Li, Xia; Guo, Meifang; Su, Yongfu
2016-01-01
In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. Strong convergence theorems for finding a solution of the split common null point problem are derived. This iteration algorithm can accelerate the convergence speed of iterative sequence. The results of this paper improve and extend the recent results of Takahashi and Yao (Fixed Point Theory Appl 2015:87, 2015) and many others .
1989-06-09
Theorem and the Perron - Frobenius Theorem in matrix theory. We use the Hahn-Banach theorem and do not use any fixed-point related concepts. 179 A...games defined b’, tions 87 Isac G. Fixed point theorems on convex cones , generalized pseudo-contractive mappings and the omplementarity problem 89...and (II), af(x) ° denotes the negative polar cone ot of(x). This condition are respectively called "inward" and "outward". Indeed, when X is convex
Wall shear stress fixed points in blood flow
NASA Astrophysics Data System (ADS)
Arzani, Amirhossein; Shadden, Shawn
2017-11-01
Patient-specific computational fluid dynamics produces large datasets, and wall shear stress (WSS) is one of the most important parameters due to its close connection with the biological processes at the wall. While some studies have investigated WSS vectorial features, the WSS fixed points have not received much attention. In this talk, we will discuss the importance of WSS fixed points from three viewpoints. First, we will review how WSS fixed points relate to the flow physics away from the wall. Second, we will discuss how certain types of WSS fixed points lead to high biochemical surface concentration in cardiovascular mass transport problems. Finally, we will introduce a new measure to track the exposure of endothelial cells to WSS fixed points.
Anderson Acceleration for Fixed-Point Iterations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Homer F.
The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.
Fixed Point Results for G-α-Contractive Maps with Application to Boundary Value Problems
Roshan, Jamal Rezaei
2014-01-01
We unify the concepts of G-metric, metric-like, and b-metric to define new notion of generalized b-metric-like space and discuss its topological and structural properties. In addition, certain fixed point theorems for two classes of G-α-admissible contractive mappings in such spaces are obtained and some new fixed point results are derived in corresponding partially ordered space. Moreover, some examples and an application to the existence of a solution for the first-order periodic boundary value problem are provided here to illustrate the usability of the obtained results. PMID:24895655
NASA Astrophysics Data System (ADS)
Storti, Mario A.; Nigro, Norberto M.; Paz, Rodrigo R.; Dalcín, Lisandro D.
2009-03-01
In this paper some results on the convergence of the Gauss-Seidel iteration when solving fluid/structure interaction problems with strong coupling via fixed point iteration are presented. The flow-induced vibration of a flat plate aligned with the flow direction at supersonic Mach number is studied. The precision of different predictor schemes and the influence of the partitioned strong coupling on stability is discussed.
Zhao, Jing; Zong, Haili
2018-01-01
In this paper, we propose parallel and cyclic iterative algorithms for solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators. We also combine the process of cyclic and parallel iterative methods and propose two mixed iterative algorithms. Our several algorithms do not need any prior information about the operator norms. Under mild assumptions, we prove weak convergence of the proposed iterative sequences in Hilbert spaces. As applications, we obtain several iterative algorithms to solve the multiple-set split equality problem.
NASA Astrophysics Data System (ADS)
Griffin, Christopher; Belmonte, Andrew
2017-05-01
We study the problem of stabilized coexistence in a three-species public goods game in which each species simultaneously contributes to one public good while freeloading off another public good ("cheating"). The proportional population growth is governed by an appropriately modified replicator equation, depending on the returns from the public goods and the cost. We show that the replicator dynamic has at most one interior unstable fixed point and that the population becomes dominated by a single species. We then show that by applying an externally imposed penalty, or "tax" on success can stabilize the interior fixed point, allowing for the symbiotic coexistence of all species. We show that the interior fixed point is the point of globally minimal total population growth in both the taxed and untaxed cases. We then formulate an optimal taxation problem and show that it admits a quasilinearization, resulting in novel necessary conditions for the optimal control. In particular, the optimal control problem governing the tax rate must solve a certain second-order ordinary differential equation.
Griffin, Christopher; Belmonte, Andrew
2017-05-01
We study the problem of stabilized coexistence in a three-species public goods game in which each species simultaneously contributes to one public good while freeloading off another public good ("cheating"). The proportional population growth is governed by an appropriately modified replicator equation, depending on the returns from the public goods and the cost. We show that the replicator dynamic has at most one interior unstable fixed point and that the population becomes dominated by a single species. We then show that by applying an externally imposed penalty, or "tax" on success can stabilize the interior fixed point, allowing for the symbiotic coexistence of all species. We show that the interior fixed point is the point of globally minimal total population growth in both the taxed and untaxed cases. We then formulate an optimal taxation problem and show that it admits a quasilinearization, resulting in novel necessary conditions for the optimal control. In particular, the optimal control problem governing the tax rate must solve a certain second-order ordinary differential equation.
Goldberg, Daniel N.; Narayanan, Sri Hari Krishna; Hascoet, Laurent; ...
2016-05-20
We apply an optimized method to the adjoint generation of a time-evolving land ice model through algorithmic differentiation (AD). The optimization involves a special treatment of the fixed-point iteration required to solve the nonlinear stress balance, which differs from a straightforward application of AD software, and leads to smaller memory requirements and in some cases shorter computation times of the adjoint. The optimization is done via implementation of the algorithm of Christianson (1994) for reverse accumulation of fixed-point problems, with the AD tool OpenAD. For test problems, the optimized adjoint is shown to have far lower memory requirements, potentially enablingmore » larger problem sizes on memory-limited machines. In the case of the land ice model, implementation of the algorithm allows further optimization by having the adjoint model solve a sequence of linear systems with identical (as opposed to varying) matrices, greatly improving performance. Finally, the methods introduced here will be of value to other efforts applying AD tools to ice models, particularly ones which solve a hybrid shallow ice/shallow shelf approximation to the Stokes equations.« less
ERIC Educational Resources Information Center
Kuntz, Aaron M.; Petrovic, John E.
2018-01-01
In this article we consider the material dimensions of schooling as constitutive of the possibilities inherent in "fixing" education. We begin by mapping out the problem of "fixing education," pointing to the necrophilic tendencies of contemporary education--a desire to kill what otherwise might be life-giving. In this sense,…
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2013-04-01
In this paper, a mode of using the Dynamic Renormalization Group (DRG) method is suggested in order to cope with inconsistent results obtained when applying it to a continuous family of one-dimensional nonlocal models. The key observation is that the correct fixed-point dynamical system has to be identified during the analysis in order to account for all the relevant terms that are generated under renormalization. This is well established for static problems, however poorly implemented in dynamical ones. An application of this approach to a nonlocal extension of the Kardar-Parisi-Zhang equation resolves certain problems in one-dimension. Namely, obviously problematic predictions are eliminated and the existing exact analytic results are recovered.
Fixed Point Problems for Linear Transformations on Pythagorean Triples
ERIC Educational Resources Information Center
Zhan, M.-Q.; Tong, J.-C.; Braza, P.
2006-01-01
In this article, an attempt is made to find all linear transformations that map a standard Pythagorean triple (a Pythagorean triple [x y z][superscript T] with y being even) into a standard Pythagorean triple, which have [3 4 5][superscript T] as their fixed point. All such transformations form a monoid S* under matrix product. It is found that S*…
A MAP fixed-point, packing-unpacking routine for the IBM 7094 computer
Robert S. Helfman
1966-01-01
Two MAP (Macro Assembly Program) computer routines for packing and unpacking fixed point data are described. Use of these routines with Fortran IV Programs provides speedy access to quantities of data which far exceed the normal storage capacity of IBM 7000-series computers. Many problems that could not be attempted because of the slow access-speed of tape...
A general optimality criteria algorithm for a class of engineering optimization problems
NASA Astrophysics Data System (ADS)
Belegundu, Ashok D.
2015-05-01
An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.
Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA
de Souza, Alisson C. D.; Fernandes, Marcelo A. C.
2014-01-01
This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA. PMID:25268918
Chaos in a restricted problem of rotation of a rigid body with a fixed point
NASA Astrophysics Data System (ADS)
Borisov, A. V.; Kilin, A. A.; Mamaev, I. S.
2008-06-01
In this paper, we consider the transition to chaos in the phase portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotization are indicated: (1) the growth of the homoclinic structure and (2) the development of cascades of period doubling bifurcations. On the zero level of the area integral, an adiabatic behavior of the system (as the energy tends to zero) is noted. Meander tori induced by the break of the torsion property of the mapping are found.
van Maanen, Leendert; de Jong, Ritske; van Rijn, Hedderik
2014-01-01
When multiple strategies can be used to solve a type of problem, the observed response time distributions are often mixtures of multiple underlying base distributions each representing one of these strategies. For the case of two possible strategies, the observed response time distributions obey the fixed-point property. That is, there exists one reaction time that has the same probability of being observed irrespective of the actual mixture proportion of each strategy. In this paper we discuss how to compute this fixed-point, and how to statistically assess the probability that indeed the observed response times are generated by two competing strategies. Accompanying this paper is a free R package that can be used to compute and test the presence or absence of the fixed-point property in response time data, allowing for easy to use tests of strategic behavior. PMID:25170893
Fixed Point Learning Based Intelligent Traffic Control System
NASA Astrophysics Data System (ADS)
Zongyao, Wang; Cong, Sui; Cheng, Shao
2017-10-01
Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.
Positive solutions of fractional integral equations by the technique of measure of noncompactness.
Nashine, Hemant Kumar; Arab, Reza; Agarwal, Ravi P; De la Sen, Manuel
2017-01-01
In the present study, we work on the problem of the existence of positive solutions of fractional integral equations by means of measures of noncompactness in association with Darbo's fixed point theorem. To achieve the goal, we first establish new fixed point theorems using a new contractive condition of the measure of noncompactness in Banach spaces. By doing this we generalize Darbo's fixed point theorem along with some recent results of (Aghajani et al. (J. Comput. Appl. Math. 260:67-77, 2014)), (Aghajani et al. (Bull. Belg. Math. Soc. Simon Stevin 20(2):345-358, 2013)), (Arab (Mediterr. J. Math. 13(2):759-773, 2016)), (Banaś et al. (Dyn. Syst. Appl. 18:251-264, 2009)), and (Samadi et al. (Abstr. Appl. Anal. 2014:852324, 2014)). We also derive corresponding coupled fixed point results. Finally, we give an illustrative example to verify the effectiveness and applicability of our results.
NASA Astrophysics Data System (ADS)
Hashimoto, Hiroyuki; Takaguchi, Yusuke; Nakamura, Shizuka
Instability of calculation process and increase of calculation time caused by increasing size of continuous optimization problem remain the major issues to be solved to apply the technique to practical industrial systems. This paper proposes an enhanced quadratic programming algorithm based on interior point method mainly for improvement of calculation stability. The proposed method has dynamic estimation mechanism of active constraints on variables, which fixes the variables getting closer to the upper/lower limit on them and afterwards releases the fixed ones as needed during the optimization process. It is considered as algorithm-level integration of the solution strategy of active-set method into the interior point method framework. We describe some numerical results on commonly-used bench-mark problems called “CUTEr” to show the effectiveness of the proposed method. Furthermore, the test results on large-sized ELD problem (Economic Load Dispatching problems in electric power supply scheduling) are also described as a practical industrial application.
Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goryainov, V V
2015-01-31
The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less
On the complexity and approximability of some Euclidean optimal summing problems
NASA Astrophysics Data System (ADS)
Eremeev, A. V.; Kel'manov, A. V.; Pyatkin, A. V.
2016-10-01
The complexity status of several well-known discrete optimization problems with the direction of optimization switching from maximum to minimum is analyzed. The task is to find a subset of a finite set of Euclidean points (vectors). In these problems, the objective functions depend either only on the norm of the sum of the elements from the subset or on this norm and the cardinality of the subset. It is proved that, if the dimension of the space is a part of the input, then all these problems are strongly NP-hard. Additionally, it is shown that, if the space dimension is fixed, then all the problems are NP-hard even for dimension 2 (on a plane) and there are no approximation algorithms with a guaranteed accuracy bound for them unless P = NP. It is shown that, if the coordinates of the input points are integer, then all the problems can be solved in pseudopolynomial time in the case of a fixed space dimension.
Fixing health care before it fixes us.
Kotlikoff, Laurence J
2009-02-01
The current American health care system is beyond repair. The problems of the health care system are delineated in this discussion. The current health care system needs to be replaced in its entirety with a new system that provides every American with first-rate, first-tier medicine and that doesn't drive our nation broke. The author describes a 10-point Medical Security System, which he proposes will address the problems of the current health care system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhymbek, Meiram Erkanatuly; Yessirkegenov, Nurgissa Amankeldiuly; Sadybekov, Makhmud Abdysametovich
2015-09-18
In the current paper, the problem of bending vibrations of a beam in which the binding on the right end is unknown and not available for visual inspection is studied. The main objective is to study an inverse problem: find additional unknown boundary conditions by additional spectral data, i.e., the conditions of fixing the right end of the rod. In this work, unlike many other works, as such additional conditions we choose the first natural frequencies (eigenvalues) of two new problems corresponding to the problem of bending vibrations of a beam with loads of different weights at the central point.
Jeribi, Aref; Krichen, Bilel; Mefteh, Bilel
2013-01-01
In the paper [A. Ben Amar, A. Jeribi, and B. Krichen, Fixed point theorems for block operator matrix and an application to a structured problem under boundary conditions of Rotenberg's model type, to appear in Math. Slovaca. (2014)], the existence of solutions of the two-dimensional boundary value problem (1) and (2) was discussed in the product Banach space L(p)×L(p) for p∈(1, ∞). Due to the lack of compactness on L1 spaces, the analysis did not cover the case p=1. The purpose of this work is to extend the results of Ben Amar et al. to the case p=1 by establishing new variants of fixed-point theorems for a 2×2 operator matrix, involving weakly compact operators.
NASA Technical Reports Server (NTRS)
Varaiya, P. P.
1972-01-01
General discussion of the theory of differential games with two players and zero sum. Games starting at a fixed initial state and ending at a fixed final time are analyzed. Strategies for the games are defined. The existence of saddle values and saddle points is considered. A stochastic version of a differential game is used to examine the synthesis problem.
NASA Astrophysics Data System (ADS)
Palenčár, Rudolf; Sopkuliak, Peter; Palenčár, Jakub; Ďuriš, Stanislav; Suroviak, Emil; Halaj, Martin
2017-06-01
Evaluation of uncertainties of the temperature measurement by standard platinum resistance thermometer calibrated at the defining fixed points according to ITS-90 is a problem that can be solved in different ways. The paper presents a procedure based on the propagation of distributions using the Monte Carlo method. The procedure employs generation of pseudo-random numbers for the input variables of resistances at the defining fixed points, supposing the multivariate Gaussian distribution for input quantities. This allows taking into account the correlations among resistances at the defining fixed points. Assumption of Gaussian probability density function is acceptable, with respect to the several sources of uncertainties of resistances. In the case of uncorrelated resistances at the defining fixed points, the method is applicable to any probability density function. Validation of the law of propagation of uncertainty using the Monte Carlo method is presented on the example of specific data for 25 Ω standard platinum resistance thermometer in the temperature range from 0 to 660 °C. Using this example, we demonstrate suitability of the method by validation of its results.
Variational algorithms for nonlinear smoothing applications
NASA Technical Reports Server (NTRS)
Bach, R. E., Jr.
1977-01-01
A variational approach is presented for solving a nonlinear, fixed-interval smoothing problem with application to offline processing of noisy data for trajectory reconstruction and parameter estimation. The nonlinear problem is solved as a sequence of linear two-point boundary value problems. Second-order convergence properties are demonstrated. Algorithms for both continuous and discrete versions of the problem are given, and example solutions are provided.
The computational core and fixed point organization in Boolean networks
NASA Astrophysics Data System (ADS)
Correale, L.; Leone, M.; Pagnani, A.; Weigt, M.; Zecchina, R.
2006-03-01
In this paper, we analyse large random Boolean networks in terms of a constraint satisfaction problem. We first develop an algorithmic scheme which allows us to prune simple logical cascades and underdetermined variables, returning thereby the computational core of the network. Second, we apply the cavity method to analyse the number and organization of fixed points. We find in particular a phase transition between an easy and a complex regulatory phase, the latter being characterized by the existence of an exponential number of macroscopically separated fixed point clusters. The different techniques developed are reinterpreted as algorithms for the analysis of single Boolean networks, and they are applied in the analysis of and in silico experiments on the gene regulatory networks of baker's yeast (Saccharomyces cerevisiae) and the segment-polarity genes of the fruitfly Drosophila melanogaster.
Transfers between libration-point orbits in the elliptic restricted problem
NASA Astrophysics Data System (ADS)
Hiday, L. A.; Howell, K. C.
The present time-fixed impulsive transfers between 3D libration point orbits in the vicinity of the interior L(1) libration point of the sun-earth-moon barycenter system are 'optimal' in that the total characteristic velocity required for implementation of the transfer exhibits a local minimum. The conditions necessary for a time-fixed, two-impulse transfer trajectory to be optimal are stated in terms of the primer vector, and the conditions necessary for satisfying the local optimality of a transfer trajectory containing additional impulses are addressed by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses.
User's guide to four-body and three-body trajectory optimization programs
NASA Technical Reports Server (NTRS)
Pu, C. L.; Edelbaum, T. N.
1974-01-01
A collection of computer programs and subroutines written in FORTRAN to calculate 4-body (sun-earth-moon-space) and 3-body (earth-moon-space) optimal trajectories is presented. The programs incorporate a variable step integration technique and a quadrature formula to correct single step errors. The programs provide capability to solve initial value problem, two point boundary value problem of a transfer from a given initial position to a given final position in fixed time, optimal 2-impulse transfer from an earth parking orbit of given inclination to a given final position and velocity in fixed time and optimal 3-impulse transfer from a given position to a given final position and velocity in fixed time.
Transfers between libration-point orbits in the elliptic restricted problem
NASA Astrophysics Data System (ADS)
Hiday-Johnston, L. A.; Howell, K. C.
1994-04-01
A strategy is formulated to design optimal time-fixed impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior L1 libration point of the Sun-Earth/Moon barycenter system. The adjoint equation in terms of rotating coordinates in the elliptic restricted three-body problem is shown to be of a distinctly different form from that obtained in the analysis of trajectories in the two-body problem. Also, the necessary conditions for a time-fixed two-impulse transfer to be optimal are stated in terms of the primer vector. Primer vector theory is then extended to nonoptimal impulsive trajectories in order to establish a criterion whereby the addition of an interior impulse reduces total fuel expenditure. The necessary conditions for the local optimality of a transfer containing additional impulses are satisfied by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses. Determination of location, orientation, and magnitude of each additional impulse is accomplished by the unconstrained minimization of the cost function using a multivariable search method. Results indicate that substantial savings in fuel can be achieved by the addition of interior impulsive maneuvers on transfers between libration-point orbits.
A system-approach to the elastohydrodynamic lubrication point-contact problem
NASA Technical Reports Server (NTRS)
Lim, Sang Gyu; Brewe, David E.
1991-01-01
The classical EHL (elastohydrodynamic lubrication) point contact problem is solved using a new system-approach, similar to that introduced by Houpert and Hamrock for the line-contact problem. Introducing a body-fitted coordinate system, the troublesome free-boundary is transformed to a fixed domain. The Newton-Raphson method can then be used to determine the pressure distribution and the cavitation boundary subject to the Reynolds boundary condition. This method provides an efficient and rigorous way of solving the EHL point contact problem with the aid of a supercomputer and a promising method to deal with the transient EHL point contact problem. A typical pressure distribution and film thickness profile are presented and the minimum film thicknesses are compared with the solution of Hamrock and Dowson. The details of the cavitation boundaries for various operating parameters are discussed.
Robust Control Design via Linear Programming
NASA Technical Reports Server (NTRS)
Keel, L. H.; Bhattacharyya, S. P.
1998-01-01
This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.
H2, fixed architecture, control design for large scale systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1990-01-01
The H2, fixed architecture, control problem is a classic linear quadratic Gaussian (LQG) problem whose solution is constrained to be a linear time invariant compensator with a decentralized processing structure. The compensator can be made of p independent subcontrollers, each of which has a fixed order and connects selected sensors to selected actuators. The H2, fixed architecture, control problem allows the design of simplified feedback systems needed to control large scale systems. Its solution becomes more complicated, however, as more constraints are introduced. This work derives the necessary conditions for optimality for the problem and studies their properties. It is found that the filter and control problems couple when the architecture constraints are introduced, and that the different subcontrollers must be coordinated in order to achieve global system performance. The problem requires the simultaneous solution of highly coupled matrix equations. The use of homotopy is investigated as a numerical tool, and its convergence properties studied. It is found that the general constrained problem may have multiple stabilizing solutions, and that these solutions may be local minima or saddle points for the quadratic cost. The nature of the solution is not invariant when the parameters of the system are changed. Bifurcations occur, and a solution may continuously transform into a nonstabilizing compensator. Using a modified homotopy procedure, fixed architecture compensators are derived for models of large flexible structures to help understand the properties of the constrained solutions and compare them to the corresponding unconstrained ones.
Synthesis of a controller for stabilizing the motion of a rigid body about a fixed point
NASA Astrophysics Data System (ADS)
Zabolotnov, Yu. M.; Lobanov, A. A.
2017-05-01
A method for the approximate design of an optimal controller for stabilizing the motion of a rigid body about a fixed point is considered. It is assumed that rigid body motion is nearly the motion in the classical Lagrange case. The method is based on the common use of the Bellman dynamic programming principle and the averagingmethod. The latter is used to solve theHamilton-Jacobi-Bellman equation approximately, which permits synthesizing the controller. The proposed method for controller design can be used in many problems close to the problem of motion of the Lagrange top (the motion of a rigid body in the atmosphere, the motion of a rigid body fastened to a cable in deployment of the orbital cable system, etc.).
Not Just Hats Anymore: Binomial Inversion and the Problem of Multiple Coincidences
ERIC Educational Resources Information Center
Hathout, Leith
2007-01-01
The well-known "hats" problem, in which a number of people enter a restaurant and check their hats, and then receive them back at random, is often used to illustrate the concept of derangements, that is, permutations with no fixed points. In this paper, the problem is extended to multiple items of clothing, and a general solution to the problem of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, J. I.; Henry, J.; Ramos, A. M.
We prove the approximate controllability of several nonlinear parabolic boundary-value problems by means of two different methods: the first one can be called a Cancellation method and the second one uses the Kakutani fixed-point theorem.
NASA Astrophysics Data System (ADS)
Rocco, Emr; Prado, Afbap; Souza, Mlos
In this work, the problem of bi-impulsive orbital transfers between coplanar elliptical orbits with minimum fuel consumption but with a time limit for this transfer is studied. As a first method, the equations presented by Lawden (1993) were used. Those equations furnishes the optimal transfer orbit with fixed time for this transfer, between two elliptical coplanar orbits considering fixed terminal points. The method was adapted to cases with free terminal points and those equations was solved to develop a software for orbital maneuvers. As a second method, the equations presented by Eckel and Vinh (1984) were used, those equations provide the transfer orbit between non-coplanar elliptical orbits with minimum fuel and fixed time transfer, or minimum time transfer for a prescribed fuel consumption, considering free terminal points. But in this work only the problem with fixed time transfer was considered, the case of minimum time for a prescribed fuel consumption was already studied in Rocco et al. (2000). Then, the method was modified to consider cases of coplanar orbital transfer, and develop a software for orbital maneuvers. Therefore, two software that solve the same problem using different methods were developed. The first method, presented by Lawden, uses the primer vector theory. The second method, presented by Eckel and Vinh, uses the ordinary theory of maxima and minima. So, to test the methods we choose the same terminal orbits and the same time as input. We could verify that we didn't obtain exactly the same result. In this work, that is an extension of Rocco et al. (2002), these differences in the results are explored with objective of determining the reason of the occurrence of these differences and which modifications should be done to eliminate them.
NASA Astrophysics Data System (ADS)
Xiao, Long; Liu, Xinggao; Ma, Liang; Zhang, Zeyin
2018-03-01
Dynamic optimisation problem with characteristic times, widely existing in many areas, is one of the frontiers and hotspots of dynamic optimisation researches. This paper considers a class of dynamic optimisation problems with constraints that depend on the interior points either fixed or variable, where a novel direct pseudospectral method using Legendre-Gauss (LG) collocation points for solving these problems is presented. The formula for the state at the terminal time of each subdomain is derived, which results in a linear combination of the state at the LG points in the subdomains so as to avoid the complex nonlinear integral. The sensitivities of the state at the collocation points with respect to the variable characteristic times are derived to improve the efficiency of the method. Three well-known characteristic time dynamic optimisation problems are solved and compared in detail among the reported literature methods. The research results show the effectiveness of the proposed method.
Some remarks on the attractor behaviour in ELKO cosmology
NASA Astrophysics Data System (ADS)
Pereira, S. H.; A. Pinho S., S.; Hoff da Silva, J. M.
2014-08-01
Recent results on the dynamical stability of a system involving the interaction of the ELKO spinor field with standard matter in the universe have been reanalysed, and the conclusion is that such system does not exhibit isolated stable points that could alleviate the cosmic coincidence problem. When a constant parameter δ related to the potential of the ELKO field is introduced in the system however, stable fixed points are found for some specific types of interaction between the ELKO field and matter. Although the parameter δ is related to an unknown potential, in order to satisfy the stability conditions and also that the fixed points are real, the range of the constant parameter δ can be constrained for the present time and the coincidence problem can be alleviated for some specific interactions. Such restriction on the ELKO potential opens possibility to apply the ELKO field as a candidate to dark energy in the universe, and so explain the present phase of acceleration of the universe through the decay of the ELKO field into matter.
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
The problem of determining the minimum cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete (Wang and Jiang, 1994). Traditionally, point estimations of hypothetical ancestral sequences have been used to gain heuristic, upper bounds on cladogram cost. These include procedures with such diverse approaches as non-additive optimization of multiple sequence alignment, direct optimization (Wheeler, 1996), and fixed-state character optimization (Wheeler, 1999). A method is proposed here which, by extending fixed-state character optimization, replaces the estimation process with a search. This form of optimization examines a diversity of potential state solutions for cost-efficient hypothetical ancestral sequences and can result in greatly more parsimonious cladograms. Additionally, such an approach can be applied to other NP-complete phylogenetic optimization problems such as genomic break-point analysis. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Improved Results for Route Planning in Stochastic Transportation Networks
NASA Technical Reports Server (NTRS)
Boyan, Justin; Mitzenmacher, Michael
2000-01-01
In the bus network problem, the goal is to generate a plan for getting from point X to point Y within a city using buses in the smallest expected time. Because bus arrival times are not determined by a fixed schedule but instead may be random. the problem requires more than standard shortest path techniques. In recent work, Datar and Ranade provide algorithms in the case where bus arrivals are assumed to be independent and exponentially distributed. We offer solutions to two important generalizations of the problem, answering open questions posed by Datar and Ranade. First, we provide a polynomial time algorithm for a much wider class of arrival distributions, namely those with increasing failure rate. This class includes not only exponential distributions but also uniform, normal, and gamma distributions. Second, in the case where bus arrival times are independent and geometric discrete random variable,. we provide an algorithm for transportation networks of buses and trains, where trains run according to a fixed schedule.
An hp symplectic pseudospectral method for nonlinear optimal control
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong
2017-01-01
An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.
NASA Astrophysics Data System (ADS)
Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter
2018-03-01
The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.
NASA Technical Reports Server (NTRS)
Lomax, Harvard
1957-01-01
Several variational problems involving optimum wing and body combinations having minimum wave drag for different kinds of geometrical restraints are analyzed. Particular attention is paid to the effect on the wave drag of shortening the fuselage and, for slender axially symmetric bodies, the effect of fixing the fuselage diameter at several points or even of fixing whole portions of its shape.
Counting relative equilibrium configurations of the full two-body problem
NASA Astrophysics Data System (ADS)
Moeckel, Richard
2018-02-01
Consider a system of two rigid, massive bodies interacting according to their mutual gravitational attraction. In a relative equilibrium motion, the bodies rotate rigidly and uniformly about a fixed axis in R^3. This is possible only for special positions and orientations of the bodies. After fixing the angular momentum, these relative equilibrium configurations can be characterized as critical points of a smooth function on configuration space. The goal of this paper is to use Morse theory and Lusternik-Schnirelmann category theory to give lower bounds for the number of critical points when the angular momentum is sufficiently large. In addition, the exact number of critical points and their Morse indices are found in the limit as the angular momentum tends to infinity.
NASA Astrophysics Data System (ADS)
Bojkovski, J.; Veliki, T.; Zvizdić, D.; Drnovšek, J.
