Existence of tripled fixed points for a class of condensing operators in Banach spaces.
Karakaya, Vatan; Bouzara, Nour El Houda; Doğan, Kadri; Atalan, Yunus
2014-01-01
We give some results concerning the existence of tripled fixed points for a class of condensing operators in Banach spaces. Further, as an application, we study the existence of solutions for a general system of nonlinear integral equations.
Floating-to-Fixed-Point Conversion for Digital Signal Processors
NASA Astrophysics Data System (ADS)
Menard, Daniel; Chillet, Daniel; Sentieys, Olivier
2006-12-01
Digital signal processing applications are specified with floating-point data types but they are usually implemented in embedded systems with fixed-point arithmetic to minimise cost and power consumption. Thus, methodologies which establish automatically the fixed-point specification are required to reduce the application time-to-market. In this paper, a new methodology for the floating-to-fixed point conversion is proposed for software implementations. The aim of our approach is to determine the fixed-point specification which minimises the code execution time for a given accuracy constraint. Compared to previous methodologies, our approach takes into account the DSP architecture to optimise the fixed-point formats and the floating-to-fixed-point conversion process is coupled with the code generation process. The fixed-point data types and the position of the scaling operations are optimised to reduce the code execution time. To evaluate the fixed-point computation accuracy, an analytical approach is used to reduce the optimisation time compared to the existing methods based on simulation. The methodology stages are described and several experiment results are presented to underline the efficiency of this approach.
van Maanen, Leendert; de Jong, Ritske; van Rijn, Hedderik
2014-01-01
When multiple strategies can be used to solve a type of problem, the observed response time distributions are often mixtures of multiple underlying base distributions each representing one of these strategies. For the case of two possible strategies, the observed response time distributions obey the fixed-point property. That is, there exists one reaction time that has the same probability of being observed irrespective of the actual mixture proportion of each strategy. In this paper we discuss how to compute this fixed-point, and how to statistically assess the probability that indeed the observed response times are generated by two competing strategies. Accompanying this paper is a free R package that can be used to compute and test the presence or absence of the fixed-point property in response time data, allowing for easy to use tests of strategic behavior. PMID:25170893
Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
Hussain, N.; Salimi, P.
2014-01-01
The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157
Multiple positive solutions for a class of integral inclusions
NASA Astrophysics Data System (ADS)
Hong, Shihuang
2008-04-01
This paper deals with sufficient conditions for the existence of at least two positive solutions for a class of integral inclusions arising in the traffic theory. To show our main results, we apply a norm-type expansion and compression fixed point theorem for multivalued map due to Agarwal and O'Regan [A note on the existence of multiple fixed points for multivalued maps with applications, J. Differential Equation 160 (2000) 389-403].
L-fuzzy fixed points theorems for L-fuzzy mappings via βℱL-admissible pair.
Rashid, Maliha; Azam, Akbar; Mehmood, Nayyar
2014-01-01
We define the concept of βℱL-admissible for a pair of L-fuzzy mappings and establish the existence of common L-fuzzy fixed point theorem. Our result generalizes some useful results in the literature. We provide an example to support our result.
Fixed point theorems for generalized contractions in ordered metric spaces
NASA Astrophysics Data System (ADS)
O'Regan, Donal; Petrusel, Adrian
2008-05-01
The purpose of this paper is to present some fixed point results for self-generalized contractions in ordered metric spaces. Our results generalize and extend some recent results of A.C.M. Ran, M.C. Reurings [A.C.M. Ran, MEC. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443], J.J. Nieto, R. Rodríguez-López [J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223-239; J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007) 2205-2212], J.J. Nieto, R.L. Pouso, R. Rodríguez-López [J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505-2517], A. Petrusel, I.A. Rus [A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418] and R.P. Agarwal, M.A. El-Gebeily, D. O'Regan [R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press]. As applications, existence and uniqueness results for Fredholm and Volterra type integral equations are given.
Non-Kondo many-body physics in a Majorana-based Kondo type system
NASA Astrophysics Data System (ADS)
van Beek, Ian J.; Braunecker, Bernd
2016-09-01
We carry out a theoretical analysis of a prototypical Majorana system, which demonstrates the existence of a Majorana-mediated many-body state and an associated intermediate low-energy fixed point. Starting from two Majorana bound states, hosted by a Coulomb-blockaded topological superconductor and each coupled to a separate lead, we derive an effective low-energy Hamiltonian, which displays a Kondo-like character. However, in contrast to the Kondo model which tends to a strong- or weak-coupling limit under renormalization, we show that this effective Hamiltonian scales to an intermediate fixed point, whose existence is contingent upon teleportation via the Majorana modes. We conclude by determining experimental signatures of this fixed point, as well as the exotic many-body state associated with it.
Automated system for measuring temperature profiles inside ITS-90 fixed-point cells
NASA Astrophysics Data System (ADS)
Hiti, Miha; Bojkovski, Jovan; Batagelj, Valentin; Drnovsek, Janko
2005-11-01
The defining fixed points of the International Temperature Scale of 1990 (ITS-90) are temperature reference points for temperature calibration. The measured temperature inside the fixed-point cell depends on thermometer immersion, since measurements are made below the surface of the fixed-point material and the additional effect of the hydrostatic pressure has to be taken into account. Also, the heat flux along the thermometer stem can affect the measured temperature. The paper presents a system that enables accurate and reproducible immersion profile measurements for evaluation of measurement sensitivity and adequacy of thermometer immersion. It makes immersion profile measurements possible, where a great number of repetitions and long measurement periods are required, and reduces the workload on the user for performing such measurements. The system is flexible and portable and was developed for application to existing equipment in the laboratory. Results of immersion profile measurements in a triple point of water fixed-point cell are presented.
L-Fuzzy Fixed Points Theorems for L-Fuzzy Mappings via β ℱL-Admissible Pair
Rashid, Maliha; Azam, Akbar
2014-01-01
We define the concept of β ℱL-admissible for a pair of L-fuzzy mappings and establish the existence of common L-fuzzy fixed point theorem. Our result generalizes some useful results in the literature. We provide an example to support our result. PMID:24688441
Trivial dynamics in discrete-time systems: carrying simplex and translation arcs
NASA Astrophysics Data System (ADS)
Niu, Lei; Ruiz-Herrera, Alfonso
2018-06-01
In this paper we show that the dynamical behavior in (first octant) of the classical Kolmogorov systems of competitive type admitting a carrying simplex can be sometimes determined completely by the number of fixed points on the boundary and the local behavior around them. Roughly speaking, T has trivial dynamics (i.e. the omega limit set of any orbit is a connected set contained in the set of fixed points) provided T has exactly four hyperbolic nontrivial fixed points in with local attractors on the carrying simplex and local repellers on the carrying simplex; and there exists a unique hyperbolic fixed point in Int. Our results are applied to some classical models including the Leslie–Gower models, Atkinson-Allen systems and Ricker maps.
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data.
van Maanen, Leendert; Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of "mixtures" has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied-for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes.
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data
Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of “mixtures” has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied–for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes. PMID:27893868
Stability analysis of an autocatalytic protein model
NASA Astrophysics Data System (ADS)
Lee, Julian
2016-05-01
A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.
A Hybrid Common Fixed Point Theorem under Certain Recent Properties
Imdad, Mohammad
2014-01-01
We prove a common fixed point theorem for a hybrid pair of occasionally coincidentally idempotent mappings via common limit range property. Our result improves some results from the existing literature, especially the ones contained in Sintunavarat and Kumam (2009). Some illustrative and interesting examples to highlight the realized improvements are also furnished. PMID:24592191
Fixed Point Results for G-α-Contractive Maps with Application to Boundary Value Problems
Roshan, Jamal Rezaei
2014-01-01
We unify the concepts of G-metric, metric-like, and b-metric to define new notion of generalized b-metric-like space and discuss its topological and structural properties. In addition, certain fixed point theorems for two classes of G-α-admissible contractive mappings in such spaces are obtained and some new fixed point results are derived in corresponding partially ordered space. Moreover, some examples and an application to the existence of a solution for the first-order periodic boundary value problem are provided here to illustrate the usability of the obtained results. PMID:24895655
Exact results for the O( N ) model with quenched disorder
NASA Astrophysics Data System (ADS)
Delfino, Gesualdo; Lamsen, Noel
2018-04-01
We use scale invariant scattering theory to exactly determine the lines of renormalization group fixed points for O( N )-symmetric models with quenched disorder in two dimensions. Random fixed points are characterized by two disorder parameters: a modulus that vanishes when approaching the pure case, and a phase angle. The critical lines fall into three classes depending on the values of the disorder modulus. Besides the class corresponding to the pure case, a second class has maximal value of the disorder modulus and includes Nishimori-like multicritical points as well as zero temperature fixed points. The third class contains critical lines that interpolate, as N varies, between the first two classes. For positive N , it contains a single line of infrared fixed points spanning the values of N from √{2}-1 to 1. The symmetry sector of the energy density operator is superuniversal (i.e. N -independent) along this line. For N = 2 a line of fixed points exists only in the pure case, but accounts also for the Berezinskii-Kosterlitz-Thouless phase observed in presence of disorder.
Rigorous high-precision enclosures of fixed points and their invariant manifolds
NASA Astrophysics Data System (ADS)
Wittig, Alexander N.
The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by Johannes Grote is extended to compute very accurate polynomial approximations to invariant manifolds of discrete maps of arbitrary dimension around hyperbolic fixed points. The algorithm presented allows for automatic removal of resonances occurring during construction. A method for the rigorous enclosure of invariant manifolds of continuous systems is introduced. Using methods developed for discrete maps, polynomial approximations of invariant manifolds of hyperbolic fixed points of ODEs are obtained. These approximations are outfit with a sharp error bound which is verified to rigorously contain the manifolds. While we focus on the three dimensional case, verification in higher dimensions is possible using similar techniques. Integrating the resulting enclosures using the verified COSY VI integrator, the initial manifold enclosures are expanded to yield sharp enclosures of large parts of the stable and unstable manifolds. To demonstrate the effectiveness of this method, we construct enclosures of the invariant manifolds of the Lorenz system and show pictures of the resulting manifold enclosures. To the best of our knowledge, these enclosures are the largest verified enclosures of manifolds in the Lorenz system in existence.
PPF Dependent Fixed Point Results for Triangular α c-Admissible Mappings
Ćirić, Ljubomir; Alsulami, Saud M.; Salimi, Peyman
2014-01-01
We introduce the concept of triangular α c-admissible mappings (pair of mappings) with respect to η c nonself-mappings and establish the existence of PPF dependent fixed (coincidence) point theorems for contraction mappings involving triangular α c-admissible mappings (pair of mappings) with respect to η c nonself-mappings in Razumikhin class. Several interesting consequences of our theorems are also given. PMID:24672352
Glassy phase in quenched disordered crystalline membranes
NASA Astrophysics Data System (ADS)
Coquand, O.; Essafi, K.; Kownacki, J.-P.; Mouhanna, D.
2018-03-01
We investigate the flat phase of D -dimensional crystalline membranes embedded in a d -dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of ɛ =4 -D and 1 /d expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.
Scaling in the vicinity of the four-state Potts fixed point
NASA Astrophysics Data System (ADS)
Blöte, H. W. J.; Guo, Wenan; Nightingale, M. P.
2017-08-01
We study a self-dual generalization of the Baxter-Wu model, employing results obtained by transfer matrix calculations of the magnetic scaling dimension and the free energy. While the pure critical Baxter-Wu model displays the critical behavior of the four-state Potts fixed point in two dimensions, in the sense that logarithmic corrections are absent, the introduction of different couplings in the up- and down triangles moves the model away from this fixed point, so that logarithmic corrections appear. Real couplings move the model into the first-order range, away from the behavior displayed by the nearest-neighbor, four-state Potts model. We also use complex couplings, which bring the model in the opposite direction characterized by the same type of logarithmic corrections as present in the four-state Potts model. Our finite-size analysis confirms in detail the existing renormalization theory describing the immediate vicinity of the four-state Potts fixed point.
Positive solutions of fractional integral equations by the technique of measure of noncompactness.
Nashine, Hemant Kumar; Arab, Reza; Agarwal, Ravi P; De la Sen, Manuel
2017-01-01
In the present study, we work on the problem of the existence of positive solutions of fractional integral equations by means of measures of noncompactness in association with Darbo's fixed point theorem. To achieve the goal, we first establish new fixed point theorems using a new contractive condition of the measure of noncompactness in Banach spaces. By doing this we generalize Darbo's fixed point theorem along with some recent results of (Aghajani et al. (J. Comput. Appl. Math. 260:67-77, 2014)), (Aghajani et al. (Bull. Belg. Math. Soc. Simon Stevin 20(2):345-358, 2013)), (Arab (Mediterr. J. Math. 13(2):759-773, 2016)), (Banaś et al. (Dyn. Syst. Appl. 18:251-264, 2009)), and (Samadi et al. (Abstr. Appl. Anal. 2014:852324, 2014)). We also derive corresponding coupled fixed point results. Finally, we give an illustrative example to verify the effectiveness and applicability of our results.
Renormalization group fixed points of foliated gravity-matter systems
NASA Astrophysics Data System (ADS)
Biemans, Jorn; Platania, Alessia; Saueressig, Frank
2017-05-01
We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) "time"- direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton's constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d g d λ . We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.
Compatible orders and fermion-induced emergent symmetry in Dirac systems
NASA Astrophysics Data System (ADS)
Janssen, Lukas; Herbut, Igor F.; Scherer, Michael M.
2018-01-01
We study the quantum multicritical point in a (2+1)-dimensional Dirac system between the semimetallic phase and two ordered phases that are characterized by anticommuting mass terms with O (N1) and O (N2) symmetries, respectively. Using ɛ expansion around the upper critical space-time dimension of four, we demonstrate the existence of a stable renormalization-group fixed point, enabling a direct and continuous transition between the two ordered phases directly at the multicritical point. This point is found to be characterized by an emergent O (N1+N2) symmetry for arbitrary values of N1 and N2 and fermion flavor numbers Nf as long as the corresponding representation of the Clifford algebra exists. Small O (N ) -breaking perturbations near the chiral O (N ) fixed point are therefore irrelevant. This result can be traced back to the presence of gapless Dirac degrees of freedom at criticality, and it is in clear contrast to the purely bosonic O (N ) fixed point, which is stable only when N <3 . As a by-product, we obtain predictions for the critical behavior of the chiral O (N ) universality classes for arbitrary N and fermion flavor number Nf. Implications for critical Weyl and Dirac systems in 3+1 dimensions are also briefly discussed.
Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goryainov, V V
2015-01-31
The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less
Mardanov, M J; Mahmudov, N I; Sharifov, Y A
2014-01-01
We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 < α ≤ 1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.
NASA Astrophysics Data System (ADS)
Nezir, Veysel; Mustafa, Nizami
2017-04-01
In 2008, P.K. Lin provided the first example of a nonreflexive space that can be renormed to have fixed point property for nonexpansive mappings. This space was the Banach space of absolutely summable sequences l1 and researchers aim to generalize this to c0, Banach space of null sequences. Before P.K. Lin's intriguing result, in 1979, Goebel and Kuczumow showed that there is a large class of non-weak* compact closed, bounded, convex subsets of l1 with fixed point property for nonexpansive mappings. Then, P.K. Lin inspired by Goebel and Kuczumow's ideas to give his result. Similarly to P.K. Lin's study, Hernández-Linares worked on L1 and in his Ph.D. thesis, supervisored under Maria Japón, showed that L1 can be renormed to have fixed point property for affine nonexpansive mappings. Then, related questions for c0 have been considered by researchers. Recently, Nezir constructed several equivalent norms on c0 and showed that there are non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings. In this study, we construct a family of equivalent norms containing those developed by Nezir as well and show that there exists a large class of non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings.
Alignment Solution for CT Image Reconstruction using Fixed Point and Virtual Rotation Axis.
Jun, Kyungtaek; Yoon, Seokhwan
2017-01-25
Since X-ray tomography is now widely adopted in many different areas, it becomes more crucial to find a robust routine of handling tomographic data to get better quality of reconstructions. Though there are several existing techniques, it seems helpful to have a more automated method to remove the possible errors that hinder clearer image reconstruction. Here, we proposed an alternative method and new algorithm using the sinogram and the fixed point. An advanced physical concept of Center of Attenuation (CA) was also introduced to figure out how this fixed point is applied to the reconstruction of image having errors we categorized in this article. Our technique showed a promising performance in restoring images having translation and vertical tilt errors.
Predator-prey models with component Allee effect for predator reproduction.
Terry, Alan J
2015-12-01
We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator-prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.
77 FR 16434 - Revocation of Multiple Domestic, Alaskan, and Hawaiian Compulsory Reporting Points
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... previously removed from service and taken out of the FAA aeronautical database. The FAA is removing these... FAA's aeronautical database. This will avoid confusion and eliminate safety issues with existing fixes... and not contained in the FAA's aeronautical database as reporting points. The reporting points...
Hypercuboidal renormalization in spin foam quantum gravity
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Steinhaus, Sebastian
2017-06-01
In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.
NASA Technical Reports Server (NTRS)
Varaiya, P. P.
1972-01-01
General discussion of the theory of differential games with two players and zero sum. Games starting at a fixed initial state and ending at a fixed final time are analyzed. Strategies for the games are defined. The existence of saddle values and saddle points is considered. A stochastic version of a differential game is used to examine the synthesis problem.
Nonminimal hints for asymptotic safety
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Lippoldt, Stefan; Skrinjar, Vedran
2018-01-01
In the asymptotic-safety scenario for gravity, nonzero interactions are present in the ultraviolet. This property should also percolate into the matter sector. Symmetry-based arguments suggest that nonminimal derivative interactions of scalars with curvature tensors should therefore be present in the ultraviolet regime. We perform a nonminimal test of the viability of the asymptotic-safety scenario by working in a truncation of the renormalization group flow, where we discover the existence of an interacting fixed point for a corresponding nonminimal coupling. The back-coupling of such nonminimal interactions could in turn destroy the asymptotically safe fixed point in the gravity sector. As a key finding, we observe nontrivial indications of stability of the fixed-point properties under the impact of nonminimal derivative interactions, further strengthening the case for asymptotic safety in gravity-matter systems.
NASA Astrophysics Data System (ADS)
Pearce, Jonathan V.; Gisby, John A.; Steur, Peter P. M.
2016-08-01
A knowledge of the effect of impurities at the level of parts per million on the freezing temperature of very pure metals is essential for realisation of ITS-90 fixed points. New information has become available for use with the thermodynamic modelling software MTDATA, permitting calculation of liquidus slopes, in the low concentration limit, of a wider range of binary alloy systems than was previously possible. In total, calculated values for 536 binary systems are given. In addition, new experimental determinations of phase diagrams, in the low impurity concentration limit, have recently appeared. All available data have been combined to provide a comprehensive set of liquidus slopes for impurities in ITS-90 metal fixed points. In total, liquidus slopes for 838 systems are tabulated for the fixed points Hg, Ga, In, Sn, Zn, Al, Ag, Au, and Cu. It is shown that the value of the liquidus slope as a function of impurity element atomic number can be approximated using a simple formula, and good qualitative agreement with the existing data is observed for the fixed points Al, Ag, Au and Cu, but curiously the formula is not applicable to the fixed points Hg, Ga, In, Sn, and Zn. Some discussion is made concerning the influence of oxygen on the liquidus slopes, and some calculations using MTDATA are discussed. The BIPM’s consultative committee for thermometry has long recognised that the sum of individual estimates method is the ideal approach for assessing uncertainties due to impurities, but the community has been largely powerless to use the model due to lack of data. Here, not only is data provided, but a simple model is given to enable known thermophysical data to be used directly to estimate impurity effects for a large fraction of the ITS-90 fixed points.
The computational core and fixed point organization in Boolean networks
NASA Astrophysics Data System (ADS)
Correale, L.; Leone, M.; Pagnani, A.; Weigt, M.; Zecchina, R.
2006-03-01
In this paper, we analyse large random Boolean networks in terms of a constraint satisfaction problem. We first develop an algorithmic scheme which allows us to prune simple logical cascades and underdetermined variables, returning thereby the computational core of the network. Second, we apply the cavity method to analyse the number and organization of fixed points. We find in particular a phase transition between an easy and a complex regulatory phase, the latter being characterized by the existence of an exponential number of macroscopically separated fixed point clusters. The different techniques developed are reinterpreted as algorithms for the analysis of single Boolean networks, and they are applied in the analysis of and in silico experiments on the gene regulatory networks of baker's yeast (Saccharomyces cerevisiae) and the segment-polarity genes of the fruitfly Drosophila melanogaster.
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2013-04-01
In this paper, a mode of using the Dynamic Renormalization Group (DRG) method is suggested in order to cope with inconsistent results obtained when applying it to a continuous family of one-dimensional nonlocal models. The key observation is that the correct fixed-point dynamical system has to be identified during the analysis in order to account for all the relevant terms that are generated under renormalization. This is well established for static problems, however poorly implemented in dynamical ones. An application of this approach to a nonlocal extension of the Kardar-Parisi-Zhang equation resolves certain problems in one-dimension. Namely, obviously problematic predictions are eliminated and the existing exact analytic results are recovered.
A Machine-Checked Proof of A State-Space Construction Algorithm
NASA Technical Reports Server (NTRS)
Catano, Nestor; Siminiceanu, Radu I.
2010-01-01
This paper presents the correctness proof of Saturation, an algorithm for generating state spaces of concurrent systems, implemented in the SMART tool. Unlike the Breadth First Search exploration algorithm, which is easy to understand and formalise, Saturation is a complex algorithm, employing a mutually-recursive pair of procedures that compute a series of non-trivial, nested local fixed points, corresponding to a chaotic fixed point strategy. A pencil-and-paper proof of Saturation exists, but a machine checked proof had never been attempted. The key element of the proof is the characterisation theorem of saturated nodes in decision diagrams, stating that a saturated node represents a set of states encoding a local fixed-point with respect to firing all events affecting only the node s level and levels below. For our purpose, we have employed the Prototype Verification System (PVS) for formalising the Saturation algorithm, its data structures, and for conducting the proofs.
How nonperturbative is the infrared regime of Landau gauge Yang-Mills correlators?
NASA Astrophysics Data System (ADS)
Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N.
2017-07-01
We study the Landau gauge correlators of Yang-Mills fields for infrared Euclidean momenta in the context of a massive extension of the Faddeev-Popov Lagrangian which, we argue, underlies a variety of continuum approaches. Standard (perturbative) renormalization group techniques with a specific, infrared-safe renormalization scheme produce so-called decoupling and scaling solutions for the ghost and gluon propagators, which correspond to nontrivial infrared fixed points. The decoupling fixed point is infrared stable and weakly coupled, while the scaling fixed point is unstable and generically strongly coupled except for low dimensions d →2 . Under the assumption that such a scaling fixed point exists beyond one-loop order, we find that the corresponding ghost and gluon scaling exponents are, respectively, 2 αF=2 -d and 2 αG=d at all orders of perturbation theory in the present renormalization scheme. We discuss the relation between the ghost wave function renormalization, the gluon screening mass, the scale of spectral positivity violation, and the gluon mass parameter. We also show that this scaling solution does not realize the standard Becchi-Rouet-Stora-Tyutin symmetry of the Faddeev-Popov Lagrangian. Finally, we discuss our findings in relation to the results of nonperturbative continuum methods.
Stochastic oscillations in models of epidemics on a network of cities
NASA Astrophysics Data System (ADS)
Rozhnova, G.; Nunes, A.; McKane, A. J.
2011-11-01
We carry out an analytic investigation of stochastic oscillations in a susceptible-infected-recovered model of disease spread on a network of n cities. In the model a fraction fjk of individuals from city k commute to city j, where they may infect, or be infected by, others. Starting from a continuous-time Markov description of the model the deterministic equations, which are valid in the limit when the population of each city is infinite, are recovered. The stochastic fluctuations about the fixed point of these equations are derived by use of the van Kampen system-size expansion. The fixed point structure of the deterministic equations is remarkably simple: A unique nontrivial fixed point always exists and has the feature that the fraction of susceptible, infected, and recovered individuals is the same for each city irrespective of its size. We find that the stochastic fluctuations have an analogously simple dynamics: All oscillations have a single frequency, equal to that found in the one-city case. We interpret this phenomenon in terms of the properties of the spectrum of the matrix of the linear approximation of the deterministic equations at the fixed point.
Jeribi, Aref; Krichen, Bilel; Mefteh, Bilel
2013-01-01
In the paper [A. Ben Amar, A. Jeribi, and B. Krichen, Fixed point theorems for block operator matrix and an application to a structured problem under boundary conditions of Rotenberg's model type, to appear in Math. Slovaca. (2014)], the existence of solutions of the two-dimensional boundary value problem (1) and (2) was discussed in the product Banach space L(p)×L(p) for p∈(1, ∞). Due to the lack of compactness on L1 spaces, the analysis did not cover the case p=1. The purpose of this work is to extend the results of Ben Amar et al. to the case p=1 by establishing new variants of fixed-point theorems for a 2×2 operator matrix, involving weakly compact operators.
NASA Astrophysics Data System (ADS)
Lahoche, Vincent; Ousmane Samary, Dine
2017-02-01
This paper is focused on the functional renormalization group applied to the T56 tensor model on the Abelian group U (1 ) with closure constraint. For the first time, we derive the flow equations for the couplings and mass parameters in a suitable truncation around the marginal interactions with respect to the perturbative power counting. For the second time, we study the behavior around the Gaussian fixed point, and show that the theory is nonasymptotically free. Finally, we discuss the UV completion of the theory. We show the existence of several nontrivial fixed points, study the behavior of the renormalization group flow around them, and point out evidence in favor of an asymptotically safe theory.
Dynamics of a durable commodity market involving trade at disequilibrium
NASA Astrophysics Data System (ADS)
Panchuk, A.; Puu, T.
2018-05-01
The present work considers a simple model of a durable commodity market involving two agents who trade stocks of two different types. Stock commodities, in contrast to flow commodities, remain on the market from period to period and, consequently, there is neither unique demand function nor unique supply function exists. We also set up exact conditions for trade at disequilibrium, the issue being usually neglected, though a fact of reality. The induced iterative system has infinite number of fixed points and path dependent dynamics. We show that a typical orbit is either attracted to one of the fixed points or eventually sticks at a no-trade point. For the latter the stock distribution always remains the same while the price displays periodic or chaotic oscillations.
NASA Astrophysics Data System (ADS)
Messaoud, Deghdak
2010-11-01
In this paper, we study the existence of equilibrium in non-cooperative game with fuzzy parameters. We generalize te results of Larbani and Kacher(2008, 2009) in infinite dimentional spaces. The proof is based on the Browder-Fan fixed point theorem.
Nontrivial Critical Fixed Point for Replica-Symmetry-Breaking Transitions.
Charbonneau, Patrick; Yaida, Sho
2017-05-26
The transformation of the free-energy landscape from smooth to hierarchical is one of the richest features of mean-field disordered systems. A well-studied example is the de Almeida-Thouless transition for spin glasses in a magnetic field, and a similar phenomenon-the Gardner transition-has recently been predicted for structural glasses. The existence of these replica-symmetry-breaking phase transitions has, however, long been questioned below their upper critical dimension, d_{u}=6. Here, we obtain evidence for the existence of these transitions in d
Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc
NASA Astrophysics Data System (ADS)
Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.
2017-01-01
Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.
NASA Astrophysics Data System (ADS)
Bhattacharya, Somnath; Mukherjee, Pradip; Roy, Amit Singha; Saha, Anirban
2018-03-01
We consider a scalar field which is generally non-minimally coupled to gravity and has a characteristic cubic Galilean-like term and a generic self-interaction, as a candidate of a Dark Energy model. The system is dynamically analyzed and novel fixed points with perturbative stability are demonstrated. Evolution of the system is numerically studied near a novel fixed point which owes its existence to the Galileon character of the model. It turns out that demanding the stability of this novel fixed point puts a strong restriction on the allowed non-minimal coupling and the choice of the self-interaction. The evolution of the equation of state parameter is studied, which shows that our model predicts an accelerated universe throughout and the phantom limit is only approached closely but never crossed. Our result thus extends the findings of Coley, Dynamical systems and cosmology. Kluwer Academic Publishers, Boston (2013) for more general NMC than linear and quadratic couplings.
NASA Astrophysics Data System (ADS)
Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.
2016-03-01
We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.
NASA Astrophysics Data System (ADS)
Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng
2018-06-01
We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.
Properties of the Tent map for decimal fractions with fixed precision
NASA Astrophysics Data System (ADS)
Chetverikov, V. M.
2018-01-01
The one-dimensional discrete Tent map is a well-known example of a map whose fixed points are all unstable on the segment [0,1]. This map leads to the positivity of the Lyapunov exponent for the corresponding recurrent sequence. Therefore in a situation of general position, this sequence must demonstrate the properties of deterministic chaos. However if the first term of the recurrence sequence is taken as a decimal fraction with a fixed number “k” of digits after the decimal point and all calculations are carried out accurately, then the situation turns out to be completely different. In this case, first, the Tent map does not lead to an increase in significant digits in the terms of the sequence, and secondly, demonstrates the existence of a finite number of eventually periodic orbits, which are attractors for all other decimal numbers with the number of significant digits not exceeding “k”.
Global Classical Solutions for MHD System
NASA Astrophysics Data System (ADS)
Casella, E.; Secchi, P.; Trebeschi, P.
In this paper we study the equations of magneto-hydrodynamics for a 2D incompressible ideal fluid in the exterior domain and in the half-plane. We prove the existence of a global classical solution in Hölder spaces, by applying Shauder fixed point theorem.
Floquet stability analysis of the longitudinal dynamics of two hovering model insects
Wu, Jiang Hao; Sun, Mao
2012-01-01
Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980
Quantum Electrodynamics in d=3 from the ε Expansion.
Di Pietro, Lorenzo; Komargodski, Zohar; Shamir, Itamar; Stamou, Emmanuel
2016-04-01
We study quantum electrodynamics in d=3 coupled to N_{f} flavors of fermions. The theory flows to an IR fixed point for N_{f} larger than some critical number N_{f}^{c}. For N_{f}≤N_{f}^{c}, chiral-symmetry breaking is believed to take place. In analogy with the Wilson-Fisher description of the critical O(N) models in d=3, we make use of the existence of a fixed point in d=4-2ε to study the three-dimensional conformal theory. We compute, in perturbation theory, the IR dimensions of fermion bilinear and quadrilinear operators. For small N_{f}, a quadrilinear operator can become relevant in the IR and destabilize the fixed point. Therefore, the epsilon expansion can be used to estimate N_{f}^{c}. An interesting novelty compared to the O(N) models is that the theory in d=3 has an enhanced symmetry due to the structure of 3D spinors. We identify the operators in d=4-2ε that correspond to the additional conserved currents at d=3 and compute their infrared dimensions.
Physical stress, mass, and energy for non-relativistic matter
NASA Astrophysics Data System (ADS)
Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.
2017-06-01
For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.
Analysis of Energy Conservation Alternatives for Standard Army Building
1983-03-01
existing system because of the constant cooling and heating required. The fixed set-point with a temperature ecnomizer me, ECIP criteria in the colder... essential to completing other portions of the project. Care must, be taken to ensure that energy savings are not duplicated between projects or portions of
Existence of a coupled system of fractional differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Rabha W.; Siri, Zailan
2015-10-22
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.
Existence and global attractivity of unique positive periodic solution for a model of hematopoiesis
NASA Astrophysics Data System (ADS)
Liu, Guirong; Yan, Jurang; Zhang, Fengqin
2007-10-01
In this paper, we consider the generalized model of hematopoiesis By using a fixed point theorem, some criteria are established for the existence of the unique positive [omega]-periodic solution of the above equation. In particular, we not only give the conclusion of convergence of xk to , where {xk} is a successive sequence, but also show that is a global attractor of all other positive solutions.
Shen, Chongfei; Liu, Hongtao; Xie, Xb; Luk, Keith Dk; Hu, Yong
2007-01-01
Adaptive noise canceller (ANC) has been used to improve signal to noise ratio (SNR) of somsatosensory evoked potential (SEP). In order to efficiently apply the ANC in hardware system, fixed-point algorithm based ANC can achieve fast, cost-efficient construction, and low-power consumption in FPGA design. However, it is still questionable whether the SNR improvement performance by fixed-point algorithm is as good as that by floating-point algorithm. This study is to compare the outputs of ANC by floating-point and fixed-point algorithm ANC when it was applied to SEP signals. The selection of step-size parameter (micro) was found different in fixed-point algorithm from floating-point algorithm. In this simulation study, the outputs of fixed-point ANC showed higher distortion from real SEP signals than that of floating-point ANC. However, the difference would be decreased with increasing micro value. In the optimal selection of micro, fixed-point ANC can get as good results as floating-point algorithm.
Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.
Shah, Kamal; Khan, Rahmat Ali
2016-01-01
In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.
Conformal window 2.0: The large Nf safe story
NASA Astrophysics Data System (ADS)
Antipin, Oleg; Sannino, Francesco
2018-06-01
We extend the phase diagram of SU(N) gauge-fermion theories as a function of the number of flavors and colors to the region in which asymptotic freedom is lost. We argue, using large Nf results, for the existence of an ultraviolet interacting fixed point at a sufficiently large number of flavors opening up to a second ultraviolet conformal window in the number of flavors vs colors phase diagram. We first review the state-of-the-art for the large Nf beta function and then estimate the lower boundary of the ultraviolet window. The theories belonging to this new region are examples of safe non-Abelian quantum electrodynamics, termed here safe QCD. Therefore, according to Wilson, they are fundamental. An important critical quantity is the fermion mass anomalous dimension at the ultraviolet fixed point that we determine at leading order in 1 /Nf . We discover that its value is comfortably below the bootstrap bound. We also investigate the Abelian case and find that at the potential ultraviolet fixed point the related fermion mass anomalous dimension has a singular behavior suggesting that a more careful investigation of its ultimate fate is needed.
Wavefronts for a global reaction-diffusion population model with infinite distributed delay
NASA Astrophysics Data System (ADS)
Weng, Peixuan; Xu, Zhiting
2008-09-01
We consider a global reaction-diffusion population model with infinite distributed delay which includes models of Nicholson's blowflies and hematopoiesis derived by Gurney, Mackey and Glass, respectively. The existence of monotone wavefronts is derived by using the abstract settings of functional differential equations and Schauder fixed point theory.
Strong Convergence of Iteration Processes for Infinite Family of General Extended Mappings
NASA Astrophysics Data System (ADS)
Hussein Maibed, Zena
2018-05-01
The aim of this paper, we introduce a concept of general extended mapping which is independent of nonexpansive mapping and give an iteration process of families of quasi nonexpansive and of general extended mappings. Also, the existence of common fixed point are studied for these process in the Hilbert spaces.
Is scale-invariance in gauge-Yukawa systems compatible with the graviton?
NASA Astrophysics Data System (ADS)
Christiansen, Nicolai; Eichhorn, Astrid; Held, Aaron
2017-10-01
We explore whether perturbative interacting fixed points in matter systems can persist under the impact of quantum gravity. We first focus on semisimple gauge theories and show that the leading order gravity contribution evaluated within the functional Renormalization Group framework preserves the perturbative fixed-point structure in these models discovered in [J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D 93, 045009 (2016)., 10.1103/PhysRevD.93.045009]. We highlight that the quantum-gravity contribution alters the scaling dimension of the gauge coupling, such that the system exhibits an effective dimensional reduction. We secondly explore the effect of metric fluctuations on asymptotically safe gauge-Yukawa systems which feature an asymptotically safe fixed point [D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014) 178., 10.1007/JHEP12(2014)178]. The same effective dimensional reduction that takes effect in pure gauge theories also impacts gauge-Yukawa systems. There, it appears to lead to a split of the degenerate free fixed point into an interacting infrared attractive fixed point and a partially ultraviolet attractive free fixed point. The quantum-gravity induced infrared fixed point moves towards the asymptotically safe fixed point of the matter system, and annihilates it at a critical value of the gravity coupling. Even after that fixed-point annihilation, graviton effects leave behind new partially interacting fixed points for the matter sector.
Jiang, Jifa; Niu, Lei
2017-04-01
We study the asymptotic behavior of the competitive Leslie/Gower model (map) [Formula: see text]It is shown that T unconditionally admits a globally attracting 1-codimensional invariant hypersurface [Formula: see text], called carrying simplex, such that every nontrivial orbit is asymptotic to one in [Formula: see text]. More general and easily checked conditions to guarantee the existence of carrying simplex for competitive maps are provided. An equivalence relation is defined relative to local stability of fixed points on [Formula: see text] (the boundary of [Formula: see text]) on the space of all three-dimensional Leslie/Gower models. Using a formula on the sum of the indices of all fixed points on the carrying simplex for three-dimensional maps, we list the 33 stable equivalence classes in terms of simple inequalities on the parameters [Formula: see text] and [Formula: see text] and draw their orbits on [Formula: see text]. In classes 1-18, every nontrivial orbit tends to a fixed point on [Formula: see text]. In classes 19-25, each map possesses a unique positive fixed point which is a saddle on [Formula: see text], and hence Neimark-Sacker bifurcations do not occur. Neimark-Sacker bifurcation does occur within each of classes 26-31, while it does not occur in class 32. Each map from class 27 admits a heteroclinic cycle, which forms the boundary of [Formula: see text]. The criteria on the stability of heteroclinic cycles are also given. This classification makes it possible to further investigate various dynamical properties in respective class.
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
NASA Astrophysics Data System (ADS)
Niknia, I.; Trevizoli, P. V.; Govindappa, P.; Christiaanse, T. V.; Teyber, R.; Rowe, A.
2018-05-01
First order transition material (FOM) usually exhibits magnetocaloric effects in a narrow temperature range which complicates their use in an active magnetic regenerator (AMR) refrigerator. In addition, the magnetocaloric effect in first order materials can vary with field and temperature history of the material. This study examines the behavior of a MnFe(P,Si) FOM sample in an AMR cycle using a numerical model and experimental measurements. For certain operating conditions, multiple points of equilibrium (MPE) exist for a fixed hot rejection temperature. Stable and unstable points of equilibriums (PEs) are identified and the impacts of heat loads, operating conditions, and configuration losses on the number of PEs are discussed. It is shown that the existence of multiple PEs can affect the performance of an AMR significantly for certain operating conditions. In addition, the points where MPEs exist appear to be linked to the device itself, not just the material, suggesting the need to layer a regenerator in a way that avoids MPE conditions and to layer with a specific device in mind.
The information capacity of hypercycles.
Silvestre, Daniel A M M; Fontanari, José F
2008-10-21
Hypercycles are information integration systems which are thought to overcome the information crisis of prebiotic evolution by ensuring the coexistence of several short templates. For imperfect template replication, we derive a simple expression for the maximum number of distinct templates n(m) that can coexist in a hypercycle and show that it is a decreasing function of the length L of the templates. In the case of high replication accuracy we find that the product n(m)L tends to a constant value, limiting thus the information content of the hypercycle. Template coexistence is achieved either as a stationary equilibrium (stable fixed point) or a stable periodic orbit in which the total concentration of functional templates is nonzero. For the hypercycle system studied here we find numerical evidence that the existence of an unstable fixed point is a necessary condition for the presence of periodic orbits.
