like lbog, or does their dislike reflect the increased motor demands associated with speech production? More generally, we ask whether linguistic knowledge is fully embodied or whether some linguistic principles could potentially be abstract. To address this question, here we gauge the sensitivity of English speakers to the putative universal syllable hierarchy (e.g., blif≻bnif≻bdif≻lbif) while undergoing transcranial magnetic stimulation (TMS) over the cortical motor representation of the left orbicularis oris muscle. If syllable preferences reflect motor simulation, then worse-formed syllables (e.g., lbif) should (i) elicit more errors; (ii) engage more strongly motor brain areas; and (iii) elicit stronger effects of TMS on these motor regions. In line with the motor account, we found that repetitive TMS pulses impaired participants’ global sensitivity to the number of syllables, and functional MRI confirmed that the cortical stimulation site was sensitive to the syllable hierarchy. Contrary to the motor account, however, ill-formed syllables were least likely to engage the lip sensorimotor area and they were least impaired by TMS. Results suggest that speech perception automatically triggers motor action, but this effect is not causally linked to the computation of linguistic structure. We conclude that the language and motor systems are intimately linked, yet distinct. Language is designed to optimize motor action, but its knowledge includes principles that are disembodied and potentially abstract. PMID:25646465

  6. Neuromodelling based on evolutionary robotics: on the importance of motor control for spatial attention.

    PubMed

    Gigliotta, Onofrio; Bartolomeo, Paolo; Miglino, Orazio

    2015-09-01

    Mainstream approaches to modelling cognitive processes have typically focused on (1) reproducing their neural underpinning, without regard to sensory-motor systems and (2) producing a single, ideal computational model. Evolutionary robotics is an alternative possibility to bridge the gap between neural substrate and behavior by means of a sensory-motor apparatus, and a powerful tool to build a population of individuals rather than a single model. We trained 4 populations of neurorobots, equipped with a pan/tilt/zoom camera, and provided with different types of motor control in order to perform a cancellation task, often used to tap spatial cognition. Neurorobots' eye movements were controlled by (a) position, (b) velocity, (c) simulated muscles and (d) simulated muscles with fixed level of zoom. Neurorobots provided with muscle and velocity control showed better performances than those controlled in position. This is an interesting result since muscle control can be considered a particular type of position control. Finally, neurorobots provided with muscle control and zoom outperformed those without zooming ability.

  7. Investment in Transportation Assets : Briefing Paper

    DOT National Transportation Integrated Search

    2017-11-21

    Highways, streets, railroad lines, transit systems, ports, and other transportation fixed assets enable the movement of people and goods. Investment in transportation fixed assets helps build and maintain these critical resources. The pattern of tran...

  8. 36 CFR 222.24 - Use of helicopters, fixed-wing aircraft and motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE RANGE MANAGEMENT Management of Wild Free-Roaming Horses and Burros... continuously observed by the authorized officer and, should signs of harmful stress be noted, the source of stress shall be removed so as to allow recovery. Helicopters may be used in round-ups or other capture...

  9. 36 CFR 222.64 - Use of helicopters, fixed-wing aircraft and motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE RANGE MANAGEMENT Management of Wild Free-Roaming Horses and Burros... continuously observed by the authorized officer and, should signs of harmful stress be noted, the source of stress shall be removed so as to allow recovery. Helicopters may be used in round-ups or other capture...

  10. 36 CFR 222.64 - Use of helicopters, fixed-wing aircraft and motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE RANGE MANAGEMENT Management of Wild Free-Roaming Horses and Burros... continuously observed by the authorized officer and, should signs of harmful stress be noted, the source of stress shall be removed so as to allow recovery. Helicopters may be used in round-ups or other capture...

  11. Motor Knowledge Is One Dimension for Concept Organization: Further Evidence from a Chinese Semantic Dementia Case

    ERIC Educational Resources Information Center

    Lin, Nan; Guo, Qihao; Han, Zaizhu; Bi, Yanchao

    2011-01-01

    Neuropsychological and neuroimaging studies have indicated that motor knowledge is one potential dimension along which concepts are organized. Here we present further direct evidence for the effects of motor knowledge in accounting for categorical patterns across object domains (living vs. nonliving) and grammatical domains (nouns vs. verbs), as…

  12. Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock

    DOEpatents

    Groombridge, Clifton E.

    1996-01-01

    An improvement to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a "soft" reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided.

  13. Effect of internal versus external focus of attention on implicit motor learning in children with developmental coordination disorder.

    PubMed

    Jarus, Tal; Ghanouni, Parisa; Abel, Rachel L; Fomenoff, Shelby L; Lundberg, Jocelyn; Davidson, Stephanie; Caswell, Sarah; Bickerton, Laura; Zwicker, Jill G

    2015-02-01

    Children with developmental coordination disorder (DCD) struggle to learn new motor skills. It is unknown whether children with DCD learn motor skills more effectively with an external focus of attention (focusing on impact of movement on the environment) or an internal focus of attention (focusing on one's body movements) during implicit (unconscious) and explicit (conscious) motor learning. This paper aims to determine the trends of implicit motor learning in children with DCD, and how focus of attention influences motor learning in children with DCD in comparison with typically developing children. 25 children, aged 8-12, with (n=12) and without (n=13) DCD were randomly assigned to receive instructions that focused attention externally or internally while completing a computer tracking task during acquisition, retention, and transfer phases. The motor task involved tracking both repeated and random patterns, with the repeated pattern indicative of implicit learning. Children with DCD scored lower on the motor task in all three phases of the study, demonstrating poorer implicit learning. Furthermore, graphical data showed that for the children with DCD, there was no apparent difference between internal and external focus of attention during retention and transfer, while there was an advantage to the external focus of attention group for typically developing children. Children with DCD demonstrate less accuracy than typically developing children in learning a motor task. Also, the effect of focus of attention on motor performance is different in children with DCD versus their typically developing counterparts during the three phases of motor learning. Results may inform clinicians how to facilitate motor learning in children with DCD by incorporating explicit learning with either internal or external focus of attention within interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Lateralization in motor facilitation during action observation: a TMS study.

    PubMed

    Aziz-Zadeh, Lisa; Maeda, Fumiko; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco

    2002-05-01

    Action observation facilitates corticospinal excitability. This is presumably due to a premotor neural system that is active when we perform actions and when we observe actions performed by others. It has been speculated that this neural system is a precursor of neural systems subserving language. If this theory is true, we may expect hemispheric differences in the motor facilitation produced by action observation, with the language-dominant left hemisphere showing stronger facilitation than the right hemisphere. Furthermore, it has been suggested that body parts are recognized via cortical regions controlling sensory and motor processing associated with that body part. If this is true, then corticospinal facilitation during action observation should be modulated by the laterality of the observed body part. The present study addressed these two issues using TMS for each motor cortex separately as participants observed actions being performed by a left hand, a right hand, or a control stimulus on the computer screen. We found no overall difference between the right and left hemisphere for motor-evoked potential (MEP) size during action observation. However, when TMS was applied to the left motor cortex, MEPs were larger while observing right hand actions. Likewise, when TMS was applied to the right motor cortex, MEPs were larger while observing left hand actions. Our data do not suggest left hemisphere superiority in the facilitating effects of action observation on the motor system. However, they do support the notion of a sensory-motor loop according to which sensory stimulus properties (for example, the image of a left hand or a right hand) directly affect motor cortex activity, even when no motor output is required. The pattern of this effect is congruent with the pattern of motor representation in each hemisphere.

  15. Robust stochastic Turing patterns in the development of a one-dimensional cyanobacterial organism.

    PubMed

    Di Patti, Francesca; Lavacchi, Laura; Arbel-Goren, Rinat; Schein-Lubomirsky, Leora; Fanelli, Duccio; Stavans, Joel

    2018-05-01

    Under nitrogen deprivation, the one-dimensional cyanobacterial organism Anabaena sp. PCC 7120 develops patterns of single, nitrogen-fixing cells separated by nearly regular intervals of photosynthetic vegetative cells. We study a minimal, stochastic model of developmental patterns in Anabaena that includes a nondiffusing activator, two diffusing inhibitor morphogens, demographic fluctuations in the number of morphogen molecules, and filament growth. By tracking developing filaments, we provide experimental evidence for different spatiotemporal roles of the two inhibitors during pattern maintenance and for small molecular copy numbers, justifying a stochastic approach. In the deterministic limit, the model yields Turing patterns within a region of parameter space that shrinks markedly as the inhibitor diffusivities become equal. Transient, noise-driven, stochastic Turing patterns are produced outside this region, which can then be fixed by downstream genetic commitment pathways, dramatically enhancing the robustness of pattern formation, also in the biologically relevant situation in which the inhibitors' diffusivities may be comparable.

  16. Recall of patterns using binary and gray-scale autoassociative morphological memories

    NASA Astrophysics Data System (ADS)

    Sussner, Peter

    2005-08-01

    Morphological associative memories (MAM's) belong to a class of artificial neural networks that perform the operations erosion or dilation of mathematical morphology at each node. Therefore we speak of morphological neural networks. Alternatively, the total input effect on a morphological neuron can be expressed in terms of lattice induced matrix operations in the mathematical theory of minimax algebra. Neural models of associative memories are usually concerned with the storage and the retrieval of binary or bipolar patterns. Thus far, the emphasis in research on morphological associative memory systems has been on binary models, although a number of notable features of autoassociative morphological memories (AMM's) such as optimal absolute storage capacity and one-step convergence have been shown to hold in the general, gray-scale setting. In previous papers, we gained valuable insight into the storage and recall phases of AMM's by analyzing their fixed points and basins of attraction. We have shown in particular that the fixed points of binary AMM's correspond to the lattice polynomials in the original patterns. This paper extends these results in the following ways. In the first place, we provide an exact characterization of the fixed points of gray-scale AMM's in terms of combinations of the original patterns. Secondly, we present an exact expression for the fixed point attractor that represents the output of either a binary or a gray-scale AMM upon presentation of a certain input. The results of this paper are confirmed in several experiments using binary patterns and gray-scale images.

  17. Aphrodisiac Activity of the Aqueous Crude Extract of Purple Corn ( Zea mays) in Male Rats.

    PubMed

    Carro-Juárez, Miguel; Rodríguez-Santiago, Magdalena G; Franco, Miguel Angel; Hueletl-Soto, María Eugenia

    2017-10-01

    In the present study, the aphrodisiac properties of the purple corn ( Zea mays) in male rats were analyzed. The aqueous crude extract of purple corn (at 25, 50, and 75 mg/kg) was administered to ( a) copulating male rats and ( b) anesthetized and spinal cord transected male rats. Behavioral parameters of copulatory behavior and parameters of the genital motor pattern of ejaculation previous to its inhibition, under the influence of the purple corn extract, are described. Administration of the aqueous crude extract of purple corn significantly facilitates the arousal and execution of male rat sexual behavior without significant influences on the ambulatory behavior. In addition, purple corn extract elicit a significant increase in the number of discharges of the ejaculatory motor patterns and in the total number of genital motor patterns evoked in spinal rats. The present findings show that the aqueous crude extract of purple corn possesses aphrodisiac activity.

  18. Aphrodisiac Activity of the Aqueous Crude Extract of Purple Corn (Zea mays) in Male Rats

    PubMed Central

    Carro-Juárez, Miguel; Rodríguez-Santiago, Magdalena G.; Franco, Miguel Angel; Hueletl-Soto, María Eugenia

    2017-01-01

    In the present study, the aphrodisiac properties of the purple corn (Zea mays) in male rats were analyzed. The aqueous crude extract of purple corn (at 25, 50, and 75 mg/kg) was administered to (a) copulating male rats and (b) anesthetized and spinal cord transected male rats. Behavioral parameters of copulatory behavior and parameters of the genital motor pattern of ejaculation previous to its inhibition, under the influence of the purple corn extract, are described. Administration of the aqueous crude extract of purple corn significantly facilitates the arousal and execution of male rat sexual behavior without significant influences on the ambulatory behavior. In addition, purple corn extract elicit a significant increase in the number of discharges of the ejaculatory motor patterns and in the total number of genital motor patterns evoked in spinal rats. The present findings show that the aqueous crude extract of purple corn possesses aphrodisiac activity. PMID:28508664

  19. Effect of an acute intraluminal administration of capsaicin on oesophageal motor pattern in GORD patients with ineffective oesophageal motility.

    PubMed

    Grossi, L; Cappello, G; Marzio, L

    2006-08-01

    Ineffective oesophageal motility (IOM) is a functional disorder affecting about 50% of gastro-oesophageal reflux disease (GORD) patients. This disease in a severe form limits the clearing ability of the oesophagus and is considered one of the predictive factors for poorer GORD resolution. Capsaicin, the active compound of red pepper, exerts a prokinetic effect on oesophageal motility in healthy subjects by increasing the amplitude of body waves, even if no evidence exists on its possible role in situations of reduced motility. The aim of the study was to evaluate the effect of an acute administration of capsaicin on the oesophageal motor pattern in a group of GORD patients affected by severe IOM. Twelve GORD patients with severe IOM received an intra-oesophageal administration of 2 mL of a red pepper-olive oil mixture and 2 mL of olive oil alone serving as a control during a stationary manometry. The motor patterns of the oesophageal body and lower oesophageal sphincter (LOS) were analysed at baseline and after the infusion of the two stimuli. The administration of capsaicin induced a significant improvement in oesophageal body contractility when compared with baseline. The velocity of propagation of waves and the LOS basal tone remained unchanged. The motor pattern was unaltered by the administration of olive oil alone. An acute administration of capsaicin seems to improve the motor performance of the oesophageal body in patients with ineffective motility. Whether this could represent the basis for further therapeutic approaches of GORD patients needs further study.

  20. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer)

    PubMed Central

    2015-01-01

    The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation. PMID:26334014

  1. 18. Post Lathe. View of wheel, motor, belt, casing and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Post Lathe. View of wheel, motor, belt, casing and grooved steel base. Camera pointed NW. See photo WA-116-17. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA

  2. Life without double-headed non-muscle myosin II motor proteins

    PubMed Central

    Betapudi, Venkaiah

    2014-01-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life. PMID:25072053

  3. Life without double-headed non-muscle myosin II motor proteins

    NASA Astrophysics Data System (ADS)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  4. Light absorption cell combining variable path and length pump

    DOEpatents

    Prather, William S.

    1993-01-01

    A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.

  5. COMMUNICATION Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation

    NASA Astrophysics Data System (ADS)

    Heming, Ethan; Sanden, Andrew; Kiss, Zelma H. T.

    2010-12-01

    Although major advances have been made in the development of motor prostheses, fine motor control requires intuitive somatosensory feedback. Here we explored whether a thalamic site for a somatosensory neural prosthetic could provide natural somatic sensation to humans. Different patterns of electrical stimulation (obtained from thalamic spike trains) were applied in patients undergoing deep brain stimulation surgery. Changes in pattern produced different sensations, while preserving somatotopic representation. While most percepts were reported as 'unnatural', some stimulations produced more 'natural' sensations than others. However, the additional patterns did not elicit more 'natural' percepts than high-frequency (333 Hz) electrical stimulation. These features suggest that despite some limitations, the thalamus may be a feasible site for a somatosensory neural prosthesis and different stimulation patterns may be useful in its development.

  6. Assessment of bile fluorescence patterns in a tropical fish, Nile tilapia (Oreochromis niloticus) exposed to naphthalene, phenanthrene, pyrene and chrysene using fixed wavelength fluorescence and synchronous fluorescence spectrometry.

    PubMed

    Pathiratne, A; Hemachandra, C K; Pathiratne, K A S

    2010-05-01

    Bile fluorescence patterns in Nile tilapia, a potential fish for biomonitoring tropical water pollution were assessed following exposure to selected polycyclic aromatic hydrocarbons (PAHs): naphthalene, phenanthrene, pyrene and chrysene. Non-normalized fixed wavelength fluorescence signals in the fish exposed to these PAHs reflected dose and/or time response relationships of their metabolism. Normalizing signals to biliverdin introduced deviations to these response patterns. The optimal wavelength pairs (excitation/emission) for synchronous fluorescence scanning measurements of bile metabolites of naphthalene, phenanthrene, pyrene and chrysene were identified as 284/326, 252/357, 340/382 and 273/382 respectively. This study supports the use of bile fluorescence in Nile tilapia by fixed wavelength fluorescence and synchronous fluorescence spectrometry with non-normalized data as a simple method for screening bioavailability of these PAHs.

  7. Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R

    2016-09-21

    The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Copyright © 2016 the authors 0270-6474/16/369763-07$15.00/0.

  8. Impairments of Social Motor Coordination in Schizophrenia

    PubMed Central

    Varlet, Manuel; Marin, Ludovic; Raffard, Stéphane; Schmidt, R. C.; Capdevielle, Delphine; Boulenger, Jean-Philippe; Del-Monte, Jonathan; Bardy, Benoît G.

    2012-01-01

    It has been demonstrated that motor coordination of interacting people plays a crucial role in the success of social exchanges. Abnormal movements have been reported during interpersonal interactions of patients suffering from schizophrenia and a motor coordination breakdown could explain this social interaction deficit, which is one of the main and earliest features of the illness. Using the dynamical systems framework, the goal of the current study was (i) to investigate whether social motor coordination is impaired in schizophrenia and (ii) to determine the underlying perceptual or cognitive processes that may be affected. We examined intentional and unintentional social motor coordination in participants oscillating hand-held pendulums from the wrist. The control group consisted of twenty healthy participant pairs while the experimental group consisted of twenty participant pairs that included one participant suffering from schizophrenia. The results showed that unintentional social motor coordination was preserved while intentional social motor coordination was impaired. In intentional coordination, the schizophrenia group displayed coordination patterns that had lower stability and in which the patient never led the coordination. A coupled oscillator model suggests that the schizophrenia group coordination pattern was due to a decrease in the amount of available information together with a delay in information transmission. Our study thus identified relational motor signatures of schizophrenia and opens new perspectives for detecting the illness and improving social interactions of patients. PMID:22272247

  9. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    PubMed Central

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  10. Cytoarchitecture and Cortical Connections of the Anterior Insula and Adjacent Frontal Motor Fields in the Rhesus Monkey

    PubMed Central

    Morecraft, RJ; Stilwell-Morecraft, KS; Ge, J; Cipolloni, PB; Pandya, DN

    2015-01-01

    The cytoarchitecture and cortical connections of the ventral motor region are investigated using Nissl, and NeuN staining methods and the fluorescent retrograde tract tracing technique in the rhesus monkey. On the basis of gradual laminar differentiation, it is shown that the ventral motor region stems from the ventral proisocortical area (anterior insula and dorsal Sylvian opercular region). The cytoarchitecture of the ventral motor region is shown to progress in three lines, as we have recently shown for the dorsal motor region. Namely, root (anterior insular and dorsal Sylvian opercular area ProM), belt (ventral premotor cortex) and core (precentral motor cortex) lines. This stepwise architectonic organization is supported by the overall patterns of corticocortical connections. Areas in each line are sequentially interconnected (intralineal connections) and all lines are interconnected (interlinear connections). Moreover, root areas, as well as some of the belt areas of the ventral and dorsal trend are interconnected. The ventral motor region is also connected with the ventral somatosensory areas in a topographic manner. The root and belt areas of ventral motor region are connected with paralimbic, multimodal and prefrontal (outer belt) areas. In contrast, the core area has a comparatively more restricted pattern of corticocortical connections. This architectonic and connectional organization is consistent in part, with the functional organization of the ventral motor region as reported in behavioral and neuroimaging studies which include the mediation of facial expression and emotion, communication, phonic articulation, and language in human. PMID:26496798

  11. Developmental regulation of N-methyl-D-aspartate- and kainate-type glutamate receptor expression in the rat spinal cord

    NASA Technical Reports Server (NTRS)

    Stegenga, S. L.; Kalb, R. G.

    2001-01-01

    Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. Young motor neurons express much higher levels of the N-methyl-D-aspartate receptor subunit NR1 than do adult motor neurons. Although there are eight potential splice variants of NR1, only a subgroup is expressed by motor neurons. With respect to NR2 receptor subunits, young motor neurons express NR2A and C, while adult motor neurons express only NR2A. Young motor neurons express kainate receptor subunits GluR5, 6 and KA2 but we are unable to detect these or any other kainate receptor subunits in the adult spinal cord. Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.

  12. Reduced activation and altered laterality in two neuroleptic-naive catatonic patients during a motor task in functional MRI.

    PubMed

    Northoff, G; Braus, D F; Sartorius, A; Khoram-Sefat, D; Russ, M; Eckert, J; Herrig, M; Leschinger, A; Bogerts, B; Henn, F A

    1999-07-01

    Catatonia, a symptom complex with motor, affective and cognitive symptoms seen in a variety of psychotic conditions and with organic disease, was examined using a motor task using functional magnetic resonance imaging (fMRI). Two acute catatonic patients and two age- and sex-matched healthy controls performed sequential finger opposition (SFO) after being medicated with 2 mg of lorazepam (i.v.). Functional magnetic resonance images were collected using a gradient echo pulse sequence (EPI). Patients with catatonia showed reduced motor activation of the contralateral motor cortex during SFO of the right hand, ipsilateral activation was similar for patients and controls. There were no differences in the activation of the SMA. During left hand activation the right-handed catatonic patients showed more activation in the ipsilateral cortex, a reversal from the normal pattern of activation in which the contralateral side shows four to five times more activation than the ipsilateral side. In catatonic patients there is a decreased activation in motor cortex during a motor task compared to matched medicated healthy controls. In addition activation of the non-dominant side, left-handed activity in right-handed patients, results in a total reversal of the normal pattern of lateral activation suggesting a disturbance in hemispheric localization of activity during a catatonic state.

  13. Improved Volitional Recall of Motor-Imagery-Related Brain Activation Patterns Using Real-Time Functional MRI-Based Neurofeedback.

    PubMed

    Bagarinao, Epifanio; Yoshida, Akihiro; Ueno, Mika; Terabe, Kazunori; Kato, Shohei; Isoda, Haruo; Nakai, Toshiharu

    2018-01-01

    Motor imagery (MI), a covert cognitive process where an action is mentally simulated but not actually performed, could be used as an effective neurorehabilitation tool for motor function improvement or recovery. Recent approaches employing brain-computer/brain-machine interfaces to provide online feedback of the MI during rehabilitation training have promising rehabilitation outcomes. In this study, we examined whether participants could volitionally recall MI-related brain activation patterns when guided using neurofeedback (NF) during training. The participants' performance was compared to that without NF. We hypothesized that participants would be able to consistently generate the relevant activation pattern associated with the MI task during training with NF compared to that without NF. To assess activation consistency, we used the performance of classifiers trained to discriminate MI-related brain activation patterns. Our results showed significantly higher predictive values of MI-related activation patterns during training with NF. Additionally, this improvement in the classification performance tends to be associated with the activation of middle temporal gyrus/inferior occipital gyrus, a region associated with visual motion processing, suggesting the importance of performance monitoring during MI task training. Taken together, these findings suggest that the efficacy of MI training, in terms of generating consistent brain activation patterns relevant to the task, can be enhanced by using NF as a mechanism to enable participants to volitionally recall task-related brain activation patterns.

  14. Simulation model for a seven-phase BLDCM drive system

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hoon; Lee, Won-Cheol; Lee, Jung-Hyo; Yu, Jae-Sung; Kim, Gyu-Sik; Won, Chung-Yuen

    2007-12-01

    BLDC motors have many advantages over brushed DC motors and induction motors. So, BLDC motors extend their application to many industrial fields. In this paper, the digital simulation and modeling of a 7-phase brushless DC motor have been presented. The 14-switch inverter and a 7-phase brushless DC motor drive system are simulated using hysteresis current controller and logic of switching pattern with the Boolean¡s function. Through some simulations, we found that our modeling and analysis of a 7-phase BLDCM with PWM inverter would be helpful for the further studies of the multi-phase BLDCM drive systems.

  15. Asymmetric Brownian motor driven by bubble formation in a hydrophobic channel.

    PubMed

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu

    2010-10-26

    The "asymmetric brownian ratchet model" is a variation of Feynman's ratchet and pawl system proposed. In this model, a system consisting of a motor and a rail has two binding states. One is the random brownian state, and the other is the asymmetric potential state. When the system is alternatively switched between these states, the motor can be driven in one direction. This model is believed to explain nanomotor behavior in biological systems. The feasibility of the model has been demonstrated using electrical and magnetic forces; however, switching of these forces is unlikely to be found in biological systems. In this paper, we propose an original mechanism of transition between states by bubble formation in a nanosized channel surrounded by hydrophobic atoms. This amounts to a nanoscale motor system using bubble propulsion. The motor system consists of a hydrophobic motor and a rail on which hydrophobic patterns are printed. Potential asymmetry can be produced by using a left-right asymmetric pattern shape. Hydrophobic interactions are believed to play an important role in the binding of biomolecules and molecular recognition. The bubble formation is controlled by changing the width of the channel by an atomic distance (∼0.1 nm). Therefore, the motor is potentially more efficient than systems controlled by other forces, in which a much larger change in the motor position is necessary. We have simulated the bubble-powered motor using dissipative particle dynamics and found behavior in good agreement with that of motor proteins. Energy efficiency is as high as 60%.