2011-08-01
The objective of project EURAMET 1127 (Bilateral comparison of triple point of mercury and melting point of gallium) in the field of thermometry is to compare realization of a triple point of mercury (-38.8344 °C) and melting point of gallium (29.7646 °C) between the Slovenian national laboratory MIRS/UL-FE/LMK and the Croatian national laboratory HMI/FSB-LPM using a long-stem 25 Ω standard platinum resistance thermometer (SPRT). MIRS/UL/FE-LMK participated in a number of intercomparisons on the level of EURAMET. On the other hand, the HMI/LPM-FSB laboratory recently acquired new fixed-point cells which had to be evaluated in the process of intercomparisons. A quartz-sheathed SPRT has been selected and calibrated at HMI/LPM-FSB at the triple point of mercury, the melting point of gallium, and the water triple point. A second set of measurements was made at MIRS/UL/FE-LMK. After its return, the SPRT was again recalibrated at HMI/LPM-FSB. In the comparison, the W value of the SPRT has been used. Results of the bilateral intercomparison confirmed that the new gallium cell of the HMI/LPM-FSB has a value that is within uncertainty limits of both laboratories that participated in the exercise, while the mercury cell experienced problems. After further research, a small leakage in the mercury fixed-point cell has been found.
A floating-point digital receiver for MRI.
Hoenninger, John C; Crooks, Lawrence E; Arakawa, Mitsuaki
2002-07-01
A magnetic resonance imaging (MRI) system requires the highest possible signal fidelity and stability for clinical applications. Quadrature analog receivers have problems with channel matching, dc offset and analog-to-digital linearity. Fixed-point digital receivers (DRs) reduce all of these problems. We have demonstrated that a floating-point DR using large (order 124 to 512) FIR low-pass filters also overcomes these problems, automatically provides long word length and has low latency between signals. A preloaded table of finite impuls response (FIR) filter coefficients provides fast switching between one of 129 different one-stage and two-stage multrate FIR low-pass filters with bandwidths between 4 KHz and 125 KHz. This design has been implemented on a dual channel circuit board for a commercial MRI system.
Störmer method for a problem of point injection of charged particles into a magnetic dipole field
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.
2017-03-01
The problem of point injection of charged particles into a magnetic dipole field was considered. Analytical expressions were obtained by the Störmer method for regions of allowed pulses of charged particles at random points of a dipole field at a set position of the point source of particles. It was found that, for a fixed location of the studied point, there was a specific structure of the coordinate space in the form of a set of seven regions, where the injector location in each region corresponded to a definite form of an allowed pulse region at the studied point. It was shown that the allowed region boundaries in four of the mentioned regions were surfaces of conic section revolution.
Charged fixed point in the Ginzburg-Landau superconductor and the role of the Ginzburg parameter /κ
NASA Astrophysics Data System (ADS)
Kleinert, Hagen; Nogueira, Flavio S.
2003-02-01
We present a semi-perturbative approach which yields an infrared-stable fixed point in the Ginzburg-Landau for N=2, where N/2 is the number of complex components. The calculations are done in d=3 dimensions and below Tc, where the renormalization group functions can be expressed directly as functions of the Ginzburg parameter κ which is the ratio between the two fundamental scales of the problem, the penetration depth λ and the correlation length ξ. We find a charged fixed point for κ>1/ 2, that is, in the type II regime, where Δκ≡κ-1/ 2 is shown to be a natural expansion parameter. This parameter controls a momentum space instability in the two-point correlation function of the order field. This instability appears at a non-zero wave-vector p0 whose magnitude scales like ˜ Δκ β¯, with a critical exponent β¯=1/2 in the one-loop approximation, a behavior known from magnetic systems with a Lifshitz point in the phase diagram. This momentum space instability is argued to be the origin of the negative η-exponent of the order field.
Some estimation formulae for continuous time-invariant linear systems
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Sidhu, G. S.
1975-01-01
In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.
Mardanov, M J; Mahmudov, N I; Sharifov, Y A
2014-01-01
We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 < α ≤ 1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.
Topological analysis of the motion of an ellipsoid on a smooth plane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivochkin, M Yu
2008-06-30
The problem of the motion of a dynamically and geometrically symmetric heavy ellipsoid on a smooth horizontal plane is investigated. The problem is integrable and can be considered a generalization of the problem of motion of a heavy rigid body with fixed point in the Lagrangian case. The Smale bifurcation diagrams are constructed. Surgeries of tori are investigated using methods developed by Fomenko and his students. Bibliography: 9 titles.
Mikš, Antonín; Novák, Pavel
2017-09-01
The paper is focused on the problem of determination of the point of incidence of a light ray for the case of reflection or refraction at the spherical optical surface, assuming that two fixed points in space that the sought light ray should go through are given. The requirement is that one of these points lies on the incident ray and the other point on the reflected/refracted ray. Although at first glance it seems to be a simple problem, it will be shown that it has no simple analytical solution. The basic idea of the solution is given, and it is shown that the problem leads to a nonlinear equation in one variable. The roots of the resulting nonlinear equation can be found by numerical methods of mathematical optimization. The proposed methods were implemented in MATLAB, and the proper function of these algorithms was verified on several examples.
A numerical analysis of phase-change problems including natural convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Faghri, A.
1990-08-01
Fixed grid solutions for phase-change problems remove the need to satisfy conditions at the phase-change front and can be easily extended to multidimensional problems. The two most important and widely used methods are enthalpy methods and temperature-based equivalent heat capacity methods. Both methods in this group have advantages and disadvantages. Enthalpy methods (Shamsundar and Sparrow, 1975; Voller and Prakash, 1987; Cao et al., 1989) are flexible and can handle phase-change problems occurring both at a single temperature and over a temperature range. The drawback of this method is that although the predicted temperature distributions and melting fronts are reasonable, themore » predicted time history of the temperature at a typical grid point may have some oscillations. The temperature-based fixed grid methods (Morgan, 1981; Hsiao and Chung, 1984) have no such time history problems and are more convenient with conjugate problems involving an adjacent wall, but have to deal with the severe nonlinearity of the governing equations when the phase-change temperature range is small. In this paper, a new temperature-based fixed-grid formulation is proposed, and the reason that the original equivalent heat capacity model is subject to such restrictions on the time step, mesh size, and the phase-change temperature range will also be discussed.« less
On Schrödinger's bridge problem
NASA Astrophysics Data System (ADS)
Friedland, S.
2017-11-01
In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.
NASA Astrophysics Data System (ADS)
Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng
2018-06-01
We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.
Breaking Free with Wireless Networks.
ERIC Educational Resources Information Center
Fleischman, John
2002-01-01
Discusses wireless local area networks (LANs) which typically consist of laptop computers that connect to fixed access points via infrared or radio signals. Topics include wide area networks; personal area networks; problems, including limitations of available bandwidth, interference, and security concerns; use in education; interoperability;…
Telomeres and the ethics of human cloning.
Allhoff, Fritz
2004-01-01
In search of a potential problem with cloning, I investigate the phenomenon of telomere shortening which is caused by cell replication; clones created from somatic cells will have shortened telomeres and therefore reach a state of senescence more rapidly. While genetic intervention might fix this problem at some point in the future, I ask whether, absent technological advances, this biological phenomenon undermines the moral permissibility of cloning.
Interacting charges and the classical electron radius
NASA Astrophysics Data System (ADS)
De Luca, Roberto; Di Mauro, Marco; Faella, Orazio; Naddeo, Adele
2018-03-01
The equation of the motion of a point charge q repelled by a fixed point-like charge Q is derived and studied. In solving this problem useful concepts in classical and relativistic kinematics, in Newtonian mechanics and in non-linear ordinary differential equations are revised. The validity of the approximations is discussed from the physical point of view. In particular the classical electron radius emerges naturally from the requirement that the initial distance is large enough for the non-relativistic approximation to be valid. The relevance of this topic for undergraduate physics teaching is pointed out.
Implicit integration methods for dislocation dynamics
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; ...
2015-01-20
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less
Investigation of stress concentration at corner points for orthotropic plate bending problem
NASA Astrophysics Data System (ADS)
Vasilyan, N. G.
2018-04-01
This article deals with the bending problem for an orthotropic semi-infinite plate strip when three edges of the plate are hinged and the fourth edge goes to infinity. The plate is loaded with distributed load of intensity q(y). A. Nadai’s approach is applied, which says that to obtain the solution at a far distance from the edge, it is necessary to solve the problem of cylindrical bending. The generalized shearing forces on the fixed edge are investigated.
Sign problem and Monte Carlo calculations beyond Lefschetz thimbles
Alexandru, Andrei; Basar, Gokce; Bedaque, Paulo F.; ...
2016-05-10
We point out that Monte Carlo simulations of theories with severe sign problems can be profitably performed over manifolds in complex space different from the one with fixed imaginary part of the action (“Lefschetz thimble”). We describe a family of such manifolds that interpolate between the tangent space at one critical point (where the sign problem is milder compared to the real plane but in some cases still severe) and the union of relevant thimbles (where the sign problem is mild but a multimodal distribution function complicates the Monte Carlo sampling). As a result, we exemplify this approach using amore » simple 0+1 dimensional fermion model previously used on sign problem studies and show that it can solve the model for some parameter values where a solution using Lefschetz thimbles was elusive.« less
Connections between the Sznajd model with general confidence rules and graph theory
NASA Astrophysics Data System (ADS)
Timpanaro, André M.; Prado, Carmen P. C.
2012-10-01
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabási-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q>2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
Dynamic contact problem with adhesion and damage between thermo-electro-elasto-viscoplastic bodies
NASA Astrophysics Data System (ADS)
Hadj ammar, Tedjani; Saïdi, Abdelkader; Azeb Ahmed, Abdelaziz
2017-05-01
We study of a dynamic contact problem between two thermo-electro-elasto-viscoplastic bodies with damage and adhesion. The contact is frictionless and is modeled with normal compliance condition. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities, differential equations, and fixed point theorem.
A new approach to blind deconvolution of astronomical images
NASA Astrophysics Data System (ADS)
Vorontsov, S. V.; Jefferies, S. M.
2017-05-01
We readdress the strategy of finding approximate regularized solutions to the blind deconvolution problem, when both the object and the point-spread function (PSF) have finite support. Our approach consists in addressing fixed points of an iteration in which both the object x and the PSF y are approximated in an alternating manner, discarding the previous approximation for x when updating x (similarly for y), and considering the resultant fixed points as candidates for a sensible solution. Alternating approximations are performed by truncated iterative least-squares descents. The number of descents in the object- and in the PSF-space play a role of two regularization parameters. Selection of appropriate fixed points (which may not be unique) is performed by relaxing the regularization gradually, using the previous fixed point as an initial guess for finding the next one, which brings an approximation of better spatial resolution. We report the results of artificial experiments with noise-free data, targeted at examining the potential capability of the technique to deconvolve images of high complexity. We also show the results obtained with two sets of satellite images acquired using ground-based telescopes with and without adaptive optics compensation. The new approach brings much better results when compared with an alternating minimization technique based on positivity-constrained conjugate gradients, where the iterations stagnate when addressing data of high complexity. In the alternating-approximation step, we examine the performance of three different non-blind iterative deconvolution algorithms. The best results are provided by the non-negativity-constrained successive over-relaxation technique (+SOR) supplemented with an adaptive scheduling of the relaxation parameter. Results of comparable quality are obtained with steepest descents modified by imposing the non-negativity constraint, at the expense of higher numerical costs. The Richardson-Lucy (or expectation-maximization) algorithm fails to locate stable fixed points in our experiments, due apparently to inappropriate regularization properties.
NASA Astrophysics Data System (ADS)
Gilchrist, S. A.; Braun, D. C.; Barnes, G.
2016-12-01
Magnetohydrostatic models of the solar atmosphere are often based on idealized analytic solutions because the underlying equations are too difficult to solve in full generality. Numerical approaches, too, are often limited in scope and have tended to focus on the two-dimensional problem. In this article we develop a numerical method for solving the nonlinear magnetohydrostatic equations in three dimensions. Our method is a fixed-point iteration scheme that extends the method of Grad and Rubin ( Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy 31, 190, 1958) to include a finite gravity force. We apply the method to a test case to demonstrate the method in general and our implementation in code in particular.
Asymptotic approximations to posterior distributions via conditional moment equations
Yee, J.L.; Johnson, W.O.; Samaniego, F.J.
2002-01-01
We consider asymptotic approximations to joint posterior distributions in situations where the full conditional distributions referred to in Gibbs sampling are asymptotically normal. Our development focuses on problems where data augmentation facilitates simpler calculations, but results hold more generally. Asymptotic mean vectors are obtained as simultaneous solutions to fixed point equations that arise naturally in the development. Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989) and involve the conditional asymptotic covariance matrices and first derivative matrices for conditional mean functions. When the fixed point equations admit an analytical solution, explicit formulae are subsequently obtained for the covariance structure of the joint limiting distribution, which may shed light on the use of the given statistical model. Two illustrations are given. ?? 2002 Biometrika Trust.
Floating-to-Fixed-Point Conversion for Digital Signal Processors
NASA Astrophysics Data System (ADS)
Menard, Daniel; Chillet, Daniel; Sentieys, Olivier
2006-12-01
Digital signal processing applications are specified with floating-point data types but they are usually implemented in embedded systems with fixed-point arithmetic to minimise cost and power consumption. Thus, methodologies which establish automatically the fixed-point specification are required to reduce the application time-to-market. In this paper, a new methodology for the floating-to-fixed point conversion is proposed for software implementations. The aim of our approach is to determine the fixed-point specification which minimises the code execution time for a given accuracy constraint. Compared to previous methodologies, our approach takes into account the DSP architecture to optimise the fixed-point formats and the floating-to-fixed-point conversion process is coupled with the code generation process. The fixed-point data types and the position of the scaling operations are optimised to reduce the code execution time. To evaluate the fixed-point computation accuracy, an analytical approach is used to reduce the optimisation time compared to the existing methods based on simulation. The methodology stages are described and several experiment results are presented to underline the efficiency of this approach.
Shen, Chongfei; Liu, Hongtao; Xie, Xb; Luk, Keith Dk; Hu, Yong
2007-01-01
Adaptive noise canceller (ANC) has been used to improve signal to noise ratio (SNR) of somsatosensory evoked potential (SEP). In order to efficiently apply the ANC in hardware system, fixed-point algorithm based ANC can achieve fast, cost-efficient construction, and low-power consumption in FPGA design. However, it is still questionable whether the SNR improvement performance by fixed-point algorithm is as good as that by floating-point algorithm. This study is to compare the outputs of ANC by floating-point and fixed-point algorithm ANC when it was applied to SEP signals. The selection of step-size parameter (micro) was found different in fixed-point algorithm from floating-point algorithm. In this simulation study, the outputs of fixed-point ANC showed higher distortion from real SEP signals than that of floating-point ANC. However, the difference would be decreased with increasing micro value. In the optimal selection of micro, fixed-point ANC can get as good results as floating-point algorithm.
Bounded parametric control of plane motions of space tethered system
NASA Astrophysics Data System (ADS)
Bezglasnyi, S. P.; Mukhametzyanova, A. A.
2018-05-01
This paper is focused on the problem of control of plane motions of a space tethered system (STS). The STS is modeled as a heavy rod with two point masses. Point masses are fixed on the rod. A third point mass can move along the rod. The control is realized as a continuous change of the distance from the centre of mass of the tethered system to the movable mass. New limited control laws processes of excitation and damping are built. Diametric reorientation and gravitational stabilization to the local vertical of an STS were obtained. The problem is solved by the method of Lyapunov's functions of the classical theory of stability. The theoretical results are confirmed by numerical calculations.
Fixed point and anomaly mediation in partial {\\boldsymbol{N}}=2 supersymmetric standard models
NASA Astrophysics Data System (ADS)
Yin, Wen
2018-01-01
Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a partial N = 2 supersymmetric (SUSY) extension of the standard model which has an N = 2 SUSY sector and an N = 1 SUSY sector. We point out that below the scale of the partial breaking of N = 2 to N = 1, the ratio of Yukawa to gauge couplings embedded in the original N = 2 gauge interaction in the N = 2 sector becomes greater due to a fixed point. Since at the partial breaking scale the sfermion masses in the N = 2 sector are suppressed due to the N = 2 non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced masses for the sfermions in the N = 2 sector are almost UV-insensitive due to the fixed point. Interestingly, these masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar component of the N = 2 vector multiplet of {{U}}{(1)}Y. To obtain the correct dark matter abundance, the mass of the sbino, as well as the MSSM sparticles in the N = 2 sector which have a typical mass pattern of anomaly mediation, is required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed by the measurement of the N = 2 Yukawa couplings in future colliders. This model can explain dark matter, the muon g-2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also compatible with thermal leptogenesis.
Distance majorization and its applications.
Chi, Eric C; Zhou, Hua; Lange, Kenneth
2014-08-01
The problem of minimizing a continuously differentiable convex function over an intersection of closed convex sets is ubiquitous in applied mathematics. It is particularly interesting when it is easy to project onto each separate set, but nontrivial to project onto their intersection. Algorithms based on Newton's method such as the interior point method are viable for small to medium-scale problems. However, modern applications in statistics, engineering, and machine learning are posing problems with potentially tens of thousands of parameters or more. We revisit this convex programming problem and propose an algorithm that scales well with dimensionality. Our proposal is an instance of a sequential unconstrained minimization technique and revolves around three ideas: the majorization-minimization principle, the classical penalty method for constrained optimization, and quasi-Newton acceleration of fixed-point algorithms. The performance of our distance majorization algorithms is illustrated in several applications.
Equivalent source modeling of the core magnetic field using magsat data
NASA Technical Reports Server (NTRS)
Mayhew, M. A.; Estes, R. H.
1983-01-01
Experiments are carried out on fitting the main field using different numbers of equivalent sources arranged in equal area at fixed radii at and inside the core-mantle boundary. In fixing the radius for a given series of runs, the convergence problems that result from the extreme nonlinearity of the problem when dipole positions are allowed to vary are avoided. Results are presented from a comparison between this approach and the standard spherical harmonic approach for modeling the main field in terms of accuracy and computational efficiency. The modeling of the main field with an equivalent dipole representation is found to be comparable to the standard spherical harmonic approach in accuracy. The 32 deg dipole density (42 dipoles) corresponds approximately to an eleventh degree/order spherical harmonic expansion (143 parameters), whereas the 21 dipole density (92 dipoles) corresponds to approximately a seventeenth degree and order expansion (323 parameters). It is pointed out that fixing the dipole positions results in rapid convergence of the dipole solutions for single-epoch models.
Wong, W O; Fan, R P; Cheng, F
2018-02-01
A viscoelastic dynamic vibration absorber (VDVA) is proposed for suppressing infrasonic vibrations of heavy structures because the traditional dynamic vibration absorber equipped with a viscous damper is not effective in suppressing low frequency vibrations. The proposed VDVA has an elastic spring and a viscoelastic damper with frequency dependent modulus and damping properties. The standard fixed-points theory cannot be applied to derive the optimum design parameters of the VDVA because both its stiffness and damping are frequency dependent. A modified fixed-points theory is therefore proposed to solve this problem. H ∞ design optimization of the proposed VDVA have been derived for the minimization of resonant vibration amplitude of a single degree-of-freedom system excited by harmonic forces or due to ground motions. The stiffness and damping of the proposed VDVA can be decoupled such that both of these two properties of the absorber can be tuned independently to their optimal values by following a specified procedure. The proposed VDVA with optimized design is tested numerically using two real commercial viscoelastic damping materials. It is found that the proposed viscoelastic absorber can provide much stronger vibration reduction effect than the conventional VDVA without the elastic spring.
NASA Astrophysics Data System (ADS)
Perugini, G.; Ricci-Tersenghi, F.
2018-01-01
We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of extremal solutions for the BP equations, and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the extremal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one hand this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other hand we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions about the physics of this class of models.
Renormalization group procedure for potential -g/r2
NASA Astrophysics Data System (ADS)
Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.
2018-02-01
Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
Is scale-invariance in gauge-Yukawa systems compatible with the graviton?
NASA Astrophysics Data System (ADS)
Christiansen, Nicolai; Eichhorn, Astrid; Held, Aaron
2017-10-01
We explore whether perturbative interacting fixed points in matter systems can persist under the impact of quantum gravity. We first focus on semisimple gauge theories and show that the leading order gravity contribution evaluated within the functional Renormalization Group framework preserves the perturbative fixed-point structure in these models discovered in [J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D 93, 045009 (2016)., 10.1103/PhysRevD.93.045009]. We highlight that the quantum-gravity contribution alters the scaling dimension of the gauge coupling, such that the system exhibits an effective dimensional reduction. We secondly explore the effect of metric fluctuations on asymptotically safe gauge-Yukawa systems which feature an asymptotically safe fixed point [D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014) 178., 10.1007/JHEP12(2014)178]. The same effective dimensional reduction that takes effect in pure gauge theories also impacts gauge-Yukawa systems. There, it appears to lead to a split of the degenerate free fixed point into an interacting infrared attractive fixed point and a partially ultraviolet attractive free fixed point. The quantum-gravity induced infrared fixed point moves towards the asymptotically safe fixed point of the matter system, and annihilates it at a critical value of the gravity coupling. Even after that fixed-point annihilation, graviton effects leave behind new partially interacting fixed points for the matter sector.
Conditions for observing emergent SU(4) symmetry in a double quantum dot
NASA Astrophysics Data System (ADS)
Nishikawa, Yunori; Curtin, Oliver J.; Hewson, Alex C.; Crow, Daniel J. G.; Bauer, Johannes
2016-06-01
We analyze conditions for the observation of a low-energy SU(4) fixed point in capacitively coupled quantum dots. One problem, due to dots with different couplings to their baths, has been considered by L. Tosi, P. Roura-Bas, and A. A. Aligia, J. Phys.: Condens. Matter 27, 335601 (2015), 10.1088/0953-8984/27/33/335601. They showed how symmetry can be effectively restored via the adjustment of individual gates voltages, but they make the assumption of infinite on-dot and interdot interaction strengths. A related problem is the difference in the magnitudes between the on-dot and interdot strengths for capacitively coupled quantum dots. Here we examine both factors, based on a two-site Anderson model, using the numerical renormalization group to calculate the local spectral densities on the dots and the renormalized parameters that specify the low-energy fixed point. Our results support the conclusions of Tosi et al. that low-energy SU(4) symmetry can be restored, but asymptotically achieved only if the interdot interaction U12 is greater than or of the order of the bandwidth of the coupled conduction bath D , which might be difficult to achieve experimentally. By comparing the SU(4) Kondo results for a total dot occupation ntot=1 and 2, we conclude that the temperature dependence of the conductance is largely determined by the constraints of the Friedel sum rule rather than the SU(4) symmetry and suggest that an initial increase of the conductance with temperature is a distinguishing characteristic feature of an ntot=1 universal SU(4) fixed point.
Projective Structure from Two Uncalibrated Images: Structure from Motion and Recognition
1992-09-01
correspondence between points in Maybank 1990). The question, therefore, is why look for both views more of a problem, and hence, may make the...plane is fixed with respect to the 1987, Faugeras, Luong and Maybank 1992). The prob- camera coordinate frame. A rigid camera motion, there- lem of...the second reference Rieger-Lawton 1985, Faugeras and Maybank 1990, Hil- plane (assuming the four object points Pi, j = 1, ...,4, dreth 1991, Faugeras
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
The Renewed Community; Pursuing Quality in an Urbanizing Society.
ERIC Educational Resources Information Center
Buck, Roy C., Ed.; Lyons, William E., Ed.
Numerous readings on the urbanizing society are presented, with guidelines for study and discussion, session by session. The first three sessions cover community development as a point of view and problems of a changing economic base--fixed human and nonhuman assets as aids and obstacles, and a realistic policy of industrial development. Two…
NASA Astrophysics Data System (ADS)
Kel'manov, A. V.; Khandeev, V. I.
2016-02-01
The strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters of given sizes (cardinalities) minimizing the sum (over both clusters) of the intracluster sums of squared distances from the elements of the clusters to their centers is considered. It is assumed that the center of one of the sought clusters is specified at the desired (arbitrary) point of space (without loss of generality, at the origin), while the center of the other one is unknown and determined as the mean value over all elements of this cluster. It is shown that unless P = NP, there is no fully polynomial-time approximation scheme for this problem, and such a scheme is substantiated in the case of a fixed space dimension.
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-15
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the diagonal of the Jacobian further improves the performance by 42 - 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80-90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.
Asgharzadeh, Hafez; Borazjani, Iman
2016-01-01
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the diagonal of the Jacobian further improves the performance by 42 – 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80–90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future. PMID:28042172
NASA Astrophysics Data System (ADS)
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-01
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for non-linear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form a preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the diagonal of the Jacobian further improves the performance by 42-74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal and full Jacobian, respectivley, when the stretching factor was increased. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80-90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.
Distance majorization and its applications
Chi, Eric C.; Zhou, Hua; Lange, Kenneth
2014-01-01
The problem of minimizing a continuously differentiable convex function over an intersection of closed convex sets is ubiquitous in applied mathematics. It is particularly interesting when it is easy to project onto each separate set, but nontrivial to project onto their intersection. Algorithms based on Newton’s method such as the interior point method are viable for small to medium-scale problems. However, modern applications in statistics, engineering, and machine learning are posing problems with potentially tens of thousands of parameters or more. We revisit this convex programming problem and propose an algorithm that scales well with dimensionality. Our proposal is an instance of a sequential unconstrained minimization technique and revolves around three ideas: the majorization-minimization principle, the classical penalty method for constrained optimization, and quasi-Newton acceleration of fixed-point algorithms. The performance of our distance majorization algorithms is illustrated in several applications. PMID:25392563
A point cloud modeling method based on geometric constraints mixing the robust least squares method
NASA Astrophysics Data System (ADS)
Yue, JIanping; Pan, Yi; Yue, Shun; Liu, Dapeng; Liu, Bin; Huang, Nan
2016-10-01
The appearance of 3D laser scanning technology has provided a new method for the acquisition of spatial 3D information. It has been widely used in the field of Surveying and Mapping Engineering with the characteristics of automatic and high precision. 3D laser scanning data processing process mainly includes the external laser data acquisition, the internal industry laser data splicing, the late 3D modeling and data integration system. For the point cloud modeling, domestic and foreign researchers have done a lot of research. Surface reconstruction technology mainly include the point shape, the triangle model, the triangle Bezier surface model, the rectangular surface model and so on, and the neural network and the Alfa shape are also used in the curved surface reconstruction. But in these methods, it is often focused on single surface fitting, automatic or manual block fitting, which ignores the model's integrity. It leads to a serious problems in the model after stitching, that is, the surfaces fitting separately is often not satisfied with the well-known geometric constraints, such as parallel, vertical, a fixed angle, or a fixed distance. However, the research on the special modeling theory such as the dimension constraint and the position constraint is not used widely. One of the traditional modeling methods adding geometric constraints is a method combing the penalty function method and the Levenberg-Marquardt algorithm (L-M algorithm), whose stability is pretty good. But in the research process, it is found that the method is greatly influenced by the initial value. In this paper, we propose an improved method of point cloud model taking into account the geometric constraint. We first apply robust least-squares to enhance the initial value's accuracy, and then use penalty function method to transform constrained optimization problems into unconstrained optimization problems, and finally solve the problems using the L-M algorithm. The experimental results show that the internal accuracy is improved, and it is shown that the improved method for point clouds modeling proposed by this paper outperforms the traditional point clouds modeling methods.
Effect of Impurities on the Freezing Point of Zinc
NASA Astrophysics Data System (ADS)
Sun, Jianping; Rudtsch, Steffen; Niu, Yalu; Zhang, Lin; Wang, Wei; Den, Xiaolong
2017-03-01
The knowledge of the liquidus slope of impurities in fixed-point metal defined by the International Temperature Scale of 1990 is important for the estimation of uncertainties and correction of fixed point with the sum of individual estimates method. Great attentions are paid to the effect of ultra-trace impurities on the freezing point of zinc in the National Institute of Metrology. In the present work, the liquidus slopes of Ga-Zn, Ge-Zn were measured with the slim fixed-point cell developed through the doping experiments, and the temperature characteristics of the phase diagram of Fe-Zn were furthermore investigated. A quasi-adiabatic Zn fixed-point cell was developed with the thermometer well surrounded by the crucible with the pure metal, and the temperature uniformity of less than 20 mK in the region where the metal is located was obtained. The previous doping experiment of Pb-Zn with slim fixed-point cell was checked with quasi-adiabatic Zn fixed-point cell, and the result supports the previous liquidus slope measured with the traditional fixed-point realization.
Conformal Dimensions via Large Charge Expansion
NASA Astrophysics Data System (ADS)
Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico
2018-02-01
We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O (2 ) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U (1 ) charge can be obtained via a series expansion in the inverse charge 1 /Q . We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.
Scaling fixed-field alternating gradient accelerators with a small orbit excursion.
Machida, Shinji
2009-10-16
A novel scaling type of fixed-field alternating gradient (FFAG) accelerator is proposed that solves the major problems of conventional scaling and nonscaling types. This scaling FFAG accelerator can achieve a much smaller orbit excursion by taking a larger field index k. A triplet focusing structure makes it possible to set the operating point in the second stability region of Hill's equation with a reasonable sensitivity to various errors. The orbit excursion is about 5 times smaller than in a conventional scaling FFAG accelerator and the beam size growth due to typical errors is at most 10%.
Conformal Dimensions via Large Charge Expansion.
Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico
2018-02-09
We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O(2) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U(1) charge can be obtained via a series expansion in the inverse charge 1/Q. We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.
NASA Astrophysics Data System (ADS)
Vetchanin, E. V.; Kilin, A. A.