Dynamical analysis of continuous higher-order hopfield networks for combinatorial optimization.
Atencia, Miguel; Joya, Gonzalo; Sandoval, Francisco
2005-08-01
In this letter, the ability of higher-order Hopfield networks to solve combinatorial optimization problems is assessed by means of a rigorous analysis of their properties. The stability of the continuous network is almost completely clarified: (1) hyperbolic interior equilibria, which are unfeasible, are unstable; (2) the state cannot escape from the unitary hypercube; and (3) a Lyapunov function exists. Numerical methods used to implement the continuous equation on a computer should be designed with the aim of preserving these favorable properties. The case of nonhyperbolic fixed points, which occur when the Hessian of the target function is the null matrix, requires further study. We prove that these nonhyperbolic interior fixed points are unstable in networks with three neurons and order two. The conjecture that interior equilibria are unstable in the general case is left open.
Banach spaces that realize minimal fillings
NASA Astrophysics Data System (ADS)
Bednov, B. B.; Borodin, P. A.
2014-04-01
It is proved that a real Banach space realizes minimal fillings for all its finite subsets (a shortest network spanning a fixed finite subset always exists and has the minimum possible length) if and only if it is a predual of L_1. The spaces L_1 are characterized in terms of Steiner points (medians). Bibliography: 25 titles.
Fixing Teacher Pensions: Is It Enough to Adjust Existing Plans?
ERIC Educational Resources Information Center
Costrell, Robert M.; Podgursky, Michael; Weller, Christian
2011-01-01
Teacher benefits, once a sleepy question primarily of interest to actuaries, have become a flash point in the education debate. With individual states on the hook for tens or hundreds of millions in unfunded pension and health insurance obligations, state leaders are trying to determine the severity of the situation and the appropriate response.…
Highly eccentric hip-hop solutions of the 2 N-body problem
NASA Astrophysics Data System (ADS)
Barrabés, Esther; Cors, Josep M.; Pinyol, Conxita; Soler, Jaume
2010-02-01
We show the existence of families of hip-hop solutions in the equal-mass 2 N-body problem which are close to highly eccentric planar elliptic homographic motions of 2 N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ɛ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ɛ≠0, the topological transversality persists and Brouwer’s fixed point theorem shows the existence of this kind of solutions in the full system.
Wall shear stress fixed points in blood flow
NASA Astrophysics Data System (ADS)
Arzani, Amirhossein; Shadden, Shawn
2017-11-01
Patient-specific computational fluid dynamics produces large datasets, and wall shear stress (WSS) is one of the most important parameters due to its close connection with the biological processes at the wall. While some studies have investigated WSS vectorial features, the WSS fixed points have not received much attention. In this talk, we will discuss the importance of WSS fixed points from three viewpoints. First, we will review how WSS fixed points relate to the flow physics away from the wall. Second, we will discuss how certain types of WSS fixed points lead to high biochemical surface concentration in cardiovascular mass transport problems. Finally, we will introduce a new measure to track the exposure of endothelial cells to WSS fixed points.
Effect of Impurities on the Freezing Point of Zinc
NASA Astrophysics Data System (ADS)
Sun, Jianping; Rudtsch, Steffen; Niu, Yalu; Zhang, Lin; Wang, Wei; Den, Xiaolong
2017-03-01
The knowledge of the liquidus slope of impurities in fixed-point metal defined by the International Temperature Scale of 1990 is important for the estimation of uncertainties and correction of fixed point with the sum of individual estimates method. Great attentions are paid to the effect of ultra-trace impurities on the freezing point of zinc in the National Institute of Metrology. In the present work, the liquidus slopes of Ga-Zn, Ge-Zn were measured with the slim fixed-point cell developed through the doping experiments, and the temperature characteristics of the phase diagram of Fe-Zn were furthermore investigated. A quasi-adiabatic Zn fixed-point cell was developed with the thermometer well surrounded by the crucible with the pure metal, and the temperature uniformity of less than 20 mK in the region where the metal is located was obtained. The previous doping experiment of Pb-Zn with slim fixed-point cell was checked with quasi-adiabatic Zn fixed-point cell, and the result supports the previous liquidus slope measured with the traditional fixed-point realization.
The scalar glueball operator, the a-theorem, and the onset of conformality
NASA Astrophysics Data System (ADS)
Nunes da Silva, T.; Pallante, E.; Robroek, L.
2018-03-01
We show that the anomalous dimension γG of the scalar glueball operator contains information on the mechanism that leads to the onset of conformality at the lower edge of the conformal window in a non-Abelian gauge theory. In particular, it distinguishes whether the merging of an UV and an IR fixed point - the simplest mechanism associated to a conformal phase transition and preconformal scaling - does or does not occur. At the same time, we shed light on new analogies between QCD and its supersymmetric version. In SQCD, we derive an exact relation between γG and the mass anomalous dimension γm, and we prove that the SQCD exact beta function is incompatible with merging as a consequence of the a-theorem; we also derive the general conditions that the latter imposes on the existence of fixed points, and prove the absence of an UV fixed point at nonzero coupling above the conformal window of SQCD. Perhaps not surprisingly, we then show that an exact relation between γG and γm, fully analogous to SQCD, holds for the massless Veneziano limit of large-N QCD. We argue, based on the latter relation, the a-theorem, perturbation theory and physical arguments, that the incompatibility with merging may extend to QCD.
Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions
NASA Astrophysics Data System (ADS)
Hussain, N.
2008-02-01
The common fixed point theorems, similar to those of Ciric [Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. (Beograd) (N.S.) 49 (1991) 174-178; Lj.B. Ciric, On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29 (1993) 145-152; Lj.B. Ciric, On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449-458], Fisher and Sessa [B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Internat. J. Math. Math. Sci. 9 (1986) 23-28], Jungck [G. Jungck, On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13 (1990) 497-500] and Mukherjee and Verma [R.N. Mukherjee, V. Verma, A note on fixed point theorem of Gregus, Math. Japon. 33 (1988) 745-749], are proved for a Banach operator pair. As applications, common fixed point and approximation results for Banach operator pair satisfying Ciric type contractive conditions are obtained without the assumption of linearity or affinity of either T or I. Our results unify and generalize various known results to a more general class of noncommuting mappings.
Miniature Fixed Points as Temperature Standards for In Situ Calibration of Temperature Sensors
NASA Astrophysics Data System (ADS)
Hao, X. P.; Sun, J. P.; Xu, C. Y.; Wen, P.; Song, J.; Xu, M.; Gong, L. Y.; Ding, L.; Liu, Z. L.
2017-06-01
Miniature Ga and Ga-In alloy fixed points as temperature standards are developed at National Institute of Metrology, China for the in situ calibration of temperature sensors. A quasi-adiabatic vacuum measurement system is constructed to study the phase-change plateaus of the fixed points. The system comprises a high-stability bath, a quasi-adiabatic vacuum chamber and a temperature control and measurement system. The melting plateau of the Ga fixed point is longer than 2 h at 0.008 W. The standard deviation of the melting temperature of the Ga and Ga-In alloy fixed points is better than 2 mK. The results suggest that the melting temperature of the Ga or Ga-In alloy fixed points is linearly related with the heating power.
Wall shear stress fixed points in cardiovascular fluid mechanics.
Arzani, Amirhossein; Shadden, Shawn C
2018-05-17
Complex blood flow in large arteries creates rich wall shear stress (WSS) vectorial features. WSS acts as a link between blood flow dynamics and the biology of various cardiovascular diseases. WSS has been of great interest in a wide range of studies and has been the most popular measure to correlate blood flow to cardiovascular disease. Recent studies have emphasized different vectorial features of WSS. However, fixed points in the WSS vector field have not received much attention. A WSS fixed point is a point on the vessel wall where the WSS vector vanishes. In this article, WSS fixed points are classified and the aspects by which they could influence cardiovascular disease are reviewed. First, the connection between WSS fixed points and the flow topology away from the vessel wall is discussed. Second, the potential role of time-averaged WSS fixed points in biochemical mass transport is demonstrated using the recent concept of Lagrangian WSS structures. Finally, simple measures are proposed to quantify the exposure of the endothelial cells to WSS fixed points. Examples from various arterial flow applications are demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical... Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's name and address. Transmitting station...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical... Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's name and address. Transmitting station...
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... to private operational fixed point-to-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave systems, with a channel greater than or equal to 50 KHz bandwidth...
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...
Seeking fixed points in multiple coupling scalar theories in the ɛ expansion
NASA Astrophysics Data System (ADS)
Osborn, Hugh; Stergiou, Andreas
2018-05-01
Fixed points for scalar theories in 4 - ɛ, 6 - ɛ and 3 - ɛ dimensions are discussed. It is shown how a large range of known fixed points for the four dimensional case can be obtained by using a general framework with two couplings. The original maximal symmetry, O( N), is broken to various subgroups, both discrete and continuous. A similar discussion is applied to the six dimensional case. Perturbative applications of the a-theorem are used to help classify potential fixed points. At lowest order in the ɛ-expansion it is shown that at fixed points there is a lower bound for a which is saturated at bifurcation points.
A general optimality criteria algorithm for a class of engineering optimization problems
NASA Astrophysics Data System (ADS)
Belegundu, Ashok D.
2015-05-01
An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
Optimal Harvesting in a Periodic Food Chain Model with Size Structures in Predators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng-Qin, E-mail: zhafq@263.net; Liu, Rong; Chen, Yuming, E-mail: ychen@wlu.ca
In this paper, we investigate a periodic food chain model with harvesting, where the predators have size structures and are described by first-order partial differential equations. First, we establish the existence of a unique non-negative solution by using the Banach fixed point theorem. Then, we provide optimality conditions by means of normal cone and adjoint system. Finally, we derive the existence of an optimal strategy by means of Ekeland’s variational principle. Here the objective functional represents the net economic benefit yielded from harvesting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xuetao; Zhu, Quanxin, E-mail: zqx22@126.com
2015-12-15
In this paper, we are mainly concerned with a class of stochastic neutral functional differential equations of Sobolev-type with Poisson jumps. Under two different sets of conditions, we establish the existence of the mild solution by applying the Leray-Schauder alternative theory and the Sadakovskii’s fixed point theorem, respectively. Furthermore, we use the Bihari’s inequality to prove the Osgood type uniqueness. Also, the mean square exponential stability is investigated by applying the Gronwall inequality. Finally, two examples are given to illustrate the theory results.
Power Laws, Scale Invariance and the Generalized Frobenius Series:
NASA Astrophysics Data System (ADS)
Visser, Matt; Yunes, Nicolas
We present a self-contained formalism for calculating the background solution, the linearized solutions and a class of generalized Frobenius-like solutions to a system of scale-invariant differential equations. We first cast the scale-invariant model into its equidimensional and autonomous forms, find its fixed points, and then obtain power-law background solutions. After linearizing about these fixed points, we find a second linearized solution, which provides a distinct collection of power laws characterizing the deviations from the fixed point. We prove that generically there will be a region surrounding the fixed point in which the complete general solution can be represented as a generalized Frobenius-like power series with exponents that are integer multiples of the exponents arising in the linearized problem. While discussions of the linearized system are common, and one can often find a discussion of power-series with integer exponents, power series with irrational (indeed complex) exponents are much rarer in the extant literature. The Frobenius-like series we encounter can be viewed as a variant of the rarely-discussed Liapunov expansion theorem (not to be confused with the more commonly encountered Liapunov functions and Liapunov exponents). As specific examples we apply these ideas to Newtonian and relativistic isothermal stars and construct two separate power series with the overlapping radius of convergence. The second of these power series solutions represents an expansion around "spatial infinity," and in realistic models it is this second power series that gives information about the stellar core, and the damped oscillations in core mass and core radius as the central pressure goes to infinity. The power-series solutions we obtain extend classical results; as exemplified for instance by the work of Lane, Emden, and Chandrasekhar in the Newtonian case, and that of Harrison, Thorne, Wakano, and Wheeler in the relativistic case. We also indicate how to extend these ideas to situations where fixed points may not exist — either due to "monotone" flow or due to the presence of limit cycles. Monotone flow generically leads to logarithmic deviations from scaling, while limit cycles generally lead to discrete self-similar solutions.
Design and Evaluation of Large-Aperture Gallium Fixed-Point Blackbody
NASA Astrophysics Data System (ADS)
Khromchenko, V. B.; Mekhontsev, S. N.; Hanssen, L. M.
2009-02-01
To complement existing water bath blackbodies that now serve as NIST primary standard sources in the temperature range from 15 °C to 75 °C, a gallium fixed-point blackbody has been recently built. The main objectives of the project included creating an extended-area radiation source with a target emissivity of 0.9999 capable of operating either inside a cryo-vacuum chamber or in a standard laboratory environment. A minimum aperture diameter of 45 mm is necessary for the calibration of radiometers with a collimated input geometry or large spot size. This article describes the design and performance evaluation of the gallium fixed-point blackbody, including the calculation and measurements of directional effective emissivity, estimates of uncertainty due to the temperature drop across the interface between the pure metal and radiating surfaces, as well as the radiometrically obtained spatial uniformity of the radiance temperature and the melting plateau stability. Another important test is the measurement of the cavity reflectance, which was achieved by using total integrated scatter measurements at a laser wavelength of 10.6 μm. The result allows one to predict the performance under the low-background conditions of a cryo-chamber. Finally, results of the spectral radiance comparison with the NIST water-bath blackbody are provided. The experimental results are in good agreement with predicted values and demonstrate the potential of our approach. It is anticipated that, after completion of the characterization, a similar source operating at the water triple point will be constructed.
Learning in the Machine: Random Backpropagation and the Deep Learning Channel.
Baldi, Pierre; Sadowski, Peter; Lu, Zhiqin
2018-07-01
Random backpropagation (RBP) is a variant of the backpropagation algorithm for training neural networks, where the transpose of the forward matrices are replaced by fixed random matrices in the calculation of the weight updates. It is remarkable both because of its effectiveness, in spite of using random matrices to communicate error information, and because it completely removes the taxing requirement of maintaining symmetric weights in a physical neural system. To better understand random backpropagation, we first connect it to the notions of local learning and learning channels. Through this connection, we derive several alternatives to RBP, including skipped RBP (SRPB), adaptive RBP (ARBP), sparse RBP, and their combinations (e.g. ASRBP) and analyze their computational complexity. We then study their behavior through simulations using the MNIST and CIFAR-10 bechnmark datasets. These simulations show that most of these variants work robustly, almost as well as backpropagation, and that multiplication by the derivatives of the activation functions is important. As a follow-up, we study also the low-end of the number of bits required to communicate error information over the learning channel. We then provide partial intuitive explanations for some of the remarkable properties of RBP and its variations. Finally, we prove several mathematical results, including the convergence to fixed points of linear chains of arbitrary length, the convergence to fixed points of linear autoencoders with decorrelated data, the long-term existence of solutions for linear systems with a single hidden layer and convergence in special cases, and the convergence to fixed points of non-linear chains, when the derivative of the activation functions is included.
Hypothesis testing of a change point during cognitive decline among Alzheimer's disease patients.
Ji, Ming; Xiong, Chengjie; Grundman, Michael
2003-10-01
In this paper, we present a statistical hypothesis test for detecting a change point over the course of cognitive decline among Alzheimer's disease patients. The model under the null hypothesis assumes a constant rate of cognitive decline over time and the model under the alternative hypothesis is a general bilinear model with an unknown change point. When the change point is unknown, however, the null distribution of the test statistics is not analytically tractable and has to be simulated by parametric bootstrap. When the alternative hypothesis that a change point exists is accepted, we propose an estimate of its location based on the Akaike's Information Criterion. We applied our method to a data set from the Neuropsychological Database Initiative by implementing our hypothesis testing method to analyze Mini Mental Status Exam scores based on a random-slope and random-intercept model with a bilinear fixed effect. Our result shows that despite large amount of missing data, accelerated decline did occur for MMSE among AD patients. Our finding supports the clinical belief of the existence of a change point during cognitive decline among AD patients and suggests the use of change point models for the longitudinal modeling of cognitive decline in AD research.
Periodicity and stability for variable-time impulsive neural networks.
Li, Hongfei; Li, Chuandong; Huang, Tingwen
2017-10-01
The paper considers a general neural networks model with variable-time impulses. It is shown that each solution of the system intersects with every discontinuous surface exactly once via several new well-proposed assumptions. Moreover, based on the comparison principle, this paper shows that neural networks with variable-time impulse can be reduced to the corresponding neural network with fixed-time impulses under well-selected conditions. Meanwhile, the fixed-time impulsive systems can be regarded as the comparison system of the variable-time impulsive neural networks. Furthermore, a series of sufficient criteria are derived to ensure the existence and global exponential stability of periodic solution of variable-time impulsive neural networks, and to illustrate the same stability properties between variable-time impulsive neural networks and the fixed-time ones. The new criteria are established by applying Schaefer's fixed point theorem combined with the use of inequality technique. Finally, a numerical example is presented to show the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solution of effective Hamiltonian of impurity hopping between two sites in a metal
NASA Astrophysics Data System (ADS)
Ye, Jinwu
1998-03-01
We analyze in detail all the possible fixed points of the effective Hamiltonian of a non-magnetic impurity hopping between two sites in a metal obtained by Moustakas and Fisher(MF). We find a line of non-fermi liquid fixed points which continuously interpolates between the 2-channel Kondo fixed point(2CK) and the one channel, two impurity Kondo (2IK) fixed point. There is one relevant direction with scaling dimension 1/2 and one leading irrelevant operator with dimension 3/2. There is also one marginal operator in the spin sector moving along this line. The additional non-fermi liquid fixed point found by MF has the same symmetry as the 2IK, it has two relevant directions with scaling dimension 1/2, therefore also unstable. The system is shown to flow to a line of fermi-liquid fixed points which continuously interpolates between the non-interacting fixed point and the 2 channel spin-flavor Kondo fixed point (2CSFK) discussed by the author previously. The effect of particle-hole symmetry breaking is discussed. The effective Hamiltonian in the external magnetic field is analysed. The scaling functions for the physical measurable quantities are derived in the different regimes; their predictions for the experiments are given. Finally the implications are given for a non-magnetic impurity hopping around three sites with triangular symmetry discussed by MF.
Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Tian, Jie; Chen, Lijun
Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less
Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Tian, Jie; Chen, Lijun
Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less
Optimal Information Extraction of Laser Scanning Dataset by Scale-Adaptive Reduction
NASA Astrophysics Data System (ADS)
Zang, Y.; Yang, B.
2018-04-01
3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed method, suggesting a reliable solution for optimal information extraction of object.
Causality constraints on corrections to the graviton three-point coupling
Camanho, Xián O.; Edelstein, José D.; Maldacena, Juan; ...
2016-02-03
In this paper, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. Lorentz invariance allows further structures beyond the one present in the Einstein theory. We argue that these are constrained by causality. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an in finite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients |more » $$\\frac{a-c}{c}$$|≲ $$\\frac{1}{2}$$ $${^Δ}_{gap}$$ in terms of Δgap, the dimension of the lightest single trace operator with spin J > 2. Lastly, for inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.« less
Shao, Wenwei; Earley, Lauriel F; Chai, Zheng; Chen, Xiaojing; Sun, Junjiang; He, Ting; Deng, Meng; Hirsch, Matthew L; Ting, Jenny; Samulski, R Jude; Li, Chengwen
2018-06-21
Data from clinical trials for hemophilia B using adeno-associated virus (AAV) vectors have demonstrated decreased transgenic coagulation factor IX (hFIX) expression 6-10 weeks after administration of a high vector dose. While it is likely that capsid-specific cytotoxic T lymphocytes eliminate vector-transduced hepatocytes, thereby resulting in decreased hFIX, this observation is not intuitively consistent with restored hFIX levels following prednisone application. Although the innate immune response is immediately activated following AAV vector infection via TLR pathways, no studies exist regarding the role of the innate immune response at later time points after AAV vector transduction. Herein, activation of the innate immune response in cell lines, primary human hepatocytes, and hepatocytes in a human chimeric mouse model was observed at later time points following AAV vector transduction. Mechanistic analysis demonstrated that the double-stranded RNA (dsRNA) sensor MDA5 was necessary for innate immune response activation and that transient knockdown of MDA5, or MAVS, decreased IFN-β expression while increasing transgene production in AAV-transduced cells. These results both highlight the role of the dsRNA-triggered innate immune response in therapeutic transgene expression at later time points following AAV transduction and facilitate the execution of effective strategies to block the dsRNA innate immune response in future clinical trials.
1989-06-09
Theorem and the Perron - Frobenius Theorem in matrix theory. We use the Hahn-Banach theorem and do not use any fixed-point related concepts. 179 A...games defined b’, tions 87 Isac G. Fixed point theorems on convex cones , generalized pseudo-contractive mappings and the omplementarity problem 89...and (II), af(x) ° denotes the negative polar cone ot of(x). This condition are respectively called "inward" and "outward". Indeed, when X is convex
NASA Technical Reports Server (NTRS)
Slobin, S. D.; Bathker, D. A.
1988-01-01
The gain, phase, and pointing performance of the Deep Space Network (DSN) 70 m antennas are investigated using theoretical antenna analysis computer programs that consider the gravity induced deformation of the antenna surface and quadripod structure. The microwave effects are calculated for normal subreflector focusing motion and for special fixed-subreflector conditions that may be used during the Voyager 2 Neptune encounter. The frequency stability effects of stepwise lateral and axial subreflector motions are also described. Comparisons with recently measured antenna efficiency and subreflector motion tests are presented. A modification to the existing 70 m antenna pointing squint correction constant is proposed.
Deforestation of Peano continua and minimal deformation retracts☆
Conner, G.; Meilstrup, M.
2012-01-01
Every Peano continuum has a strong deformation retract to a deforested continuum, that is, one with no strongly contractible subsets attached at a single point. In a deforested continuum, each point with a one-dimensional neighborhood is either fixed by every self-homotopy of the space, or has a neighborhood which is a locally finite graph. A minimal deformation retract of a continuum (if it exists) is called its core. Every one-dimensional Peano continuum has a unique core, which can be obtained by deforestation. We give examples of planar Peano continua that contain no core but are deforested. PMID:23471120
Dynamic contact problem with adhesion and damage between thermo-electro-elasto-viscoplastic bodies
NASA Astrophysics Data System (ADS)
Hadj ammar, Tedjani; Saïdi, Abdelkader; Azeb Ahmed, Abdelaziz
2017-05-01
We study of a dynamic contact problem between two thermo-electro-elasto-viscoplastic bodies with damage and adhesion. The contact is frictionless and is modeled with normal compliance condition. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities, differential equations, and fixed point theorem.
Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence
NASA Astrophysics Data System (ADS)
Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui
2018-01-01
This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.
Shot noise in systems with semi-Dirac points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Feng; Wang, Juan
2014-08-14
We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L{sup 1∕2}. Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly withmore » L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points.« less
White, Simon R; Muniz-Terrera, Graciela; Matthews, Fiona E
2018-05-01
Many medical (and ecological) processes involve the change of shape, whereby one trajectory changes into another trajectory at a specific time point. There has been little investigation into the study design needed to investigate these models. We consider the class of fixed effect change-point models with an underlying shape comprised two joined linear segments, also known as broken-stick models. We extend this model to include two sub-groups with different trajectories at the change-point, a change and no change class, and also include a missingness model to account for individuals with incomplete follow-up. Through a simulation study, we consider the relationship of sample size to the estimates of the underlying shape, the existence of a change-point, and the classification-error of sub-group labels. We use a Bayesian framework to account for the missing labels, and the analysis of each simulation is performed using standard Markov chain Monte Carlo techniques. Our simulation study is inspired by cognitive decline as measured by the Mini-Mental State Examination, where our extended model is appropriate due to the commonly observed mixture of individuals within studies who do or do not exhibit accelerated decline. We find that even for studies of modest size ( n = 500, with 50 individuals observed past the change-point) in the fixed effect setting, a change-point can be detected and reliably estimated across a range of observation-errors.
Fixed point theorems and dissipative processes
NASA Technical Reports Server (NTRS)
Hale, J. K.; Lopes, O.
1972-01-01
The deficiencies of the theories that characterize the maximal compact invariant set of T as asymptotically stable, and that some iterate of T has a fixed point are discussed. It is shown that this fixed point condition is always satisfied for condensing and local dissipative T. Applications are given to a class of neutral functional differential equations.
NASA Astrophysics Data System (ADS)
Piñeiro Orioli, Asier; Boguslavski, Kirill; Berges, Jürgen
2015-07-01
We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant for a wide range of applications from ultracold quantum gases to high-energy particle physics. The universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems. For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform two independent nonperturbative calculations, first by using classical-statistical lattice simulation techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives to learn from experiments with cold atoms aspects about the dynamics during the early stages of our universe.
Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony
2017-12-01
When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.
New Phenomena in NC Field Theory and Emergent Spacetime Geometry
NASA Astrophysics Data System (ADS)
Ydri, Badis
2010-10-01
We give a brief review of two nonperturbative phenomena typical of noncommutative field theory which are known to lead to the perturbative instability known as the UV-IR mixing. The first phenomena concerns the emergence/evaporation of spacetime geometry in matrix models which describe perturbative noncommutative gauge theory on fuzzy backgrounds. In particular we show that the transition from a geometrical background to a matrix phase makes the description of noncommutative gauge theory in terms of fields via the Weyl map only valid below a critical value g*. The second phenomena concerns the appearance of a nonuniform ordered phase in noncommutative scalar φ4 field theory and the spontaneous symmetry breaking of translational/rotational invariance which happens even in two dimensions. We argue that this phenomena also originates in the underlying matrix degrees of freedom of the noncommutative field theory. Furthermore it is conjectured that in addition to the usual WF fixed point at θ = 0 there must exist a novel fixed point at θ = ∞ corresponding to the quartic hermitian matrix model.
Yuan, Liming; Thomas, Rick; Iannacchione, Anthony
2017-01-01
When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer®. The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed. PMID:29201495
Common fixed point theorems for maps under a contractive condition of integral type
NASA Astrophysics Data System (ADS)
Djoudi, A.; Merghadi, F.
2008-05-01
Two common fixed point theorems for mapping of complete metric space under a general contractive inequality of integral type and satisfying minimal commutativity conditions are proved. These results extend and improve several previous results, particularly Theorem 4 of Rhoades [B.E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007-4013] and Theorem 4 of Sessa [S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32 (46) (1982) 149-153].
Black hole shadows and invariant phase space structures
NASA Astrophysics Data System (ADS)
Grover, J.; Wittig, A.
2017-07-01
Utilizing concepts from dynamical systems theory, we demonstrate how the existence of light rings, or fixed points, in a spacetime will give rise to families of periodic orbits and invariant manifolds in phase space. It is shown that these structures can define the shape of the black hole shadow as well as a number of salient features of the spacetime lensing. We illustrate this through the analysis of lensing by a hairy black hole.
Selbig, William R.
2017-01-01
Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.
Collapsed heteroclinic snaking near a heteroclinic chain in dragged meniscus problems.
Tseluiko, D; Galvagno, M; Thiele, U
2014-04-01
A liquid film is studied that is deposited onto a flat plate that is inclined at a constant angle to the horizontal and is extracted from a liquid bath at a constant speed. We analyse steady-state solutions of a long-wave evolution equation for the film thickness. Using centre manifold theory, we first obtain an asymptotic expansion of solutions in the bath region. The presence of an additional temperature gradient along the plate that induces a Marangoni shear stress significantly changes these expansions and leads to the presence of logarithmic terms that are absent otherwise. Next, we numerically obtain steady solutions and analyse their behaviour as the plate velocity is changed. We observe that the bifurcation curve exhibits collapsed (or exponential) heteroclinic snaking when the plate inclination angle is above a certain critical value. Otherwise, the bifurcation curve is monotonic. The steady profiles along these curves are characterised by a foot-like structure that is formed close to the meniscus and is preceded by a thin precursor film further up the plate. The length of the foot increases along the bifurcation curve. Finally, we prove with a Shilnikov-type method that the snaking behaviour of the bifurcation curves is caused by the existence of an infinite number of heteroclinic orbits close to a heteroclinic chain that connects in an appropriate three-dimensional phase space the fixed point corresponding to the precursor film with the fixed point corresponding to the foot and then with the fixed point corresponding to the bath.
The renormalization group method in statistical hydrodynamics
NASA Astrophysics Data System (ADS)
Eyink, Gregory L.
1994-09-01
This paper gives a first principles formulation of a renormalization group (RG) method appropriate to study of turbulence in incompressible fluids governed by Navier-Stokes equations. The present method is a momentum-shell RG of Kadanoff-Wilson type based upon the Martin-Siggia-Rose (MSR) field-theory formulation of stochastic dynamics. A simple set of diagrammatic rules are developed which are exact within perturbation theory (unlike the well-known Ma-Mazenko prescriptions). It is also shown that the claim of Yakhot and Orszag (1986) is false that higher-order terms are irrelevant in the ɛ expansion RG for randomly forced Navier-Stokes (RFNS) with power-law force spectrum F̂(k)=D0k-d+(4-ɛ). In fact, as a consequence of Galilei covariance, there are an infinite number of higher-order nonlinear terms marginal by power counting in the RG analysis of the power-law RFNS, even when ɛ≪4. The difficulty does not occur in the Forster-Nelson-Stephen (FNS) RG analysis of thermal fluctuations in an equilibrium NS fluid, which justifies a linear regression law for d≳2. On the other hand, the problem occurs also at the nontrivial fixed point in the FNS Model A, or its Burgers analog, when d<2. The marginal terms can still be present at the strong-coupling fixed point in true NS turbulence. If so, infinitely many fixed points may exist in turbulence and be associated to a somewhat surprising phenomenon: nonuniversality of the inertial-range scaling laws depending upon the dissipation-range dynamics.
Connections between the Sznajd model with general confidence rules and graph theory
NASA Astrophysics Data System (ADS)
Timpanaro, André M.; Prado, Carmen P. C.
2012-10-01
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabási-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q>2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
Optimal impulsive time-fixed orbital rendezvous and interception with path constraints
NASA Technical Reports Server (NTRS)
Taur, D.-R.; Prussing, J. E.; Coverstone-Carroll, V.
1990-01-01
Minimum-fuel, impulsive, time-fixed solutions are obtained for the problem of orbital rendezvous and interception with interior path constraints. Transfers between coplanar circular orbits in an inverse-square gravitational field are considered, subject to a circular path constraint representing a minimum or maximum permissible orbital radius. Primer vector theory is extended to incorporate path constraints. The optimal number of impulses, their times and positions, and the presence of initial or final coasting arcs are determined. The existence of constraint boundary arcs and boundary points is investigated as well as the optimality of a class of singular arc solutions. To illustrate the complexities introduced by path constraints, an analysis is made of optimal rendezvous in field-free space subject to a minimum radius constraint.
Metallic and antiferromagnetic fixed points from gravity
NASA Astrophysics Data System (ADS)
Paul, Chandrima
2018-06-01
We consider SU(2) × U(1) gauge theory coupled to matter field in adjoints and study RG group flow. We constructed Callan-Symanzik equation and subsequent β functions and study the fixed points. We find there are two fixed points, showing metallic and antiferromagnetic behavior. We have shown that metallic phase develops an instability if certain parametric conditions are satisfied.
PCC Framework for Program-Generators
NASA Technical Reports Server (NTRS)
Kong, Soonho; Choi, Wontae; Yi, Kwangkeun
2009-01-01
In this paper, we propose a proof-carrying code framework for program-generators. The enabling technique is abstract parsing, a static string analysis technique, which is used as a component for generating and validating certificates. Our framework provides an efficient solution for certifying program-generators whose safety properties are expressed in terms of the grammar representing the generated program. The fixed-point solution of the analysis is generated and attached with the program-generator on the code producer side. The consumer receives the code with a fixed-point solution and validates that the received fixed point is indeed a fixed point of the received code. This validation can be done in a single pass.
Metal Carbon Eutectics to Extend the Use of the Fixed-Point Technique in Precision IR Thermometry
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2008-06-01
The high-temperature extension of the fixed-point technique for primary calibration of precision infrared (IR) thermometers was investigated both through mathematical simulations and laboratory investigations. Simulations were performed with Co C (1,324°C) and Pd C (1, 492°C) eutectic fixed points, and a precision IR thermometer was calibrated from the In point (156.5985°C) up to the Co C point. Mathematical simulations suggested the possibility of directly deriving the transition temperature of the Co C and Pd C points by extrapolating the calibration derived from fixed-point measurements from In to the Cu point. Both temperatures, as a result of the low uncertainty associated with the In Cu calibration and the high number of fixed points involved in the calibration process, can be derived with an uncertainty of 0.11°C for Co C and 0.18°C for Pd C. A transition temperature of 1,324.3°C for Co C was determined from the experimental verification, a value higher than, but compatible with, the one proposed by the thermometry community for inclusion as a secondary reference point for ITS-90 dissemination, i.e., 1,324.0°C.
Electronic structure in high temperature superconducting oxides
NASA Astrophysics Data System (ADS)
Howell, R. H.; Sterne, P.; Solal, F.; Fluss, M. J.; Tobin, J.; Obrien, J.; Radousky, H. B.; Haghighi, H.; Kaiser, J. H.; Rayner, S. L.
1991-08-01
We have performed measurements on entwined single crystals of YBCO using both photoemission and positron angular correlation of annihilation radiation and on single crystals of LSCO using only angular correlation. Fermi surface features in good agreement with band theory were found and identified in all of the measurements. In photoemission, the Fermi momentum was fixed for several points and the band dispersion below the Fermi energy was mapped. In positron angular correlation measurements, the shape of the Fermi surface was mapped for the CuO chains (YBCO) and the CuO planes (LSCO). Demonstration of the existence of Fermi surfaces in the HTSC materials points a direction for future theoretical considerations.
Mangum, B W
1983-07-01
In an investigation of the melting and freezing behavior of succinonitrile, the triple-point temperature was determined to be 58.0805 degrees C, with an estimated uncertainty of +/- 0.0015 degrees C relative to the International Practical Temperature Scale of 1968 (IPTS-68). The triple-point temperature of this material is evaluated as a temperature-fixed point, and some clinical laboratory applications of this fixed point are proposed. In conjunction with the gallium and ice points, the availability of succinonitrile permits thermistor thermometers to be calibrated accurately and easily on the IPTS-68.
Travelling waves for a Frenkel-Kontorova chain
NASA Astrophysics Data System (ADS)
Buffoni, Boris; Schwetlick, Hartmut; Zimmer, Johannes
2017-08-01
In this article, the Frenkel-Kontorova model for dislocation dynamics is considered, where the on-site potential consists of quadratic wells joined by small arcs, which can be spinodal (concave) as commonly assumed in physics. The existence of heteroclinic waves-making a transition from one well of the on-site potential to another-is proved by means of a Schauder fixed point argument. The setting developed here is general enough to treat such a Frenkel-Kontorova chain with smooth (C2) on-site potential. It is shown that the method can also establish the existence of two-transition waves for a piecewise quadratic on-site potential.
Positive contraction mappings for classical and quantum Schrödinger systems
NASA Astrophysics Data System (ADS)
Georgiou, Tryphon T.; Pavon, Michele
2015-03-01
The classical Schrödinger bridge seeks the most likely probability law for a diffusion process, in path space, that matches marginals at two end points in time; the likelihood is quantified by the relative entropy between the sought law and a prior. Jamison proved that the new law is obtained through a multiplicative functional transformation of the prior. This transformation is characterised by an automorphism on the space of endpoints probability measures, which has been studied by Fortet, Beurling, and others. A similar question can be raised for processes evolving in a discrete time and space as well as for processes defined over non-commutative probability spaces. The present paper builds on earlier work by Pavon and Ticozzi and begins by establishing solutions to Schrödinger systems for Markov chains. Our approach is based on the Hilbert metric and shows that the solution to the Schrödinger bridge is provided by the fixed point of a contractive map. We approach, in a similar manner, the steering of a quantum system across a quantum channel. We are able to establish existence of quantum transitions that are multiplicative functional transformations of a given Kraus map for the cases where the marginals are either uniform or pure states. As in the Markov chain case, and for uniform density matrices, the solution of the quantum bridge can be constructed from the fixed point of a certain contractive map. For arbitrary marginal densities, extensive numerical simulations indicate that iteration of a similar map leads to fixed points from which we can construct a quantum bridge. For this general case, however, a proof of convergence remains elusive.
Correlation function for generalized Pólya urns: Finite-size scaling analysis
NASA Astrophysics Data System (ADS)
Mori, Shintaro; Hisakado, Masato
2015-11-01
We describe a universality class for the transitions of a generalized Pólya urn by studying the asymptotic behavior of the normalized correlation function C (t ) using finite-size scaling analysis. X (1 ),X (2 ),... are the successive additions of a red (blue) ball [X (t )=1 (0 )] at stage t and C (t )≡Cov[X (1 ),X (t +1 )]/Var[X (1 )] . Furthermore, z (t ) =∑s=1tX (s ) /t represents the successive proportions of red balls in an urn to which, at the (t +1 )th stage, a red ball is added [X (t +1 )=1 ] with probability q [z (t )]=(tanh{J [2 z (t )-1 ]+h }+1 )/2 ,J ≥0 , and a blue ball is added [X (t +1 )=0 ] with probability 1 -q [z (t )] . A boundary [Jc(h ) ,h ] exists in the (J ,h ) plane between a region with one stable fixed point and another region with two stable fixed points for q (z ) . C (t ) ˜c +c'.tl -1 with c =0 (>0 ) for J
The Existence of the Solution to One Kind of Algebraic Riccati Equation
NASA Astrophysics Data System (ADS)
Liu, Jianming
2018-03-01
The matrix equation ATX + XA + XRX + Q = O is called algebraic Riccati equation, which is very important in the fields of automatic control and other engineering applications. Many researchers have studied the solutions to various algebraic Riccati equations and most of them mainly applied the matrix methods, while few used the functional analysis theories. This paper mainly studies the existence of the solution to the following kind of algebraic Riccati equation from the functional view point: ATX + XA + XRX ‑λX + Q = O Here, X, A, R, Q ∈ n×n , Q is a symmetric matrix, and R is a positive or negative semi-definite matrix, λ is arbitrary constants. This paper uses functional approach such as fixed point theorem and contraction mapping thinking so as to provide two sufficient conditions for the solvability about this kind of Riccati equation and to arrive at some relevant conclusions.
Conformal completion of the standard model with a fourth generation
NASA Astrophysics Data System (ADS)
Ho, Chiu Man; Hung, Pham Q.; Kephart, Thomas W.
2012-06-01
We study dynamical electroweak symmetry breaking with a fourth generation within the Z n orbifolded AdS 5 ⊗ S 5 framework. A realistic Z 7 example is discussed. The initial theory reduces dynamically, due to the induced condensates, to a four-family trinification near a TeV-scale conformal fixed point where the gauge hierarchy problem does not exist. We predict new gauge bosons and bifundamental fermions and scalars accessible by the LHC.