  16. The Controllable Ball Joint Mechanism

    NASA Astrophysics Data System (ADS)

    Tung, Yung Cheng; Chieng, Wei-Hua; Ho, Shrwai

    A controllable ball joint mechanism with three rotational degrees of freedom is proposed in this paper. The mechanism is composed of three bevel gears, one of which rotates with respect to a fixed frame and the others rotate with respect to individual floating frames. The output is the resultant motion of the differential motions by the motors that rotates the bevel gears at the fixed frame and the floating frames. The mechanism is capable of a large rotation, and the structure is potentially compact. The necessary inverse and forward kinematic analyses as well as the derivation of kinematic singularity are provided according to the kinematical equivalent structure described in this paper.

  17. Six-degree-of-freedom parallel minimanipulator with three inextensible limbs

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad (Inventor); Tsai, Lung-Wen (Inventor)

    1994-01-01

    A Six-Degree-of-Freedom Parallel-Manipulator having three inextensible limbs for manipulating a platform is described. The three inextensible limbs are attached via universal joints to the platform at non-collinear points. Each of the inextensible limbs is also attached via universal joints to a two-degree-of-freedom parallel driver such as a five-bar linkage, a pantograph, or a bidirectional linear stepper motor. The drivers move the lower ends of the limbs parallel to a fixed base and thereby provide manipulation of the platform. The actuators are mounted on the fixed base without using any power transmission devices such as gears or belts.

  18. Learning new sequential stepping patterns requires striatal plasticity during the earliest phase of acquisition.

    PubMed

    Nakamura, Toru; Nagata, Masatoshi; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo; Kitsukawa, Takashi

    2017-04-01

    Animals including humans execute motor behavior to reach their goals. For this purpose, they must choose correct strategies according to environmental conditions and shape many parameters of their movements, including their serial order and timing. To investigate the neurobiology underlying such skills, we used a multi-sensor equipped, motor-driven running wheel with adjustable sequences of foothold pegs on which mice ran to obtain water reward. When the peg patterns changed from a familiar pattern to a new pattern, the mice had to learn and implement new locomotor strategies in order to receive reward. We found that the accuracy of stepping and the achievement of water reward improved with the new learning after changes in the peg-pattern, and c-Fos expression levels assayed after the first post-switch session were high in both dorsolateral striatum and motor cortex, relative to post-switch plateau levels. Combined in situ hybridization and immunohistochemistry of striatal sections demonstrated that both enkephalin-positive (indirect pathway) neurons and substance P-positive (direct pathway) neurons were recruited specifically after the pattern switches, as were interneurons expressing neuronal nitric oxide synthase. When we blocked N-methyl-D-aspartate (NMDA) receptors in the dorsolateral striatum by injecting the NMDA receptor antagonist, D-2-amino-5-phosphonopentanoic acid (AP5), we found delays in early post-switch improvement in performance. These findings suggest that the dorsolateral striatum is activated on detecting shifts in environment to adapt motor behavior to the new context via NMDA-dependent plasticity, and that this plasticity may underlie forming and breaking skills and habits as well as to behavioral difficulties in clinical disorders. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. The central pattern generator underlying swimming in Dendronotus iris: a simple half-center network oscillator with a twist.

    PubMed

    Sakurai, Akira; Katz, Paul S

    2016-10-01

    The nudibranch mollusc, Dendronotus iris, swims by rhythmically flexing its body from left to right. We identified a bilaterally represented interneuron, Si3, that provides strong excitatory drive to the previously identified Si2, forming a half-center oscillator, which functions as the central pattern generator (CPG) underlying swimming. As with Si2, Si3 inhibited its contralateral counterpart and exhibited rhythmic bursts in left-right alternation during the swim motor pattern. Si3 burst almost synchronously with the contralateral Si2 and was coactive with the efferent impulse activity in the contralateral body wall nerve. Perturbation of bursting in either Si3 or Si2 by current injection halted or phase-shifted the swim motor pattern, suggesting that they are both critical CPG members. Neither Si2 nor Si3 exhibited endogenous bursting properties when activated alone; activation of all four neurons was necessary to initiate and maintain the swim motor pattern. Si3 made a strong excitatory synapse onto the contralateral Si2 to which it is also electrically coupled. When Si3 was firing tonically but not exhibiting bursting, artificial enhancement of the Si3-to-Si2 synapse using dynamic clamp caused all four neurons to burst. In contrast, negation of the Si3-to-Si2 synapse by dynamic clamp blocked ongoing swim motor patterns. Together, these results suggest that the Dendronotus swim CPG is organized as a "twisted" half-center oscillator in which each "half" is composed of two excitatory-coupled neurons from both sides of the brain, each of which inhibits its contralateral counterpart. Consisting of only four neurons, this is perhaps the simplest known network oscillator for locomotion. Copyright © 2016 the American Physiological Society.

  20. Forelimb kinematics and motor patterns of swimming loggerhead sea turtles (Caretta caretta): are motor patterns conserved in the evolution of new locomotor strategies?

    PubMed

    Rivera, Angela R V; Wyneken, Jeanette; Blob, Richard W

    2011-10-01

    Novel functions in animals may evolve through changes in morphology, muscle activity or a combination of both. The idea that new functions or behavior can arise solely through changes in structure, without concurrent changes in the patterns of muscle activity that control movement of those structures, has been formalized as the neuromotor conservation hypothesis. In vertebrate locomotor systems, evidence for neuromotor conservation is found across evolutionary transitions in the behavior of terrestrial species, and in evolutionary transitions from terrestrial species to flying species. However, evolutionary transitions in the locomotion of aquatic species have received little comparable study to determine whether changes in morphology and muscle function were coordinated through the evolution of new locomotor behavior. To evaluate the potential for neuromotor conservation in an ancient aquatic system, we quantified forelimb kinematics and muscle activity during swimming in the loggerhead sea turtle, Caretta caretta. Loggerhead forelimbs are hypertrophied into wing-like flippers that produce thrust via dorsoventral forelimb flapping. We compared kinematic and motor patterns from loggerheads with previous data from the red-eared slider, Trachemys scripta, a generalized freshwater species exhibiting unspecialized forelimb morphology and anteroposterior rowing motions during swimming. For some forelimb muscles, comparisons between C. caretta and T. scripta support neuromotor conservation; for example, the coracobrachialis and the latissimus dorsi show similar activation patterns. However, other muscles (deltoideus, pectoralis and triceps) do not show neuromotor conservation; for example, the deltoideus changes dramatically from a limb protractor/elevator in sliders to a joint stabilizer in loggerheads. Thus, during the evolution of flapping in sea turtles, drastic restructuring of the forelimb was accompanied by both conservation and evolutionary novelty in limb motor patterns.

  1. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators.

    PubMed

    Wei, Ruihan; Parsons, Sean P; Huizinga, Jan D

    2017-03-01

    What is the central question of this study? What are the effects of interstitial cells of Cajal (ICC) network perturbations on intestinal pacemaker activity and motor patterns? What is the main finding and its importance? Two-dimensional modelling of the ICC pacemaker activity according to a phase model of weakly coupled oscillators showed that network properties (coupling strength between oscillators, frequency gradient and frequency noise) strongly influence pacemaker network activity and subsequent motor patterns. The model explains motor patterns observed in physiological conditions and provides predictions and testable hypotheses for effects of ICC loss and frequency modulation on the motor patterns. Interstitial cells of Cajal (ICC) are the pacemaker cells of gut motility and are associated with motility disorders. Interstitial cells of Cajal form a network, but the contributions of its network properties to gut physiology and dysfunction are poorly understood. We modelled an ICC network as a two-dimensional network of weakly coupled oscillators with a frequency gradient and showed changes over time in video and graphical formats. Model parameters were obtained from slow-wave-driven contraction patterns in the mouse intestine and pacemaker slow-wave activities from the cat intestine. Marked changes in propagating oscillation patterns (including changes from propagation to non-propagating) were observed by changing network parameters (coupling strength between oscillators, the frequency gradient and frequency noise), which affected synchronization, propagation velocity and occurrence of dislocations (termination of an oscillation). Complete uncoupling of a circumferential ring of oscillators caused the proximal and distal section to desynchronize, but complete synchronization was maintained with only a single oscillator connecting the sections with high enough coupling. The network of oscillators could withstand loss; even with 40% of oscillators lost randomly within the network, significant synchronization and anterograde propagation remained. A local increase in pacemaker frequency diminished anterograde propagation; the effects were strongly dependent on location, frequency gradient and coupling strength. In summary, the model puts forth the hypothesis that fundamental changes in oscillation patterns (ICC slow-wave activity or circular muscle contractions) can occur through physiological modulation of network properties. Strong evidence is provided to accept the ICC network as a system of coupled oscillators. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  2. Spatial analysis of alcohol-related motor vehicle crash injuries in southeastern Michigan.

    PubMed

    Meliker, Jaymie R; Maio, Ronald F; Zimmerman, Marc A; Kim, Hyungjin Myra; Smith, Sarah C; Wilson, Mark L

    2004-11-01

    Temporal, behavioral and social risk factors that affect injuries resulting from alcohol-related motor vehicle crashes have been characterized in previous research. Much less is known about spatial patterns and environmental associations of alcohol-related motor vehicle crashes. The aim of this study was to evaluate geographic patterns of alcohol-related motor vehicle crashes and to determine if locations of alcohol outlets are associated with those crashes. In addition, we sought to demonstrate the value of integrating spatial and traditional statistical techniques in the analysis of this preventable public health risk. The study design was a cross-sectional analysis of individual-level blood alcohol content, traffic report information, census block group data, and alcohol distribution outlets. Besag and Newell's spatial analysis and traditional logistic regression both indicated that areas of low population density had more alcohol-related motor vehicle crashes than expected (P < 0.05). There was no significant association between alcohol outlets and alcohol-related motor vehicle crashes using distance analyses, logistic regression, and Chi-square. Differences in environmental or behavioral factors characteristic of areas of low population density may be responsible for the higher proportion of alcohol-related crashes occurring in these areas.

  3. Developmental kinesiology: three levels of motor control in the assessment and treatment of the motor system.

    PubMed

    Kobesova, Alena; Kolar, Pavel

    2014-01-01

    Three levels of sensorimotor control within the central nervous system (CNS) can be distinguished. During the neonatal stage, general movements and primitive reflexes are controlled at the spinal and brain stem levels. Analysis of the newborn's spontaneous general movements and the assessment of primitive reflexes is crucial in the screening and early recognition of a risk for abnormal development. Following the newborn period, the subcortical level of the CNS motor control emerges and matures mainly during the first year of life. This allows for basic trunk stabilization, a prerequisite for any phasic movement and for the locomotor function of the extremities. At the subcortical level, orofacial muscles and afferent information are automatically integrated within postural-locomotor patterns. Finally, the cortical (the highest) level of motor control increasingly becomes activated. Cortical control is important for the individual qualities and characteristics of movement. It also allows for isolated segmental movement and relaxation. A child with impaired cortical motor control may be diagnosed with developmental dyspraxia or developmental coordination disorder. Human ontogenetic models, i.e., developmental motor patterns, can be used in both the diagnosis and treatment of locomotor system dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Calcium Influx and Release Cooperatively Regulate AChR Patterning and Motor Axon Outgrowth during Neuromuscular Junction Formation.

    PubMed

    Kaplan, Mehmet Mahsum; Sultana, Nasreen; Benedetti, Ariane; Obermair, Gerald J; Linde, Nina F; Papadopoulos, Symeon; Dayal, Anamika; Grabner, Manfred; Flucher, Bernhard E

    2018-06-26

    Formation of synapses between motor neurons and muscles is initiated by clustering of acetylcholine receptors (AChRs) in the center of muscle fibers prior to nerve arrival. This AChR patterning is considered to be critically dependent on calcium influx through L-type channels (Ca V 1.1). Using a genetic approach in mice, we demonstrate here that either the L-type calcium currents (LTCCs) or sarcoplasmic reticulum (SR) calcium release is necessary and sufficient to regulate AChR clustering at the onset of neuromuscular junction (NMJ) development. The combined lack of both calcium signals results in loss of AChR patterning and excessive nerve branching. In the absence of SR calcium release, the severity of synapse formation defects inversely correlates with the magnitude of LTCCs. These findings highlight the importance of activity-dependent calcium signaling in early neuromuscular junction formation and indicate that both LTCC and SR calcium release individually support proper innervation of muscle by regulating AChR patterning and motor axon outgrowth. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle

    PubMed Central

    Westad, C; Westgaard, R H; De Luca, C J

    2003-01-01

    The activity pattern of low-threshold human trapezius motor units was examined in response to brief, voluntary increases in contraction amplitude (‘EMG pulse’) superimposed on a constant contraction at 4–7% of the surface electromyographic (EMG) response at maximal voluntary contraction (4–7% EMGmax). EMG pulses at 15–20% EMGmax were superimposed every minute on contractions of 5, 10, or 30 min duration. A quadrifilar fine-wire electrode recorded single motor unit activity and a surface electrode recorded simultaneously the surface EMG signal. Low-threshold motor units recruited at the start of the contraction were observed to stop firing while motor units of higher recruitment threshold stayed active. Derecruitment of a motor unit coincided with the end of an EMG pulse. The lowest-threshold motor units showed only brief silent periods. Some motor units with recruitment threshold up to 5% EMGmax higher than the constant contraction level were recruited during an EMG pulse and kept firing throughout the contraction. Following an EMG pulse, there was a marked reduction in motor unit firing rates upon return of the surface EMG signal to the constant contraction level, outlasting the EMG pulse by 4 s on average. The reduction in firing rates may serve as a trigger to induce derecruitment. We speculate that the silent periods following derecruitment may be due to deactivation of non-inactivating inward current (‘plateau potentials’). The firing behaviour of trapezius motor units in these experiments may thus illustrate a mechanism and a control strategy to reduce fatigue of motor units with sustained activity patterns. PMID:14561844

  6. Motor unit activation patterns during concentric wrist flexion in humans with different muscle fibre composition.

    PubMed

    Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G

    1998-10-01

    Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.

  7. Discharge Patterns of Human Tensor Palatini Motor Units During Sleep Onset

    PubMed Central

    Nicholas, Christian L.; Jordan, Amy S.; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Trinder, John

    2012-01-01

    Study Objectives: Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. Design: The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Setting: Sleep laboratory. Participants: Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Intervention: Sleep onset. Measurements and Results: Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. Conclusions: TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP. Citation: Nicholas CL; Jordan AS; Heckel L; Worsnop C; Bei B: Saboisky JP; Eckert DJ; White DP; Malhotra A; Trinder J. Discharge patterns of human tensor palatini motor units during sleep onset. SLEEP 2012;35(5):699-707. PMID:22547896

  8. Motor cortex is required for learning but not for executing a motor skill.

    PubMed

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. On the Dynamics of Rocking Motion of the Hard-Disk Drive Spindle Motor System

    NASA Astrophysics Data System (ADS)

    Wang, Joseph

    Excessive rocking motion of the spindle motor system can cause track misregistration resulting in poor throughput or even drive failure. The chance of excessive disk stack rocking increases as a result of decreasing torsional stiffness of spindle motor bearing system due to the market demand for low profile hard drives. As the track density increases and the vibration specification becomes increasingly stringent, rocking motion of a spindle motor system deserves even more attention and has become a primary challenge for a spindle motor system designer. Lack of understanding of the rocking phenomenon combined with misleading paradox has presented a great difficulty in the effort of avoiding the rocking motion in the hard-disk drive industry. This paper aims to provide fundamental understanding of the rocking phenomenon of a rotating spindle motor system, to clarify the paradox in disk-drive industry and to provide a design guide to an optimized spindle system. This paper, theoretically and experimentally, covers a few important areas of industrial interest including the prediction of rocking natural frequencies and mode shape of a rotating spindle, free vibration, and frequency response under common forcing functions such as rotating and fixed-plane forcing functions. The theory presented here meets with agreeable experimental observation.

  10. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  11. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  12. Effects Of Reinforcement History On Response Rate And Response Pattern In Periodic Reinforcement

    PubMed Central

    López, Florente; Menez, Marina

    2005-01-01

    Several researchers have suggested that conditioning history may have long-term effects on fixed-interval performances of rats. To test this idea and to identify possible factors involved in temporal control development, groups of rats initially were exposed to different reinforcement schedules: continuous, fixed-time, and random-interval. Afterwards, half of the rats in each group were studied on a fixed-interval 30-s schedule of reinforcement and the other half on a fixed-interval 90-s schedule of reinforcement. No evidence of long-term effects attributable to conditioning history on either response output or response patterning was found; history effects were transitory. Different tendencies in trajectory across sessions were observed for measures of early and late responding within the interreinforcer interval, suggesting that temporal control is the result of two separate processes: one involved in response output and the other in time allocation of responding and not responding. PMID:16047607

  13. Study on design of light-weight super-abrasive wheel

    NASA Astrophysics Data System (ADS)

    Nohara, K.; Yanagihara, K.; Ogawa, M.

    2018-01-01

    Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.

  14. Demonstration of Numerical Equivalence of Ensemble and Spectral Averaging in Electromagnetic Scattering by Random Particulate Media

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Zakharova, Nadezhda T.

    2016-01-01

    The numerically exact superposition T-matrix method is used to model far-field electromagnetic scattering by two types of particulate object. Object 1 is a fixed configuration which consists of N identical spherical particles (with N 200 or 400) quasi-randomly populating a spherical volume V having a median size parameter of 50. Object 2 is a true discrete random medium (DRM) comprising the same number N of particles randomly moving throughout V. The median particle size parameter is fixed at 4. We show that if Object 1 is illuminated by a quasi-monochromatic parallel beam then it generates a typical speckle pattern having no resemblance to the scattering pattern generated by Object 2. However, if Object 1 is illuminated by a parallel polychromatic beam with a 10 bandwidth then it generates a scattering pattern that is largely devoid of speckles and closely reproduces the quasi-monochromatic pattern generated by Object 2. This result serves to illustrate the capacity of the concept of electromagnetic scattering by a DRM to encompass fixed quasi-random particulate samples provided that they are illuminated by polychromatic light.

  15. Openstage: A Low-Cost Motorized Microscope Stage with Sub-Micron Positioning Accuracy

    PubMed Central

    Campbell, Robert A. A.; Eifert, Robert W.; Turner, Glenn C.

    2014-01-01

    Recent progress in intracellular calcium sensors and other fluorophores has promoted the widespread adoption of functional optical imaging in the life sciences. Home-built multiphoton microscopes are easy to build, highly customizable, and cost effective. For many imaging applications a 3-axis motorized stage is critical, but commercially available motorization hardware (motorized translators, controller boxes, etc) are often very expensive. Furthermore, the firmware on commercial motor controllers cannot easily be altered and is not usually designed with a microscope stage in mind. Here we describe an open-source motorization solution that is simple to construct, yet far cheaper and more customizable than commercial offerings. The cost of the controller and motorization hardware are under $1000. Hardware costs are kept low by replacing linear actuators with high quality stepper motors. Electronics are assembled from commonly available hobby components, which are easy to work with. Here we describe assembly of the system and quantify the positioning accuracy of all three axes. We obtain positioning repeatability of the order of in X/Y and in Z. A hand-held control-pad allows the user to direct stage motion precisely over a wide range of speeds ( to ), rapidly store and return to different locations, and execute “jumps” of a fixed size. In addition, the system can be controlled from a PC serial port. Our “OpenStage” controller is sufficiently flexible that it could be used to drive other devices, such as micro-manipulators, with minimal modifications. PMID:24586468

  16. Deep Soil Recharge in Arid and Semi-Arid Regions: New Evidences in MU-US Sandy Land of China

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Yang, W.; Zhan, H.

    2017-12-01

    Precipitation induced recharge is an important source of groundwater budget but it is very difficult to quantify in arid and semiarid regions. In this study, a newly invented lysimeter was used to monitor deep soil recharge (DSR) under 200 cm depth in MU-US sandy land in western China under three kinds of landforms (mobile dune, semi-fixed dune, and fixed dune). We found that the annual DSRs in such three different kinds of landforms varied significantly. Specifically, the annual DSRs were 224.1 mm (50.5% of the annual precipitation), 71.1 mm (50.5% of the annual precipitation), and 1.3 mm (0.3% of the annual precipitation) in mobile dune, semi-fixed dune, and fixed dune, respectively. We also found that vegetation coverage and precipitation pattern significantly affected DSR. A 24-hr precipitation event with the precipitation amount greater than 8 mm was able to infiltrate soil deeper than 200 cm and contributed to ground water recharge directly. Vegetation was a dominant factor influencing infiltration in the fixed sand dune. Our research revealed that precipitation induced DSR in arid and semi-arid regions was a complex process that required long-term monitoring and innovative system analysis of interrelated factors such as precipitation strength and pattern, meteorological parameters, and dynamic soil moisture. Key words: Precipitation pattern, sand dune groundwater, deep soil recharge, infiltration.

  17. Dynamic Characteristics of Human Motor Performance in Control Systems.

    DTIC Science & Technology

    1979-01-01

    h drynontrol system . Several lines of inves ___ igaion avebee use inaddiionto nputoutut sudis wth hmansubets LI.- 7 Th (nulreycmriigifrainfosusl...TAB Untjc. ao un c ’ n TTci St rLi b DYNAMIC CHARACTERISTICS OF HUMAN MOTOR PERFORMANCE IN CONTROL SYSTEMS %iOSRTR. 8-0 76 0 Ar3) -O75 -8’O’f FINAL...whereby motor patterns are represented in the nervous system . Findings include a detailing of linear and non-linear features of motor activity in

  18. Incidental Learning and Explicit Recall in Upper Extremity Prosthesis Use: Insights Into Functional Rehabilitation Challenges.

    PubMed

    Hughey, Laura; Wheaton, Lewis A

    2016-01-01

    Loss of an upper extremity and the resulting rehabilitation often requires individuals to learn how to use a prosthetic device for activities of daily living. It remains unclear how prostheses affect motor learning outcomes. The authors' aim was to evaluate whether incidental motor learning and explicit recall is affected in intact persons either using prostheses (n = 10) or the sound limb (n = 10), and a chronic amputee on a modified serial reaction time task. Latency and accuracy of task completion were recorded over six blocks, with a distractor task between blocks 5 and 6. Participants were also asked to recall the sequence immediately following the study and at a 24-hr follow-up. Prosthesis users demonstrate patterns consistent with implicit learning, with sustained error patterns with the distal terminal device. More intact individuals were able to explicitly recall the sequence initially, however there was no significant difference 24 hr following the study. Acute incidental motor learning does not appear to diminish task related error patterns or accompany with explicit recall in prosthesis users, which could present limitations for acute training of prosthesis use in amputees. This suggests differing mechanisms of visuospatial sequential learning and motor control with prostheses.

  19. Railway train versus motor vehicle collisions: a comparative study of injury severity and patterns.

    PubMed

    Kligman, M D; Knotts, F B; Buderer, N M; Kerwin, A J; Rodgers, J F

    1999-11-01

    This study compares the demographics, injury severity, resource use, and injury patterns of patients involved in railway train-motor vehicle (RT-MV) to motor vehicle-motor vehicle (MV-MV) collisions. Retrospective trauma registry review of 74 RT-MV and 1,931 MV-MV consecutive patients, age more than 14 years, presenting to two Level I trauma centers, January of 1991 to May of 1998. Compared with MV-MV, RT-MV had significantly more males (72% vs. 54%), higher mortality (15% vs. 7%), higher Injury Severity Score (median, 20 vs. 9), longer intensive care unit length of stay (1.7 vs. 0.04 days), and longer hospital length of stay (7.5 vs. 4 days). RT-MV patients had a higher percentage of scalp/facial lacerations; intracranial hemorrhage; hemothorax and pneumothorax; fractures of the rib/sternum, upper extremity, skull, and face; and lung, splenic, and renal injuries. After adjusting for the difference in Injury Severity Score between groups, the only remaining significant group difference was the odds of a scalp/facial laceration. RT-MV collisions are a marker for more severe injuries, but not a different pattern of injury, compared with MV-MV collisions.