2016-01-01
The free and controlled motion of an arbitrary two-dimensional body with a moving internal mass and constant circulation around the body in an ideal fluid is studied. Bifurcation analysis of the free motion is performed (under the condition of a fixed internal mass). It is shown that the body can be moved to a given point by varying the position of the internal mass. Some problems related to the presence of a nonzero drift of the body with a fixed internal mass are noted.
Investigation of TiC C Eutectic and WC C Peritectic High-Temperature Fixed Points
NASA Astrophysics Data System (ADS)
Sasajima, Naohiko; Yamada, Yoshiro
2008-06-01
TiC C eutectic (2,761°C) and WC C peritectic (2,749°C) fixed points were investigated to compare their potential as high-temperature thermometric reference points. Two TiC C and three WC C fixed-point cells were constructed, and the melting and freezing plateaux were evaluated by means of radiation thermometry. The repeatability of the TiC C eutectic within a day was 60 mK with a melting range roughly 200 mK. The repeatability of the melting temperature of the WC C peritectic within 1 day was 17 mK with a melting range of ˜70 mK. The repeatability of the freezing temperature of the WC C peritectic was 21 mK with a freezing range less than 20 mK. One of the TiC C cells was constructed from a TiC and graphite powder mixture. The filling showed the reaction with the graphite crucible was suppressed and the ingot contained less voids, although the lack of high-purity TiC powder poses a problem. The WC C cells were easily constructed, like metal carbon eutectic cells, without any evident reaction with the crucible. From these results, it is concluded that the WC C peritectic has more potential than the TiC C eutectic as a high-temperature reference point. The investigation of the purification of the TiC C cell during filling and the plateau observation are also reported.
Dynamical analysis of continuous higher-order hopfield networks for combinatorial optimization.
Atencia, Miguel; Joya, Gonzalo; Sandoval, Francisco
2005-08-01
In this letter, the ability of higher-order Hopfield networks to solve combinatorial optimization problems is assessed by means of a rigorous analysis of their properties. The stability of the continuous network is almost completely clarified: (1) hyperbolic interior equilibria, which are unfeasible, are unstable; (2) the state cannot escape from the unitary hypercube; and (3) a Lyapunov function exists. Numerical methods used to implement the continuous equation on a computer should be designed with the aim of preserving these favorable properties. The case of nonhyperbolic fixed points, which occur when the Hessian of the target function is the null matrix, requires further study. We prove that these nonhyperbolic interior fixed points are unstable in networks with three neurons and order two. The conjecture that interior equilibria are unstable in the general case is left open.
Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions
NASA Astrophysics Data System (ADS)
Hussain, N.
2008-02-01
The common fixed point theorems, similar to those of Ciric [Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. (Beograd) (N.S.) 49 (1991) 174-178; Lj.B. Ciric, On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29 (1993) 145-152; Lj.B. Ciric, On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449-458], Fisher and Sessa [B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Internat. J. Math. Math. Sci. 9 (1986) 23-28], Jungck [G. Jungck, On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13 (1990) 497-500] and Mukherjee and Verma [R.N. Mukherjee, V. Verma, A note on fixed point theorem of Gregus, Math. Japon. 33 (1988) 745-749], are proved for a Banach operator pair. As applications, common fixed point and approximation results for Banach operator pair satisfying Ciric type contractive conditions are obtained without the assumption of linearity or affinity of either T or I. Our results unify and generalize various known results to a more general class of noncommuting mappings.
Miniature Fixed Points as Temperature Standards for In Situ Calibration of Temperature Sensors
NASA Astrophysics Data System (ADS)
Hao, X. P.; Sun, J. P.; Xu, C. Y.; Wen, P.; Song, J.; Xu, M.; Gong, L. Y.; Ding, L.; Liu, Z. L.
2017-06-01
Miniature Ga and Ga-In alloy fixed points as temperature standards are developed at National Institute of Metrology, China for the in situ calibration of temperature sensors. A quasi-adiabatic vacuum measurement system is constructed to study the phase-change plateaus of the fixed points. The system comprises a high-stability bath, a quasi-adiabatic vacuum chamber and a temperature control and measurement system. The melting plateau of the Ga fixed point is longer than 2 h at 0.008 W. The standard deviation of the melting temperature of the Ga and Ga-In alloy fixed points is better than 2 mK. The results suggest that the melting temperature of the Ga or Ga-In alloy fixed points is linearly related with the heating power.
An exploratory investigation of weight estimation techniques for hypersonic flight vehicles
NASA Technical Reports Server (NTRS)
Cook, E. L.
1981-01-01
The three basic methods of weight prediction (fixed-fraction, statistical correlation, and point stress analysis) and some of the computer programs that have been developed to implement them are discussed. A modified version of the WAATS (Weights Analysis of Advanced Transportation Systems) program is presented, along with input data forms and an example problem.
Wall shear stress fixed points in cardiovascular fluid mechanics.
Arzani, Amirhossein; Shadden, Shawn C
2018-05-17
Complex blood flow in large arteries creates rich wall shear stress (WSS) vectorial features. WSS acts as a link between blood flow dynamics and the biology of various cardiovascular diseases. WSS has been of great interest in a wide range of studies and has been the most popular measure to correlate blood flow to cardiovascular disease. Recent studies have emphasized different vectorial features of WSS. However, fixed points in the WSS vector field have not received much attention. A WSS fixed point is a point on the vessel wall where the WSS vector vanishes. In this article, WSS fixed points are classified and the aspects by which they could influence cardiovascular disease are reviewed. First, the connection between WSS fixed points and the flow topology away from the vessel wall is discussed. Second, the potential role of time-averaged WSS fixed points in biochemical mass transport is demonstrated using the recent concept of Lagrangian WSS structures. Finally, simple measures are proposed to quantify the exposure of the endothelial cells to WSS fixed points. Examples from various arterial flow applications are demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Highly eccentric hip-hop solutions of the 2 N-body problem
NASA Astrophysics Data System (ADS)
Barrabés, Esther; Cors, Josep M.; Pinyol, Conxita; Soler, Jaume
2010-02-01
We show the existence of families of hip-hop solutions in the equal-mass 2 N-body problem which are close to highly eccentric planar elliptic homographic motions of 2 N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ɛ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ɛ≠0, the topological transversality persists and Brouwer’s fixed point theorem shows the existence of this kind of solutions in the full system.
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical... Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's name and address. Transmitting station...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical... Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's name and address. Transmitting station...
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... to private operational fixed point-to-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave systems, with a channel greater than or equal to 50 KHz bandwidth...
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...
Seeking fixed points in multiple coupling scalar theories in the ɛ expansion
NASA Astrophysics Data System (ADS)
Osborn, Hugh; Stergiou, Andreas
2018-05-01
Fixed points for scalar theories in 4 - ɛ, 6 - ɛ and 3 - ɛ dimensions are discussed. It is shown how a large range of known fixed points for the four dimensional case can be obtained by using a general framework with two couplings. The original maximal symmetry, O( N), is broken to various subgroups, both discrete and continuous. A similar discussion is applied to the six dimensional case. Perturbative applications of the a-theorem are used to help classify potential fixed points. At lowest order in the ɛ-expansion it is shown that at fixed points there is a lower bound for a which is saturated at bifurcation points.
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data.
van Maanen, Leendert; Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of "mixtures" has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied-for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes.
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data
Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of “mixtures” has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied–for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes. PMID:27893868
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity
NASA Astrophysics Data System (ADS)
Gómez, D.; Nazarov, S. A.; Pérez, M. E.
2018-04-01
We consider a homogenization Winkler-Steklov spectral problem that consists of the elasticity equations for a three-dimensional homogeneous anisotropic elastic body which has a plane part of the surface subject to alternating boundary conditions on small regions periodically placed along the plane. These conditions are of the Dirichlet type and of the Winkler-Steklov type, the latter containing the spectral parameter. The rest of the boundary of the body is fixed, and the period and size of the regions, where the spectral parameter arises, are of order ɛ . For fixed ɛ , the problem has a discrete spectrum, and we address the asymptotic behavior of the eigenvalues {β _k^ɛ }_{k=1}^{∞} as ɛ → 0. We show that β _k^ɛ =O(ɛ ^{-1}) for each fixed k, and we observe a common limit point for all the rescaled eigenvalues ɛ β _k^ɛ while we make it evident that, although the periodicity of the structure only affects the boundary conditions, a band-gap structure of the spectrum is inherited asymptotically. Also, we provide the asymptotic behavior for certain "groups" of eigenmodes.
Milner, Allison; Aitken, Zoe; Kavanagh, Anne; LaMontagne, Anthony D; Pega, Frank; Petrie, Dennis
2017-06-23
Previous studies suggest that poor psychosocial job quality is a risk factor for mental health problems, but they use conventional regression analytic methods that cannot rule out reverse causation, unmeasured time-invariant confounding and reporting bias. This study combines two quasi-experimental approaches to improve causal inference by better accounting for these biases: (i) linear fixed effects regression analysis and (ii) linear instrumental variable analysis. We extract 13 annual waves of national cohort data including 13 260 working-age (18-64 years) employees. The exposure variable is self-reported level of psychosocial job quality. The instruments used are two common workplace entitlements. The outcome variable is the Mental Health Inventory (MHI-5). We adjust for measured time-varying confounders. In the fixed effects regression analysis adjusted for time-varying confounders, a 1-point increase in psychosocial job quality is associated with a 1.28-point improvement in mental health on the MHI-5 scale (95% CI: 1.17, 1.40; P < 0.001). When the fixed effects was combined with the instrumental variable analysis, a 1-point increase psychosocial job quality is related to 1.62-point improvement on the MHI-5 scale (95% CI: -0.24, 3.48; P = 0.088). Our quasi-experimental results provide evidence to confirm job stressors as risk factors for mental ill health using methods that improve causal inference. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Chen, I L; Chen, J T; Kuo, S R; Liang, M T
2001-03-01
Integral equation methods have been widely used to solve interior eigenproblems and exterior acoustic problems (radiation and scattering). It was recently found that the real-part boundary element method (BEM) for the interior problem results in spurious eigensolutions if the singular (UT) or the hypersingular (LM) equation is used alone. The real-part BEM results in spurious solutions for interior problems in a similar way that the singular integral equation (UT method) results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz Exterior integral Equation Formulation method (CHEEF) is proposed. Based on the CHEEF method, the spurious solutions can be filtered out if additional constraints from the exterior points are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular cavities are considered. The optimum numbers and proper positions for selecting the points in the exterior domain are analytically studied. Also, numerical experiments were designed to verify the analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be rotated due to symmetry, while the nodal line of the rectangular is on a fixed position.
NASA Astrophysics Data System (ADS)
Yip, Shui Cheung
We study the longitudinal motion of a nonlinearly viscoelastic bar with one end fixed and the other end attached to a heavy tip mass. This problem is a precise continuum mechanical analog of the basic discrete mechanical problem of the motion of a mass point on a (massless) spring. This motion is governed by an initial-boundary-value problem for a class of third-order quasilinear parabolic-hyperbolic partial differential equations subject to a nonstandard boundary condition, which is the equation of motion of the tip mass. The ratio of the mass of the bar to that of the tip mass is taken to be a small parameter varepsilon. We prove that this problem has a unique regular solution that admits a valid asymptotic expansion, including an initial-layer expansion, in powers of varepsilon for varepsilon near 0. The fundamental constitutive hypothesis that the tension be a uniformly monotone function of the strain rate plays a critical role in a delicate proof that each term of the initial layer expansion decays exponentially in time. These results depend on new decay estimates for the solution of quasilinear parabolic equations. The constitutive hypothesis that the viscosity become large where the bar nears total compression leads to important uniform bounds for the strain and the strain rate. Higher-order energy estimates support the proof by the Schauder Fixed-Point Theorem of the existence of solutions having a level of regularity appropriate for the asymptotics.
STS-114: Discovery Post MMT Press Conference
NASA Technical Reports Server (NTRS)
2005-01-01
George Diller, NASA Public Affairs, introduces the panel who consist of: Bill Parsons, Space Shuttle Program Manager; Wayne Hale, Space Shuttle Deputy Program Manager; Ed Mango, Deputy Manager JSC Orbiter Project Office; and Mike Wetmore, Director of Shuttle Processing. Bill Parsons begins by expressing that he is still searching for the problem with the low level fuel sensor inside the external tank. Hale talks about more ambient tests that will be performed to fix this problem. Mango expresses his findings from tests in the aft engine compartment, point sensor box, orbiter wiring, and wire resistance. He also talks about looking in detail into the circuit analysis of the point sensor box. Questions from the news media about tanking tests and extending the launch window are addressed.
Power Laws, Scale Invariance and the Generalized Frobenius Series:
NASA Astrophysics Data System (ADS)
Visser, Matt; Yunes, Nicolas
We present a self-contained formalism for calculating the background solution, the linearized solutions and a class of generalized Frobenius-like solutions to a system of scale-invariant differential equations. We first cast the scale-invariant model into its equidimensional and autonomous forms, find its fixed points, and then obtain power-law background solutions. After linearizing about these fixed points, we find a second linearized solution, which provides a distinct collection of power laws characterizing the deviations from the fixed point. We prove that generically there will be a region surrounding the fixed point in which the complete general solution can be represented as a generalized Frobenius-like power series with exponents that are integer multiples of the exponents arising in the linearized problem. While discussions of the linearized system are common, and one can often find a discussion of power-series with integer exponents, power series with irrational (indeed complex) exponents are much rarer in the extant literature. The Frobenius-like series we encounter can be viewed as a variant of the rarely-discussed Liapunov expansion theorem (not to be confused with the more commonly encountered Liapunov functions and Liapunov exponents). As specific examples we apply these ideas to Newtonian and relativistic isothermal stars and construct two separate power series with the overlapping radius of convergence. The second of these power series solutions represents an expansion around "spatial infinity," and in realistic models it is this second power series that gives information about the stellar core, and the damped oscillations in core mass and core radius as the central pressure goes to infinity. The power-series solutions we obtain extend classical results; as exemplified for instance by the work of Lane, Emden, and Chandrasekhar in the Newtonian case, and that of Harrison, Thorne, Wakano, and Wheeler in the relativistic case. We also indicate how to extend these ideas to situations where fixed points may not exist — either due to "monotone" flow or due to the presence of limit cycles. Monotone flow generically leads to logarithmic deviations from scaling, while limit cycles generally lead to discrete self-similar solutions.
What It Means to Be a Stranger to Oneself
ERIC Educational Resources Information Center
Moisio, Olli-Pekka
2009-01-01
In adult education there is always a problem of prefabricated and in many respect fixed opinions and views of the world. In this sense, I will argue, that the starting point of radical education should be in the destruction of these walls of belief that people build around themselves in order to feel safe. In this connection I will talk about…
Chaos control in delayed phase space constructed by the Takens embedding theory
NASA Astrophysics Data System (ADS)
Hajiloo, R.; Salarieh, H.; Alasty, A.
2018-01-01
In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.
Liao, Yunxiang; Foster, Matthew S
2018-06-08
In two dimensions, dephasing by a bath cuts off Anderson localization that would otherwise occur at any energy density for fermions with disorder. For an isolated system with short-range interactions, the system can be its own bath, exhibiting diffusive (non-Markovian) thermal density fluctuations. We recast the dephasing of weak localization due to a diffusive bath as a self-interacting polymer loop. We investigate the critical behavior of the loop in d=4-ε dimensions, and find a nontrivial fixed point corresponding to a temperature T^{*}∼ε>0 where the dephasing time diverges. Assuming that this fixed point survives to ε=2, we associate it with a possible instability of the ergodic phase. Our approach may open a new line of attack against the problem of the ergodic to many-body-localized phase transition in d>1 spatial dimensions.
NASA Astrophysics Data System (ADS)
Liao, Yunxiang; Foster, Matthew S.
2018-06-01
In two dimensions, dephasing by a bath cuts off Anderson localization that would otherwise occur at any energy density for fermions with disorder. For an isolated system with short-range interactions, the system can be its own bath, exhibiting diffusive (non-Markovian) thermal density fluctuations. We recast the dephasing of weak localization due to a diffusive bath as a self-interacting polymer loop. We investigate the critical behavior of the loop in d =4 -ɛ dimensions, and find a nontrivial fixed point corresponding to a temperature T*˜ɛ >0 where the dephasing time diverges. Assuming that this fixed point survives to ɛ =2 , we associate it with a possible instability of the ergodic phase. Our approach may open a new line of attack against the problem of the ergodic to many-body-localized phase transition in d >1 spatial dimensions.
Photonic sensor applications in transportation security
NASA Astrophysics Data System (ADS)
Krohn, David A.
2007-09-01
There is a broad range of security sensing applications in transportation that can be facilitated by using fiber optic sensors and photonic sensor integrated wireless systems. Many of these vital assets are under constant threat of being attacked. It is important to realize that the threats are not just from terrorism but an aging and often neglected infrastructure. To specifically address transportation security, photonic sensors fall into two categories: fixed point monitoring and mobile tracking. In fixed point monitoring, the sensors monitor bridge and tunnel structural health and environment problems such as toxic gases in a tunnel. Mobile tracking sensors are being designed to track cargo such as shipboard cargo containers and trucks. Mobile tracking sensor systems have multifunctional sensor requirements including intrusion (tampering), biochemical, radiation and explosives detection. This paper will review the state of the art of photonic sensor technologies and their ability to meet the challenges of transportation security.
Solution of effective Hamiltonian of impurity hopping between two sites in a metal
NASA Astrophysics Data System (ADS)
Ye, Jinwu
1998-03-01
We analyze in detail all the possible fixed points of the effective Hamiltonian of a non-magnetic impurity hopping between two sites in a metal obtained by Moustakas and Fisher(MF). We find a line of non-fermi liquid fixed points which continuously interpolates between the 2-channel Kondo fixed point(2CK) and the one channel, two impurity Kondo (2IK) fixed point. There is one relevant direction with scaling dimension 1/2 and one leading irrelevant operator with dimension 3/2. There is also one marginal operator in the spin sector moving along this line. The additional non-fermi liquid fixed point found by MF has the same symmetry as the 2IK, it has two relevant directions with scaling dimension 1/2, therefore also unstable. The system is shown to flow to a line of fermi-liquid fixed points which continuously interpolates between the non-interacting fixed point and the 2 channel spin-flavor Kondo fixed point (2CSFK) discussed by the author previously. The effect of particle-hole symmetry breaking is discussed. The effective Hamiltonian in the external magnetic field is analysed. The scaling functions for the physical measurable quantities are derived in the different regimes; their predictions for the experiments are given. Finally the implications are given for a non-magnetic impurity hopping around three sites with triangular symmetry discussed by MF.
Temperature Scaling Law for Quantum Annealing Optimizers.
Albash, Tameem; Martin-Mayor, Victor; Hen, Itay
2017-09-15
Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.
Optimal Design for Parameter Estimation in EEG Problems in a 3D Multilayered Domain
2014-03-30
dipole, C(x) = q δ(x − rq), where δ is the Dirac distribution, rq is a fixed point in the brain which represents the dipole location, and q is the dipole...again based on the formulations discussed above, we consider a function F of the form F (x, θ) = qδ(x− rq), where δ denotes the dirac distribution...Inverse Problems, 12, (1996), 565–577. [5] H.T. Banks, M.W. Buksas and T. Lin, Electromagnetic Material Interrogation Using Conductive Inter- faces and
NASA Astrophysics Data System (ADS)
Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.
2017-07-01
Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.
Successive Over-Relaxation Technique for High-Performance Blind Image Deconvolution
2015-06-08
deconvolution, space surveillance, Gauss - Seidel iteration 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18, NUMBER OF PAGES 5...sensible approximate solutions to the ill-posed nonlinear inverse problem. These solutions are addresses as fixed points of the iteration which consists in...alternating approximations (AA) for the object and for the PSF performed with a prescribed number of inner iterative descents from trivial (zero
Optimal transfers between libration-point orbits in the elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Hiday, Lisa Ann
1992-09-01
A strategy is formulated to design optimal impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior L(1) libration point of the Sun-Earth/Moon barycenter system. Two methods of constructing nominal transfers, for which the fuel cost is to be minimized, are developed; both inferior and superior transfers between two halo orbits are considered. The necessary conditions for an optimal transfer trajectory are stated in terms of the primer vector. The adjoint equation relating reference and perturbed trajectories in this formulation of the elliptic restricted three-body problem is shown to be distinctly different from that obtained in the analysis of trajectories in the two-body problem. Criteria are established whereby the cost on a nominal transfer can be improved by the addition of an interior impulse or by the implementation of coastal arcs in the initial and final orbits. The necessary conditions for the local optimality of a time-fixed transfer trajectory possessing additional impulses are satisfied by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses. The optimality of a time-free transfer containing coastal arcs is surmised by examination of the slopes at the endpoints of a plot of the magnitude of the primer vector over the duration of the transfer path. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The position and timing of each interior impulse applied to a time-fixed transfer as well as the direction and length of coastal periods implemented on a time-free transfer are specified by the unconstrained minimization of the appropriate variation in cost utilizing a multivariable search technique. Although optimal solutions in some instances are elusive, the time-fixed and time-free optimization algorithms prove to be very successful in diminishing costs on nominal transfer trajectories. The inclusion of coastal arcs on time-free superior and inferior transfers results in significant modification of the transfer time of flight caused by shifts in departure and arrival locations on the halo orbits.
Optimal Information Extraction of Laser Scanning Dataset by Scale-Adaptive Reduction
NASA Astrophysics Data System (ADS)
Zang, Y.; Yang, B.
2018-04-01
3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed method, suggesting a reliable solution for optimal information extraction of object.
Is there a role for a test controller in the development of new ATC equipment?
NASA Technical Reports Server (NTRS)
Westrum, Ron
1994-01-01
Earl Wiener points out that human factors problems fixed during the R & D stage are paid for once. When they are not fixed during R & D, they are then paid for every day. How users are involved in the R & D process to assist in developing equipment is a critical issue. Effective involvement can produce real improvements. Ineffective involvement can produce inefficient kludges or systems that are actually dangerous. The underlying problem is the management of information and ideas. To develop a really generative system a great deal would have to change in the way that the FAA innovates. Use of test controllers would solve only some of the problems. For instance, we have cockpit resource management now for pilots; we may have it soon for controllers. But the management of ideas in the innovation process also needs intellectual resource management. Simply involving users is not enough. Brought in at the wrong point in the development process, users can block or compromise innovation. User involvement must be carefully considered. A test controller may be one solution to this problem. It might be necessary to have several kinds of test controllers (en route versus TRACON, for instance). No doubt further problems would surface in getting test controllers into operation. I would recommend that the FAA engage in a series of case studies of controller involvement in the innovation process. A systematic comparison of effective and ineffective cases would do much to clarify what we ought to do in the future. Unfortunately, I have been unable to find any cases where test controllers have been used. Perhaps we need to create some, to see how they work.
Design of an advanced flight planning system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1985-01-01
The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).
Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
Hussain, N.; Salimi, P.
2014-01-01
The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157
Predator-prey models with component Allee effect for predator reproduction.
Terry, Alan J
2015-12-01
We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator-prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.
Optimal ballistically captured Earth-Moon transfers
NASA Astrophysics Data System (ADS)
Ricord Griesemer, Paul; Ocampo, Cesar; Cooley, D. S.
2012-07-01
The optimality of a low-energy Earth-Moon transfer terminating in ballistic capture is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the problem is then modified to fix the time of transfer, allowing for optimal multi-impulse transfers. The tradeoff between transfer time and fuel cost is shown for Earth-Moon ballistic lunar capture transfers.
Suppression of fixed pattern noise for infrared image system
NASA Astrophysics Data System (ADS)
Park, Changhan; Han, Jungsoo; Bae, Kyung-Hoon
2008-04-01
In this paper, we propose suppression of fixed pattern noise (FPN) and compensation of soft defect for improvement of object tracking in cooled staring infrared focal plane array (IRFPA) imaging system. FPN appears an observable image which applies to non-uniformity compensation (NUC) by temperature. Soft defect appears glittering black and white point by characteristics of non-uniformity for IR detector by time. This problem is very important because it happen serious problem for object tracking as well as degradation for image quality. Signal processing architecture in cooled staring IRFPA imaging system consists of three tables: low, normal, high temperature for reference gain and offset values. Proposed method operates two offset tables for each table. This is method which operates six term of temperature on the whole. Proposed method of soft defect compensation consists of three stages: (1) separates sub-image for an image, (2) decides a motion distribution of object between each sub-image, (3) analyzes for statistical characteristic from each stationary fixed pixel. Based on experimental results, the proposed method shows an improved image which suppresses FPN by change of temperature distribution from an observational image in real-time.
Automated system for measuring temperature profiles inside ITS-90 fixed-point cells
NASA Astrophysics Data System (ADS)
Hiti, Miha; Bojkovski, Jovan; Batagelj, Valentin; Drnovsek, Janko
2005-11-01
The defining fixed points of the International Temperature Scale of 1990 (ITS-90) are temperature reference points for temperature calibration. The measured temperature inside the fixed-point cell depends on thermometer immersion, since measurements are made below the surface of the fixed-point material and the additional effect of the hydrostatic pressure has to be taken into account. Also, the heat flux along the thermometer stem can affect the measured temperature. The paper presents a system that enables accurate and reproducible immersion profile measurements for evaluation of measurement sensitivity and adequacy of thermometer immersion. It makes immersion profile measurements possible, where a great number of repetitions and long measurement periods are required, and reduces the workload on the user for performing such measurements. The system is flexible and portable and was developed for application to existing equipment in the laboratory. Results of immersion profile measurements in a triple point of water fixed-point cell are presented.
A variational technique for smoothing flight-test and accident data
NASA Technical Reports Server (NTRS)
Bach, R. E., Jr.
1980-01-01
The problem of determining aircraft motions along a trajectory is solved using a variational algorithm that generates unmeasured states and forcing functions, and estimates instrument bias and scale-factor errors. The problem is formulated as a nonlinear fixed-interval smoothing problem, and is solved as a sequence of linear two-point boundary value problems, using a sweep method. The algorithm has been implemented for use in flight-test and accident analysis. Aircraft motions are assumed to be governed by a six-degree-of-freedom kinematic model; forcing functions consist of body accelerations and winds, and the measurement model includes aerodynamic and radar data. Examples of the determination of aircraft motions from typical flight-test and accident data are presented.
Integer-ambiguity resolution in astronomy and geodesy
NASA Astrophysics Data System (ADS)
Lannes, A.; Prieur, J.-L.
2014-02-01
Recent theoretical developments in astronomical aperture synthesis have revealed the existence of integer-ambiguity problems. Those problems, which appear in the self-calibration procedures of radio imaging, have been shown to be similar to the nearest-lattice point (NLP) problems encountered in high-precision geodetic positioning and in global navigation satellite systems. In this paper we analyse the theoretical aspects of the matter and propose new methods for solving those NLP~problems. The related optimization aspects concern both the preconditioning stage, and the discrete-search stage in which the integer ambiguities are finally fixed. Our algorithms, which are described in an explicit manner, can easily be implemented. They lead to substantial gains in the processing time of both stages. Their efficiency was shown via intensive numerical tests.
Fixed point theorems and dissipative processes
NASA Technical Reports Server (NTRS)
Hale, J. K.; Lopes, O.
1972-01-01
The deficiencies of the theories that characterize the maximal compact invariant set of T as asymptotically stable, and that some iterate of T has a fixed point are discussed. It is shown that this fixed point condition is always satisfied for condensing and local dissipative T. Applications are given to a class of neutral functional differential equations.
NASA Astrophysics Data System (ADS)
Rerikh, K. V.
A smooth reversible dynamical system (SRDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions (the Chew-Low equations for p- wave πN- scattering) are considered. This SRDS is splitted into 1- and 2-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous 3-point functional equation. Non-algebraic integrability of SRDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a non-resonant fixed point. The proof is based on the classical Feldman-Baker theorem on linear forms of logarithms of algebraic numbers, which, in turn, relies upon solving the 7th Hilbert problem by A.I. Gel'fond and T. Schneider and new powerful methods of A. Baker in the theory of transcendental numbers. The general theorem, following from the Feldman-Baker theorem, on applicability of the Siegel theorem to the set of the eigenvalues λ ɛ Cn of a mapping at a non-resonant fixed point which belong to the algebraic number field A is formulated and proved. The main results are presented in Theorems 1-3, 5, 7, 8 and Remarks 3, 7.
Common fixed point theorems for maps under a contractive condition of integral type
NASA Astrophysics Data System (ADS)
Djoudi, A.; Merghadi, F.
2008-05-01
Two common fixed point theorems for mapping of complete metric space under a general contractive inequality of integral type and satisfying minimal commutativity conditions are proved. These results extend and improve several previous results, particularly Theorem 4 of Rhoades [B.E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007-4013] and Theorem 4 of Sessa [S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32 (46) (1982) 149-153].
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.