NASA Astrophysics Data System (ADS)
Zvizdic, Davor; Veliki, Tomislav; Grgec Bermanec, Lovorka
2008-06-01
This article describes the realization of the International Temperature Scale in the range from 234.3 K (mercury triple point) to 1084.62°C (copper freezing point) at the Laboratory for Process Measurement (LPM), Faculty of Mechanical Engineering and Naval Architecture (FSB), University of Zagreb. The system for the realization of the ITS-90 consists of the sealed fixed-point cells (mercury triple point, water triple point and gallium melting point) and the apparatus designed for the optimal realization of open fixed-point cells which include the gallium melting point, tin freezing point, zinc freezing point, aluminum freezing point, and copper freezing point. The maintenance of the open fixed-point cells is described, including the system for filling the cells with pure argon and for maintaining the pressure during the realization.
NASA Astrophysics Data System (ADS)
Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng
In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.
Establishment of the Co-C Eutectic Fixed-Point Cell for Thermocouple Calibrations at NIMT
NASA Astrophysics Data System (ADS)
Ongrai, O.; Elliott, C. J.
2017-08-01
In 2015, NIMT first established a Co-C eutectic temperature reference (fixed-point) cell measurement capability for thermocouple calibration to support the requirements of Thailand's heavy industries and secondary laboratories. The Co-C eutectic fixed-point cell is a facility transferred from NPL, where the design was developed through European and UK national measurement system projects. In this paper, we describe the establishment of a Co-C eutectic fixed-point cell for thermocouple calibration at NIMT. This paper demonstrates achievement of the required furnace uniformity, the Co-C plateau realization and the comparison data between NIMT and NPL Co-C cells by using the same standard Pt/Pd thermocouple, demonstrating traceability. The NIMT measurement capability for noble metal type thermocouples at the new Co-C eutectic fixed point (1324.06°C) is estimated to be within ± 0.60 K (k=2). This meets the needs of Thailand's high-temperature thermocouple users—for which previously there has been no traceable calibration facility.
Paerl, Hans W; Xu, Hai; Hall, Nathan S; Zhu, Guangwei; Qin, Boqiang; Wu, Yali; Rossignol, Karen L; Dong, Linghan; McCarthy, Mark J; Joyner, Alan R
2014-01-01
Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China's third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible.
Paerl, Hans W.; Xu, Hai; Hall, Nathan S.; Zhu, Guangwei; Qin, Boqiang; Wu, Yali; Rossignol, Karen L.; Dong, Linghan; McCarthy, Mark J.; Joyner, Alan R.
2014-01-01
Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China’s third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible. PMID:25405474
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
NASA Astrophysics Data System (ADS)
Ishimoto, Kenta
2017-10-01
The motions of an unsteady circular-disk squirmer and a spherical squirmer have been investigated in the presence of a no-slip infinite wall and a background shear flow in order to clarify the similarities and differences between two- and three-dimensional motions. Despite the similar bifurcation structure of the dynamical system, the stability of the fixed points differs due to the Hamiltonian structure of the disk squirmer. Once the unsteady oscillating surface velocity profile is considered, the disk squirmer can behave in a chaotic manner and cease to be confined in a near-wall region. In contrast, in an unsteady spherical squirmer, the dynamics is well attracted by a stable fixed point. Additional wall contact interactions lead to stable fixed points for the disk squirmer, and, in turn, the surface entrapment of the disk squirmer can be stabilized, regardless of the existence of the background flow. Finally, we consider spherical motion under a background flow. The separated time scales of the surface entrapment (thigmotaxis) and the turning toward the flow direction (rheotaxis) enable us to reduce the dynamics to two-dimensional phase space, and simple weather-vane mechanics can predict squirmer rheotaxis. The analogous structure of the phase plane with the wall contact in two and three dimensions implies that the two-dimensional disk swimmer successfully captures the nonlinear interactions, and thus two-dimensional approximation could be useful in designing microfluidic devices for the guidance of microswimmers and for clarifying the locomotions in a complex geometry.
Truccolo, Wilson
2017-01-01
Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a stability framework for data-driven PP-GLMs and shed new light on the stochastic dynamics of state-of-the-art statistical models of neuronal spiking activity. PMID:28234899
Gerhard, Felipe; Deger, Moritz; Truccolo, Wilson
2017-02-01
Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a stability framework for data-driven PP-GLMs and shed new light on the stochastic dynamics of state-of-the-art statistical models of neuronal spiking activity.
Fixed-point theorems for families of weakly non-expansive maps
NASA Astrophysics Data System (ADS)
Mai, Jie-Hua; Liu, Xin-He
2007-10-01
In this paper, we present some fixed-point theorems for families of weakly non-expansive maps under some relatively weaker and more general conditions. Our results generalize and improve several results due to Jungck [G. Jungck, Fixed points via a generalized local commutativity, Int. J. Math. Math. Sci. 25 (8) (2001) 497-507], Jachymski [J. Jachymski, A generalization of the theorem by Rhoades and Watson for contractive type mappings, Math. Japon. 38 (6) (1993) 1095-1102], Guo [C. Guo, An extension of fixed point theorem of Krasnoselski, Chinese J. Math. (P.O.C.) 21 (1) (1993) 13-20], Rhoades [B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257-290], and others.
Common Coupled Fixed Point Theorems for Two Hybrid Pairs of Mappings under φ-ψ Contraction
Handa, Amrish
2014-01-01
We introduce the concept of (EA) property and occasional w-compatibility for hybrid pair F : X × X → 2X and f : X → X. We also introduce common (EA) property for two hybrid pairs F, G : X → 2X and f, g : X → X. We establish some common coupled fixed point theorems for two hybrid pairs of mappings under φ-ψ contraction on noncomplete metric spaces. An example is also given to validate our results. We improve, extend and generalize several known results. The results of this paper generalize the common fixed point theorems for hybrid pairs of mappings and essentially contain fixed point theorems for hybrid pair of mappings. PMID:27340688
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... Television Relay Service—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101...-Point Microwave Service—(Part 101, Subparts C & H) PCS: Personal Communications Service—(Part 24) PET...
Analytically optimal parameters of dynamic vibration absorber with negative stiffness
NASA Astrophysics Data System (ADS)
Shen, Yongjun; Peng, Haibo; Li, Xianghong; Yang, Shaopu
2017-02-01
In this paper the optimal parameters of a dynamic vibration absorber (DVA) with negative stiffness is analytically studied. The analytical solution is obtained by Laplace transform method when the primary system is subjected to harmonic excitation. The research shows there are still two fixed points independent of the absorber damping in the amplitude-frequency curve of the primary system when the system contains negative stiffness. Then the optimum frequency ratio and optimum damping ratio are respectively obtained based on the fixed-point theory. A new strategy is proposed to obtain the optimum negative stiffness ratio and make the system remain stable at the same time. At last the control performance of the presented DVA is compared with those of three existing typical DVAs, which were presented by Den Hartog, Ren and Sims respectively. The comparison results in harmonic and random excitation show that the presented DVA in this paper could not only reduce the peak value of the amplitude-frequency curve of the primary system significantly, but also broaden the efficient frequency range of vibration mitigation.
NASA Astrophysics Data System (ADS)
Cohen-Tannoudji, G.; El Hassouni, A.; Mantrach, A.; Oudrhiri-Safiani, E. G.
1982-09-01
We propose a simple parametrization of the nucleon valence structure functions at all x, all p ⊥ and all Q 2. We use the DTU parton model to fix the parametrization at a reference point ( Q {0/2}=3 GeV2) and we mimic the QCD evolution by replacing the dimensioned parameters of the DTU parton model by functions depending on Q 2. Excellent agreement is obtained with existing data.
Online Mapping and Perception Algorithms for Multi-robot Teams Operating in Urban Environments
2015-01-01
each method on a 2.53 GHz Intel i5 laptop. All our algorithms are hand-optimized, implemented in Java and single threaded. To determine which algorithm...approach would be to label all the pixels in the image with an x, y, z point. However, the angular resolution of the camera is finer than that of the...edge criterion. That is, each edge is either present or absent. In [42], edge existence is further screened by a fixed threshold for angular
Zhao, Kaihong
2018-12-01
In this paper, we study the n-species impulsive Gilpin-Ayala competition model with discrete and distributed time delays. The existence of positive periodic solution is proved by employing the fixed point theorem on cones. By constructing appropriate Lyapunov functional, we also obtain the global exponential stability of the positive periodic solution of this system. As an application, an interesting example is provided to illustrate the validity of our main results.
NASA Technical Reports Server (NTRS)
Wingrove, Rodney C.; Coate, Robert E.
1961-01-01
The guidance system for maneuvering vehicles within a planetary atmosphere which was studied uses the concept of fast continuous prediction of the maximum maneuver capability from existing conditions rather than a stored-trajectory technique. used, desired touchdown points are compared with the maximum range capability and heating or acceleration limits, so that a proper decision and choice of control inputs can be made by the pilot. In the method of display and control a piloted fixed simulator was used t o demonstrate the feasibility od the concept and to study its application to control of lunar mission reentries and recoveries from aborts.
NASA Astrophysics Data System (ADS)
Xiao, Long; Liu, Xinggao; Ma, Liang; Zhang, Zeyin
2018-03-01
Dynamic optimisation problem with characteristic times, widely existing in many areas, is one of the frontiers and hotspots of dynamic optimisation researches. This paper considers a class of dynamic optimisation problems with constraints that depend on the interior points either fixed or variable, where a novel direct pseudospectral method using Legendre-Gauss (LG) collocation points for solving these problems is presented. The formula for the state at the terminal time of each subdomain is derived, which results in a linear combination of the state at the LG points in the subdomains so as to avoid the complex nonlinear integral. The sensitivities of the state at the collocation points with respect to the variable characteristic times are derived to improve the efficiency of the method. Three well-known characteristic time dynamic optimisation problems are solved and compared in detail among the reported literature methods. The research results show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Breden, Maxime; Castelli, Roberto
2018-05-01
In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...
Analyzing survival curves at a fixed point in time for paired and clustered right-censored data
Su, Pei-Fang; Chi, Yunchan; Lee, Chun-Yi; Shyr, Yu; Liao, Yi-De
2018-01-01
In clinical trials, information about certain time points may be of interest in making decisions about treatment effectiveness. Rather than comparing entire survival curves, researchers can focus on the comparison at fixed time points that may have a clinical utility for patients. For two independent samples of right-censored data, Klein et al. (2007) compared survival probabilities at a fixed time point by studying a number of tests based on some transformations of the Kaplan-Meier estimators of the survival function. However, to compare the survival probabilities at a fixed time point for paired right-censored data or clustered right-censored data, their approach would need to be modified. In this paper, we extend the statistics to accommodate the possible within-paired correlation and within-clustered correlation, respectively. We use simulation studies to present comparative results. Finally, we illustrate the implementation of these methods using two real data sets. PMID:29456280
NASA Astrophysics Data System (ADS)
Li, Gu-Qiang; Mo, Jie-Xiong
2016-06-01
The phase transition of a four-dimensional charged AdS black hole solution in the R +f (R ) gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in the canonical ensemble. There exists no critical point for T -S curve while in former research critical point was found for both the T -S curve and T -r+ curve when the electric charge of f (R ) black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of f (R ) AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 <Φ b . This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat CQ . To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.
APMP Scale Comparison with Three Radiation Thermometers and Six Fixed-Point Blackbodies
NASA Astrophysics Data System (ADS)
Yamada, Y.; Shimizu, Y.; Ishii, J.
2015-08-01
New Asia Pacific Metrology Programme (APMP) comparisons of radiation thermometry standards, APMP TS-11, and -12, have recently been initiated. These new APMP comparisons cover the temperature range from to . Three radiation thermometers with central wavelengths of 1.6 , 0.9 , and 0.65 are the transfer devices for the radiation thermometer scale comparison conducted in the so-called star configuration. In parallel, a compact fixed-point blackbody furnace that houses six types of fixed-point cells of In, Sn, Zn, Al, Ag, and Cu is circulated, again in a star-type comparison, to substantiate fixed-point calibration capabilities. Twelve APMP national metrology institutes are taking part in this endeavor, in which the National Metrology Institute of Japan acts as the pilot. In this article, the comparison scheme is described with emphasis on the features of the transfer devices, i.e., the radiation thermometers and the fixed-point blackbodies. Results of preliminary evaluations of the performance and characteristic of these instruments as well as the evaluation method of the comparison results are presented.
Long-Term Stability of WC-C Peritectic Fixed Point
NASA Astrophysics Data System (ADS)
Khlevnoy, B. B.; Grigoryeva, I. A.
2015-03-01
The tungsten carbide-carbon peritectic (WC-C) melting transition is an attractive high-temperature fixed point with a temperature of . Earlier investigations showed high repeatability, small melting range, low sensitivity to impurities, and robustness of WC-C that makes it a prospective candidate for the highest fixed point of the temperature scale. This paper presents further study of the fixed point, namely the investigation of the long-term stability of the WC-C melting temperature. For this purpose, a new WC-C cell of the blackbody type was built using tungsten powder of 99.999 % purity. The stability of the cell was investigated during the cell aging for 50 h at the cell working temperature that tooks 140 melting/freezing cycles. The method of investigation was based on the comparison of the WC-C tested cell with a reference Re-C fixed-point cell that reduces an influence of the probable instability of a radiation thermometer. It was shown that after the aging period, the deviation of the WC-C cell melting temperature was with an uncertainty of.
FixO3 : Early progress towards Open Ocean observatory Data Management Harmonisation
NASA Astrophysics Data System (ADS)
Pagnani, Maureen; Huber, Robert; Lampitt, Richard
2014-05-01
Since 2002 there has been a sustained effort, supported as European framework projects, to harmonise both the technology and the data management of Open Ocean fixed observatories run by European nations. FixO3 started in September 2013, and for 4 years will coordinate the convergence of data management best practice across a constellation of moorings in the Atlantic, in both hemispheres, and in the Mediterranean. To ensure the continued existence of these unique sources of oceanographic data as sustained observatories it is vital to improve access to the data collected, both in terms of methods of presentation, real-time availability, long-term archiving and quality assurance. The data management component of FixO3 will improve access to marine observatory data by harmonizing data management standards and workflows covering the complete life cycle of data from real time data acquisition to long-term archiving. Legal and data policy aspects will be examined to identify transnational barriers to open-access to marine observatory data. A harmonised FixO3 data policy is being synthesised from the partner's existing policies, which will overcome the identified barriers, and provide a formal basis for data exchange between FixO3 infrastructures. Presently, the interpretation and implementation of accepted standards has considerable incompatibilities within the observatory community, and these different approaches will be unified into the FixO3 approach. Further, FixO3 aims to harmonise data management and standardisation efforts with other European and international marine data and observatory infrastructures. The FixO3 synthesis will build on the standards established in other European infrastructures such as EDMONET, SEADATANET, PANGAEA, EuroSITES (European contribution to JCOMMP OceanSITES programme), and MyOcean (the Marine Core Service for GMES) infrastructures as well as relevant international infrastructures and data centres such as the ICOS Ocean Thematic Centre. The data management efforts are central to FixO3. Combined with the procedural and technological harmonisation, tackled in separate work packages, the FixO3 network of observatories will efficiently and cost effectively provide a consistent resource of quality controlled accessible oceanographic data The project website www.fixo3.eu is being developed as both a data showcase and single distribution point, and with database driven tools will enable the sharing of information between the observatories in the most smart and cost effective way. The network of knowledge built throughout the project will become a legacy resource that will ensure access to the unique ensemble data sets only achievable at these key observatories.
Debris-flow runout predictions based on the average channel slope (ACS)
Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.
2008-01-01
Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.
High resolution and image processing of otoconia matrix
NASA Technical Reports Server (NTRS)
Fermin, C. D.
1993-01-01
This study was designed to investigate patterns of fibrils organization in histochemically stained otoconia. Transmission electron microscope and video imaging were used. These data indicate that otoconia of the chick (Gallus domesticus) inner ear may have central cores in vivo. The data also show that the ultrastructural organization of fibrils fixed with aldehydes and histochemical stains follows trajectories that conform to the hexagonal shape of otoconia. These changes in direction may contribute to the formation of a central core. The existence of central cores is important for the in vivo buoyancy of otoconia. Packing of fibrils is tighter after phosphotungstic acid (PTA) stained otoconia than with other histochemical stains, which usually produce looser packing of fibrils and seemingly larger central core. TEM of tilted and untilted material showed that turning of fibrils occurs at the points where the face angles of otoconia form and where central cores exist. Video image processing of the images allowed reconstructing a template which, if assumed to repeat and change trajectories, would fit the pattern of fibrils seen in fixed otoconia. Since it is highly unlikely that aldehyde primary fixation or PTA stain caused such drastic change in the direction of fibrils, the template derived from these results may closely approximate patterns of otoconia fibrils packing in vivo. However, if the above is correct, the perfect crystallographic diffraction pattern of unfixed otoconia do not correspond to patterns of fixed fibrils.
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
Anderson Acceleration for Fixed-Point Iterations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Homer F.
The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.
Side Effects in Time Discounting Procedures: Fixed Alternatives Become the Reference Point
2016-01-01
Typical research on intertemporal choice utilizes a two-alternative forced choice (2AFC) paradigm requiring participants to choose between a smaller sooner and larger later payoff. In the adjusting-amount procedure (AAP) one of the alternatives is fixed and the other is adjusted according to particular choices made by the participant. Such a method makes the alternatives unequal in status and is speculated to make the fixed alternative a reference point for choices, thereby affecting the decision made. The current study shows that fixing different alternatives in the AAP influences discount rates in intertemporal choices. Specifically, individuals’ (N = 283) choices were affected to just the same extent by merely fixing an alternative as when choices were preceded by scenarios explicitly imposing reference points. PMID:27768759
Li, Xia; Guo, Meifang; Su, Yongfu
2016-01-01
In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. Strong convergence theorems for finding a solution of the split common null point problem are derived. This iteration algorithm can accelerate the convergence speed of iterative sequence. The results of this paper improve and extend the recent results of Takahashi and Yao (Fixed Point Theory Appl 2015:87, 2015) and many others .
Fixed-Rate Compressed Floating-Point Arrays.
Lindstrom, Peter
2014-12-01
Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.
Solution of the effective Hamiltonian of impurity hopping between two sites in a metal
NASA Astrophysics Data System (ADS)
Ye, Jinwu
1997-07-01
We analyze in detail all the possible fixed points of the effective Hamiltonian of a nonmagnetic impurity hopping between two sites in a metal obtained by Moustakas and Fisher (MF). We find a line of non-Fermi liquid fixed points which continuously interpolates between the two-channel Kondo fixed point (2CK) and the one-channel, two-impurity Kondo (2IK) fixed point. There is one relevant direction with scaling dimension 12 and one leading irrelevant operator with dimension 32. There is also one marginal operator in the spin sector moving along this line. The marginal operator, combined with the leading irrelevant operator, will generate the relevant operator. For the general position on this line, the leading low-temperature exponents of the specific heat, the hopping susceptibility and the electron conductivity Cimp,χhimp,σ(T) are the same as those of the 2CK, but the finite-size spectrum depends on the position on the line. No universal ratios can be formed from the amplitudes of the three quantities except at the 2CK point on this line where the universal ratios can be formed. At the 2IK point on this line, σ(T)~2σu(1+aT3/2), no universal ratio can be formed either. The additional non-Fermi-liquid fixed point found by MF has the same symmetry as the 2IK, it has two relevant directions with scaling dimension 12, and is therefore also unstable. The leading low-temperature behaviors are Cimp~T,χhimp~lnT,σ(T)~2σu(1+aT3/2) no universal ratios can be formed. The system is shown to flow to a line of Fermi-liquid fixed points which continuously interpolates between the noninteracting fixed point and the two-channel spin-flavor Kondo fixed point discussed by the author previously. The effect of particle-hole symmetry breaking is discussed. The effective Hamiltonian in the external magnetic field is analyzed. The scaling functions for the physical measurable quantities are derived in the different regimes; their predictions for the experiments are given. Finally the implications are given for a nonmagnetic impurity hopping around three sites with triangular symmetry discussed by MF.
Infrared fixed point of SU(2) gauge theory with six flavors
NASA Astrophysics Data System (ADS)
Leino, Viljami; Rummukainen, Kari; Suorsa, Joni; Tuominen, Kimmo; Tähtinen, Sara
2018-06-01
We compute the running of the coupling in SU(2) gauge theory with six fermions in the fundamental representation of the gauge group. We find strong evidence that this theory has an infrared stable fixed point at strong coupling and measure also the anomalous dimension of the fermion mass operator at the fixed point. This theory therefore likely lies close to the boundary of the conformal window and will display novel infrared dynamics if coupled with the electroweak sector of the Standard Model.
A dynamical system approach to Bianchi III cosmology for Hu-Sawicki type f( R) gravity
NASA Astrophysics Data System (ADS)
Banik, Sebika Kangsha; Banik, Debika Kangsha; Bhuyan, Kalyan
2018-02-01
The cosmological dynamics of spatially homogeneous but anisotropic Bianchi type-III space-time is investigated in presence of a perfect fluid within the framework of Hu-Sawicki model. We use the dynamical system approach to perform a detailed analysis of the cosmological behaviour of this model for the model parameters n=1, c_1=1, determining all the fixed points, their stability and corresponding cosmological evolution. We have found stable fixed points with de Sitter solution along with unstable radiation like fixed points. We have identified a matter like point which act like an unstable spiral and when the initial conditions of a trajectory are very close to this point, it stabilizes at a stable accelerating point. Thus, in this model, the universe can naturally approach to a phase of accelerated expansion following a radiation or a matter dominated phase. It is also found that the isotropisation of this model is affected by the spatial curvature and that all the isotropic fixed points are found to be spatially flat.
Study on the fixed point in crustal deformation before strong earthquake
NASA Astrophysics Data System (ADS)
Niu, A.; Li, Y.; Yan, W. Mr
2017-12-01
Usually, scholars believe that the fault pre-sliding or expansion phenomenon will be observed near epicenter area before strong earthquake, but more and more observations show that the crust deformation nearby epicenter area is smallest(Zhou, 1997; Niu,2009,2012;Bilham, 2005; Amoruso et al., 2010). The theory of Fixed point t is a branch of mathematics that arises from the theory of topological transformation and has important applications in obvious model analysis. An important precursory was observed by two tilt-meter sets, installed at Wenchuan Observatory in the epicenter area, that the tilt changes were the smallest compared with the other 8 stations around them in one year before the Wenchuan earthquake. To subscribe the phenomenon, we proposed the minimum annual variation range that used as a topological transformation. The window length is 1 year, and the sliding length is 1 day. The convergence of points with minimum annual change in the 3 years before the Wenchuan earthquake is studied. And the results show that the points with minimum deformation amplitude basically converge to the epicenter region before the earthquake. The possible mechanism of fixed point of crustal deformation was explored. Concerning the fixed point of crust deformation, the liquidity of lithospheric medium and the isostasy theory are accepted by many scholars (Bott &Dean, 1973; Merer et al.1988; Molnar et al., 1975,1978; Tapponnier et al., 1976; Wang et al., 2001). To explain the fixed point of crust deformation before earthquakes, we study the plate bending model (Bai, et al., 2003). According to plate bending model and real deformation data, we have found that the earthquake rupture occurred around the extreme point of plate bending, where the velocities of displacement, tilt, strain, gravity and so on are close to zero, and the fixed points are located around the epicenter.The phenomenon of fixed point of crust deformation is different from former understandings about the earthquake rupture precursor. 1) The observations for crust deformation in natural conditions are different with dry and static experiments, and the former had the meaning of stress wave.2)The earthquake rupture has a special triggering mechanism that is different from the experiment with limited scale rock fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, J.; Zhang, J. T.; Ping, Q.
2013-09-11
The temperature primary standard over the range from the melting point of gallium to the freezing point of silver in National institute of Metrology (NIM), China, was established in the early 1990s. The performance of all of fixed-point furnaces degraded and needs to be updated due to many years of use. Nowadays, the satisfactory fixed point materials can be available with the development of the modern purification techniques. NIM plans to use a group of three cells for each defining fixed point temperature. In this way the eventual drift of individual cells can be evidenced by periodic intercomparison and thismore » will increase the reliability in disseminating the ITS-90 in China. This article describes the recent improvements in realization of ITS-90 over temperature range from the melting point of gallium to the freezing point of silver at NIM. Taking advantages of the technological advances in the design and manufacture of furnaces, the new three-zone furnaces and the open-type fixed points were developed from the freezing point of indium to the freezing point of silver, and a furnace with the three-zone semiconductor cooling was designed to automatically realize the melting point of gallium. The reproducibility of the new melting point of gallium and the new open-type freezing points of In, Sn, Zn. Al and Ag is improved, especially the freezing points of Al and Ag with the reproducibility of 0.2mK and 0.5mK respectively. The expanded uncertainty in the realization of these defining fixed point temperatures is 0.34mK, 0.44mK, 0.54mK, 0.60mK, 1.30mK and 1.88mK respectively.« less
From 16-bit to high-accuracy IDCT approximation: fruits of single architecture affliation
NASA Astrophysics Data System (ADS)
Liu, Lijie; Tran, Trac D.; Topiwala, Pankaj
2007-09-01
In this paper, we demonstrate an effective unified framework for high-accuracy approximation of the irrational co-effcient floating-point IDCT by a single integer-coeffcient fixed-point architecture. Our framework is based on a modified version of the Loeffler's sparse DCT factorization, and the IDCT architecture is constructed via a cascade of dyadic lifting steps and butterflies. We illustrate that simply varying the accuracy of the approximating parameters yields a large family of standard-compliant IDCTs, from rare 16-bit approximations catering to portable computing to ultra-high-accuracy 32-bit versions that virtually eliminate any drifting effect when pairing with the 64-bit floating-point IDCT at the encoder. Drifting performances of the proposed IDCTs along with existing popular IDCT algorithms in H.263+, MPEG-2 and MPEG-4 are also demonstrated.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.
2017-03-01
We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997), 10.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ =4 -d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ . All calculations are performed in the leading one-loop approximation.
Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-01-01
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813
Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-06-24
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.
Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde
2015-11-01
The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
Fixed-point image orthorectification algorithms for reduced computational cost
NASA Astrophysics Data System (ADS)
French, Joseph Clinton
Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.
Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, Massimiliano, E-mail: massimiliano.rinaldi@unitn.it
We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to mattermore » domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.« less
Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations
NASA Astrophysics Data System (ADS)
Rinaldi, Massimiliano
2015-10-01
We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to matter domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.
Hackenberg, T D; Hineline, P N
1992-01-01
Pigeons chose between two schedules of food presentation, a fixed-interval schedule and a progressive-interval schedule that began at 0 s and increased by 20 s with each food delivery provided by that schedule. Choosing one schedule disabled the alternate schedule and stimuli until the requirements of the chosen schedule were satisfied, at which point both schedules were again made available. Fixed-interval duration remained constant within individual sessions but varied across conditions. Under reset conditions, completing the fixed-interval schedule not only produced food but also reset the progressive interval to its minimum. Blocks of sessions under the reset procedure were interspersed with sessions under a no-reset procedure, in which the progressive schedule value increased independent of fixed-interval choices. Median points of switching from the progressive to the fixed schedule varied systematically with fixed-interval value, and were consistently lower during reset than during no-reset conditions. Under the latter, each subject's choices of the progressive-interval schedule persisted beyond the point at which its requirements equaled those of the fixed-interval schedule at all but the highest fixed-interval value. Under the reset procedure, switching occurred at or prior to that equality point. These results qualitatively confirm molar analyses of schedule preference and some versions of optimality theory, but they are more adequately characterized by a model of schedule preference based on the cumulated values of multiple reinforcers, weighted in inverse proportion to the delay between the choice and each successive reinforcer. PMID:1548449
Entanglement entropy at infinite-randomness fixed points in higher dimensions.
Lin, Yu-Cheng; Iglói, Ferenc; Rieger, Heiko
2007-10-05
The entanglement entropy of the two-dimensional random transverse Ising model is studied with a numerical implementation of the strong-disorder renormalization group. The asymptotic behavior of the entropy per surface area diverges at, and only at, the quantum phase transition that is governed by an infinite-randomness fixed point. Here we identify a double-logarithmic multiplicative correction to the area law for the entanglement entropy. This contrasts with the pure area law valid at the infinite-randomness fixed point in the diluted transverse Ising model in higher dimensions.
Fixed Point Results of Locally Contractive Mappings in Ordered Quasi-Partial Metric Spaces
Arshad, Muhammad; Ahmad, Jamshaid
2013-01-01
Fixed point results for a self-map satisfying locally contractive conditions on a closed ball in an ordered 0-complete quasi-partial metric space have been established. Instead of monotone mapping, the notion of dominated mappings is applied. We have used weaker metric, weaker contractive conditions, and weaker restrictions to obtain unique fixed points. An example is given which shows that how this result can be used when the corresponding results cannot. Our results generalize, extend, and improve several well-known conventional results. PMID:24062629
Latif, Abdul; Mongkolkeha, Chirasak; Sintunavarat, Wutiphol
2014-01-01
We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011) to generalized α-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.
A threshold-based fixed predictor for JPEG-LS image compression
NASA Astrophysics Data System (ADS)
Deng, Lihua; Huang, Zhenghua; Yao, Shoukui
2018-03-01
In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.
Ecological communities with Lotka-Volterra dynamics
NASA Astrophysics Data System (ADS)
Bunin, Guy
2017-04-01
Ecological communities in heterogeneous environments assemble through the combined effect of species interaction and migration. Understanding the effect of these processes on the community properties is central to ecology. Here we study these processes for a single community subject to migration from a pool of species, with population dynamics described by the generalized Lotka-Volterra equations. We derive exact results for the phase diagram describing the dynamical behaviors, and for the diversity and species abundance distributions. A phase transition is found from a phase where a unique globally attractive fixed point exists to a phase where multiple dynamical attractors exist, leading to history-dependent community properties. The model is shown to possess a symmetry that also establishes a connection with other well-known models.
Ecological communities with Lotka-Volterra dynamics.
Bunin, Guy
2017-04-01
Ecological communities in heterogeneous environments assemble through the combined effect of species interaction and migration. Understanding the effect of these processes on the community properties is central to ecology. Here we study these processes for a single community subject to migration from a pool of species, with population dynamics described by the generalized Lotka-Volterra equations. We derive exact results for the phase diagram describing the dynamical behaviors, and for the diversity and species abundance distributions. A phase transition is found from a phase where a unique globally attractive fixed point exists to a phase where multiple dynamical attractors exist, leading to history-dependent community properties. The model is shown to possess a symmetry that also establishes a connection with other well-known models.
van Stralen, R A; Heesterbeek, P J C; Wymenga, A B
2015-11-01
In anteroposterior (AP)-gliding mobile-bearing total knee arthroplasty (TKA), the femoral component can theoretically slide forward resulting in a more anterior contact point, causing pain due to impingement. A lower lever arm of the extensor apparatus can also attribute to higher patella pressures and pain. The goal of this study was to determine the contact point in a cohort of mobile- and fixed-bearing TKAs, to determine whether the contact point lies more anteriorly in mobile-bearing TKA and to confirm whether this results in anterior knee pain. We used 38 fixed-bearing TKA and 40 mobile-bearing TKA from a randomized trial with straight lateral knee X-rays and measured the contact point. The functional outcome was measured by Knee Society Score at 12 months postoperatively. Pain scores were analysed using a VAS score (0-100 mm) in all patients at rest and when moving. Difficulty at rising up out of a chair was also assessed using a VAS score. The contact point in mobile-bearing TKA was situated at 59.5 % of the AP distance of the tibia and in the fixed-bearing TKA group at 66.1 % (P< 0.05). Patients with mobile- and fixed-bearing TKAs had similar knee scores, pain scores and difficulty in chair rise. No significant correlation was found between contact point and knee pain. The hypothesis of a more anterior contact point in the mobile-bearing cohort was confirmed but no correlation with functional and pain scores in this cohort could be found. The tibiofemoral contact point could not be correlated with a different clinical outcome and higher incidence of anterior knee pain. This study further adds to the knowledge on possible differences between mobile- and fixed-bearing prostheses. Next to that, bad outcomes could not be explained by CP. Case series, Level IV.
NASA Astrophysics Data System (ADS)
Edler, F.; Huang, K.
2016-12-01
Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3(86 %)+ZrO2(14 %)) were filled with pure palladium and used to calibrate type B thermocouples (Pt30 %Rh/Pt6 %Rh). A critical point by using miniature fixed points with small amounts of fixed-point material is the analysis of the melting curves, which are characterized by significant slopes during the melting process compared to flat melting plateaus obtainable using conventional fixed-point cells. The method of the extrapolated starting point temperature using straight line approximation of the melting plateau was applied to analyze the melting curves. This method allowed an unambiguous determination of an electromotive force (emf) assignable as melting temperature. The strict consideration of two constraints resulted in a unique, repeatable and objective method to determine the emf at the melting temperature within an uncertainty of about 0.1 μ V. The lifetime and long-term stability of the miniature fixed points was investigated by performing more than 100 melt/freeze cycles for each crucible of the different ceramic materials. No failure of the crucibles occurred indicating an excellent mechanical stability of the investigated miniature cells. The consequent limitation of heating rates to values below {± }3.5 K min^{-1} above 1100° C and the carefully and completely filled crucibles (the liquid palladium occupies the whole volume of the crucible) are the reasons for successfully preventing the crucibles from breaking. The thermal stability of the melting temperature of palladium was excellent when using the crucibles made of Al2O3(86 %)+ZrO2(14 %) and ZrO2. Emf drifts over the total duration of the long-term investigation were below a temperature equivalent of about 0.1 K-0.2 K.
Onsite Calibration of a Precision IPRT Based on Gallium and Gallium-Based Small-Size Eutectic Points
NASA Astrophysics Data System (ADS)
Sun, Jianping; Hao, Xiaopeng; Zeng, Fanchao; Zhang, Lin; Fang, Xinyun
2017-04-01
Onsite thermometer calibration with temperature scale transfer technology based on fixed points can effectively improve the level of industrial temperature measurement and calibration. The present work performs an onsite calibration of a precision industrial platinum resistance thermometer near room temperature. The calibration is based on a series of small-size eutectic points, including Ga-In (15.7°C), Ga-Sn (20.5°C), Ga-Zn (25.2°C), and a Ga fixed point (29.7°C), developed in a portable multi-point automatic realization apparatus. The temperature plateaus of the Ga-In, Ga-Sn, and Ga-Zn eutectic points and the Ga fixed point last for longer than 2 h, and their reproducibility was better than 5 mK. The device is suitable for calibrating non-detachable temperature sensors in advanced environmental laboratories and industrial fields.
Matrix product density operators: Renormalization fixed points and boundary theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirac, J.I.; Pérez-García, D., E-mail: dperezga@ucm.es; ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well asmore » to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).« less
Fixed Point Learning Based Intelligent Traffic Control System
NASA Astrophysics Data System (ADS)
Zongyao, Wang; Cong, Sui; Cheng, Shao
2017-10-01
Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.
Assessment of tungsten/rhenium thermocouples with metal-carbon eutectic fixed points up to 1500°C
NASA Astrophysics Data System (ADS)
Gotoh, M.
2013-09-01
Four Type A thermocouples and two Type C thermocouples were calibrated at the Au fixed point and Co-C and Pd-C eutectic fixed points. The thermocouples were exposed to 1330 °C for a total of 100 hours. The maximum drift due to the exposure was found to be 4.8 °C. The fixed-point calibration EMF of these thermocouples deviated by less than 0.86% from the temperature specified by the standards ASTM E230-2003 for Type C and GOSTR 8.585-2001 for Type A. The length of one of Type A thermocouples A52 is longer than the others by 150mm. Making use of this provision it was possible to place annealed part of A52 to the temperature gradient part of calibration arrangement every time. Therefore observed aging effect was as low as 0.5 °C compared to the other thermocouples.
More asymptotic safety guaranteed
NASA Astrophysics Data System (ADS)
Bond, Andrew D.; Litim, Daniel F.
2018-04-01
We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.
Cosmology of a covariant Galilean field.
De Felice, Antonio; Tsujikawa, Shinji
2010-09-10
We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.
NASA Astrophysics Data System (ADS)
Gori, Luca; Sodini, Mauro
2014-03-01
This paper analyses the mathematical properties of an economic growth model with overlapping generations, endogenous labour supply, and multiplicative external habits. The dynamics of the economy is characterised by a two-dimensional map describing the time evolution of capital and labour supply. We show that if the relative importance of external habits in the utility function is sufficiently high, multiple (determinate or indeterminate) fixed points and poverty traps can exist. In addition, periodic or quasiperiodic behaviour and/or coexistence of attractors may occur.
Phase-locked patterns of the Kuramoto model on 3-regular graphs
NASA Astrophysics Data System (ADS)
DeVille, Lee; Ermentrout, Bard
2016-09-01
We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.
Phase-locked patterns of the Kuramoto model on 3-regular graphs.
DeVille, Lee; Ermentrout, Bard
2016-09-01
We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.
Inflation, quintessence, and the origin of mass
NASA Astrophysics Data System (ADS)
Wetterich, C.
2015-08-01
In a unified picture both inflation and present dynamical dark energy arise from the same scalar field. The history of the Universe describes a crossover from a scale invariant "past fixed point" where all particles are massless, to a "future fixed point" for which spontaneous breaking of the exact scale symmetry generates the particle masses. The cosmological solution can be extrapolated to the infinite past in physical time - the universe has no beginning. This is seen most easily in a frame where particle masses and the Planck mass are field-dependent and increase with time. In this "freeze frame" the Universe shrinks and heats up during radiation and matter domination. In the equivalent, but singular Einstein frame cosmic history finds the familiar big bang description. The vicinity of the past fixed point corresponds to inflation. It ends at a first stage of the crossover. A simple model with no more free parameters than ΛCDM predicts for the primordial fluctuations a relation between the tensor amplitude r and the spectral index n, r = 8.19 (1 - n) - 0.137. The crossover is completed by a second stage where the beyond-standard-model sector undergoes the transition to the future fixed point. The resulting increase of neutrino masses stops a cosmological scaling solution, relating the present dark energy density to the present neutrino mass. At present our simple model seems compatible with all observational tests. We discuss how the fixed points can be rooted within quantum gravity in a crossover between ultraviolet and infrared fixed points. Then quantum properties of gravity could be tested both by very early and late cosmology.
Hopkins, Carl
2011-05-01
In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.705 Special showing for renewal of common carrier station...
Code of Federal Regulations, 2013 CFR
2013-10-01
... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.705 Special showing for renewal of common carrier station...
Code of Federal Regulations, 2012 CFR
2012-10-01
... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.705 Special showing for renewal of common carrier station...
Code of Federal Regulations, 2011 CFR
2011-10-01
... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.705 Special showing for renewal of common carrier station...