  20. How Predictive Is Grip Force Control in the Complete Absence of Somatosensory Feedback?

    ERIC Educational Resources Information Center

    Nowak, Dennis A.; Glasauer, Stefan; Hermsdorfer, Joachim

    2004-01-01

    Grip force control relies on accurate internal models of the dynamics of our motor system and the external objects we manipulate. Internal models are not fixed entities, but rather are trained and updated by sensory experience. Sensory feedback signals relevant object properties and mechanical events, e.g. at the skin-object interface, to modify…

  1. Effects of Dispositional Ability Conceptions, Manipulated Learning Environments, and Intrinsic Motivation on Persistence and Performance: An Interaction Approach

    ERIC Educational Resources Information Center

    Li, Weidong; Lee, Amelia M.; Solmon, Melinda

    2008-01-01

    The present study used an interaction approach to investigate how individuals' dispositions about ability as incremental or fixed (entity), manipulated learning environments, and intrinsic motivation affect persistence and performance on a challenging, novel motor skill. Seventy-two female college students who were assigned to either an…

  2. The motor theory of speech perception revisited.

    PubMed

    Massaro, Dominic W; Chen, Trevor H

    2008-04-01

    Galantucci, Fowler, and Turvey (2006) have claimed that perceiving speech is perceiving gestures and that the motor system is recruited for perceiving speech. We make the counter argument that perceiving speech is not perceiving gestures, that the motor system is not recruitedfor perceiving speech, and that speech perception can be adequately described by a prototypical pattern recognition model, the fuzzy logical model of perception (FLMP). Empirical evidence taken as support for gesture and motor theory is reconsidered in more detail and in the framework of the FLMR Additional theoretical and logical arguments are made to challenge gesture and motor theory.

  3. Normal sensorimotor plasticity in complex regional pain syndrome with fixed posture of the hand.

    PubMed

    Morgante, Francesca; Naro, Antonino; Terranova, Carmen; Russo, Margherita; Rizzo, Vincenzo; Risitano, Giovanni; Girlanda, Paolo; Quartarone, Angelo

    2017-01-01

    Movement disorders associated with complex regional pain syndrome type I have been a subject of controversy over the last 10 years regarding their nature and pathophysiology, with an intense debate about the functional (psychogenic) nature of this disorder. The aim of this study was to test sensorimotor plasticity and cortical excitability in patients with complex regional pain syndrome type I who developed a fixed posture of the hand. Ten patients with complex regional pain syndrome type I in the right upper limb and a fixed posture of the hand (disease duration less than 24 months) and 10 age-matched healthy subjects were enrolled. The following parameters of corticospinal excitability were recorded from the abductor pollicis brevis muscle of both hands by transcranial magnetic stimulation: resting and active motor thresholds, short-interval intracortical inhibition and facilitation, cortical silent period, and short- and long-latency afferent inhibition. Sensorimotor plasticity was tested using the paired associative stimulation protocol. Short-interval intracortical inhibition and long-latency afferent inhibition were reduced only in the affected right hand of patients compared with control subjects. Sensorimotor plasticity was comparable to normal subjects, with a preserved topographic specificity. Our data support the view that motor disorder in complex regional pain syndrome type I is not associated with abnormal sensorimotor plasticity, and it shares pathophysiological abnormalities with functional (psychogenic) dystonia rather than with idiopathic dystonia. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  4. Identification of Stimulated Sites Using Artificial Neural Networks Based on Transcranial Magnetic Stimulation-Elicited Motor Evoked Potentials and Finger Forces

    NASA Astrophysics Data System (ADS)

    Fukuda, Hiroshi; Odagaki, Masato; Hiwaki, Osamu

    Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) vary in their amplitude from trial to trial. To investigate the functions of motor cortex by TMS, it is necessary to confirm the causal relationship between stimulated sites and variable MEPs. We created artificial neural networks to classify sets of variable MEP signals and finger forces into the corresponding stimulated sites. We conducted TMS at three different positions over M1 and measured MEPs of hand and forearm muscles and forces of the index finger in four subjects. We estimated the sites within motor cortex stimulated by TMS based on cortical columnar structure and nerve excitation properties. Finally, we tried to classify the various MEPs and finger forces into three groups using artificial neural networks. MEPs and finger forces varied from trial to trial, even if the stimulating coil was fixed on the subject's head. Our proposed neural network was able to identify the MEPs and finger forces with the corresponding stimulated sites in M1. We proposed the artificial neural networks to confirm the TMS-stimulated sites using various MEPs and evoked finger forces.

  5. Pulse width modulation inverter with battery charger

    DOEpatents

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  6. Pulse width modulation inverter with battery charger

    NASA Technical Reports Server (NTRS)

    Slicker, James M. (Inventor)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  7. Multi-voxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    PubMed Central

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350

  8. Loose coupling in the bacterial flagellar motor

    PubMed Central

    Boschert, Ryan; Adler, Frederick R.; Blair, David F.

    2015-01-01

    Physiological properties of the flagellar rotary motor have been taken to indicate a tightly coupled mechanism in which each revolution is driven by a fixed number of energizing ions. Measurements that would directly test the tight-coupling hypothesis have not been made. Energizing ions flow through membrane-bound complexes formed from the proteins MotA and MotB, which are anchored to the cell wall and constitute the stator. Genetic and biochemical evidence points to a “power stroke” mechanism in which the ions interact with an aspartate residue of MotB to drive conformational changes in MotA that are transmitted to the rotor protein FliG. Each stator complex contains two separate ion-binding sites, raising the question of whether the power stroke is driven by one, two, or either number of ions. Here, we describe simulations of a model in which the conformational change can be driven by either one or two ions. This loosely coupled model can account for the observed physiological properties of the motor, including those that have been taken to indicate tight coupling; it also accords with recent measurements of motor torque at high load that are harder to explain in tight-coupling models. Under loads relevant to a swimming cell, the loosely coupled motor would perform about as well as a two-proton motor and significantly better than a one-proton motor. The loosely coupled motor is predicted to be especially advantageous under conditions of diminished energy supply, or of reduced temperature, turning faster than an obligatorily two-proton motor while using fewer ions. PMID:25825730

  9. Spatial Noise in Coupling Strength and Natural Frequency within a Pacemaker Network; Consequences for Development of Intestinal Motor Patterns According to a Weakly Coupled Phase Oscillator Model

    PubMed Central

    Parsons, Sean P.; Huizinga, Jan D.

    2016-01-01

    Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency. PMID:26869875

  10. New whole-body sensory-motor gradients revealed using phase-locked analysis and verified using multivoxel pattern analysis and functional connectivity.

    PubMed

    Zeharia, Noa; Hertz, Uri; Flash, Tamar; Amedi, Amir

    2015-02-18

    Topographic organization is one of the main principles of organization in the human brain. Specifically, whole-brain topographic mapping using spectral analysis is responsible for one of the greatest advances in vision research. Thus, it is intriguing that although topography is a key feature also in the motor system, whole-body somatosensory-motor mapping using spectral analysis has not been conducted in humans outside M1/SMA. Here, using this method, we were able to map a homunculus in the globus pallidus, a key target area for deep brain stimulation, which has not been mapped noninvasively or in healthy subjects. The analysis clarifies contradictory and partial results regarding somatotopy in the caudal-cingulate zone and rostral-cingulate zone in the medial wall and in the putamen. Most of the results were confirmed at the single-subject level and were found to be compatible with results from animal studies. Using multivoxel pattern analysis, we could predict movements of individual body parts in these homunculi, thus confirming that they contain somatotopic information. Using functional connectivity, we demonstrate interhemispheric functional somatotopic connectivity of these homunculi, such that the somatotopy in one hemisphere could have been found given the connectivity pattern of the corresponding regions of interest in the other hemisphere. When inspecting the somatotopic and nonsomatotopic connectivity patterns, a similarity index indicated that the pattern of connected and nonconnected regions of interest across different homunculi is similar for different body parts and hemispheres. The results show that topographical gradients are even more widespread than previously assumed in the somatosensory-motor system. Spectral analysis can thus potentially serve as a gold standard for defining somatosensory-motor system areas for basic research and clinical applications. Copyright © 2015 the authors 0270-6474/15/352845-15$15.00/0.

  11. Point pattern analysis of FIA data

    Treesearch

    Chris Woodall

    2002-01-01

    Point pattern analysis is a branch of spatial statistics that quantifies the spatial distribution of points in two-dimensional space. Point pattern analysis was conducted on stand stem-maps from FIA fixed-radius plots to explore point pattern analysis techniques and to determine the ability of pattern descriptions to describe stand attributes. Results indicate that the...

  12. Preliminary pilot fMRI study of neuropostural optimization with a noninvasive asymmetric radioelectric brain stimulation protocol in functional dysmetria

    PubMed Central

    Mura, Marco; Castagna, Alessandro; Fontani, Vania; Rinaldi, Salvatore

    2012-01-01

    Purpose This study assessed changes in functional dysmetria (FD) and in brain activation observable by functional magnetic resonance imaging (fMRI) during a leg flexion-extension motor task following brain stimulation with a single radioelectric asymmetric conveyer (REAC) pulse, according to the precisely defined neuropostural optimization (NPO) protocol. Population and methods Ten healthy volunteers were assessed using fMRI conducted during a simple motor task before and immediately after delivery of a single REAC-NPO pulse. The motor task consisted of a flexion-extension movement of the legs with the knees bent. FD signs and brain activation patterns were compared before and after REAC-NPO. Results A single 250-millisecond REAC-NPO treatment alleviated FD, as evidenced by patellar asymmetry during a sit-up motion, and modulated activity patterns in the brain, particularly in the cerebellum, during the performance of the motor task. Conclusion Activity in brain areas involved in motor control and coordination, including the cerebellum, is altered by administration of a REAC-NPO treatment and this effect is accompanied by an alleviation of FD. PMID:22536071

  13. Transformation of Context-dependent Sensory Dynamics into Motor Behavior

    PubMed Central

    Latorre, Roberto; Levi, Rafael; Varona, Pablo

    2013-01-01

    The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by the intrinsic dynamics of a multifunctional sensory organ. PMID:23459114

  14. Neural synchrony within the motor system: what have we learned so far?

    PubMed Central

    van Wijk, Bernadette C. M.; Beek, Peter J.; Daffertshofer, Andreas

    2012-01-01

    Synchronization of neural activity is considered essential for information processing in the nervous system. Both local and inter-regional synchronization are omnipresent in different frequency regimes and relate to a variety of behavioral and cognitive functions. Over the years, many studies have sought to elucidate the question how alpha/mu, beta, and gamma synchronization contribute to motor control. Here, we review these studies with the purpose to delineate what they have added to our understanding of the neural control of movement. We highlight important findings regarding oscillations in primary motor cortex, synchronization between cortex and spinal cord, synchronization between cortical regions, as well as abnormal synchronization patterns in a selection of motor dysfunctions. The interpretation of synchronization patterns benefits from combining results of invasive and non-invasive recordings, different data analysis tools, and modeling work. Importantly, although synchronization is deemed to play a vital role, it is not the only mechanism for neural communication. Spike timing and rate coding act together during motor control and should therefore both be accounted for when interpreting movement-related activity. PMID:22969718

  15. Generalization of perceptual and motor learning: a causal link with memory encoding and consolidation?

    PubMed

    Censor, N

    2013-10-10

    In both perceptual and motor learning, numerous studies have shown specificity of learning to the trained eye or hand and to the physical features of the task. However, generalization of learning is possible in both perceptual and motor domains. Here, I review evidence for perceptual and motor learning generalization, suggesting that generalization patterns are affected by the way in which the original memory is encoded and consolidated. Generalization may be facilitated during fast learning, with possible engagement of higher-order brain areas recurrently interacting with the primary visual or motor cortices encoding the stimuli or movements' memories. Such generalization may be supported by sleep, involving functional interactions between low and higher-order brain areas. Repeated exposure to the task may alter generalization patterns of learning and overall offline learning. Development of unifying frameworks across learning modalities and better understanding of the conditions under which learning can generalize may enable to gain insight regarding the neural mechanisms underlying procedural learning and have useful clinical implications. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Effect of human-robot interaction on muscular synergies on healthy people and post-stroke chronic patients.

    PubMed

    Scano, A; Chiavenna, A; Caimmi, M; Malosio, M; Tosatti, L M; Molteni, F

    2017-07-01

    Robot-assisted training is a widely used technique to promote motor re-learning on post-stroke patients that suffer from motor impairment. While it is commonly accepted that robot-based therapies are potentially helpful, strong insights about their efficacy are still lacking. The motor re-learning process may act on muscular synergies, which are groups of co-activating muscles that, being controlled as a synergic group, allow simplifying the problem of motor control. In fact, by coordinating a reduced amount of neural signals, complex motor patterns can be elicited. This paper aims at analyzing the effects of robot assistance during 3D-reaching movements in the framework of muscular synergies. 5 healthy people and 3 neurological patients performed free and robot-assisted reaching movements at 2 different speeds (slow and quasi-physiological). EMG recordings were used to extract muscular synergies. Results indicate that the interaction with the robot very slightly alters healthy people patterns but, on the contrary, it may promote the emergency of physiological-like synergies on neurological patients.

  17. Human spinal locomotor control is based on flexibly organized burst generators.

    PubMed

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Human spinal locomotor control is based on flexibly organized burst generators

    PubMed Central

    Danner, Simon M.; Hofstoetter, Ursula S.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank

    2015-01-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. PMID:25582580

  19. Pretreatment seizure semiology in childhood absence epilepsy.

    PubMed

    Kessler, Sudha Kilaru; Shinnar, Shlomo; Cnaan, Avital; Dlugos, Dennis; Conry, Joan; Hirtz, Deborah G; Hu, Fengming; Liu, Chunyan; Mizrahi, Eli M; Moshé, Solomon L; Clark, Peggy; Glauser, Tracy A

    2017-08-15

    To determine seizure semiology in children with newly diagnosed childhood absence epilepsy and to evaluate associations with short-term treatment outcomes. For participants enrolled in a multicenter, randomized, double-blind, comparative-effectiveness trial, semiologic features of pretreatment seizures were analyzed as predictors of treatment outcome at the week 16 to 20 visit. Video of 1,932 electrographic absence seizures from 416 participants was evaluated. Median seizure duration was 10.2 seconds; median time between electrographic seizure onset and clinical manifestation onset was 1.5 seconds. For individual seizures and by participant, the most common semiology features were pause/stare (seizure 95.5%, participant 99.3%), motor automatisms (60.6%, 86.1%), and eye involvement (54.9%, 76.5%). The interrater agreement for motor automatisms and eye involvement was good (72%-84%). Variability of semiology features between seizures even within participants was high. Clustering analyses revealed 4 patterns (involving the presence/absence of eye involvement and motor automatisms superimposed on the nearly ubiquitous pause/stare). Most participants experienced more than one seizure cluster pattern. No individual semiologic feature was individually predictive of short-term outcome. Seizure freedom was half as likely in participants with one or more seizure having the pattern of eye involvement without motor automatisms than in participants without this pattern. Almost all absence seizures are characterized by a pause in activity or staring, but rarely is this the only feature. Semiologic features tend to cluster, resulting in identifiable absence seizure subtypes with significant intraparticipant seizure phenomenologic heterogeneity. One seizure subtype, pause/stare and eye involvement but no motor automatisms, is specifically associated with a worse treatment outcome. © 2017 American Academy of Neurology.

  20. The Effect of Self-Regulated and Experimenter-Imposed Practice Schedules on Motor Learning for Tasks of Varying Difficulty

    ERIC Educational Resources Information Center

    Keetch, Katherine M.; Lee, Timothy D.

    2007-01-01

    Research suggests that allowing individuals to control their own practice schedule has a positive effect on motor learning. In this experiment we examined the effect of task difficulty and self-regulated practice strategies on motor learning. The task was to move a mouse-operated cursor through pattern arrays that differed in two levels of…

  1. Restructuring: The Changing Face of Motor Gasoline Marketing

    EIA Publications

    2001-01-01

    This report reviews the U.S. motor gasoline marketing industry during the period 1990 to 1999, focusing on changes that occurred during the period. The report incorporates financial and operating data from the Energy Information Administration's Financial Reporting System (FRS), motor gasoline outlet counts collected by the National Petroleum News from the states, and U.S. Census Bureau salary and employment data published in County Business Patterns.

  2. Patterns and consequences of inadequate sleep in college students: substance use and motor vehicle accidents.

    PubMed

    Taylor, Daniel J; Bramoweth, Adam D

    2010-06-01

    We examined college sleep patterns and consequences using a cross-sectional design. We found that students get insufficient sleep and frequently use medication and alcohol as sleep aids, use stimulants as alertness aids, and fall asleep at the wheel, or have motor vehicle accidents due to sleepiness. Future studies should focus on effective interventions for sleep in college students. Copyright 2010 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  3. Visualization of flows in a motored rotary combustion engine using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.

    1986-01-01

    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.

  4. A linear motor and compact cylinder-piston driver for left ventricular bypass.

    PubMed

    Qian, K X

    1990-01-01

    A simple, portable, reliable and noise-free pneumatic driver has been developed. It consists of a linear motor attached to a cylinder piston, in one unit. The motor coil is directly wound on the cylinder, and the permanent magnet is fixed to the piston. As a continuous voltage square wave is applied to the coil, the cylinder reciprocates on the piston periodically, producing air pressure and vacuum alternately. In conjunction with a locally made diaphragm pump, the driver was tested in vitro and in vivo. Results demonstrated that the device could drive the diaphragm pump and so support the circulation of an experimental animal. The driver weighs 12 kg. For 200 mmHg air pressure and -80 mmHg vacuum the power consumed is 30 W. Its noise is about 30 dB, less than that of an artificial valve and pump.

  5. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.

    PubMed

    Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang

    2014-01-01

    Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.

  6. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  7. The effect of repeated bouts of backward walking on physiologic efficiency.

    PubMed

    Childs, John D; Gantt, Christy; Higgins, Dan; Papazis, Janet A; Franklin, Ronald; Metzler, Terri; Underwood, Frank B

    2002-08-01

    Previous studies have demonstrated an increased energy expenditure with novel tasks. With practice, the energy cost decreases as the body more efficiently recruits motor units. This study examined whether one becomes more efficient after repeated bouts of backward walking. The subjects were 7 healthy subjects between the ages of 23 and 49 years. A backward walking speed was calculated to elicit a VO(2) equal to 60% of the VO(2)max. There were 18 training sessions at the prescribed walking speed 3 d x wk(-1) for 20 min x d(-1). The backward walking speed required to elicit a fixed VO(2) increased between weeks 4 and 6 of the training period. This finding suggests that backward walking is indeed a novel task and that motor learning occurs as a result of practice, leading to a more efficient recruitment of motor units.

  8. Thrust Control Loop Design for Electric-Powered UAV

    NASA Astrophysics Data System (ADS)

    Byun, Heejae; Park, Sanghyuk

    2018-04-01

    This paper describes a process of designing a thrust control loop for an electric-powered fixed-wing unmanned aerial vehicle equipped with a propeller and a motor. In particular, the modeling method of the thrust system for thrust control is described in detail and the propeller thrust and torque force are modeled using blade element theory. A relation between current and torque of the motor is obtained using an experimental setup. Another relation between current, voltage and angular velocity is also obtained. The electric motor and the propeller dynamics are combined to model the thrust dynamics. The associated trim and linearization equations are derived. Then, the thrust dynamics are coupled with the flight dynamics to allow a proper design for the thrust loop in the flight control. The proposed method is validated by an application to a testbed UAV through simulations and flight test.

  9. Light absorption cell combining variable path and length pump

    DOEpatents

    Prather, W.S.

    1993-12-07

    A device is described for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid there between and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data. 2 figures.

  10. Independent voluntary correction and savings in locomotor learning.

    PubMed

    Leech, Kristan A; Roemmich, Ryan T

    2018-06-14

    People can acquire new walking patterns in many different ways. For example, we can change our gait voluntarily in response to instruction or adapt by sensing our movement errors. Here we investigated how acquisition of a new walking pattern through simultaneous voluntary correction and adaptive learning affected the resulting motor memory of the learned pattern. We studied adaptation to split-belt treadmill walking with and without visual feedback of stepping patterns. As expected, visual feedback enabled faster acquisition of the new walking pattern. However, upon later re-exposure to the same split-belt perturbation, participants exhibited similar motor memories whether they had learned with or without visual feedback. Participants who received feedback did not re-engage the mechanism used to accelerate initial acquisition of the new walking pattern to similarly accelerate subsequent relearning. These findings reveal that voluntary correction neither benefits nor interferes with the ability to save a new walking pattern over time. © 2018. Published by The Company of Biologists Ltd.

  11. Sensitivity analysis of discharge patterns of subthalamic nucleus in the model of basal ganglia in Parkinson disease.

    PubMed

    Singh, Jyotsna; Singh, Phool; Malik, Vikas

    2017-01-01

    Parkinson disease alters the information patterns in movement related pathways in brain. Experimental results performed on rats show that the activity patterns changes from single spike activity to mixed burst mode in Parkinson disease. However the cause of this change in activity pattern is not yet completely understood. Subthalamic nucleus is one of the main nuclei involved in the origin of motor dysfunction in Parkinson disease. In this paper, a single compartment conductance based model is considered which focuses on subthalamic nucleus and synaptic input from globus pallidus (external). This model shows highly nonlinear behavior with respect to various intrinsic parameters. Behavior of model has been presented with the help of activity patterns generated in healthy and Parkinson condition. These patterns have been compared by calculating their correlation coefficient for different values of intrinsic parameters. Results display that the activity patterns are very sensitive to various intrinsic parameters and calcium shows some promising results which provide insights into the motor dysfunction.

  12. [Simple and useful evaluation of motor difficulty in childhood (9-12 years old children ) by interview score on motor skills and soft neurological signs--aim for the diagnosis of developmental coordination disorder].

    PubMed

    Kashiwagi, Mitsuru; Suzuki, Shuhei

    2009-09-01

    Many children with developmental disorders are known to have motor impairment such as clumsiness and poor physical ability;however, the objective evaluation of such difficulties is not easy in routine clinical practice. In this study, we aimed to establish a simple method for evaluating motor difficulty of childhood. This method employs a scored interview and examination for detecting soft neurological signs (SNSs). After a preliminary survey with 22 normal children, we set the items and the cutoffs for the interview and SNSs. The interview consisted of questions pertaining to 12 items related to a child's motor skills in his/her past and current life, such as skipping, jumping a rope, ball sports, origami, and using chopsticks. The SNS evaluation included 5 tests, namely, standing on one leg with eyes closed, diadochokinesia, associated movements during diadochokinesia, finger opposition test, and laterally fixed gaze. We applied this method to 43 children, including 25 cases of developmental disorders. Children showing significantly high scores in both the interview and SNS were assigned to the "with motor difficulty" group, while those with low scores in both the tests were assigned to the "without motor difficulty" group. The remaining children were assigned to the "with suspicious motor difficulty" group. More than 90% of the children in the "with motor difficulty" group had high impairment scores in Movement Assessment Battery for Children (M-ABC), a standardized motor test, whereas 82% of the children in the "without motor difficulty" group revealed no motor impairment. Thus, we conclude that our simple method and criteria would be useful for the evaluation of motor difficulty of childhood. Further, we have discussed the diagnostic process for developmental coordination disorder using our evaluation method.

  13. Specialized Motor-Driven dusp1 Expression in the Song Systems of Multiple Lineages of Vocal Learning Birds

    PubMed Central

    Horita, Haruhito; Kobayashi, Masahiko; Liu, Wan-chun; Oka, Kotaro; Jarvis, Erich D.; Wada, Kazuhiro

    2012-01-01

    Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits. PMID:22876306

  14. Postural perturbations: new insights for treatment of balance disorders

    NASA Technical Reports Server (NTRS)

    Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)

    1997-01-01

    This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.

  15. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    PubMed

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.

  16. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model

    PubMed Central

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher

    2015-01-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement (“jump”) consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106

  17. Relations among motor, social, and cognitive skills in pre-kindergarten children with developmental disabilities.

    PubMed

    Kim, Helyn; Carlson, Abby G; Curby, Timothy W; Winsler, Adam

    2016-01-01

    Despite the comorbidity between motor difficulties and certain disabilities, limited research has examined links between early motor, cognitive, and social skills in preschool-aged children with developmental disabilities. The present study examined the relative contributions of gross motor and fine motor skills to the prediction of improvements in children's cognitive and social skills among 2,027 pre-kindergarten children with developmental disabilities, including specific learning disorder, speech/language impairment, intellectual disability, and autism spectrum disorder. Results indicated that for pre-kindergarten children with developmental disabilities, fine motor skills, but not gross motor skills, were predictive of improvements in cognitive and social skills, even after controlling for demographic information and initial skill levels. Moreover, depending on the type of developmental disability, the pattern of prediction of gross motor and fine motor skills to improvements in children's cognitive and social skills differed. Implications are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fractal Patterns of Neural Activity Exist within the Suprachiasmatic Nucleus and Require Extrinsic Network Interactions

    PubMed Central

    Hu, Kun; Meijer, Johanna H.; Shea, Steven A.; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A. J. L.