Towards a Real-Time Embedded System for Water Monitoring Installed in a Robotic Sailboat
da Silva Junior, Andouglas Goncalves; de Lima Sa, Sarah Thomaz; dos Santos, Davi Henrique; de Negreiros, Álvaro Pinto Ferrnandes; de Souza Silva, João Moreno Vilas Boas; Álvarez Jácobo, Justo Emílio; Garcia Gonçalves, Luiz Marcos
2016-01-01
Problems related to quality (and quantity) of water in natural resources or in artificial reservoirs are frequently arising and are at the center of attention of authorities and governments around the world. Many times the monitoring is not performed in an efficient time frame and a precise manner, whereas the adoption of fast and punctual solutions would undoubtedly improve the water quality and consequently enhance the life of people. To minimize or diminish such kinds of problems, we propose an architecture for sensors installed in a robotic platform, an autonomous sail boat, able to acquire raw data relative to water quality, to process and make them available to people that might be interested in such information. The main contributions are the sensors architecture itself, which uses low cost sensors, with practical experimentation done with a prototype. Results show data collected for points in lakes and rivers in the northeast of Brazil. This embedded system is fixed in the sailboat robot with the intention to facilitate the study of water quality for long endurance missions. This robot can help monitoring water bodies in a more consistent manner. Nonetheless the system can also be used with fixed vases or buoys in strategic points. PMID:27509506
Augmenting the one-shot framework by additional constraints
Bosse, Torsten
2016-05-12
The (multistep) one-shot method for design optimization problems has been successfully implemented for various applications. To this end, a slowly convergent primal fixed-point iteration of the state equation is augmented by an adjoint iteration and a corresponding preconditioned design update. In this paper we present a modification of the method that allows for additional equality constraints besides the usual state equation. Finally, a retardation analysis and the local convergence of the method in terms of necessary and sufficient conditions are given, which depend on key characteristics of the underlying problem and the quality of the utilized preconditioner.
Augmenting the one-shot framework by additional constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosse, Torsten
The (multistep) one-shot method for design optimization problems has been successfully implemented for various applications. To this end, a slowly convergent primal fixed-point iteration of the state equation is augmented by an adjoint iteration and a corresponding preconditioned design update. In this paper we present a modification of the method that allows for additional equality constraints besides the usual state equation. Finally, a retardation analysis and the local convergence of the method in terms of necessary and sufficient conditions are given, which depend on key characteristics of the underlying problem and the quality of the utilized preconditioner.
Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony
2017-12-01
When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.
Yuan, Liming; Thomas, Rick; Iannacchione, Anthony
2017-01-01
When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer®. The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed. PMID:29201495
NASA Astrophysics Data System (ADS)
Siegel, J.; Siegel, Edward Carl-Ludwig
2011-03-01
Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!
Fractional Programming for Communication Systems—Part I: Power Control and Beamforming
NASA Astrophysics Data System (ADS)
Shen, Kaiming; Yu, Wei
2018-05-01
This two-part paper explores the use of FP in the design and optimization of communication systems. Part I of this paper focuses on FP theory and on solving continuous problems. The main theoretical contribution is a novel quadratic transform technique for tackling the multiple-ratio concave-convex FP problem--in contrast to conventional FP techniques that mostly can only deal with the single-ratio or the max-min-ratio case. Multiple-ratio FP problems are important for the optimization of communication networks, because system-level design often involves multiple signal-to-interference-plus-noise ratio terms. This paper considers the applications of FP to solving continuous problems in communication system design, particularly for power control, beamforming, and energy efficiency maximization. These application cases illustrate that the proposed quadratic transform can greatly facilitate the optimization involving ratios by recasting the original nonconvex problem as a sequence of convex problems. This FP-based problem reformulation gives rise to an efficient iterative optimization algorithm with provable convergence to a stationary point. The paper further demonstrates close connections between the proposed FP approach and other well-known algorithms in the literature, such as the fixed-point iteration and the weighted minimum mean-square-error beamforming. The optimization of discrete problems is discussed in Part II of this paper.
Metallic and antiferromagnetic fixed points from gravity
NASA Astrophysics Data System (ADS)
Paul, Chandrima
2018-06-01
We consider SU(2) × U(1) gauge theory coupled to matter field in adjoints and study RG group flow. We constructed Callan-Symanzik equation and subsequent β functions and study the fixed points. We find there are two fixed points, showing metallic and antiferromagnetic behavior. We have shown that metallic phase develops an instability if certain parametric conditions are satisfied.
PCC Framework for Program-Generators
NASA Technical Reports Server (NTRS)
Kong, Soonho; Choi, Wontae; Yi, Kwangkeun
2009-01-01
In this paper, we propose a proof-carrying code framework for program-generators. The enabling technique is abstract parsing, a static string analysis technique, which is used as a component for generating and validating certificates. Our framework provides an efficient solution for certifying program-generators whose safety properties are expressed in terms of the grammar representing the generated program. The fixed-point solution of the analysis is generated and attached with the program-generator on the code producer side. The consumer receives the code with a fixed-point solution and validates that the received fixed point is indeed a fixed point of the received code. This validation can be done in a single pass.
Metal Carbon Eutectics to Extend the Use of the Fixed-Point Technique in Precision IR Thermometry
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2008-06-01
The high-temperature extension of the fixed-point technique for primary calibration of precision infrared (IR) thermometers was investigated both through mathematical simulations and laboratory investigations. Simulations were performed with Co C (1,324°C) and Pd C (1, 492°C) eutectic fixed points, and a precision IR thermometer was calibrated from the In point (156.5985°C) up to the Co C point. Mathematical simulations suggested the possibility of directly deriving the transition temperature of the Co C and Pd C points by extrapolating the calibration derived from fixed-point measurements from In to the Cu point. Both temperatures, as a result of the low uncertainty associated with the In Cu calibration and the high number of fixed points involved in the calibration process, can be derived with an uncertainty of 0.11°C for Co C and 0.18°C for Pd C. A transition temperature of 1,324.3°C for Co C was determined from the experimental verification, a value higher than, but compatible with, the one proposed by the thermometry community for inclusion as a secondary reference point for ITS-90 dissemination, i.e., 1,324.0°C.
Mangum, B W
1983-07-01
In an investigation of the melting and freezing behavior of succinonitrile, the triple-point temperature was determined to be 58.0805 degrees C, with an estimated uncertainty of +/- 0.0015 degrees C relative to the International Practical Temperature Scale of 1968 (IPTS-68). The triple-point temperature of this material is evaluated as a temperature-fixed point, and some clinical laboratory applications of this fixed point are proposed. In conjunction with the gallium and ice points, the availability of succinonitrile permits thermistor thermometers to be calibrated accurately and easily on the IPTS-68.
Collapsed heteroclinic snaking near a heteroclinic chain in dragged meniscus problems.
Tseluiko, D; Galvagno, M; Thiele, U
2014-04-01
A liquid film is studied that is deposited onto a flat plate that is inclined at a constant angle to the horizontal and is extracted from a liquid bath at a constant speed. We analyse steady-state solutions of a long-wave evolution equation for the film thickness. Using centre manifold theory, we first obtain an asymptotic expansion of solutions in the bath region. The presence of an additional temperature gradient along the plate that induces a Marangoni shear stress significantly changes these expansions and leads to the presence of logarithmic terms that are absent otherwise. Next, we numerically obtain steady solutions and analyse their behaviour as the plate velocity is changed. We observe that the bifurcation curve exhibits collapsed (or exponential) heteroclinic snaking when the plate inclination angle is above a certain critical value. Otherwise, the bifurcation curve is monotonic. The steady profiles along these curves are characterised by a foot-like structure that is formed close to the meniscus and is preceded by a thin precursor film further up the plate. The length of the foot increases along the bifurcation curve. Finally, we prove with a Shilnikov-type method that the snaking behaviour of the bifurcation curves is caused by the existence of an infinite number of heteroclinic orbits close to a heteroclinic chain that connects in an appropriate three-dimensional phase space the fixed point corresponding to the precursor film with the fixed point corresponding to the foot and then with the fixed point corresponding to the bath.
The renormalization group method in statistical hydrodynamics
NASA Astrophysics Data System (ADS)
Eyink, Gregory L.
1994-09-01
This paper gives a first principles formulation of a renormalization group (RG) method appropriate to study of turbulence in incompressible fluids governed by Navier-Stokes equations. The present method is a momentum-shell RG of Kadanoff-Wilson type based upon the Martin-Siggia-Rose (MSR) field-theory formulation of stochastic dynamics. A simple set of diagrammatic rules are developed which are exact within perturbation theory (unlike the well-known Ma-Mazenko prescriptions). It is also shown that the claim of Yakhot and Orszag (1986) is false that higher-order terms are irrelevant in the ɛ expansion RG for randomly forced Navier-Stokes (RFNS) with power-law force spectrum F̂(k)=D0k-d+(4-ɛ). In fact, as a consequence of Galilei covariance, there are an infinite number of higher-order nonlinear terms marginal by power counting in the RG analysis of the power-law RFNS, even when ɛ≪4. The difficulty does not occur in the Forster-Nelson-Stephen (FNS) RG analysis of thermal fluctuations in an equilibrium NS fluid, which justifies a linear regression law for d≳2. On the other hand, the problem occurs also at the nontrivial fixed point in the FNS Model A, or its Burgers analog, when d<2. The marginal terms can still be present at the strong-coupling fixed point in true NS turbulence. If so, infinitely many fixed points may exist in turbulence and be associated to a somewhat surprising phenomenon: nonuniversality of the inertial-range scaling laws depending upon the dissipation-range dynamics.
First and second order derivatives for optimizing parallel RF excitation waveforms.
Majewski, Kurt; Ritter, Dieter
2015-09-01
For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations. Copyright © 2015 Elsevier Inc. All rights reserved.
First and second order derivatives for optimizing parallel RF excitation waveforms
NASA Astrophysics Data System (ADS)
Majewski, Kurt; Ritter, Dieter
2015-09-01
For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations.
Hewitt, Tanya Anne; Chreim, Samia
2015-05-01
Practitioners frequently encounter safety problems that they themselves can resolve on the spot. We ask: when faced with such a problem, do practitioners fix it in the moment and forget about it, or do they fix it in the moment and report it? We consider factors underlying these two approaches. We used a qualitative case study design employing in-depth interviews with 40 healthcare practitioners in a tertiary care hospital in Ontario, Canada. We conducted a thematic analysis, and compared the findings with the literature. 'Fixing and forgetting' was the main choice that most practitioners made in situations where they faced problems that they themselves could resolve. These situations included (A) handling near misses, which were seen as unworthy of reporting since they did not result in actual harm to the patient, (B) prioritising solving individual patients' safety problems, which were viewed as unique or one-time events and (C) encountering re-occurring safety problems, which were framed as inevitable, routine events. In only a few instances was 'fixing and reporting' mentioned as a way that the providers dealt with problems that they could resolve. We found that generally healthcare providers do not prioritise reporting if a safety problem is fixed. We argue that fixing and forgetting patient safety problems encountered may not serve patient safety as well as fixing and reporting. The latter approach aligns with recent calls for patient safety to be more preventive. We consider implications for practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Nash equilibrium and multi criterion aerodynamic optimization
NASA Astrophysics Data System (ADS)
Tang, Zhili; Zhang, Lianhe
2016-06-01
Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
Optimal impulsive time-fixed orbital rendezvous and interception with path constraints
NASA Technical Reports Server (NTRS)
Taur, D.-R.; Prussing, J. E.; Coverstone-Carroll, V.
1990-01-01
Minimum-fuel, impulsive, time-fixed solutions are obtained for the problem of orbital rendezvous and interception with interior path constraints. Transfers between coplanar circular orbits in an inverse-square gravitational field are considered, subject to a circular path constraint representing a minimum or maximum permissible orbital radius. Primer vector theory is extended to incorporate path constraints. The optimal number of impulses, their times and positions, and the presence of initial or final coasting arcs are determined. The existence of constraint boundary arcs and boundary points is investigated as well as the optimality of a class of singular arc solutions. To illustrate the complexities introduced by path constraints, an analysis is made of optimal rendezvous in field-free space subject to a minimum radius constraint.
Further results on global state feedback stabilization of nonlinear high-order feedforward systems.
Xie, Xue-Jun; Zhang, Xing-Hui
2014-03-01
In this paper, by introducing a combined method of sign function, homogeneous domination and adding a power integrator, and overcoming several troublesome obstacles in the design and analysis, the problem of state feedback control for a class of nonlinear high-order feedforward systems with the nonlinearity's order being relaxed to an interval rather than a fixed point is solved. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
DeLuca, R.
2006-03-01
Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.
Determination of glucose in interstitial fluid by surface plasmon resonance biosensor
NASA Astrophysics Data System (ADS)
Huang, Fuxiang; Liu, Jin; Yu, Haixia; Zhang, Zengfu; Li, Dachao; Xu, Kexin
2008-02-01
The concentration of glucose in interstitial fluid determined by using the surface plasmon resonance (SPR) biosensor with chemical bonding D-Galactose/D-Glucose Binding Protein (GGBP) is proposed in this paper. D-Galactose/D-Glucose Binding Protein (GGBP), a kind of protein which has the ability to absorb the glucose specifically, is immobilized on the gold film of the SPR sensor to improve the sensitivity of glucose detecting. The GGBPs mutated at different points have different association abilities with glucose, which bring different measurement range and precision. So the selection of proteins is a critical problem of the determination of glucose by using SPR biosensor. Using different mutated GGBPs, the samples with different concentrations of glucose are measured in the experiment, and the prediction error and precision are discussed. Furthermore, the light intensity of sensor is instable, so the baseline of SPR responses is tracked and adjusted accordingly using the methods - fixing points and fixing areas' ratio. The experiment results show that GGBPs mutated at different points have its corresponding working curves and different measurement precision. In conclusion, the study is significant for the application of SPR biosensor to the minimally invasive diabetes testing and other detection of human body components.
Shen, Peiping; Zhang, Tongli; Wang, Chunfeng
2017-01-01
This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Zvizdic, Davor; Veliki, Tomislav; Grgec Bermanec, Lovorka
2008-06-01
This article describes the realization of the International Temperature Scale in the range from 234.3 K (mercury triple point) to 1084.62°C (copper freezing point) at the Laboratory for Process Measurement (LPM), Faculty of Mechanical Engineering and Naval Architecture (FSB), University of Zagreb. The system for the realization of the ITS-90 consists of the sealed fixed-point cells (mercury triple point, water triple point and gallium melting point) and the apparatus designed for the optimal realization of open fixed-point cells which include the gallium melting point, tin freezing point, zinc freezing point, aluminum freezing point, and copper freezing point. The maintenance of the open fixed-point cells is described, including the system for filling the cells with pure argon and for maintaining the pressure during the realization.
Exact results for the O( N ) model with quenched disorder
NASA Astrophysics Data System (ADS)
Delfino, Gesualdo; Lamsen, Noel
2018-04-01
We use scale invariant scattering theory to exactly determine the lines of renormalization group fixed points for O( N )-symmetric models with quenched disorder in two dimensions. Random fixed points are characterized by two disorder parameters: a modulus that vanishes when approaching the pure case, and a phase angle. The critical lines fall into three classes depending on the values of the disorder modulus. Besides the class corresponding to the pure case, a second class has maximal value of the disorder modulus and includes Nishimori-like multicritical points as well as zero temperature fixed points. The third class contains critical lines that interpolate, as N varies, between the first two classes. For positive N , it contains a single line of infrared fixed points spanning the values of N from √{2}-1 to 1. The symmetry sector of the energy density operator is superuniversal (i.e. N -independent) along this line. For N = 2 a line of fixed points exists only in the pure case, but accounts also for the Berezinskii-Kosterlitz-Thouless phase observed in presence of disorder.
NASA Astrophysics Data System (ADS)
Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng
In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.
Dynamic transition between fixed- and mobile-bed: mathematical and numerical aspects
NASA Astrophysics Data System (ADS)
Zugliani, Daniel; Pasqualini, Matteo; Rosatti, Giorgio
2017-04-01
Free-surface flows with high sediment transport (as debris flow or hyper-concentrated flow) are composed by a mixture of fluid and solid phase, usually water and sediment. When these flows propagate over loose beds, particles constituting the mixture of water and sediments strongly interact with the ones forming the bed, leading to erosion or deposition. However, there are lots of other situations when the mixture flows over rigid bedrocks or over artificially paved transects, so there is no mass exchange between bed and mixture. The two situations are usually referred to as, respectively, mobile- and fixed-bed conditions. From a mathematical point of view, the systems of Partial Differential Equations (PDEs) that describe these flows derive from mass and momentum balance of both phases, but, the two resulting PDEs systems are different. The main difference concerns the concentration: in the mobile-bed condition, the concentration is linked to the local flow conditions by means of a suitable rheological relation, while in the fixed-bed case, the concentration is an unknown of the problem. It is quite common that a free surface flow with high sediment transport, in its path, encounters both conditions. In the recent work of Rosatti & Zugliani 2015, the mathematical and numerical description of the transition between fixed- and mobile-bed was successfully resolved, for the case of low sediment transport phenomena, by the introduction of a suitable erodibility variable and satisfactory results were obtained. The main disadvantage of the approach is related to the erodibility variable, that changes in space, based on bed characteristics, but remains constant in time. However, the nature of the bed can change dynamically as result of deposition over fixed bed or high erosion over mobile bed. With this work, we extend the applicability of the mentioned approach to the more complex PDEs describing the hyper-concentrated flow. Moreover, we introduce a strategy that allows a dynamic time variation of the erodibility variable. The issue of the dynamic transition between fixed- and mobile-bed condition is tackled, from a numerical point of view, using a particular predictor corrector technique that compare the transported concentration related with the fixed bed and the equilibrium concentration, deriving from a closure relation, associated to the mobile bed condition. Through a comparison between exact solution, built using the generalized Rankine - Hugoniot condition, and the numeric results, we highlight capabilities and limits of this enhanced technique. Bibliography: G. Rosatti and D. Zugliani, 2015. "Modelling the transition between fixed and mobile bed conditions in two-phase free-surface flows: The Composite Riemann Problem and its numerical solution". Journal of Computational Physics, 285:226-250
Establishment of the Co-C Eutectic Fixed-Point Cell for Thermocouple Calibrations at NIMT
NASA Astrophysics Data System (ADS)
Ongrai, O.; Elliott, C. J.
2017-08-01
In 2015, NIMT first established a Co-C eutectic temperature reference (fixed-point) cell measurement capability for thermocouple calibration to support the requirements of Thailand's heavy industries and secondary laboratories. The Co-C eutectic fixed-point cell is a facility transferred from NPL, where the design was developed through European and UK national measurement system projects. In this paper, we describe the establishment of a Co-C eutectic fixed-point cell for thermocouple calibration at NIMT. This paper demonstrates achievement of the required furnace uniformity, the Co-C plateau realization and the comparison data between NIMT and NPL Co-C cells by using the same standard Pt/Pd thermocouple, demonstrating traceability. The NIMT measurement capability for noble metal type thermocouples at the new Co-C eutectic fixed point (1324.06°C) is estimated to be within ± 0.60 K (k=2). This meets the needs of Thailand's high-temperature thermocouple users—for which previously there has been no traceable calibration facility.
TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model
NASA Astrophysics Data System (ADS)
Meurice, Y.
2007-06-01
We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).
Gradient descent learning algorithm overview: a general dynamical systems perspective.
Baldi, P
1995-01-01
Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Power-limited low-thrust trajectory optimization with operation point detection
NASA Astrophysics Data System (ADS)
Chi, Zhemin; Li, Haiyang; Jiang, Fanghua; Li, Junfeng
2018-06-01
The power-limited solar electric propulsion system is considered more practical in mission design. An accurate mathematical model of the propulsion system, based on experimental data of the power generation system, is used in this paper. An indirect method is used to deal with the time-optimal and fuel-optimal control problems, in which the solar electric propulsion system is described using a finite number of operation points, which are characterized by different pairs of thruster input power. In order to guarantee the integral accuracy for the discrete power-limited problem, a power operation detection technique is embedded in the fourth-order Runge-Kutta algorithm with fixed step. Moreover, the logarithmic homotopy method and normalization technique are employed to overcome the difficulties caused by using indirect methods. Three numerical simulations with actual propulsion systems are given to substantiate the feasibility and efficiency of the proposed method.
Stability analysis of an autocatalytic protein model
NASA Astrophysics Data System (ADS)
Lee, Julian
2016-05-01
A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.
A survey of methods of feasible directions for the solution of optimal control problems
NASA Technical Reports Server (NTRS)
Polak, E.
1972-01-01
Three methods of feasible directions for optimal control are reviewed. These methods are an extension of the Frank-Wolfe method, a dual method devised by Pironneau and Polack, and a Zontendijk method. The categories of continuous optimal control problems are shown as: (1) fixed time problems with fixed initial state, free terminal state, and simple constraints on the control; (2) fixed time problems with inequality constraints on both the initial and the terminal state and no control constraints; (3) free time problems with inequality constraints on the initial and terminal states and simple constraints on the control; and (4) fixed time problems with inequality state space contraints and constraints on the control. The nonlinear programming algorithms are derived for each of the methods in its associated category.
Conformal completion of the standard model with a fourth generation
NASA Astrophysics Data System (ADS)
Ho, Chiu Man; Hung, Pham Q.; Kephart, Thomas W.
2012-06-01
We study dynamical electroweak symmetry breaking with a fourth generation within the Z n orbifolded AdS 5 ⊗ S 5 framework. A realistic Z 7 example is discussed. The initial theory reduces dynamically, due to the induced condensates, to a four-family trinification near a TeV-scale conformal fixed point where the gauge hierarchy problem does not exist. We predict new gauge bosons and bifundamental fermions and scalars accessible by the LHC.
Unsolved Problems in Evolutionary Theory
1967-01-01
finding the probability of survival of a single new mutant). Most natural populations probably satisfy these conditions , as is illustrated by the...Ykl) of small quantities adding to zero. Then under suitable conditions on the function f(x), (3) xi + Yi,t+i = fi(x) + YE yjfi(tf) + O(y yt...It is clear that a sufficient condition for the point x to be locally stable is that all the roots of the matrix, (4) (a j) = ____ should have moduli
Controlled wavelet domain sparsity for x-ray tomography
NASA Astrophysics Data System (ADS)
Purisha, Zenith; Rimpeläinen, Juho; Bubba, Tatiana; Siltanen, Samuli
2018-01-01
Tomographic reconstruction is an ill-posed inverse problem that calls for regularization. One possibility is to require sparsity of the unknown in an orthonormal wavelet basis. This, in turn, can be achieved by variational regularization, where the penalty term is the sum of the absolute values of the wavelet coefficients. The primal-dual fixed point algorithm showed that the minimizer of the variational regularization functional can be computed iteratively using a soft-thresholding operation. Choosing the soft-thresholding parameter \
Fixed-point theorems for families of weakly non-expansive maps
NASA Astrophysics Data System (ADS)
Mai, Jie-Hua; Liu, Xin-He
2007-10-01
In this paper, we present some fixed-point theorems for families of weakly non-expansive maps under some relatively weaker and more general conditions. Our results generalize and improve several results due to Jungck [G. Jungck, Fixed points via a generalized local commutativity, Int. J. Math. Math. Sci. 25 (8) (2001) 497-507], Jachymski [J. Jachymski, A generalization of the theorem by Rhoades and Watson for contractive type mappings, Math. Japon. 38 (6) (1993) 1095-1102], Guo [C. Guo, An extension of fixed point theorem of Krasnoselski, Chinese J. Math. (P.O.C.) 21 (1) (1993) 13-20], Rhoades [B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257-290], and others.
Common Coupled Fixed Point Theorems for Two Hybrid Pairs of Mappings under φ-ψ Contraction
Handa, Amrish
2014-01-01
We introduce the concept of (EA) property and occasional w-compatibility for hybrid pair F : X × X → 2X and f : X → X. We also introduce common (EA) property for two hybrid pairs F, G : X → 2X and f, g : X → X. We establish some common coupled fixed point theorems for two hybrid pairs of mappings under φ-ψ contraction on noncomplete metric spaces. An example is also given to validate our results. We improve, extend and generalize several known results. The results of this paper generalize the common fixed point theorems for hybrid pairs of mappings and essentially contain fixed point theorems for hybrid pair of mappings. PMID:27340688
Trivial dynamics in discrete-time systems: carrying simplex and translation arcs
NASA Astrophysics Data System (ADS)
Niu, Lei; Ruiz-Herrera, Alfonso
2018-06-01
In this paper we show that the dynamical behavior in (first octant) of the classical Kolmogorov systems of competitive type admitting a carrying simplex can be sometimes determined completely by the number of fixed points on the boundary and the local behavior around them. Roughly speaking, T has trivial dynamics (i.e. the omega limit set of any orbit is a connected set contained in the set of fixed points) provided T has exactly four hyperbolic nontrivial fixed points in with local attractors on the carrying simplex and local repellers on the carrying simplex; and there exists a unique hyperbolic fixed point in Int. Our results are applied to some classical models including the Leslie–Gower models, Atkinson-Allen systems and Ricker maps.
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... Television Relay Service—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101...-Point Microwave Service—(Part 101, Subparts C & H) PCS: Personal Communications Service—(Part 24) PET...
Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.
2007-01-01
Scattered data interpolation is a problem of interest in numerous areas such as electronic imaging, smooth surface modeling, and computational geometry. Our motivation arises from applications in geology and mining, which often involve large scattered data sets and a demand for high accuracy. The method of choice is ordinary kriging. This is because it is a best unbiased estimator. Unfortunately, this interpolant is computationally very expensive to compute exactly. For n scattered data points, computing the value of a single interpolant involves solving a dense linear system of size roughly n x n. This is infeasible for large n. In practice, kriging is solved approximately by local approaches that are based on considering only a relatively small'number of points that lie close to the query point. There are many problems with this local approach, however. The first is that determining the proper neighborhood size is tricky, and is usually solved by ad hoc methods such as selecting a fixed number of nearest neighbors or all the points lying within a fixed radius. Such fixed neighborhood sizes may not work well for all query points, depending on local density of the point distribution. Local methods also suffer from the problem that the resulting interpolant is not continuous. Meyer showed that while kriging produces smooth continues surfaces, it has zero order continuity along its borders. Thus, at interface boundaries where the neighborhood changes, the interpolant behaves discontinuously. Therefore, it is important to consider and solve the global system for each interpolant. However, solving such large dense systems for each query point is impractical. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. The problems arise from the fact that the covariance functions that are used in kriging have global support. Our implementations combine, utilize, and enhance a number of different approaches that have been introduced in literature for solving large linear systems for interpolation of scattered data points. For very large systems, exact methods such as Gaussian elimination are impractical since they require 0(n(exp 3)) time and 0(n(exp 2)) storage. As Billings et al. suggested, we use an iterative approach. In particular, we use the SYMMLQ method, for solving the large but sparse ordinary kriging systems that result from tapering. The main technical issue that need to be overcome in our algorithmic solution is that the points' covariance matrix for kriging should be symmetric positive definite. The goal of tapering is to obtain a sparse approximate representation of the covariance matrix while maintaining its positive definiteness. Furrer et al. used tapering to obtain a sparse linear system of the form Ax = b, where A is the tapered symmetric positive definite covariance matrix. Thus, Cholesky factorization could be used to solve their linear systems. They implemented an efficient sparse Cholesky decomposition method. They also showed if these tapers are used for a limited class of covariance models, the solution of the system converges to the solution of the original system. Matrix A in the ordinary kriging system, while symmetric, is not positive definite. Thus, their approach is not applicable to the ordinary kriging system. Therefore, we use tapering only to obtain a sparse linear system. Then, we use SYMMLQ to solve the ordinary kriging system. We show that solving large kriging systems becomes practical via tapering and iterative methods, and results in lower estimation errors compared to traditional local approaches, and significant memory savings compared to the original global system. We also developed a more efficient variant of the sparse SYMMLQ method for large ordinary kriging systems. This approach adaptively finds the correct local neighborhood for each query point in the interpolation process.
NASA Astrophysics Data System (ADS)
Pearce, Jonathan V.; Gisby, John A.; Steur, Peter P. M.
2016-08-01
A knowledge of the effect of impurities at the level of parts per million on the freezing temperature of very pure metals is essential for realisation of ITS-90 fixed points. New information has become available for use with the thermodynamic modelling software MTDATA, permitting calculation of liquidus slopes, in the low concentration limit, of a wider range of binary alloy systems than was previously possible. In total, calculated values for 536 binary systems are given. In addition, new experimental determinations of phase diagrams, in the low impurity concentration limit, have recently appeared. All available data have been combined to provide a comprehensive set of liquidus slopes for impurities in ITS-90 metal fixed points. In total, liquidus slopes for 838 systems are tabulated for the fixed points Hg, Ga, In, Sn, Zn, Al, Ag, Au, and Cu. It is shown that the value of the liquidus slope as a function of impurity element atomic number can be approximated using a simple formula, and good qualitative agreement with the existing data is observed for the fixed points Al, Ag, Au and Cu, but curiously the formula is not applicable to the fixed points Hg, Ga, In, Sn, and Zn. Some discussion is made concerning the influence of oxygen on the liquidus slopes, and some calculations using MTDATA are discussed. The BIPM’s consultative committee for thermometry has long recognised that the sum of individual estimates method is the ideal approach for assessing uncertainties due to impurities, but the community has been largely powerless to use the model due to lack of data. Here, not only is data provided, but a simple model is given to enable known thermophysical data to be used directly to estimate impurity effects for a large fraction of the ITS-90 fixed points.
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...