Existence and stability of circular orbits in static and axisymmetric spacetimes
NASA Astrophysics Data System (ADS)
Jia, Junji; Pang, Xiankai; Yang, Nan
2018-04-01
The existence and stability of timelike and null circular orbits (COs) in the equatorial plane of general static and axisymmetric (SAS) spacetime are investigated in this work. Using the fixed point approach, we first obtained a necessary and sufficient condition for the non-existence of timelike COs. It is then proven that there will always exist timelike COs at large ρ in an asymptotically flat SAS spacetime with a positive ADM mass and moreover, these timelike COs are stable. Some other sufficient conditions on the stability of timelike COs are also solved. We then found the necessary and sufficient condition on the existence of null COs. It is generally shown that the existence of timelike COs in SAS spacetime does not imply the existence of null COs, and vice-versa, regardless whether the spacetime is asymptotically flat or the ADM mass is positive or not. These results are then used to show the existence of timelike COs and their stability in an SAS Einstein-Yang-Mills-Dilaton spacetimes whose metric is not completely known. We also used the theorems to deduce the existence of timelike and null COs in some known SAS spacetimes.
NASA Astrophysics Data System (ADS)
Ragay-Enot, Monalisa; Lee, Young Hee; Kim, Yong-Gyoo
2017-07-01
A mini multi-fixed-point cell (length 118 mm, diameter 33 mm) containing three materials (In-Zn eutectic (mass fraction 3.8% Zn), Sn and Pb) in a single crucible was designed and fabricated for the easy and economical fixed-point calibration of industrial platinum resistance thermometers (IPRTs) for use in industrial temperature measurements. The melting and freezing behaviors of the metals were investigated and the phase transition temperatures were determined using a commercial dry-block calibrator. Results showed that the melting plateaus are generally easy to realize and are reproducible, flatter and of longer duration. On the other hand, the freezing process is generally difficult, especially for Sn, due to the high supercooling required to initiate freezing. The observed melting temperatures at optimum set conditions were 143.11 °C (In-Zn), 231.70 °C (Sn) and 327.15 °C (Pb) with expanded uncertainties (k = 2) of 0.12 °C, 0.10 °C and 0.13 °C, respectively. This multi-fixed-point cell can be treated as a sole reference temperature-generating system. Based on the results, the realization of melting points of the mini multi-fixed-point cell can be recommended for the direct calibration of IPRTs in industrial applications without the need for a reference thermometer.
NASA Astrophysics Data System (ADS)
Lilja, Dan
2018-03-01
Since its inception in the 1970s at the hands of Feigenbaum and, independently, Coullet and Tresser the study of renormalization operators in dynamics has been very successful at explaining universality phenomena observed in certain families of dynamical systems. The first proof of existence of a hyperbolic fixed point for renormalization of area-preserving maps was given by Eckmann et al. (Mem Am Math Soc 47(289):vi+122, 1984). However, there are still many things that are unknown in this setting, in particular regarding the invariant Cantor sets of infinitely renormalizable maps. In this paper we show that the invariant Cantor set of period doubling type of any infinitely renormalizable area-preserving map in the universality class of the Eckmann-Koch-Wittwer renormalization fixed point is always contained in a Lipschitz curve but never contained in a smooth curve. This extends previous results by de Carvalho, Lyubich and Martens about strongly dissipative maps of the plane close to unimodal maps to the area-preserving setting. The method used for constructing the Lipschitz curve is very similar to the method used in the dissipative case but proving the nonexistence of smooth curves requires new techniques.
A new potential for radiation studies of borosilicate glass
NASA Astrophysics Data System (ADS)
Alharbi, Amal F.; Jolley, Kenny; Smith, Roger; Archer, Andrew J.; Christie, Jamieson K.
2017-02-01
Borosilicate glass containing 70 mol% SiO2 and 30 mol% B2O3 is investigated theoretically using fixed charge potentials. An existing potential parameterisation for borosilicate glass is found to give good agreement for the bond angle and bond length distributions compared to experimental values but the optimal density is 30% higher than experiment. Therefore the potential parameters are refitted to give an optimal density of 2.1 g/cm3, in line with experiment. To determine the optimal density, a series of random initial structures are quenched at a rate of 5 × 1012 K/s using constant volume molecular dynamics. An average of 10 such quenches is carried out for each fixed volume. For each quenched structure, the bond angles, bond lengths, mechanical properties and melting points are determined. The new parameterisation is found to give the density, bond angles, bond lengths and Young's modulus comparable with experimental data, however, the melting points and Poisson's ratio are higher than the reported experimental values. The displacement energy thresholds are computed to be similar to those determined with the earlier parameterisation, which is lower than those for ionic crystalline materials.
NASA Astrophysics Data System (ADS)
Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
2016-06-01
This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli (2006) [36]. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter ρ and the chemical potential μ. Singular contributions to the local free energy in the form of logarithmic or double-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonov's fixed point theorem in a rather unusual separable and reflexive Banach space.
On the origin of reproducible sequential activity in neural circuits
NASA Astrophysics Data System (ADS)
Afraimovich, V. S.; Zhigulin, V. P.; Rabinovich, M. I.
2004-12-01
Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.
On the origin of reproducible sequential activity in neural circuits.
Afraimovich, V S; Zhigulin, V P; Rabinovich, M I
2004-12-01
Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.
Stochastic derivative-free optimization using a trust region framework
Larson, Jeffrey; Billups, Stephen C.
2016-02-17
This study presents a trust region algorithm to minimize a function f when one has access only to noise-corrupted function values f¯. The model-based algorithm dynamically adjusts its step length, taking larger steps when the model and function agree and smaller steps when the model is less accurate. The method does not require the user to specify a fixed pattern of points used to build local models and does not repeatedly sample points. If f is sufficiently smooth and the noise is independent and identically distributed with mean zero and finite variance, we prove that our algorithm produces iterates suchmore » that the corresponding function gradients converge in probability to zero. As a result, we present a prototype of our algorithm that, while simplistic in its management of previously evaluated points, solves benchmark problems in fewer function evaluations than do existing stochastic approximation methods.« less
Basin boundaries and focal points in a map coming from Bairstow's method.
Gardini, Laura; Bischi, Gian-Italo; Fournier-Prunaret, Daniele
1999-06-01
This paper is devoted to the study of the global dynamical properties of a two-dimensional noninvertible map, with a denominator which can vanish, obtained by applying Bairstow's method to a cubic polynomial. It is shown that the complicated structure of the basins of attraction of the fixed points is due to the existence of singularities such as sets of nondefinition, focal points, and prefocal curves, which are specific to maps with a vanishing denominator, and have been recently introduced in the literature. Some global bifurcations that change the qualitative structure of the basin boundaries, are explained in terms of contacts among these singularities. The techniques used in this paper put in evidence some new dynamic behaviors and bifurcations, which are peculiar of maps with denominator; hence they can be applied to the analysis of other classes of maps coming from iterative algorithms (based on Newton's method, or others). (c) 1999 American Institute of Physics.
Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic
NASA Astrophysics Data System (ADS)
González-Carbajal, Javier; Domínguez, Jaime
2017-11-01
This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.
Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations
NASA Astrophysics Data System (ADS)
Zhang, Tianran
2017-05-01
In this paper, we study the traveling wave solutions and minimal wave speed for a class of non-cooperative reaction-diffusion systems consisting of three equations. Based on the eigenvalues, a pair of upper-lower solutions connecting only the invasion-free equilibrium are constructed and the Schauder's fixed-point theorem is applied to show the existence of traveling semi-fronts for an auxiliary system. Then the existence of traveling semi-fronts of original system is obtained by limit arguments. The traveling semi-fronts are proved to connect another equilibrium if natural birth and death rates are not considered and to be persistent if these rates are incorporated. Then non-existence of bounded traveling semi-fronts is obtained by two-sided Laplace transform. Then the above results are applied to some disease-transmission models and a predator-prey model.
Utilization Bound of Non-preemptive Fixed Priority Schedulers
NASA Astrophysics Data System (ADS)
Park, Moonju; Chae, Jinseok
It is known that the schedulability of a non-preemptive task set with fixed priority can be determined in pseudo-polynomial time. However, since Rate Monotonic scheduling is not optimal for non-preemptive scheduling, the applicability of existing polynomial time tests that provide sufficient schedulability conditions, such as Liu and Layland's bound, is limited. This letter proposes a new sufficient condition for non-preemptive fixed priority scheduling that can be used for any fixed priority assignment scheme. It is also shown that the proposed schedulability test has a tighter utilization bound than existing test methods.
47 CFR 101.703 - Permissible communications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Permissible communications. 101.703 Section 101.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.703 Permissible...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Eligibility. 101.601 Section 101.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Private Operational Fixed Point-to-Point Microwave Service § 101.601 Eligibility. Any person, or...
47 CFR 101.703 - Permissible communications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Permissible communications. 101.703 Section 101.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.703 Permissible...
47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a non...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Eligibility. 101.601 Section 101.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Private Operational Fixed Point-to-Point Microwave Service § 101.601 Eligibility. Any person, or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Eligibility. 101.601 Section 101.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Private Operational Fixed Point-to-Point Microwave Service § 101.601 Eligibility. Any person, or...
47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a non...
47 CFR 101.703 - Permissible communications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Permissible communications. 101.703 Section 101.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.703 Permissible...
47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a non...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Eligibility. 101.601 Section 101.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Private Operational Fixed Point-to-Point Microwave Service § 101.601 Eligibility. Any person, or...
47 CFR 101.703 - Permissible communications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Permissible communications. 101.703 Section 101.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.703 Permissible...
47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a non...
47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a non...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Eligibility. 101.601 Section 101.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Private Operational Fixed Point-to-Point Microwave Service § 101.601 Eligibility. Any person, or...
47 CFR 101.703 - Permissible communications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Permissible communications. 101.703 Section 101.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.703 Permissible...
Regulator dependence of fixed points in quantum Einstein gravity with R 2 truncation
NASA Astrophysics Data System (ADS)
Nagy, S.; Fazekas, B.; Peli, Z.; Sailer, K.; Steib, I.
2018-03-01
We performed a functional renormalization group analysis for the quantum Einstein gravity including a quadratic term in the curvature. The ultraviolet non-gaussian fixed point and its critical exponent for the correlation length are identified for different forms of regulators in case of dimension 3. We searched for that optimized regulator where the physical quantities show the least regulator parameter dependence. It is shown that the Litim regulator satisfies this condition. The infrared fixed point has also been investigated, it is found that the exponent is insensitive to the third coupling introduced by the R 2 term.
A regularity result for fixed points, with applications to linear response
NASA Astrophysics Data System (ADS)
Sedro, Julien
2018-04-01
In this paper, we show a series of abstract results on fixed point regularity with respect to a parameter. They are based on a Taylor development taking into account a loss of regularity phenomenon, typically occurring for composition operators acting on spaces of functions with finite regularity. We generalize this approach to higher order differentiability, through the notion of an n-graded family. We then give applications to the fixed point of a nonlinear map, and to linear response in the context of (uniformly) expanding dynamics (theorem 3 and corollary 2), in the spirit of Gouëzel-Liverani.
Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model
NASA Astrophysics Data System (ADS)
Zhao, Hongyong; Zhu, Linhe
2016-06-01
The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. Rumor propagation in social networks has brought new challenges to network security and social stability. This paper, based on partial differential equations (PDEs), proposes a new SIS rumor propagation model by considering the effect of the communication between the different rumor infected users on rumor propagation. The stabilities of a nonrumor equilibrium point and a rumor-spreading equilibrium point are discussed by linearization technique and the upper and lower solutions method, and the existence of a traveling wave solution is established by the cross-iteration scheme accompanied by the technique of upper and lower solutions and Schauder’s fixed point theorem. Furthermore, we add the time delay to rumor propagation and deduce the conditions of Hopf bifurcation and stability switches for the rumor-spreading equilibrium point by taking the time delay as the bifurcation parameter. Finally, numerical simulations are performed to illustrate the theoretical results.
Asymptotic safety of quantum gravity beyond Ricci scalars
NASA Astrophysics Data System (ADS)
Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph
2018-04-01
We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.
Universality of modular symmetries in two-dimensional magnetotransport
NASA Astrophysics Data System (ADS)
Olsen, K. S.; Limseth, H. S.; Lütken, C. A.
2018-01-01
We analyze experimental quantum Hall data from a wide range of different materials, including semiconducting heterojunctions, thin films, surface layers, graphene, mercury telluride, bismuth antimonide, and black phosphorus. The fact that these materials have little in common, except that charge transport is effectively two-dimensional, shows how robust and universal the quantum Hall phenomenon is. The scaling and fixed point data we analyzed appear to show that magnetotransport in two dimensions is governed by a small number of universality classes that are classified by modular symmetries, which are infinite discrete symmetries not previously seen in nature. The Hall plateaux are (infrared) stable fixed points of the scaling-flow, and quantum critical points (where the wave function is delocalized) are unstable fixed points of scaling. Modular symmetries are so rigid that they in some cases fix the global geometry of the scaling flow, and therefore predict the exact location of quantum critical points, as well as the shape of flow lines anywhere in the phase diagram. We show that most available experimental quantum Hall scaling data are in good agreement with these predictions.
Verification and Planning Based on Coinductive Logic Programming
NASA Technical Reports Server (NTRS)
Bansal, Ajay; Min, Richard; Simon, Luke; Mallya, Ajay; Gupta, Gopal
2008-01-01
Coinduction is a powerful technique for reasoning about unfounded sets, unbounded structures, infinite automata, and interactive computations [6]. Where induction corresponds to least fixed point's semantics, coinduction corresponds to greatest fixed point semantics. Recently coinduction has been incorporated into logic programming and an elegant operational semantics developed for it [11, 12]. This operational semantics is the greatest fix point counterpart of SLD resolution (SLD resolution imparts operational semantics to least fix point based computations) and is termed co- SLD resolution. In co-SLD resolution, a predicate goal p( t) succeeds if it unifies with one of its ancestor calls. In addition, rational infinite terms are allowed as arguments of predicates. Infinite terms are represented as solutions to unification equations and the occurs check is omitted during the unification process. Coinductive Logic Programming (Co-LP) and Co-SLD resolution can be used to elegantly perform model checking and planning. A combined SLD and Co-SLD resolution based LP system forms the common basis for planning, scheduling, verification, model checking, and constraint solving [9, 4]. This is achieved by amalgamating SLD resolution, co-SLD resolution, and constraint logic programming [13] in a single logic programming system. Given that parallelism in logic programs can be implicitly exploited [8], complex, compute-intensive applications (planning, scheduling, model checking, etc.) can be executed in parallel on multi-core machines. Parallel execution can result in speed-ups as well as in larger instances of the problems being solved. In the remainder we elaborate on (i) how planning can be elegantly and efficiently performed under real-time constraints, (ii) how real-time systems can be elegantly and efficiently model- checked, as well as (iii) how hybrid systems can be verified in a combined system with both co-SLD and SLD resolution. Implementations of co-SLD resolution as well as preliminary implementations of the planning and verification applications have been developed [4]. Co-LP and Model Checking: The vast majority of properties that are to be verified can be classified into safety properties and liveness properties. It is well known within model checking that safety properties can be verified by reachability analysis, i.e, if a counter-example to the property exists, it can be finitely determined by enumerating all the reachable states of the Kripke structure.
Development of Fixed-Point Cells at the SMU
NASA Astrophysics Data System (ADS)
Ďuriš, S.; Ranostaj, J.; Palenčár, R.
2008-06-01
One of the research programs realized at the thermometry laboratory of the Slovak Institute of Metrology (SMU) in recent years has focused on the development of fixed-point cells. In the frame of this research, several primary cells for realization of the International Temperature Scale of 1990 (ITS-90) and several secondary cells for industrial thermometer calibrations were built and studied. This article discusses primary cells for the gallium and mercury fixed points and miniature cells for the zinc point that were developed at the SMU. Information about the cell designs is provided, the materials that were used are specified, and the procedures for their manufacture are described. Briefly, the realization of the fixed points of mercury, gallium, and zinc by using these cells is also described. Many experiments were carried out to study the characteristics of these cells. One of the gallium cells was compared with the circulating transfer cell during the key comparison CCT-K3, and it and the mercury cell were used for the EUROMET Project No. 552. The results of the experiments together with the results of the comparisons show the high quality of these cells. Secondary zinc-point cells were compared against SMU primary zinc-point cells. The comparison shows agreement within 0.12 mK.
Opinion formation models in static and dynamic social networks
NASA Astrophysics Data System (ADS)
Singh, Pramesh
We study models of opinion formation on static as well as dynamic networks where interaction among individuals is governed by widely accepted social theories. In particular, three models of competing opinions based on distinct interaction mechanisms are studied. A common feature in all of these models is the existence of a tipping point in terms of a model parameter beyond which a rapid consensus is reached. In the first model that we study on a static network, a node adopts a particular state (opinion) if a threshold fraction of its neighbors are already in that state. We introduce a few initiator nodes which are in state '1' in a population where every node is in state '0'. Thus, opinion '1' spreads through the population until no further influence is possible. Size of the spread is greatly affected by how these initiator nodes are selected. We find that there exists a critical fraction of initiators pc that is needed to trigger global cascades for a given threshold phi. We also study heuristic strategies for selecting a set of initiator nodes in order to maximize the cascade size. The structural properties of networks also play an important role in the spreading process. We study how the dynamics is affected by changing the clustering in a network. It turns out that local clustering is helpful in spreading. Next, we studied a model where the network is dynamic and interactions are homophilic. We find that homophily-driven rewiring impedes the reaching of consensus and in the absence of committed nodes (nodes that are not influenceable on their opinion), consensus time Tc diverges exponentially with network size N . As we introduce a fraction of committed nodes, beyond a critical value, the scaling of Tc becomes logarithmic in N. We also find that slight change in the interaction rule can produce strikingly different scaling behaviors of T c . However, introducing committed agents in the system drastically improves the scaling of the consensus time regardless of the interaction rules considered. Finally, a three-state (leftist, rightist, centrist) model that couples the dynamics of social balance with an external deradicalizing field is studied. The mean-field analysis shows that for a weak external field, the system exhibits a metastable fixed point and a saddle point in addition to a stable fixed point. However, if the strength of the external field is sufficiently large (larger than a critical value), there is only one (stable) fixed point which corresponds to an all-centrist consensus state (absorbing state). In the weak-field regime, the convergence time to the absorbing state is evaluated using the quasi-stationary(QS) distribution and is found to be in good agreement with the results obtained by numerical simulations.
Indirect Determination of the Thermodynamic Temperature of a Gold Fixed-Point Cell
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2010-09-01
Since the value T 90(Au) was fixed on the ITS-90, some determinations of the thermodynamic temperature of the gold point have been performed which form, with other renormalized results of previous measurements by radiation thermometry, the basis for the current best estimates of ( T - T 90)Au = 39.9 mK as elaborated by the CCT-WG4. Such a value, even if consistent with the behavior of T - T 90 differences at lower temperatures, is quite influenced by the low values of T Au as determined with few radiometric measurements. At INRIM, an independent indirect determination of the thermodynamic temperature of gold was performed by means of a radiation thermometry approach. A fixed-point technique was used to realize approximated thermodynamic scales from the Zn point up to the Cu point. A Si-based standard radiation thermometer working at 900 nm and 950 nm was used. The low uncertainty presently associated to the thermodynamic temperature of fixed points and the accuracy of INRIM realizations, allowed scales with an uncertainty lower than 0.03 K in terms of the thermodynamic temperature to be realized. A fixed-point cell filled with gold, 99.999 % in purity, was measured, and its freezing temperature was determined by both interpolation and extrapolation. An average T Au = 1337.395 K was found with a combined standard uncertainty of 23 mK. Such a value is 25 mK higher than the presently available value as derived by the CCT-WG4 value of ( T - T 90)Au = 39.9 mK.
Pilot Comparison of Radiance Temperature Scale Realization Between NIMT and NMIJ
NASA Astrophysics Data System (ADS)
Keawprasert, T.; Yamada, Y.; Ishii, J.
2015-03-01
A pilot comparison of radiance temperature scale realizations between the National Institute of Metrology Thailand (NIMT) and the National Metrology Institute of Japan (NMIJ) was conducted. At the two national metrology institutes (NMIs), a 900 nm radiation thermometer, used as the transfer artifact, was calibrated by a means of a multiple fixed-point method using the fixed-point blackbody of Zn, Al, Ag, and Cu points, and by means of relative spectral responsivity measurements according to the International Temperature Scale of 1990 (ITS-90) definition. The Sakuma-Hattori equation is used for interpolating the radiance temperature scale between the four fixed points and also for extrapolating the ITS-90 temperature scale to 2000 C. This paper compares the calibration results in terms of fixed-point measurements, relative spectral responsivity, and finally the radiance temperature scale. Good agreement for the fixed-point measurements was found in case a correction for the change of the internal temperature of the artifact was applied using the temperature coefficient measured at the NMIJ. For the realized radiance temperature range from 400 C to 1100 C, the resulting scale differences between the two NMIs are well within the combined scale comparison uncertainty of 0.12 C (). The resulting spectral responsivity measured at the NIMT has a comparable curve to that measured at the NMIJ especially in the out-of-band region, yielding a ITS-90 scale difference within 1.0 C from the Cu point to 2000 C, whereas the realization comparison uncertainty of NIMT and NMIJ combined is 1.2 C () at 2000 C.
Influence of the Cavity Length on the Behavior of Hybrid Fixed-Point Cells Constructed at INRIM
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2015-03-01
Hybrid cells with double carbon/carbon sheets are used at the Istituto Nazionale di Ricerca Metrologica (INRIM) for the realization of both pure metal fixed points and high-temperature metal-carbon eutectic points. Cells for the Cu and Co-C fixed points have been prepared to be used in the high-temperature fixed-point project of the Comité Consultatif de Thermométrie. The results of the evaluation processes were not completely satisfactory for the INRIM cells because of their low transition temperatures with respect to the best cells, and of a rather large melting range for the Co-C cell. A new design of the cells was devised, and considerable improvements were achieved with respect to the transition temperature, and the plateau shape and duration. As for the Cu point, the duration of the freezing plateaux increased by more than 50 % and the freezing temperature increased by 18 mK. As for the Co-C point, the melting temperature, expressed in terms of the point of inflection of the melting curve, increased by about 70 mK. The melting range of the plateaux, expressed as a difference was reduced from about 180 mK to about 130 mK, with melting times increased by about 50 %, as a consequence of an improvement of flatness and run-off of the plateaux.
Contractive type non-self mappings on metric spaces of hyperbolic type
NASA Astrophysics Data System (ADS)
Ciric, Ljubomir B.
2006-05-01
Let (X,d) be a metric space of hyperbolic type and K a nonempty closed subset of X. In this paper we study a class of mappings from K into X (not necessarily self-mappings on K), which are defined by the contractive condition (2.1) below, and a class of pairs of mappings from K into X which satisfy the condition (2.28) below. We present fixed point and common fixed point theorems which are generalizations of the corresponding fixed point theorems of Ciric [L.B. Ciric, Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts 23 (1998) 25-31; L.B. Ciric, J.S. Ume, M.S. Khan, H.K.T. Pathak, On some non-self mappings, Math. Nachr. 251 (2003) 28-33], Rhoades [B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon. 23 (1978) 457-459] and many other authors. Some examples are presented to show that our results are genuine generalizations of known results from this area.
The evolving Planck mass in classically scale-invariant theories
NASA Astrophysics Data System (ADS)
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.
2017-04-01
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
The generalized Lyapunov theorem and its application to quantum channels
NASA Astrophysics Data System (ADS)
Burgarth, Daniel; Giovannetti, Vittorio
2007-05-01
We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.
Design of an advanced flight planning system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1985-01-01
The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).
NASA Astrophysics Data System (ADS)
Zeng, Lu-Chuan; Yao, Jen-Chih
2006-09-01
Recently, Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447] introduced the new iterative procedures with errors for approximating the common fixed point of a couple of quasi-contractive mappings and showed the stability of these iterative procedures with errors in Banach spaces. In this paper, we introduce a new concept of a couple of q-contractive-like mappings (q>1) in a Banach space and apply these iterative procedures with errors for approximating the common fixed point of the couple of q-contractive-like mappings. The results established in this paper improve, extend and unify the corresponding ones of Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447], Chidume [C.E. Chidume, Approximation of fixed points of quasi-contractive mappings in Lp spaces, Indian J. Pure Appl. Math. 22 (1991) 273-386], Chidume and Osilike [C.E. Chidume, M.O. Osilike, Fixed points iterations for quasi-contractive maps in uniformly smooth Banach spaces, Bull. Korean Math. Soc. 30 (1993) 201-212], Liu [Q.H. Liu, On Naimpally and Singh's open questions, J. Math. Anal. Appl. 124 (1987) 157-164; Q.H. Liu, A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings, J. Math. Anal. Appl. 146 (1990) 301-305], Osilike [M.O. Osilike, A stable iteration procedure for quasi-contractive maps, Indian J. Pure Appl. Math. 27 (1996) 25-34; M.O. Osilike, Stability of the Ishikawa iteration method for quasi-contractive maps, Indian J. Pure Appl. Math. 28 (1997) 1251-1265] and many others in the literature.
Transversal homoclinic orbits in a transiently chaotic neural network.
Chen, Shyan-Shiou; Shih, Chih-Wen
2002-09-01
We study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the system and allocating suitable parameters in constructing the fixed points and their pre-images for the system. The investigation provides a theoretical confirmation on the scenario of transient chaos for the system. All the parameter conditions for the theory can be examined numerically. The numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide significant information in the annealing process in solving combinatorial optimization problems using this transiently chaotic neural network. (c) 2002 American Institute of Physics.
50 CFR 86.13 - What is boating infrastructure?
Code of Federal Regulations, 2010 CFR
2010-10-01
..., currents, etc., that provide a temporary safe anchorage point or harbor of refuge during storms); (f) Floating docks and fixed piers; (g) Floating and fixed breakwaters; (h) Dinghy docks (floating or fixed...
Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA
de Souza, Alisson C. D.; Fernandes, Marcelo A. C.
2014-01-01
This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA. PMID:25268918
Expected Number of Fixed Points in Boolean Networks with Arbitrary Topology.
Mori, Fumito; Mochizuki, Atsushi
2017-07-14
Boolean network models describe genetic, neural, and social dynamics in complex networks, where the dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically considered to correspond to cell types in an organism. We prove that the expected number of fixed points in a Boolean network, with Boolean functions drawn from probability distributions that are not required to be uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also demonstrate that the expected number is increased by the predominance of positive feedback in a cycle.
An investigation of the convergence to the stationary state in the Hassell mapping
NASA Astrophysics Data System (ADS)
de Mendonça, Hans M. J.; Leonel, Edson D.; de Oliveira, Juliano A.
2017-01-01
We investigate the convergence to the fixed point and near it in a transcritical bifurcation observed in a Hassell mapping. We considered a phenomenological description which was reinforced by a theoretical description. At the bifurcation, we confirm the convergence for the fixed point is characterized by a homogeneous function with three exponents. Near the bifurcation the decay to the fixed point is exponential with a relaxation time given by a power law. Although the expression of the mapping is different from the traditional logistic mapping, at the bifurcation and near it, the local dynamics is essentially the same for either mappings.
Automated Parameter Studies Using a Cartesian Method
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosimis, Michael J.; Nemec, Marian
2004-01-01
Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated points in a design space by performing steady-state computations at fixed flight conditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration of interest. This "point analysis" provides detailed information about the flowfield, which aides an engineer in understanding, or correcting, a design. A point analysis is typically performed using high fidelity methods at a handful of critical design points, e.g. a cruise or landing configuration, or a sample of points along a flight trajectory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, Ralph M., E-mail: rkaufman@math.purdue.edu; Khlebnikov, Sergei, E-mail: skhleb@physics.purdue.edu; Wehefritz-Kaufmann, Birgit, E-mail: ebkaufma@math.purdue.edu
2012-11-15
Motivated by the Double Gyroid nanowire network we develop methods to detect Dirac points and classify level crossings, aka. singularities in the spectrum of a family of Hamiltonians. The approach we use is singularity theory. Using this language, we obtain a characterization of Dirac points and also show that the branching behavior of the level crossings is given by an unfolding of A{sub n} type singularities. Which type of singularity occurs can be read off a characteristic region inside the miniversal unfolding of an A{sub k} singularity. We then apply these methods in the setting of families of graph Hamiltonians,more » such as those for wire networks. In the particular case of the Double Gyroid we analytically classify its singularities and show that it has Dirac points. This indicates that nanowire systems of this type should have very special physical properties. - Highlights: Black-Right-Pointing-Pointer New method for analytically finding Dirac points. Black-Right-Pointing-Pointer Novel relation of level crossings to singularity theory. Black-Right-Pointing-Pointer More precise version of the von-Neumann-Wigner theorem for arbitrary smooth families of Hamiltonians of fixed size. Black-Right-Pointing-Pointer Analytical proof of the existence of Dirac points for the Gyroid wire network.« less
Napadow, Vitaly; Liu, Jing; Kaptchuk, Ted J
2004-12-01
Acupuncture textbooks mention a wide assortment of indications for each acupuncture point and, conversely, each disease or indication can be treated by a wide assortment of acupoints. However, little systematic information exists on how acupuncture is actually used in practice: i.e. which points are actually selected and for which conditions. This study prospectively gathered data on acupuncture point usage in two primarily acupuncture hospital clinics in Beijing, China. Of the more than 150 unique acupoints, the 30 most commonly used points represented 68% of the total number of acupoints needled at the first clinic, and 63% of points needled at the second clinic. While acupuncturists use a similar set of most prevalent points, such as LI-4 (used in >65% of treatments at both clinic sites), this core of points only partially overlaps. These results support the hypothesis that while the most commonly used points are similar from one acupuncturist to another, each practitioner tends to have certain acupoints, which are favorites as core points or to round out the point prescription. In addition, the results of this study are consistent with the recent development of "manualized" protocols in randomized controlled trials of acupuncture where a fixed set of acupoints are augmented depending on individualized signs and symptoms (TCM patterns).
Effect of distance-related heterogeneity on population size estimates from point counts
Efford, Murray G.; Dawson, Deanna K.
2009-01-01
Point counts are used widely to index bird populations. Variation in the proportion of birds counted is a known source of error, and for robust inference it has been advocated that counts be converted to estimates of absolute population size. We used simulation to assess nine methods for the conduct and analysis of point counts when the data included distance-related heterogeneity of individual detection probability. Distance from the observer is a ubiquitous source of heterogeneity, because nearby birds are more easily detected than distant ones. Several recent methods (dependent double-observer, time of first detection, time of detection, independent multiple-observer, and repeated counts) do not account for distance-related heterogeneity, at least in their simpler forms. We assessed bias in estimates of population size by simulating counts with fixed radius w over four time intervals (occasions). Detection probability per occasion was modeled as a half-normal function of distance with scale parameter sigma and intercept g(0) = 1.0. Bias varied with sigma/w; values of sigma inferred from published studies were often 50% for a 100-m fixed-radius count. More critically, the bias of adjusted counts sometimes varied more than that of unadjusted counts, and inference from adjusted counts would be less robust. The problem was not solved by using mixture models or including distance as a covariate. Conventional distance sampling performed well in simulations, but its assumptions are difficult to meet in the field. We conclude that no existing method allows effective estimation of population size from point counts.
Generalized contractive mappings and weakly α-admissible pairs in G-metric spaces.
Hussain, N; Parvaneh, V; Hoseini Ghoncheh, S J
2014-01-01
The aim of this paper is to present some coincidence and common fixed point results for generalized (ψ, φ)-contractive mappings using partially weakly G-α-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results.
Generalized Contractive Mappings and Weakly α-Admissible Pairs in G-Metric Spaces
Hussain, N.; Parvaneh, V.; Hoseini Ghoncheh, S. J.
2014-01-01
The aim of this paper is to present some coincidence and common fixed point results for generalized (ψ, φ)-contractive mappings using partially weakly G-α-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25202742
On the photo-gravitational restricted four-body problem with variable mass
NASA Astrophysics Data System (ADS)
Mittal, Amit; Agarwal, Rajiv; Suraj, Md Sanam; Arora, Monika
2018-05-01
This paper deals with the photo-gravitational restricted four-body problem (PR4BP) with variable mass. Following the procedure given by Gascheau (C. R. 16:393-394, 1843) and Routh (Proc. Lond. Math. Soc. 6:86-97, 1875), the conditions of linear stability of Lagrange triangle solution in the PR4BP are determined. The three radiating primaries having masses m1, m2 and m3 in an equilateral triangle with m2=m3 will be stable as long as they satisfy the linear stability condition of the Lagrangian triangle solution. We have derived the equations of motion of the mentioned problem and observed that there exist eight libration points for a fixed value of parameters γ (m at time t/m at initial time, 0<γ≤1 ), α (the proportionality constant in Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), 0≤α≤2.2), the mass parameter μ=0.005 and radiation parameters qi, (0< qi≤1, i=1, 2, 3). All the libration points are non-collinear if q2≠ q3. It has been observed that the collinear and out-of-plane libration points also exist for q2=q3. In all the cases, each libration point is found to be unstable. Further, zero velocity curves (ZVCs) and Newton-Raphson basins of attraction are also discussed.
Global exponential stability analysis on impulsive BAM neural networks with distributed delays
NASA Astrophysics Data System (ADS)
Li, Yao-Tang; Yang, Chang-Bo
2006-12-01
Using M-matrix and topological degree tool, sufficient conditions are obtained for the existence, uniqueness and global exponential stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with distributed delays and subjected to impulsive state displacements at fixed instants of time by constructing a suitable Lyapunov functional. The results remove the usual assumptions that the boundedness, monotonicity, and differentiability of the activation functions. It is shown that in some cases, the stability criteria can be easily checked. Finally, an illustrative example is given to show the effectiveness of the presented criteria.
50 CFR 660.212 - Fixed gear fishery-prohibitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Painted Cave, Anacapa Island, Carrington Point, Judith Rock, Skunk Point, Footprint, Gull Island, South... are specific to the limited entry fixed gear fisheries. General groundfish prohibitions are found at § 660.12, subpart C. In addition to the general groundfish prohibitions specified in § 660.12, subpart C...
DOT National Transportation Integrated Search
1978-04-01
Volume 2 defines a new algorithm for the network equilibrium model that works in the space of path flows and is based on the theory of fixed point method. The goals of the study were broadly defined as the identification of aggregation practices and ...
Existence and construction of Galilean invariant z ≠2 theories
NASA Astrophysics Data System (ADS)
Grinstein, Benjamín; Pal, Sridip
2018-06-01
We prove a no-go theorem for the construction of a Galilean boost invariant and z ≠2 anisotropic scale invariant field theory with a finite dimensional basis of fields. Two point correlators in such theories, we show, grow unboundedly with spatial separation. Correlators of theories with an infinite dimensional basis of fields, for example, labeled by a continuous parameter, do not necessarily exhibit this bad behavior. Hence, such theories behave effectively as if in one extra dimension. Embedding the symmetry algebra into the conformal algebra of one higher dimension also reveals the existence of an internal continuous parameter. Consideration of isometries shows that the nonrelativistic holographic picture assumes a canonical form, where the bulk gravitational theory lives in a space-time with one extra dimension. This can be contrasted with the original proposal by Balasubramanian and McGreevy, and by Son, where the metric of a (d +2 )-dimensional space-time is proposed to be dual of a d -dimensional field theory. We provide explicit examples of theories living at fixed point with anisotropic scaling exponent z =2/ℓ ℓ+1 , ℓ∈Z .
NASA Astrophysics Data System (ADS)
Singh, Y. P.; Maas, H.; Edler, F.; Zaidi, Z. H.
1994-01-01
A set of resistance ratios (W) for platinum resistance thermometers was obtained at the triple point of Hg and the melting point of Ga in order to study their relationship. It was found that using measured values for one of the fixed points, a linear equation will predict the value of the other. These measurements also indicate that the fixed points of Hg and of Ga are inconsistent by about 1,5 mK in the sense that either the melting point of Ga or the triple point of Hg was assigned too high a value on the ITS-90.
Fixed points of contractive mappings in b-metric-like spaces.
Hussain, Nawab; Roshan, Jamal Rezaei; Parvaneh, Vahid; Kadelburg, Zoran
2014-01-01
We discuss topological structure of b-metric-like spaces and demonstrate a fundamental lemma for the convergence of sequences. As an application we prove certain fixed point results in the setup of such spaces for different types of contractive mappings. Finally, some periodic point results in b-metric-like spaces are obtained. Two examples are presented in order to verify the effectiveness and applicability of our main results.
Simulation of design-unbiased point-to-particle sampling compared to alternatives on plantation rows
Thomas B. Lynch; David Hamlin; Mark J. Ducey
2016-01-01
Total quantities of tree attributes can be estimated in plantations by sampling on plantation rows using several methods. At random sample points on a row, either fixed row lengths or variable row lengths with a fixed number of sample trees can be assessed. Ratio of means or mean of ratios estimators can be developed for the fixed number of trees option but are not...
NASA Astrophysics Data System (ADS)
Pokhodun, A. I.; Ivanova, A. G.; Duysebayeva, K. K.; Ivanova, K. P.
2015-01-01
Regional comparison of type S thermocouples at the freezing points of zinc, aluminium and copper was initiated by COOMET TC1.1-10 (the technical committee of COOMET `Thermometry and thermal physics'). Three NMI take part in COOMET regional comparison: D I Mendeleev Institute for Metrology (VNIIM) (Russian Federation), National Scientific Centre (Institute of Metrology) (NSC IM, Ukraine), Republic State Enterprise (Kazakhstan Institute of Metrology) (KazInMetr, Republic of Kazakhstan). VNIIM (Russia) was chosen as the coordinator-pilot of the regional comparison. A star type comparison was used. The participants: KazInMetr and NSC IM constructed the type S thermocouples and calibrated them in three fixed points: zinc, aluminum and copper points, using methods of ITS-90 fixed point realizations. The thermocouples have been sent to VNIIM together with the results of the calibration at three fixed points, with the values of the inhomogeneity at temperature 200 °C and the uncertainty evaluations of the results. For calibration of thermocouples the same VNIIM fixed points cells were used. Participating laboratories repeated the calibration of thermocouples after its returning in zinc, aluminum and copper points to determine the stability of its results. In result of the comparison was to evaluate the equivalence of the type S thermocouples calibration in fixed points by NMIs to confirm corresponding lines of international website for NMI's Calibration and Measurement Capabilities (CMC). This paper is the final report of the comparison including analysis of the uncertainty of measurement results. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT WG-KC, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
The four fixed points of scale invariant single field cosmological models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, BingKan, E-mail: bxue@princeton.edu
2012-10-01
We introduce a new set of flow parameters to describe the time dependence of the equation of state and the speed of sound in single field cosmological models. A scale invariant power spectrum is produced if these flow parameters satisfy specific dynamical equations. We analyze the flow of these parameters and find four types of fixed points that encompass all known single field models. Moreover, near each fixed point we uncover new models where the scale invariance of the power spectrum relies on having simultaneously time varying speed of sound and equation of state. We describe several distinctive new modelsmore » and discuss constraints from strong coupling and superluminality.« less
NASA Astrophysics Data System (ADS)
Taylor, Marika; Woodhead, William
2017-12-01
The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension between 3/2 and 5/2. Therefore the strongest version of the F theorem is in general violated.