    2012-01-01

    The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation. PMID:23185285

  19. Supervised versus unsupervised technology-based levodopa monitoring in Parkinson's disease: an intrasubject comparison.

    PubMed

    Lopane, Giovanna; Mellone, Sabato; Corzani, Mattia; Chiari, Lorenzo; Cortelli, Pietro; Calandra-Buonaura, Giovanna; Contin, Manuela

    2018-06-01

    We aimed to assess the intrasubject reproducibility of a technology-based levodopa (LD) therapeutic monitoring protocol administered in supervised versus unsupervised conditions in patients with Parkinson's disease (PD). The study design was pilot, intrasubject, single center, open and prospective. Twenty patients were recruited. Patients performed a standardized monitoring protocol instrumented by an ad hoc embedded platform after their usual first morning LD dose in two different randomized ambulatory sessions: one under a physician's supervision, the other self-administered. The protocol is made up of serial motor and non-motor tests, including alternate finger tapping, Timed Up and Go test, and measurement of blood pressure. Primary motor outcomes included comparisons of intrasubject LD subacute motor response patterns over the 3-h test in the two experimental conditions. Secondary outcomes were the number of intrasession serial test repetitions due to technical or handling errors and patients' satisfaction with the unsupervised LD monitoring protocol. Intrasubject LD motor response patterns were concordant between the two study sessions in all patients but one. Platform handling problems averaged 4% of total planned serial tests for both sessions. Ninety-five percent of patients were satisfied with the self-administered LD monitoring protocol. To our knowledge, this study is the first to explore the potential of unsupervised technology-based objective motor and non-motor tasks to monitor subacute LD dosing effects in PD patients. The results are promising for future telemedicine applications.

  20. Cerebro-cerebellar Resting-State Functional Connectivity in Children and Adolescents with Autism Spectrum Disorder.

    PubMed

    Khan, Amanda J; Nair, Aarti; Keown, Christopher L; Datko, Michael C; Lincoln, Alan J; Müller, Ralph-Axel

    2015-11-01

    The cerebellum plays important roles in sensori-motor and supramodal cognitive functions. Cellular, volumetric, and functional abnormalities of the cerebellum have been found in autism spectrum disorders (ASD), but no comprehensive investigation of cerebro-cerebellar connectivity in ASD is available. We used resting-state functional connectivity magnetic resonance imaging in 56 children and adolescents (28 subjects with ASD, 28 typically developing subjects) 8-17 years old. Partial and total correlation analyses were performed for unilateral regions of interest (ROIs), distinguished in two broad domains as sensori-motor (premotor/primary motor, somatosensory, superior temporal, and occipital) and supramodal (prefrontal, posterior parietal, and inferior and middle temporal). There were three main findings: 1) Total correlation analyses showed predominant cerebro-cerebellar functional overconnectivity in the ASD group; 2) partial correlation analyses that emphasized domain specificity (sensori-motor vs. supramodal) indicated a pattern of robustly increased connectivity in the ASD group (compared with the typically developing group) for sensori-motor ROIs but predominantly reduced connectivity for supramodal ROIs; and 3) this atypical pattern of connectivity was supported by significantly increased noncanonical connections (between sensori-motor cerebral and supramodal cerebellar ROIs and vice versa) in the ASD group. Our findings indicate that sensori-motor intrinsic functional connectivity is atypically increased in ASD, at the expense of connectivity supporting cerebellar participation in supramodal cognition. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Effects of practice schedule and task specificity on the adaptive process of motor learning.

    PubMed

    Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar

    2017-10-01

    This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.

    PubMed

    Vourvopoulos, Athanasios; Bermúdez I Badia, Sergi

    2016-08-09

    The use of Brain-Computer Interface (BCI) technology in neurorehabilitation provides new strategies to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit from virtual rehabilitation training. In order to investigate how different BCI paradigms impact brain activation, we designed 3 experimental conditions in a within-subject design, including an immersive Multimodal Virtual Reality with Motor Priming (VRMP) condition where users had to perform motor-execution before BCI training, an immersive Multimodal VR condition, and a control condition with standard 2D feedback. Further, these were also compared to overt motor-execution. Finally, a set of questionnaires were used to gather subjective data on Workload, Kinesthetic Imagery and Presence. Our findings show increased capacity to modulate and enhance brain activity patterns in all extracted EEG rhythms matching more closely those present during motor-execution and also a strong relationship between electrophysiological data and subjective experience. Our data suggest that both VR and particularly MP can enhance the activation of brain patterns present during overt motor-execution. Further, we show changes in the interhemispheric EEG balance, which might play an important role in the promotion of neural activation and neuroplastic changes in stroke patients in a motor-imagery neurofeedback paradigm. In addition, electrophysiological correlates of psychophysiological responses provide us with valuable information about the motor and affective state of the user that has the potential to be used to predict MI-BCI training outcome based on user's profile. Finally, we propose a BCI paradigm in VR, which gives the possibility of motor priming for patients with low level of motor control.

  3. Breathing and Vocal Control: The Respiratory System as both a Driver and Target of Telencephalic Vocal Motor Circuits in Songbirds

    PubMed Central

    Schmidt, Marc F.; McLean, Judith; Goller, Franz

    2011-01-01

    The production of vocalizations is intimately linked to the respiratory system. Despite our understanding of neural circuits that generate normal respiratory patterns, very little is understood regarding how these ponto-medullary circuits become engaged during vocal production. Songbirds offer a potentially powerful model system for addressing this relationship. Songs dramatically alter the respiratory pattern in ways that are often highly predictable and songbirds have a specialized telencephalic vocal motor circuit that provides massive innervation to a brainstem respiratory network that shares many similarities with its mammalian counterpart. In this review, we highlight interactions between the song motor circuit and the respiratory system, describing how both systems likely interact to produce the complex respiratory patterns that are observed during vocalization. We also discuss how the respiratory system, through its bilateral bottom-up projections to thalamus, might play a key role in sending precisely timed signals that synchronize premotor activity in both hemispheres. PMID:21984733

  4. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism

    NASA Astrophysics Data System (ADS)

    Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T.

    2016-08-01

    Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.

  5. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism.

    PubMed

    Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T

    2016-08-24

    Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children's motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.

  6. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism

    PubMed Central

    Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T.

    2016-01-01

    Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3–6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay. PMID:27553971

  7. 49 CFR 385.911 - Suspension proceedings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Suspension proceedings. 385.911 Section 385.911 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... Pattern or Practice of Safety Violations by Motor Carrier Management § 385.911 Suspension proceedings. (a...

  8. An automated two-dimensional optical force clamp for single molecule studies.

    PubMed Central

    Lang, Matthew J; Asbury, Charles L; Shaevitz, Joshua W; Block, Steven M

    2002-01-01

    We constructed a next-generation optical trapping instrument to study the motility of single motor proteins, such as kinesin moving along a microtubule. The instrument can be operated as a two-dimensional force clamp, applying loads of fixed magnitude and direction to motor-coated microscopic beads moving in vitro. Flexibility and automation in experimental design are achieved by computer control of both the trap position, via acousto-optic deflectors, and the sample position, using a three-dimensional piezo stage. Each measurement is preceded by an initialization sequence, which includes adjustment of bead height relative to the coverslip using a variant of optical force microscopy (to +/-4 nm), a two-dimensional raster scan to calibrate position detector response, and adjustment of bead lateral position relative to the microtubule substrate (to +/-3 nm). During motor-driven movement, both the trap and stage are moved dynamically to apply constant force while keeping the trapped bead within the calibrated range of the detector. We present details of force clamp operation and preliminary data showing kinesin motor movement subject to diagonal and forward loads. PMID:12080136

  9. Steps in the bacterial flagellar motor.

    PubMed

    Mora, Thierry; Yu, Howard; Sowa, Yoshiyuki; Wingreen, Ned S

    2009-10-01

    The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps. Here we propose a simple physical model, based on the storage of energy in protein springs, that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. We also predict a sublinear speed versus torque relationship for fixed load at low torque, and a peak in rotor diffusion as a function of torque. Our model provides a comprehensive framework for understanding and analyzing stepping behavior in the bacterial flagellar motor and proposes novel, testable predictions. More broadly, the storage of energy in protein springs by the flagellar motor may provide useful general insights into the design of highly efficient molecular machines.

  10. Motor fuels and chemicals from coal via the Sasol Synthol route

    NASA Astrophysics Data System (ADS)

    Hoogendoorn, J. C.

    1981-03-01

    The production of synthetic motor fuels and chemicals from coal by the Sasol procedures is discussed. This process is based on the Fischer-Tropsch reaction by passing hydrogen and carbon monoxide in a specific ratio over iron catalysts at elevated temperatures and pressures. Two parallel reactor systems are discussed. The smaller system employs fixed-bed reactors, using a precipitated iron catalyst and produces predominantly heavy hydrocarbons of an aliphatic nature with carbon chains up to 100. These straight-chain hydrocarbons yield excellent waxes and high quality diesel oil. The larger system uses a powdered iron catalyst in a circulating fluid-bed reactor, a concept developed from American catalytic cracker technology. This system has the advantage of high production capacity and scale-up potential, and produces light olefins which can be used either as petrochemical feedstock or refined and added to the motor fuel pool, and ethylene which is augmented by ethane cracking. Analysis of product selectivities and values shows that co-production of chemicals and motor fuels from coal is profitable and efficient.

  11. Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease.

    PubMed

    Grafton, S T; Turner, R S; Desmurget, M; Bakay, R; Delong, M; Vitek, J; Crutcher, M

    2006-04-25

    To test whether therapeutic unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson disease (PD) leads to normalization in the pattern of brain activation during movement execution and control of movement extent. Six patients with PD were imaged off medication by PET during performance of a visually guided tracking task with the DBS voltage programmed for therapeutic (effective) or subtherapeutic (ineffective) stimulation. Data from patients with PD during ineffective stimulation were compared with a group of 13 age-matched control subjects to identify sites with abnormal patterns of activation. Conjunction analysis was used to identify those areas in patients with PD where activity normalized when they were treated with effective stimulation. For movement execution, effective DBS caused an increase of activation in the supplementary motor area (SMA), superior parietal cortex, and cerebellum toward a more normal pattern. At rest, effective stimulation reduced overactivity of SMA. Therapeutic stimulation also induced reductions of movement related "overactivity" compared with healthy subjects in prefrontal, temporal lobe, and basal ganglia circuits, consistent with the notion that many areas are recruited to compensate for ineffective motor initiation. Normalization of activity related to the control of movement extent was associated with reductions of activity in primary motor cortex, SMA, and basal ganglia. Effective subthalamic nucleus stimulation leads to task-specific modifications with appropriate recruitment of motor areas as well as widespread, nonspecific reductions of compensatory or competing cortical activity.

  12. Clinical and imaging characterization of progressive spastic dysarthria

    PubMed Central

    Clark, Heather M.; Duffy, Joseph R.; Whitwell, Jennifer L.; Ahlskog, J. Eric; Sorenson, Eric J.; Josephs, Keith A.

    2013-01-01

    Objective To describe speech, neurological and imaging characteristics of a series of patients presenting with progressive spastic dysarthria (PSD) as the first and predominant sign of a presumed neurodegenerative disease. Methods Participants were 25 patients with spastic dysarthria as the only or predominant speech disorder. Clinical features, pattern of MRI volume loss on voxel-based morphometry, and pattern of hypometabolism with F18-Fluorodeoxyglucose (FDG-PET) scan are described. Results All patients demonstrated speech characteristics consistent with spastic dysarthria, including strained voice quality, slow speaking rate, monopitch and monoloudness, and slow and regular speech alternating motion rates. Eight patients did not have additional neurological findings on examination. Pseudobulbar affect, upper motor neuron pattern limb weakness, spasticity, Hoffman sign and positive Babinski reflexes were noted in some of the remaining patients. Twenty-three patients had electromyographic assessment and none had diffuse motor neuron disease or met El Escorial criteria for ALS. Voxel-based morphometry revealed striking bilateral white matter volume loss, , affecting the motor cortex (BA 4), including the frontoparietal operculum (BA 43) with extension into the middle cerebral peduncle. FDG-PET showed subtle hypometabolism affecting the premotor and motor cortices in some patients, particularly in those who had a disease duration longer than two years. Conclusions We have characterized a neurodegenerative disorder that begins focally with spastic dysarthria due to involvement of the motor and premotor cortex and descending corticospinal and corticobulbar pathways. We propose the descriptive label “progressive spastic dysarthria” to best capture the dominant presenting feature of the syndrome. PMID:24053325

  13. Neuromechanical factors involved in the formation and propulsion of fecal pellets in the guinea-pig colon.

    PubMed

    Costa, M; Wiklendt, L; Simpson, P; Spencer, N J; Brookes, S J; Dinning, P G

    2015-10-01

    The neuromechanical processes involved in the formation and propulsion of fecal pellets remain incompletely understood. We analyzed motor patterns in isolated segments of the guinea-pig proximal and distal colon, using video imaging, during oral infusion of liquid, viscous material, or solid pellets. Colonic migrating motor complexes (CMMCs) in the proximal colon divided liquid or natural semisolid contents into elongated shallow boluses. At the colonic flexure these boluses were formed into shorter, pellet-shaped boluses. In the non-distended distal colon, spontaneous CMMCs produced small dilations. Both high- and low-viscosity infusions evoked a distinct motor pattern that produced pellet-shaped boluses. These were propelled at speeds proportional to their surface area. Solid pellets were propelled at a speed that increased with diameter, to a maximum that matched the diameter of natural pellets. Pellet speed was reduced by increasing resistive load. Tetrodotoxin blocked all propulsion. Hexamethonium blocked normal motor patterns, leaving irregular propagating contractions, indicating the existence of neural pathways that did not require nicotinic transmission. Colonic migrating motor complexes are responsible for the slow propulsion of the soft fecal content in the proximal colon, while the formation of pellets at the colonic flexure involves a content-dependent mechanism in combination with content-independent spontaneous CMMCs. Bolus size and consistency affects propulsion speed suggesting that propulsion is not a simple reflex but rather a more complex process involving an adaptable neuromechanical loop. © 2015 John Wiley & Sons Ltd.

  14. Hearing Lips and Seeing Voices: How Cortical Areas Supporting Speech Production Mediate Audiovisual Speech Perception

    PubMed Central

    Skipper, Jeremy I.; van Wassenhove, Virginie; Nusbaum, Howard C.; Small, Steven L.

    2009-01-01

    Observing a speaker’s mouth profoundly influences speech perception. For example, listeners perceive an “illusory” “ta” when the video of a face producing /ka/ is dubbed onto an audio /pa/. Here, we show how cortical areas supporting speech production mediate this illusory percept and audiovisual (AV) speech perception more generally. Specifically, cortical activity during AV speech perception occurs in many of the same areas that are active during speech production. We find that different perceptions of the same syllable and the perception of different syllables are associated with different distributions of activity in frontal motor areas involved in speech production. Activity patterns in these frontal motor areas resulting from the illusory “ta” percept are more similar to the activity patterns evoked by AV/ta/ than they are to patterns evoked by AV/pa/ or AV/ka/. In contrast to the activity in frontal motor areas, stimulus-evoked activity for the illusory “ta” in auditory and somatosensory areas and visual areas initially resembles activity evoked by AV/pa/ and AV/ka/, respectively. Ultimately, though, activity in these regions comes to resemble activity evoked by AV/ta/. Together, these results suggest that AV speech elicits in the listener a motor plan for the production of the phoneme that the speaker might have been attempting to produce, and that feedback in the form of efference copy from the motor system ultimately influences the phonetic interpretation. PMID:17218482

  15. The Functional Organization and Cortical Connections of Motor Cortex in Squirrels

    PubMed Central

    Cooke, Dylan F.; Padberg, Jeffrey; Zahner, Tony

    2012-01-01

    Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed “F,” possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages. PMID:22021916

  16. Temporal and Motor Representation of Rhythm in Fronto-Parietal Cortical Areas: An fMRI Study

    PubMed Central

    Konoike, Naho; Kotozaki, Yuka; Jeong, Hyeonjeong; Miyazaki, Atsuko; Sakaki, Kohei; Shinada, Takamitsu; Sugiura, Motoaki; Kawashima, Ryuta; Nakamura, Katsuki

    2015-01-01

    When sounds occur with temporally structured patterns, we can feel a rhythm. To memorize a rhythm, perception of its temporal patterns and organization of them into a hierarchically structured sequence are necessary. On the other hand, rhythm perception can often cause unintentional body movements. Thus, we hypothesized that rhythm information can be manifested in two different ways; temporal and motor representations. The motor representation depends on effectors, such as the finger or foot, whereas the temporal representation is effector-independent. We tested our hypothesis with a working memory paradigm to elucidate neuronal correlates of temporal or motor representation of rhythm and to reveal the neural networks associated with these representations. We measured brain activity by fMRI while participants memorized rhythms and reproduced them by tapping with the right finger, left finger, or foot, or by articulation. The right inferior frontal gyrus and the inferior parietal lobule exhibited significant effector-independent activations during encoding and retrieval of rhythm information, whereas the left inferior parietal lobule and supplementary motor area (SMA) showed effector-dependent activations during retrieval. These results suggest that temporal sequences of rhythm are probably represented in the right fronto-parietal network, whereas motor sequences of rhythm can be represented in the SMA-parietal network. PMID:26076024

  17. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.

    1998-01-01

    Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.

  18. A dual-learning paradigm can simultaneously train multiple characteristics of walking

    PubMed Central

    Toliver, Alexis; Bastian, Amy J.

    2016-01-01

    Impairments in human motor patterns are complex: what is often observed as a single global deficit (e.g., limping when walking) is actually the sum of several distinct abnormalities. Motor adaptation can be useful to teach patients more normal motor patterns, yet conventional training paradigms focus on individual features of a movement, leaving others unaddressed. It is known that under certain conditions, distinct movement components can be simultaneously adapted without interference. These previous “dual-learning” studies focused solely on short, planar reaching movements, yet it is unknown whether these findings can generalize to a more complex behavior like walking. Here we asked whether a dual-learning paradigm, incorporating two distinct motor adaptation tasks, can be used to simultaneously train multiple components of the walking pattern. We developed a joint-angle learning task that provided biased visual feedback of sagittal joint angles to increase peak knee or hip flexion during the swing phase of walking. Healthy, young participants performed this task independently or concurrently with another locomotor adaptation task, split-belt treadmill adaptation, where subjects adapted their step length symmetry. We found that participants were able to successfully adapt both components of the walking pattern simultaneously, without interference, and at the same rate as adapting either component independently. This leads us to the interesting possibility that combining rehabilitation modalities within a single training session could be used to help alleviate multiple deficits at once in patients with complex gait impairments. PMID:26961100

  19. Evidence for a neural law of effect.

    PubMed

    Athalye, Vivek R; Santos, Fernando J; Carmena, Jose M; Costa, Rui M

    2018-03-02

    Thorndike's law of effect states that actions that lead to reinforcements tend to be repeated more often. Accordingly, neural activity patterns leading to reinforcement are also reentered more frequently. Reinforcement relies on dopaminergic activity in the ventral tegmental area (VTA), and animals shape their behavior to receive dopaminergic stimulation. Seeking evidence for a neural law of effect, we found that mice learn to reenter more frequently motor cortical activity patterns that trigger optogenetic VTA self-stimulation. Learning was accompanied by gradual shaping of these patterns, with participating neurons progressively increasing and aligning their covariance to that of the target pattern. Motor cortex patterns that lead to phasic dopaminergic VTA activity are progressively reinforced and shaped, suggesting a mechanism by which animals select and shape actions to reliably achieve reinforcement. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. A validated finite element model of a soft artificial muscle motor

    NASA Astrophysics Data System (ADS)

    Tse, Tony Chun H.; O'Brien, Benjamin; McKay, Thomas; Anderson, Iain A.

    2011-04-01

    The Biomimetics Laboratory has developed a soft artificial muscle motor based on Dielectric Elastomers. The motor, 'Flexidrive', is light-weight and has low system complexity. It works by gripping and turning a shaft with a soft gear, like we would with our fingers. The motor's performance depends on many factors, such as actuation waveform, electrode patterning, geometries and contact tribology between the shaft and gear. We have developed a finite element model (FEM) of the motor as a study and design tool. Contact interaction was integrated with previous material and electromechanical coupling models in ABAQUS. The model was experimentally validated through a shape and blocked force analysis.

  1. Repetition priming of motor activity mediated by a central pattern generator: the importance of extrinsic vs. intrinsic program initiators

    PubMed Central

    Siniscalchi, Michael J.; Jing, Jian; Weiss, Klaudiusz R.

    2016-01-01

    Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia. This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to “prime” motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for “task” switching, i.e., the cessation of one type of motor activity and the initiation of another. PMID:27466134

  2. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    PubMed Central

    Persson, Karin; Rekling, Jens C

    2011-01-01

    Abstract The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem and in the facial nucleus. In Fluo-8 AM loaded brainstem–spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial synchrony with respiratory nerve bursts. In brainstem–spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity in lateral and medial subnuclei. Whole-cell recordings from facial motoneurons showed weak respiratory drives, and electrical field potential recordings confirmed respiratory drive to particularly the dorsal and lateral subnuclei. Putative facial premotoneurons showed respiratory-related calcium signals, and were predominantly located dorsomedial to the facial nucleus. A novel motor activity on facial, cervical and thoracic nerves was synchronized with calcium signals at the ventromedial brainstem extending from the level of the facial nucleus to the medulla–spinal cord border. Cervical dorsal root stimulation induced similar ventromedial activity. The medial facial subnucleus showed calcium signals synchronized with this novel motor activity on cervical nerves, and cervical dorsal root stimulation induced similar medial facial subnucleus activity. In conclusion, the dorsal and lateral facial subnuclei are strongly respiratory-modulated, and the brainstem contains a novel pattern forming circuit that drives the medial facial subnucleus and cervical motor pools. PMID:21486812

  3. Energy-efficient electric motors study

    NASA Astrophysics Data System (ADS)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  4. Testing of motor unit synchronization model for localized muscle fatigue.

    PubMed

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  5. Electrets used to measure exhaust cloud effluents from Solid Rocket Motor (SRM) during demonstration model (DM-2) static test firing

    NASA Technical Reports Server (NTRS)

    Susko, M.

    1978-01-01

    Electrets were compared with fixed flow samplers during static test firing. The measurement of the rocket exhaust effluents by samplers and electrets indicated that the Solid Rocket Motor had no significant effect on the air quality in the area sampled. The results show that the electrets (a passive device which needs no power) can be used effectively alongside existing measuring devices (which need power). By placing electrets in areas where no power is available, measurements may be obtained. Consequently, it is a valuable complementary instrument in measuring rocket exhaust effluents in areas where other measuring devices may not be able to assess the contaminants.

  6. 36 CFR 222.24 - Use of helicopters, fixed-wing aircraft and motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... continuously observed by the authorized officer and, should signs of harmful stress be noted, the source of stress shall be removed so as to allow recovery. Helicopters may be used in round-ups or other capture..., animals shall be moved in such a way as to prevent harmful stress or injury. (5) The authorized officer...

  7. 36 CFR 222.24 - Use of helicopters, fixed-wing aircraft and motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuously observed by the authorized officer and, should signs of harmful stress be noted, the source of stress shall be removed so as to allow recovery. Helicopters may be used in round-ups or other capture..., animals shall be moved in such a way as to prevent harmful stress or injury. (5) The authorized officer...

  8. Towards the Knowledge Level in SOAR: The Role of the Architecture in the Use of Knowledge

    DTIC Science & Technology

    1989-08-07

    systems to behave in appropriate fashions. Twards tp KInowmedi I.n- -n "oar ’ , There is a fixed language of motor eonmands. as (lterminel !v rhe available...Proceedings of IJCAI-83. Karlsruhe. Laird. J. E.. Swedlow. K. R.. Altmann. E.. Congdon . C. B.. & Wiesmeyer. M. (1989). Soar User’s Manual: Version

  9. Time to pay attention: attentional performance time-stamped prefrontal cholinergic activation, diurnality and performance

    PubMed Central

    Paolone, Giovanna; Lee, Theresa M.; Sarter, Martin

    2012-01-01

    Although the impairments in cognitive performance that result from shifting or disrupting daily rhythms have been demonstrated, the neuronal mechanisms that optimize fixed time daily performance are poorly understood. We previously demonstrated that daily practice of a sustained attention task (SAT) evokes a diurnal activity pattern in rats. Here we report that SAT practice at a fixed time produced practice time-stamped increases in prefrontal cholinergic neurotransmission that persisted after SAT practice was terminated and in a different environment. SAT time-stamped cholinergic activation occurred irrespective of whether the SAT was practiced during the light or dark phase or in constant light conditions. In contrast, prior daily practice of an operant schedule of reinforcement, albeit generating more rewards and lever presses per session than the SAT, neither activated the cholinergic system nor affected the animals' nocturnal activity pattern. Likewise, food-restricted animals exhibited strong food anticipatory activity (FAA) and attenuated activity during the dark period but FAA was not associated with increases in prefrontal cholinergic activity. Removal of cholinergic neurons impaired SAT performance and facilitated the reemergence of nocturnality. Shifting SAT practice away from a fixed time resulted in significantly lower performance. In conclusion, these experiments demonstrated that fixed time, daily practice of a task assessing attention generates a precisely practice time-stamped activation of the cortical cholinergic input system. Time-stamped cholinergic activation benefits fixed time performance and, if practiced during the light phase, contributes to a diurnal activity pattern. PMID:22933795

  10. Time to pay attention: attentional performance time-stamped prefrontal cholinergic activation, diurnality, and performance.