A fixed energy fixed angle inverse scattering in interior transmission problem
NASA Astrophysics Data System (ADS)
Chen, Lung-Hui
2017-06-01
We study the inverse acoustic scattering problem in mathematical physics. The problem is to recover the index of refraction in an inhomogeneous medium by measuring the scattered wave fields in the far field. We transform the problem to the interior transmission problem in the study of the Helmholtz equation. We find an inverse uniqueness on the scatterer with a knowledge of a fixed interior transmission eigenvalue. By examining the solution in a series of spherical harmonics in the far field, we can determine uniquely the perturbation source for the radially symmetric perturbations.
NASA Astrophysics Data System (ADS)
Nezir, Veysel; Mustafa, Nizami
2017-04-01
In 2008, P.K. Lin provided the first example of a nonreflexive space that can be renormed to have fixed point property for nonexpansive mappings. This space was the Banach space of absolutely summable sequences l1 and researchers aim to generalize this to c0, Banach space of null sequences. Before P.K. Lin's intriguing result, in 1979, Goebel and Kuczumow showed that there is a large class of non-weak* compact closed, bounded, convex subsets of l1 with fixed point property for nonexpansive mappings. Then, P.K. Lin inspired by Goebel and Kuczumow's ideas to give his result. Similarly to P.K. Lin's study, Hernández-Linares worked on L1 and in his Ph.D. thesis, supervisored under Maria Japón, showed that L1 can be renormed to have fixed point property for affine nonexpansive mappings. Then, related questions for c0 have been considered by researchers. Recently, Nezir constructed several equivalent norms on c0 and showed that there are non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings. In this study, we construct a family of equivalent norms containing those developed by Nezir as well and show that there exists a large class of non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings.
Analyzing survival curves at a fixed point in time for paired and clustered right-censored data
Su, Pei-Fang; Chi, Yunchan; Lee, Chun-Yi; Shyr, Yu; Liao, Yi-De
2018-01-01
In clinical trials, information about certain time points may be of interest in making decisions about treatment effectiveness. Rather than comparing entire survival curves, researchers can focus on the comparison at fixed time points that may have a clinical utility for patients. For two independent samples of right-censored data, Klein et al. (2007) compared survival probabilities at a fixed time point by studying a number of tests based on some transformations of the Kaplan-Meier estimators of the survival function. However, to compare the survival probabilities at a fixed time point for paired right-censored data or clustered right-censored data, their approach would need to be modified. In this paper, we extend the statistics to accommodate the possible within-paired correlation and within-clustered correlation, respectively. We use simulation studies to present comparative results. Finally, we illustrate the implementation of these methods using two real data sets. PMID:29456280
APMP Scale Comparison with Three Radiation Thermometers and Six Fixed-Point Blackbodies
NASA Astrophysics Data System (ADS)
Yamada, Y.; Shimizu, Y.; Ishii, J.
2015-08-01
New Asia Pacific Metrology Programme (APMP) comparisons of radiation thermometry standards, APMP TS-11, and -12, have recently been initiated. These new APMP comparisons cover the temperature range from to . Three radiation thermometers with central wavelengths of 1.6 , 0.9 , and 0.65 are the transfer devices for the radiation thermometer scale comparison conducted in the so-called star configuration. In parallel, a compact fixed-point blackbody furnace that houses six types of fixed-point cells of In, Sn, Zn, Al, Ag, and Cu is circulated, again in a star-type comparison, to substantiate fixed-point calibration capabilities. Twelve APMP national metrology institutes are taking part in this endeavor, in which the National Metrology Institute of Japan acts as the pilot. In this article, the comparison scheme is described with emphasis on the features of the transfer devices, i.e., the radiation thermometers and the fixed-point blackbodies. Results of preliminary evaluations of the performance and characteristic of these instruments as well as the evaluation method of the comparison results are presented.
Long-Term Stability of WC-C Peritectic Fixed Point
NASA Astrophysics Data System (ADS)
Khlevnoy, B. B.; Grigoryeva, I. A.
2015-03-01
The tungsten carbide-carbon peritectic (WC-C) melting transition is an attractive high-temperature fixed point with a temperature of . Earlier investigations showed high repeatability, small melting range, low sensitivity to impurities, and robustness of WC-C that makes it a prospective candidate for the highest fixed point of the temperature scale. This paper presents further study of the fixed point, namely the investigation of the long-term stability of the WC-C melting temperature. For this purpose, a new WC-C cell of the blackbody type was built using tungsten powder of 99.999 % purity. The stability of the cell was investigated during the cell aging for 50 h at the cell working temperature that tooks 140 melting/freezing cycles. The method of investigation was based on the comparison of the WC-C tested cell with a reference Re-C fixed-point cell that reduces an influence of the probable instability of a radiation thermometer. It was shown that after the aging period, the deviation of the WC-C cell melting temperature was with an uncertainty of.
Renormalization group fixed points of foliated gravity-matter systems
NASA Astrophysics Data System (ADS)
Biemans, Jorn; Platania, Alessia; Saueressig, Frank
2017-05-01
We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) "time"- direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton's constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d g d λ . We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
On the photo-gravitational restricted four-body problem with variable mass
NASA Astrophysics Data System (ADS)
Mittal, Amit; Agarwal, Rajiv; Suraj, Md Sanam; Arora, Monika
2018-05-01
This paper deals with the photo-gravitational restricted four-body problem (PR4BP) with variable mass. Following the procedure given by Gascheau (C. R. 16:393-394, 1843) and Routh (Proc. Lond. Math. Soc. 6:86-97, 1875), the conditions of linear stability of Lagrange triangle solution in the PR4BP are determined. The three radiating primaries having masses m1, m2 and m3 in an equilateral triangle with m2=m3 will be stable as long as they satisfy the linear stability condition of the Lagrangian triangle solution. We have derived the equations of motion of the mentioned problem and observed that there exist eight libration points for a fixed value of parameters γ (m at time t/m at initial time, 0<γ≤1 ), α (the proportionality constant in Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), 0≤α≤2.2), the mass parameter μ=0.005 and radiation parameters qi, (0< qi≤1, i=1, 2, 3). All the libration points are non-collinear if q2≠ q3. It has been observed that the collinear and out-of-plane libration points also exist for q2=q3. In all the cases, each libration point is found to be unstable. Further, zero velocity curves (ZVCs) and Newton-Raphson basins of attraction are also discussed.
Side Effects in Time Discounting Procedures: Fixed Alternatives Become the Reference Point
2016-01-01
Typical research on intertemporal choice utilizes a two-alternative forced choice (2AFC) paradigm requiring participants to choose between a smaller sooner and larger later payoff. In the adjusting-amount procedure (AAP) one of the alternatives is fixed and the other is adjusted according to particular choices made by the participant. Such a method makes the alternatives unequal in status and is speculated to make the fixed alternative a reference point for choices, thereby affecting the decision made. The current study shows that fixing different alternatives in the AAP influences discount rates in intertemporal choices. Specifically, individuals’ (N = 283) choices were affected to just the same extent by merely fixing an alternative as when choices were preceded by scenarios explicitly imposing reference points. PMID:27768759
NASA Astrophysics Data System (ADS)
Mingari Scarpello, Giovanni; Ritelli, Daniele
2018-06-01
The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange-Poisson case, we compute the second (precession, ψ ) and third (spin, φ) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle ψ completing the treatment of the Euler-Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order - 1/2.
NASA Astrophysics Data System (ADS)
Young, Frederic; Siegel, Edward
Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!
Stability of libration points in the restricted four-body problem with variable mass
NASA Astrophysics Data System (ADS)
Mittal, Amit; Aggarwal, Rajiv; Suraj, Md. Sanam; Bisht, Virender Singh
2016-10-01
We have investigated the stability of the Lagrangian solutions for the restricted four-body problem with variable mass. It has been assumed that the three primaries with masses m1, m2 and m3 form an equilateral triangle, wherein m2=m3. According to Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), the infinitesimal body varies its mass m with time. The space-time transformations of Meshcherskii (Studies on the Mechanics of Bodies of Variable Mass, GITTL, Moscow, 1949) are used by taking the values of the parameters q=1/2, k=0, n=1. The equations of motion of the infinitesimal body with variable mass have been determined. The equations of motion of the current problem differ from the ones of the restricted four-body problem with constant mass. There exist eight libration points, out of which two are collinear with the primary m1 and the rest are non-collinear for a fixed value of parameters γ (m {at time} t/m {at initial time}, 0<γ≤1 ), α (the proportionality constant in Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), 0≤α≤2.2) and μ=0.019 (the mass parameter). All the libration points are found to be unstable. The zero velocity surfaces (ZVS) are also drawn and regions of motion are discussed.
Fixed-Rate Compressed Floating-Point Arrays.
Lindstrom, Peter
2014-12-01
Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.
Solution of the effective Hamiltonian of impurity hopping between two sites in a metal
NASA Astrophysics Data System (ADS)
Ye, Jinwu
1997-07-01
We analyze in detail all the possible fixed points of the effective Hamiltonian of a nonmagnetic impurity hopping between two sites in a metal obtained by Moustakas and Fisher (MF). We find a line of non-Fermi liquid fixed points which continuously interpolates between the two-channel Kondo fixed point (2CK) and the one-channel, two-impurity Kondo (2IK) fixed point. There is one relevant direction with scaling dimension 12 and one leading irrelevant operator with dimension 32. There is also one marginal operator in the spin sector moving along this line. The marginal operator, combined with the leading irrelevant operator, will generate the relevant operator. For the general position on this line, the leading low-temperature exponents of the specific heat, the hopping susceptibility and the electron conductivity Cimp,χhimp,σ(T) are the same as those of the 2CK, but the finite-size spectrum depends on the position on the line. No universal ratios can be formed from the amplitudes of the three quantities except at the 2CK point on this line where the universal ratios can be formed. At the 2IK point on this line, σ(T)~2σu(1+aT3/2), no universal ratio can be formed either. The additional non-Fermi-liquid fixed point found by MF has the same symmetry as the 2IK, it has two relevant directions with scaling dimension 12, and is therefore also unstable. The leading low-temperature behaviors are Cimp~T,χhimp~lnT,σ(T)~2σu(1+aT3/2) no universal ratios can be formed. The system is shown to flow to a line of Fermi-liquid fixed points which continuously interpolates between the noninteracting fixed point and the two-channel spin-flavor Kondo fixed point discussed by the author previously. The effect of particle-hole symmetry breaking is discussed. The effective Hamiltonian in the external magnetic field is analyzed. The scaling functions for the physical measurable quantities are derived in the different regimes; their predictions for the experiments are given. Finally the implications are given for a nonmagnetic impurity hopping around three sites with triangular symmetry discussed by MF.
Infrared fixed point of SU(2) gauge theory with six flavors
NASA Astrophysics Data System (ADS)
Leino, Viljami; Rummukainen, Kari; Suorsa, Joni; Tuominen, Kimmo; Tähtinen, Sara
2018-06-01
We compute the running of the coupling in SU(2) gauge theory with six fermions in the fundamental representation of the gauge group. We find strong evidence that this theory has an infrared stable fixed point at strong coupling and measure also the anomalous dimension of the fermion mass operator at the fixed point. This theory therefore likely lies close to the boundary of the conformal window and will display novel infrared dynamics if coupled with the electroweak sector of the Standard Model.
NASA Astrophysics Data System (ADS)
Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie
2018-06-01
Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.
NASA Astrophysics Data System (ADS)
Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie
2017-09-01
Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.
Attempts by Descartes and Roberval to evaluate the centre of oscillation of compound pendulums.
Capecchi, Danilo
2014-01-01
This paper re-examines the first documented attempts to establish the quantitative law of motion for a body oscillating about a fixed axis (a compound pendulum). This is quite a complex problem as weight and motion are not concentrated in a point, but are spread over a volume. Original documents by René Descartes and Gilles Personne de Roberval, who made the first contributions to solving the problem, are discussed. The two scientists had important insights into the problem which, although they were incomplete, nevertheless somehow complemented each other - at least when seen from the viewpoint of modern mechanics. Descartes was right in considering only the absolute value of the inertia forces, Roberval was right in assuming that the force of gravity should also be taken into account.
A dynamical system approach to Bianchi III cosmology for Hu-Sawicki type f( R) gravity
NASA Astrophysics Data System (ADS)
Banik, Sebika Kangsha; Banik, Debika Kangsha; Bhuyan, Kalyan
2018-02-01
The cosmological dynamics of spatially homogeneous but anisotropic Bianchi type-III space-time is investigated in presence of a perfect fluid within the framework of Hu-Sawicki model. We use the dynamical system approach to perform a detailed analysis of the cosmological behaviour of this model for the model parameters n=1, c_1=1, determining all the fixed points, their stability and corresponding cosmological evolution. We have found stable fixed points with de Sitter solution along with unstable radiation like fixed points. We have identified a matter like point which act like an unstable spiral and when the initial conditions of a trajectory are very close to this point, it stabilizes at a stable accelerating point. Thus, in this model, the universe can naturally approach to a phase of accelerated expansion following a radiation or a matter dominated phase. It is also found that the isotropisation of this model is affected by the spatial curvature and that all the isotropic fixed points are found to be spatially flat.
An investigation of using an RQP based method to calculate parameter sensitivity derivatives
NASA Technical Reports Server (NTRS)
Beltracchi, Todd J.; Gabriele, Gary A.
1989-01-01
Estimation of the sensitivity of problem functions with respect to problem variables forms the basis for many of our modern day algorithms for engineering optimization. The most common application of problem sensitivities has been in the calculation of objective function and constraint partial derivatives for determining search directions and optimality conditions. A second form of sensitivity analysis, parameter sensitivity, has also become an important topic in recent years. By parameter sensitivity, researchers refer to the estimation of changes in the modeling functions and current design point due to small changes in the fixed parameters of the formulation. Methods for calculating these derivatives have been proposed by several authors (Armacost and Fiacco 1974, Sobieski et al 1981, Schmit and Chang 1984, and Vanderplaats and Yoshida 1985). Two drawbacks to estimating parameter sensitivities by current methods have been: (1) the need for second order information about the Lagrangian at the current point, and (2) the estimates assume no change in the active set of constraints. The first of these two problems is addressed here and a new algorithm is proposed that does not require explicit calculation of second order information.
Solving ODE Initial Value Problems With Implicit Taylor Series Methods
NASA Technical Reports Server (NTRS)
Scott, James R.
2000-01-01
In this paper we introduce a new class of numerical methods for integrating ODE initial value problems. Specifically, we propose an extension of the Taylor series method which significantly improves its accuracy and stability while also increasing its range of applicability. To advance the solution from t (sub n) to t (sub n+1), we expand a series about the intermediate point t (sub n+mu):=t (sub n) + mu h, where h is the stepsize and mu is an arbitrary parameter called an expansion coefficient. We show that, in general, a Taylor series of degree k has exactly k expansion coefficients which raise its order of accuracy. The accuracy is raised by one order if k is odd, and by two orders if k is even. In addition, if k is three or greater, local extrapolation can be used to raise the accuracy two additional orders. We also examine stability for the problem y'= lambda y, Re (lambda) less than 0, and identify several A-stable schemes. Numerical results are presented for both fixed and variable stepsizes. It is shown that implicit Taylor series methods provide an effective integration tool for most problems, including stiff systems and ODE's with a singular point.
Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 2; Adaptive Control
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III
2006-01-01
An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. Past input-output data and an estimate of the open-loop pulse response sequence are all that is needed to implement the algorithm for application at fixed Mach numbers. Transient measurements made during controller adaptation revealed that the controller coefficients converged to a steady state in the mean, and this implies that adaptation can be turned off at some point with no degradation in control performance. When converged, the control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. However, as in the case of fixed-gain GPC, the adaptive GPC performance was limited by spillover in sidebands around the suppressed Rossiter modes. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Beyond this range, stable operation of the control algorithm was not possible due to the fixed plant model in the algorithm.
Pressure standards and sensors up to 3 GPa, actual state and development trends
NASA Astrophysics Data System (ADS)
Wisniewski, Roland; Molinar, Gianfranco
1999-04-01
Metrological problems connected with pressure standards and sensors up to 3 GPa as an introduction to the pressure measurements in the so-called “GIGAPASCAL REGION”, 1-100 GPa, are discussed. Re-examination of Bi I-Bi II phase transition pressure as a fixed point of the International Practical Pressure Scale and correction of the NaCl Pressure Scale is proposed. Well-established sensors as candidates for secondary pressure standards up to 3 GPa are briefly presented.
Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography
Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier
2015-01-01
This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371
Impact Damage on a Thin Glass Plate with a Thin Polycarbonate Backing
2013-07-13
fixed and equals 0.25 in 3D (close to the soda-lime glass Poisson ratio of 0.22), and 1/3 in 2D, since the assumption is that material points interact...only through a pair-potential. The Poisson ratio limitation is removed in the state-based formulation of peridynamics (see Ref. [26]), however, here...we use the bond-based for simplicity. We note that, in dynamic fracture problems of the type considered in this work, the Poisson ratio value does not
Study on the fixed point in crustal deformation before strong earthquake
NASA Astrophysics Data System (ADS)
Niu, A.; Li, Y.; Yan, W. Mr
2017-12-01
Usually, scholars believe that the fault pre-sliding or expansion phenomenon will be observed near epicenter area before strong earthquake, but more and more observations show that the crust deformation nearby epicenter area is smallest(Zhou, 1997; Niu,2009,2012;Bilham, 2005; Amoruso et al., 2010). The theory of Fixed point t is a branch of mathematics that arises from the theory of topological transformation and has important applications in obvious model analysis. An important precursory was observed by two tilt-meter sets, installed at Wenchuan Observatory in the epicenter area, that the tilt changes were the smallest compared with the other 8 stations around them in one year before the Wenchuan earthquake. To subscribe the phenomenon, we proposed the minimum annual variation range that used as a topological transformation. The window length is 1 year, and the sliding length is 1 day. The convergence of points with minimum annual change in the 3 years before the Wenchuan earthquake is studied. And the results show that the points with minimum deformation amplitude basically converge to the epicenter region before the earthquake. The possible mechanism of fixed point of crustal deformation was explored. Concerning the fixed point of crust deformation, the liquidity of lithospheric medium and the isostasy theory are accepted by many scholars (Bott &Dean, 1973; Merer et al.1988; Molnar et al., 1975,1978; Tapponnier et al., 1976; Wang et al., 2001). To explain the fixed point of crust deformation before earthquakes, we study the plate bending model (Bai, et al., 2003). According to plate bending model and real deformation data, we have found that the earthquake rupture occurred around the extreme point of plate bending, where the velocities of displacement, tilt, strain, gravity and so on are close to zero, and the fixed points are located around the epicenter.The phenomenon of fixed point of crust deformation is different from former understandings about the earthquake rupture precursor. 1) The observations for crust deformation in natural conditions are different with dry and static experiments, and the former had the meaning of stress wave.2)The earthquake rupture has a special triggering mechanism that is different from the experiment with limited scale rock fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, J.; Zhang, J. T.; Ping, Q.
2013-09-11
The temperature primary standard over the range from the melting point of gallium to the freezing point of silver in National institute of Metrology (NIM), China, was established in the early 1990s. The performance of all of fixed-point furnaces degraded and needs to be updated due to many years of use. Nowadays, the satisfactory fixed point materials can be available with the development of the modern purification techniques. NIM plans to use a group of three cells for each defining fixed point temperature. In this way the eventual drift of individual cells can be evidenced by periodic intercomparison and thismore » will increase the reliability in disseminating the ITS-90 in China. This article describes the recent improvements in realization of ITS-90 over temperature range from the melting point of gallium to the freezing point of silver at NIM. Taking advantages of the technological advances in the design and manufacture of furnaces, the new three-zone furnaces and the open-type fixed points were developed from the freezing point of indium to the freezing point of silver, and a furnace with the three-zone semiconductor cooling was designed to automatically realize the melting point of gallium. The reproducibility of the new melting point of gallium and the new open-type freezing points of In, Sn, Zn. Al and Ag is improved, especially the freezing points of Al and Ag with the reproducibility of 0.2mK and 0.5mK respectively. The expanded uncertainty in the realization of these defining fixed point temperatures is 0.34mK, 0.44mK, 0.54mK, 0.60mK, 1.30mK and 1.88mK respectively.« less
Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-01-01
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813
Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-06-24
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.
Woolley, Karen L; Gertel, Art; Hamilton, Cindy W; Jacobs, Adam; Snyder, Gene P
2013-01-01
In this commentary, we present evidence that unethical authorship (eg, guest and ghost authoring) and other publication practices are not restricted to the pharmaceutical industry; they also occur in academia. Such practices are not an industry problem--they are a research problem. To enhance trust in industry-sponsored research, companies have made rapid and far-reaching changes to their publication guidelines, policies, and procedures. Professional medical writers have adopted, and continue to implement, these changes. Although evidence indicates that industry practices are improving, there is certainly more to do, both in industry and academia. We invite readers to join ongoing efforts to promote ethical publication practices.
New thinking, innateness and inherited representation.
Shea, Nicholas
2012-08-05
The New Thinking contained in this volume rejects an Evolutionary Psychology that is committed to innate domain-specific psychological mechanisms: gene-based adaptations that are unlearnt, developmentally fixed and culturally universal. But the New Thinking does not simply deny the importance of innate psychological traits. The problem runs deeper: the concept of innateness is not suited to distinguishing between the New Thinking and Evolutionary Psychology. That points to a more serious problem with the concept of innateness as it is applied to human psychological phenotypes. This paper argues that the features of recent human evolution highlighted by the New Thinking imply that the concept of inherited representation, set out here, is a better tool for theorizing about human cognitive evolution.
Fugazzotto, P A; Kirsch, A; Ackermann, K L; Neuendorff, G
1999-01-01
Numerous problems have been reported following various therapies used to attach natural teeth to implants beneath a fixed prosthesis. This study documents the results of 843 consecutive patients treated with 1,206 natural tooth/implant-supported prostheses utilizing 3,096 screw-fixed attachments. After 3 to 14 years in function, only 9 intrusion problems were noted. All problems were associated with fractured or lost screws. This report demonstrates the efficacy of such a treatment approach when a natural tooth/implant-supported fixed prosthesis is contemplated.
Meshless method for solving fixed boundary problem of plasma equilibrium
NASA Astrophysics Data System (ADS)
Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi
2015-07-01
This study solves the Grad-Shafranov equation with a fixed plasma boundary by utilizing a meshless method for the first time. Previous studies have utilized a finite element method (FEM) to solve an equilibrium inside the fixed separatrix. In order to avoid difficulties of FEM (such as mesh problem, difficulty of coding, expensive calculation cost), this study focuses on the meshless methods, especially RBF-MFS and KANSA's method to solve the fixed boundary problem. The results showed that CPU time of the meshless methods was ten to one hundred times shorter than that of FEM to obtain the same accuracy.
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
Invariant Solar Sail Formations in Elliptical Sun-Synchronous Orbits
NASA Astrophysics Data System (ADS)
Parsay, Khashayar
Current and past missions that study the Earth's geomagnetic tail require multiple spacecraft to fly in formation about a highly eccentric Keplerian reference orbit that has its apogee inside a predefined science region of interest. Because the geomagnetic tail is directed along the Sun-Earth line and therefore rotates annually, inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year. This limitation reduces the duration of the science phase to less than a few months annually. Solar sails are capable of creating non-Keplerian, Sun-synchronous orbits that rotate with the geomagnetic tail. A solar sail flying in a Sun-synchronous orbit will have a continuous presence in the geomagnetic tail throughout the entire year, which significantly improves the in situ observations of the magnetosphere. To achieve a Sun-synchronous orbit, a solar sail is required to maintain a Sun-pointing attitude, which leads to the artificial precession of the orbit apse line in a Sun-synchronous manner, leaving the orbit apogee inside the science region of interest throughout entire the year. To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this dissertation is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail. These averaged rates are used to analytically derive the necessary conditions for a drift-free solar sail formation in Sun-synchronous orbits, assuming a fixed Sun-pointing orientation for each sail in formation. Next, the problem of formation design is solved using nonlinear programming for optimal two-craft, three-craft, and four-craft solar sail formations, in terms of formation quality and stability. Finally, the problem of formation establishment is addressed using optimal control theory, assuming that the sails are capable of making small changes to their orientations with respect to the Sun. These studies demonstrate the feasibility of solar sail formation flying for exploring the geomagnetic tail and improve upon previous work, which only considered unnatural relative motions that require continuous use of active control to remain in formation.
Fixed point theorems for generalized contractions in ordered metric spaces
NASA Astrophysics Data System (ADS)
O'Regan, Donal; Petrusel, Adrian
2008-05-01
The purpose of this paper is to present some fixed point results for self-generalized contractions in ordered metric spaces. Our results generalize and extend some recent results of A.C.M. Ran, M.C. Reurings [A.C.M. Ran, MEC. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443], J.J. Nieto, R. Rodríguez-López [J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223-239; J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007) 2205-2212], J.J. Nieto, R.L. Pouso, R. Rodríguez-López [J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505-2517], A. Petrusel, I.A. Rus [A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418] and R.P. Agarwal, M.A. El-Gebeily, D. O'Regan [R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press]. As applications, existence and uniqueness results for Fredholm and Volterra type integral equations are given.
Constructive methods of invariant manifolds for kinetic problems
NASA Astrophysics Data System (ADS)
Gorban, Alexander N.; Karlin, Iliya V.; Zinovyev, Andrei Yu.
2004-06-01
The concept of the slow invariant manifold is recognized as the central idea underpinning a transition from micro to macro and model reduction in kinetic theories. We present the Constructive Methods of Invariant Manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in the most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the differential equation for a manifold immersed in the phase space ( the invariance equation). The equation of motion for immersed manifolds is obtained ( the film extension of the dynamics). Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability. A collection of methods to derive analytically and to compute numerically the slow invariant manifolds is presented. Among them, iteration methods based on incomplete linearization, relaxation method and the method of invariant grids are developed. The systematic use of thermodynamics structures and of the quasi-chemical representation allow to construct approximations which are in concordance with physical restrictions. The following examples of applications are presented: nonperturbative deviation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for Knudsen numbers Kn∼1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of list of variables) to gain more accuracy in description of highly nonequilibrium flows; determination of molecules dimension (as diameters of equivalent hard spheres) from experimental viscosity data; model reduction in chemical kinetics; derivation and numerical implementation of constitutive equations for polymeric fluids; the limits of macroscopic description for polymer molecules, etc.
Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, Massimiliano, E-mail: massimiliano.rinaldi@unitn.it
We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to mattermore » domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.« less
Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations
NASA Astrophysics Data System (ADS)
Rinaldi, Massimiliano
2015-10-01
We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to matter domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.
Hackenberg, T D; Hineline, P N
1992-01-01
Pigeons chose between two schedules of food presentation, a fixed-interval schedule and a progressive-interval schedule that began at 0 s and increased by 20 s with each food delivery provided by that schedule. Choosing one schedule disabled the alternate schedule and stimuli until the requirements of the chosen schedule were satisfied, at which point both schedules were again made available. Fixed-interval duration remained constant within individual sessions but varied across conditions. Under reset conditions, completing the fixed-interval schedule not only produced food but also reset the progressive interval to its minimum. Blocks of sessions under the reset procedure were interspersed with sessions under a no-reset procedure, in which the progressive schedule value increased independent of fixed-interval choices. Median points of switching from the progressive to the fixed schedule varied systematically with fixed-interval value, and were consistently lower during reset than during no-reset conditions. Under the latter, each subject's choices of the progressive-interval schedule persisted beyond the point at which its requirements equaled those of the fixed-interval schedule at all but the highest fixed-interval value. Under the reset procedure, switching occurred at or prior to that equality point. These results qualitatively confirm molar analyses of schedule preference and some versions of optimality theory, but they are more adequately characterized by a model of schedule preference based on the cumulated values of multiple reinforcers, weighted in inverse proportion to the delay between the choice and each successive reinforcer. PMID:1548449
Entanglement entropy at infinite-randomness fixed points in higher dimensions.
Lin, Yu-Cheng; Iglói, Ferenc; Rieger, Heiko
2007-10-05
The entanglement entropy of the two-dimensional random transverse Ising model is studied with a numerical implementation of the strong-disorder renormalization group. The asymptotic behavior of the entropy per surface area diverges at, and only at, the quantum phase transition that is governed by an infinite-randomness fixed point. Here we identify a double-logarithmic multiplicative correction to the area law for the entanglement entropy. This contrasts with the pure area law valid at the infinite-randomness fixed point in the diluted transverse Ising model in higher dimensions.
Fixed Point Results of Locally Contractive Mappings in Ordered Quasi-Partial Metric Spaces
Arshad, Muhammad; Ahmad, Jamshaid
2013-01-01
Fixed point results for a self-map satisfying locally contractive conditions on a closed ball in an ordered 0-complete quasi-partial metric space have been established. Instead of monotone mapping, the notion of dominated mappings is applied. We have used weaker metric, weaker contractive conditions, and weaker restrictions to obtain unique fixed points. An example is given which shows that how this result can be used when the corresponding results cannot. Our results generalize, extend, and improve several well-known conventional results. PMID:24062629
Latif, Abdul; Mongkolkeha, Chirasak; Sintunavarat, Wutiphol
2014-01-01
We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011) to generalized α-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.
Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde
2015-11-01
The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
van Stralen, R A; Heesterbeek, P J C; Wymenga, A B
2015-11-01
In anteroposterior (AP)-gliding mobile-bearing total knee arthroplasty (TKA), the femoral component can theoretically slide forward resulting in a more anterior contact point, causing pain due to impingement. A lower lever arm of the extensor apparatus can also attribute to higher patella pressures and pain. The goal of this study was to determine the contact point in a cohort of mobile- and fixed-bearing TKAs, to determine whether the contact point lies more anteriorly in mobile-bearing TKA and to confirm whether this results in anterior knee pain. We used 38 fixed-bearing TKA and 40 mobile-bearing TKA from a randomized trial with straight lateral knee X-rays and measured the contact point. The functional outcome was measured by Knee Society Score at 12 months postoperatively. Pain scores were analysed using a VAS score (0-100 mm) in all patients at rest and when moving. Difficulty at rising up out of a chair was also assessed using a VAS score. The contact point in mobile-bearing TKA was situated at 59.5 % of the AP distance of the tibia and in the fixed-bearing TKA group at 66.1 % (P< 0.05). Patients with mobile- and fixed-bearing TKAs had similar knee scores, pain scores and difficulty in chair rise. No significant correlation was found between contact point and knee pain. The hypothesis of a more anterior contact point in the mobile-bearing cohort was confirmed but no correlation with functional and pain scores in this cohort could be found. The tibiofemoral contact point could not be correlated with a different clinical outcome and higher incidence of anterior knee pain. This study further adds to the knowledge on possible differences between mobile- and fixed-bearing prostheses. Next to that, bad outcomes could not be explained by CP. Case series, Level IV.
NASA Astrophysics Data System (ADS)
Edler, F.; Huang, K.
2016-12-01
Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3(86 %)+ZrO2(14 %)) were filled with pure palladium and used to calibrate type B thermocouples (Pt30 %Rh/Pt6 %Rh). A critical point by using miniature fixed points with small amounts of fixed-point material is the analysis of the melting curves, which are characterized by significant slopes during the melting process compared to flat melting plateaus obtainable using conventional fixed-point cells. The method of the extrapolated starting point temperature using straight line approximation of the melting plateau was applied to analyze the melting curves. This method allowed an unambiguous determination of an electromotive force (emf) assignable as melting temperature. The strict consideration of two constraints resulted in a unique, repeatable and objective method to determine the emf at the melting temperature within an uncertainty of about 0.1 μ V. The lifetime and long-term stability of the miniature fixed points was investigated by performing more than 100 melt/freeze cycles for each crucible of the different ceramic materials. No failure of the crucibles occurred indicating an excellent mechanical stability of the investigated miniature cells. The consequent limitation of heating rates to values below {± }3.5 K min^{-1} above 1100° C and the carefully and completely filled crucibles (the liquid palladium occupies the whole volume of the crucible) are the reasons for successfully preventing the crucibles from breaking. The thermal stability of the melting temperature of palladium was excellent when using the crucibles made of Al2O3(86 %)+ZrO2(14 %) and ZrO2. Emf drifts over the total duration of the long-term investigation were below a temperature equivalent of about 0.1 K-0.2 K.
Onsite Calibration of a Precision IPRT Based on Gallium and Gallium-Based Small-Size Eutectic Points
NASA Astrophysics Data System (ADS)
Sun, Jianping; Hao, Xiaopeng; Zeng, Fanchao; Zhang, Lin; Fang, Xinyun
2017-04-01
Onsite thermometer calibration with temperature scale transfer technology based on fixed points can effectively improve the level of industrial temperature measurement and calibration. The present work performs an onsite calibration of a precision industrial platinum resistance thermometer near room temperature. The calibration is based on a series of small-size eutectic points, including Ga-In (15.7°C), Ga-Sn (20.5°C), Ga-Zn (25.2°C), and a Ga fixed point (29.7°C), developed in a portable multi-point automatic realization apparatus. The temperature plateaus of the Ga-In, Ga-Sn, and Ga-Zn eutectic points and the Ga fixed point last for longer than 2 h, and their reproducibility was better than 5 mK. The device is suitable for calibrating non-detachable temperature sensors in advanced environmental laboratories and industrial fields.
Scaling in the vicinity of the four-state Potts fixed point
NASA Astrophysics Data System (ADS)
Blöte, H. W. J.; Guo, Wenan; Nightingale, M. P.
2017-08-01
We study a self-dual generalization of the Baxter-Wu model, employing results obtained by transfer matrix calculations of the magnetic scaling dimension and the free energy. While the pure critical Baxter-Wu model displays the critical behavior of the four-state Potts fixed point in two dimensions, in the sense that logarithmic corrections are absent, the introduction of different couplings in the up- and down triangles moves the model away from this fixed point, so that logarithmic corrections appear. Real couplings move the model into the first-order range, away from the behavior displayed by the nearest-neighbor, four-state Potts model. We also use complex couplings, which bring the model in the opposite direction characterized by the same type of logarithmic corrections as present in the four-state Potts model. Our finite-size analysis confirms in detail the existing renormalization theory describing the immediate vicinity of the four-state Potts fixed point.
Matrix product density operators: Renormalization fixed points and boundary theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirac, J.I.; Pérez-García, D., E-mail: dperezga@ucm.es; ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well asmore » to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).« less
Assessment of tungsten/rhenium thermocouples with metal-carbon eutectic fixed points up to 1500°C
NASA Astrophysics Data System (ADS)
Gotoh, M.
2013-09-01
Four Type A thermocouples and two Type C thermocouples were calibrated at the Au fixed point and Co-C and Pd-C eutectic fixed points. The thermocouples were exposed to 1330 °C for a total of 100 hours. The maximum drift due to the exposure was found to be 4.8 °C. The fixed-point calibration EMF of these thermocouples deviated by less than 0.86% from the temperature specified by the standards ASTM E230-2003 for Type C and GOSTR 8.585-2001 for Type A. The length of one of Type A thermocouples A52 is longer than the others by 150mm. Making use of this provision it was possible to place annealed part of A52 to the temperature gradient part of calibration arrangement every time. Therefore observed aging effect was as low as 0.5 °C compared to the other thermocouples.
More asymptotic safety guaranteed
NASA Astrophysics Data System (ADS)
Bond, Andrew D.; Litim, Daniel F.
2018-04-01
We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-01-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
A restricted Steiner tree problem is solved by Geometric Method II
NASA Astrophysics Data System (ADS)
Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu
2013-03-01
The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.
Inflation, quintessence, and the origin of mass
NASA Astrophysics Data System (ADS)
Wetterich, C.
2015-08-01
In a unified picture both inflation and present dynamical dark energy arise from the same scalar field. The history of the Universe describes a crossover from a scale invariant "past fixed point" where all particles are massless, to a "future fixed point" for which spontaneous breaking of the exact scale symmetry generates the particle masses. The cosmological solution can be extrapolated to the infinite past in physical time - the universe has no beginning. This is seen most easily in a frame where particle masses and the Planck mass are field-dependent and increase with time. In this "freeze frame" the Universe shrinks and heats up during radiation and matter domination. In the equivalent, but singular Einstein frame cosmic history finds the familiar big bang description. The vicinity of the past fixed point corresponds to inflation. It ends at a first stage of the crossover. A simple model with no more free parameters than ΛCDM predicts for the primordial fluctuations a relation between the tensor amplitude r and the spectral index n, r = 8.19 (1 - n) - 0.137. The crossover is completed by a second stage where the beyond-standard-model sector undergoes the transition to the future fixed point. The resulting increase of neutrino masses stops a cosmological scaling solution, relating the present dark energy density to the present neutrino mass. At present our simple model seems compatible with all observational tests. We discuss how the fixed points can be rooted within quantum gravity in a crossover between ultraviolet and infrared fixed points. Then quantum properties of gravity could be tested both by very early and late cosmology.
NASA Astrophysics Data System (ADS)
da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.
2018-04-01
A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.705 Special showing for renewal of common carrier station...
Code of Federal Regulations, 2013 CFR
2013-10-01
... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.705 Special showing for renewal of common carrier station...
Code of Federal Regulations, 2012 CFR
2012-10-01
... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.705 Special showing for renewal of common carrier station...
Code of Federal Regulations, 2011 CFR
2011-10-01
... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.705 Special showing for renewal of common carrier station...
Production of black holes and their angular momentum distribution in models with split fermions
NASA Astrophysics Data System (ADS)
Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan
2006-05-01
In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n-n¯ oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross section for the production of black holes and their angular momentum distribution in these models with “split” fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.
Vigilance system in rails for train hot point temperatures during circulation
NASA Astrophysics Data System (ADS)
Meca Meca, Francisco J.; Rodriguez Sanchez, Francisco J.; Mazo Quintas, Manuel; Garcia Dominguez, Juan J.; Fonolla Navarro, Rafael; Sebastian Martinez, Eduardo; Jimenez Calvo, Jose A.; Lillo Rodriguez, Diego; Garcia Garrido, Miguel A.
2000-06-01
Wheels, hubs and brake discs in a train during its circulation are under mechanical strains that make its temperature increase above the environment temperature. Mechanical defects in those elements produce an excessive friction and, as a consequence of it, an important increment of its temperature in relation to normal values. Detecting these anomalies is essential to avoid accidents and it is performed by fixed systems located next to rails which make infrared temperature measurements of hot points and send them to a supervisory station that takes the proper steps. The paper introduces the most important problems which must be dealt with during the designing stage of the measurement system. It also explains the solutions taken by the authors in order to assure the minimum operative aims demanded by the application. These problems includes: the choice of the detector and measurement method, communication with the supervisory station, and the environment conditions. Finally, the research lines followed by the authors in order to improve and extend the system's capabilities are explained.
Experiments with conjugate gradient algorithms for homotopy curve tracking
NASA Technical Reports Server (NTRS)
Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.
1991-01-01
There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.
NASA Astrophysics Data System (ADS)
Ragay-Enot, Monalisa; Lee, Young Hee; Kim, Yong-Gyoo
2017-07-01
A mini multi-fixed-point cell (length 118 mm, diameter 33 mm) containing three materials (In-Zn eutectic (mass fraction 3.8% Zn), Sn and Pb) in a single crucible was designed and fabricated for the easy and economical fixed-point calibration of industrial platinum resistance thermometers (IPRTs) for use in industrial temperature measurements. The melting and freezing behaviors of the metals were investigated and the phase transition temperatures were determined using a commercial dry-block calibrator. Results showed that the melting plateaus are generally easy to realize and are reproducible, flatter and of longer duration. On the other hand, the freezing process is generally difficult, especially for Sn, due to the high supercooling required to initiate freezing. The observed melting temperatures at optimum set conditions were 143.11 °C (In-Zn), 231.70 °C (Sn) and 327.15 °C (Pb) with expanded uncertainties (k = 2) of 0.12 °C, 0.10 °C and 0.13 °C, respectively. This multi-fixed-point cell can be treated as a sole reference temperature-generating system. Based on the results, the realization of melting points of the mini multi-fixed-point cell can be recommended for the direct calibration of IPRTs in industrial applications without the need for a reference thermometer.
Parameter estimation for slit-type scanning sensors
NASA Technical Reports Server (NTRS)
Fowler, J. W.; Rolfe, E. G.
1981-01-01
The Infrared Astronomical Satellite, scheduled for launch into a 900 km near-polar orbit in August 1982, will perform an infrared point source survey by scanning the sky with slit-type sensors. The description of position information is shown to require the use of a non-Gaussian random variable. Methods are described for deciding whether separate detections stem from a single common source, and a formulism is developed for the scan-to-scan problems of identifying multiple sightings of inertially fixed point sources for combining their individual measurements into a refined estimate. Several cases are given where the general theory yields results which are quite different from the corresponding Gaussian applications, showing that argument by Gaussian analogy would lead to error.
The optimization of self-phased arrays for diurnal motion tracking of synchronous satellites
NASA Technical Reports Server (NTRS)
Theobold, D. M.; Hodge, D. B.
1977-01-01
The diurnal motion of a synchronous satellite necessitates mechanical tracking when a large aperture, high gain antenna is employed at the earth terminal. An alternative solution to this tracking problem is to use a self phased array consisting of a number of fixed pointed elements, each with moderate directivity. Non-mechanical tracking and adequate directive gain are achieved electronically by phase coherent summing of the element outputs. The element beamwidths provide overlapping area coverage of the satellite motion but introduce a diurnal variation into the array gain. The optimum element beamwidth and pointing direction of these elements can be obtained under the condition that the array gain is maximized simultaneously with the minimization of the diurnal variation.
Fingering in a channel and tripolar Loewner evolutions.
Durán, Miguel A; Vasconcelos, Giovani L
2011-11-01
A class of Laplacian growth models in the channel geometry is studied using the formalism of tripolar Loewner evolutions, in which three points, namely, the channel corners and the point at infinity, are kept fixed. Initially, the problem of fingered growth, where growth takes place only at the tips of slitlike fingers, is revisited and a class of exact solutions of the corresponding Loewner equation is presented for the case of stationary driving functions. A model for interface growth is then formulated in terms of a generalized tripolar Loewner equation and several examples are presented. It is shown that the growing interface evolves into a steadily moving finger and that tip competition arises for nonsymmetric initial configurations with multiple tips.
Fingering in a channel and tripolar Loewner evolutions
NASA Astrophysics Data System (ADS)
Durán, Miguel A.; Vasconcelos, Giovani L.
2011-11-01
A class of Laplacian growth models in the channel geometry is studied using the formalism of tripolar Loewner evolutions, in which three points, namely, the channel corners and the point at infinity, are kept fixed. Initially, the problem of fingered growth, where growth takes place only at the tips of slitlike fingers, is revisited and a class of exact solutions of the corresponding Loewner equation is presented for the case of stationary driving functions. A model for interface growth is then formulated in terms of a generalized tripolar Loewner equation and several examples are presented. It is shown that the growing interface evolves into a steadily moving finger and that tip competition arises for nonsymmetric initial configurations with multiple tips.
A general CPL-AdS methodology for fixing dynamic parameters in dual environments.
Huang, De-Shuang; Jiang, Wen
2012-10-01
The algorithm of Continuous Point Location with Adaptive d-ary Search (CPL-AdS) strategy exhibits its efficiency in solving stochastic point location (SPL) problems. However, there is one bottleneck for this CPL-AdS strategy which is that, when the dimension of the feature, or the number of divided subintervals for each iteration, d is large, the decision table for elimination process is almost unavailable. On the other hand, the larger dimension of the features d can generally make this CPL-AdS strategy avoid oscillation and converge faster. This paper presents a generalized universal decision formula to solve this bottleneck problem. As a matter of fact, this decision formula has a wider usage beyond handling out this SPL problems, such as dealing with deterministic point location problems and searching data in Single Instruction Stream-Multiple Data Stream based on Concurrent Read and Exclusive Write parallel computer model. Meanwhile, we generalized the CPL-AdS strategy with an extending formula, which is capable of tracking an unknown dynamic parameter λ in both informative and deceptive environments. Furthermore, we employed different learning automata in the generalized CPL-AdS method to find out if faster learning algorithm will lead to better realization of the generalized CPL-AdS method. All of these aforementioned contributions are vitally important whether in theory or in practical applications. Finally, extensive experiments show that our proposed approaches are efficient and feasible.
47 CFR 101.703 - Permissible communications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Permissible communications. 101.703 Section 101.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.703 Permissible...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Eligibility. 101.601 Section 101.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Private Operational Fixed Point-to-Point Microwave Service § 101.601 Eligibility. Any person, or...
47 CFR 101.703 - Permissible communications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Permissible communications. 101.703 Section 101.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.703 Permissible...
47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a non...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Eligibility. 101.601 Section 101.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Private Operational Fixed Point-to-Point Microwave Service § 101.601 Eligibility. Any person, or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Eligibility. 101.601 Section 101.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Private Operational Fixed Point-to-Point Microwave Service § 101.601 Eligibility. Any person, or...
47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a non...
47 CFR 101.703 - Permissible communications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Permissible communications. 101.703 Section 101.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.703 Permissible...
47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a non...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Eligibility. 101.601 Section 101.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Private Operational Fixed Point-to-Point Microwave Service § 101.601 Eligibility. Any person, or...
47 CFR 101.703 - Permissible communications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Permissible communications. 101.703 Section 101.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.703 Permissible...
47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a non...
47 CFR 101.135 - Shared use of radio stations and the offering of private carrier service.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101... Operational Fixed Point-to-Point Microwave radio stations may share the use of their facilities on a non...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Eligibility. 101.601 Section 101.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Private Operational Fixed Point-to-Point Microwave Service § 101.601 Eligibility. Any person, or...
47 CFR 101.703 - Permissible communications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Permissible communications. 101.703 Section 101.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.703 Permissible...
Regulator dependence of fixed points in quantum Einstein gravity with R 2 truncation
NASA Astrophysics Data System (ADS)
Nagy, S.; Fazekas, B.; Peli, Z.; Sailer, K.; Steib, I.
2018-03-01
We performed a functional renormalization group analysis for the quantum Einstein gravity including a quadratic term in the curvature. The ultraviolet non-gaussian fixed point and its critical exponent for the correlation length are identified for different forms of regulators in case of dimension 3. We searched for that optimized regulator where the physical quantities show the least regulator parameter dependence. It is shown that the Litim regulator satisfies this condition. The infrared fixed point has also been investigated, it is found that the exponent is insensitive to the third coupling introduced by the R 2 term.
A regularity result for fixed points, with applications to linear response
NASA Astrophysics Data System (ADS)
Sedro, Julien
2018-04-01
In this paper, we show a series of abstract results on fixed point regularity with respect to a parameter. They are based on a Taylor development taking into account a loss of regularity phenomenon, typically occurring for composition operators acting on spaces of functions with finite regularity. We generalize this approach to higher order differentiability, through the notion of an n-graded family. We then give applications to the fixed point of a nonlinear map, and to linear response in the context of (uniformly) expanding dynamics (theorem 3 and corollary 2), in the spirit of Gouëzel-Liverani.
New thinking, innateness and inherited representation
Shea, Nicholas
2012-01-01
The New Thinking contained in this volume rejects an Evolutionary Psychology that is committed to innate domain-specific psychological mechanisms: gene-based adaptations that are unlearnt, developmentally fixed and culturally universal. But the New Thinking does not simply deny the importance of innate psychological traits. The problem runs deeper: the concept of innateness is not suited to distinguishing between the New Thinking and Evolutionary Psychology. That points to a more serious problem with the concept of innateness as it is applied to human psychological phenotypes. This paper argues that the features of recent human evolution highlighted by the New Thinking imply that the concept of inherited representation, set out here, is a better tool for theorizing about human cognitive evolution. PMID:22734066
Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model
NASA Astrophysics Data System (ADS)
Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I.
2008-12-01
Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.
Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model.
Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I
2008-12-01
Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.
MFL Benchmark Problem 2: Laboratory Measurements
NASA Astrophysics Data System (ADS)
Etcheverry, J.; Pignotti, A.; Sánchez, G.; Stickar, P.
2003-03-01
This experiment involves the measurement of the magnetic flux leaked from a rotating seamless steel tube with two machined notches. The signal measured is the radial component of the leaked field at a fixed point in space, as a function of the notch position, for four values of the liftoff and two notches. As the pipe tangential velocity was varied between 0.23 and 0.62 m/s, the sole observed effect was that of increasing the signal by a value that grows linearly with the velocity and is independent of the notch angular position.
Estimation for the Linear Model With Uncertain Covariance Matrices
NASA Astrophysics Data System (ADS)
Zachariah, Dave; Shariati, Nafiseh; Bengtsson, Mats; Jansson, Magnus; Chatterjee, Saikat
2014-03-01
We derive a maximum a posteriori estimator for the linear observation model, where the signal and noise covariance matrices are both uncertain. The uncertainties are treated probabilistically by modeling the covariance matrices with prior inverse-Wishart distributions. The nonconvex problem of jointly estimating the signal of interest and the covariance matrices is tackled by a computationally efficient fixed-point iteration as well as an approximate variational Bayes solution. The statistical performance of estimators is compared numerically to state-of-the-art estimators from the literature and shown to perform favorably.
Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.
Shah, Kamal; Khan, Rahmat Ali
2016-01-01
In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.
Fixed or Rotating Night Shift Work Undertaken by Women: Implications for Fertility and Miscarriage.
Fernandez, Renae C; Marino, Jennifer L; Varcoe, Tamara J; Davis, Scott; Moran, Lisa J; Rumbold, Alice R; Brown, Hannah M; Whitrow, Melissa J; Davies, Michael J; Moore, Vivienne M
2016-03-01
This review summarizes the evidence concerning effects of night shift work on women's reproductive health, specifically difficulty in conceiving and miscarriage. We distinguish between fixed night shift and rotating night shift, as the population subgroups exposed, the social and biological mechanisms, and the magnitude of effects are likely to differ; of note, women working fixed night shift are known to have high tolerance for this schedule. We identified two relevant systematic reviews with meta-analyses and five additional studies. Night shift work may give rise to menstrual cycle disturbances, but effect sizes are imprecise. Endometriosis may be elevated in night shift workers, but evidence is only preliminary. Adequate data are lacking to assess associations between night shift work and infertility or time to pregnancy. The weight of evidence begins to point to working at night, whether in fixed or rotating shifts, as a risk factor for miscarriage. There are many methodological problems with this literature, with substantial variation in the definitions of night shift and schedule types making comparisons between studies difficult and pooling across studies questionable. Nevertheless, there appears to be grounds for caution and counselling where women have concerns about night shift work and their reproductive health. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Hopkins, Carl
2011-05-01
In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations.
Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.
Liu, Xiwei; Chen, Tianping
2018-01-01
In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.
Asymptotic safety of quantum gravity beyond Ricci scalars
NASA Astrophysics Data System (ADS)
Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph
2018-04-01
We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.
Universality of modular symmetries in two-dimensional magnetotransport
NASA Astrophysics Data System (ADS)
Olsen, K. S.; Limseth, H. S.; Lütken, C. A.
2018-01-01
We analyze experimental quantum Hall data from a wide range of different materials, including semiconducting heterojunctions, thin films, surface layers, graphene, mercury telluride, bismuth antimonide, and black phosphorus. The fact that these materials have little in common, except that charge transport is effectively two-dimensional, shows how robust and universal the quantum Hall phenomenon is. The scaling and fixed point data we analyzed appear to show that magnetotransport in two dimensions is governed by a small number of universality classes that are classified by modular symmetries, which are infinite discrete symmetries not previously seen in nature. The Hall plateaux are (infrared) stable fixed points of the scaling-flow, and quantum critical points (where the wave function is delocalized) are unstable fixed points of scaling. Modular symmetries are so rigid that they in some cases fix the global geometry of the scaling flow, and therefore predict the exact location of quantum critical points, as well as the shape of flow lines anywhere in the phase diagram. We show that most available experimental quantum Hall scaling data are in good agreement with these predictions.
NASA Astrophysics Data System (ADS)
Nikitin, S. A.; Polezhaev, V. I.; Sazonov, V. V.
2001-03-01
The problem of the interpretation of measurements made by means of a convection sensor is considered. The sensor is a cubic chamber filled by a viscous fluid (gas). Fixed and unequal temperatures are maintained on two opposite sides of the cube; the other sides are perfect heat conductors. Two differential thermocouples are placed inside the chamber to measure the temperature difference at two pairs of fixed points. The sensor is mounted aboard the Earth's satellite. Mathematical models of various degrees of complexity are proposed which describe processes of heat and mass transfer under the action of a quasistatic component of microaccelerations. The results of mathematical simulation of the data of sensor thermocouples presenting a response to the real quasistatic component of microaccelerations which took place aboard the Mirstation are given. It is shown that under usual conditions of an orbital mission the sensor presents a linear low-frequency filter. By combining the data of several identical sensors, tightly arranged and oriented in a certain way, it is possible to measure low-frequency components of the angular acceleration of the satellite and linear microaccelerations at the point of the sensor position.
NASA Astrophysics Data System (ADS)
Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
2016-06-01
This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli (2006) [36]. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter ρ and the chemical potential μ. Singular contributions to the local free energy in the form of logarithmic or double-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonov's fixed point theorem in a rather unusual separable and reflexive Banach space.
NASA Astrophysics Data System (ADS)
Mostafa, Mostafa E.
2005-10-01
The present study shows that reconstructing the reduced stress tensor (RST) from the measurable fault-slip data (FSD) and the immeasurable shear stress magnitudes (SSM) is a typical iteration problem. The result of direct inversion of FSD presented by Angelier [1990. Geophysical Journal International 103, 363-376] is considered as a starting point (zero step iteration) where all SSM are assigned constant value ( λ=√{3}/2). By iteration, the SSM and RST update each other until they converge to fixed values. Angelier [1990. Geophysical Journal International 103, 363-376] designed the function upsilon ( υ) and the two estimators: relative upsilon (RUP) and (ANG) to express the divergence between the measured and calculated shear stresses. Plotting individual faults' RUP at successive iteration steps shows that they tend to zero (simulated data) or to fixed values (real data) at a rate depending on the orientation and homogeneity of the data. FSD of related origin tend to aggregate in clusters. Plots of the estimators ANG versus RUP show that by iteration, labeled data points are disposed in clusters about a straight line. These two new plots form the basis of a technique for separating FSD into homogeneous clusters.
Eigensolutions of nonviscously damped systems based on the fixed-point iteration
NASA Astrophysics Data System (ADS)
Lázaro, Mario
2018-03-01
In this paper, nonviscous, nonproportional, symmetric vibrating structures are considered. Nonviscously damped systems present dissipative forces depending on the time history of the response via kernel hereditary functions. Solutions of the free motion equation leads to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices, this latter as dependent on frequency. Viscous damping can be considered as a particular case, involving damping forces as function of the instantaneous velocity of the degrees of freedom. In this work, a new numerical procedure to compute eigensolutions is proposed. The method is based on the construction of certain recursive functions which, under a iterative scheme, allow to reach eigenvalues and eigenvectors simultaneously and avoiding computation of eigensensitivities. Eigenvalues can be read then as fixed-points of those functions. A deep analysis of the convergence is carried out, focusing specially on relating the convergence conditions and error-decay rate to the damping model features, such as the nonproportionality and the viscoelasticity. The method is validated using two 6 degrees of freedom numerical examples involving both nonviscous and viscous damping and a continuous system with a local nonviscous damper. The convergence and the sequences behavior are in agreement with the results foreseen by the theory.
On the origin of reproducible sequential activity in neural circuits
NASA Astrophysics Data System (ADS)
Afraimovich, V. S.; Zhigulin, V. P.; Rabinovich, M. I.
2004-12-01
Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.
On the origin of reproducible sequential activity in neural circuits.
Afraimovich, V S; Zhigulin, V P; Rabinovich, M I
2004-12-01
Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.
Time-dependent spectral renormalization method
NASA Astrophysics Data System (ADS)
Cole, Justin T.; Musslimani, Ziad H.
2017-11-01
The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.
Rigorous high-precision enclosures of fixed points and their invariant manifolds
NASA Astrophysics Data System (ADS)
Wittig, Alexander N.
The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by Johannes Grote is extended to compute very accurate polynomial approximations to invariant manifolds of discrete maps of arbitrary dimension around hyperbolic fixed points. The algorithm presented allows for automatic removal of resonances occurring during construction. A method for the rigorous enclosure of invariant manifolds of continuous systems is introduced. Using methods developed for discrete maps, polynomial approximations of invariant manifolds of hyperbolic fixed points of ODEs are obtained. These approximations are outfit with a sharp error bound which is verified to rigorously contain the manifolds. While we focus on the three dimensional case, verification in higher dimensions is possible using similar techniques. Integrating the resulting enclosures using the verified COSY VI integrator, the initial manifold enclosures are expanded to yield sharp enclosures of large parts of the stable and unstable manifolds. To demonstrate the effectiveness of this method, we construct enclosures of the invariant manifolds of the Lorenz system and show pictures of the resulting manifold enclosures. To the best of our knowledge, these enclosures are the largest verified enclosures of manifolds in the Lorenz system in existence.
Development of Fixed-Point Cells at the SMU
NASA Astrophysics Data System (ADS)
Ďuriš, S.; Ranostaj, J.; Palenčár, R.
2008-06-01
One of the research programs realized at the thermometry laboratory of the Slovak Institute of Metrology (SMU) in recent years has focused on the development of fixed-point cells. In the frame of this research, several primary cells for realization of the International Temperature Scale of 1990 (ITS-90) and several secondary cells for industrial thermometer calibrations were built and studied. This article discusses primary cells for the gallium and mercury fixed points and miniature cells for the zinc point that were developed at the SMU. Information about the cell designs is provided, the materials that were used are specified, and the procedures for their manufacture are described. Briefly, the realization of the fixed points of mercury, gallium, and zinc by using these cells is also described. Many experiments were carried out to study the characteristics of these cells. One of the gallium cells was compared with the circulating transfer cell during the key comparison CCT-K3, and it and the mercury cell were used for the EUROMET Project No. 552. The results of the experiments together with the results of the comparisons show the high quality of these cells. Secondary zinc-point cells were compared against SMU primary zinc-point cells. The comparison shows agreement within 0.12 mK.
Glassy phase in quenched disordered crystalline membranes
NASA Astrophysics Data System (ADS)
Coquand, O.; Essafi, K.; Kownacki, J.-P.; Mouhanna, D.
2018-03-01
We investigate the flat phase of D -dimensional crystalline membranes embedded in a d -dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of ɛ =4 -D and 1 /d expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.