Nash points, Ky Fan inequality and equilibria of abstract economies in Max-Plus and -convexity
NASA Astrophysics Data System (ADS)
Briec, Walter; Horvath, Charles
2008-05-01
-convexity was introduced in [W. Briec, C. Horvath, -convexity, Optimization 53 (2004) 103-127]. Separation and Hahn-Banach like theorems can be found in [G. Adilov, A.M. Rubinov, -convex sets and functions, Numer. Funct. Anal. Optim. 27 (2006) 237-257] and [W. Briec, C.D. Horvath, A. Rubinov, Separation in -convexity, Pacific J. Optim. 1 (2005) 13-30]. We show here that all the basic results related to fixed point theorems are available in -convexity. Ky Fan inequality, existence of Nash equilibria and existence of equilibria for abstract economies are established in the framework of -convexity. Monotone analysis, or analysis on Maslov semimodules [V.N. Kolokoltsov, V.P. Maslov, Idempotent Analysis and Its Applications, Math. Appl., volE 401, Kluwer Academic, 1997; V.P. Litvinov, V.P. Maslov, G.B. Shpitz, Idempotent functional analysis: An algebraic approach, Math. Notes 69 (2001) 696-729; V.P. Maslov, S.N. Samborski (Eds.), Idempotent Analysis, Advances in Soviet Mathematics, Amer. Math. Soc., Providence, RI, 1992], is the natural framework for these results. From this point of view Max-Plus convexity and -convexity are isomorphic Maslov semimodules structures over isomorphic semirings. Therefore all the results of this paper hold in the context of Max-Plus convexity.
Bilateral Comparison Between NIM and NMC Over the Temperature Range from 83.8058 K to 692.677 K
NASA Astrophysics Data System (ADS)
Sun, Jianping; Ye, Shaochun; Kho, Haoyuan; Zhang, Jintao; Wang, Li
2015-08-01
A bilateral comparison of local realization of the International Temperature Scale of 1990 between the National Institute of Metrology (NIM) and National Metrology Centre (NMC) was carried out over the temperature range from 83.8058 K to 692.677 K. It involved six fixed points including the argon triple point, the mercury triple point, the triple point of water, the melting point of gallium, the freezing point of tin, and the freezing point of zinc. In 2009, NMC asked NIM to participate in a bilateral comparison to link the NMC results to the Consultative Committee for Thermometry Key Comparison 3 (CCT-K3) and facilitate the NMC's calibration and measurement capabilities submission. This comparison was agreed by NIM and Asia Pacific Metrology Programme in 2009, and registered in the Key Comparison Database in 2010 as CCT-K3.2. NMC supplied two fused silica sheath standard platinum resistance thermometers (SPRTs) as traveling standards. One of them was used at the Ga, Sn, and Zn fixed points, while the other one was used at the Ar and Hg fixed points. NMC measured them before and after NIM measured them. During the comparison, a criterion for the SPRT was set as the stability at the triple point of water to be less than 0.3 mK. The results for both laboratories are summarized. A proposal for linking the NMC's comparison results to CCT-K3 is presented. The difference between NMC and NIM and the difference between NMC and the CCT-K3 average reference value using NIM as a link are reported with expanded uncertainties at each measured fixed point.
Hidden attractors in dynamical systems
NASA Astrophysics Data System (ADS)
Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh
2016-06-01
Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.
Fixed Points of Contractive Mappings in b-Metric-Like Spaces
Hussain, Nawab; Roshan, Jamal Rezaei
2014-01-01
We discuss topological structure of b-metric-like spaces and demonstrate a fundamental lemma for the convergence of sequences. As an application we prove certain fixed point results in the setup of such spaces for different types of contractive mappings. Finally, some periodic point results in b-metric-like spaces are obtained. Two examples are presented in order to verify the effectiveness and applicability of our main results. PMID:25143980
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special showing for renewal of common carrier... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.705 Special showing for renewal of common carrier station...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...
ASIC For Complex Fixed-Point Arithmetic
NASA Technical Reports Server (NTRS)
Petilli, Stephen G.; Grimm, Michael J.; Olson, Erlend M.
1995-01-01
Application-specific integrated circuit (ASIC) performs 24-bit, fixed-point arithmetic operations on arrays of complex-valued input data. High-performance, wide-band arithmetic logic unit (ALU) designed for use in computing fast Fourier transforms (FFTs) and for performing ditigal filtering functions. Other applications include general computations involved in analysis of spectra and digital signal processing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...
Geometry in a dynamical system without space: Hyperbolic Geometry in Kuramoto Oscillator Systems
NASA Astrophysics Data System (ADS)
Engelbrecht, Jan; Chen, Bolun; Mirollo, Renato
Kuramoto oscillator networks have the special property that their time evolution is constrained to lie on 3D orbits of the Möbius group acting on the N-fold torus TN which explains the N - 3 constants of motion discovered by Watanabe and Strogatz. The dynamics for phase models can be further reduced to 2D invariant sets in T N - 1 which have a natural geometry equivalent to the unit disk Δ with hyperbolic metric. We show that the classic Kuramoto model with order parameter Z1 (the first moment of the oscillator configuration) is a gradient flow in this metric with a unique fixed point on each generic 2D invariant set, corresponding to the hyperbolic barycenter of an oscillator configuration. This gradient property makes the dynamics especially easy to analyze. We exhibit several new families of Kuramoto oscillator models which reduce to gradient flows in this metric; some of these have a richer fixed point structure including non-hyperbolic fixed points associated with fixed point bifurcations. Work Supported by NSF DMS 1413020.
NASA Astrophysics Data System (ADS)
Palenčár, Rudolf; Sopkuliak, Peter; Palenčár, Jakub; Ďuriš, Stanislav; Suroviak, Emil; Halaj, Martin
2017-06-01
Evaluation of uncertainties of the temperature measurement by standard platinum resistance thermometer calibrated at the defining fixed points according to ITS-90 is a problem that can be solved in different ways. The paper presents a procedure based on the propagation of distributions using the Monte Carlo method. The procedure employs generation of pseudo-random numbers for the input variables of resistances at the defining fixed points, supposing the multivariate Gaussian distribution for input quantities. This allows taking into account the correlations among resistances at the defining fixed points. Assumption of Gaussian probability density function is acceptable, with respect to the several sources of uncertainties of resistances. In the case of uncorrelated resistances at the defining fixed points, the method is applicable to any probability density function. Validation of the law of propagation of uncertainty using the Monte Carlo method is presented on the example of specific data for 25 Ω standard platinum resistance thermometer in the temperature range from 0 to 660 °C. Using this example, we demonstrate suitability of the method by validation of its results.
Existence and stability of circular orbits in general static and spherically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Jia, Junji; Liu, Jiawei; Liu, Xionghui; Mo, Zhongyou; Pang, Xiankai; Wang, Yaoguang; Yang, Nan
2018-02-01
The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and sufficient condition on the metric function for the existence of timelike COs in SSS spacetimes. After analyzing the asymptotic behavior of the metric, we then show that asymptotic flat SSS spacetime that corresponds to a negative Newtonian potential at large r will always allow the existence of CO. The stability of the CO in a general SSS spacetime is then studied using the Lyapunov exponent method. Two sufficient conditions on the (in)stability of the COs are obtained. For null geodesics, a sufficient condition on the metric function for the (in)stability of null CO is also obtained. We then illustrate one powerful application of these results by showing that three SSS spacetimes whose metric function is not completely known will allow the existence of timelike and/or null COs. We also used our results to assert the existence and (in)stabilities of a number of known SSS metrics.
Learning State Space Dynamics in Recurrent Networks
NASA Astrophysics Data System (ADS)
Simard, Patrice Yvon
Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.
Lin, Di; Labeau, Fabrice; Yao, Yuanzhe; Vasilakos, Athanasios V; Tang, Yu
2016-07-01
Wireless technologies and vehicle-mounted or wearable medical sensors are pervasive to support ubiquitous healthcare applications. However, a critical issue of using wireless communications under a healthcare scenario rests at the electromagnetic interference (EMI) caused by radio frequency transmission. A high level of EMI may lead to a critical malfunction of medical sensors, and in such a scenario, a few users who are not transmitting emergency data could be required to reduce their transmit power or even temporarily disconnect from the network in order to guarantee the normal operation of medical sensors as well as the transmission of emergency data. In this paper, we propose a joint power and admission control algorithm to schedule the users' transmission of medical data. The objective of this algorithm is to minimize the number of users who are forced to disconnect from the network while keeping the EMI on medical sensors at an acceptable level. We show that a fixed point of proposed algorithm always exists, and at the fixed point, our proposed algorithm can minimize the number of low-priority users who are required to disconnect from the network. Numerical results illustrate that the proposed algorithm can achieve robust performance against the variations of mobile hospital environments.
Brückner, Hans-Peter; Spindeldreier, Christian; Blume, Holger
2013-01-01
A common approach for high accuracy sensor fusion based on 9D inertial measurement unit data is Kalman filtering. State of the art floating-point filter algorithms differ in their computational complexity nevertheless, real-time operation on a low-power microcontroller at high sampling rates is not possible. This work presents algorithmic modifications to reduce the computational demands of a two-step minimum order Kalman filter. Furthermore, the required bit-width of a fixed-point filter version is explored. For evaluation real-world data captured using an Xsens MTx inertial sensor is used. Changes in computational latency and orientation estimation accuracy due to the proposed algorithmic modifications and fixed-point number representation are evaluated in detail on a variety of processing platforms enabling on-board processing on wearable sensor platforms.
Farnsworth, G.L.; Nichols, J.D.; Sauer, J.R.; Fancy, S.G.; Pollock, K.H.; Shriner, S.A.; Simons, T.R.; Ralph, C. John; Rich, Terrell D.
2005-01-01
Point counts are a standard sampling procedure for many bird species, but lingering concerns still exist about the quality of information produced from the method. It is well known that variation in observer ability and environmental conditions can influence the detection probability of birds in point counts, but many biologists have been reluctant to abandon point counts in favor of more intensive approaches to counting. However, over the past few years a variety of statistical and methodological developments have begun to provide practical ways of overcoming some of the problems with point counts. We describe some of these approaches, and show how they can be integrated into standard point count protocols to greatly enhance the quality of the information. Several tools now exist for estimation of detection probability of birds during counts, including distance sampling, double observer methods, time-depletion (removal) methods, and hybrid methods that combine these approaches. Many counts are conducted in habitats that make auditory detection of birds much more likely than visual detection. As a framework for understanding detection probability during such counts, we propose separating two components of the probability a bird is detected during a count into (1) the probability a bird vocalizes during the count and (2) the probability this vocalization is detected by an observer. In addition, we propose that some measure of the area sampled during a count is necessary for valid inferences about bird populations. This can be done by employing fixed-radius counts or more sophisticated distance-sampling models. We recommend any studies employing point counts be designed to estimate detection probability and to include a measure of the area sampled.
NASA Astrophysics Data System (ADS)
Delory, E.; Jirka, S.
2016-02-01
Discovering sensors and observation data is important when enabling the exchange of oceanographic data between observatories and scientists that need the data sets for their work. To better support this discovery process, one task of the European project FixO3 (Fixed-point Open Ocean Observatories) is dealing with the question which elements are needed for developing a better registry for sensors. This has resulted in four items which are addressed by the FixO3 project in cooperation with further European projects such as NeXOS (http://www.nexosproject.eu/). 1.) Metadata description format: To store and retrieve information about sensors and platforms it is necessary to have a common approach how to provide and encode the metadata. For this purpose, the OGC Sensor Model Language (SensorML) 2.0 standard was selected. Especially the opportunity to distinguish between sensor types and instances offers new chances for a more efficient provision and maintenance of sensor metadata. 2.) Conversion of existing metadata into a SensorML 2.0 representation: In order to ensure a sustainable re-use of already provided metadata content (e.g. from ESONET-FixO3 yellow pages), it is important to provide a mechanism which is capable of transforming these already available metadata sets into the new SensorML 2.0 structure. 3.) Metadata editor: To create descriptions of sensors and platforms, it is not possible to expect users to manually edit XML-based description files. Thus, a visual interface is necessary to help during the metadata creation. We will outline a prototype of this editor, building upon the development of the ESONET sensor registry interface. 4.) Sensor Metadata Store: A server is needed that for storing and querying the created sensor descriptions. For this purpose different options exist which will be discussed. In summary, we will present a set of different elements enabling sensor discovery ranging from metadata formats, metadata conversion and editing to metadata storage. Furthermore, the current development status will be demonstrated.
NASA Astrophysics Data System (ADS)
Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui
2018-06-01
This paper mainly studies the finite-time stability and synchronization problems of memristor-based fractional-order fuzzy cellular neural network (MFFCNN). Firstly, we discuss the existence and uniqueness of the Filippov solution of the MFFCNN according to the Banach fixed point theorem and give a sufficient condition for the existence and uniqueness of the solution. Secondly, a sufficient condition to ensure the finite-time stability of the MFFCNN is obtained based on the definition of finite-time stability of the MFFCNN and Gronwall-Bellman inequality. Thirdly, by designing a simple linear feedback controller, the finite-time synchronization criterion for drive-response MFFCNN systems is derived according to the definition of finite-time synchronization. These sufficient conditions are easy to verify. Finally, two examples are given to show the effectiveness of the proposed results.
NASA Astrophysics Data System (ADS)
Wei, Chih Chung; Un, Leng-Wai; Yen, Ta-Jen
2017-05-01
One-dimension hyperbolic metamaterials (1DHMMs) possess marvelous and considerable applications: hyperlens, spontaneous emission engineering and nonlinear optics. Conventionally, effective medium theory, which is only valid for long wavelength limit, was used to predict and analyze the optical properties and applications. In our previous works, we considered a binary 1DHMM which consists of alternative metallic and dielectric layers, and rigorously demonstrated the existence of surface states and bulk-interface correspondence with the plasmonic band theory from the coupled surface plasmon point of view. In the plasmonic band structure, we can classify 1DHMMs into two classes: metallic-like and dielectric-like, depending on the formation of the surface states with dielectric and metallic material, respectively. Band crossing exists only when the dielectric layers are thicker than the metallic ones, which is independent from the dielectric constants. Furthermore, the 1DHMMs are all metallic-like without band crossing. On the other hand, the 1DHMMs with band crossing are metal-like before the band crossing point, while they are dielectric-like after the band crossing point. In this work, we measure the surface states formed by dielectric material and 1DHMMs with band crossing in Otto configuration. With white light source and fixed incident angle, we measure the reflectance to investigate the existence of the surface states of 1DHMMs with various thickness ratio of metallic to dielectric layers. Conclusively, our results show that the surface states of 1DHMMs exist only when the thickness ratio is larger than 0.15. The disappearance of the surface states indicates the topological phase transition of 1DHMMs. Our experimental results will benefit new applications for manipulating light on the surface of hyperbolic metamaterials.
FixO3 project results, legacy and module migration to EMSO
NASA Astrophysics Data System (ADS)
Lampitt, Richard
2017-04-01
The fixed point open ocean observatory network (FixO3) project is an international project aimed at integrating in a single network all fixed point open ocean observatories operated by European organisations and to harmonise and coordinate technological, procedural and data management across the stations. The project is running for four years since September 2013 with 29 partners across Europe and a budget of 7M Euros and is now coming to its final phase. In contrast to several past programmes, the opportunity has arisen to ensure that many of the project achievements can migrate into the newly formed European Multidisciplinary Seafloor and water column Observatory (EMSO) research infrastructure. The final phase of the project will focus on developing a strategy to transfer the results in an efficient way to maintain their relevance and maximise their use. In this presentation, we will highlight the significant achievements of FixO3 over the past three years focussing on the modules which will be transferred to EMSO in the coming 9 months. These include: 1. Handbook of best practices for operating fixed point observatories 2. Metadata catalogue 3. Earth Virtual Observatory (EarthVO) for data visualisation and comparison 4. Open Ocean Observatory Yellow Pages (O3YP) 5. Training material for hardware, data and data products used
Nie, Xiaobing; Zheng, Wei Xing
2015-05-01
This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Considerations for Improving the Capacity and Performance of AeroMACS
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Kamali, Behnam; Apaza, Rafael D.; Wilson, Jeffrey D.; Dimond, Robert P.
2014-01-01
The Aeronautical Mobile Airport Communications System (AeroMACS) has progressed from concept through prototype development, testing, and standards development and is now poised for the first operational deployments at nine US airports by the Federal Aviation Administration. These initial deployments will support fixed applications. Mobile applications providing connectivity to and from aircraft and ground-based vehicles on the airport surface will occur at some point in the future. Given that many fixed applications are possible for AeroMACS, it is necessary to now consider whether the existing capacity of AeroMACS will be reached even before the mobile applications are ready to be added, since AeroMACS is constrained by both available bandwidth and transmit power limitations. This paper describes some concepts that may be applied to improve the future capacity of AeroMACS, with a particular emphasis on gains that can be derived from the addition of IEEE 802.16j multihop relays to the AeroMACS standard, where a significant analysis effort has been undertaken.
Symmetry-breaking oscillations in membrane optomechanics
NASA Astrophysics Data System (ADS)
Wurl, C.; Alvermann, A.; Fehske, H.
2016-12-01
We study the classical dynamics of a membrane inside a cavity in the situation where this optomechanical system possesses a reflection symmetry. Symmetry breaking occurs through supercritical and subcritical pitchfork bifurcations of the static fixed-point solutions. Both bifurcations can be observed through variation of the laser-cavity detuning, which gives rise to a boomerang-like fixed-point pattern with hysteresis. The symmetry-breaking fixed points evolve into self-sustained oscillations when the laser intensity is increased. In addition to the analysis of the accompanying Hopf bifurcations we describe these oscillations at finite amplitudes with an ansatz that fully accounts for the frequency shift relative to the natural membrane frequency. We complete our study by following the route to chaos for the membrane dynamics.
A 640-MHz 32-megachannel real-time polyphase-FFT spectrum analyzer
NASA Technical Reports Server (NTRS)
Zimmerman, G. A.; Garyantes, M. F.; Grimm, M. J.; Charny, B.
1991-01-01
A polyphase fast Fourier transform (FFT) spectrum analyzer being designed for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet Propulsion Laboratory is described. By replacing the time domain multiplicative window preprocessing with polyphase filter processing, much of the processing loss of windowed FFTs can be eliminated. Polyphase coefficient memory costs are minimized by effective use of run length compression. Finite word length effects are analyzed, producing a balanced system with 8 bit inputs, 16 bit fixed point polyphase arithmetic, and 24 bit fixed point FFT arithmetic. Fixed point renormalization midway through the computation is seen to be naturally accommodated by the matrix FFT algorithm proposed. Simulation results validate the finite word length arithmetic analysis and the renormalization technique.
[Treatment of calcaneal avulsion fractures with twinfix suture anchors fixation].
Zhao, Bin-xiu; Wang, Kun-zheng; Wang, Chun-sheng; Xie, Yue; Dai, Zhi-tang; Liu, Gang; Liu, Wei-dong
2011-06-01
For the calcaneal avulsion fracture, the current method is more commonly used screws or Kirschner wire to fix fracture fragment. This article intended to explore the feasibility and clinical efficacy for the treatment of avulsion fractures with TwinFix suture anchors. From July 2007 to November 2010, 21 patients were reviewed, including 15 males and 6 females, ranging in age from 49 to 65 years,with a mean of 58.7 years. Twelve patients had nodules in the right heel and 9 patients had nodules in the left heel. All the patients had closed fractures. The typical preoperative symptoms of the patients included pain in the upper heel and weak in heel lift. Body examination results: palpable sense of bone rubbing in the back of the heel, and swelling in the heel. Surgery treatment with TwinFix suture anchors performed as follows : to fix TwinFix suture anchors into the calcaneal body, then to drill the fracture block, to make the double strand suture through the fracture holes, to knot the suture eachother to fix the block, and to use stitch to fix the remaining suture in the Achilles tendon in order to improve the block fixation. The criteria of the AOFAS Foot and Ankle Surgery by the United States Association of ankle-rear foot functional recovery was used to evaluate the Achilles tendon. Total average score was (95.5 +/- 3.12) points, including pain items of(38.5 +/- 2.18) points,the average score of functional items of (49.5 +/- 3.09) points,and power lines of 10 points in all patients. Twenty-one patients got an excellent result, 16 good and 5 poor. The methods of treatment for the calcaneal avulsion fractures with TwinFix suture anchors is a simple operation, and have excellent clinical effect, which is worthy of promotion.
Tympanic thermometer performance validation by use of a body-temperature fixed point blackbody
NASA Astrophysics Data System (ADS)
Machin, Graham; Simpson, Robert
2003-04-01
The use of infrared tympanic thermometers within the medical community (and more generically in the public domain) has recently grown rapidly, displacing more traditional forms of thermometry such as mercury-in-glass. Besides the obvious health concerns over mercury the increase in the use of tympanic thermometers is related to a number of factors such as their speed and relatively non-invasive method of operation. The calibration and testing of such devices is covered by a number of international standards (ASTM1, prEN2, JIS3) which specify the design of calibration blackbodies. However these calibration sources are impractical for day-to-day in-situ validation purposes. In addition several studies (e.g. Modell et al4, Craig et al5) have thrown doubt on the accuracy of tympanic thermometers in clinical use. With this in mind the NPL is developing a practical, portable and robust primary reference fixed point source for tympanic thermometer validation. The aim of this simple device is to give the clinician a rapid way of validating the performance of their tympanic thermometer, enabling the detection of mal-functioning thermometers and giving confidence in the measurement to the clinician (and patient!) at point of use. The reference fixed point operates at a temperature of 36.3 °C (97.3 °F) with a repeatability of approximately +/- 20 mK. The fixed-point design has taken into consideration the optical characteristics of tympanic thermometers enabling wide-angled field of view devices to be successfully tested. The overall uncertainty of the device is estimated to be is less than 0.1°C. The paper gives a description of the fixed point, its design and construction as well as the results to date of validation tests.
NASA Technical Reports Server (NTRS)
Frew, A. M.; Eisenhut, D. F.; Farrenkopf, R. L.; Gates, R. F.; Iwens, R. P.; Kirby, D. K.; Mann, R. J.; Spencer, D. J.; Tsou, H. S.; Zaremba, J. G.
1972-01-01
The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target.
Comparison of Fixed Point Realisations between Inmetro and PTB
NASA Astrophysics Data System (ADS)
Santiago, J. F. N.; Petkovic, S. G.; Teixeira, R. N.; Noatsch, U.; Thiele-Krivoj, B.
2003-09-01
An interlaboratory comparison in the temperature range between -190 °C and 420 °C was organised between the National Institute of Quality, Normalisation and Industrial Quality (Inmetro), Brazil, and the Physikalisch Technische Bundesanstalt (PTB), Germany. This comparison followed the same protocol as the EUROMET project 552 comparison and was carried out in the years 2001-2002. A standard platinum resistance thermometer (SPRT) of 25 Ω was calibrated at the temperature fixed points of Ar, Hg, the triple point of water (TWP), Ga, In, Sn and Zn, with at least three realisations of each fixed point at both institutes. The uncertainty evaluation is given by Inmetro and some differences in the calibration procedures or in the measuring instruments used are described. The agreement between the results of laboratories was not in all cases within the combined uncertainties. Results of other comparisons are presented, which give additional information on the equivalence of the realised temperature scales.
Human's choices in situations of time-based diminishing returns.
Hackenberg, T D; Axtell, S A
1993-01-01
Three experiments examined adult humans' choices in situations with contrasting short-term and long-term consequences. Subjects were given repeated choices between two time-based schedules of points exchangeable for money: a fixed schedule and a progressive schedule that began at 0 s and increased by 5 s with each point delivered by that schedule. Under "reset" conditions, choosing the fixed schedule not only produced a point but it also reset the requirements of the progressive schedule to 0 s. In the first two experiments, reset conditions alternated with "no-reset" conditions, in which progressive-schedule requirements were independent of fixed-schedule choices. Experiment 1 entailed choices between a progressive-interval schedule and a fixed-interval schedule, the duration of which varied across conditions. Switching from the progressive- to the fixed-interval schedule was systematically related to fixed-interval size in 4 of 8 subjects, and in all subjects occurred consistently sooner in the progressive-schedule sequence under reset than under no-reset procedures. The latter result was replicated in a second experiment, in which choices between progressive- and fixed-interval schedules were compared with choices between progressive- and fixed-time schedules. In Experiment 3, switching patterns under reset conditions were unrelated to variations in intertrial interval. In none of the experiments did orderly choice patterns depend on verbal descriptions of the contingencies or on schedule-controlled response patterns in the presence of the chosen schedules. The overall pattern of results indicates control of choices by temporarily remote consequences, and is consistent with versions of optimality theory that address performance in situations of diminishing returns. PMID:8315364
When water does not boil at the boiling point.
Chang, Hasok
2007-03-01
Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.
A test of fixed and moving reference point control in posture.
Lee, I-Chieh; Pacheco, Matheus M; Newell, Karl M
2017-01-01
This study investigated two contrasting assumptions of the regulation of posture: namely, fixed and moving reference point control. These assumptions were tested in terms of time-dependent structure and data distribution properties when stability is manipulated. Fifteen male participants performed a tightrope simulated balance task that is, maintaining a tandem stance while holding a pole. Pole length (and mass) and the standing support surface (fixed surface/balance board) were manipulated so as to mechanically change the balance stability. The mean and standard deviation (SD) of COP length were reduced with pole length increment but only in the balance board surface condition. Also, the SampEn was lower with greater pole length for the balance board but not the fixed surface. More than one peak was present in the distribution of COP in the majority of trials. Collectively, the findings provide evidence for a moving reference point in the maintenance of postural stability for quiet standing. Copyright © 2016 Elsevier B.V. All rights reserved.
Mishima, K; Yamashita, K
2009-07-07
We develop monotonically convergent free-time and fixed end-point optimal control theory (OCT) in the density-matrix representation to deal with quantum systems showing dissipation. Our theory is more general and flexible for tailoring optimal laser pulses in order to control quantum dynamics with dissipation than the conventional fixed-time and fixed end-point OCT in that the optimal temporal duration of laser pulses can also be optimized exactly. To show the usefulness of our theory, it is applied to the generation and maintenance of the vibrational entanglement of carbon monoxide adsorbed on the copper (100) surface, CO/Cu(100). We demonstrate the numerical results and clarify how to combat vibrational decoherence as much as possible by the tailored shapes of the optimal laser pulses. It is expected that our theory will be general enough to be applied to a variety of dissipative quantum dynamics systems because the decoherence is one of the quantum phenomena sensitive to the temporal duration of the quantum dynamics.
The digital implementation of control compensators: The coefficient wordlength issue
NASA Technical Reports Server (NTRS)
Moroney, P.; Willsky, A. S.; Houpt, P. K.
1979-01-01
There exists a number of mathematical procedures for designing discrete-time compensators. However, the digital implementation of these designs, with a microprocessor for example, has not received nearly as thorough an investigation. The finite-precision nature of the digital hardware makes it necessary to choose an algorithm (computational structure) that will perform 'well-enough' with regard to the initial objectives of the design. This paper describes a procedure for estimating the required fixed-point coefficient wordlength for any given computational structure for the implementation of a single-input single-output LOG design. The results are compared to the actual number of bits necessary to achieve a specified performance index.
ERIC Educational Resources Information Center
Kuntz, Aaron M.; Petrovic, John E.
2018-01-01
In this article we consider the material dimensions of schooling as constitutive of the possibilities inherent in "fixing" education. We begin by mapping out the problem of "fixing education," pointing to the necrophilic tendencies of contemporary education--a desire to kill what otherwise might be life-giving. In this sense,…
NASA Astrophysics Data System (ADS)
Lampitt, Richard; Cristini, Luisa
2014-05-01
The Fixed point Open Ocean Observatory network (FixO3) seeks to integrate the 23 European open ocean fixed point observatories and to improve access to these key installations for the broader community. These will provide multidisciplinary observations in all parts of the oceans from the air-sea interface to the deep seafloor. Coordinated by the National Oceanography Centre, UK, FixO3 builds on the significant advances achieved through the previous Europe-funded FP7 programmes EuroSITES, ESONET and CARBOOCEAN. Started in September 2013 with a budget of 7 Million Euros over 4 years the project has 29 partners drawn from academia, research institutions and SME's. In addition 12 international experts from a wide range of disciplines comprise an Advisory Board. On behalf of the FixO3 Consortium, we present the programme that will be achieved through the activities of 12 Work Packages: 1. Coordination activities to integrate and harmonise the current procedures and processes. Strong links will be fostered with the wider community across academia, industry, policy and the general public through outreach, knowledge exchange and training. 2. Support actions to offer a) free access to observatory infrastructures to those who do not have such access, and b) free and open data services and products. 3. Joint research activities to innovate and enhance the current capability for multidisciplinary in situ ocean observation. Support actions include Transnational Access (TNA) to FixO3 infrastructure, meaning that European organizations can apply to free-of-charge access to the observatories for research and testing in two international calls during the project lifetime. The first call for TNA opens in summer 2014. More information can be found on FixO3 website (www.fixo3.eu/). Open ocean observation is currently a high priority for European marine and maritime activities. FixO3 will provide important data on environmental products and services to address the Marine Strategy Framework Directive and in support of the European Integrated Maritime Policy. The FixO3 network will provide free and open access to in situ fixed point data of the highest quality. It will provide a strong integrated framework of open ocean facilities in the Atlantic from the Arctic to the Antarctic and throughout the Mediterranean, enabling an integrated, regional and multidisciplinary approach to understand natural and anthropogenic change in the ocean.
Nikbakhtsarvestani, Farzaneh; Vaezpour, S Mansour; Asadi, Mehdi
2017-01-01
In this paper, some new generalization of Darbo's fixed point theorem is proved by using a [Formula: see text]-contraction in terms of a measure of noncompactness. Our result extends to obtaining a common fixed point for a pair of compatible mappings. The paper contains an application for nonlinear integral equations as well.
Fixed Point Theorems for Hybrid Mappings
Kamran, Tayyab; Karapinar, Erdal
2015-01-01
We obtain some fixed point theorems for two pairs of hybrid mappings using hybrid tangential property and quadratic type contractive condition. Our results generalize some results by Babu and Alemayehu and those contained therein. In the sequel, we introduce a new notion to generalize occasionally weak compatibility. Moreover, two concrete examples are established to illuminate the generality of our results. PMID:25629089
Fixed Point Problems for Linear Transformations on Pythagorean Triples
ERIC Educational Resources Information Center
Zhan, M.-Q.; Tong, J.-C.; Braza, P.
2006-01-01
In this article, an attempt is made to find all linear transformations that map a standard Pythagorean triple (a Pythagorean triple [x y z][superscript T] with y being even) into a standard Pythagorean triple, which have [3 4 5][superscript T] as their fixed point. All such transformations form a monoid S* under matrix product. It is found that S*…
Fixed-Radius Point Counts in Forests: Factors Influencing Effectiveness and Efficiency
Daniel R. Petit; Lisa J. Petit; Victoria A. Saab; Thomas E. Martin
1995-01-01
The effectiveness of fixed-radius point counts in quantifying abundance and richness of bird species in oak-hickory, pine-hardwoods, mixed-mesophytic, beech-maple, and riparian cottonwood forests was evaluated in Arkansas, Ohio, Kentucky, and Idaho. Effects of count duration and numbers of stations and visits per stand were evaluated in May to July 1991 by conducting...
A MAP fixed-point, packing-unpacking routine for the IBM 7094 computer
Robert S. Helfman
1966-01-01
Two MAP (Macro Assembly Program) computer routines for packing and unpacking fixed point data are described. Use of these routines with Fortran IV Programs provides speedy access to quantities of data which far exceed the normal storage capacity of IBM 7000-series computers. Many problems that could not be attempted because of the slow access-speed of tape...
Quantum group spin nets: Refinement limit and relation to spin foams
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Martin-Benito, Mercedes; Steinhaus, Sebastian
2014-07-01
So far spin foam models are hardly understood beyond a few of their basic building blocks. To make progress on this question, we define analogue spin foam models, so-called "spin nets," for quantum groups SU(2)k and examine their effective continuum dynamics via tensor network renormalization. In the refinement limit of this coarse-graining procedure, we find a vast nontrivial fixed-point structure beyond the degenerate and the BF phase. In comparison to previous work, we use fixed-point intertwiners, inspired by Reisenberger's construction principle [M. P. Reisenberger, J. Math. Phys. (N.Y.) 40, 2046 (1999)] and the recent work [B. Dittrich and W. Kaminski, arXiv:1311.1798], as the initial parametrization. In this new parametrization fine-tuning is not required in order to flow to these new fixed points. Encouragingly, each fixed point has an associated extended phase, which allows for the study of phase transitions in the future. Finally we also present an interpretation of spin nets in terms of melonic spin foams. The coarse-graining flow of spin nets can thus be interpreted as describing the effective coupling between two spin foam vertices or space time atoms.
Cosmic infinity: a dynamical system approach
NASA Astrophysics Data System (ADS)
Bouhmadi-López, Mariam; Marto, João; Morais, João; Silva, César M.
2017-03-01
Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identify normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.
Quantum corrections to non-Abelian SUSY theories on orbifolds
NASA Astrophysics Data System (ADS)
Groot Nibbelink, Stefan; Hillenbach, Mark
2006-07-01
We consider supersymmetric non-Abelian gauge theories coupled to hyper multiplets on five and six dimensional orbifolds, S/Z and T/Z, respectively. We compute the bulk and local fixed point renormalizations of the gauge couplings. To this end we extend supergraph techniques to these orbifolds by defining orbifold compatible delta functions. We develop their properties in detail. To cancel the bulk one-loop divergences the bulk gauge kinetic terms and dimension six higher derivative operators are required. The gauge couplings renormalize at the Z fixed points due to vector multiplet self interactions; the hyper multiplet renormalizes only non- Z fixed points. In 6D the Wess-Zumino-Witten term and a higher derivative analogue have to renormalize in the bulk as well to preserve 6D gauge invariance.
NASA Astrophysics Data System (ADS)
Bojkovski, J.; Veliki, T.; Zvizdić, D.; Drnovšek, J.
2011-08-01
The objective of project EURAMET 1127 (Bilateral comparison of triple point of mercury and melting point of gallium) in the field of thermometry is to compare realization of a triple point of mercury (-38.8344 °C) and melting point of gallium (29.7646 °C) between the Slovenian national laboratory MIRS/UL-FE/LMK and the Croatian national laboratory HMI/FSB-LPM using a long-stem 25 Ω standard platinum resistance thermometer (SPRT). MIRS/UL/FE-LMK participated in a number of intercomparisons on the level of EURAMET. On the other hand, the HMI/LPM-FSB laboratory recently acquired new fixed-point cells which had to be evaluated in the process of intercomparisons. A quartz-sheathed SPRT has been selected and calibrated at HMI/LPM-FSB at the triple point of mercury, the melting point of gallium, and the water triple point. A second set of measurements was made at MIRS/UL/FE-LMK. After its return, the SPRT was again recalibrated at HMI/LPM-FSB. In the comparison, the W value of the SPRT has been used. Results of the bilateral intercomparison confirmed that the new gallium cell of the HMI/LPM-FSB has a value that is within uncertainty limits of both laboratories that participated in the exercise, while the mercury cell experienced problems. After further research, a small leakage in the mercury fixed-point cell has been found.
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2009-02-01
Four independent radiation temperature scales approximating the ITS-90 at 900 nm, 950 nm and 1.6 µm have been realized from the indium point (429.7485 K) to the copper point (1357.77 K) which were used to derive by extrapolation the transition temperature T90(Co-C) of the cobalt-carbon eutectic fixed point. An INRIM cell was investigated and an average value T90(Co-C) = 1597.20 K was found with the four values lying within 0.25 K. Alternatively, thermodynamic approximated scales were realized by assigning to the fixed points the best presently available thermodynamic values and deriving T(Co-C). An average value of 1597.27 K was found (four values lying within 0.25 K). The standard uncertainties associated with T90(Co-C) and T(Co-C) were 0.16 K and 0.17 K, respectively. INRIM determinations are compatible with recent thermodynamic determinations on three different cells (values lying between 1597.11 K and 1597.25 K) and with the result of a comparison on the same cell by an absolute radiation thermometer and an irradiance measurement with filter radiometers which give values of 1597.11 K and 1597.43 K, respectively (Anhalt et al 2006 Metrologia 43 S78-83). The INRIM approach allows the determination of both ITS-90 and thermodynamic temperature of a fixed point in a simple way and can provide valuable support to absolute radiometric methods in defining the transition temperature of new high-temperature fixed points.
A Comparison of Escalating versus Fixed Reinforcement Schedules on Undergraduate Quiz Taking
ERIC Educational Resources Information Center
Mahoney, Amanda
2017-01-01
Drug abstinence studies indicate that escalating reinforcement schedules maintain abstinence for longer periods than fixed reinforcement schedules. The current study evaluated whether escalating reinforcement schedules would maintain more quiz taking than fixed reinforcement schedules. During baseline and for the control group, bonus points were…
La, Moonwoo; Park, Sang Min; Kim, Dong Sung
2015-01-01
In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical. PMID:25610516
Design Methods and Optimization for Morphing Aircraft
NASA Technical Reports Server (NTRS)
Crossley, William A.
2005-01-01
This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.
NASA Astrophysics Data System (ADS)
Israel, Marvin; Smith, T. Scott
1986-08-01
``The Earth is the very quintescence of the human condition...,'' says Hannah Arendt. Georg Simmel writes: ``The stranger is by nature no `owner of soil'—soil not only in the physical, but also in the figurative sense of a life-substance which is fixed, if not in a point in space, at least in an ideal point of social environment.'' How will no longer being Earthbound affect persons' experience of themselves and of others? Space colonization offers an opportunity for new self-definition by the alteration of existing limits. Thus ``limitation'' is a useful concept for exploring the physical, social and psychological significance of the colonization of space. Will people seek the security of routine, of convention, of hierarchy as in the military model governing our present-day astronauts? or will they seek to maximize the freedom inherent in extraordinary living conditions—as bohemians, deviants, travelers?
Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano; ...