    PubMed

    Paolone, Giovanna; Lee, Theresa M; Sarter, Martin

    2012-08-29

    Although the impairments in cognitive performance that result from shifting or disrupting daily rhythms have been demonstrated, the neuronal mechanisms that optimize fixed-time daily performance are poorly understood. We previously demonstrated that daily practice of a sustained attention task (SAT) evokes a diurnal activity pattern in rats. Here, we report that SAT practice at a fixed time produced practice time-stamped increases in prefrontal cholinergic neurotransmission that persisted after SAT practice was terminated and in a different environment. SAT time-stamped cholinergic activation occurred regardless of whether the SAT was practiced during the light or dark phase or in constant-light conditions. In contrast, prior daily practice of an operant schedule of reinforcement, albeit generating more rewards and lever presses per session than the SAT, neither activated the cholinergic system nor affected the animals' nocturnal activity pattern. Likewise, food-restricted animals exhibited strong food anticipatory activity (FAA) and attenuated activity during the dark phase but FAA was not associated with increases in prefrontal cholinergic activity. Removal of cholinergic neurons impaired SAT performance and facilitated the reemergence of nocturnality. Shifting SAT practice away from a fixed time resulted in significantly lower performance. In conclusion, these experiments demonstrated that fixed-time, daily practice of a task assessing attention generates a precisely practice time-stamped activation of the cortical cholinergic input system. Time-stamped cholinergic activation benefits fixed-time performance and, if practiced during the light phase, contributes to a diurnal activity pattern.

  11. Exploring associations between gaze patterns and putative human mirror neuron system activity.

    PubMed

    Donaldson, Peter H; Gurvich, Caroline; Fielding, Joanne; Enticott, Peter G

    2015-01-01

    The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

  12. Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics.

    PubMed

    Ivanenko, Yuri P; Grasso, Renato; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2003-11-01

    What are the building blocks with which the human spinal cord constructs the motor patterns of locomotion? In principle, they could correspond to each individual activity pattern in dozens of different muscles. Alternatively, there could exist a small set of constituent temporal components that are common to all activation patterns and reflect global kinematic goals. To address this issue, we studied patients with spinal injury trained to step on a treadmill with body weight support. Patients learned to produce foot kinematics similar to that of healthy subjects but with activity patterns of individual muscles generally different from the control group. Hidden in the muscle patterns, we found a basic set of five temporal components, whose flexible combination accounted for the wide range of muscle patterns recorded in both controls and patients. Furthermore, two of the components were systematically related to foot kinematics across different stepping speeds and loading conditions. We suggest that the components are related to control signals output by spinal pattern generators, normally under the influence of descending and afferent inputs.

  13. Motoneuron firing in amyotrophic lateral sclerosis (ALS)

    PubMed Central

    de Carvalho, Mamede; Eisen, Andrew; Krieger, Charles; Swash, Michael

    2014-01-01

    Amyotrophic lateral sclerosis is an inexorably progressive neurodegenerative disorder involving the classical motor system and the frontal effector brain, causing muscular weakness and atrophy, with variable upper motor neuron signs and often an associated fronto-temporal dementia. The physiological disturbance consequent on the motor system degeneration is beginning to be well understood. In this review we describe aspects of the motor cortical, neuronal, and lower motor neuron dysfunction. We show how studies of the changes in the pattern of motor unit firing help delineate the underlying pathophysiological disturbance as the disease progresses. Such studies are beginning to illuminate the underlying disordered pathophysiological processes in the disease, and are important in designing new approaches to therapy and especially for clinical trials. PMID:25294995

  14. Combining robotic training and inactivation of the healthy hemisphere restores pre-stroke motor patterns in mice

    PubMed Central

    Spalletti, Cristina; Alia, Claudia; Lai, Stefano; Panarese, Alessandro; Conti, Sara

    2017-01-01

    Focal cortical stroke often leads to persistent motor deficits, prompting the need for more effective interventions. The efficacy of rehabilitation can be increased by ‘plasticity-stimulating’ treatments that enhance experience-dependent modifications in spared areas. Transcallosal pathways represent a promising therapeutic target, but their role in post-stroke recovery remains controversial. Here, we demonstrate that the contralesional cortex exerts an enhanced interhemispheric inhibition over the perilesional tissue after focal cortical stroke in mouse forelimb motor cortex. Accordingly, we designed a rehabilitation protocol combining intensive, repeatable exercises on a robotic platform with reversible inactivation of the contralesional cortex. This treatment promoted recovery in general motor tests and in manual dexterity with remarkable restoration of pre-lesion movement patterns, evaluated by kinematic analysis. Recovery was accompanied by a reduction of transcallosal inhibition and ‘plasticity brakes’ over the perilesional tissue. Our data support the use of combinatorial clinical therapies exploiting robotic devices and modulation of interhemispheric connectivity. PMID:29280732

  15. Odor-identity dependent motor programs underlie behavioral responses to odors

    PubMed Central

    Jung, Seung-Hye; Hueston, Catherine; Bhandawat, Vikas

    2015-01-01

    All animals use olfactory information to perform tasks essential to their survival. Odors typically activate multiple olfactory receptor neuron (ORN) classes and are therefore represented by the patterns of active ORNs. How the patterns of active ORN classes are decoded to drive behavior is under intense investigation. In this study, using Drosophila as a model system, we investigate the logic by which odors modulate locomotion. We designed a novel behavioral arena in which we could examine a fly’s locomotion under precisely controlled stimulus condition. In this arena, in response to similarly attractive odors, flies modulate their locomotion differently implying that odors have a more diverse effect on locomotion than was anticipated. Three features underlie odor-guided locomotion: First, in response to odors, flies modulate a surprisingly large number of motor parameters. Second, similarly attractive odors elicit changes in different motor programs. Third, different ORN classes modulate different subset of motor parameters. DOI: http://dx.doi.org/10.7554/eLife.11092.001 PMID:26439011

  16. The development of motor synergies in children: Ultrasound and acoustic measurements

    PubMed Central

    Noiray, Aude; Ménard, Lucie; Iskarous, Khalil

    2013-01-01

    The present study focuses on differences in lingual coarticulation between French children and adults. The specific question pursued is whether 4–5 year old children have already acquired a synergy observed in adults in which the tongue back helps the tip in the formation of alveolar consonants. Locus equations, estimated from acoustic and ultrasound imaging data were used to compare coarticulation degree between adults and children and further investigate differences in motor synergy between the front and back parts of the tongue. Results show similar slope and intercept patterns for adults and children in both the acoustic and articulatory domains, with an effect of place of articulation in both groups between alveolar and non-alveolar consonants. These results suggest that 4–5 year old children (1) have learned the motor synergy investigated and (2) have developed a pattern of coarticulatory resistance depending on a consonant place of articulation. Also, results show that acoustic locus equations can be used to gauge the presence of motor synergies in children. PMID:23297916

  17. Immediate Effects of a Single Session of Motor Skill Training on the Lumbar Movement Pattern During a Functional Activity in People With Low Back Pain: A Repeated-Measures Study.

    PubMed

    Marich, Andrej V; Lanier, Vanessa M; Salsich, Gretchen B; Lang, Catherine E; Van Dillen, Linda R

    2018-04-06

    People with low back pain (LBP) may display an altered lumbar movement pattern of early lumbar motion compared to people with healthy backs. Modifying this movement pattern during a clinical test decreases pain. It is unknown whether similar effects would be seen during a functional activity. The objective of this study is was to examine the lumbar movement patterns before and after motor skill training, effects on pain, and characteristics that influenced the ability to modify movement patterns. The design consisted of a repeated-measures study examining early-phase lumbar excursion in people with LBP during a functional activity test. Twenty-six people with chronic LBP received motor skill training, and 16 people with healthy backs were recruited as a reference standard. Twenty minutes of motor skill training to decrease early-phase lumbar excursion during the performance of a functional activity were used as a treatment intervention. Early-phase lumbar excursion was measured before and after training. Participants verbally reported increased pain, decreased pain, or no change in pain during performance of the functional activity test movement in relation to their baseline pain. The characteristics of people with LBP that influenced the ability to decrease early-phase lumbar excursion were examined. People with LBP displayed greater early-phase lumbar excursion before training than people with healthy backs (LBP: mean = 11.2°, 95% CI = 9.3°-13.1°; healthy backs: mean = 7.1°, 95% CI = 5.8°-8.4°). Following training, the LBP group showed a decrease in the amount of early-phase lumbar excursion (mean change = 4.1°, 95% CI = 2.4°-5.8°); 91% of people with LBP reported that their pain decreased from baseline following training. The longer the duration of LBP (β = - 0.22) and the more early-phase lumbar excursion before training (β = - 0.82), the greater the change in early-phase lumbar excursion following training. The long-term implications of modifying the movement pattern and whether the decrease in pain attained was clinically significant are unknown. People with LBP were able to modify their lumbar movement pattern and decrease their pain with the movement pattern within a single session of motor skill training.

  18. [Central Pattern Generators: Mechanisms of the Activity and Their Role in the Control of "Automatic" Movements].

    PubMed

    Arshavsky, I; Deliagina, T G; Orlovsky, G N

    2015-01-01

    Central pattern generators (CPGs) are a set of interconnected neurons capable of generating a basic pattern of motor output underlying "automatic" movements (breathing, locomotion, chewing, swallowing, and so on) in the absence of afferent signals from the executive motor apparatus. They can be divided into the constitutive CPGs active throughout the entire lifetime (respiratory CPGs) and conditional CPGs controlling episodic movements (locomotion, chewing, swallowing, and others). Since a motor output of CPGs is determined by their internal organization, the activities of the conditional CPGs are initiated by simple commands coming from higher centers. We describe the structural and functional organization of the locomotor CPGs in the marine mollusk Clione limacina, lamprey, frog embryo, and laboratory mammals (cat, mouse, and rat), CPGs controlling the respiratory and swallowing movements in mammals, and CPGs controlling discharges of the electric organ in the gymnotiform fish. It is shown that in all these cases, the generation of rhythmic motor output is based both on the endogenous (pacemaker) activity of specific groups of interneurons and on interneural interactions. These two interrelated mechanisms complement each other, ensuring the high reliability of CPG functionality. We discuss how the experience obtained in studying CPGs can be used to understand mechanisms of more complex functions of the brain, including its cognitive functions.

  19. Sex differences in motor and cognitive abilities predicted from human evolutionary history with some implications for models of the visual system.

    PubMed

    Sanders, Geoff

    2013-01-01

    This article expands the knowledge base available to sex researchers by reviewing recent evidence for sex differences in coincidence-anticipation timing (CAT), motor control with the hand and arm, and visual processing of stimuli in near and far space. In CAT, the differences are between sex and, therefore, typical of other widely reported sex differences. Men perform CAT tasks with greater accuracy and precision than women, who tend to underestimate time to arrival. Null findings arise because significant sex differences are found with easy but not with difficult tasks. The differences in motor control and visual processing are within sex, and they underlie reciprocal patterns of performance in women and men. Motor control is exerted better by women with the hand than the arm. In contrast, men showed the reverse pattern. Visual processing is performed better by women with stimuli within hand reach (near space) as opposed to beyond hand reach (far space); men showed the reverse pattern. The sex differences seen in each of these three abilities are consistent with the evolutionary selection of men for hunting-related skills and women for gathering-related skills. The implications of the sex differences in visual processing for two visual system models of human vision are discussed.

  20. Illumina whole-genome complementary DNA-mediated annealing, selection, extension and ligation platform: assessing its performance in formalin-fixed, paraffin-embedded samples and identifying invasion pattern-related genes in oral squamous cell carcinoma.

    PubMed

    Loudig, Olivier; Brandwein-Gensler, Margaret; Kim, Ryung S; Lin, Juan; Isayeva, Tatyana; Liu, Christina; Segall, Jeffrey E; Kenny, Paraic A; Prystowsky, Michael B

    2011-12-01

    High-throughput gene expression profiling from formalin-fixed, paraffin-embedded tissues has become a reality, and several methods are now commercially available. The Illumina whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay (Illumina, Inc) is a full-transcriptome version of the original 512-gene complementary DNA-mediated annealing, selection, extension and ligation assay, allowing high-throughput profiling of 24,526 annotated genes from degraded and formalin-fixed, paraffin-embedded RNA. This assay has the potential to allow identification of novel gene signatures associated with clinical outcome using banked archival pathology specimen resources. We tested the reproducibility of the whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay and its sensitivity for detecting differentially expressed genes in RNA extracted from matched fresh and formalin-fixed, paraffin-embedded cells, after 1 and 13 months of storage, using the human breast cell lines MCF7 and MCF10A. Then, using tumor worst pattern of invasion as a classifier, 1 component of the "risk model," we selected 12 formalin-fixed, paraffin-embedded oral squamous cell carcinomas for whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay analysis. We profiled 5 tumors with nonaggressive, nondispersed pattern of invasion, and 7 tumors with aggressive dispersed pattern of invasion and satellites scattered at least 1 mm apart. To minimize variability, the formalin-fixed, paraffin-embedded specimens were prepared from snap-frozen tissues, and RNA was obtained within 24 hours of fixation. One hundred four down-regulated genes and 72 up-regulated genes in tumors with aggressive dispersed pattern of invasion were identified. We performed quantitative reverse transcriptase polymerase chain reaction validation of 4 genes using Taqman assays and in situ protein detection of 1 gene by immunohistochemistry. Functional cluster analysis of genes up-regulated in tumors with aggressive pattern of invasion suggests presence of genes involved in cellular cytoarchitecture, some of which already associated with tumor invasion. Identification of these genes provides biologic rationale for our histologic classification, with regard to tumor invasion, and demonstrates that the whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay is a powerful assay for profiling degraded RNA from archived specimens when combined with quantitative reverse transcriptase polymerase chain reaction validation. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Neuromechanical principles underlying movement modularity and their implications for rehabilitation

    PubMed Central

    Ting, Lena H.; Chiel, Hillel J.; Trumbower, Randy D.; Allen, Jessica L.; McKay, J. Lucas; Hackney, Madeleine E.; Kesar, Trisha M.

    2015-01-01

    Summary Neuromechanical principles define the properties and problems that shape neural solutions for movement. Although the theoretical and experimental evidence is debated, we present arguments for consistent structures in motor patterns, i.e. motor modules, that are neuromechanical solutions for movement particular to an individual and shaped by evolutionary, developmental, and learning processes. As a consequence, motor modules may be useful in assessing sensorimotor deficits specific to an individual, and define targets for the rational development of novel rehabilitation therapies that enhance neural plasticity and sculpt motor recovery. We propose that motor module organization is disrupted and may be improved by therapy in spinal cord injury, stroke, and Parkinson’s disease. Recent studies provide insights into the yet unknown underlying neural mechanisms of motor modules, motor impairment and motor learning, and may lead to better understanding of the causal nature of modularity and its underlying neural substrates. PMID:25856485

  2. Detecting nonlinear dynamics of functional connectivity

    NASA Astrophysics Data System (ADS)

    LaConte, Stephen M.; Peltier, Scott J.; Kadah, Yasser; Ngan, Shing-Chung; Deshpande, Gopikrishna; Hu, Xiaoping

    2004-04-01

    Functional magnetic resonance imaging (fMRI) is a technique that is sensitive to correlates of neuronal activity. The application of fMRI to measure functional connectivity of related brain regions across hemispheres (e.g. left and right motor cortices) has great potential for revealing fundamental physiological brain processes. Primarily, functional connectivity has been characterized by linear correlations in resting-state data, which may not provide a complete description of its temporal properties. In this work, we broaden the measure of functional connectivity to study not only linear correlations, but also those arising from deterministic, non-linear dynamics. Here the delta-epsilon approach is extended and applied to fMRI time series. The method of delays is used to reconstruct the joint system defined by a reference pixel and a candidate pixel. The crux of this technique relies on determining whether the candidate pixel provides additional information concerning the time evolution of the reference. As in many correlation-based connectivity studies, we fix the reference pixel. Every brain location is then used as a candidate pixel to estimate the spatial pattern of deterministic coupling with the reference. Our results indicate that measured connectivity is often emphasized in the motor cortex contra-lateral to the reference pixel, demonstrating the suitability of this approach for functional connectivity studies. In addition, discrepancies with traditional correlation analysis provide initial evidence for non-linear dynamical properties of resting-state fMRI data. Consequently, the non-linear characterization provided from our approach may provide a more complete description of the underlying physiology and brain function measured by this type of data.

  3. The SALSA Project - High-End Aerial 3d Camera

    NASA Astrophysics Data System (ADS)

    Rüther-Kindel, W.; Brauchle, J.

    2013-08-01

    The ATISS measurement drone, developed at the University of Applied Sciences Wildau, is an electrical powered motor glider with a maximum take-off weight of 25 kg including a payload capacity of 10 kg. Two 2.5 kW engines enable ultra short take-off procedures and the motor glider design results in a 1 h endurance. The concept of ATISS is based on the idea to strictly separate between aircraft and payload functions, which makes ATISS a very flexible research platform for miscellaneous payloads. ATISS is equipped with an autopilot for autonomous flight patterns but under permanent pilot control from the ground. On the basis of ATISS the project SALSA was undertaken. The aim was to integrate a system for digital terrain modelling. Instead of a laser scanner a new design concept was chosen based on two synchronized high resolution digital cameras, one in a fixed nadir orientation and the other in a oblique orientation. Thus from every object on the ground images from different view angles are taken. This new measurement camera system MACS-TumbleCam was developed at the German Aerospace Center DLR Berlin-Adlershof especially for the ATISS payload concept. Special advantage in comparison to laser scanning is the fact, that instead of a cloud of points a surface including texture is generated and a high-end inertial orientation system can be omitted. The first test flights show a ground resolution of 2 cm and height resolution of 3 cm, which underline the extraordinary capabilities of ATISS and the MACS measurement camera system.

  4. Motor Activity and Intra-Individual Variability According to Sleep-wake States in Preschool-aged Children with Iron-Deficiency Anemia in Infancy

    PubMed Central

    Angulo-Barroso, R.M.; Peirano, P.; Algarin, C.; Kaciroti, N.; Lozoff, B.

    2013-01-01

    Background A chronic or acute insult may affect the regulatory processes that guide motor and behavioral performance, leading to increased intra-individual variability (IIV). Increased variability is often interpreted as an indication of regulatory dysfunction. Iron plays an important role in the regulatory processes of the nervous system and affects motor activity. To our knowledge, no study has examined the long-lasting patterns and IIV of motor activity following iron-deficiency anemia in human infants. Aims This study compared 48-hour motor activity and variability in preschool-aged children with or without iron-deficiency anemia (IDA) in infancy. Methods Motor activity was recorded through actigraphs during two week-days in 47 4-year-old Chilean children (23 former IDA and 24 non-anemic in infancy). All were given oral iron as infants. Sleep-wake states were identified by means of automated software. The frequency of movement units per minute was determined for each waking/sleep state during the individual day and night periods; data were examined in blocks of 15 minutes. Analyses of mean frequency and duration and intra-individual variability were conducted using multivariate mixed models. Results For daytime sleep, former IDA children were more active without a difference in the total duration. They also spent less time awake throughout the individual day period. Motor activity intra-individual variability was higher in former IDA children. Conclusions The findings suggest that IDA in infancy sets the stage for long lasting dysfunction in the neural processes regulating sleep-wake states and spontaneous motor activity patterns. PMID:24041817

  5. Motor activity and intra-individual variability according to sleep-wake states in preschool-aged children with iron-deficiency anemia in infancy.

    PubMed

    Angulo-Barroso, R M; Peirano, P; Algarin, C; Kaciroti, N; Lozoff, B

    2013-12-01

    A chronic or acute insult may affect the regulatory processes that guide motor and behavioral performance, leading to increased intra-individual variability (IIV). Increased variability is often interpreted as an indication of regulatory dysfunction. Iron plays an important role in the regulatory processes of the nervous system and affects motor activity. To our knowledge, no study has examined the long-lasting patterns and IIV of motor activity following iron-deficiency anemia in human infants. This study compared 48-h motor activity and variability in preschool-aged children with or without iron-deficiency anemia (IDA) in infancy. Motor activity was recorded through actigraphs during two week-days in 47 4-year-old Chilean children (23 former IDA and 24 non-anemic in infancy). All were given oral iron as infants. Sleep-wake states were identified by means of automated software. The frequency of movement units per minute was determined for each waking/sleep state during the individual day and night periods; data were examined in blocks of 15 min. Analyses of mean frequency and duration and intra-individual variability were conducted using multivariate mixed models. For daytime sleep, former IDA children were more active without a difference in the total duration. They also spent less time awake throughout the individual day period. Motor activity intra-individual variability was higher in former IDA children. The findings suggest that IDA in infancy sets the stage for long lasting dysfunction in the neural processes regulating sleep-wake states and spontaneous motor activity patterns. © 2013.

  6. Spectral Variability in the Aged Brain during Fine Motor Control

    PubMed Central

    Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E.; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C.

    2016-01-01

    Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role. PMID:28066231

  7. Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER

    Treesearch

    Mary E. Byrne; Andrew T. Groover; Joseph R. Fontana; Robert A. Martienssen

    2003-01-01

    Lateral organs in plants arise from the meristem in a stereotypical pattern known as phyllotaxy. Spiral patterns result from initiation of successive organs at a fixed angle of divergence but variable patterns of physical contact. Such patterns ultimately give rise to individual leaves and flowers at positions related to each other by consecutive terms in the...

  8. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion

    PubMed Central

    Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks. PMID:22972893

  9. Schema-based learning of adaptable and flexible prey-catching in anurans I. The basic architecture.

    PubMed

    Corbacho, Fernando; Nishikawa, Kiisa C; Weerasuriya, Ananda; Liaw, Jim-Shih; Arbib, Michael A

    2005-12-01

    A motor action often involves the coordination of several motor synergies and requires flexible adjustment of the ongoing execution based on feedback signals. To elucidate the neural mechanisms underlying the construction and selection of motor synergies, we study prey-capture in anurans. Experimental data demonstrate the intricate interaction between different motor synergies, including the interplay of their afferent feedback signals (Weerasuriya 1991; Anderson and Nishikawa 1996). Such data provide insights for the general issues concerning two-way information flow between sensory centers, motor circuits and periphery in motor coordination. We show how different afferent feedback signals about the status of the different components of the motor apparatus play a critical role in motor control as well as in learning. This paper, along with its companion paper, extend the model by Liaw et al. (1994) by integrating a number of different motor pattern generators, different types of afferent feedback, as well as the corresponding control structure within an adaptive framework we call Schema-Based Learning. We develop a model of the different MPGs involved in prey-catching as a vehicle to investigate the following questions: What are the characteristic features of the activity of a single muscle? How can these features be controlled by the premotor circuit? What are the strategies employed to generate and synchronize motor synergies? What is the role of afferent feedback in shaping the activity of a MPG? How can several MPGs share the same underlying circuitry and yet give rise to different motor patterns under different input conditions? In the companion paper we also extend the model by incorporating learning components that give rise to more flexible, adaptable and robust behaviors. To show these aspects we incorporate studies on experiments on lesions and the learning processes that allow the animal to recover its proper functioning.

  10. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion.

    PubMed

    Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2013-01-15

    Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks.

  11. Variability in Cadence During Forced Cycling Predicts Motor Improvement in Individuals With Parkinson’s Disease

    PubMed Central

    Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.