NASA Astrophysics Data System (ADS)
de Oliveira, Lília M.; Santos, Nádia A. P.; Maillard, Philippe
2013-10-01
Non-point source pollution (NPSP) is perhaps the leading cause of water quality problems and one of the most challenging environmental issues given the difficulty of modeling and controlling it. In this article, we applied the Manning equation, a hydraulic concept, to improve models of non-point source pollution and determine its influence as a function of slope - land cover roughness for runoff to reach the stream. In our study the equation is somewhat taken out of its usual context to be applies to the flow of an entire watershed. Here a digital elevation model (DEM) from the SRTM satellite was used to compute the slope and data from the RapidEye satellite constellation was used to produce a land cover map later transformed into a roughness surface. The methodology is applied to a 1433 km2 watershed in Southeast Brazil mostly covered by forest, pasture, urban and wetlands. The model was used to create slope buffer of varying width in which the proportions of land cover and roughness coefficient were obtained. Next we correlated these data, through regression, with four water quality parameters measured in situ: nitrate, phosphorous, faecal coliform and turbidity. We compare our results with the ones obtained by fixed buffer. It was found that slope buffer outperformed fixed buffer with higher coefficients of determination up to 15%.
Video change detection for fixed wing UAVs
NASA Astrophysics Data System (ADS)
Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa
2017-10-01
In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the image processing and change detection, we use the approach of Muller.4 Although it was developed for unmanned ground vehicles (UGVs), it enables a near real time video change detection for aerial videos. Concluding, we discuss the demands on sensor systems in the matter of change detection.
Stochastic derivative-free optimization using a trust region framework
Larson, Jeffrey; Billups, Stephen C.
2016-02-17
This study presents a trust region algorithm to minimize a function f when one has access only to noise-corrupted function values f¯. The model-based algorithm dynamically adjusts its step length, taking larger steps when the model and function agree and smaller steps when the model is less accurate. The method does not require the user to specify a fixed pattern of points used to build local models and does not repeatedly sample points. If f is sufficiently smooth and the noise is independent and identically distributed with mean zero and finite variance, we prove that our algorithm produces iterates suchmore » that the corresponding function gradients converge in probability to zero. As a result, we present a prototype of our algorithm that, while simplistic in its management of previously evaluated points, solves benchmark problems in fewer function evaluations than do existing stochastic approximation methods.« less
Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic
NASA Astrophysics Data System (ADS)
González-Carbajal, Javier; Domínguez, Jaime
2017-11-01
This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.
From cat's eyes to disjoint multicellular natural convection flow in tall tilted cavities
NASA Astrophysics Data System (ADS)
Nicolás, Alfredo; Báez, Elsa; Bermúdez, Blanca
2011-07-01
Numerical results of two-dimensional natural convection problems, in air-filled tall cavities, are reported to study the change of the cat's eyes flow as some parameters vary, the aspect ratio A and the angle of inclination ϕ of the cavity, with the Rayleigh number Ra mostly fixed; explicitly, the range of the variation is given by 12⩽A⩽20 and 0°⩽ϕ⩽270°; about Ra=1.1×10. A novelty contribution of this work is the transition from the cat's eyes changes, as A varies, to a disjoint multicellular flow, as ϕ varies. These flows may be modeled by the unsteady Boussinesq approximation in stream function and vorticity variables which is solved with a fixed point iterative process applied to the nonlinear elliptic system that results after time discretization. The validation of the results relies on mesh size and time-step independence studies.
Indirect Determination of the Thermodynamic Temperature of a Gold Fixed-Point Cell
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2010-09-01
Since the value T 90(Au) was fixed on the ITS-90, some determinations of the thermodynamic temperature of the gold point have been performed which form, with other renormalized results of previous measurements by radiation thermometry, the basis for the current best estimates of ( T - T 90)Au = 39.9 mK as elaborated by the CCT-WG4. Such a value, even if consistent with the behavior of T - T 90 differences at lower temperatures, is quite influenced by the low values of T Au as determined with few radiometric measurements. At INRIM, an independent indirect determination of the thermodynamic temperature of gold was performed by means of a radiation thermometry approach. A fixed-point technique was used to realize approximated thermodynamic scales from the Zn point up to the Cu point. A Si-based standard radiation thermometer working at 900 nm and 950 nm was used. The low uncertainty presently associated to the thermodynamic temperature of fixed points and the accuracy of INRIM realizations, allowed scales with an uncertainty lower than 0.03 K in terms of the thermodynamic temperature to be realized. A fixed-point cell filled with gold, 99.999 % in purity, was measured, and its freezing temperature was determined by both interpolation and extrapolation. An average T Au = 1337.395 K was found with a combined standard uncertainty of 23 mK. Such a value is 25 mK higher than the presently available value as derived by the CCT-WG4 value of ( T - T 90)Au = 39.9 mK.
Pilot Comparison of Radiance Temperature Scale Realization Between NIMT and NMIJ
NASA Astrophysics Data System (ADS)
Keawprasert, T.; Yamada, Y.; Ishii, J.
2015-03-01
A pilot comparison of radiance temperature scale realizations between the National Institute of Metrology Thailand (NIMT) and the National Metrology Institute of Japan (NMIJ) was conducted. At the two national metrology institutes (NMIs), a 900 nm radiation thermometer, used as the transfer artifact, was calibrated by a means of a multiple fixed-point method using the fixed-point blackbody of Zn, Al, Ag, and Cu points, and by means of relative spectral responsivity measurements according to the International Temperature Scale of 1990 (ITS-90) definition. The Sakuma-Hattori equation is used for interpolating the radiance temperature scale between the four fixed points and also for extrapolating the ITS-90 temperature scale to 2000 C. This paper compares the calibration results in terms of fixed-point measurements, relative spectral responsivity, and finally the radiance temperature scale. Good agreement for the fixed-point measurements was found in case a correction for the change of the internal temperature of the artifact was applied using the temperature coefficient measured at the NMIJ. For the realized radiance temperature range from 400 C to 1100 C, the resulting scale differences between the two NMIs are well within the combined scale comparison uncertainty of 0.12 C (). The resulting spectral responsivity measured at the NIMT has a comparable curve to that measured at the NMIJ especially in the out-of-band region, yielding a ITS-90 scale difference within 1.0 C from the Cu point to 2000 C, whereas the realization comparison uncertainty of NIMT and NMIJ combined is 1.2 C () at 2000 C.
Computed torque control of a free-flying cooperat ing-arm robot
NASA Technical Reports Server (NTRS)
Koningstein, Ross; Ullman, Marc; Cannon, Robert H., Jr.
1989-01-01
The unified approach to solving free-floating space robot manipulator end-point control problems is presented using a control formulation based on an extension of computed torque. Once the desired end-point accelerations have been specified, the kinematic equations are used with momentum conservation equations to solve for the joint accelerations in any of the robot's possible configurations: fixed base or free-flying with open/closed chain grasp. The joint accelerations can then be used to calculate the arm control torques and internal forces using a recursive order N algorithm. Initial experimental verification of these techniques has been performed using a laboratory model of a two-armed space robot. This fully autonomous spacecraft system experiences the drag-free, zero G characteristics of space in two dimensions through the use of an air cushion support system. Results of these initial experiments are included which validate the correctness of the proposed methodology. The further problem of control in the large where not only the manipulator tip positions but the entire system consisting of base and arms must be controlled is also presented. The availability of a physical testbed has brought a keener insight into the subtleties of the problem at hand.
Influence of the Cavity Length on the Behavior of Hybrid Fixed-Point Cells Constructed at INRIM
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2015-03-01
Hybrid cells with double carbon/carbon sheets are used at the Istituto Nazionale di Ricerca Metrologica (INRIM) for the realization of both pure metal fixed points and high-temperature metal-carbon eutectic points. Cells for the Cu and Co-C fixed points have been prepared to be used in the high-temperature fixed-point project of the Comité Consultatif de Thermométrie. The results of the evaluation processes were not completely satisfactory for the INRIM cells because of their low transition temperatures with respect to the best cells, and of a rather large melting range for the Co-C cell. A new design of the cells was devised, and considerable improvements were achieved with respect to the transition temperature, and the plateau shape and duration. As for the Cu point, the duration of the freezing plateaux increased by more than 50 % and the freezing temperature increased by 18 mK. As for the Co-C point, the melting temperature, expressed in terms of the point of inflection of the melting curve, increased by about 70 mK. The melting range of the plateaux, expressed as a difference was reduced from about 180 mK to about 130 mK, with melting times increased by about 50 %, as a consequence of an improvement of flatness and run-off of the plateaux.
Existence of tripled fixed points for a class of condensing operators in Banach spaces.
Karakaya, Vatan; Bouzara, Nour El Houda; Doğan, Kadri; Atalan, Yunus
2014-01-01
We give some results concerning the existence of tripled fixed points for a class of condensing operators in Banach spaces. Further, as an application, we study the existence of solutions for a general system of nonlinear integral equations.
Contractive type non-self mappings on metric spaces of hyperbolic type
NASA Astrophysics Data System (ADS)
Ciric, Ljubomir B.
2006-05-01
Let (X,d) be a metric space of hyperbolic type and K a nonempty closed subset of X. In this paper we study a class of mappings from K into X (not necessarily self-mappings on K), which are defined by the contractive condition (2.1) below, and a class of pairs of mappings from K into X which satisfy the condition (2.28) below. We present fixed point and common fixed point theorems which are generalizations of the corresponding fixed point theorems of Ciric [L.B. Ciric, Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts 23 (1998) 25-31; L.B. Ciric, J.S. Ume, M.S. Khan, H.K.T. Pathak, On some non-self mappings, Math. Nachr. 251 (2003) 28-33], Rhoades [B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon. 23 (1978) 457-459] and many other authors. Some examples are presented to show that our results are genuine generalizations of known results from this area.
The evolving Planck mass in classically scale-invariant theories
NASA Astrophysics Data System (ADS)
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.
2017-04-01
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.
Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888
NASA Astrophysics Data System (ADS)
Zeng, Lu-Chuan; Yao, Jen-Chih
2006-09-01
Recently, Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447] introduced the new iterative procedures with errors for approximating the common fixed point of a couple of quasi-contractive mappings and showed the stability of these iterative procedures with errors in Banach spaces. In this paper, we introduce a new concept of a couple of q-contractive-like mappings (q>1) in a Banach space and apply these iterative procedures with errors for approximating the common fixed point of the couple of q-contractive-like mappings. The results established in this paper improve, extend and unify the corresponding ones of Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447], Chidume [C.E. Chidume, Approximation of fixed points of quasi-contractive mappings in Lp spaces, Indian J. Pure Appl. Math. 22 (1991) 273-386], Chidume and Osilike [C.E. Chidume, M.O. Osilike, Fixed points iterations for quasi-contractive maps in uniformly smooth Banach spaces, Bull. Korean Math. Soc. 30 (1993) 201-212], Liu [Q.H. Liu, On Naimpally and Singh's open questions, J. Math. Anal. Appl. 124 (1987) 157-164; Q.H. Liu, A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings, J. Math. Anal. Appl. 146 (1990) 301-305], Osilike [M.O. Osilike, A stable iteration procedure for quasi-contractive maps, Indian J. Pure Appl. Math. 27 (1996) 25-34; M.O. Osilike, Stability of the Ishikawa iteration method for quasi-contractive maps, Indian J. Pure Appl. Math. 28 (1997) 1251-1265] and many others in the literature.
50 CFR 86.13 - What is boating infrastructure?
Code of Federal Regulations, 2010 CFR
2010-10-01
..., currents, etc., that provide a temporary safe anchorage point or harbor of refuge during storms); (f) Floating docks and fixed piers; (g) Floating and fixed breakwaters; (h) Dinghy docks (floating or fixed...
Verification and Planning Based on Coinductive Logic Programming
NASA Technical Reports Server (NTRS)
Bansal, Ajay; Min, Richard; Simon, Luke; Mallya, Ajay; Gupta, Gopal
2008-01-01
Coinduction is a powerful technique for reasoning about unfounded sets, unbounded structures, infinite automata, and interactive computations [6]. Where induction corresponds to least fixed point's semantics, coinduction corresponds to greatest fixed point semantics. Recently coinduction has been incorporated into logic programming and an elegant operational semantics developed for it [11, 12]. This operational semantics is the greatest fix point counterpart of SLD resolution (SLD resolution imparts operational semantics to least fix point based computations) and is termed co- SLD resolution. In co-SLD resolution, a predicate goal p( t) succeeds if it unifies with one of its ancestor calls. In addition, rational infinite terms are allowed as arguments of predicates. Infinite terms are represented as solutions to unification equations and the occurs check is omitted during the unification process. Coinductive Logic Programming (Co-LP) and Co-SLD resolution can be used to elegantly perform model checking and planning. A combined SLD and Co-SLD resolution based LP system forms the common basis for planning, scheduling, verification, model checking, and constraint solving [9, 4]. This is achieved by amalgamating SLD resolution, co-SLD resolution, and constraint logic programming [13] in a single logic programming system. Given that parallelism in logic programs can be implicitly exploited [8], complex, compute-intensive applications (planning, scheduling, model checking, etc.) can be executed in parallel on multi-core machines. Parallel execution can result in speed-ups as well as in larger instances of the problems being solved. In the remainder we elaborate on (i) how planning can be elegantly and efficiently performed under real-time constraints, (ii) how real-time systems can be elegantly and efficiently model- checked, as well as (iii) how hybrid systems can be verified in a combined system with both co-SLD and SLD resolution. Implementations of co-SLD resolution as well as preliminary implementations of the planning and verification applications have been developed [4]. Co-LP and Model Checking: The vast majority of properties that are to be verified can be classified into safety properties and liveness properties. It is well known within model checking that safety properties can be verified by reachability analysis, i.e, if a counter-example to the property exists, it can be finitely determined by enumerating all the reachable states of the Kripke structure.
Expected Number of Fixed Points in Boolean Networks with Arbitrary Topology.
Mori, Fumito; Mochizuki, Atsushi
2017-07-14
Boolean network models describe genetic, neural, and social dynamics in complex networks, where the dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically considered to correspond to cell types in an organism. We prove that the expected number of fixed points in a Boolean network, with Boolean functions drawn from probability distributions that are not required to be uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also demonstrate that the expected number is increased by the predominance of positive feedback in a cycle.
An investigation of the convergence to the stationary state in the Hassell mapping
NASA Astrophysics Data System (ADS)
de Mendonça, Hans M. J.; Leonel, Edson D.; de Oliveira, Juliano A.
2017-01-01
We investigate the convergence to the fixed point and near it in a transcritical bifurcation observed in a Hassell mapping. We considered a phenomenological description which was reinforced by a theoretical description. At the bifurcation, we confirm the convergence for the fixed point is characterized by a homogeneous function with three exponents. Near the bifurcation the decay to the fixed point is exponential with a relaxation time given by a power law. Although the expression of the mapping is different from the traditional logistic mapping, at the bifurcation and near it, the local dynamics is essentially the same for either mappings.
Automated Parameter Studies Using a Cartesian Method
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosimis, Michael J.; Nemec, Marian
2004-01-01
Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated points in a design space by performing steady-state computations at fixed flight conditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration of interest. This "point analysis" provides detailed information about the flowfield, which aides an engineer in understanding, or correcting, a design. A point analysis is typically performed using high fidelity methods at a handful of critical design points, e.g. a cruise or landing configuration, or a sample of points along a flight trajectory.
Stress-Constrained Structural Topology Optimization with Design-Dependent Loads
NASA Astrophysics Data System (ADS)
Lee, Edmund
Topology optimization is commonly used to distribute a given amount of material to obtain the stiffest structure, with predefined fixed loads. The present work investigates the result of applying stress constraints to topology optimization, for problems with design-depending loading, such as self-weight and pressure. In order to apply pressure loading, a material boundary identification scheme is proposed, iteratively connecting points of equal density. In previous research, design-dependent loading problems have been limited to compliance minimization. The present study employs a more practical approach by minimizing mass subject to failure constraints, and uses a stress relaxation technique to avoid stress constraint singularities. The results show that these design dependent loading problems may converge to a local minimum when stress constraints are enforced. Comparisons between compliance minimization solutions and stress-constrained solutions are also given. The resulting topologies of these two solutions are usually vastly different, demonstrating the need for stress-constrained topology optimization.
NASA Astrophysics Data System (ADS)
Goulko, Olga; Kent, Adrian
2017-11-01
We introduce and physically motivate the following problem in geometric combinatorics, originally inspired by analysing Bell inequalities. A grasshopper lands at a random point on a planar lawn of area 1. It then jumps once, a fixed distance d, in a random direction. What shape should the lawn be to maximize the chance that the grasshopper remains on the lawn after jumping? We show that, perhaps surprisingly, a disc-shaped lawn is not optimal for any d>0. We investigate further by introducing a spin model whose ground state corresponds to the solution of a discrete version of the grasshopper problem. Simulated annealing and parallel tempering searches are consistent with the hypothesis that, for d<π-1/2, the optimal lawn resembles a cogwheel with n cogs, where the integer n is close to π (arcsin(√{π }d / 2 )) -1. We find transitions to other shapes for d ≳π-1 / 2.
Homotopy approach to optimal, linear quadratic, fixed architecture compensation
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1991-01-01
Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.
Generalized contractive mappings and weakly α-admissible pairs in G-metric spaces.
Hussain, N; Parvaneh, V; Hoseini Ghoncheh, S J
2014-01-01
The aim of this paper is to present some coincidence and common fixed point results for generalized (ψ, φ)-contractive mappings using partially weakly G-α-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results.
Generalized Contractive Mappings and Weakly α-Admissible Pairs in G-Metric Spaces
Hussain, N.; Parvaneh, V.; Hoseini Ghoncheh, S. J.
2014-01-01
The aim of this paper is to present some coincidence and common fixed point results for generalized (ψ, φ)-contractive mappings using partially weakly G-α-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25202742
50 CFR 660.212 - Fixed gear fishery-prohibitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Painted Cave, Anacapa Island, Carrington Point, Judith Rock, Skunk Point, Footprint, Gull Island, South... are specific to the limited entry fixed gear fisheries. General groundfish prohibitions are found at § 660.12, subpart C. In addition to the general groundfish prohibitions specified in § 660.12, subpart C...
L-fuzzy fixed points theorems for L-fuzzy mappings via βℱL-admissible pair.
Rashid, Maliha; Azam, Akbar; Mehmood, Nayyar
2014-01-01
We define the concept of βℱL-admissible for a pair of L-fuzzy mappings and establish the existence of common L-fuzzy fixed point theorem. Our result generalizes some useful results in the literature. We provide an example to support our result.
DOT National Transportation Integrated Search
1978-04-01
Volume 2 defines a new algorithm for the network equilibrium model that works in the space of path flows and is based on the theory of fixed point method. The goals of the study were broadly defined as the identification of aggregation practices and ...
NASA Astrophysics Data System (ADS)
Singh, Y. P.; Maas, H.; Edler, F.; Zaidi, Z. H.
1994-01-01
A set of resistance ratios (W) for platinum resistance thermometers was obtained at the triple point of Hg and the melting point of Ga in order to study their relationship. It was found that using measured values for one of the fixed points, a linear equation will predict the value of the other. These measurements also indicate that the fixed points of Hg and of Ga are inconsistent by about 1,5 mK in the sense that either the melting point of Ga or the triple point of Hg was assigned too high a value on the ITS-90.
Towards a PTAS for the generalized TSP in grid clusters
NASA Astrophysics Data System (ADS)
Khachay, Michael; Neznakhina, Katherine
2016-10-01
The Generalized Traveling Salesman Problem (GTSP) is a combinatorial optimization problem, which is to find a minimum cost cycle visiting one point (city) from each cluster exactly. We consider a geometric case of this problem, where n nodes are given inside the integer grid (in the Euclidean plane), each grid cell is a unit square. Clusters are induced by cells `populated' by nodes of the given instance. Even in this special setting, the GTSP remains intractable enclosing the classic Euclidean TSP on the plane. Recently, it was shown that the problem has (1.5+8√2+ɛ)-approximation algorithm with complexity bound depending on n and k polynomially, where k is the number of clusters. In this paper, we propose two approximation algorithms for the Euclidean GTSP on grid clusters. For any fixed k, both algorithms are PTAS. Time complexity of the first one remains polynomial for k = O(log n) while the second one is a PTAS, when k = n - O(log n).
Fixed points of contractive mappings in b-metric-like spaces.
Hussain, Nawab; Roshan, Jamal Rezaei; Parvaneh, Vahid; Kadelburg, Zoran
2014-01-01
We discuss topological structure of b-metric-like spaces and demonstrate a fundamental lemma for the convergence of sequences. As an application we prove certain fixed point results in the setup of such spaces for different types of contractive mappings. Finally, some periodic point results in b-metric-like spaces are obtained. Two examples are presented in order to verify the effectiveness and applicability of our main results.
NASA Astrophysics Data System (ADS)
Diehl, Roger E.; Schinnerer, Ralph G.; Williamson, Walton E.; Boden, Daryl G.
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
NASA Technical Reports Server (NTRS)
Diehl, Roger E. (Editor); Schinnerer, Ralph G. (Editor); Williamson, Walton E. (Editor); Boden, Daryl G. (Editor)
1992-01-01
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
Simulation of design-unbiased point-to-particle sampling compared to alternatives on plantation rows
Thomas B. Lynch; David Hamlin; Mark J. Ducey
2016-01-01
Total quantities of tree attributes can be estimated in plantations by sampling on plantation rows using several methods. At random sample points on a row, either fixed row lengths or variable row lengths with a fixed number of sample trees can be assessed. Ratio of means or mean of ratios estimators can be developed for the fixed number of trees option but are not...
Effect of distance-related heterogeneity on population size estimates from point counts
Efford, Murray G.; Dawson, Deanna K.
2009-01-01
Point counts are used widely to index bird populations. Variation in the proportion of birds counted is a known source of error, and for robust inference it has been advocated that counts be converted to estimates of absolute population size. We used simulation to assess nine methods for the conduct and analysis of point counts when the data included distance-related heterogeneity of individual detection probability. Distance from the observer is a ubiquitous source of heterogeneity, because nearby birds are more easily detected than distant ones. Several recent methods (dependent double-observer, time of first detection, time of detection, independent multiple-observer, and repeated counts) do not account for distance-related heterogeneity, at least in their simpler forms. We assessed bias in estimates of population size by simulating counts with fixed radius w over four time intervals (occasions). Detection probability per occasion was modeled as a half-normal function of distance with scale parameter sigma and intercept g(0) = 1.0. Bias varied with sigma/w; values of sigma inferred from published studies were often 50% for a 100-m fixed-radius count. More critically, the bias of adjusted counts sometimes varied more than that of unadjusted counts, and inference from adjusted counts would be less robust. The problem was not solved by using mixture models or including distance as a covariate. Conventional distance sampling performed well in simulations, but its assumptions are difficult to meet in the field. We conclude that no existing method allows effective estimation of population size from point counts.
NASA Astrophysics Data System (ADS)
Pokhodun, A. I.; Ivanova, A. G.; Duysebayeva, K. K.; Ivanova, K. P.
2015-01-01
Regional comparison of type S thermocouples at the freezing points of zinc, aluminium and copper was initiated by COOMET TC1.1-10 (the technical committee of COOMET `Thermometry and thermal physics'). Three NMI take part in COOMET regional comparison: D I Mendeleev Institute for Metrology (VNIIM) (Russian Federation), National Scientific Centre (Institute of Metrology) (NSC IM, Ukraine), Republic State Enterprise (Kazakhstan Institute of Metrology) (KazInMetr, Republic of Kazakhstan). VNIIM (Russia) was chosen as the coordinator-pilot of the regional comparison. A star type comparison was used. The participants: KazInMetr and NSC IM constructed the type S thermocouples and calibrated them in three fixed points: zinc, aluminum and copper points, using methods of ITS-90 fixed point realizations. The thermocouples have been sent to VNIIM together with the results of the calibration at three fixed points, with the values of the inhomogeneity at temperature 200 °C and the uncertainty evaluations of the results. For calibration of thermocouples the same VNIIM fixed points cells were used. Participating laboratories repeated the calibration of thermocouples after its returning in zinc, aluminum and copper points to determine the stability of its results. In result of the comparison was to evaluate the equivalence of the type S thermocouples calibration in fixed points by NMIs to confirm corresponding lines of international website for NMI's Calibration and Measurement Capabilities (CMC). This paper is the final report of the comparison including analysis of the uncertainty of measurement results. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT WG-KC, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Censor, Yair; Unkelbach, Jan
2011-01-01
In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). PMID:21616694
Influence of structural dynamics on vehicle design - Government view. [of aerospace vehicles
NASA Technical Reports Server (NTRS)
Kordes, E. E.
1977-01-01
Dynamic design considerations for aerospace vehicles are discussed, taking into account fixed wing aircraft, rotary wing aircraft, and launch, space, and reentry vehicles. It is pointed out that space vehicles have probably had the most significant design problems from the standpoint of structural dynamics, because their large lightweight structures are highly nonlinear. Examples of problems in the case of conventional aircraft include the flutter encountered by high performance military aircraft with external stores. A description is presented of a number of examples which illustrate the direction of present efforts for improving aircraft efficiency. Attention is given to the results of studies on the structural design concepts for the arrow-wing supersonic cruise aircraft configuration and a system study on low-wing-loading, short haul transports.
NASA Technical Reports Server (NTRS)
Jaggers, R. F.
1977-01-01
A derivation of an explicit solution to the two point boundary-value problem of exoatmospheric guidance and trajectory optimization is presented. Fixed initial conditions and continuous burn, multistage thrusting are assumed. Any number of end conditions from one to six (throttling is required in the case of six) can be satisfied in an explicit and practically optimal manner. The explicit equations converge for off nominal conditions such as engine failure, abort, target switch, etc. The self starting, predictor/corrector solution involves no Newton-Rhapson iterations, numerical integration, or first guess values, and converges rapidly if physically possible. A form of this algorithm has been chosen for onboard guidance, as well as real time and preflight ground targeting and trajectory shaping for the NASA Space Shuttle Program.
Study of the Bellman equation in a production model with unstable demand
NASA Astrophysics Data System (ADS)
Obrosova, N. K.; Shananin, A. A.
2014-09-01
A production model with allowance for a working capital deficit and a restricted maximum possible sales volume is proposed and analyzed. The study is motivated by the urgency of analyzing well-known problems of functioning low competitive macroeconomic structures. The original formulation of the task represents an infinite-horizon optimal control problem. As a result, the model is formalized in the form of a Bellman equation. It is proved that the corresponding Bellman operator is a contraction and has a unique fixed point in the chosen class of functions. A closed-form solution of the Bellman equation is found using the method of steps. The influence of the credit interest rate on the firm market value assessment is analyzed by applying the developed model.
The four fixed points of scale invariant single field cosmological models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, BingKan, E-mail: bxue@princeton.edu
2012-10-01
We introduce a new set of flow parameters to describe the time dependence of the equation of state and the speed of sound in single field cosmological models. A scale invariant power spectrum is produced if these flow parameters satisfy specific dynamical equations. We analyze the flow of these parameters and find four types of fixed points that encompass all known single field models. Moreover, near each fixed point we uncover new models where the scale invariance of the power spectrum relies on having simultaneously time varying speed of sound and equation of state. We describe several distinctive new modelsmore » and discuss constraints from strong coupling and superluminality.« less
NASA Astrophysics Data System (ADS)
Taylor, Marika; Woodhead, William
2017-12-01
The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension between 3/2 and 5/2. Therefore the strongest version of the F theorem is in general violated.
Finding fixed satellite service orbital allotments with a k-permutation algorithm
NASA Technical Reports Server (NTRS)
Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.
1990-01-01
A satellite system synthesis problem, the satellite location problem (SLP), is addressed. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the fixed satellite service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: the problem of ordering the satellites and the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, has been developed to find solutions to SLPs. Solutions to small sample problems are presented and analyzed on the basis of calculated interferences.
Bilateral Comparison Between NIM and NMC Over the Temperature Range from 83.8058 K to 692.677 K
NASA Astrophysics Data System (ADS)
Sun, Jianping; Ye, Shaochun; Kho, Haoyuan; Zhang, Jintao; Wang, Li
2015-08-01
A bilateral comparison of local realization of the International Temperature Scale of 1990 between the National Institute of Metrology (NIM) and National Metrology Centre (NMC) was carried out over the temperature range from 83.8058 K to 692.677 K. It involved six fixed points including the argon triple point, the mercury triple point, the triple point of water, the melting point of gallium, the freezing point of tin, and the freezing point of zinc. In 2009, NMC asked NIM to participate in a bilateral comparison to link the NMC results to the Consultative Committee for Thermometry Key Comparison 3 (CCT-K3) and facilitate the NMC's calibration and measurement capabilities submission. This comparison was agreed by NIM and Asia Pacific Metrology Programme in 2009, and registered in the Key Comparison Database in 2010 as CCT-K3.2. NMC supplied two fused silica sheath standard platinum resistance thermometers (SPRTs) as traveling standards. One of them was used at the Ga, Sn, and Zn fixed points, while the other one was used at the Ar and Hg fixed points. NMC measured them before and after NIM measured them. During the comparison, a criterion for the SPRT was set as the stability at the triple point of water to be less than 0.3 mK. The results for both laboratories are summarized. A proposal for linking the NMC's comparison results to CCT-K3 is presented. The difference between NMC and NIM and the difference between NMC and the CCT-K3 average reference value using NIM as a link are reported with expanded uncertainties at each measured fixed point.