2018-01-01
This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less
Extended investigation of the twelve-flavor β-function
NASA Astrophysics Data System (ADS)
Fodor, Zoltán; Holland, Kieran; Kuti, Julius; Nógrádi, Dániel; Wong, Chik Him
2018-04-01
We report new results from high precision analysis of an important BSM gauge theory with twelve massless fermion flavors in the fundamental representation of the SU(3) color gauge group. The range of the renormalized gauge coupling is extended from our earlier work [1] to probe the existence of an infrared fixed point (IRFP) in the β-function reported at two different locations, originally in [2] and at a new location in [3]. We find no evidence for the IRFP of the β-function in the extended range of the renormalized gauge coupling, in disagreement with [2,3]. New arguments to guard the existence of the IRFP remain unconvincing [4], including recent claims of an IRFP with ten massless fermion flavors [5,6] which we also rule out. Predictions of the recently completed 5-loop QCD β-function for general flavor number are discussed in this context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano
This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less
ERIC Educational Resources Information Center
Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo
2009-01-01
An apparently unnoticed analogy between the torque-free motion of a rotating rigid body about a fixed point and the propagation of light in anisotropic media is stated. First, a new plane construction for visualizing this torque-free motion is proposed. This method uses an intrinsic representation alternative to angular momentum and independent of…
NASA Astrophysics Data System (ADS)
Luo, Tong; Xu, Ming; Colombo, Camilla
2018-04-01
This paper studies the dynamics and control of a spacecraft, whose area-to-mass ratio is increased by deploying a reflective orientable surface such as a solar sail or a solar panel. The dynamical system describing the motion of a non-zero attitude angle high area-to-mass ratio spacecraft under the effects of the Earth's oblateness and solar radiation pressure admits the existence of equilibrium points, whose number and the eccentricity values depend on the semi-major axis, the area-to-mass ratio and the attitude angle of the spacecraft together. When two out of three parameters are fixed, five different dynamical topologies successively occur through varying the third parameter. Two of these five topologies are critical cases characterized by the appearance of the bifurcation phenomena. A conventional Hamiltonian structure-preserving (HSP) controller and an improved HSP controller are both constructed to stabilize the hyperbolic equilibrium point. Through the use of a conventional HSP controller, a bounded trajectory around the hyperbolic equilibrium point is obtained, while an improved HSP controller allows the spacecraft to easily transfer to the hyperbolic equilibrium point and to follow varying equilibrium points. A bifurcation control using topologies and changes of behavior areas can also stabilize a spacecraft near a hyperbolic equilibrium point. Natural trajectories around stable equilibrium point and these stabilized trajectories around hyperbolic equilibrium point can all be applied to geomagnetic exploration.
Brownian motion of arbitrarily shaped particles in two dimensions.
Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan V; Sun, Kai; Wei, Qi-Huo
2014-11-25
We implement microfabricated boomerang particles with unequal arm lengths as a model for nonsymmetric particles and study their Brownian motion in a quasi-two-dimensional geometry by using high-precision single-particle motion tracking. We show that because of the coupling between translation and rotation, the mean squared displacements of a single asymmetric boomerang particle exhibit a nonlinear crossover from short-time faster to long-time slower diffusion, and the mean displacements for fixed initial orientation are nonzero and saturate out at long times. The measured anisotropic diffusion coefficients versus the tracking point position indicate that there exists one unique point, i.e., the center of hydrodynamic stress (CoH), at which all coupled diffusion coefficients vanish. This implies that in contrast to motion in three dimensions where the CoH exists only for high-symmetry particles, the CoH always exists for Brownian motion in two dimensions. We develop an analytical model based on Langevin theory to explain the experimental results and show that among the six anisotropic diffusion coefficients only five are independent because the translation-translation coupling originates from the translation-rotation coupling. Finally, we classify the behavior of two-dimensional Brownian motion of arbitrarily shaped particles into four groups based on the particle shape symmetry group and discussed potential applications of the CoH in simplifying understanding of the circular motions of microswimmers.
Precise Point Positioning with Partial Ambiguity Fixing.
Li, Pan; Zhang, Xiaohong
2015-06-10
Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate.
Precise Point Positioning with Partial Ambiguity Fixing
Li, Pan; Zhang, Xiaohong
2015-01-01
Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate. PMID:26067196
NASA Astrophysics Data System (ADS)
Battuello, M.; Florio, M.; Girard, F.
2010-06-01
An indirect determination of the thermodynamic temperature of the fixed point of copper was made at INRIM by measuring four cells with a Si-based and an InGaAs-based precision radiation thermometer carrying approximated thermodynamic scales realized up to the Ag point. An average value TCu = 1357.840 K was found with a standard uncertainty of 0.047 K. A consequent (T - T90)Cu value of 70 mK can be derived which is 18 mK higher than, but consistent with, the presently available (T - T90)Cu as elaborated by the CCT-WG4.
A test of the AdS/CFT duality on the Coulomb branch
NASA Astrophysics Data System (ADS)
Costa, M. S.
2000-06-01
We consider the /N=4 /SU(N) Super Yang Mills theory on the Coulomb branch with gauge symmetry broken to S(U(N1)×U(N2)). By integrating the W particles, the effective action near the IR SU(Ni) conformal fixed points is seen to be a deformation of the Super Yang Mills theory by a non-renormalized, irrelevant, dimension 8 operator. The correction to the two-point function of the dilaton field dual operator near the IR is related to a three-point function of chiral primary operators at the conformal fixed points and agrees with the classical gravity prediction, including the numerical factor.
NASA Astrophysics Data System (ADS)
da Silva, Rodrigo; Pearce, Jonathan V.; Machin, Graham
2017-06-01
The fixed points of the International Temperature Scale of 1990 (ITS-90) are the basis of the calibration of standard platinum resistance thermometers (SPRTs). Impurities in the fixed point material at the level of parts per million can give rise to an elevation or depression of the fixed point temperature of order of millikelvins, which often represents the most significant contribution to the uncertainty of SPRT calibrations. A number of methods for correcting for the effect of impurities have been advocated, but it is becoming increasingly evident that no single method can be used in isolation. In this investigation, a suite of five aluminium fixed point cells (defined ITS-90 freezing temperature 660.323 °C) have been constructed, each cell using metal sourced from a different supplier. The five cells have very different levels and types of impurities. For each cell, chemical assays based on the glow discharge mass spectroscopy (GDMS) technique have been obtained from three separate laboratories. In addition a series of high quality, long duration freezing curves have been obtained for each cell, using three different high quality SPRTs, all measured under nominally identical conditions. The set of GDMS analyses and freezing curves were then used to compare the different proposed impurity correction methods. It was found that the most consistent corrections were obtained with a hybrid correction method based on the sum of individual estimates (SIE) and overall maximum estimate (OME), namely the SIE/Modified-OME method. Also highly consistent was the correction technique based on fitting a Scheil solidification model to the measured freezing curves, provided certain well defined constraints are applied. Importantly, the most consistent methods are those which do not depend significantly on the chemical assay.
NASA Astrophysics Data System (ADS)
Zhang, L.; Tang, G.; Xun, Z.; Han, K.; Chen, H.; Hu, B.
2008-05-01
The long-wavelength properties of the (d + 1)-dimensional Kuramoto-Sivashinsky (KS) equation with both conservative and nonconservative noises are investigated by use of the dynamic renormalization-group (DRG) theory. The dynamic exponent z and roughness exponent α are calculated for substrate dimensions d = 1 and d = 2, respectively. In the case of d = 1, we arrive at the critical exponents z = 1.5 and α = 0.5 , which are consistent with the results obtained by Ueno et al. in the discussion of the same noisy KS equation in 1+1 dimensions [Phys. Rev. E 71, 046138 (2005)] and are believed to be identical with the dynamic scaling of the Kardar-Parisi-Zhang (KPZ) in 1+1 dimensions. In the case of d = 2, we find a fixed point with the dynamic exponents z = 2.866 and α = -0.866 , which show that, as in the 1 + 1 dimensions situation, the existence of the conservative noise in 2 + 1 or higher dimensional KS equation can also lead to new fixed points with different dynamic scaling exponents. In addition, since a higher order approximation is adopted, our calculations in this paper have improved the results obtained previously by Cuerno and Lauritsen [Phys. Rev. E 52, 4853 (1995)] in the DRG analysis of the noisy KS equation, where the conservative noise is not taken into account.
Predictive implications of Gompertz's law
NASA Astrophysics Data System (ADS)
Richmond, Peter; Roehner, Bertrand M.
2016-04-01
Gompertz's law tells us that for humans above the age of 35 the death rate increases exponentially with a doubling time of about 10 years. Here, we show that the same law continues to hold up to age 106. At that age the death rate is about 50%. Beyond 106 there is so far no convincing statistical evidence available because the number of survivors are too small even in large nations. However, assuming that Gompertz's law continues to hold beyond 106, we conclude that the mortality rate becomes equal to 1 at age 120 (meaning that there are 1000 deaths in a population of one thousand). In other words, the upper bound of human life is near 120. The existence of this fixed-point has interesting implications. It allows us to predict the form of the relationship between death rates at age 35 and the doubling time of Gompertz's law. In order to test this prediction, we first carry out a transversal analysis for a sample of countries comprising both industrialized and developing nations. As further confirmation, we also develop a longitudinal analysis using historical data over a time period of almost two centuries. Another prediction arising from this fixed-point model, is that, above a given population threshold, the lifespan of the oldest persons is independent of the size of their national community. This prediction is also supported by empirical evidence.
Reliability of High-Temperature Fixed-Point Installations over 8 Years
NASA Astrophysics Data System (ADS)
Elliott, C. J.; Ford, T.; Ongrai, O.; Pearce, J. V.
2017-12-01
At NPL, high-temperature metal-carbon eutectic fixed points have been set up for thermocouple calibration purposes since 2006, for realising reference temperatures above the highest point specified in the International Temperature Scale of 1990 for contact thermometer calibrations. Additionally, cells of the same design have been provided by NPL to other national measurement institutes (NMIs) and calibration laboratories over this period, creating traceable and ISO 17025 accredited facilities around the world for calibrating noble metal thermocouples at 1324 {°}C (Co-C) and 1492 {°}C (Pd-C). This paper shows collections of thermocouple calibration results obtained during use of the high-temperature fixed-point cells at NPL and, as further examples, the use of cells installed at CCPI Europe (UK) and NIMT (Thailand). The lifetime of the cells can now be shown to be in excess of 7 years, whether used on a weekly or monthly basis, and whether used in an NMI or industrial calibration laboratory.
Upper bound on the Abelian gauge coupling from asymptotic safety
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Versteegen, Fleur
2018-01-01
We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.
Fixed points, stable manifolds, weather regimes, and their predictability
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-10-27
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less
Fixed points, stable manifolds, weather regimes, and their predictability.
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-12-01
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model's fixed points in phase space. The model dynamics is characterized by the coexistence of multiple "weather regimes." To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, "bred vectors" and singular vectors. These results are then verified in the framework of ensemble forecasts issued from "clouds" (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.
Cosmic infinity: a dynamical system approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhmadi-López, Mariam; Marto, João; Morais, João
2017-03-01
Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identifymore » normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.« less
TARDEC FIXED HEEL POINT (FHP): DRIVER CAD ACCOMMODATION MODEL VERIFICATION REPORT
2017-11-09
SUPPLEMENTARY NOTES N/A 14. ABSTRACT Easy-to-use Computer-Aided Design (CAD) tools, known as accommodation models, are needed by the ground vehicle... designers when developing the interior workspace for the occupant. The TARDEC Fixed Heel Point (FHP): Driver CAD Accommodation Model described in this...is intended to provide the composite boundaries representing the body of the defined target design population, including posture prediction
G. J. Jordan; M. J. Ducey; J. H. Gove
2004-01-01
We present the results of a timed field trial comparing the bias characteristics and relative sampling efficiency of line-intersect, fixed-area, and point relascope sampling for downed coarse woody material. Seven stands in a managed northern hardwood forest in New Hampshire were inventoried. Significant differences were found among estimates in some stands, indicating...
On stability of fixed points and chaos in fractional systems.
Edelman, Mark
2018-02-01
In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0<α<2. The method is tested on various forms of fractional generalizations of the standard and logistic maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding continuous fractional systems.
NASA Astrophysics Data System (ADS)
Wähmer, M.; Anhalt, K.; Hollandt, J.; Klein, R.; Taubert, R. D.; Thornagel, R.; Ulm, G.; Gavrilov, V.; Grigoryeva, I.; Khlevnoy, B.; Sapritsky, V.
2017-10-01
Absolute spectral radiometry is currently the only established primary thermometric method for the temperature range above 1300 K. Up to now, the ongoing improvements of high-temperature fixed points and their formal implementation into an improved temperature scale with the mise en pratique for the definition of the kelvin, rely solely on single-wavelength absolute radiometry traceable to the cryogenic radiometer. Two alternative primary thermometric methods, yielding comparable or possibly even smaller uncertainties, have been proposed in the literature. They use ratios of irradiances to determine the thermodynamic temperature traceable to blackbody radiation and synchrotron radiation. At PTB, a project has been established in cooperation with VNIIOFI to use, for the first time, all three methods simultaneously for the determination of the phase transition temperatures of high-temperature fixed points. For this, a dedicated four-wavelengths ratio filter radiometer was developed. With all three thermometric methods performed independently and in parallel, we aim to compare the potential and practical limitations of all three methods, disclose possibly undetected systematic effects of each method and thereby confirm or improve the previous measurements traceable to the cryogenic radiometer. This will give further and independent confidence in the thermodynamic temperature determination of the high-temperature fixed point's phase transitions.
Permitted and forbidden sets in symmetric threshold-linear networks.
Hahnloser, Richard H R; Seung, H Sebastian; Slotine, Jean-Jacques
2003-03-01
The richness and complexity of recurrent cortical circuits is an inexhaustible source of inspiration for thinking about high-level biological computation. In past theoretical studies, constraints on the synaptic connection patterns of threshold-linear networks were found that guaranteed bounded network dynamics, convergence to attractive fixed points, and multistability, all fundamental aspects of cortical information processing. However, these conditions were only sufficient, and it remained unclear which were the minimal (necessary) conditions for convergence and multistability. We show that symmetric threshold-linear networks converge to a set of attractive fixed points if and only if the network matrix is copositive. Furthermore, the set of attractive fixed points is nonconnected (the network is multiattractive) if and only if the network matrix is not positive semidefinite. There are permitted sets of neurons that can be coactive at a stable steady state and forbidden sets that cannot. Permitted sets are clustered in the sense that subsets of permitted sets are permitted and supersets of forbidden sets are forbidden. By viewing permitted sets as memories stored in the synaptic connections, we provide a formulation of long-term memory that is more general than the traditional perspective of fixed-point attractor networks. There is a close correspondence between threshold-linear networks and networks defined by the generalized Lotka-Volterra equations.
A new approach to blind deconvolution of astronomical images
NASA Astrophysics Data System (ADS)
Vorontsov, S. V.; Jefferies, S. M.
2017-05-01
We readdress the strategy of finding approximate regularized solutions to the blind deconvolution problem, when both the object and the point-spread function (PSF) have finite support. Our approach consists in addressing fixed points of an iteration in which both the object x and the PSF y are approximated in an alternating manner, discarding the previous approximation for x when updating x (similarly for y), and considering the resultant fixed points as candidates for a sensible solution. Alternating approximations are performed by truncated iterative least-squares descents. The number of descents in the object- and in the PSF-space play a role of two regularization parameters. Selection of appropriate fixed points (which may not be unique) is performed by relaxing the regularization gradually, using the previous fixed point as an initial guess for finding the next one, which brings an approximation of better spatial resolution. We report the results of artificial experiments with noise-free data, targeted at examining the potential capability of the technique to deconvolve images of high complexity. We also show the results obtained with two sets of satellite images acquired using ground-based telescopes with and without adaptive optics compensation. The new approach brings much better results when compared with an alternating minimization technique based on positivity-constrained conjugate gradients, where the iterations stagnate when addressing data of high complexity. In the alternating-approximation step, we examine the performance of three different non-blind iterative deconvolution algorithms. The best results are provided by the non-negativity-constrained successive over-relaxation technique (+SOR) supplemented with an adaptive scheduling of the relaxation parameter. Results of comparable quality are obtained with steepest descents modified by imposing the non-negativity constraint, at the expense of higher numerical costs. The Richardson-Lucy (or expectation-maximization) algorithm fails to locate stable fixed points in our experiments, due apparently to inappropriate regularization properties.
Co-C and Pd-C Fixed Points for the Evaluation of Facilities and Scales Realization at INRIM and NMC
NASA Astrophysics Data System (ADS)
Battuello, M.; Wang, L.; Girard, F.; Ang, S. H.
2014-04-01
Two hybrid cells for realizing the Co-C and Pd-C fixed points and constructed at Istituto Nazionale di Ricerca Metrologica (INRIM) were used for an evaluation of facilities and procedures adopted by INRIM and National Metrology Institute of Singapore (NMC) for the realization of the solid-liquid phase transitions of high-temperature fixed points and for determining their transition temperatures. Four different furnaces were used for the investigations, i.e., two single-zone furnaces, one of them of the direct-heating type, and two identical three-zone furnaces. The transition temperatures were measured at both institutes by adopting different procedures for realizing the radiation scales, i.e., at INRIM a scheme based on the extrapolation of fixed-point interpolated scales and an International Temperature Scale of 1990 (ITS-90) approach at NMC. The point of inflection (POI) of the melting curves was determined and assumed as a practical representation of the melting temperature. Different methods for deriving the POI were used, and differences as large as some hundredths of a kelvin were found with the different approaches. The POIs of the different melting curves were analyzed with respect to the different possible operative conditions with the aim of deriving reproducibility figures to improve the estimated uncertainty. As regard to the institutes inter-comparison, differences of 0.13 K and 0.29 K were found between INRIM and NMC determinations at the Co-C and Pd-C points, respectively. Such differences are compatible with the combined standard uncertainties of the comparison, which are estimated to be 0.33 K and 0.36 K at the Co-C and Pd-C points, respectively.
Laser-Induced Melting of Co-C Eutectic Cells as a New Research Tool
NASA Astrophysics Data System (ADS)
van der Ham, E.; Ballico, M.; Jahan, F.
2015-08-01
A new laser-based technique to examine heat transfer and energetics of phase transitions in metal-carbon fixed points and potentially to improve the quality of phase transitions in furnaces with poor uniformity is reported. Being reproducible below 0.1 K, metal-carbon fixed points are increasingly used as reference standards for the calibration of thermocouples and radiation thermometers. At NMIA, the Co-C eutectic point is used for the calibration of thermocouples, with the fixed point traceable to the International Temperature Scale (ITS-90) using radiation thermometry. For thermocouple use, these cells are deep inside a high-uniformity furnace, easily obtaining excellent melting plateaus. However, when used with radiation thermometers, the essential large viewing cone to the crucible restricts the furnace depth and introduces large heat losses from the front furnace zone, affecting the quality of the phase transition. Short laser bursts have been used to illuminate the cavity of a conventional Co-C fixed-point cell during various points in its melting phase transition. The laser is employed to partially melt the metal at the rear of the crucible providing a liquid-solid interface close to the region being observed by the reference pyrometer. As the laser power is known, a quantitative estimate of can be made for the Co-C latent heat of fusion. Using a single laser pulse during a furnace-induced melt, a plateau up to 8 min is observed before the crucible resumes a characteristic conventional melt curve. Although this plateau is satisfyingly flat, well within 100 mK, it is observed that the plateau is laser energy dependent and elevates from the conventional melt "inflection-point" value.
NASA Astrophysics Data System (ADS)
Dermíšek, Radovan; McGinnis, Navin
2018-03-01
We use the IR fixed point predictions for gauge couplings and the top Yukawa coupling in the minimal supersymmetric model (MSSM) extended with vectorlike families to infer the scale of vectorlike matter and superpartners. We quote results for several extensions of the MSSM and present results in detail for the MSSM extended with one complete vectorlike family. We find that for a unified gauge coupling αG>0.3 vectorlike matter or superpartners are expected within 1.7 TeV (2.5 TeV) based on all three gauge couplings being simultaneously within 1.5% (5%) from observed values. This range extends to about 4 TeV for αG>0.2 . We also find that in the scenario with two additional large Yukawa couplings of vectorlike quarks the IR fixed point value of the top Yukawa coupling independently points to a multi-TeV range for vectorlike matter and superpartners. Assuming a universal value for all large Yukawa couplings at the grand unified theory scale, the measured top quark mass can be obtained from the IR fixed point for tan β ≃4 . The range expands to any tan β >3 for significant departures from the universality assumption. Considering that the Higgs boson mass also points to a multi-TeV range for superpartners in the MSSM, adding a complete vectorlike family at the same scale provides a compelling scenario where the values of gauge couplings and the top quark mass are understood as a consequence of the particle content of the model.
Hommer, A; Wickstrøm, J; Friis, M M; Steeds, C; Thygesen, J; Ferreras, A; Gouws, P; Buchholz, P
2008-04-01
To compare the efficacy and cost implications of the use of the intraocular pressure-lowering prostaglandin analogues bimatoprost, travoprost, and latanoprost as fixed-combination therapies with timolol, a beta-adrenergic receptor antagonist. A decision analytic cost-effectiveness model was constructed. Since no head-to-head studies comparing the three treatment options exist, the analysis was based on an indirect comparison. Hence, the model was based on efficacy data from five randomized, controlled, clinical studies. The studies were comparable with respect to study design, time horizon, patient population and type of end point presented. The measure of effectiveness was the percentage reduction of the intraocular pressure level from baseline. The cost evaluated was the cost of medication and clinical visits to the ophthalmologist. All drug costs were market prices inclusive of value-added tax, and visit costs were priced using official physician fees. Cost-effectiveness analyses were carried out in five European countries: Spain, Italy, United Kingdom, Norway and Sweden. The time horizon for the analyses was 3 months. The analysis showed that fixed-combination bimatoprost/timolol was more effective and less costly than fixed-combination travoprost/timolol and fixed-combination latanoprost/timolol in three out of the five countries analyzed. In two countries, bimatoprost/timolol was less costly than latanoprost/timolol, and cost the same as travoprost/timolol. This cost-effectiveness analysis showed that the fixed combination of bimatoprost 0.03%/timolol 0.5% administered once daily was a cost-effective treatment option for patients with primary open-angle glaucoma. This study was limited by available clinical data: without a head-to-head trial, indirect comparisons were necessary. In the United Kingdom, Sweden, Norway, Italy, and Spain, from a health service viewpoint, bimatoprost/timolol was a slightly more effective as well as less costly treatment strategy when compared to both travoprost/timolol and latanoprost/timolol.
Robust Control Design via Linear Programming
NASA Technical Reports Server (NTRS)
Keel, L. H.; Bhattacharyya, S. P.
1998-01-01
This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.
Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.
Bedini, Andrea; Owczarek, Aleksander L; Prellberg, Thomas
2012-07-01
Trails (bond-avoiding walks) provide an alternative lattice model of polymers to self-avoiding walks, and adding self-interaction at multiply visited sites gives a model of polymer collapse. Recently a two-dimensional model (triangular lattice) where doubly and triply visited sites are given different weights was shown to display a rich phase diagram with first- and second-order collapse separated by a multicritical point. A kinetic growth process of trails (KGTs) was conjectured to map precisely to this multicritical point. Two types of low-temperature phases, a globule phase and a maximally dense phase, were encountered. Here we investigate the collapse properties of a similar extended model of interacting lattice trails on the simple cubic lattice with separate weights for doubly and triply visited sites. Again we find first- and second-order collapse transitions dependent on the relative sizes of the doubly and triply visited energies. However, we find no evidence of a low-temperature maximally dense phase with only the globular phase in existence. Intriguingly, when the ratio of the energies is precisely that which separates the first-order from the second-order regions anomalous finite-size scaling appears. At the finite-size location of the rounded transition clear evidence exists for a first-order transition that persists in the thermodynamic limit. This location moves as the length increases, with its limit apparently at the point that maps to a KGT. However, if one fixes the temperature to sit at exactly this KGT point, then only a critical point can be deduced from the data. The resolution of this apparent contradiction lies in the breaking of crossover scaling and the difference in the shift and transition width (crossover) exponents.
Singular trajectories: space-time domain topology of developing speckle fields
NASA Astrophysics Data System (ADS)
Vasil'ev, Vasiliy; Soskin, Marat S.
2010-02-01
It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.
Density Functional Calculations for the Neutron Star Matter at Subnormal Density
NASA Astrophysics Data System (ADS)
Kashiwaba, Yu; Nakatsukasa, Takashi
The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.
Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients
NASA Technical Reports Server (NTRS)
Frenkiel, Francois N.
1958-01-01
In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.
NASA Astrophysics Data System (ADS)
Kuyper, Brett; Palmer, Carl J.; Labuschagne, Casper; Reason, Chris J. C.
2018-04-01
Bromoform mixing ratios in marine air were measured at Cape Point Global Atmospheric Watch Station, South Africa. This represents the first such bromoform data set recorded at this location. Manual daily measurements were made during a month-long field campaign (austral spring 2011) using a gas chromatograph-electron capture detector (GC-ECD) with a custom-built front end thermal desorption trap. The measured concentrations ranged between 4.4 and 64.6 (± 22.2 %) ppt with a mean of 24.8 ± 14.8 ppt. The highest mixing ratios recorded here occurred at, or shortly after, low tide. The diurnal cycle exhibited a morning and evening maximum with lower concentrations throughout the rest of the day. Initial analysis of the data presented indicates that the local kelp beds were the dominant source of the bromoform reported. A concentration-weighted trajectory analysis of the bromoform measurements suggests that two offshore source areas may exist. These source areas appear to be centred on the Agulhas retroflection and extend from St Helena Bay to the southwest.
78 FR 57472 - IFR Altitudes; Miscellaneous Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... BORDER DUNKIRK, NY VORTAC 18000 45000 DUNKIRK, NY VORTAC MTCAF, PA FIX 31000 45000 MTCAF, PA FIX LAKE... DUNKIRK, NY VORTAC 18000 45000 Airway segment Changeover points From To Distance From Sec. 95.8003 VOR...
NASA Astrophysics Data System (ADS)
Storti, Mario A.; Nigro, Norberto M.; Paz, Rodrigo R.; Dalcín, Lisandro D.
2009-03-01
In this paper some results on the convergence of the Gauss-Seidel iteration when solving fluid/structure interaction problems with strong coupling via fixed point iteration are presented. The flow-induced vibration of a flat plate aligned with the flow direction at supersonic Mach number is studied. The precision of different predictor schemes and the influence of the partitioned strong coupling on stability is discussed.
Compendium of Applications Technology Satellite user experiments
NASA Technical Reports Server (NTRS)
Engler, N. A.; Strange, J. D.; Hein, G. F.
1976-01-01
The achievements of the user experiments performed with ATS satellites from 1967 to 1973 are summarized. Included are fixed and mobile point to point communications experiments involving voice, teletype and facsimile transmissions. Particular emphasis is given to the Alaska and Hawaii satellite communications experiments. The use of the ATS satellites for ranging and position fixing of ships and aircraft is also covered. The structure and operating characteristics of the various ATS satellite are briefly described.
Scale-chiral symmetry, ω meson, and dense baryonic matter
NASA Astrophysics Data System (ADS)
Ma, Yong-Liang; Rho, Mannque
2018-05-01
It is shown that explicitly broken scale symmetry is essential for dense skyrmion matter in hidden local symmetry theory. Consistency with the vector manifestation fixed point for the hidden local symmetry of the lowest-lying vector mesons and the dilaton limit fixed point for scale symmetry in dense matter is found to require that the anomalous dimension (|γG2| ) of the gluon field strength tensor squared (G2 ) that represents the quantum trace anomaly should be 1.0 ≲|γG2|≲3.5 . The magnitude of |γG2| estimated here will be useful for studying hadron and nuclear physics based on the scale-chiral effective theory. More significantly, that the dilaton limit fixed point can be arrived at with γG2≠0 at some high density signals that scale symmetry can arise in dense medium as an "emergent" symmetry.
Quantization improves stabilization of dynamical systems with delayed feedback
NASA Astrophysics Data System (ADS)
Stepan, Gabor; Milton, John G.; Insperger, Tamas
2017-11-01
We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.
Classification of attractors for systems of identical coupled Kuramoto oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelbrecht, Jan R.; Mirollo, Renato
2014-03-15
We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For N≠3 oscillators, there are four possible types of attractors: completely synchronized fixed points or limit cycles, and fixed points or limit cycles where all but one of the oscillators are synchronized. The case N = 3 is exceptional; systems of three identical Kuramoto oscillators can also posses attracting fixed points or limit cycles with all three oscillators out of sync, as well asmore » chaotic attractors. Our results rely heavily on the invariance of the flow for such systems under the action of the three-dimensional group of Möbius transformations, which preserve the unit disc, and the analysis of the possible limiting configurations for this group action.« less
UV conformal window for asymptotic safety
NASA Astrophysics Data System (ADS)
Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom
2018-02-01
Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.
Two-point function of a d =2 quantum critical metal in the limit kF→∞ , Nf→0 with NfkF fixed
NASA Astrophysics Data System (ADS)
Säterskog, Petter; Meszena, Balazs; Schalm, Koenraad
2017-10-01
We show that the fermionic and bosonic spectrum of d =2 fermions at finite density coupled to a critical boson can be determined nonperturbatively in the combined limit kF→∞ ,Nf→0 with NfkF fixed. In this double scaling limit, the boson two-point function is corrected but only at one loop. This double scaling limit therefore incorporates the leading effect of Landau damping. The fermion two-point function is determined analytically in real space and numerically in (Euclidean) momentum space. The resulting spectrum is discontinuously connected to the quenched Nf→0 result. For ω →0 with k fixed the spectrum exhibits the distinct non-Fermi-liquid behavior previously surmised from the RPA approximation. However, the exact answer obtained here shows that the RPA result does not fully capture the IR of the theory.
Gravity Duals of Lifshitz-Like Fixed Points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Liu, Xiao
2008-11-05
We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t {yields} {lambda}{sup z}t, x {yields} {lambda}x; we focus on the case with z = 2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arisemore » at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.« less
1944-07-12
of tall area tlaes tall length are nearly the same. The airplane eas stable, « tick fixed, In all condi- tions except vave-off *lth the center of...in all conditions •icept aeve.off. A table of neutral points, both stick free end « tick flaed. for the XSBA-1 airplane «1th tall -it.figuration...I follostai Condition Ct Keutral point, Neutral point. • tick fixed •tlek free illding Cruising Cllablnc Landing approach •eve.off C.« 1.0
Field programmable gate array-assigned complex-valued computation and its limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com; Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien; Zwick, Wolfgang
We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.
A method for fitting regression splines with varying polynomial order in the linear mixed model.
Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W
2006-02-15
The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.
A Parameterized Pattern-Error Objective for Large-Scale Phase-Only Array Pattern Design
2016-03-21
12 4.4 Example 3: Sector Beam w/ Nonuniform Amplitude...fixed uniform amplitude illumination, phase-only optimization can also find application to arrays with fixed but nonuniform tapers. Such fixed tapers...arbitrary element locations nonuniform FFT algorithms exist [43–45] that have the same asymptotic complexity as the conventional FFT, although the
Report on NIM-NMC bilateral comparison: SPRT calibration comparison from -190°C to 420°C
NASA Astrophysics Data System (ADS)
Sun, Jianping; Ye, Shaochun; Wang, Li; Zhang, Jintao; Kho, Haoyuan
2016-01-01
A bilateral comparison of local realization of the International temperature scale of 1990 (ITS-90) between National Institute of Metrology (NIM) and National Metrology Centre (NMC) was carried out over the temperature range from -190°C to 420°C. It involved six fixed points including the argon triple point, the mercury triple point, the triple point of water, the melting point of gallium, the freezing point of tin and the freezing point of zinc. In 2009, NMC asked NIM to participate in a bilateral comparison to link the NMC results to the Consultative Committee for Thermometry Key comparison 3 (CCT-K3) and facilitate the NMC's Calibration and measurement capabilities (CMCs) submission. This comparison was agreed by NIM and Asia Pacific Metrology Programme (APMP) in 2009, and registered in the Key Comparison Database (KCDB) in 2010 as CCT-K3.2. NMC supplied two 25 Ω fused silica sheath standard platinum resistance thermometers (SPRTs) as traveling standards. One of them was used at the Ga, Sn and Zn fixed points, while the other one was used at the Ar and Hg fixed point. NMC measured them before and after NIM measurement. During the comparison, a criterion for the SPRT was set as the stability at the triple point of water to be less than 0.3 mK. The results for both laboratories are summarized. A proposal for linking the NMC's comparison results to CCT-K3 is presented. The difference between NMC and NIM and the difference between NMC and the CCT-K3 Average Reference Value (ARV) using NIM as a link are reported with expanded uncertainties at each measured fixed point. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Charged fixed point in the Ginzburg-Landau superconductor and the role of the Ginzburg parameter /κ
NASA Astrophysics Data System (ADS)
Kleinert, Hagen; Nogueira, Flavio S.
2003-02-01
We present a semi-perturbative approach which yields an infrared-stable fixed point in the Ginzburg-Landau for N=2, where N/2 is the number of complex components. The calculations are done in d=3 dimensions and below Tc, where the renormalization group functions can be expressed directly as functions of the Ginzburg parameter κ which is the ratio between the two fundamental scales of the problem, the penetration depth λ and the correlation length ξ. We find a charged fixed point for κ>1/ 2, that is, in the type II regime, where Δκ≡κ-1/ 2 is shown to be a natural expansion parameter. This parameter controls a momentum space instability in the two-point correlation function of the order field. This instability appears at a non-zero wave-vector p0 whose magnitude scales like ˜ Δκ β¯, with a critical exponent β¯=1/2 in the one-loop approximation, a behavior known from magnetic systems with a Lifshitz point in the phase diagram. This momentum space instability is argued to be the origin of the negative η-exponent of the order field.
2012-01-01
A lumped model of neural activity in neocortex is studied to identify regions of multi-stability of both steady states and periodic solutions. Presence of both steady states and periodic solutions is considered to correspond with epileptogenesis. The model, which consists of two delay differential equations with two fixed time lags is mainly studied for its dependency on varying connection strength between populations. Equilibria are identified, and using linear stability analysis, all transitions are determined under which both trivial and non-trivial fixed points lose stability. Periodic solutions arising at some of these bifurcations are numerically studied with a two-parameter bifurcation analysis. PMID:22655859
A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning
Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin
2016-01-01
Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively. PMID:27222361
A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning.
Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin
2016-05-25
Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively.
NASA Astrophysics Data System (ADS)
Blewitt, Geoffrey
2008-12-01
Precise point positioning (PPP) has become popular for Global Positioning System (GPS) geodetic network analysis because for n stations, PPP has O(n) processing time, yet solutions closely approximate those of O(n3) full network analysis. Subsequent carrier phase ambiguity resolution (AR) further improves PPP precision and accuracy; however, full-network bootstrapping AR algorithms are O(n4), limiting single network solutions to n < 100. In this contribution, fixed point theorems of AR are derived and then used to develop "Ambizap," an O(n) algorithm designed to give results that closely approximate full network AR. Ambizap has been tested to n ≈ 2800 and proves to be O(n) in this range, adding only ˜50% to PPP processing time. Tests show that a 98-station network is resolved on a 3-GHz CPU in 7 min, versus 22 h using O(n4) AR methods. Ambizap features a novel network adjustment filter, producing solutions that precisely match O(n4) full network analysis. The resulting coordinates agree to ≪1 mm with current AR methods, much smaller than the ˜3-mm RMS precision of PPP alone. A 2000-station global network can be ambiguity resolved in ˜2.5 h. Together with PPP, Ambizap enables rapid, multiple reanalysis of large networks (e.g., ˜1000-station EarthScope Plate Boundary Observatory) and facilitates the addition of extra stations to an existing network solution without need to reprocess all data. To meet future needs, PPP plus Ambizap is designed to handle ˜10,000 stations per day on a 3-GHz dual-CPU desktop PC.
A Renormalization-Group Interpretation of the Connection between Criticality and Multifractals
NASA Astrophysics Data System (ADS)
Chang, Tom
2014-05-01
Turbulent fluctuations in space plasmas beget phenomena of dynamic complexity. It is known that dynamic renormalization group (DRG) may be employed to understand the concept of forced and/or self-organized criticality (FSOC), which seems to describe certain scaling features of space plasma turbulence. But, it may be argued that dynamic complexity is not just a phenomenon of criticality. It is therefore of interest to inquire if DRG may be employed to study complexity phenomena that are distinctly more complicated than dynamic criticality. Power law scaling generally comes about when the DRG trajectory is attracted to the vicinity of a fixed point in the phase space of the relevant dynamic plasma parameters. What happens if the trajectory lies within a domain influenced by more than one single fixed point or more generally if the transformation underlying the DRG is fully nonlinear? The global invariants of the group under such situations (if they exist) are generally not power laws. Nevertheless, as we shall argue, it may still be possible to talk about local invariants that are power laws with the nonlinearity of transformation prescribing a specific phenomenon as crossovers. It is with such concept in mind that we may provide a connection between the properties of dynamic criticality and multifractals from the point of view of DRG (T. Chang, Chapter VII, "An Introduction to Space Plasma Complexity", Cambridge University Press, 2014). An example in terms of the concepts of finite-size scaling (FSS) and rank-ordered multifractal analysis (ROMA) of a toy model shall be provided. Research partially supported by the US National Science Foundation and the European Community's Seventh Framework Programme (FP7/ 2007-2013) under Grant agreement no. 313038/STORM.
Newell, Felicity L.; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D.; Buehler, David A.; Keyser, Patrick D.; Larkin, Jeffrey L.; Beachy, Tiffany A.; Bakermans, Marja H.; Boves, Than J.; Evans, Andrea; George, Gregory A.; McDermott, Molly E.; Perkins, Kelly A.; White, Matthew; Wigley, T. Bently
2013-01-01
Point counts are commonly used to assess changes in bird abundance, including analytical approaches such as distance sampling that estimate density. Point-count methods have come under increasing scrutiny because effects of detection probability and field error are difficult to quantify. For seven forest songbirds, we compared fixed-radii counts (50 m and 100 m) and density estimates obtained from distance sampling to known numbers of birds determined by territory mapping. We applied point-count analytic approaches to a typical forest management question and compared results to those obtained by territory mapping. We used a before–after control impact (BACI) analysis with a data set collected across seven study areas in the central Appalachians from 2006 to 2010. Using a 50-m fixed radius, variance in error was at least 1.5 times that of the other methods, whereas a 100-m fixed radius underestimated actual density by >3 territories per 10 ha for the most abundant species. Distance sampling improved accuracy and precision compared to fixed-radius counts, although estimates were affected by birds counted outside 10-ha units. In the BACI analysis, territory mapping detected an overall treatment effect for five of the seven species, and effects were generally consistent each year. In contrast, all point-count methods failed to detect two treatment effects due to variance and error in annual estimates. Overall, our results highlight the need for adequate sample sizes to reduce variance, and skilled observers to reduce the level of error in point-count data. Ultimately, the advantages and disadvantages of different survey methods should be considered in the context of overall study design and objectives, allowing for trade-offs among effort, accuracy, and power to detect treatment effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurie, M.; Vlahovic, L.; Rondinella, V.V.