    2014-01-01

    Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045

  12. The Neural Basis of Mark Making: A Functional MRI Study of Drawing

    PubMed Central

    Yuan, Ye; Brown, Steven

    2014-01-01

    Compared to most other forms of visually-guided motor activity, drawing is unique in that it “leaves a trail behind” in the form of the emanating image. We took advantage of an MRI-compatible drawing tablet in order to examine both the motor production and perceptual emanation of images. Subjects participated in a series of mark making tasks in which they were cued to draw geometric patterns on the tablet's surface. The critical comparison was between when visual feedback was displayed (image generation) versus when it was not (no image generation). This contrast revealed an occipito-parietal stream involved in motion-based perception of the emerging image, including areas V5/MT+, LO, V3A, and the posterior part of the intraparietal sulcus. Interestingly, when subjects passively viewed animations of visual patterns emerging on the projected surface, all of the sensorimotor network involved in drawing was strongly activated, with the exception of the primary motor cortex. These results argue that the origin of the human capacity to draw and write involves not only motor skills for tool use but also motor-sensory links between drawing movements and the visual images that emanate from them in real time. PMID:25271440

  13. Sleep-dependent learning and motor-skill complexity

    PubMed Central

    Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.

    2004-01-01

    Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics are varied across several degrees of difficulty, and whether this improvement differentially enhances individual transitions of the motor-sequence pattern being learned. We report that subjects show similar overnight improvements in speed whether learning a five-element unimanual sequence (17.7% improvement), a nine-element unimanual sequence (20.2%), or a five-element bimanual sequence (17.5%), but show markedly increased overnight improvement (28.9%) with a nine-element bimanual sequence. In addition, individual transitions within the motor-sequence pattern that appeared most difficult at the end of training showed a significant 17.8% increase in speed overnight, whereas those transitions that were performed most rapidly at the end of training showed only a non-significant 1.4% improvement. Together, these findings suggest that the sleep-dependent learning process selectively provides maximum benefit to motor-skill procedures that proved to be most difficult prior to sleep. PMID:15576888

  14. Automated Detection of Stereotypical Motor Movements

    ERIC Educational Resources Information Center

    Goodwin, Matthew S.; Intille, Stephen S.; Albinali, Fahd; Velicer, Wayne F.

    2011-01-01

    To overcome problems with traditional methods for measuring stereotypical motor movements in persons with Autism Spectrum Disorders (ASD), we evaluated the use of wireless three-axis accelerometers and pattern recognition algorithms to automatically detect body rocking and hand flapping in children with ASD. Findings revealed that, on average,…

  15. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation

    PubMed Central

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L.; Amaral, David G.

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused, or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger, as compared to perfusion-fixed tissue. Non-phosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well-stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences. PMID:18972553

  16. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation.

    PubMed

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L; Amaral, David G

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger as compared to perfusion-fixed tissue. Nonphosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells, and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences.

  17. A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG.

    PubMed

    Roy, Rinku; Sikdar, Debdeep; Mahadevappa, Manjunatha; Kumar, C S

    2018-05-19

    A stable grasp is attained through appropriate hand preshaping and precise fingertip forces. Here, we have proposed a method to decode grasp patterns from motor imagery and subsequent fingertip force estimation model with a slippage avoidance strategy. We have developed a feature-based classification of electroencephalography (EEG) associated with imagination of the grasping postures. Chaotic behaviour of EEG for different grasping patterns has been utilised to capture the dynamics of associated motor activities. We have computed correlation dimension (CD) as the feature and classified with "one against one" multiclass support vector machine (SVM) to discriminate between different grasping patterns. The result of the analysis showed varying classification accuracies at different subband levels. Broad categories of grasping patterns, namely, power grasp and precision grasp, were classified at a 96.0% accuracy rate in the alpha subband. Furthermore, power grasp subtypes were classified with an accuracy of 97.2% in the upper beta subband, whereas precision grasp subtypes showed relatively lower 75.0% accuracy in the alpha subband. Following assessment of fingertip force distributions while grasping, a nonlinear autoregressive (NAR) model with proper prediction of fingertip forces was proposed for each grasp pattern. A slippage detection strategy has been incorporated with automatic recalibration of the regripping force. Intention of each grasp pattern associated with corresponding fingertip force model was virtualised in this work. This integrated system can be utilised as the control strategy for prosthetic hand in the future. The model to virtualise motor imagery based fingertip force prediction with inherent slippage correction for different grasp types ᅟ.

  18. A System Approach to Navy Medical Education and Training. Appendix 45. Competency Curricula for Dental Prosthetic Assistant and Dental Prosthetic Technician.

    DTIC Science & Technology

    1974-08-31

    Removable Partial Dentures ..................... 34 XI. Fixed Partial Denture Construction .. ........ 35 l. Construct Master Cast with Removable...Dies . . . 36 2. Construct Patterns for Fixed Partial Dentures .. . ..... 37 3. Spruing and Investing oeu . . . 38 4. Wax Elimination and Casting...42 S. Re3in Jacket Crowns . . ............ 43 9. Temporary Crowns and Fixed Partial Dentures . . 44 10. Post and Core Techniques . . o

  19. Magnetoencephalographic study of hand and foot sensorimotor organization in 325 consecutive patients evaluated for tumor or epilepsy surgery

    PubMed Central

    Willemse, Ronald B.; Hillebrand, Arjan; Ronner, Hanneke E.; Peter Vandertop, W.; Stam, Cornelis J.

    2015-01-01

    Objectives The presence of intracranial lesions or epilepsy may lead to functional reorganization and hemispheric lateralization. We applied a clinical magnetoencephalography (MEG) protocol for the localization of the contralateral and ipsilateral S1 and M1 of the foot and hand in patients with non-lesional epilepsy, stroke, developmental brain injury, traumatic brain injury and brain tumors. We investigated whether differences in activation patterns could be related to underlying pathology. Methods Using dipole fitting, we localized the sources underlying sensory and motor evoked magnetic fields (SEFs and MEFs) of both hands and feet following unilateral stimulation of the median nerve (MN) and posterior tibial nerve (PTN) in 325 consecutive patients. The primary motor cortex was localized using beamforming following a self-paced repetitive motor task for each hand and foot. Results The success rate for motor and sensory localization for the feet was significantly lower than for the hands (motor_hand 94.6% versus motor_feet 81.8%, p < 0.001; sensory_hand 95.3% versus sensory_feet 76.0%, p < 0.001). MN and PTN stimulation activated 86.6% in the contralateral S1, with ipsilateral activation < 0.5%. Motor cortex activation localized contralaterally in 76.1% (5.2% ipsilateral, 7.6% bilateral and 11.1% failures) of all motor MEG recordings. The ipsilateral motor responses were found in 43 (14%) out of 308 patients with motor recordings (range: 8.3–50%, depending on the underlying pathology), and had a higher occurrence in the foot than in the hand (motor_foot 44.8% versus motor_hand 29.6%, p = 0.031). Ipsilateral motor responses tended to be more frequent in patients with a history of stroke, traumatic brain injury (TBI) or developmental brain lesions (p = 0.063). Conclusions MEG localization of sensorimotor cortex activation was more successful for the hand compared to the foot. In patients with neural lesions, there were signs of brain reorganization as measured by more frequent ipsilateral motor cortical activation of the foot in addition to the traditional sensory and motor activation patterns in the contralateral hemisphere. The presence of ipsilateral neural reorganization, especially around the foot motor area, suggests that careful mapping of the hand and foot in both contralateral and ipsilateral hemispheres prior to surgery might minimize postoperative deficits. PMID:26693401

  20. Kinematic and muscle demand similarities between motor-assisted elliptical training and walking: Implications for pediatric gait rehabilitation.

    PubMed

    Burnfield, Judith M; Cesar, Guilherme M; Buster, Thad W; Irons, Sonya L; Nelson, Carl A

    2017-01-01

    Many children with physical disabilities and special health care needs experience barriers to accessing effective therapeutic technologies to improve walking and fitness in healthcare and community environments. The expense of many robotic and exoskeleton technologies hinders widespread use in most clinics, school settings, and fitness facilities. A motor-assisted elliptical trainer that is being used to address walking and fitness deficits in adults was modified to enable children as young as three years of age to access the technology (Pedi-ICARE). We compared children's kinematic and muscle activation patterns during walking and training on the Pedi-ICARE. Eighteen children walked (self-selected comfortable speed), Pedi-ICARE trained with motor-assistance at self-selected comfortable speed (AAC), and trained while over-riding motor-assistance (AAC+). Coefficient of multiple correlations (CMCs) compared lower extremity kinematic profiles during AAC and AAC+ to gait. Repeated measures ANOVAs identified muscle demand differences across conditions. CMCs revealed strong similarities at the hip and knee between each motor-assisted elliptical condition and gait. Ankle CMCs were only moderate. Muscle demands were generally lowest during AAC. Over-riding the motor increased hip and knee muscle demands. The similarity of motion patterns between Pedi-ICARE conditions and walking suggest the device could be used to promote task-specific training to improve walking. The capacity to manipulate muscle demands using different motor-assistance conditions highlights Pedi-ICARE's versatility in addressing a wide range of children's abilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Characterization of motor units in behaving adult mice shows a wide primary range

    PubMed Central

    Ritter, Laura K.; Tresch, Matthew C.; Heckman, C. J.; Manuel, Marin

    2014-01-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10–60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. PMID:24805075

  2. Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach

    PubMed Central

    Shaylor, Lara A.; Hwang, Sung Jin; Sanders, Kenton M.

    2016-01-01

    Inhibitory motor neurons regulate several gastric motility patterns including receptive relaxation, gastric peristaltic motor patterns, and pyloric sphincter opening. Nitric oxide (NO) and purines have been identified as likely candidates that mediate inhibitory neural responses. However, the contribution from each neurotransmitter has received little attention in the distal stomach. The aims of this study were to identify the roles played by NO and purines in inhibitory motor responses in the antrums of mice and monkeys. By using wild-type mice and mutants with genetically deleted neural nitric oxide synthase (Nos1−/−) and P2Y1 receptors (P2ry1−/−) we examined the roles of NO and purines in postjunctional inhibitory responses in the distal stomach and compared these responses to those in primate stomach. Activation of inhibitory motor nerves using electrical field stimulation (EFS) produced frequency-dependent inhibitory junction potentials (IJPs) that produced muscle relaxations in both species. Stimulation of inhibitory nerves during slow waves terminated pacemaker events and associated contractions. In Nos1−/− mice IJPs and relaxations persisted whereas in P2ry1−/− mice IJPs were absent but relaxations persisted. In the gastric antrum of the non-human primate model Macaca fascicularis, similar NO and purine neural components contributed to inhibition of gastric motor activity. These data support a role of convergent inhibitory neural responses in the regulation of gastric motor activity across diverse species. PMID:27634009

  3. Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach.

    PubMed

    Shaylor, Lara A; Hwang, Sung Jin; Sanders, Kenton M; Ward, Sean M

    2016-11-01

    Inhibitory motor neurons regulate several gastric motility patterns including receptive relaxation, gastric peristaltic motor patterns, and pyloric sphincter opening. Nitric oxide (NO) and purines have been identified as likely candidates that mediate inhibitory neural responses. However, the contribution from each neurotransmitter has received little attention in the distal stomach. The aims of this study were to identify the roles played by NO and purines in inhibitory motor responses in the antrums of mice and monkeys. By using wild-type mice and mutants with genetically deleted neural nitric oxide synthase (Nos1 -/- ) and P2Y1 receptors (P2ry1 -/- ) we examined the roles of NO and purines in postjunctional inhibitory responses in the distal stomach and compared these responses to those in primate stomach. Activation of inhibitory motor nerves using electrical field stimulation (EFS) produced frequency-dependent inhibitory junction potentials (IJPs) that produced muscle relaxations in both species. Stimulation of inhibitory nerves during slow waves terminated pacemaker events and associated contractions. In Nos1 -/- mice IJPs and relaxations persisted whereas in P2ry1 -/- mice IJPs were absent but relaxations persisted. In the gastric antrum of the non-human primate model Macaca fascicularis, similar NO and purine neural components contributed to inhibition of gastric motor activity. These data support a role of convergent inhibitory neural responses in the regulation of gastric motor activity across diverse species. Copyright © 2016 the American Physiological Society.

  4. Characterization of motor units in behaving adult mice shows a wide primary range.

    PubMed

    Ritter, Laura K; Tresch, Matthew C; Heckman, C J; Manuel, Marin; Tysseling, Vicki M

    2014-08-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. Copyright © 2014 the American Physiological Society.

  5. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    PubMed

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  6. Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium.

    PubMed

    Takekawa, Norihiro; Nishiyama, Masayoshi; Kaneseki, Tsuyoshi; Kanai, Tamotsu; Atomi, Haruyuki; Kojima, Seiji; Homma, Michio

    2015-08-05

    Aquifex aeolicus is a hyperthermophilic, hydrogen-oxidizing and carbon-fixing bacterium that can grow at temperatures up to 95 °C. A. aeolicus has an almost complete set of flagellar genes that are conserved in bacteria. Here we observed that A. aeolicus has polar flagellum and can swim with a speed of 90 μm s(-1) at 85 °C. We expressed the A. aeolicus mot genes (motA and motB), which encode the torque generating stator proteins of the flagellar motor, in a corresponding mot nonmotile mutant of Escherichia coli. Its motility was slightly recovered by expression of A. aeolicus MotA and chimeric MotB whose periplasmic region was replaced with that of E. coli. A point mutation in the A. aeolicus MotA cytoplasmic region remarkably enhanced the motility. Using this system in E. coli, we demonstrate that the A. aeolicus motor is driven by Na(+). As motor proteins from hyperthermophilic bacteria represent the earliest motor proteins in evolution, this study strongly suggests that ancient bacteria used Na(+) for energy coupling of the flagellar motor. The Na(+)-driven flagellar genes might have been laterally transferred from early-branched bacteria into late-branched bacteria and the interaction surfaces of the stator and rotor seem not to change in evolution.

  7. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  8. The effects of biome and spatial scale on the Co-occurrence patterns of a group of Namibian beetles

    NASA Astrophysics Data System (ADS)

    Pitzalis, Monica; Montalto, Francesca; Amore, Valentina; Luiselli, Luca; Bologna, Marco A.

    2017-08-01

    Co-occurrence patterns (studied by C-score, number of checkerboard units, number of species combinations, and V-ratio, and by an empirical Bayes approach developed by Gotelli and Ulrich, 2010) are crucial elements in order to understand assembly rules in ecological communities at both local and spatial scales. In order to explore general assembly rules and the effects of biome and spatial scale on such rules, here we studied a group of beetles (Coleoptera, Meloidae), using Namibia as a case of study. Data were gathered from 186 sampling sites, which allowed collection of 74 different species. We analyzed data at the level of (i) all sampled sites, (ii) all sites stratified by biome (Savannah, Succulent Karoo, Nama Karoo, Desert), and (iii) three randomly selected nested areas with three spatial scales each. Three competing algorithms were used for all analyses: (i) Fixed-Equiprobable, (ii) Fixed-Fixed, and (iii) Fixed-Proportional. In most of the null models we created, co-occurrence indicators revealed a non-random structure in meloid beetle assemblages at the global scale and at the scale of biomes, with species aggregation being much more important than species segregation in determining this non-randomness. At the level of biome, the same non-random organization was uncovered in assemblages from Savannah (where the aggregation pattern was particularly strong) and Succulent Karoo, but not in Desert and Nama Karoo. We conclude that species facilitation and similar niche in endemic species pairs may be particularly important as community drivers in our case of study. This pattern is also consistent with the evidence of a higher species diversity (normalized according to biome surface area) in the two former biomes. Historical patterns were perhaps also important for Succulent Karoo assemblages. Spatial scale had a reduced effect on patterning our data. This is consistent with the general homogeneity of environmental conditions over wide areas in Namibia.

  9. Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Gu, Huaguang

    2017-06-01

    Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.

  10. Boron epoxy rocket motor case program

    NASA Technical Reports Server (NTRS)

    Stang, D. A.

    1971-01-01

    Three 28-inch-diameter solid rocket motor cases were fabricated using 1/8 inch wide boron/epoxy tape. The cases had unequal end closures (4-1/8-inch-diameter forward flanges and 13-inch-diameter aft flanges) and metal attachment skirts. The flanges and skirts were titanium 6Al-4V alloy. The original design for the first case was patterned after the requirements of the Applications Technology Satellite apogee kick motor. The second and third cases were designed and fabricated to approximate the requirements of a small Applications Technology Satellite apogee kick motor. The program demonstrated the feasibility of designing and fabricating large-scale filament-wound solid propellant rocket motor cases with boron/epoxy tape.

  11. Motor vehicle-bicycle crashes in Beijing: irregular maneuvers, crash patterns, and injury severity.

    PubMed

    Yan, Xinping; Ma, Ming; Huang, Helai; Abdel-Aty, Mohamed; Wu, Chaozhong

    2011-09-01

    This research presents a comprehensive analysis of motor vehicle-bicycle crashes using 4 years of reported crash data (2004-2007) in Beijing. The interrelationship of irregular maneuvers, crash patterns and bicyclist injury severity are investigated by controlling for a variety of risk factors related to bicyclist demographics, roadway geometric design, road environment, etc. Results show that different irregular maneuvers are correlated with a number of risk factors at different roadway locations such as the bicyclist age and gender, weather and traffic condition. Furthermore, angle collisions are the leading pattern of motor vehicle-bicycle crashes, and different irregular maneuvers may lead to some specific crash patterns such as head-on or rear-end crashes. Orthokinetic scrape is more likely to result in running over bicyclists, which may lead to more severe injury. Moreover, bicyclist injury severity level could be elevated by specific crash patterns and risk factors including head-on and angle collisions, occurrence of running over bicyclists, night without streetlight, roads without median/division, higher speed limit, heavy vehicle involvement and older bicyclists. This study suggests installation of median, division between roadway and bikeway, and improvement of illumination on road segments. Reduced speed limit is also recommended at roadway locations with high bicycle traffic volume. Furthermore, it may be necessary to develop safety campaigns aimed at male, teenage and older bicyclists. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Distinct brain metabolic patterns separately associated with cognition, motor function, and aging in Parkinson's disease dementia.

    PubMed

    Ko, Ji Hyun; Katako, Audrey; Aljuaid, Maram; Goertzen, Andrew L; Borys, Andrew; Hobson, Douglas E; Kim, Seok Min; Lee, Chong Sik

    2017-12-01

    We explored whether patients with Parkinson's disease dementia (PDD) show a distinct spatial metabolic pattern that characterizes cognitive deficits in addition to motor dysfunction. Eighteen patients with PDD underwent 3 separate positron emission tomography sessions with [ 18 F]fluorodeoxyglucose (for glucose metabolism), fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane (for dopamine transporter density) and Pittsburgh compound-B (for beta-amyloid load). We confirmed in PDD versus normal controls, overall hypometabolism in the posterior and prefrontal brain regions accompanied with hypermetabolism in subcortical structures and the cerebellar vermis. A multivariate network analysis then revealed 3 metabolic patterns that are separately associated with cognitive performance (p = 0.042), age (p = 0.042), and motor symptom severity (p = 0.039). The age-related pattern's association with aging was replicated in healthy controls (p = 0.047) and patients with Alzheimer's disease (p = 0.002). The cognition-related pattern's association with cognitive performance was observed, with a trend-level of correlation, in patients with dementia with Lewy bodies (p = 0.084) but not in patients with Alzheimer's disease (p = 0.974). We found no association with fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane and Pittsburgh compound-B positron emission tomography with patients' cognitive performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Monoaminergic Modulation of Motor Cortex Function

    PubMed Central

    Vitrac, Clément; Benoit-Marand, Marianne

    2017-01-01

    Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions. PMID:29062274

  14. Environmental Factors Affecting Preschoolers' Motor Development

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  15. Teaching through Sensory-Motor Experiences.

    ERIC Educational Resources Information Center

    Arena, John I., Ed.

    Included in the collection are articles on sensory-motor sequencing experiences in learning by R.G. Heckelman, integrating form perception by Floria Coon-Teters, building patterns of retention by Harold Helms, hand-eye coordination by Shirley Linn, laterality and directionality by Sheila Benyon, body image and body awareness by Grace Petitclerc,…

  16. A magnetic bearing based on eddy-current repulsion

    NASA Technical Reports Server (NTRS)

    Nikolajsen, J. L.

    1987-01-01

    This paper describes a new type of electromagnetic bearing, called the Eddy-Current Bearing, which works by repulsion between fixed AC-electromagnets and a conducting rotor. The following advantages are expected: inherent stability, higher load carrying capacity than DC-electromagnetic bearings, simultaneous radial, angular and thrust support, motoring and generating capability, and backup mode of operation in case of primary power failure. A prototype is under construction.

  17. High resolution and image processing of otoconia matrix

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.

    1993-01-01

    This study was designed to investigate patterns of fibrils organization in histochemically stained otoconia. Transmission electron microscope and video imaging were used. These data indicate that otoconia of the chick (Gallus domesticus) inner ear may have central cores in vivo. The data also show that the ultrastructural organization of fibrils fixed with aldehydes and histochemical stains follows trajectories that conform to the hexagonal shape of otoconia. These changes in direction may contribute to the formation of a central core. The existence of central cores is important for the in vivo buoyancy of otoconia. Packing of fibrils is tighter after phosphotungstic acid (PTA) stained otoconia than with other histochemical stains, which usually produce looser packing of fibrils and seemingly larger central core. TEM of tilted and untilted material showed that turning of fibrils occurs at the points where the face angles of otoconia form and where central cores exist. Video image processing of the images allowed reconstructing a template which, if assumed to repeat and change trajectories, would fit the pattern of fibrils seen in fixed otoconia. Since it is highly unlikely that aldehyde primary fixation or PTA stain caused such drastic change in the direction of fibrils, the template derived from these results may closely approximate patterns of otoconia fibrils packing in vivo. However, if the above is correct, the perfect crystallographic diffraction pattern of unfixed otoconia do not correspond to patterns of fixed fibrils.

  18. Laser-Beam-Alignment Controller

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1995-01-01

    In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.

  19. 48 CFR 22.101-2 - Contract pricing and administration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-reimbursement contracts or for recognition of costs in pricing fixed-price contracts if they result in... organizations to settle disputes. (c) Strikes normally result in changing patterns of cost incurrence and... recognition of costs in pricing fixed-price contracts. Certain costs may increase because of strikes; e.g...

  20. 48 CFR 22.101-2 - Contract pricing and administration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-reimbursement contracts or for recognition of costs in pricing fixed-price contracts if they result in... organizations to settle disputes. (c) Strikes normally result in changing patterns of cost incurrence and... recognition of costs in pricing fixed-price contracts. Certain costs may increase because of strikes; e.g...

  1. The effect of interference on temporal order memory for random and fixed sequences in nondemented older adults.

    PubMed

    Tolentino, Jerlyn C; Pirogovsky, Eva; Luu, Trinh; Toner, Chelsea K; Gilbert, Paul E

    2012-05-21

    Two experiments tested the effect of temporal interference on order memory for fixed and random sequences in young adults and nondemented older adults. The results demonstrate that temporal order memory for fixed and random sequences is impaired in nondemented older adults, particularly when temporal interference is high. However, temporal order memory for fixed sequences is comparable between older adults and young adults when temporal interference is minimized. The results suggest that temporal order memory is less efficient and more susceptible to interference in older adults, possibly due to impaired temporal pattern separation.

  2. Depletion force induced collective motion of microtubules driven by kinesin

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-10-01

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02213d

  3. Spatio-Temporal Patterning in Primary Motor Cortex at Movement Onset.

    PubMed

    Best, Matthew D; Suminski, Aaron J; Takahashi, Kazutaka; Brown, Kevin A; Hatsopoulos, Nicholas G

    2017-02-01

    Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primary motor cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires a precise spatio-temporal sequential activation of neurons in MI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Noise Power Spectrum Measurements in Digital Imaging With Gain Nonuniformity Correction.

    PubMed

    Kim, Dong Sik

    2016-08-01

    The noise power spectrum (NPS) of an image sensor provides the spectral noise properties needed to evaluate sensor performance. Hence, measuring an accurate NPS is important. However, the fixed pattern noise from the sensor's nonuniform gain inflates the NPS, which is measured from images acquired by the sensor. Detrending the low-frequency fixed pattern is traditionally used to accurately measure NPS. However, detrending methods cannot remove high-frequency fixed patterns. In order to efficiently correct the fixed pattern noise, a gain-correction technique based on the gain map can be used. The gain map is generated using the average of uniformly illuminated images without any objects. Increasing the number of images n for averaging can reduce the remaining photon noise in the gain map and yield accurate NPS values. However, for practical finite n , the photon noise also significantly inflates NPS. In this paper, a nonuniform-gain image formation model is proposed and the performance of the gain correction is theoretically analyzed in terms of the signal-to-noise ratio (SNR). It is shown that the SNR is O(√n) . An NPS measurement algorithm based on the gain map is then proposed for any given n . Under a weak nonuniform gain assumption, another measurement algorithm based on the image difference is also proposed. For real radiography image detectors, the proposed algorithms are compared with traditional detrending and subtraction methods, and it is shown that as few as two images ( n=1 ) can provide an accurate NPS because of the compensation constant (1+1/n) .