Temperature measurements in the nuclear field require a high degree of reliability and accuracy. Despite their sheathed form, thermocouples subjected to nuclear radiations undergo changes due to radiation damage and transmutation that lead to significant EMF drift during long-term fuel irradiation experiment. For the purpose of a High Temperature Reactor fuel irradiation to take place in the High Flux Reactor Petten, a dedicated fixed-point cell was jointly developed by LNE-Cnam and JRC-IET. The developed cell to be housed in the irradiation rig was tailor made to quantify the thermocouple drift during the irradiation (about two year duration) and withstand highmore » temperature (in the range 950 deg. C - 1100 deg. C) in the presence of contaminated helium in a graphite environment. Considering the different levels of temperature achieved in the irradiation facility and the large palette of thermocouple types aimed at surveying the HTR fuel pebble during the qualification test both copper (1084.62 deg. C) and gold (1064.18 deg. C) fixed-point materials were considered. The aim of this paper is to first describe the fixed-point mini-cell designed to be embedded in the reactor rig and to discuss the preliminary results achieved during some out of pile tests as much as some robustness tests representative of the reactor scram scenarios. (authors)« less
Small copper fixed-point cells of the hybrid type to be used in place of normal larger cells
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2012-10-01
Two small cells for the realization of the fixed point of copper were constructed and investigated at INRIM. They are of the same hybrid design generally adopted for the eutectic high-temperature fixed-point cells, namely a structure with a sacrificial graphite sleeve and a layer of flexible carbon-carbon composite sheet (C/C sheet). Because of the largely different design with respect to the cells normally adopted for the construction of pure metal fixed points, they were compared and characterized with respect to the normal cells used at INRIM for the ITS-90 realization. Two different furnaces were used to compare hybrid and normal cells. One of the hybrid cells was also used in different configurations, i.e. without the C/C sheet and with two layers of sheet. The cells were compared with different operative conditions, i.e. temperature settings of the furnaces for inducing the freeze, and repeatability and reproducibility were investigated. Freezing temperature and shape of the plateaux obtained under the different conditions were analysed. As expected the duration of the plateaux obtained with the hybrid cells is considerably shorter than with the normal cell, but this does not affect the results in terms of freezing temperature. Measurements with the modified cell showed that the use of a double C/C sheet may improve both repeatability and reproducibility of the plateaux.
Eye Movements in Darkness Modulate Self-Motion Perception.
Clemens, Ivar Adrianus H; Selen, Luc P J; Pomante, Antonella; MacNeilage, Paul R; Medendorp, W Pieter
2017-01-01
During self-motion, humans typically move the eyes to maintain fixation on the stationary environment around them. These eye movements could in principle be used to estimate self-motion, but their impact on perception is unknown. We had participants judge self-motion during different eye-movement conditions in the absence of full-field optic flow. In a two-alternative forced choice task, participants indicated whether the second of two successive passive lateral whole-body translations was longer or shorter than the first. This task was used in two experiments. In the first ( n = 8), eye movements were constrained differently in the two translation intervals by presenting either a world-fixed or body-fixed fixation point or no fixation point at all (allowing free gaze). Results show that perceived translations were shorter with a body-fixed than a world-fixed fixation point. A linear model indicated that eye-movement signals received a weight of ∼25% for the self-motion percept. This model was independently validated in the trials without a fixation point (free gaze). In the second experiment ( n = 10), gaze was free during both translation intervals. Results show that the translation with the larger eye-movement excursion was judged more often to be larger than chance, based on an oculomotor choice probability analysis. We conclude that eye-movement signals influence self-motion perception, even in the absence of visual stimulation.
A Fixed Point VHDL Component Library for a High Efficiency Reconfigurable Radio Design Methodology
NASA Technical Reports Server (NTRS)
Hoy, Scott D.; Figueiredo, Marco A.
2006-01-01
Advances in Field Programmable Gate Array (FPGA) technologies enable the implementation of reconfigurable radio systems for both ground and space applications. The development of such systems challenges the current design paradigms and requires more robust design techniques to meet the increased system complexity. Among these techniques is the development of component libraries to reduce design cycle time and to improve design verification, consequently increasing the overall efficiency of the project development process while increasing design success rates and reducing engineering costs. This paper describes the reconfigurable radio component library developed at the Software Defined Radio Applications Research Center (SARC) at Goddard Space Flight Center (GSFC) Microwave and Communications Branch (Code 567). The library is a set of fixed-point VHDL components that link the Digital Signal Processing (DSP) simulation environment with the FPGA design tools. This provides a direct synthesis path based on the latest developments of the VHDL tools as proposed by the BEE VBDL 2004 which allows for the simulation and synthesis of fixed-point math operations while maintaining bit and cycle accuracy. The VHDL Fixed Point Reconfigurable Radio Component library does not require the use of the FPGA vendor specific automatic component generators and provide a generic path from high level DSP simulations implemented in Mathworks Simulink to any FPGA device. The access to the component synthesizable, source code provides full design verification capability:
Eye Movements in Darkness Modulate Self-Motion Perception
Pomante, Antonella
2017-01-01
Abstract During self-motion, humans typically move the eyes to maintain fixation on the stationary environment around them. These eye movements could in principle be used to estimate self-motion, but their impact on perception is unknown. We had participants judge self-motion during different eye-movement conditions in the absence of full-field optic flow. In a two-alternative forced choice task, participants indicated whether the second of two successive passive lateral whole-body translations was longer or shorter than the first. This task was used in two experiments. In the first (n = 8), eye movements were constrained differently in the two translation intervals by presenting either a world-fixed or body-fixed fixation point or no fixation point at all (allowing free gaze). Results show that perceived translations were shorter with a body-fixed than a world-fixed fixation point. A linear model indicated that eye-movement signals received a weight of ∼25% for the self-motion percept. This model was independently validated in the trials without a fixation point (free gaze). In the second experiment (n = 10), gaze was free during both translation intervals. Results show that the translation with the larger eye-movement excursion was judged more often to be larger than chance, based on an oculomotor choice probability analysis. We conclude that eye-movement signals influence self-motion perception, even in the absence of visual stimulation. PMID:28144623
NASA Astrophysics Data System (ADS)
Griffin, Christopher; Belmonte, Andrew
2017-05-01
We study the problem of stabilized coexistence in a three-species public goods game in which each species simultaneously contributes to one public good while freeloading off another public good ("cheating"). The proportional population growth is governed by an appropriately modified replicator equation, depending on the returns from the public goods and the cost. We show that the replicator dynamic has at most one interior unstable fixed point and that the population becomes dominated by a single species. We then show that by applying an externally imposed penalty, or "tax" on success can stabilize the interior fixed point, allowing for the symbiotic coexistence of all species. We show that the interior fixed point is the point of globally minimal total population growth in both the taxed and untaxed cases. We then formulate an optimal taxation problem and show that it admits a quasilinearization, resulting in novel necessary conditions for the optimal control. In particular, the optimal control problem governing the tax rate must solve a certain second-order ordinary differential equation.
Griffin, Christopher; Belmonte, Andrew
2017-05-01
We study the problem of stabilized coexistence in a three-species public goods game in which each species simultaneously contributes to one public good while freeloading off another public good ("cheating"). The proportional population growth is governed by an appropriately modified replicator equation, depending on the returns from the public goods and the cost. We show that the replicator dynamic has at most one interior unstable fixed point and that the population becomes dominated by a single species. We then show that by applying an externally imposed penalty, or "tax" on success can stabilize the interior fixed point, allowing for the symbiotic coexistence of all species. We show that the interior fixed point is the point of globally minimal total population growth in both the taxed and untaxed cases. We then formulate an optimal taxation problem and show that it admits a quasilinearization, resulting in novel necessary conditions for the optimal control. In particular, the optimal control problem governing the tax rate must solve a certain second-order ordinary differential equation.
Mutual information in the evolution of trajectories in discrete aiming movements.
Lai, Shih-Chiung; Mayer-Kress, Gottfried; Newell, Karl M
2008-07-01
This study investigated the mutual information in the trajectories of discrete aiming movements on a computer controlled graphics tablet where movement time ( 300 - 2050 ms) was manipulated in a given distance (100 mm) and movement distance (15-240 mm) in 2 given movement times (300 ms and 800 ms ). For the distance-fixed conditions, there was higher mutual information in the slower movements in the 0 vs. 80-100% trajectory point comparisons, whereas the mutual information was higher for the faster movements when comparing within the 80 and 100% points of the movement trajectory. For the time-fixed conditions, the spatial constraints led to a decreasing pattern of the mutual information throughout the points of the trajectory, with the highest mutual information found in the 80 vs. 100% comparison. Overall, the pattern of mutual information reveals systematic modulation of the trajectories between the attractive fixed point of the target as a function of movement condition. These mutual information patterns are postulated to be the consequence of the different relative contributions of feedforward and feedback control processes in trajectory formation as a function of task constraints.
Analysis of gene network robustness based on saturated fixed point attractors
2014-01-01
The analysis of gene network robustness to noise and mutation is important for fundamental and practical reasons. Robustness refers to the stability of the equilibrium expression state of a gene network to variations of the initial expression state and network topology. Numerical simulation of these variations is commonly used for the assessment of robustness. Since there exists a great number of possible gene network topologies and initial states, even millions of simulations may be still too small to give reliable results. When the initial and equilibrium expression states are restricted to being saturated (i.e., their elements can only take values 1 or −1 corresponding to maximum activation and maximum repression of genes), an analytical gene network robustness assessment is possible. We present this analytical treatment based on determination of the saturated fixed point attractors for sigmoidal function models. The analysis can determine (a) for a given network, which and how many saturated equilibrium states exist and which and how many saturated initial states converge to each of these saturated equilibrium states and (b) for a given saturated equilibrium state or a given pair of saturated equilibrium and initial states, which and how many gene networks, referred to as viable, share this saturated equilibrium state or the pair of saturated equilibrium and initial states. We also show that the viable networks sharing a given saturated equilibrium state must follow certain patterns. These capabilities of the analytical treatment make it possible to properly define and accurately determine robustness to noise and mutation for gene networks. Previous network research conclusions drawn from performing millions of simulations follow directly from the results of our analytical treatment. Furthermore, the analytical results provide criteria for the identification of model validity and suggest modified models of gene network dynamics. The yeast cell-cycle network is used as an illustration of the practical application of this analytical treatment. PMID:24650364
Dissolution of cement, root caries, fracture, and retrofit of post and cores.
Rosen, H
1998-10-01
Fixed partial denture abutments severely damaged by dental caries or fracture present a challenge to the dentist. The fixed partial denture may need to be removed for endodontic treatment with post and core fabrication. Frequently, the existing fixed partial denture can be recycled as a provisional restoration. Retrofitting the post and core greatly improves the stabilization of the interim as well as the remake of the definitive fixed partial denture. This article describes a chair side procedure for retrofitting posts and cores and, at the same appointment, converting the original fixed partial denture to an effective provisional restoration.
Transfers between libration-point orbits in the elliptic restricted problem
NASA Astrophysics Data System (ADS)
Hiday, L. A.; Howell, K. C.
The present time-fixed impulsive transfers between 3D libration point orbits in the vicinity of the interior L(1) libration point of the sun-earth-moon barycenter system are 'optimal' in that the total characteristic velocity required for implementation of the transfer exhibits a local minimum. The conditions necessary for a time-fixed, two-impulse transfer trajectory to be optimal are stated in terms of the primer vector, and the conditions necessary for satisfying the local optimality of a transfer trajectory containing additional impulses are addressed by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses.
Point pattern analysis of FIA data
Chris Woodall
2002-01-01
Point pattern analysis is a branch of spatial statistics that quantifies the spatial distribution of points in two-dimensional space. Point pattern analysis was conducted on stand stem-maps from FIA fixed-radius plots to explore point pattern analysis techniques and to determine the ability of pattern descriptions to describe stand attributes. Results indicate that the...
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceccato, Alessandro; Frezzato, Diego, E-mail: diego.frezzato@unipd.it; Nicolini, Paolo
In this work, we deal with general reactive systems involving N species and M elementary reactions under applicability of the mass-action law. Starting from the dynamic variables introduced in two previous works [P. Nicolini and D. Frezzato, J. Chem. Phys. 138(23), 234101 (2013); 138(23), 234102 (2013)], we turn to a new representation in which the system state is specified in a (N × M){sup 2}-dimensional space by a point whose coordinates have physical dimension of inverse-of-time. By adopting hyper-spherical coordinates (a set of dimensionless “angular” variables and a single “radial” one with physical dimension of inverse-of-time) and by examining themore » properties of their evolution law both formally and numerically on model kinetic schemes, we show that the system evolves towards the equilibrium as being attracted by a sequence of fixed subspaces (one at a time) each associated with a compact domain of the concentration space. Thus, we point out that also for general non-linear kinetics there exist fixed “objects” on the global scale, although they are conceived in such an abstract and extended space. Moreover, we propose a link between the persistence of the belonging of a trajectory to such subspaces and the closeness to the slow manifold which would be perceived by looking at the bundling of the trajectories in the concentration space.« less
NASA Astrophysics Data System (ADS)
Yip, Shui Cheung
We study the longitudinal motion of a nonlinearly viscoelastic bar with one end fixed and the other end attached to a heavy tip mass. This problem is a precise continuum mechanical analog of the basic discrete mechanical problem of the motion of a mass point on a (massless) spring. This motion is governed by an initial-boundary-value problem for a class of third-order quasilinear parabolic-hyperbolic partial differential equations subject to a nonstandard boundary condition, which is the equation of motion of the tip mass. The ratio of the mass of the bar to that of the tip mass is taken to be a small parameter varepsilon. We prove that this problem has a unique regular solution that admits a valid asymptotic expansion, including an initial-layer expansion, in powers of varepsilon for varepsilon near 0. The fundamental constitutive hypothesis that the tension be a uniformly monotone function of the strain rate plays a critical role in a delicate proof that each term of the initial layer expansion decays exponentially in time. These results depend on new decay estimates for the solution of quasilinear parabolic equations. The constitutive hypothesis that the viscosity become large where the bar nears total compression leads to important uniform bounds for the strain and the strain rate. Higher-order energy estimates support the proof by the Schauder Fixed-Point Theorem of the existence of solutions having a level of regularity appropriate for the asymptotics.
NASA Astrophysics Data System (ADS)
Quan, Austin; Osorio, Ivan; Ohira, Toru; Milton, John
2011-12-01
Resonance can occur in bistable dynamical systems due to the interplay between noise and delay (τ) in the absence of a periodic input. We investigate resonance in a two-neuron model with mutual time-delayed inhibitory feedback. For appropriate choices of the parameters and inputs three fixed-point attractors co-exist: two are stable and one is unstable. In the absence of noise, delay-induced transient oscillations (referred to herein as DITOs) arise whenever the initial function is tuned sufficiently close to the unstable fixed-point. In the presence of noisy perturbations, DITOs arise spontaneously. Since the correlation time for the stationary dynamics is ˜τ, we approximated a higher order Markov process by a three-state Markov chain model by rescaling time as t → 2sτ, identifying the states based on whether the sub-intervals were completely confined to one basin of attraction (the two stable attractors) or straddled the separatrix, and then determining the transition probability matrix empirically. The resultant Markov chain model captured the switching behaviors including the statistical properties of the DITOs. Our observations indicate that time-delayed and noisy bistable dynamical systems are prone to generate DITOs as switches between the two attractors occur. Bistable systems arise transiently in situations when one attractor is gradually replaced by another. This may explain, for example, why seizures in certain epileptic syndromes tend to occur as sleep stages change.
Maxwell's conjecture on three point charges with equal magnitudes
NASA Astrophysics Data System (ADS)
Tsai, Ya-Lun
2015-08-01
Maxwell's conjecture on three point charges states that the number of non-degenerate equilibrium points of the electrostatic field generated by them in R3 is at most four. We prove the conjecture in the cases when three point charges have equal magnitudes and show the number of isolated equilibrium points can only be zero, two, three, or four. Specifically, fixing positions of two positive charges in R3, we know exactly where to place the third positive charge to have two, three, or four equilibrium points. All equilibrium points are isolated and there are no other possibilities for the number of isolated equilibrium points. On the other hand, if both two of the fixed charges have negative charge values, there are always two equilibrium points except when the third positive charge lies in the line segment connecting the two negative charges. The exception cases are when the field contains only a curve of equilibrium points. In this paper, computations assisted by computer involve symbolic and exact integer computations. Therefore, all the results are proved rigorously.
Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities
Pan, Lin; Cai, Changsheng; Santerre, Rock; Zhu, Jianjun
2014-01-01
Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF. PMID:25237901
Code of Federal Regulations, 2014 CFR
2014-10-01
.... A regularly interacting group of base, mobile and associated control and fixed relay stations... qualify as unrestricted. Control point. Any place from which a transmitter's functions may be controlled. Control station. An Operational Fixed Station, the transmissions of which are used to control...
Code of Federal Regulations, 2013 CFR
2013-10-01
.... A regularly interacting group of base, mobile and associated control and fixed relay stations... qualify as unrestricted. Control point. Any place from which a transmitter's functions may be controlled. Control station. An Operational Fixed Station, the transmissions of which are used to control...
2011-01-01
reliability, e.g., Turbo Codes [2] and Low Density Parity Check ( LDPC ) codes [3]. The challenge to apply both MIMO and ECC into wireless systems is on...REPORT Fixed-point Design of theLattice-reduction-aided Iterative Detection andDecoding Receiver for Coded MIMO Systems 14. ABSTRACT 16. SECURITY...illustrates the performance of coded LR aided detectors. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES The views, opinions
Helicopter simulation: An aircrew training and qualification perspective
NASA Technical Reports Server (NTRS)
Birnbach, Richard A.; Longridge, Thomas M.
1992-01-01
This paper reviews some of the unique considerations that distinguish the commercial rotary wing domain from its fixed-wing counterpart. These considerations should give the FAA cause to proceed cautiously in drawing upon its fixed-wing experience. One major point to consider is the following: device qualification should be accomplished in a context of an overall training and qualification system. This approach would take as its starting point a detailed analysis of rotary-wing missions and tasks from which proficiency objectives can be systematically developed.
Construction of Home-Made Tin Fixed-Point Cell at TUBITAK UME
NASA Astrophysics Data System (ADS)
Kalemci, M.; Arifovic, N.; Bağçe, A.; Aytekin, S. O.; Ince, A. T.
2015-08-01
TUBITAK UME Temperature Laboratory initiated a new study which focuses on the construction of a tin freezing-point cell as a primary temperature standard. The design is an open-cell type similar to the National Institute of Standards and Technology design. With this aim, a brand new vacuum and filling line employing an oil diffusion pump and two cold traps (liquid nitrogen and dry ice) was set-up. The graphite parts (crucible, thermometer well, etc.) have been baked at high temperature under vacuum. Each cell was filled with approximately 1 kg of high-purity tin (99.9999 %) in a three-zone furnace. Then several melting and freezing curves were obtained to assess the quality of the home-made cell, and also the new cell was compared with the existing reference cell of the laboratory. The results obtained are very close to the reference cell of UME, indicating that the method used for fabrication was promising and satisfactory and also seems to meet the requirements to have a primary level temperature standard.
NASA Astrophysics Data System (ADS)
Liu, Jann-Yenq; Chen, Koichi; Tsai, Ho-Fang; Hattori, Katsumi; Le, Huijun
2013-04-01
This paper reports statistical results of seismo-ionospheric precursors (SIPs) of the total electron content (TEC) in the global ionosphere map (GIM) over the epicenter of earthquakes with magnitude 6 and greater in China, Japan, and Taiwan during 1998-2012. To detect SIP, a quartile-based (i.e. median-based) process is performed. The earthquakes are sub-divided into various regions to have a better understanding on SIP characteristics, as well as examined with and without being led by magnetic storms to confirm the SIP existence. Results show that the SIPs mainly are the TEC significant increase in Japan, and decrease in Taiwan and China, respectively, which suggests the latitudinal effect playing an important role. Meanwhile, for a practical application of monitoring SIPs, the GIM TEC at a fixed point is tested. Results show that multi monitoring points and/or a spatial observation are required to enhance the SIP detection.
APMP.T-K3.4: key comparison of realizations of the ITS-90 over the range -38.8344 °C to 419.527 °C
NASA Astrophysics Data System (ADS)
Joung, W.; Gam, K. S.; Achmadi, A.; Trisna, B. A.
2016-01-01
The APMP bilateral key comparison APMP.T-K3.4 was initiated on the request from RCM-LIPI (Indonesia) to link their national standards to the average reference values (ARVs) of the CCT-K3. Korea Research Institute of Standards and Science (KRISS, Republic of Korea) provided the linkage to the CCT-K3 for temperatures ranging from -38.8344 °C to 419.527 °C. In the APMP.T-K3.4, two standard platinum resistance thermometers (SPRTs) were chosen as the transfer instruments and were calibrated at the ITS-90 fixed-points in the comparison range. The fixed-points in this comparison included Zn freezing point (419.527 °C), Sn freezing point (231.928 °C), In freezing point (156.5985 °C), Ga melting point (29.7646 °C), and Hg triple point (-38.8344 °C). The comparison was carried out in a participant-pilot-participant sequence where KRISS served as the pilot. The linkage was based on the fixed-point resistance ratios of RCM-LIPI relative to the ARVs of the CCT-K3 via the difference between the fixed-point resistance ratios of KRISS and the ARVs of the CCT-K3. The temperature differences between the national standards of RCM-LIPI and the ARVs of the CCT-K3 were within the evaluated comparison uncertainties of the ATPM.T-K3.4. This report provides detailed information on the comparison results, linkage mechanism, and the Degree of Equivalence of the RCM-LIPI relative to the institutes having participated in the CCT-K3. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Geometric constrained variational calculus I: Piecewise smooth extremals
NASA Astrophysics Data System (ADS)
Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico
2015-05-01
A geometric setup for constrained variational calculus is presented. The analysis deals with the study of the extremals of an action functional defined on piecewise differentiable curves, subject to differentiable, non-holonomic constraints. Special attention is paid to the tensorial aspects of the theory. As far as the kinematical foundations are concerned, a fully covariant scheme is developed through the introduction of the concept of infinitesimal control. The standard classification of the extremals into normal and abnormal ones is discussed, pointing out the existence of an algebraic algorithm assigning to each admissible curve a corresponding abnormality index, related to the co-rank of a suitable linear map. Attention is then shifted to the study of the first variation of the action functional. The analysis includes a revisitation of Pontryagin's equations and of the Lagrange multipliers method, as well as a reformulation of Pontryagin's algorithm in Hamiltonian terms. The analysis is completed by a general result, concerning the existence of finite deformations with fixed endpoints.
Finite-size effects in Luther-Emery phases of Holstein and Hubbard models
NASA Astrophysics Data System (ADS)
Greitemann, J.; Hesselmann, S.; Wessel, S.; Assaad, F. F.; Hohenadler, M.
2015-12-01
The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.
Dynamics of Two Point Vortices in an External Compressible Shear Flow
NASA Astrophysics Data System (ADS)
Vetchanin, Evgeny V.; Mamaev, Ivan S.
2017-12-01
This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the "reversible pitch-fork" bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.
Ding, Xiaoshuai; Cao, Jinde; Zhao, Xuan; Alsaadi, Fuad E
2017-08-01
This paper is concerned with the drive-response synchronization for a class of fractional-order bidirectional associative memory neural networks with time delays, as well as in the presence of discontinuous activation functions. The global existence of solution under the framework of Filippov for such networks is firstly obtained based on the fixed-point theorem for condensing map. Then the state feedback and impulsive controllers are, respectively, designed to ensure the Mittag-Leffler synchronization of these neural networks and two new synchronization criteria are obtained, which are expressed in terms of a fractional comparison principle and Razumikhin techniques. Numerical simulations are presented to validate the proposed methodologies.
Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative
NASA Astrophysics Data System (ADS)
Owolabi, Kolade M.
2018-01-01
In this paper, we model an ecological system consisting of a predator and two preys with the newly derived two-step fractional Adams-Bashforth method via the Atangana-Baleanu derivative in the Caputo sense. We analyze the dynamical system for correct choice of parameter values that are biologically meaningful. The local analysis of the main model is based on the application of qualitative theory for ordinary differential equations. By using the fixed point theorem idea, we establish the existence and uniqueness of the solutions. Convergence results of the new scheme are verified in both space and time. Dynamical wave phenomena of solutions are verified via some numerical results obtained for different values of the fractional index, which have some interesting ecological implications.
NICA project at JINR: status and prospects
NASA Astrophysics Data System (ADS)
Kekelidze, V. D.
2017-06-01
The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and dense baryonic matter in heavy-ion collisions in the energy range up to 11.0 AGeV . The plan of NICA accelerator block development includes an upgrade of the existing superconducting (SC) synchrotron Nuclotron and construction of the new injection complex, SC Booster, and SC Collider with two interaction points (IP). The heavy-ion collision program will be performed with the fixed target experiment Baryonic Matter at Nuclotron (BM@N) at the beam extracted from the Nuclotron, and with Multi-Purpose Detector (MPD) at the first IP of NICA Collider. Investigation of nucleon spin structure and polarization phenomena is foreseen with the Spin Physics Detector (SPC) at the second IP of the Collider.
Beam splitter phase shifts: Wave optics approach
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Degiorgio, Vittorio
2017-10-01
We investigate the phase relationships between transmitted and reflected waves in a lossless beam splitter having a multilayer structure, using the matrix approach as outlined in classical optics books. Contrarily to the case of the quantum optics formalism generally employed to describe beam splitters, these matrices are not unitary. In this note we point out the existence of general relations among the elements of the transfer matrix that describes the multilayer beam splitter. Such relations, which are independent of the detailed structure of the beam splitter, fix the phase shifts between reflected and transmitted waves. It is instructive to see how the results obtained by Zeilinger by using spinor algebra and Pauli matrices can be easily derived from our general relations.
Bifurcation structures of a cobweb model with memory and competing technologies
NASA Astrophysics Data System (ADS)
Agliari, Anna; Naimzada, Ahmad; Pecora, Nicolò
2018-05-01
In this paper we study a simple model based on the cobweb demand-supply framework with costly innovators and free imitators. The evolutionary selection between technologies depends on a performance measure which is related to the degree of memory. The resulting dynamics is described by a two-dimensional map. The map has a fixed point which may lose stability either via supercritical Neimark-Sacker bifurcation or flip bifurcation and several multistability situations exist. We describe some sequences of global bifurcations involving attracting and repelling closed invariant curves. These bifurcations, characterized by the creation of homoclinic connections or homoclinic tangles, are described through several numerical simulations. Particular bifurcation phenomena are also observed when the parameters are selected inside a periodicity region.
MOLA: The Future of Mars Global Cartography
NASA Technical Reports Server (NTRS)
Duxbury, T. C.; Smith, D. E.; Zuber, M. T.; Frey, H. V.; Garvin, J. B.; Head, J. W.; Muhleman, D. O.; Pettengill, G. H.; Phillips, R. J.; Solomon, S. C.
1999-01-01
The MGS Orbiter is carrying the high-precision Mars Orbiter Laser Altimeter (MOLA) which, when combined with precision reconstructed orbital data and telemetered attitude data, provides a tie between inertial space and Mars-fixed coordinates to an accuracy of 100 m in latitude / longitude and 10 m in radius (1 sigma), orders of magnitude more accurate than previous global geodetic/ cartographic control data. Over the 2 year MGS mission lifetime, it is expected that over 30,000 MOLA Global Cartographic Control Points will be produced to form the basis for new and re-derived map and geodetic products, key to the analysis of existing and evolving MGS data as well as future Mars exploration. Additional information is contained in the original extended abstract.
On homogeneous second order linear general quantum difference equations.
Faried, Nashat; Shehata, Enas M; El Zafarani, Rasha M
2017-01-01
In this paper, we prove the existence and uniqueness of solutions of the β -Cauchy problem of second order β -difference equations [Formula: see text] [Formula: see text], in a neighborhood of the unique fixed point [Formula: see text] of the strictly increasing continuous function β , defined on an interval [Formula: see text]. These equations are based on the general quantum difference operator [Formula: see text], which is defined by [Formula: see text], [Formula: see text]. We also construct a fundamental set of solutions for the second order linear homogeneous β -difference equations when the coefficients are constants and study the different cases of the roots of their characteristic equations. Finally, we drive the Euler-Cauchy β -difference equation.
Integer-ambiguity resolution in astronomy and geodesy
NASA Astrophysics Data System (ADS)
Lannes, A.; Prieur, J.-L.
2014-02-01
Recent theoretical developments in astronomical aperture synthesis have revealed the existence of integer-ambiguity problems. Those problems, which appear in the self-calibration procedures of radio imaging, have been shown to be similar to the nearest-lattice point (NLP) problems encountered in high-precision geodetic positioning and in global navigation satellite systems. In this paper we analyse the theoretical aspects of the matter and propose new methods for solving those NLP~problems. The related optimization aspects concern both the preconditioning stage, and the discrete-search stage in which the integer ambiguities are finally fixed. Our algorithms, which are described in an explicit manner, can easily be implemented. They lead to substantial gains in the processing time of both stages. Their efficiency was shown via intensive numerical tests.
Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points
NASA Astrophysics Data System (ADS)
Jia, Bing; Gu, Huaguang
2017-06-01
Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.
Code of Federal Regulations, 2011 CFR
2011-10-01
... interacting group of base, mobile and associated control and fixed relay stations intended to provide land... one that does not qualify as unrestricted. Control point. Any place from which a transmitter's functions may be controlled. Control station. An Operational Fixed Station, the transmissions of which are...
Code of Federal Regulations, 2010 CFR
2010-10-01
... interacting group of base, mobile and associated control and fixed relay stations intended to provide land... one that does not qualify as unrestricted. Control point. Any place from which a transmitter's functions may be controlled. Control station. An Operational Fixed Station, the transmissions of which are...
Code of Federal Regulations, 2012 CFR
2012-10-01
... interacting group of base, mobile and associated control and fixed relay stations intended to provide land... one that does not qualify as unrestricted. Control point. Any place from which a transmitter's functions may be controlled. Control station. An Operational Fixed Station, the transmissions of which are...
Quantum gravity fluctuations flatten the Planck-scale Higgs potential
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Hamada, Yuta; Lumma, Johannes; Yamada, Masatoshi
2018-04-01
We investigate asymptotic safety of a toy model of a singlet-scalar extension of the Higgs sector including two real scalar fields under the impact of quantum-gravity fluctuations. Employing functional renormalization group techniques, we search for fixed points of the system which provide a tentative ultraviolet completion of the system. We find that in a particular regime of the gravitational parameter space the canonically marginal and relevant couplings in the scalar sector—including the mass parameters—become irrelevant at the ultraviolet fixed point. The infrared potential for the two scalars that can be reached from that fixed point is fully predicted and features no free parameters. In the remainder of the gravitational parameter space, the values of the quartic couplings in our model are predicted. In light of these results, we discuss whether the singlet-scalar could be a dark-matter candidate. Furthermore, we highlight how "classical scale invariance" in the sense of a flat potential of the scalar sector at the Planck scale could arise as a consequence of asymptotic safety.
Impact of topology in foliated quantum Einstein gravity.
Houthoff, W B; Kurov, A; Saueressig, F
2017-01-01
We use a functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation of gravity to study the scale dependence of Newton's coupling and the cosmological constant on a background spacetime with topology [Formula: see text]. The resulting beta functions possess a non-trivial renormalization group fixed point, which may provide the high-energy completion of the theory through the asymptotic safety mechanism. The fixed point is robust with respect to changing the parametrization of the metric fluctuations and regulator scheme. The phase diagrams show that this fixed point is connected to a classical regime through a crossover. In addition the flow may exhibit a regime of "gravitational instability", modifying the theory in the deep infrared. Our work complements earlier studies of the gravitational renormalization group flow on a background topology [Formula: see text] (Biemans et al. Phys Rev D 95:086013, 2017, Biemans et al. arXiv:1702.06539, 2017) and establishes that the flow is essentially independent of the background topology.
Renormalization-group theory for finite-size scaling in extreme statistics
NASA Astrophysics Data System (ADS)
Györgyi, G.; Moloney, N. R.; Ozogány, K.; Rácz, Z.; Droz, M.
2010-04-01
We present a renormalization-group (RG) approach to explain universal features of extreme statistics applied here to independent identically distributed variables. The outlines of the theory have been described in a previous paper, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.
Parametrization of local CR automorphisms by finite jets and applications
NASA Astrophysics Data System (ADS)
Lamel, Bernhard; Mir, Nordine
2007-04-01
For any real-analytic hypersurface Msubset {C}^N , which does not contain any complex-analytic subvariety of positive dimension, we show that for every point pin M the local real-analytic CR automorphisms of M fixing p can be parametrized real-analytically by their ell_p jets at p . As a direct application, we derive a Lie group structure for the topological group operatorname{Aut}(M,p) . Furthermore, we also show that the order ell_p of the jet space in which the group operatorname{Aut}(M,p) embeds can be chosen to depend upper-semicontinuously on p . As a first consequence, it follows that given any compact real-analytic hypersurface M in {C}^N , there exists an integer k depending only on M such that for every point pin M germs at p of CR diffeomorphisms mapping M into another real-analytic hypersurface in {C}^N are uniquely determined by their k -jet at that point. Another consequence is the following boundary version of H. Cartan's uniqueness theorem: given any bounded domain Ω with smooth real-analytic boundary, there exists an integer k depending only on partial Ω such that if H\\colon Ωto Ω is a proper holomorphic mapping extending smoothly up to partial Ω near some point pin partial Ω with the same k -jet at p with that of the identity mapping, then necessarily H=Id . Our parametrization theorem also holds for the stability group of any essentially finite minimal real-analytic CR manifold of arbitrary codimension. One of the new main tools developed in the paper, which may be of independent interest, is a parametrization theorem for invertible solutions of a certain kind of singular analytic equations, which roughly speaking consists of inverting certain families of parametrized maps with singularities.
HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses
Nhuchhen, Daya Ram; Afzal, Muhammad T.
2017-01-01
Many correlations are available in the literature to predict the higher heating value (HHV) of raw biomass using the proximate and ultimate analyses. Studies on biomass torrefaction are growing tremendously, which suggest that the fuel characteristics, such as HHV, proximate analysis and ultimate analysis, have changed significantly after torrefaction. Such changes may cause high estimation errors if the existing HHV correlations were to be used in predicting the HHV of torrefied biomass. No study has been carried out so far to verify this. Therefore, this study seeks answers to the question: “Can the existing correlations be used to determine the HHV of the torrefied biomass”? To answer this, the existing HHV predicting correlations were tested using torrefied biomass data points. Estimation errors were found to be significantly high for the existing HHV correlations, and thus, they are not suitable for predicting the HHV of the torrefied biomass. New correlations were then developed using data points of torrefied biomass. The ranges of reported data for HHV, volatile matter (VM), fixed carbon (FC), ash (ASH), carbon (C), hydrogen (H) and oxygen (O) contents were 14.90 MJ/kg–33.30 MJ/kg, 13.30%–88.57%, 11.25%–82.74%, 0.08%–47.62%, 35.08%–86.28%, 0.53%–7.46% and 4.31%–44.70%, respectively. Correlations with the minimum mean absolute errors and having all components of proximate and ultimate analyses were selected for future use. The selected new correlations have a good accuracy of prediction when they are validated using another set of data (26 samples). Thus, these new and more accurate correlations can be useful in modeling different thermochemical processes, including combustion, pyrolysis and gasification processes of torrefied biomass. PMID:28952487
Experimental determination of material damping using vibration analyzer
NASA Technical Reports Server (NTRS)
Chowdhury, Mostafiz R.; Chowdhury, Farida
1990-01-01
Structural damping is an important dynamic characteristic of engineering materials that helps to damp vibrations by reducing their amplitudes. In this investigation, an experimental method is illustrated to determine the damping characteristics of engineering materials using a dual channel Fast Fourier Transform (FFT) analyzer. A portable Compaq III computer which houses the analyzer, is used to collect the dynamic responses of three metal rods. Time-domain information is analyzed to obtain the logarithmic decrement of their damping. The damping coefficients are then compared to determine the variation of damping from material to material. The variations of damping from one point to another of the same material, due to a fixed point excitation, and the variable damping at a fixed point due to excitation at different points, are also demonstrated.
Recall of patterns using binary and gray-scale autoassociative morphological memories
NASA Astrophysics Data System (ADS)
Sussner, Peter
2005-08-01
Morphological associative memories (MAM's) belong to a class of artificial neural networks that perform the operations erosion or dilation of mathematical morphology at each node. Therefore we speak of morphological neural networks. Alternatively, the total input effect on a morphological neuron can be expressed in terms of lattice induced matrix operations in the mathematical theory of minimax algebra. Neural models of associative memories are usually concerned with the storage and the retrieval of binary or bipolar patterns. Thus far, the emphasis in research on morphological associative memory systems has been on binary models, although a number of notable features of autoassociative morphological memories (AMM's) such as optimal absolute storage capacity and one-step convergence have been shown to hold in the general, gray-scale setting. In previous papers, we gained valuable insight into the storage and recall phases of AMM's by analyzing their fixed points and basins of attraction. We have shown in particular that the fixed points of binary AMM's correspond to the lattice polynomials in the original patterns. This paper extends these results in the following ways. In the first place, we provide an exact characterization of the fixed points of gray-scale AMM's in terms of combinations of the original patterns. Secondly, we present an exact expression for the fixed point attractor that represents the output of either a binary or a gray-scale AMM upon presentation of a certain input. The results of this paper are confirmed in several experiments using binary patterns and gray-scale images.
Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids
NASA Astrophysics Data System (ADS)
Gao, T.; Li, G.; Estrecho, E.; Liew, T. C. H.; Comber-Todd, D.; Nalitov, A.; Steger, M.; West, K.; Pfeiffer, L.; Snoke, D. W.; Kavokin, A. V.; Truscott, A. G.; Ostrovskaya, E. A.
2018-02-01
We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.
Freeway travel time estimation using existing fixed traffic sensors : phase 2.
DOT National Transportation Integrated Search
2015-03-01
Travel time, one of the most important freeway performance metrics, can be easily estimated using the : data collected from fixed traffic sensors, avoiding the need to install additional travel time data collectors. : This project is aimed at fully u...
47 CFR 27.70 - Information exchange.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS... activated or an existing base or fixed station is modified: (1) Location; (2) Effective radiated power; (3... identify the source if interference is encountered when the base or fixed station is activated. [72 FR...
47 CFR 101.1005 - Frequencies available.
Code of Federal Regulations, 2011 CFR
2011-10-01
... FIXED MICROWAVE SERVICES Local Multipoint Distribution Service § 101.1005 Frequencies available. (a) The... is shared with private microwave point-to-point systems licensed prior to March 11, 1997, as provided...
47 CFR 101.1005 - Frequencies available.
Code of Federal Regulations, 2014 CFR
2014-10-01
... FIXED MICROWAVE SERVICES Local Multipoint Distribution Service § 101.1005 Frequencies available. (a) The... is shared with private microwave point-to-point systems licensed prior to March 11, 1997, as provided...
47 CFR 101.1005 - Frequencies available.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FIXED MICROWAVE SERVICES Local Multipoint Distribution Service § 101.1005 Frequencies available. (a) The... is shared with private microwave point-to-point systems licensed prior to March 11, 1997, as provided...
47 CFR 101.1005 - Frequencies available.
Code of Federal Regulations, 2013 CFR
2013-10-01
... FIXED MICROWAVE SERVICES Local Multipoint Distribution Service § 101.1005 Frequencies available. (a) The... is shared with private microwave point-to-point systems licensed prior to March 11, 1997, as provided...
47 CFR 101.1005 - Frequencies available.
Code of Federal Regulations, 2012 CFR
2012-10-01
... FIXED MICROWAVE SERVICES Local Multipoint Distribution Service § 101.1005 Frequencies available. (a) The... is shared with private microwave point-to-point systems licensed prior to March 11, 1997, as provided...
47 CFR 90.419 - Points of communication.
Code of Federal Regulations, 2010 CFR
2010-10-01
... communicate between associated mobile stations and associated base stations of the licensee. Accordingly, operations between base stations at fixed locations are permitted only in the following situations: (a) Base... frequencies below 450 MHz, may communicate on a secondary basis with other base stations, operational fixed...
A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems
Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua
2013-01-01
A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597
An exploratory drilling exhaustion sequence plot program
Schuenemeyer, J.H.; Drew, L.J.
1977-01-01
The exhaustion sequence plot program computes the conditional area of influence for wells in a specified rectangular region with respect to a fixed-size deposit. The deposit is represented by an ellipse whose size is chosen by the user. The area of influence may be displayed on computer printer plots consisting of a maximum of 10,000 grid points. At each point, a symbol is presented that indicates the probability of that point being exhausted by nearby wells with respect to a fixed-size ellipse. This output gives a pictorial view of the manner in which oil fields are exhausted. In addition, the exhaustion data may be used to estimate the number of deposits remaining in a basin. ?? 1977.
Sagittal focusing Laue monochromator
Zhong,; Zhong, Hanson [Stony Brook, NY; Jonathan, Hastings [Wading River, NY; Jerome, Kao [Stanford, CA; Chi-Chang, Lenhard [Setauket, NY; Anthony, Siddons [Medford, NY; David Peter, Zhong [Cutchogue, NY; Hui, [Coram, NY
2009-03-24
An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.
Unsteady three-dimensional flow separation
NASA Technical Reports Server (NTRS)
Hui, W. H.
1988-01-01
A concise mathematical framework is constructed to study the topology of steady 3-D separated flows of an incompressible, or a compressible viscous fluid. Flow separation is defined by the existence of a stream surface which intersects with the body surface. The line of separation is itself a skin-friction line. Flow separation is classified as being either regular or singular, depending respectively on whether the line of separation contains only a finite number of singular points or is a singular line of the skin-friction field. The special cases of 2-D and axisymmetric flow separation are shown to be of singular type. In regular separation it is shown that a line of separation originates from a saddle point of separation of the skin-friction field and ends at nodal points of separation. Unsteady flow separation is defined relative to a coordinate system fixed to the body surface. It is shown that separation of an unsteady 3-D incompressible viscous flow at time t, when viewed from such a frame of reference, is topologically the same as that of the fictitious steady flow obtained by freezing the unsteady flow at the instant t. Examples are given showing effects of various forms of flow unsteadiness on flow separation.
Kim, Young-Hoo; Park, Jang-Won; Kim, Jun-Shik; Kulkarni, Sourabh S; Kim, Yoon-Hong
2014-10-01
We are aware of no study that has compared press-fit condylar Sigma fixed-bearing and mobile-bearing total knee prostheses in the same patients after more than ten years of follow-up. The purpose of the current study was to compare these two implants with respect to the functional and radiographic results, prevalence of osteolysis, and overall revision rates at a mean of 12.1 years of follow-up. The study consisted of a consecutive series of 444 patients (mean age [and standard deviation], 66.5 ± 7.4 years) who underwent simultaneous bilateral total knee arthroplasty, with one side treated immediately after the other. All of the patients received a press-fit condylar Sigma mobile-bearing prosthesis on one side and a press-fit condylar Sigma fixed-bearing prosthesis on the contralateral side. The minimum duration of follow-up was ten years (mean, 12.1 years; range, ten to thirteen years). At the time of each follow-up visit, the patients were assessed clinically and radiographically. Postoperative total knee scores (95 and 94 points), Western Ontario and McMaster Universities Osteoarthritis Index (19 and 18 points), University of California, Los Angeles activity score (both prostheses, 5 points), range of motion (129° ± 6.3° and 127° ± 6.8°), and radiographic findings did not differ significantly between the press-fit condylar Sigma mobile and fixed-bearing designs at the final follow-up. The prevalence of aseptic loosening (1.4% and 1.8%) did not differ significantly between the mobile and fixed-bearing implant designs. No knee in either group had osteolysis. The estimated survival rate with revision as the end point was 98.2% (95% confidence interval, 91% to 99%) and 97.5% (95% confidence interval, 91% to 99%) at 12.1 years for the mobile and fixed-bearing implant groups, respectively. The results of the present long-term clinical study suggest that excellent clinical and radiographic results were achieved with both the press-fit condylar Sigma mobile and fixed-bearing cruciate-retaining total knee designs. We found no significant clinical advantage for a mobile-bearing over a fixed-bearing total knee prosthesis. Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Standard map in magnetized relativistic systems: fixed points and regular acceleration.
de Sousa, M C; Steffens, F M; Pakter, R; Rizzato, F B
2010-08-01
We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.
Zhao, Jing; Zong, Haili
2018-01-01
In this paper, we propose parallel and cyclic iterative algorithms for solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators. We also combine the process of cyclic and parallel iterative methods and propose two mixed iterative algorithms. Our several algorithms do not need any prior information about the operator norms. Under mild assumptions, we prove weak convergence of the proposed iterative sequences in Hilbert spaces. As applications, we obtain several iterative algorithms to solve the multiple-set split equality problem.
Fedosov differentials and Catalan numbers
NASA Astrophysics Data System (ADS)
Löffler, Johannes
2010-06-01
The aim of the paper is to establish a non-recursive formula for the general solution of Fedosov's 'quadratic' fixed-point equation (Fedosov 1994 J. Diff. Geom. 40 213-38). Fedosov's geometrical fixed-point equation for a differential is rewritten in a form similar to the functional equation for the generating function of Catalan numbers. This allows us to guess the solution. An adapted example for Kaehler manifolds of constant sectional curvature is considered in detail. Also for every connection on a manifold a familiar classical differential will be introduced. Dedicated to the memory of Nikolai Neumaier.
47 CFR 101.139 - Authorization of transmitters.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.139 Authorization of transmitters. (a) Unless...-point microwave and point-to-multipoint services under this part must be a type that has been verified...
47 CFR 101.139 - Authorization of transmitters.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.139 Authorization of transmitters. (a) Unless...-point microwave and point-to-multipoint services under this part must be a type that has been verified...
47 CFR 101.139 - Authorization of transmitters.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.139 Authorization of transmitters. (a) Unless...-point microwave and point-to-multipoint services under this part must be a type that has been verified...
47 CFR 101.139 - Authorization of transmitters.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.139 Authorization of transmitters. (a) Unless...-point microwave and point-to-multipoint services under this part must be a type that has been verified...
On parallel hybrid-electric propulsion system for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Hung, J. Y.; Gonzalez, L. F.
2012-05-01
This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.
Dynamics and control of coherent structures in the turbulent wall layer: An overview
NASA Technical Reports Server (NTRS)
Berkooz, Gal; Holmes, Philip; Lumley, John
1993-01-01
We expand the velocity field in the vicinity of the wall in empirical eigenfunctions obtained from experiment. Truncating our system and using Galerkin projection, we obtain a closed set of non-linear ordinary differential equations with ten degrees of freedom. We find a rich dynamical behavior, including in particular a heteroclinic attracting orbit giving rise to intermittency. The intermittent jump from one attracting point to the other resembles in many respects the bursts observed in experiments. Specifically, the time between jumps and the duration of the jumps, is approximately that observed in a burst; the jump begins with the formation of a narrowed and intensified updraft, like the ejection phase of a burst, and is followed by a gentle, diffuse downdraft like the sweep phase of a burst. The magnitude of the Reynolds stress spike produced during a burst is limited by our truncation. The behavior is quite robust, much of it being due to the symmetries present (Aubry's group has examined dimensions up to 128 with persistence of the global behavior). We have examined eigenvalues and coefficients obtained from experiment, and from exact simulation, which differ in magnitude. Similar behavior is obtained in both cases; in the latter case, the heteroclinic orbits connect limit cycles instead of fixed points, corresponding to cross-stream waving of the streamwise rolls. The bifurcation diagram remains structurally similar, but somewhat distorted. The role of the pressure term is made clear - it triggers the intermittent jumps, which otherwise would occur at longer and longer intervals, as the system trajectory is attracted closer and closer to the heteroclinic cycle. The pressure term results in the jumps occurring at essentially random times, and the magnitude of the signal determines the average timing. Stretching of the wall region shows that the model is consistent with observations of polymer drag reduction. Change of the third order coefficients, corresponding to acceleration or deceleration of the mean flow, changes the heteroclinic cycles from attracting to repelling, increasing or decreasing the stability, in agreement with observations. The existence of fixed points is an artifact introduced by the projection; however, a decoupled model still displays the rich dynamics. Numerous assumptions made in Aubry et al. (1988) can now be proved exactly. Feeding back eigenfuncitons with the proper phase can delay the bursting, (the heteroclinic jump to the other fixed point), decreasing the drag. It is also possible to speed up the bursting, increasing mixing to control separation. Our approach is optimal for short time tracking in control.
Connect-disconnect coupling for preadjusted rigid shafts
NASA Technical Reports Server (NTRS)
Bajkowski, F. W.; Holmberg, A.
1969-01-01
Coupling device enables a rigid shaft to be connected to or disconnected from a fixed base without disturbing the point of adjustment of the shaft in a socket or causing the shaft to rotate. The coupling consists of an externally threaded, internally slotted boss extending from the fixed base.
A complex fermionic tensor model in d dimensions
NASA Astrophysics Data System (ADS)
Prakash, Shiroman; Sinha, Ritam
2018-02-01
In this note, we study a melonic tensor model in d dimensions based on three-index Dirac fermions with a four-fermion interaction. Summing the melonic diagrams at strong coupling allows one to define a formal large- N saddle point in arbitrary d and calculate the spectrum of scalar bilinear singlet operators. For d = 2 - ɛ the theory is an infrared fixed point, which we find has a purely real spectrum that we determine numerically for arbitrary d < 2, and analytically as a power series in ɛ. The theory appears to be weakly interacting when ɛ is small, suggesting that fermionic tensor models in 1-dimension can be studied in an ɛ expansion. For d > 2, the spectrum can still be calculated using the saddle point equations, which may define a formal large- N ultraviolet fixed point analogous to the Gross-Neveu model in d > 2. For 2 < d < 6, we find that the spectrum contains at least one complex scalar eigenvalue (similar to the complex eigenvalue present in the bosonic tensor model recently studied by Giombi, Klebanov and Tarnopolsky) which indicates that the theory is unstable. We also find that the fixed point is weakly-interacting when d = 6 (or more generally d = 4 n + 2) and has a real spectrum for 6 < d < 6 .14 which we present as a power series in ɛ in 6 + ɛ dimensions.
Investigations on Two Co-C Fixed-Point Cells Prepared at INRIM and LNE-Cnam
NASA Astrophysics Data System (ADS)
Battuello, M.; Florio, M.; Sadli, M.; Bourson, F.
2011-08-01
INRIM and LNE-Cnam agreed to undertake a collaboration aimed to verify, through the use of metal-carbon eutectic fixed-point cells, methods and facilities used for defining the transition temperature of eutectic fixed points and manufacturing procedures of cells. To this purpose and as a first step of the cooperation, a Co-C cell manufactured at LNE-Cnam was measured at INRIM and compared with a local cell. The two cells were of different designs: the INRIM cell of 10 cm3 inner volume and the LNE-Cnam one of 3.9 cm3. The external dimensions of the two cells were noticeably different, namely, 40 mm in length and 24 mm in diameter for the LNE-Cnam cell 3Co4 and 110 mm in length and 42 mm in diameter for the INRIM cell. Consequently, the investigation of the effect of temperature distributions in the heating furnace was undertaken by implementing the cells inside single-zone and three-zone furnaces. The transition temperature of the cell was determined at the two institutes making use of different techniques: at INRIM radiation scales at 900 nm, 950 nm, and 1.6 μm were realized from In to Cu and then used to define T 90(Co-C) by extrapolation. At LNE-Cnam, a radiance comparator based on a grating monochromator was used for the extrapolation from the Cu fixed point. This paper presents a comparative description of the cells and the manufacturing methods and the results in terms of equivalence between the two cells and melting temperatures determined at INRIM and LNE-Cnam.
Counting relative equilibrium configurations of the full two-body problem
NASA Astrophysics Data System (ADS)
Moeckel, Richard
2018-02-01
Consider a system of two rigid, massive bodies interacting according to their mutual gravitational attraction. In a relative equilibrium motion, the bodies rotate rigidly and uniformly about a fixed axis in R^3. This is possible only for special positions and orientations of the bodies. After fixing the angular momentum, these relative equilibrium configurations can be characterized as critical points of a smooth function on configuration space. The goal of this paper is to use Morse theory and Lusternik-Schnirelmann category theory to give lower bounds for the number of critical points when the angular momentum is sufficiently large. In addition, the exact number of critical points and their Morse indices are found in the limit as the angular momentum tends to infinity.
Ali Khawaja, Ranish Deedar; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Lira, Diego; Zhang, Da; Liu, Bob; Primak, Andrew; Xu, George; Kalra, Mannudeep K
2017-08-01
To determine the effect of patient off-centering on point organ radiation dose measurements in a human cadaver scanned with routine abdominal CT protocol. A human cadaver (88 years, body-mass-index 20 kg/m2) was scanned with routine abdominal CT protocol on 128-slice dual source MDCT (Definition Flash, Siemens). A total of 18 scans were performed using two scan protocols (a) 120 kV-200 mAs fixed-mA (CTDIvol 14 mGy) (b) 120 kV-125 ref mAs (7 mGy) with automatic exposure control (AEC, CareDose 4D) at three different positions (a) gantry isocenter, (b) upward off-centering and (c) downward off-centering. Scanning was repeated three times at each position. Six thimble (in liver, stomach, kidney, pancreas, colon and urinary bladder) and four MOSFET dosimeters (on cornea, thyroid, testicle and breast) were placed for calculation of measured point organ doses. Organ dose estimations were retrieved from dose-tracking software (eXposure, Radimetrics). Statistical analysis was performed using analysis of variance. There was a significant difference between the trends of point organ doses with AEC and fixed-mA at all three positions (p < 0.01). Variation in point doses between fixed-mA and AEC protocols were statistically significant across all organs at all Table positions (p < 0.001). There was up to 5-6% decrease in point doses with upward off-centering and in downward off-centering. There were statistical significant differences in point doses from dosimeters and dose-tracking software (mean difference for internal organs, 5-36% for fixed-mA & 7-48% for AEC protocols; p < 0.001; mean difference for surface organs, >92% for both protocols; p < 0.0001). For both protocols, the highest mean difference in point doses was found for stomach and lowest for colon. Measured absorbed point doses in abdominal CT vary with patient-centering in the gantry isocenter. Due to lack of consideration of patient positioning in the dose estimation on automatic software-over estimation of the doses up to 92% was reported. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kim, Young-Hoo; Park, Jang-Won; Kim, Jun-Shik
2018-01-01
There is none, to our knowledge, about comparison of high-flexion fixed-bearing and high-flexion mobile-bearing total knee arthroplasties (TKAs) in the same patients. The purpose of this study was to determine whether clinical results; radiographic and computed tomographic scan results; and the survival rate of a high-flexion mobile-bearing TKA is better than that of a high-flexion fixed-bearing TKA. The present study consisted of 92 patients (184 knees) who underwent same-day bilateral TKA. Of those, 17 were men and 75 were women. The mean age at the time of index arthroplasty was 61.5 ± 8.3 years (range 52-65 years). The mean body mass index was 26.2 ± 3.3 kg/m 2 (range 23-34 kg/m 2 ). The mean follow-up was 11.2 years (range 10-12 years). The Knee Society knee scores (93 vs 92 points; P = .531) and function scores (80 vs 80 points; P = 1.000), WOMAC scores (14 vs 15 points; P = .972), and UCLA activity scores (6 vs 6 points; P = 1.000) were not different between the 2 groups at 12 years follow-up. There were no differences in any radiographic and CT scan parameters between the 2 groups. Kaplan-Meier survivorship of the TKA component was 98% (95% confidence interval, 93-100) in the high-flexion fixed-bearing TKA group and 99% (95% confidence interval, 94-100) in the high-flexion mobile-bearing TKA group 12 years after the operation. We found no benefit to mobile-bearing TKA in terms of pain, function, radiographic and CT scan results, and survivorship. Longer-term follow-up is necessary to prove the benefit of the high-flexion mobile-bearing TKA over the high-flexion fixed-bearing TKA. Copyright © 2017 Elsevier Inc. All rights reserved.
47 CFR 22.593 - Effective radiated power limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Effective radiated power limits. 22.593 Section... power limits. The effective radiated power of fixed stations operating on the channels listed in § 22.591 must not exceed 150 Watts. The equivalent isotropically radiated power of existing fixed microwave...
The Knaster-Kuratowski-Mazurkiewicz theorem and abstract convexities
NASA Astrophysics Data System (ADS)
Cain, George L., Jr.; González, Luis
2008-02-01
The Knaster-Kuratowski-Mazurkiewicz covering theorem (KKM), is the basic ingredient in the proofs of many so-called "intersection" theorems and related fixed point theorems (including the famous Brouwer fixed point theorem). The KKM theorem was extended from Rn to Hausdorff linear spaces by Ky Fan. There has subsequently been a plethora of attempts at extending the KKM type results to arbitrary topological spaces. Virtually all these involve the introduction of some sort of abstract convexity structure for a topological space, among others we could mention H-spaces and G-spaces. We have introduced a new abstract convexity structure that generalizes the concept of a metric space with a convex structure, introduced by E. Michael in [E. Michael, Convex structures and continuous selections, Canad. J. MathE 11 (1959) 556-575] and called a topological space endowed with this structure an M-space. In an article by Shie Park and Hoonjoo Kim [S. Park, H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996) 173-187], the concepts of G-spaces and metric spaces with Michael's convex structure, were mentioned together but no kind of relationship was shown. In this article, we prove that G-spaces and M-spaces are close related. We also introduce here the concept of an L-space, which is inspired in the MC-spaces of J.V. Llinares [J.V. Llinares, Unified treatment of the problem of existence of maximal elements in binary relations: A characterization, J. Math. Econom. 29 (1998) 285-302], and establish relationships between the convexities of these spaces with the spaces previously mentioned.
Irreversibility and higher-spin conformal field theory
NASA Astrophysics Data System (ADS)
Anselmi, Damiano
2000-08-01
I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.
Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Armstrong, Jeffrey B.; Garg, Sanjay
2012-01-01
An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.
NASA Astrophysics Data System (ADS)
Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo
2009-03-01
An apparently unnoticed analogy between the torque-free motion of a rotating rigid body about a fixed point and the propagation of light in anisotropic media is stated. First, a new plane construction for visualizing this torque-free motion is proposed. This method uses an intrinsic representation alternative to angular momentum and independent of the modulus of angular velocity ω. The equivalence between this plane construction and the well-known Poinsot's three-dimensional graphical procedure is also shown. From this equivalence, analogies have been found between the general plane wave equation (relation of dispersion) in anisotropic media and basic equations of torque-free motion of a rigid body about a fixed point. These analogies allow reciprocal transfer of results between optics and mechanics and, as an example, reinterpretation of the internal conical refraction phenomenon in biaxial media is carried out. This paper is intended as an interdisciplinary application of analogies for students and teachers in the context of intermediate physics courses at university level.
Implicit integration methods for dislocation dynamics
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; ...
2015-01-20
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less
Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays
NASA Astrophysics Data System (ADS)
Nguimdo, Romain Modeste
2018-03-01
Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.
Goldberg, Daniel N.; Narayanan, Sri Hari Krishna; Hascoet, Laurent; ...
2016-05-20
We apply an optimized method to the adjoint generation of a time-evolving land ice model through algorithmic differentiation (AD). The optimization involves a special treatment of the fixed-point iteration required to solve the nonlinear stress balance, which differs from a straightforward application of AD software, and leads to smaller memory requirements and in some cases shorter computation times of the adjoint. The optimization is done via implementation of the algorithm of Christianson (1994) for reverse accumulation of fixed-point problems, with the AD tool OpenAD. For test problems, the optimized adjoint is shown to have far lower memory requirements, potentially enablingmore » larger problem sizes on memory-limited machines. In the case of the land ice model, implementation of the algorithm allows further optimization by having the adjoint model solve a sequence of linear systems with identical (as opposed to varying) matrices, greatly improving performance. Finally, the methods introduced here will be of value to other efforts applying AD tools to ice models, particularly ones which solve a hybrid shallow ice/shallow shelf approximation to the Stokes equations.« less
Optimization of the thermogauge furnace for realizing high temperature fixed points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.; Dong, W.; Liu, F.
2013-09-11
The thermogauge furnace was commonly used in many NMIs as a blackbody source for calibration of the radiation thermometer. It can also be used for realizing the high temperature fixed point(HTFP). According to our experience, when realizing HTFP we need the furnace provide relative good temperature uniformity to avoid the possible damage to the HTFP. To improve temperature uniformity in the furnace, the furnace tube was machined near the tube ends with a help of a simulation analysis by 'ansys workbench'. Temperature distributions before and after optimization were measured and compared at 1300 °C, 1700°C, 2500 °C, which roughly correspondmore » to Co-C(1324 °C), Pt-C(1738 °C) and Re-C(2474 °C), respectively. The results clearly indicate that through machining the tube the temperature uniformity of the Thermogage furnace can be remarkably improved. A Pt-C high temperature fixed point was realized in the modified Thermogauge furnace subsequently, the plateaus were compared with what obtained using old heater, and the results were presented in this paper.« less
Liu, Chongxin; Liu, Hang
2017-01-01
This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme. PMID:28406966
Outcome, transport times, and costs of patients evacuated by helicopter versus fixed-wing aircraft.
Thomas, F.; Wisham, J.; Clemmer, T. P.; Orme, J. F.; Larsen, K. G.
1990-01-01
We determined the differences in transport times and costs for patients transported by fixed-wing aircraft versus helicopter at ranges of 101 to 150 radial miles, where fixed-wing and helicopter in-hospital transports commonly overlap. Statistical analysis failed to show a significant difference between the trauma-care patients transported by helicopter (n = 109) and those transported by fixed-wing (n = 86) for age, injury severity score, hospital length of stay, hospital mortality, or discharge disability score. The times in returning patients to the receiving hospital by helicopter (n = 104) versus fixed-wing (n = 509) did not differ significantly. Helicopter transport costs per mile ($24), however, were 400% higher than those of fixed-wing aircraft with its associated ground ambulance transport costs ($6). Thus, helicopter transport is economically unjustified for interhospital transports exceeding 100 radial miles when an efficient fixed-wing service exists. PMID:2389575
Asada, Toichiro; Douskos, Christos; Markellos, Panagiotis
2011-01-01
The stability of equilibrium and the possibility of generation of business cycles in a discrete interregional Kaldorian macrodynamic model with fixed exchange rates are explored using numerical methods. One of the aims is to illustrate the feasibility and effectiveness of the numerical approach for dynamical systems of moderately high dimensionality and several parameters. The model considered is five-dimensional with four parameters, the speeds of adjustment of the goods markets and the degrees of economic interactions between the regions through trade and capital movement. Using a grid search method for the determination of the region of stability of equilibrium in two-dimensional parameter subspaces, and coefficient criteria for the flip bifurcation - and Hopf bifurcation - curve, we determine the stability region in several parameter ranges and identify Hopf bifurcation curves when they exist. It is found that interregional cycles emerge only for sufficient interregional trade. The relevant threshold is predicted by the model at 14 - 16 % of trade transactions. By contrast, no minimum level of capital mobility exists in a global sense as a requirement for the emergence of interregional cycles; the main conclusion being, therefore, that cycles may occur for very low levels of capital mobility if trade is sufficient. Examples of bifurcation and Lyapunov exponent diagrams illustrating the occurrence of cycles or period doubling, and examples of the development of the occurring cycles, are given. Both supercritical and subcritical bifurcations are found to occur, the latter type indicating coexistence of a point and a cyclical attractor.
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Huang, Ching-Yu
2017-09-01
Recent progress in the characterization of gapped quantum phases has also triggered the search for a universal resource for quantum computation in symmetric gapped phases. Prior works in one dimension suggest that it is a feature more common than previously thought, in that nontrivial one-dimensional symmetry-protected topological (SPT) phases provide quantum computational power characterized by the algebraic structure defining these phases. Progress in two and higher dimensions so far has been limited to special fixed points. Here we provide two families of two-dimensional Z2 symmetric wave functions such that there exists a finite region of the parameter in the SPT phases that supports universal quantum computation. The quantum computational power appears to lose its universality at the boundary between the SPT and the symmetry-breaking phases.
Scalar field cosmologies with inverted potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boisseau, B.; Giacomini, H.; Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr
Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Bigmore » Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.« less
Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model
NASA Astrophysics Data System (ADS)
Wang, Fengjuan; Cao, Hongjun
2018-03-01
The two-dimensional parameter spaces of a discrete-time Chialvo neuron model are investigated. Our studies demonstrate that for all our choice of two parameters (i) the fixed point is destabilized via Neimark-Sacker bifurcation; (ii) there exist mode locking structures like Arnold tongues and shrimps, with periods organized in a Farey tree sequence, embedded in quasiperiodic/chaotic region. We determine analytically the location of the parameter sets where Neimark-Sacker bifurcation occurs, and the location on this curve where Arnold tongues of arbitrary period are born. Properties of the transition that follows the so-called two-torus from quasiperiodicity to chaos are presented clearly and proved strictly by using numerical simulations such as bifurcation diagrams, the largest Lyapunov exponent diagram on MATLAB and C++.
Poisson's ratio of fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Christiansson, Henrik; Helsing, Johan
1996-05-01
Poisson's ratio flow diagrams, that is, the Poisson's ratio versus the fiber fraction, are obtained numerically for hexagonal arrays of elastic circular fibers in an elastic matrix. High numerical accuracy is achieved through the use of an interface integral equation method. Questions concerning fixed point theorems and the validity of existing asymptotic relations are investigated and partially resolved. Our findings for the transverse effective Poisson's ratio, together with earlier results for random systems by other authors, make it possible to formulate a general statement for Poisson's ratio flow diagrams: For composites with circular fibers and where the phase Poisson's ratios are equal to 1/3, the system with the lowest stiffness ratio has the highest Poisson's ratio. For other choices of the elastic moduli for the phases, no simple statement can be made.
Phase-locking and bistability in neuronal networks with synaptic depression
NASA Astrophysics Data System (ADS)
Akcay, Zeynep; Huang, Xinxian; Nadim, Farzan; Bose, Amitabha
2018-02-01
We consider a recurrent network of two oscillatory neurons that are coupled with inhibitory synapses. We use the phase response curves of the neurons and the properties of short-term synaptic depression to define Poincaré maps for the activity of the network. The fixed points of these maps correspond to phase-locked modes of the network. Using these maps, we analyze the conditions that allow short-term synaptic depression to lead to the existence of bistable phase-locked, periodic solutions. We show that bistability arises when either the phase response curve of the neuron or the short-term depression profile changes steeply enough. The results apply to any Type I oscillator and we illustrate our findings using the Quadratic Integrate-and-Fire and Morris-Lecar neuron models.
Transition to Chaos in Random Neuronal Networks
NASA Astrophysics Data System (ADS)
Kadmon, Jonathan; Sompolinsky, Haim
2015-10-01
Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos and its critical properties depend on the shape of the single-neuron nonlinear input-output transfer function, near firing threshold. In particular, for nonlinear transfer functions with a sharp rise near threshold, the transition to chaos disappears in the limit of a large network; instead, the system exhibits chaotic fluctuations even for small synaptic gain. Finally, we investigate transition to chaos in network models with spiking dynamics. We show that when synaptic time constants are slow relative to the mean inverse firing rates, the network undergoes a transition from fast spiking fluctuations with constant rates to a state where the firing rates exhibit chaotic fluctuations, similar to the transition predicted by rate-based dynamics. Systems with finite synaptic time constants and firing rates exhibit a smooth transition from a regime dominated by stationary firing rates to a regime of slow rate fluctuations. This smooth crossover obeys scaling properties, similar to crossover phenomena in statistical mechanics. The theoretical results are supported by computer simulations of several neuronal architectures and dynamics. Consequences for cortical circuit dynamics are discussed. These results advance our understanding of the properties of intrinsic dynamics in realistic neuronal networks and their functional consequences.
Ali, Bolouri; Bhavani, Venkatachalam
2014-09-01
The lack of planning before implant placement and restoration in edentulous patients can lead to a number of problems. Prosthodontists are often faced with the challenge of re-treating patients who have only recently been treated. Although many reports discuss retreatment by fabricating all new prosthetic components, few discuss salvaging parts of the patient's existing prosthesis. This report details the treatment of an edentulous patient who presented with an implant-retained fixed dental prosthesis in the maxillary arch and no opposing prosthesis. The transition from an implant-retained fixed dental prosthesis to a removable implant- and tissue-supported overdenture that uses the patient's existing computer-aided design/computer-aided manufacturing milled titanium substructure is described. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Kading, Rebekah; Crabtree, Mary; Miller, Barry
2013-04-01
Formaldehyde is routinely used to fix tissues in preparation for pathology studies, however concerns remain that treatment of tissues with cellular fixatives may not entirely inactivate infectious virus particles. This concern is of particular regulatory importance for research involving viruses that are classified as select agents such as Rift Valley fever virus (RVFV). Therefore, the specific aims of this study were to (1) assay RVFV-exposed Aedes aegypti mosquitoes fixed in 4% paraformaldehyde for the presence of infectious RVFV particles at various time points following infection and (2) demonstrate the utility of immunofluorescence assay (IFA) for the detection of RVFV antigen in various tissues of paraformaldehyde-fixed mosquitoes. Mosquitoes were administered an infectious blood meal containing one of two strains of RVFV, harvested at various time points following infection, intrathoracically inoculated with 4% paraformaldehyde, and fixed overnight at 4°C. The infection status of a subset of mosquitoes was verified by IFA on leg tissues prior to fixation, and infectivity of RVFV in fixed mosquito carcasses was determined by Vero cell plaque assay. Paraformaldehyde-fixed mosquitoes harvested 14 days post infection were also paraffin-embedded and sectioned for detection of RVFV antigen to particular tissues by IFA. None of the RVFV-exposed mosquitoes tested by Vero cell plaque assay contained infectious RVFV after fixation. Furthermore, incubation of mosquito sections with trypsin prior to antibody staining is recommended for optimal visualization of RVFV antigen in infected mosquito tissues by IFA. Published by Elsevier B.V.
Fixed Schedules Can Support 21st-Century Skills
ERIC Educational Resources Information Center
Formanack, Gail; Pietsch, Laura
2011-01-01
The common belief among school librarians is that a flexibly scheduled school library program as opposed to a fixed schedule program is the best choice. After all, there are distinct advantages to the flexible program: students are served at the point of need, skills are not taught in isolation, and collaborative lessons are developed with…
Effort-reward imbalance and its association with health among permanent and fixed-term workers
2010-01-01
Background In the past decade, the changing labor market seems to have rejected the traditional standards employment and has begun to support a variety of non-standard forms of work in their place. The purpose of our study was to compare the degree of job stress, sources of job stress, and association of high job stress with health among permanent and fixed-term workers. Methods Our study subjects were 709 male workers aged 30 to 49 years in a suburb of Tokyo, Japan. In 2008, we conducted a cross-sectional study to compare job stress using an effort-reward imbalance (ERI) model questionnaire. Lifestyles, subjective symptoms, and body mass index were also observed from the 2008 health check-up data. Results The rate of job stress of the high-risk group measured by ERI questionnaire was not different between permanent and fixed-term workers. However, the content of the ERI components differed. Permanent workers were distressed more by effort, overwork, or job demand, while fixed-term workers were distressed more by their job insecurity. Moreover, higher ERI was associated with existence of subjective symptoms (OR = 2.07, 95% CI: 1.42-3.03) and obesity (OR = 2.84, 95% CI:1.78-4.53) in fixed-term workers while this tendency was not found in permanent workers. Conclusions Our study showed that workers with different employment types, permanent and fixed-term, have dissimilar sources of job stress even though their degree of job stress seems to be the same. High ERI was associated with existing subjective symptoms and obesity in fixed-term workers. Therefore, understanding different sources of job stress and their association with health among permanent and fixed-term workers should be considered to prevent further health problems. PMID:21054838
Investigation of the Parameters of Sealed Triple-Point Cells for Cryogenic Gases
NASA Astrophysics Data System (ADS)
Fellmuth, B.; Wolber, L.
2011-01-01
An overview of the parameters of a large number of sealed triple-point cells for the cryogenic gases hydrogen, oxygen, neon, and argon is given that have been determined within the framework of an international star intercomparison to optimize the measurement of melting curves as well as to establish complete and reliable uncertainty budgets for the realization of temperature fixed points. Special emphasis is given to the question, whether the parameters are primarily influenced by the cell design or the properties of the fixed-point samples. For explaining surprisingly large periods of the thermal recovery after the heat pulses of the intermittent heating through the melting range, a simple model is developed based on a newly defined heat-capacity equivalent, which considers the heat of fusion and a melting-temperature inhomogeneity. The analysis of the recovery using a graded set of exponential functions containing different time constants is also explained in detail.
Electron teleportation and statistical transmutation in multiterminal Majorana islands
NASA Astrophysics Data System (ADS)
Michaeli, Karen; Landau, L. Aviad; Sela, Eran; Fu, Liang
2017-11-01
We study a topological superconductor island with spatially separated Majorana modes coupled to multiple normal-metal leads by single-electron tunneling in the Coulomb blockade regime. We show that low-temperature transport in such a Majorana island is carried by an emergent charge-e boson composed of a Majorana mode and an electronic excitation in leads. This transmutation from Fermi to Bose statistics has remarkable consequences. For noninteracting leads, the system flows to a non-Fermi-liquid fixed point, which is stable against tunnel couplings anisotropy or detuning away from the charge-degeneracy point. As a result, the system exhibits a universal conductance at zero temperature, which is a fraction of the conductance quantum, and low-temperature corrections with a universal power-law exponent. In addition, we consider Majorana islands connected to interacting one-dimensional leads, and find different stable fixed points near and far from the charge-degeneracy point.
Chaos in a restricted problem of rotation of a rigid body with a fixed point
NASA Astrophysics Data System (ADS)
Borisov, A. V.; Kilin, A. A.; Mamaev, I. S.
2008-06-01
In this paper, we consider the transition to chaos in the phase portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotization are indicated: (1) the growth of the homoclinic structure and (2) the development of cascades of period doubling bifurcations. On the zero level of the area integral, an adiabatic behavior of the system (as the energy tends to zero) is noted. Meander tori induced by the break of the torsion property of the mapping are found.
NASA Astrophysics Data System (ADS)
Péli, Zoltán; Nagy, Sándor; Sailer, Kornel
2018-02-01
The effect of the O(partial4) terms of the gradient expansion on the anomalous dimension η and the correlation length's critical exponent ν of the Wilson-Fisher fixed point has been determined for the Euclidean 3-dimensional O( N) models with N≥ 2 . Wetterich's effective average action renormalization group method is used with field-independent derivative couplings and Litim's optimized regulator. It is shown that the critical theory is well approximated by the effective average action preserving O( N) symmetry with an accuracy of O(η).
Anisotropic Bianchi type-III model in Palatini f (R) gravity
NASA Astrophysics Data System (ADS)
Banik, Debika Kangsha; Banik, Sebika Kangsha; Bhuyan, Kalyan
2017-03-01
We derive exact solutions for anisotropic Bianchi type-III cosmological model in the Palatini formalism of f (R) gravity using Dynamical System Approach. For the f (R) of the form f(R) =R-β /Rn and f(R) =R+α Rm , we have found the fixed points describing the radiation-dominated, matter dominated and de Sitter evolution periods. Fixed points have also been found which have non-vanishing shear playing a very significant role in describing the anisotropy present in the early universe. In addition, we have also found that the spatial curvature affect isotropisation of this cosmological model.
Motion transitions of falling plates via quasisteady aerodynamics.
Hu, Ruifeng; Wang, Lifeng
2014-07-01
In this paper, we study the dynamics of freely falling plates based on the Kirchhoff equation and the quasisteady aerodynamic model. Motion transitions among fluttering, tumbling along a cusp-like trajectory, irregular, and tumbling along a straight trajectory are obtained by solving the dynamical equations. Phase diagrams spanning between the nondimensional moment of inertia and aerodynamic coefficients or aspect ratio are built to identify regimes for these falling styles. We also investigate the stability of fixed points and bifurcation scenarios. It is found that the transitions are all heteroclinic bifurcations and the influence of the fixed-point stability is local.
Using Technology to Unify Geometric Theorems about the Power of a Point
ERIC Educational Resources Information Center
Contreras, Jose N.
2011-01-01
In this article, I describe a classroom investigation in which a group of prospective secondary mathematics teachers discovered theorems related to the power of a point using "The Geometer's Sketchpad" (GSP). The power of a point is defines as follows: Let "P" be a fixed point coplanar with a circle. If line "PA" is a secant line that intersects…
Evolution of branch points for a laser beam propagating through an uplink turbulent atmosphere.
Ge, Xiao-Lu; Liu, Xuan; Guo, Cheng-Shan
2014-03-24
Evolution of branch points in the distorted optical field is studied when a laser beam propagates through turbulent atmosphere along an uplink path. Two categories of propagation events are mainly explored for the same propagation height: fixed wavelength with change of the turbulence strength and fixed turbulence strength with change of the wavelength. It is shown that, when the beam propagates to a certain height, the density of the branch-points reaches its maximum and such a height changes with the turbulence strength but nearly remains constant with different wavelengths. The relationship between the density of branch-points and the Rytov number is also given. A fitted formula describing the relationship between the density of branch-points and propagation height with different turbulence strength and wavelength is found out. Interestingly, this formula is very similar to the formula used for describing the Blackbody radiation in physics. The results obtained may be helpful for atmospheric optics, astronomy and optical communication.
Two-point correlation functions in inhomogeneous and anisotropic cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcori, Oton H.; Pereira, Thiago S., E-mail: otonhm@hotmail.com, E-mail: tspereira@uel.br
Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation functionmore » in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.« less
Global Positioning System Antenna Fixed Height Tripod Adapter
NASA Technical Reports Server (NTRS)
Dinardo, Steven J.; Smith, Mark A.
1997-01-01
An improved Global Positioning em antenna adaptor allows fixed antenna height measurements by removably attaching an adaptor plate to a conventional surveyor's tripod. Antenna height is controlled by an antenna boom which is a fixed length rod. The antenna is attached to one end of the boom. The opposite end of the boom tapers to a point sized to fit into a depression at the center of survey markers. The boom passes through the hollow center of a universal ball joint which is mounted at the center of the adaptor plate so that the point of the rod can be fixed in the marker's central depression. The mountains of the ball joint allow the joint to be moved horizontally in any direction relative to the tripod. When the ball joint is moved horizontally, the angle between the boom and the vertical changes because the boom's position is fixed at its lower end. A spirit level attached to the rod allows an operator to determine when the boom is plumb. The position of the ball joint is adjusted horizontally until the boom is plumb. At that time the antenna is positioned exactly over the center of the monument and the elevation of the antenna is precisely set by the length of the boom.