  5. Speckle-field digital holographic microscopy.

    PubMed

    Park, YongKeun; Choi, Wonshik; Yaqoob, Zahid; Dasari, Ramachandra; Badizadegan, Kamran; Feld, Michael S

    2009-07-20

    The use of coherent light in conventional holographic phase microscopy (HPM) poses three major drawbacks: poor spatial resolution, weak depth sectioning, and fixed pattern noise due to unwanted diffraction. Here, we report a technique which can overcome these drawbacks, but maintains the advantage of phase microscopy - high contrast live cell imaging and 3D imaging. A speckle beam of a complex spatial pattern is used for illumination to reduce fixed pattern noise and to improve optical sectioning capability. By recording of the electric field of speckle, we demonstrate high contrast 3D live cell imaging without the need for axial scanning - neither objective lens nor sample stage. This technique has great potential in studying biological samples with improved sensitivity, resolution and optical sectioning capability.

  6. Distinguishing synchronous and time-varying synergies using point process interval statistics: motor primitives in frog and rat

    PubMed Central

    Hart, Corey B.; Giszter, Simon F.

    2013-01-01

    We present and apply a method that uses point process statistics to discriminate the forms of synergies in motor pattern data, prior to explicit synergy extraction. The method uses electromyogram (EMG) pulse peak timing or onset timing. Peak timing is preferable in complex patterns where pulse onsets may be overlapping. An interval statistic derived from the point processes of EMG peak timings distinguishes time-varying synergies from synchronous synergies (SS). Model data shows that the statistic is robust for most conditions. Its application to both frog hindlimb EMG and rat locomotion hindlimb EMG show data from these preparations is clearly most consistent with synchronous synergy models (p < 0.001). Additional direct tests of pulse and interval relations in frog data further bolster the support for synchronous synergy mechanisms in these data. Our method and analyses support separated control of rhythm and pattern of motor primitives, with the low level execution primitives comprising pulsed SS in both frog and rat, and both episodic and rhythmic behaviors. PMID:23675341

  7. Performance analysis of a brushless dc motor due to magnetization distribution in a continuous ring magnet

    NASA Astrophysics Data System (ADS)

    Hur, Jin; Jung, In-Soung; Sung, Ha-Gyeong; Park, Soon-Sup

    2003-05-01

    This paper represents the force performance of a brushless dc motor with a continuous ring-type permanent magnet (PM), considering its magnetization patterns: trapezoidal, trapezoidal with dead zone, and unbalanced trapezoidal magnetization with dead zone. The radial force density in PM motor causes vibration, because vibration is induced the traveling force from the rotating PM acting on the stator. Magnetization distribution of the PM as well as the shape of the teeth determines the distribution of force density. In particular, the distribution has a three-dimensional (3-D) pattern because of overhang, that is, it is not uniform in axial direction. Thus, the analysis of radial force density required dynamic analysis considering the 3-D shape of the teeth and overhang. The results show that the force density as a source of vibration varies considerably depending on the overhang and magnetization distribution patterns. In addition, the validity of the developed method, coupled 3-D equivalent magnetic circuit network method, with driving circuit and motion equation, is confirmed by comparison of conventional method using 3D finite element method.

  8. Descending pathways to the cutaneus trunci muscle motoneuronal cell group in the cat

    NASA Technical Reports Server (NTRS)

    Holstege, Gert; Blok, Bertil F.

    1989-01-01

    The descending pathways to the motoneuronal cell group of the cutaneous trunci muscle (CTM) of the cat were investigated by injecting H-3-labeled lucine into the brain stem, the diencephalon, or the C1, C2, C6, and C8 segments of the spinal cord, and examining fixed autoradiographic sections of the spinal cord and brain regions. Results demonstrate presence of specific supraspinal projectons to the CTM motor nucleus originating in the contralateral nucleus retroambiguous and the ipsilateral dorsolateral pontine tegmentum. Results also suggest that propriospinal pathways to the CTM motor nucleus originating in the cervical cord do not exist, although these propriospinal projections to all other motoneuronal cell groups surrounding the CTM nucleus are very strong.

  9. A robust variable sampling time BLDC motor control design based upon μ-synthesis.

    PubMed

    Hung, Chung-Wen; Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach.

  10. A Robust Variable Sampling Time BLDC Motor Control Design Based upon μ-Synthesis

    PubMed Central

    Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach. PMID:24327804

  11. Forward and reverse control system for induction motors

    DOEpatents

    Wright, J.T.

    1987-09-15

    A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.

  12. Inertial vestibular coding of motion: concepts and evidence

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    Central processing of inertial sensory information about head attitude and motion in space is crucial for motor control. Vestibular signals are coded relative to a non-inertial system, the head, that is virtually continuously in motion. Evidence for transformation of vestibular signals from head-fixed sensory coordinates to gravity-centered coordinates have been provided by studies of the vestibulo-ocular reflex. The underlying central processing depends on otolith afferent information that needs to be resolved in terms of head translation related inertial forces and head attitude dependent pull of gravity. Theoretical solutions have been suggested, but experimental evidence is still scarce. It appears, along these lines, that gaze control systems are intimately linked to motor control of head attitude and posture.

  13. Molecular motor traffic: From biological nanomachines to macroscopic transport

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard; Chai, Yan; Klumpp, Stefan; Liepelt, Steffen; Müller, Melanie J. I.

    2006-12-01

    All cells of animals and plants contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and have a size of 20-100 nm but are able to pull vesicles, organelles and other types of cargo over large distances, from micrometers up to meters. There are several families of motors: kinesins, dyneins, and myosins. Most of these motors have two heads which are used as legs and perform discrete steps along the filaments. Several aspects of the motor behavior will be discussed: motor cycles of two-headed motors; walks of single motors or cargo particles which consist of directed movements interrupted by random, diffusive motion; cargo transport through tube-like compartments; active diffusion of cargo particles in slab-like compartments; cooperative transport of cargo by several motors which may be uni- or bi-directional; and systems with many interacting motors that exhibit traffic jams, self-organized density and flux patterns, and traffic phase transitions far from equilibrium. It is necessary to understand these traffic phenomena in a quantitative manner in order to construct and optimize biomimetic transport systems based on motors and filaments with many possible applications in bioengineering, pharmacology, and medicine.

  14. Dynamics of two interacting active Janus particles.

    PubMed

    Bayati, Parvin; Najafi, Ali

    2016-04-07

    Starting from a microscopic model for a spherically symmetric active Janus particle, we study the interactions between two such active motors. The ambient fluid mediates a long range hydrodynamic interaction between two motors. This interaction has both direct and indirect hydrodynamic contributions. The direct contribution is due to the propagation of fluid flow that originated from a moving motor and affects the motion of the other motor. The indirect contribution emerges from the re-distribution of the ionic concentrations in the presence of both motors. Electric force exerted on the fluid from this ionic solution enhances the flow pattern and subsequently changes the motion of both motors. By formulating a perturbation method for very far separated motors, we derive analytic results for the translation and rotational dynamics of the motors. We show that the overall interaction at the leading order modifies the translational and rotational speeds of motors which scale as O[1/D](3) and O[1/D](4) with their separation, respectively. Our findings open up the way for studying the collective dynamics of synthetic micro-motors.

  15. Mutual information in the evolution of trajectories in discrete aiming movements.

    PubMed

    Lai, Shih-Chiung; Mayer-Kress, Gottfried; Newell, Karl M

    2008-07-01

    This study investigated the mutual information in the trajectories of discrete aiming movements on a computer controlled graphics tablet where movement time ( 300 - 2050 ms) was manipulated in a given distance (100 mm) and movement distance (15-240 mm) in 2 given movement times (300 ms and 800 ms ). For the distance-fixed conditions, there was higher mutual information in the slower movements in the 0 vs. 80-100% trajectory point comparisons, whereas the mutual information was higher for the faster movements when comparing within the 80 and 100% points of the movement trajectory. For the time-fixed conditions, the spatial constraints led to a decreasing pattern of the mutual information throughout the points of the trajectory, with the highest mutual information found in the 80 vs. 100% comparison. Overall, the pattern of mutual information reveals systematic modulation of the trajectories between the attractive fixed point of the target as a function of movement condition. These mutual information patterns are postulated to be the consequence of the different relative contributions of feedforward and feedback control processes in trajectory formation as a function of task constraints.

  16. Spinal motor outputs during step-to-step transitions of diverse human gaits.

    PubMed

    La Scaleia, Valentina; Ivanenko, Yuri P; Zelik, Karl E; Lacquaniti, Francesco

    2014-01-01

    Aspects of human motor control can be inferred from the coordination of muscles during movement. For instance, by combining multimuscle electromyographic (EMG) recordings with human neuroanatomy, it is possible to estimate alpha-motoneuron (MN) pool activations along the spinal cord. It has previously been shown that the spinal motor output fluctuates with the body's center-of-mass motion, with bursts of activity around foot-strike and foot lift-off during walking. However, it is not known whether these MN bursts are generalizable to other ambulation tasks, nor is it clear if the spatial locus of the activity (along the rostrocaudal axis of the spinal cord) is fixed or variable. Here we sought to address these questions by investigating the spatiotemporal characteristics of the spinal motor output during various tasks: walking forward, backward, tiptoe and uphill. We reconstructed spinal maps from 26 leg muscle EMGs, including some intrinsic foot muscles. We discovered that the various walking tasks shared qualitative similarities in their temporal spinal activation profiles, exhibiting peaks around foot-strike and foot-lift. However, we also observed differences in the segmental level and intensity of spinal activations, particularly following foot-strike. For example, forward level-ground walking exhibited a mean motor output roughly 2 times lower than the other gaits. Finally, we found that the reconstruction of the spinal motor output from multimuscle EMG recordings was relatively insensitive to the subset of muscles analyzed. In summary, our results suggested temporal similarities, but spatial differences in the segmental spinal motor outputs during the step-to-step transitions of disparate walking behaviors.

  17. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training.

    PubMed

    Pizzamiglio, Sara; Desowska, Adela; Shojaii, Pegah; Taga, Myriam; Turner, Duncan L

    2017-01-01

    Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.

  18. A circular model for song motor control in Serinus canaria

    PubMed Central

    Alonso, Rodrigo G.; Trevisan, Marcos A.; Amador, Ana; Goller, Franz; Mindlin, Gabriel B.

    2015-01-01

    Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypothesis that it is possible to construct a model in which (1) the activity of an expiratory related (ER) neural population fits the observed pressure patterns used by canaries during singing, and (2) a higher forebrain neural population, HVC, is sparsely active, simultaneously with significant motor instances of the pressure patterns. We show that in order to achieve these two requirements, the ER neural population needs to receive two inputs: a direct one, and its copy after being processed by other areas of the song system. The model is capable of reproducing the measured respiratory patterns and makes specific predictions on the timing of HVC activity during their production. These results suggest that vocal production is controlled by a circular network rather than by a simple top-down architecture. PMID:25904860

  19. Chemical deafferentation of the locust flight system by phentolamine.

    PubMed

    Ramirez, J M; Pearson, K G

    1990-09-01

    1. Phentolamine was injected into the haemolymph of locusts, Locusta migratoria, and its effects on the flight system were analyzed using electrophysiological techniques. 2. Doses of 150 microliters at 10(-2) M phentolamine inactivated the wing stretch-receptors and tegulae without influencing the central nervous system (CNS). The lack of effect on the CNS was demonstrated by the absence of any effect on the flight motor pattern in animals that had been mechanically deafferented prior to the administration of phentolamine. From these observations we conclude that phentolamine can be used to chemically deafferent the flight system of the locust. Consistent with this conclusion is that the administration of phentolamine in intact animals changed the flight motor pattern so that it resembled the pattern occurring in mechanically deafferented animals. 3. The two main advantages of deafferenting the flight system by injecting phentolamine were a) intracellular recordings from central neurons could be easily maintained during the process of deafferentation, and b) the contribution of different groups of proprioceptors to the generation of the motor pattern could be assessed since not all proprioceptors were inactivated simultaneously. 4. By intracellularly recording from elevator motoneurons and administering phentolamine we confirmed a number of previous results related to the function of the wing stretch-receptors and the tegulae.

  20. Kinetic theory of pattern formation in mixtures of microtubules and molecular motors

    NASA Astrophysics Data System (ADS)

    Maryshev, Ivan; Marenduzzo, Davide; Goryachev, Andrew B.; Morozov, Alexander

    2018-02-01

    In this study we formulate a theoretical approach, based on a Boltzmann-like kinetic equation, to describe pattern formation in two-dimensional mixtures of microtubular filaments and molecular motors. Following the previous work by Aranson and Tsimring [Phys. Rev. E 74, 031915 (2006), 10.1103/PhysRevE.74.031915] we model the motor-induced reorientation of microtubules as collision rules, and devise a semianalytical method to calculate the corresponding interaction integrals. This procedure yields an infinite hierarchy of kinetic equations that we terminate by employing a well-established closure strategy, developed in the pattern-formation community and based on a power-counting argument. We thus arrive at a closed set of coupled equations for slowly varying local density and orientation of the microtubules, and study its behavior by performing a linear stability analysis and direct numerical simulations. By comparing our method with the work of Aranson and Tsimring, we assess the validity of the assumptions required to derive their and our theories. We demonstrate that our approximation-free evaluation of the interaction integrals and our choice of a systematic closure strategy result in a rather different dynamical behavior than was previously reported. Based on our theory, we discuss the ensuing phase diagram and the patterns observed.

  1. Is distal motor and/or sensory demyelination a distinctive feature of anti-MAG neuropathy?

    PubMed

    Lozeron, Pierre; Ribrag, Vincent; Adams, David; Brisset, Marion; Vignon, Marguerite; Baron, Marine; Malphettes, Marion; Theaudin, Marie; Arnulf, Bertrand; Kubis, Nathalie

    2016-09-01

    To report the frequency of the different patterns of sensory and motor electrophysiological demyelination distribution in patients with anti-MAG neuropathy in comparison with patients with IgM neuropathy without MAG reactivity (IgM-NP). Thirty-five anti-MAG patients at early disease stage (20.1 months) were compared to 23 patients with IgM-NP; 21 CIDP patients and 13 patients with CMT1a neuropathy were used as gold standard neuropathies with multifocal and homogeneous demyelination, respectively. In all groups, standard motor and sensory electrophysiological parameters, terminal latency index and modified F ratio were investigated. Motor electrophysiological demyelination was divided in four profiles: distal, homogeneous, proximal, and proximo-distal. Distal sensory and sensorimotor demyelination were evaluated. Anti-MAG neuropathy is a demyelinating neuropathy in 91 % of cases. In the upper limbs, reduced TLI is more frequent in anti-MAG neuropathy, compared to IgM-NP. But, predominant distal demyelination of the median nerve is encountered in only 43 % of anti-MAG neuropathy and is also common in IgM-NP (35 %). Homogeneous demyelination was the second most frequent pattern (31 %). Concordance of electrophysiological profiles across motor nerves trunks is low and median nerve is the main site of distal motor conduction slowing. Reduced sensory conduction velocities occurs in 14 % of patients without evidence of predominant distal slowing. Simultaneous sensory and motor distal slowing was more common in the median nerve of anti-MAG neuropathy than IgM-NP. Electrophysiological distal motor demyelination and sensory demyelination are not a distinctive feature of anti-MAG reactivity. In anti-MAG neuropathy it is mainly found in the median nerve suggesting a frequent nerve compression at wrist.

  2. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys.

    PubMed

    Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F; Mir, Anis; Schwab, Martin E; Belhaj-Saif, Abderraouf; Rouiller, Eric M

    2013-01-01

    In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns ("true" recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  3. The Relationship between Fundamental Motor Skill Proficiency and Participation in Organized Sports and Active Recreation in Middle Childhood

    PubMed Central

    Field, Stephanie C.; Temple, Viviene A.

    2017-01-01

    Motor skill proficiency in middle childhood is associated with higher physical activity levels at that age and is predictive of adolescent physical activity levels. Much of the previous research in this area has used accelerometry in determining these relationships, and as a result, little is known about what physical activities the children are engaging in. Therefore the aim of this study was to examine rates of participation in physical activities, the relationships between motor proficiency and how often children participate, and if there were gender-based differences in participation, motor skills, or the relationship between these variables. Participants were 400 boys and girls (Mean age = 9 years 6 months) in grade 4. Motor skills were assessed using the Test of Gross Motor Development-2 (TGMD-2) and physical activity participation was measured using the Children’s Assessment of Participation and Enjoyment (CAPE). Descriptive statistics, chi-squared analyses, and multivariate analysis of variance (MANOVA) were used to examine activity patterns and whether these patterns differed by gender. Correlation coefficients were used to estimate the relationships between fundamental motor skill proficiency and participation. The boys and girls participated in many of the same activities, but girls were more likely to participate in most of the informal physical activities. More boys than girls participated in team sports, boys participated more frequently in team sports, and the boys’ object control and locomotor skill proficiency were significantly associated with participation in team sports. There were some significant associations between motor skills and participation in specific activities; however it is not clear if participation is developing skillfulness or those who are more skilled are engaging and persisting with particular activities.

  4. State-changes in the swimmeret system: a neural circuit that drives locomotion

    PubMed Central

    Tschuluun, N.; Hall, W. M.; Mulloney, B.

    2009-01-01

    Summary The crayfish swimmeret system undergoes transitions between a silent state and an active state. In the silent state, no patterned firing occurs in swimmeret motor neurons. In the active state, bursts of spikes in power stroke motor neurons alternate periodically with bursts of spikes in return stroke motor neurons. In preparations of the isolated crayfish central nervous system (CNS), the temporal structures of motor patterns expressed in the active state are similar to those expressed by the intact animal. These transitions can occur spontaneously, in response to stimulation of command neurons, or in response to application of neuromodulators and transmitter analogues. We used single-electrode voltage clamp of power-stroke exciter and return-stroke exciter motor neurons to study changes in membrane currents during spontaneous transitions and during transitions caused by bath-application of carbachol or octopamine (OA). Spontaneous transitions from silence to activity were marked by the appearance of a standing inward current and periodic outward currents in both types of motor neurons. Bath-application of carbachol also led to the development of these currents and activation of the system. Using low Ca2+–high Mg2+ saline to block synaptic transmission, we found that the carbachol-induced inward current included a direct response by the motor neuron and an indirect component. Spontaneous transitions from activity to silence were marked by disappearance of the standing inward current and the periodic outward currents. Bath-application of OA led promptly to the disappearance of both currents, and silenced the system. OA also acted directly on both types of motor neurons to cause a hyperpolarizing outward current that would contribute to silencing the system. PMID:19880720

  5. State-changes in the swimmeret system: a neural circuit that drives locomotion.

    PubMed

    Tschuluun, N; Hall, W M; Mulloney, B

    2009-11-01

    The crayfish swimmeret system undergoes transitions between a silent state and an active state. In the silent state, no patterned firing occurs in swimmeret motor neurons. In the active state, bursts of spikes in power stroke motor neurons alternate periodically with bursts of spikes in return stroke motor neurons. In preparations of the isolated crayfish central nervous system (CNS), the temporal structures of motor patterns expressed in the active state are similar to those expressed by the intact animal. These transitions can occur spontaneously, in response to stimulation of command neurons, or in response to application of neuromodulators and transmitter analogues. We used single-electrode voltage clamp of power-stroke exciter and return-stroke exciter motor neurons to study changes in membrane currents during spontaneous transitions and during transitions caused by bath-application of carbachol or octopamine (OA). Spontaneous transitions from silence to activity were marked by the appearance of a standing inward current and periodic outward currents in both types of motor neurons. Bath-application of carbachol also led to the development of these currents and activation of the system. Using low Ca(2+)-high Mg(2+) saline to block synaptic transmission, we found that the carbachol-induced inward current included a direct response by the motor neuron and an indirect component. Spontaneous transitions from activity to silence were marked by disappearance of the standing inward current and the periodic outward currents. Bath-application of OA led promptly to the disappearance of both currents, and silenced the system. OA also acted directly on both types of motor neurons to cause a hyperpolarizing outward current that would contribute to silencing the system.

  6. Comparison of Functional Recovery of Manual Dexterity after Unilateral Spinal Cord Lesion or Motor Cortex Lesion in Adult Macaque Monkeys

    PubMed Central

    Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F.; Mir, Anis; Schwab, Martin E.; Belhaj-Saif, Abderraouf; Rouiller, Eric M.

    2013-01-01

    In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns (“true” recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex. PMID:23885254

  7. Older adults show preserved equilibrium but impaired step length control in motor-equivalent stabilization of gait.

    PubMed

    Verrel, Julius; Lövdén, Martin; Lindenberger, Ulman

    2012-01-01

    Stable walking depends on the coordination of multiple biomechanical degrees of freedom to ensure the dynamic maintenance of whole-body equilibrium as well as continuous forward progression. We investigated adult age-related differences in whole-body coordination underlying stabilization of center of mass (CoM) position and step pattern during locomotion. Sixteen younger (20-30 years) and 16 healthy older men (65-80 years) walked on a motorized treadmill at 80%, 100% and 120% of their self-selected preferred speed. Preferred speeds did not differ between the age groups. Motor-equivalent stabilization of step parameters (step length and width) and CoM position relative to the support (back and front foot) was examined using a generalized covariation analysis. Across age groups, covariation indices were highest for CoM position relative to the front foot, the measure most directly related to body equilibrium. Compared to younger adults, older adults showed lower covariation indices with respect to step length, extending previous findings of age-related differences in motor-equivalent coordination. In contrast, no reliable age differences were found regarding stabilization of step width or any of the CoM parameters. The observed pattern of results may reflect robust prioritization of balance over step pattern regularity, which may be adaptive in the face of age-associated sensorimotor losses and decline of coordinative capacities.

  8. Proposal of a new electromechanical total artificial heart: the TAH Serpentina.

    PubMed

    Sauer, I M; Frank, J; Bücherl, E S

    1999-03-01

    A new type of energy converter for an electro-mechanical total artificial heart (TAH) based on the principle of a unidirectional moving motor is described. Named the TAH Serpentina, the concept consists of 2 major parts, a pendulum shaped movable element fixed on one side using a joint bearing and a special shaped drum cam. Pusher plates are mounted flexibly to the crossbar of the pendulum. A motor drives the special shaped drum cam linked to the pendulum through a ball bearing. The circular motion of the unidirectional moving brushless DC motor is transferred into the linear motion of the pendulum to drive the pusher plates. Using a crossbar with a variable length, the stroke of the pendulum and therefore the displaced blood volume is alterable. To achieve a variable length, an electric driven screw thread or a hydraulic system is possible. Comparable to the natural heart, cardiac output would be determined by frequency and stroke volume.

  9. Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease.

    PubMed

    Fujita, Kengo; Ito, Hidefumi; Nakano, Satoshi; Kinoshita, Yoshimi; Wate, Reika; Kusaka, Hirofumi

    2008-10-01

    This report concerns an immunohistochemical investigation on RNA-related proteins in the basophilic inclusions (BIs) from patients with adult-onset atypical motor neuron disease. Formalin-fixed, paraffin-embedded sections of the motor cortex and the lumbar spinal cord were examined. The BIs appeared blue in color with H&E and Nissl stain, and pink with methylgreen-pyronin stain. Ribonuclease pretreatment abolished the methylgreen-pyronin staining, suggesting that the BIs contained RNA. Immunohistochemically, the BIs were distinctly labeled with the antibodies against poly(A)-binding protein 1, T cell intracellular antigen 1, and ribosomal protein S6. These proteins are essential constituents of stress granules. In contrast, the BIs were not immunoreactive for ribosomal protein L28 and decapping enzyme 1, which are core components of transport ribonucleoprotein particles and processing bodies, respectively. Moreover, the BIs were not immunopositive for TDP-43. Our results imply that translation attenuation could be involved in the processes of BI formation in this disorder.

  10. Acoustic signalling for mate attraction in crickets: Abdominal ganglia control the timing of the calling song pattern.

    PubMed

    Jacob, Pedro F; Hedwig, Berthold

    2016-08-01

    Decoding the neural basis of behaviour requires analysing how the nervous system is organised and how the temporal structure of motor patterns emerges from its activity. The stereotypical patterns of the calling song behaviour of male crickets, which consists of chirps and pulses, is an ideal model to study this question. We applied selective lesions to the abdominal nervous system of field crickets and performed long-term acoustic recordings of the songs. Specific lesions to connectives or ganglia abolish singing or reliably alter the temporal features of the chirps and pulses. Singing motor control appears to be organised in a modular and hierarchically fashion, where more posterior ganglia control the timing of the chirp pattern and structure and anterior ganglia the timing of the pulses. This modular organisation may provide the substrate for song variants underlying calling, courtship and rivalry behaviour and for the species-specific song patterns in extant crickets. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Cognitive-motor interference during fine and gross motor tasks in children with Developmental Coordination Disorder (DCD).

    PubMed

    Schott, Nadja; El-Rajab, Inaam; Klotzbier, Thomas

    2016-10-01

    While typically developing children produce relatively automatized postural control processes, children with DCD seem to exhibit an automatization deficit. Dual tasks with various cognitive loads seem to be an effective way to assess the automatic deficit hypothesis. The aims of the study were: (1) to examine the effect of a concurrent cognitive task on fine and gross motor tasks in children with DCD, and (2) to determine whether the effect varied with different difficulty levels of the concurrent task. We examined dual-task performance (Trail-Making-Test, Trail-Walking-Test) in 20 children with DCD and 39 typically developing children. Based on the idea of the Trail-Making-Test, participants walked along a fixed pathway, following a prescribed path, delineated by target markers of (1) increasing sequential numbers, and (2) increasing sequential numbers and letters. The motor and cognitive dual-task effects (DTE) were calculated for each task. Regardless of the cognitive task, children with DCD performed equally well in fine and gross motor tasks, and were slower in the dual task conditions than under single task-conditions, compared with children without DCD. Increased cognitive task complexity resulted in slow trail walking as well as slower trail tracing. The motor interference for the gross motor tasks was least for the simplest conditions and greatest for the complex conditions and was more pronounced in children with DCD. Cognitive interference was low irrespective of the motor task. Children with DCD show a different approach to allocation of cognitive resources, and have difficulties making motor skills automatic. The latter notion is consistent with impaired cerebellar function and the "automatization deficit hypothesis", suggesting that any deficit in the automatization process will appear if conscious monitoring of the motor skill is made more difficult by integrating another task requiring attentional resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Comparing fixed-amount and progressive-amount DRO Schedules for tic suppression in youth with chronic tic disorders.

    PubMed

    Capriotti, Matthew R; Turkel, Jennifer E; Johnson, Rachel A; Espil, Flint M; Woods, Douglas W

    2017-01-01

    Chronic tic disorders (CTDs) involve motor and/or vocal tics that often cause substantial distress and impairment. Differential reinforcement of other behavior (DRO) schedules of reinforcement produce robust, but incomplete, reductions in tic frequency in youth with CTDs; however, a more robust reduction may be needed to affect durable clinical change. Standard, fixed-amount DRO schedules have not commonly yielded such reductions, so we evaluated a novel, progressive-amount DRO schedule, based on its ability to facilitate sustained abstinence from functionally similar behaviors. Five youth with CTDs were exposed to periods of baseline, fixed-amount DRO (DRO-F), and progressive-amount DRO (DRO-P). Both DRO schedules produced decreases in tic rate and increases in intertic interval duration, but no systematic differences were seen between the two schedules on any dimension of tic occurrence. The DRO-F schedule was generally preferred to the DRO-P schedule. Possible procedural improvements and other future directions are discussed. © 2016 Society for the Experimental Analysis of Behavior.

  13. A Comparison of Interaction Patterns in an Open Space and a Fixed Plan School. Final Report.

    ERIC Educational Resources Information Center

    Montgomery County School System, Christiansburg, VA.

    This study investigates interaction patterns that occur in an open plan and in a traditional plan school. The objectives of the study were: (1) to investigate some interaction patterns among members of the school populations, (2) to investigate some interaction patterns between the school population and the available physical resources, (3) to…

  14. Acoustic emission studies of large advanced composite rocket motor cases.

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1973-01-01

    Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.

  15. Motor Task Variation Induces Structural Learning

    PubMed Central

    Braun, Daniel A.; Aertsen, Ad; Wolpert, Daniel M.; Mehring, Carsten

    2009-01-01

    Summary When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1–8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9–14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning. PMID:19217296

  16. Motor task variation induces structural learning.

    PubMed

    Braun, Daniel A; Aertsen, Ad; Wolpert, Daniel M; Mehring, Carsten

    2009-02-24

    When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1-8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9-14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning.

  17. Solid rocket motor witness test

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.

    1991-01-01

    The Solid Rocket Motor Witness Test was undertaken to examine the potential for using thermal infrared imagery as a tool for monitoring static tests of solid rocket motors. The project consisted of several parts: data acquisition, data analysis, and interpretation. For data acquisition, thermal infrared data were obtained of the DM-9 test of the Space Shuttle Solid Rocket Motor on December 23, 1987, at Thiokol, Inc. test facility near Brigham City, Utah. The data analysis portion consisted of processing the video tapes of the test to produce values of temperature at representative test points on the rocket motor surface as the motor cooled down following the test. Interpretation included formulation of a numerical model and evaluation of some of the conditions of the motor which could be extracted from the data. These parameters included estimates of the insulation remaining following the tests and the thickness of the charred layer of insulation at the end of the test. Also visible was a temperature signature of the star grain pattern in the forward motor segment.

  18. Activity Regulates the Incidence of Heteronymous Sensory-Motor Connections

    PubMed Central

    Mendelsohn, Alana I.; Simon, Christian M.; Abbott, L. F.; Mentis, George Z.; Jessell, Thomas M.

    2015-01-01

    Summary The construction of spinal sensory-motor circuits involves the selection of appropriate synaptic partners and the allocation of precise synaptic input densities. Many aspects of spinal sensory-motor selectivity appear to be preserved when peripheral sensory activation is blocked, which has led to a view that sensory-motor circuits are assembled in an activity-independent manner. Yet it remains unclear whether activity-dependent refinement has a role in the establishment of connections between sensory afferents and those motor pools that have synergistic biomechanical functions. We show here that genetically abolishing central sensory-motor neurotransmission leads to a selective enhancement in the number and density of such “heteronymous” connections, whereas other aspects of sensory-motor connectivity are preserved. Spike-timing dependent synaptic refinement represents one possible mechanism for the changes in connectivity observed after activity blockade. Our findings therefore reveal that sensory activity does have a limited and selective role in the establishment of patterned monosynaptic sensory-motor connections. PMID:26094608

  19. Human Behaviour and Development under High-Altitude Conditions

    ERIC Educational Resources Information Center

    Virues-Ortega, Javier; Garrido, Eduardo; Javierre, Casimiro; Kloezeman, Karen C.

    2006-01-01

    Although we are far from a universally accepted pattern of impaired function at altitude, there is evidence indicating motor, perceptual, memory and behavioural deficits in adults. Even relatively low altitudes (2500 m) may delay reaction time, and impair motor function. Extreme altitude exposure (greater than 5000 m) may result in more pronounced…

  20. 40 CFR 202.23 - Visual tire inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Visual tire inspection. 202.23 Section... Visual tire inspection. No motor carrier subject to these regulations shall at any time operate any motor vehicle of a type to which this regulation is applicable on a tire or tires having a tread pattern which...

  1. 77 FR 67613 - Patterns of Safety Violations by Motor Carrier Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... Internet, you may view the docket online by visiting the Docket Management Facility in Room W12-140 on the... occurred in Sherman, Texas, highlighting the danger posed by motor carriers and other persons who avoid... authority registration for failing to disclose, among other things, common management or control with any...

  2. Intrinsic and extrinsic neuromodulation of motor circuits.

    PubMed

    Katz, P S

    1995-12-01

    Neuromodulation of motor circuits by extrinsic inputs provides enormous flexibility in the production of behavior. Recent work has shown that neurons intrinsic to central pattern-generating circuits can evoke neuromodulatory effects in addition to their neurotransmitting actions. Modulatory neurons often elicit a multitude of different effects attributable to actions at different receptors and/or through the release of co-transmitters. Differences in neuromodulation between species can account for differences in behavior. Modulation of neuromodulation may provide an additional level of flexibility to motor circuits.

  3. The malleability of infant motor development: cautions based on studies of child-rearing practices in Yucatan.

    PubMed

    Solomons, H C

    1978-11-01

    Tests with the Bayley Motor Scale were given to 288 infants, equally divided by sex, in Yucatan, Mexico. These were 2 to 54 weeks in age and came from three sociocultural levels. In comparison to USA infants, early acceleration of motor development was followed by a marked downward trend. This phenomenon, if observed in a single child, may indicate progressive neurologic disease. Child-rearing practices would appear to account for the difference in pattern of test performance.

  4. Decreased bilateral cortical representation patterns in writer's cramp: a functional magnetic resonance imaging study at 3.0 T.

    PubMed

    Islam, Tina; Kupsch, Andreas; Bruhn, Harald; Scheurig, Christian; Schmidt, Sein; Hoffmann, Karl-Titus

    2009-06-01

    Functional magnetic resonance imaging was used to characterize patterns of cortical activation in response to sensory and motor tasks in patients with writer's cramp. 17 patients and 17 healthy subjects were examined during finger-tapping, index finger flexion, and electrical median nerve stimulation of both hands during electromyographic monitoring. SPM2 was used to evaluate Brodmann area (BA) 4, 1, 2, 3, 6, 40. Patients showed decreased activation in the left BA 4 with motor tasks of both hands and the left BA 1-3 with right finger-tapping. With left finger-tapping there was bilateral underactivation of single areas of the somatosensory cortex. Patients exhibited decreased activation in the bilateral BA 6 with left motor tasks and in the right BA 6 with right finger-tapping. Patients had decreased activation in bilateral BA 40 with finger-tapping of both hands. The findings suggest decreased baseline activity or an impaired activation in response to motor tasks in BA 1-4, 6, 40 in patients with writer's cramp for the dystonic and the clinically unaffected hand.

  5. Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells

    PubMed Central

    Sternfeld, Matthew J; Hinckley, Christopher A; Moore, Niall J; Pankratz, Matthew T; Hilde, Kathryn L; Driscoll, Shawn P; Hayashi, Marito; Amin, Neal D; Bonanomi, Dario; Gifford, Wesley D; Sharma, Kamal; Goulding, Martyn; Pfaff, Samuel L

    2017-01-01

    Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons. DOI: http://dx.doi.org/10.7554/eLife.21540.001 PMID:28195039

  6. V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion

    PubMed Central

    Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn

    2014-01-01

    SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273

  7. The qualification of the shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Chase, C. A.; Fisher, K. M.; Eoff, W.

    1978-01-01

    Four booster separation motors (BSM) located at each end of every solid rocket booster (SRB) provide the needed side force to separate the boosters from the external tank at booster burnout. Four BSMs at the top of the SRB are located in a box pattern in the nose cone frustum. The four BSMs at the aft end of the SRB are arranged side-by-side on the SRB aft skirt. Aspects of BSM design and performance are considered, taking into account a motor design/performance summary, the case design, the insulation, the grain design, the nozzle/aft closure design, the ignition system, the propellant, and the motor assembly. Details of motor testing are also discussed, giving attention to development testing, qualification testing, and flight testing.

  8. Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion.

    PubMed

    Bradley, Nina S; Solanki, Dhara; Zhao, Dawn

    2005-12-01

    New imaging technologies are revealing ever-greater details of motor behavior in fetuses for clinical diagnosis and treatment. Understanding the form, mechanisms, and significance of fetal behavior will maximize imaging applications. The chick is readily available for experimentation throughout embryogenesis, making it an excellent model for this purpose. Yet in 40 yr since Hamburger and colleagues described chick embryonic behavior, we have not determined if motility belongs to a developmental continuum fundamental to posthatching behavior. This study examined kinematics and synchronized electromyography (EMG) during spontaneous limb movements in chicks at four time points between embryonic days (E) 9-18. We report that coordinated kinematic and/or EMG patterns were expressed at each time point. Variability observed in knee and ankle excursions at E15-E18 sorted into distinct in-phase and out-of-phase patterns. EMG patterns did not directly account for out-of-phase patterns, indicating study of movement biomechanics will be critical to fully understand motor control in the embryo. We also provide the first descriptions of 2- to 10-Hz limb movements emerging E15-E18 and a shift from in-phase to out-of-phase interlimb coordination E9-E18. Our findings revealed that coordinated limb movements persist across development and suggest they belong to a developmental continuum for locomotion. Limb patterns were consistent with the half center model for a locomotor pattern generator. Achievement of these patterns by E9 may thus indicate the embryo has completed a critical phase beyond which developmental progression may be less vulnerable to experimental perturbations or prenatal events.

  9. Discharge patterns of human tensor palatini motor units during sleep onset.

    PubMed

    Nicholas, Christian L; Jordan, Amy S; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P; Eckert, Danny J; White, David P; Malhotra, Atul; Trinder, John

    2012-05-01

    Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Sleep laboratory. Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Sleep onset. Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP.

  10. Bihemispheric Transcranial Direct Current Stimulation Enhances Effector-Independent Representations of Motor Synergy and Sequence Learning

    PubMed Central

    Husain, Masud; Wiestler, Tobias; Diedrichsen, Jörn

    2014-01-01

    Complex manual tasks—everything from buttoning up a shirt to playing the piano—fundamentally involve two components: (1) generating specific patterns of muscle activity (here, termed “synergies”); and (2) stringing these into purposeful sequences. Although transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) has been found to increase the learning of motor sequences, it is unknown whether it can similarly facilitate motor synergy learning. Here, we determined the effects of tDCS on the learning of motor synergies using a novel hand configuration task that required the production of difficult muscular activation patterns. Bihemispheric tDCS was applied to M1 of healthy, right-handed human participants during 4 d of repetitive left-hand configuration training in a double-blind design. tDCS augmented synergy learning, leading subsequently to faster and more synchronized execution. This effect persisted for at least 4 weeks after training. Qualitatively similar tDCS-associated improvements occurred during training of finger sequences in a separate subject cohort. We additionally determined whether tDCS only improved the acquisition of motor memories for specific synergies/sequences or whether it also facilitated more general parts of the motor representations, which could be transferred to novel movements. Critically, we observed that tDCS effects generalized to untrained hand configurations and untrained finger sequences (i.e., were nonspecific), as well as to the untrained hand (i.e., were effector-independent). Hence, bihemispheric tDCS may be a promising adjunct to neurorehabilitative training regimes, in which broad transfer to everyday tasks is highly desirable. PMID:24431461

  11. Effects of movement imitation training in Parkinson's disease: A virtual reality pilot study.

    PubMed

    Robles-García, Verónica; Corral-Bergantiños, Yoanna; Espinosa, Nelson; García-Sancho, Carlos; Sanmartín, Gabriel; Flores, Julián; Cudeiro, Javier; Arias, Pablo

    2016-05-01

    Hypometria is a clinical motor sign in Parkinson's disease. Its origin likely emerges from basal ganglia dysfunction, leading to an impaired control of inhibitory intracortical motor circuits. Some neurorehabilitation approaches include movement imitation training; besides the effects of motor practice, there might be a benefit due to observation and imitation of un-altered movement patterns. In this sense, virtual reality facilitates the process by customizing motor-patterns to be observed and imitated. To evaluate the effect of a motor-imitation therapy focused on hypometria in Parkinson's disease using virtual reality. We carried out a randomized controlled pilot-study. Sixteen patients were randomly assigned in experimental and control groups. Groups underwent 4-weeks of training based on finger-tapping with the dominant hand, in which imitation was the differential factor (only the experimental group imitated). We evaluated self-paced movement features and cortico-spinal excitability (recruitment curves and silent periods in both hemispheres) before, immediately after, and two weeks after the training period. Movement amplitude increased significantly after the therapy in the experimental group for the trained and un-trained hands. Motor thresholds and silent periods evaluated with transcranial magnetic stimulation were differently modified by training in the two groups; although the changes in the input-output recruitment were similar. This pilot study suggests that movement imitation therapy enhances the effect of motor practice in patients with Parkinson's disease; imitation-training might be helpful for reducing hypometria in these patients. These results must be clarified in future larger trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Altered motor network activation and functional connectivity in adult Tourette's syndrome.

    PubMed

    Werner, Cornelius J; Stöcker, Tony; Kellermann, Thilo; Bath, Jessica; Beldoch, Margarete; Schneider, Frank; Wegener, Hans Peter; Shah, Jon N; Neuner, Irene

    2011-11-01

    Tourette's syndrome (TS) is a developmental neuropsychiatric disorder characterized by motor and vocal tics as well as psychiatric comorbidities. Disturbances of the fronto-striatal-thalamic pathways responsible for motor control and impulse inhibition have been previously described in other studies. Although differences in motor performance are well recognized, imaging data elucidating the neuronal correlates are scarce. Here, we examined 19 adult TS patients (13 men, aged 22-52 years, mean = 34.3 years) and 18 age- and sex-matched controls (13 men, aged 24-57 years, mean = 37.6 years) in a functional magnetic resonance imaging study at 1.5 T. We corrected for possible confounds introduced by tics, motion, and brain-structural differences as well as age, sex, comorbidities, and medication. Patients and controls were asked to perform a sequential finger-tapping task using their right, left, and both hands, respectively. Task performance was monitored by simultaneous MR-compatible video recording. Although behavioral data obtained during scanning did not show significant differences across groups, we observed differential neuronal activation patterns depending on both handedness (dominant vs. nondominant) and tapping frequency in frontal, parietal, and subcortical areas. When controlling for open motor performance, a failure of deactivation in easier task conditions was found in the subgenual cingulate cortex in the TS patients. In addition, performance-related functional connectivity of lower- and higher-order motor networks differed between patients and controls. In summary, although open performance was comparable, patients showed different neuronal networks and connectivity patterns when performing increasingly demanding tasks, further illustrating the impact of the disease on the motor system. Copyright © 2011 Wiley-Liss, Inc.

  13. Collective effects in models for interacting molecular motors and motor-microtubule mixtures

    NASA Astrophysics Data System (ADS)

    Menon, Gautam I.

    2006-12-01

    Three problems in the statistical mechanics of models for an assembly of molecular motors interacting with cytoskeletal filaments are reviewed. First, a description of the hydrodynamical behaviour of density-density correlations in fluctuating ratchet models for interacting molecular motors is outlined. Numerical evidence indicates that the scaling properties of dynamical behaviour in such models belong to the KPZ universality class. Second, the generalization of such models to include boundary injection and removal of motors is provided. In common with known results for the asymmetric exclusion processes, simulations indicate that such models exhibit sharp boundary driven phase transitions in the thermodynamic limit. In the third part of this paper, recent progress towards a continuum description of pattern formation in mixtures of motors and microtubules is described, and a non-equilibrium “phase-diagram” for such systems discussed.

  14. Proprioceptive coupling within motor neurons drives C. elegans forward locomotion

    PubMed Central

    Wen, Quan; Po, Michelle; Hulme, Elizabeth; Chen, Sway; Liu, Xinyu; Kwok, Sen Wai; Gershow, Marc; Leifer, Andrew M; Butler, Victoria; Fang-Yen, Christopher; Kawano, Taizo; Schafer, William R; Whitesides, George

    2012-01-01

    Summary Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled Central Pattern Generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement. PMID:23177960

  15. Central Pattern Generation and the Motor Infrastructure for Suck, Respiration, and Speech

    ERIC Educational Resources Information Center

    Barlow, Steven M.; Estep, Meredith

    2006-01-01

    The objective of the current report is to review experimental findings on centrally patterned movements and sensory and descending modulation of central pattern generators (CPGs) in a variety of animal and human models. Special emphasis is directed toward speech production muscle systems, including the chest wall and orofacial complex during…

  16. Coordinated Control of Three-Dimensional Components of Smooth Pursuit to Rotating and Translating Textures.

    PubMed

    Edinger, Janick; Pai, Dinesh K; Spering, Miriam

    2017-01-01

    The neural control of pursuit eye movements to visual textures that simultaneously translate and rotate has largely been neglected. Here we propose that pursuit of such targets-texture pursuit-is a fully three-dimensional task that utilizes all three degrees of freedom of the eye, including torsion. Head-fixed healthy human adults (n = 8) tracked a translating and rotating random dot pattern, shown on a computer monitor, with their eyes. Horizontal, vertical, and torsional eye positions were recorded with a head-mounted eye tracker. The torsional component of pursuit is a function of the rotation of the texture, aligned with its visual properties. We observed distinct behaviors between those trials in which stimulus rotation was in the same direction as that of a rolling ball ("natural") in comparison to those with the opposite rotation ("unnatural"): Natural rotation enhanced and unnatural rotation reversed torsional velocity during pursuit, as compared to torsion triggered by a nonrotating random dot pattern. Natural rotation also triggered pursuit with a higher horizontal velocity gain and fewer and smaller corrective saccades. Furthermore, we show that horizontal corrective saccades are synchronized with torsional corrective saccades, indicating temporal coupling of horizontal and torsional saccade control. Pursuit eye movements have a torsional component that depends on the visual stimulus. Horizontal and torsional eye movements are separated in the motor periphery. Our findings suggest that translational and rotational motion signals might be coordinated in descending pursuit pathways.

  17. Why to Treat Subjects as Fixed Effects

    ERIC Educational Resources Information Center

    Adelman, James S.; Estes, Zachary

    2015-01-01

    Adelman, Marquis, Sabatos-DeVito, and Estes (2013) collected word naming latencies from 4 participants who read 2,820 words 50 times each. Their recommendation and practice was that R2 targets set for models should take into account subject idiosyncrasies as replicable patterns, equivalent to a subjects-as-fixed-effects assumption. In light of an…

  18. Rhythmic motor activity and interlimb co-ordination in the developing pouch young of a wallaby (Macropus eugenii).

    PubMed Central

    Ho, S M

    1997-01-01

    1. The forelimb motor behaviour of developing wallaby was studied. A clock-like alternating movement was reactivated whenever the animal was removed from the pouch. 2. Forelimb stepping frequency increased during the first 3 weeks of development, while the phase relationship remained constant. Forelimb activity could be affected by altering the afferent feedback from the contralateral limb, or an increase in ambient temperature. 3. In vitro experiments were performed using an isolated brainstem-spinal cord preparation from animals up to 6 weeks postnatal. Fictive locomotor activity could be evoked by electrical stimulation or bath-applied NMDA (< 10 microM). 4. Bath-applied strychnine (10-25 microM) and bicuculline (10-50 microM) disrupted the phase relationship between motor pools, while rhythmic motor discharge remained in the absence of these inhibitory pathways. 5. The present findings indicate that the pattern generator that underlies the robust forelimb movement during the first journey to the pouch is retained for different motor functions during in-pouch development. The neural network that underlies such behaviour can be divided into two major components, a rhythm generator within each hemicord, and a pattern co-ordinating pathway which involve both glycinergic and GABAergic interneurones. PMID:9218221

  19. Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging

    PubMed Central

    Khan, Bilal; Chand, Pankaj; Alexandrakis, George

    2011-01-01

    Functional near infrared (fNIR) imaging was used to identify spatiotemporal relations between spatially distinct cortical regions activated during various hand and arm motion protocols. Imaging was performed over a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary sensorimotor, and the posterior parietal cortices over a single brain hemisphere. This is a more extended FOV than typically used in current fNIR studies. Three subjects performed four motor tasks that induced activation over this extended FOV. The tasks included card flipping (pronation and supination) that, to our knowledge, has not been performed in previous functional magnetic resonance imaging (fMRI) or fNIR studies. An earlier rise and a longer duration of the hemodynamic activation response were found in tasks requiring increased physical or mental effort. Additionally, analysis of activation images by cluster component analysis (CCA) demonstrated that cortical regions can be grouped into clusters, which can be adjacent or distant from each other, that have similar temporal activation patterns depending on whether the performed motor task is guided by visual or tactile feedback. These analyses highlight the future potential of fNIR imaging to tackle clinically relevant questions regarding the spatiotemporal relations between different sensorimotor cortex regions, e.g. ones involved in the rehabilitation response to motor impairments. PMID:22162826

  20. Effect of air bags and restraining devices on the pattern of facial fractures in motor vehicle crashes.

    PubMed

    Simoni, Payman; Ostendorf, Robert; Cox, Artemus J

    2003-01-01

    To examine the relationship between the use of restraining devices and the incidence of specific facial fractures in motor vehicle crashes. Retrospective analysis of patients with facial fractures following a motor vehicle crash. University of Alabama at Birmingham Hospital level I trauma center from 1996 to 2000. Of 3731 patients involved in motor vehicle crashes, a total of 497 patients were found to have facial fractures as determined by International Classification of Diseases, Ninth Revision (ICD-9) codes. Facial fractures were categorized as mandibular, orbital, zygomaticomaxillary complex (ZMC), and nasal. Use of seat belts alone was more effective in decreasing the chance of facial fractures in this population (from 17% to 8%) compared with the use of air bags alone (17% to 11%). The use of seat belts and air bags together decreased the incidence of facial fractures from 17% to 5%. Use of restraining devices in vehicles significantly reduces the chance of incurring facial fractures in a severe motor vehicle crash. However, use of air bags and seat belts does not change the pattern of facial fractures greatly except for ZMC fractures. Air bags are least effective in preventing ZMC fractures. Improving the mechanics of restraining devices might be needed to minimize facial fractures.

Top