Clinical Nursing Records Study
1991-08-01
In-depth assessment of current AMEDD nursing documentation system used in fixed facilities; 2 - 4) development, implementation and assessment of...used in fixed facilities to: a) identify system problems; b) identify potential solutions to problems; c) set priorities fc problem resolution; d...enhance compatibility between any " hard copy" forms the group might develop and automation requirements. Discussions were also held with personnel from
Fixed Points of Contractive Mappings in b-Metric-Like Spaces
Hussain, Nawab; Roshan, Jamal Rezaei
2014-01-01
We discuss topological structure of b-metric-like spaces and demonstrate a fundamental lemma for the convergence of sequences. As an application we prove certain fixed point results in the setup of such spaces for different types of contractive mappings. Finally, some periodic point results in b-metric-like spaces are obtained. Two examples are presented in order to verify the effectiveness and applicability of our main results. PMID:25143980
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special showing for renewal of common carrier... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.705 Special showing for renewal of common carrier station...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...
L-Fuzzy Fixed Points Theorems for L-Fuzzy Mappings via β ℱL-Admissible Pair
Rashid, Maliha; Azam, Akbar
2014-01-01
We define the concept of β ℱL-admissible for a pair of L-fuzzy mappings and establish the existence of common L-fuzzy fixed point theorem. Our result generalizes some useful results in the literature. We provide an example to support our result. PMID:24688441
ASIC For Complex Fixed-Point Arithmetic
NASA Technical Reports Server (NTRS)
Petilli, Stephen G.; Grimm, Michael J.; Olson, Erlend M.
1995-01-01
Application-specific integrated circuit (ASIC) performs 24-bit, fixed-point arithmetic operations on arrays of complex-valued input data. High-performance, wide-band arithmetic logic unit (ALU) designed for use in computing fast Fourier transforms (FFTs) and for performing ditigal filtering functions. Other applications include general computations involved in analysis of spectra and digital signal processing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Operation of internal transmitter control systems through licensed fixed control points. 90.473 Section 90.473 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control...
Geometry in a dynamical system without space: Hyperbolic Geometry in Kuramoto Oscillator Systems
NASA Astrophysics Data System (ADS)
Engelbrecht, Jan; Chen, Bolun; Mirollo, Renato
Kuramoto oscillator networks have the special property that their time evolution is constrained to lie on 3D orbits of the Möbius group acting on the N-fold torus TN which explains the N - 3 constants of motion discovered by Watanabe and Strogatz. The dynamics for phase models can be further reduced to 2D invariant sets in T N - 1 which have a natural geometry equivalent to the unit disk Δ with hyperbolic metric. We show that the classic Kuramoto model with order parameter Z1 (the first moment of the oscillator configuration) is a gradient flow in this metric with a unique fixed point on each generic 2D invariant set, corresponding to the hyperbolic barycenter of an oscillator configuration. This gradient property makes the dynamics especially easy to analyze. We exhibit several new families of Kuramoto oscillator models which reduce to gradient flows in this metric; some of these have a richer fixed point structure including non-hyperbolic fixed points associated with fixed point bifurcations. Work Supported by NSF DMS 1413020.
Brückner, Hans-Peter; Spindeldreier, Christian; Blume, Holger
2013-01-01
A common approach for high accuracy sensor fusion based on 9D inertial measurement unit data is Kalman filtering. State of the art floating-point filter algorithms differ in their computational complexity nevertheless, real-time operation on a low-power microcontroller at high sampling rates is not possible. This work presents algorithmic modifications to reduce the computational demands of a two-step minimum order Kalman filter. Furthermore, the required bit-width of a fixed-point filter version is explored. For evaluation real-world data captured using an Xsens MTx inertial sensor is used. Changes in computational latency and orientation estimation accuracy due to the proposed algorithmic modifications and fixed-point number representation are evaluated in detail on a variety of processing platforms enabling on-board processing on wearable sensor platforms.
Continuation of probability density functions using a generalized Lyapunov approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baars, S., E-mail: s.baars@rug.nl; Viebahn, J.P., E-mail: viebahn@cwi.nl; Mulder, T.E., E-mail: t.e.mulder@uu.nl
Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial differential equations near fixed points, under a small noise approximation. Key innovation is the efficient solution of a generalized Lyapunov equation using an iterative method involving low-rank approximations. We apply and illustrate the capabilities of the method using a problem in physical oceanography, i.e. the occurrence of multiple steady states of the Atlantic Ocean circulation.
Incoherent Scatterer in a Luttinger Liquid: A New Paradigmatic Limit
NASA Astrophysics Data System (ADS)
Altland, Alexander; Gefen, Yuval; Rosenow, Bernd
2012-03-01
We address the problem of a Luttinger liquid with a scatterer that allows for both coherent and incoherent scattering channels. The asymptotic behavior at zero temperature is governed by a new stable fixed point: A Goldstone mode dominates the low energy dynamics, leading to universal behavior. This limit is marked by equal probabilities for forward and backward scattering. Notwithstanding this nontrivial scattering pattern, we find that the shot noise as well as cross-current correlations vanish. We thus present a paradigmatic picture of an impurity in the Luttinger model, alternative to the Kane-Fisher picture.
Wang, Leimin; Zeng, Zhigang; Hu, Junhao; Wang, Xiaoping
2017-03-01
This paper addresses the controller design problem for global fixed-time synchronization of delayed neural networks (DNNs) with discontinuous activations. To solve this problem, adaptive control and state feedback control laws are designed. Then based on the two controllers and two lemmas, the error system is proved to be globally asymptotically stable and even fixed-time stable. Moreover, some sufficient and easy checked conditions are derived to guarantee the global synchronization of drive and response systems in fixed time. It is noted that the settling time functional for fixed-time synchronization is independent on initial conditions. Our fixed-time synchronization results contain the finite-time results as the special cases by choosing different values of the two controllers. Finally, theoretical results are supported by numerical simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton
2018-04-01
We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.
Attitude and Configuration Control of Flexible Multi-Body Spacecraft
NASA Astrophysics Data System (ADS)
Cho, Sung-Ki; Cochran, John E., Jr.
2002-06-01
Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.
Natural Whisker-Guided Behavior by Head-Fixed Mice in Tactile Virtual Reality
Sofroniew, Nicholas J.; Cohen, Jeremy D.; Lee, Albert K.
2014-01-01
During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, head-fixed mouse behaviors are typically trained through extensive instrumental conditioning. Here we present a whisker-based, tactile virtual reality system for head-fixed mice running on a spherical treadmill. Head-fixed mice displayed natural movements, including running and rhythmic whisking at 16 Hz. Whisking was centered on a set point that changed in concert with running so that more protracted whisking was correlated with faster running. During turning, whiskers moved in an asymmetric manner, with more retracted whisker positions in the turn direction and protracted whisker movements on the other side. Under some conditions, whisker movements were phase-coupled to strides. We simulated a virtual reality tactile corridor, consisting of two moveable walls controlled in a closed-loop by running speed and direction. Mice used their whiskers to track the walls of the winding corridor without training. Whisker curvature changes, which cause forces in the sensory follicles at the base of the whiskers, were tightly coupled to distance from the walls. Our behavioral system allows for precise control of sensorimotor variables during natural tactile navigation. PMID:25031397
NASA Astrophysics Data System (ADS)
Furzeland, R. M.; Verwer, J. G.; Zegeling, P. A.
1990-08-01
In recent years, several sophisticated packages based on the method of lines (MOL) have been developed for the automatic numerical integration of time-dependent problems in partial differential equations (PDEs), notably for problems in one space dimension. These packages greatly benefit from the very successful developments of automatic stiff ordinary differential equation solvers. However, from the PDE point of view, they integrate only in a semiautomatic way in the sense that they automatically adjust the time step sizes, but use just a fixed space grid, chosen a priori, for the entire calculation. For solutions possessing sharp spatial transitions that move, e.g., travelling wave fronts or emerging boundary and interior layers, a grid held fixed for the entire calculation is computationally inefficient, since for a good solution this grid often must contain a very large number of nodes. In such cases methods which attempt automatically to adjust the sizes of both the space and the time steps are likely to be more successful in efficiently resolving critical regions of high spatial and temporal activity. Methods and codes that operate this way belong to the realm of adaptive or moving-grid methods. Following the MOL approach, this paper is devoted to an evaluation and comparison, mainly based on extensive numerical tests, of three moving-grid methods for 1D problems, viz., the finite-element method of Miller and co-workers, the method published by Petzold, and a method based on ideas adopted from Dorfi and Drury. Our examination of these three methods is aimed at assessing which is the most suitable from the point of view of retaining the acknowledged features of reliability, robustness, and efficiency of the conventional MOL approach. Therefore, considerable attention is paid to the temporal performance of the methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, TImothy P.; Kiedrowski, Brian C.; Martin, William R.
Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has recently been applied to Monte Carlo radiation transport simulations. Kernel density estimators are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With KDEs, a single event, either a collision or particle track, can contribute to the score at multiple tally points with the uncertainty at those points being independent of the desired resolution of the solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced variance when compared to a histogram. Previously, KDEs have been applied to neutronics formore » one-group reactor physics problems and fixed source shielding applications. However, little work was done to obtain reaction rates using KDEs. This paper introduces a new form of the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.« less
On global solutions of the random Hamilton-Jacobi equations and the KPZ problem
NASA Astrophysics Data System (ADS)
Bakhtin, Yuri; Khanin, Konstantin
2018-04-01
In this paper, we discuss possible qualitative approaches to the problem of KPZ universality. Throughout the paper, our point of view is based on the geometrical and dynamical properties of minimisers and shocks forming interlacing tree-like structures. We believe that the KPZ universality can be explained in terms of statistics of these structures evolving in time. The paper is focussed on the setting of the random Hamilton-Jacobi equations. We formulate several conjectures concerning global solutions and discuss how their properties are connected to the KPZ scalings in dimension 1 + 1. In the case of general viscous Hamilton-Jacobi equations with non-quadratic Hamiltonians, we define generalised directed polymers. We expect that their behaviour is similar to the behaviour of classical directed polymers, and present arguments in favour of this conjecture. We also define a new renormalisation transformation defined in purely geometrical terms and discuss conjectural properties of the corresponding fixed points. Most of our conjectures are widely open, and supported by only partial rigorous results for particular models.
Linear and quadratic models of point process systems: contributions of patterned input to output.
Lindsay, K A; Rosenberg, J R
2012-08-01
In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike. Copyright © 2012 Elsevier Ltd. All rights reserved.
On Determining if Tree-based Networks Contain Fixed Trees.
Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine
2016-05-01
We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable.
FixO3 project results, legacy and module migration to EMSO
NASA Astrophysics Data System (ADS)
Lampitt, Richard
2017-04-01
The fixed point open ocean observatory network (FixO3) project is an international project aimed at integrating in a single network all fixed point open ocean observatories operated by European organisations and to harmonise and coordinate technological, procedural and data management across the stations. The project is running for four years since September 2013 with 29 partners across Europe and a budget of 7M Euros and is now coming to its final phase. In contrast to several past programmes, the opportunity has arisen to ensure that many of the project achievements can migrate into the newly formed European Multidisciplinary Seafloor and water column Observatory (EMSO) research infrastructure. The final phase of the project will focus on developing a strategy to transfer the results in an efficient way to maintain their relevance and maximise their use. In this presentation, we will highlight the significant achievements of FixO3 over the past three years focussing on the modules which will be transferred to EMSO in the coming 9 months. These include: 1. Handbook of best practices for operating fixed point observatories 2. Metadata catalogue 3. Earth Virtual Observatory (EarthVO) for data visualisation and comparison 4. Open Ocean Observatory Yellow Pages (O3YP) 5. Training material for hardware, data and data products used
A Hybrid Common Fixed Point Theorem under Certain Recent Properties
Imdad, Mohammad
2014-01-01
We prove a common fixed point theorem for a hybrid pair of occasionally coincidentally idempotent mappings via common limit range property. Our result improves some results from the existing literature, especially the ones contained in Sintunavarat and Kumam (2009). Some illustrative and interesting examples to highlight the realized improvements are also furnished. PMID:24592191
Alignment Solution for CT Image Reconstruction using Fixed Point and Virtual Rotation Axis.
Jun, Kyungtaek; Yoon, Seokhwan
2017-01-25
Since X-ray tomography is now widely adopted in many different areas, it becomes more crucial to find a robust routine of handling tomographic data to get better quality of reconstructions. Though there are several existing techniques, it seems helpful to have a more automated method to remove the possible errors that hinder clearer image reconstruction. Here, we proposed an alternative method and new algorithm using the sinogram and the fixed point. An advanced physical concept of Center of Attenuation (CA) was also introduced to figure out how this fixed point is applied to the reconstruction of image having errors we categorized in this article. Our technique showed a promising performance in restoring images having translation and vertical tilt errors.
Symmetry-breaking oscillations in membrane optomechanics
NASA Astrophysics Data System (ADS)
Wurl, C.; Alvermann, A.; Fehske, H.
2016-12-01
We study the classical dynamics of a membrane inside a cavity in the situation where this optomechanical system possesses a reflection symmetry. Symmetry breaking occurs through supercritical and subcritical pitchfork bifurcations of the static fixed-point solutions. Both bifurcations can be observed through variation of the laser-cavity detuning, which gives rise to a boomerang-like fixed-point pattern with hysteresis. The symmetry-breaking fixed points evolve into self-sustained oscillations when the laser intensity is increased. In addition to the analysis of the accompanying Hopf bifurcations we describe these oscillations at finite amplitudes with an ansatz that fully accounts for the frequency shift relative to the natural membrane frequency. We complete our study by following the route to chaos for the membrane dynamics.
A 640-MHz 32-megachannel real-time polyphase-FFT spectrum analyzer
NASA Technical Reports Server (NTRS)
Zimmerman, G. A.; Garyantes, M. F.; Grimm, M. J.; Charny, B.
1991-01-01
A polyphase fast Fourier transform (FFT) spectrum analyzer being designed for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet Propulsion Laboratory is described. By replacing the time domain multiplicative window preprocessing with polyphase filter processing, much of the processing loss of windowed FFTs can be eliminated. Polyphase coefficient memory costs are minimized by effective use of run length compression. Finite word length effects are analyzed, producing a balanced system with 8 bit inputs, 16 bit fixed point polyphase arithmetic, and 24 bit fixed point FFT arithmetic. Fixed point renormalization midway through the computation is seen to be naturally accommodated by the matrix FFT algorithm proposed. Simulation results validate the finite word length arithmetic analysis and the renormalization technique.
[Treatment of calcaneal avulsion fractures with twinfix suture anchors fixation].
Zhao, Bin-xiu; Wang, Kun-zheng; Wang, Chun-sheng; Xie, Yue; Dai, Zhi-tang; Liu, Gang; Liu, Wei-dong
2011-06-01
For the calcaneal avulsion fracture, the current method is more commonly used screws or Kirschner wire to fix fracture fragment. This article intended to explore the feasibility and clinical efficacy for the treatment of avulsion fractures with TwinFix suture anchors. From July 2007 to November 2010, 21 patients were reviewed, including 15 males and 6 females, ranging in age from 49 to 65 years,with a mean of 58.7 years. Twelve patients had nodules in the right heel and 9 patients had nodules in the left heel. All the patients had closed fractures. The typical preoperative symptoms of the patients included pain in the upper heel and weak in heel lift. Body examination results: palpable sense of bone rubbing in the back of the heel, and swelling in the heel. Surgery treatment with TwinFix suture anchors performed as follows : to fix TwinFix suture anchors into the calcaneal body, then to drill the fracture block, to make the double strand suture through the fracture holes, to knot the suture eachother to fix the block, and to use stitch to fix the remaining suture in the Achilles tendon in order to improve the block fixation. The criteria of the AOFAS Foot and Ankle Surgery by the United States Association of ankle-rear foot functional recovery was used to evaluate the Achilles tendon. Total average score was (95.5 +/- 3.12) points, including pain items of(38.5 +/- 2.18) points,the average score of functional items of (49.5 +/- 3.09) points,and power lines of 10 points in all patients. Twenty-one patients got an excellent result, 16 good and 5 poor. The methods of treatment for the calcaneal avulsion fractures with TwinFix suture anchors is a simple operation, and have excellent clinical effect, which is worthy of promotion.
Tympanic thermometer performance validation by use of a body-temperature fixed point blackbody
NASA Astrophysics Data System (ADS)
Machin, Graham; Simpson, Robert
2003-04-01
The use of infrared tympanic thermometers within the medical community (and more generically in the public domain) has recently grown rapidly, displacing more traditional forms of thermometry such as mercury-in-glass. Besides the obvious health concerns over mercury the increase in the use of tympanic thermometers is related to a number of factors such as their speed and relatively non-invasive method of operation. The calibration and testing of such devices is covered by a number of international standards (ASTM1, prEN2, JIS3) which specify the design of calibration blackbodies. However these calibration sources are impractical for day-to-day in-situ validation purposes. In addition several studies (e.g. Modell et al4, Craig et al5) have thrown doubt on the accuracy of tympanic thermometers in clinical use. With this in mind the NPL is developing a practical, portable and robust primary reference fixed point source for tympanic thermometer validation. The aim of this simple device is to give the clinician a rapid way of validating the performance of their tympanic thermometer, enabling the detection of mal-functioning thermometers and giving confidence in the measurement to the clinician (and patient!) at point of use. The reference fixed point operates at a temperature of 36.3 °C (97.3 °F) with a repeatability of approximately +/- 20 mK. The fixed-point design has taken into consideration the optical characteristics of tympanic thermometers enabling wide-angled field of view devices to be successfully tested. The overall uncertainty of the device is estimated to be is less than 0.1°C. The paper gives a description of the fixed point, its design and construction as well as the results to date of validation tests.
A k-permutation algorithm for Fixed Satellite Service orbital allotments
NASA Technical Reports Server (NTRS)
Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.
1988-01-01
A satellite system synthesis problem, the satellite location problem (SLP), is addressed in this paper. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the Fixed Satellite Service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: (1) the problem of ordering the satellites and (2) the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, that has been developed to find solutions to SLPs formulated in the manner suggested is described. Solutions to small example problems are presented and analyzed.
NASA Technical Reports Server (NTRS)
Frew, A. M.; Eisenhut, D. F.; Farrenkopf, R. L.; Gates, R. F.; Iwens, R. P.; Kirby, D. K.; Mann, R. J.; Spencer, D. J.; Tsou, H. S.; Zaremba, J. G.
1972-01-01
The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target.
Comparison of Fixed Point Realisations between Inmetro and PTB
NASA Astrophysics Data System (ADS)
Santiago, J. F. N.; Petkovic, S. G.; Teixeira, R. N.; Noatsch, U.; Thiele-Krivoj, B.
2003-09-01
An interlaboratory comparison in the temperature range between -190 °C and 420 °C was organised between the National Institute of Quality, Normalisation and Industrial Quality (Inmetro), Brazil, and the Physikalisch Technische Bundesanstalt (PTB), Germany. This comparison followed the same protocol as the EUROMET project 552 comparison and was carried out in the years 2001-2002. A standard platinum resistance thermometer (SPRT) of 25 Ω was calibrated at the temperature fixed points of Ar, Hg, the triple point of water (TWP), Ga, In, Sn and Zn, with at least three realisations of each fixed point at both institutes. The uncertainty evaluation is given by Inmetro and some differences in the calibration procedures or in the measuring instruments used are described. The agreement between the results of laboratories was not in all cases within the combined uncertainties. Results of other comparisons are presented, which give additional information on the equivalence of the realised temperature scales.
Human's choices in situations of time-based diminishing returns.
Hackenberg, T D; Axtell, S A
1993-01-01
Three experiments examined adult humans' choices in situations with contrasting short-term and long-term consequences. Subjects were given repeated choices between two time-based schedules of points exchangeable for money: a fixed schedule and a progressive schedule that began at 0 s and increased by 5 s with each point delivered by that schedule. Under "reset" conditions, choosing the fixed schedule not only produced a point but it also reset the requirements of the progressive schedule to 0 s. In the first two experiments, reset conditions alternated with "no-reset" conditions, in which progressive-schedule requirements were independent of fixed-schedule choices. Experiment 1 entailed choices between a progressive-interval schedule and a fixed-interval schedule, the duration of which varied across conditions. Switching from the progressive- to the fixed-interval schedule was systematically related to fixed-interval size in 4 of 8 subjects, and in all subjects occurred consistently sooner in the progressive-schedule sequence under reset than under no-reset procedures. The latter result was replicated in a second experiment, in which choices between progressive- and fixed-interval schedules were compared with choices between progressive- and fixed-time schedules. In Experiment 3, switching patterns under reset conditions were unrelated to variations in intertrial interval. In none of the experiments did orderly choice patterns depend on verbal descriptions of the contingencies or on schedule-controlled response patterns in the presence of the chosen schedules. The overall pattern of results indicates control of choices by temporarily remote consequences, and is consistent with versions of optimality theory that address performance in situations of diminishing returns. PMID:8315364
Sources of spurious force oscillations from an immersed boundary method for moving-body problems
NASA Astrophysics Data System (ADS)
Lee, Jongho; Kim, Jungwoo; Choi, Haecheon; Yang, Kyung-Soo
2011-04-01
When a discrete-forcing immersed boundary method is applied to moving-body problems, it produces spurious force oscillations on a solid body. In the present study, we identify two sources of these force oscillations. One source is from the spatial discontinuity in the pressure across the immersed boundary when a grid point located inside a solid body becomes that of fluid with a body motion. The addition of mass source/sink together with momentum forcing proposed by Kim et al. [J. Kim, D. Kim, H. Choi, An immersed-boundary finite volume method for simulations of flow in complex geometries, Journal of Computational Physics 171 (2001) 132-150] reduces the spurious force oscillations by alleviating this pressure discontinuity. The other source is from the temporal discontinuity in the velocity at the grid points where fluid becomes solid with a body motion. The magnitude of velocity discontinuity decreases with decreasing the grid spacing near the immersed boundary. Four moving-body problems are simulated by varying the grid spacing at a fixed computational time step and at a constant CFL number, respectively. It is found that the spurious force oscillations decrease with decreasing the grid spacing and increasing the computational time step size, but they depend more on the grid spacing than on the computational time step size.
When water does not boil at the boiling point.
Chang, Hasok
2007-03-01
Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.
A test of fixed and moving reference point control in posture.
Lee, I-Chieh; Pacheco, Matheus M; Newell, Karl M
2017-01-01
This study investigated two contrasting assumptions of the regulation of posture: namely, fixed and moving reference point control. These assumptions were tested in terms of time-dependent structure and data distribution properties when stability is manipulated. Fifteen male participants performed a tightrope simulated balance task that is, maintaining a tandem stance while holding a pole. Pole length (and mass) and the standing support surface (fixed surface/balance board) were manipulated so as to mechanically change the balance stability. The mean and standard deviation (SD) of COP length were reduced with pole length increment but only in the balance board surface condition. Also, the SampEn was lower with greater pole length for the balance board but not the fixed surface. More than one peak was present in the distribution of COP in the majority of trials. Collectively, the findings provide evidence for a moving reference point in the maintenance of postural stability for quiet standing. Copyright © 2016 Elsevier B.V. All rights reserved.
Mishima, K; Yamashita, K
2009-07-07
We develop monotonically convergent free-time and fixed end-point optimal control theory (OCT) in the density-matrix representation to deal with quantum systems showing dissipation. Our theory is more general and flexible for tailoring optimal laser pulses in order to control quantum dynamics with dissipation than the conventional fixed-time and fixed end-point OCT in that the optimal temporal duration of laser pulses can also be optimized exactly. To show the usefulness of our theory, it is applied to the generation and maintenance of the vibrational entanglement of carbon monoxide adsorbed on the copper (100) surface, CO/Cu(100). We demonstrate the numerical results and clarify how to combat vibrational decoherence as much as possible by the tailored shapes of the optimal laser pulses. It is expected that our theory will be general enough to be applied to a variety of dissipative quantum dynamics systems because the decoherence is one of the quantum phenomena sensitive to the temporal duration of the quantum dynamics.
Nie, Xiaobing; Zheng, Wei Xing
2015-05-01
This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
The statistics of peaks of Gaussian random fields. [cosmological density fluctuations
NASA Technical Reports Server (NTRS)
Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.
1986-01-01
A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.
An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Han, Jianqiang; Tang, Huazhong
2007-01-01
This paper presents an adaptive moving mesh algorithm for two-dimensional (2D) ideal magnetohydrodynamics (MHD) that utilizes a staggered constrained transport technique to keep the magnetic field divergence-free. The algorithm consists of two independent parts: MHD evolution and mesh-redistribution. The first part is a high-resolution, divergence-free, shock-capturing scheme on a fixed quadrangular mesh, while the second part is an iterative procedure. In each iteration, mesh points are first redistributed, and then a conservative-interpolation formula is used to calculate the remapped cell-averages of the mass, momentum, and total energy on the resulting new mesh; the magnetic potential is remapped to the new mesh in a non-conservative way and is reconstructed to give a divergence-free magnetic field on the new mesh. Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy, track and resolve strong shock waves in ideal MHD problems, and preserve divergence-free property of the magnetic field. Numerical examples include the smooth Alfvén wave problem, 2D and 2.5D shock tube problems, two rotor problems, the stringent blast problem, and the cloud-shock interaction problem.
NASA Astrophysics Data System (ADS)
Bollati, Julieta; Tarzia, Domingo A.
2018-04-01
Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
NASA Astrophysics Data System (ADS)
Lampitt, Richard; Cristini, Luisa
2014-05-01
The Fixed point Open Ocean Observatory network (FixO3) seeks to integrate the 23 European open ocean fixed point observatories and to improve access to these key installations for the broader community. These will provide multidisciplinary observations in all parts of the oceans from the air-sea interface to the deep seafloor. Coordinated by the National Oceanography Centre, UK, FixO3 builds on the significant advances achieved through the previous Europe-funded FP7 programmes EuroSITES, ESONET and CARBOOCEAN. Started in September 2013 with a budget of 7 Million Euros over 4 years the project has 29 partners drawn from academia, research institutions and SME's. In addition 12 international experts from a wide range of disciplines comprise an Advisory Board. On behalf of the FixO3 Consortium, we present the programme that will be achieved through the activities of 12 Work Packages: 1. Coordination activities to integrate and harmonise the current procedures and processes. Strong links will be fostered with the wider community across academia, industry, policy and the general public through outreach, knowledge exchange and training. 2. Support actions to offer a) free access to observatory infrastructures to those who do not have such access, and b) free and open data services and products. 3. Joint research activities to innovate and enhance the current capability for multidisciplinary in situ ocean observation. Support actions include Transnational Access (TNA) to FixO3 infrastructure, meaning that European organizations can apply to free-of-charge access to the observatories for research and testing in two international calls during the project lifetime. The first call for TNA opens in summer 2014. More information can be found on FixO3 website (www.fixo3.eu/). Open ocean observation is currently a high priority for European marine and maritime activities. FixO3 will provide important data on environmental products and services to address the Marine Strategy Framework Directive and in support of the European Integrated Maritime Policy. The FixO3 network will provide free and open access to in situ fixed point data of the highest quality. It will provide a strong integrated framework of open ocean facilities in the Atlantic from the Arctic to the Antarctic and throughout the Mediterranean, enabling an integrated, regional and multidisciplinary approach to understand natural and anthropogenic change in the ocean.
NASA Astrophysics Data System (ADS)
Voytishek, Anton V.; Shipilov, Nikolay M.
2017-11-01
In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.
Nikbakhtsarvestani, Farzaneh; Vaezpour, S Mansour; Asadi, Mehdi
2017-01-01
In this paper, some new generalization of Darbo's fixed point theorem is proved by using a [Formula: see text]-contraction in terms of a measure of noncompactness. Our result extends to obtaining a common fixed point for a pair of compatible mappings. The paper contains an application for nonlinear integral equations as well.
Fixed Point Theorems for Hybrid Mappings
Kamran, Tayyab; Karapinar, Erdal
2015-01-01
We obtain some fixed point theorems for two pairs of hybrid mappings using hybrid tangential property and quadratic type contractive condition. Our results generalize some results by Babu and Alemayehu and those contained therein. In the sequel, we introduce a new notion to generalize occasionally weak compatibility. Moreover, two concrete examples are established to illuminate the generality of our results. PMID:25629089
Fixed-Radius Point Counts in Forests: Factors Influencing Effectiveness and Efficiency
Daniel R. Petit; Lisa J. Petit; Victoria A. Saab; Thomas E. Martin
1995-01-01
The effectiveness of fixed-radius point counts in quantifying abundance and richness of bird species in oak-hickory, pine-hardwoods, mixed-mesophytic, beech-maple, and riparian cottonwood forests was evaluated in Arkansas, Ohio, Kentucky, and Idaho. Effects of count duration and numbers of stations and visits per stand were evaluated in May to July 1991 by conducting...
Quantum group spin nets: Refinement limit and relation to spin foams
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Martin-Benito, Mercedes; Steinhaus, Sebastian
2014-07-01
So far spin foam models are hardly understood beyond a few of their basic building blocks. To make progress on this question, we define analogue spin foam models, so-called "spin nets," for quantum groups SU(2)k and examine their effective continuum dynamics via tensor network renormalization. In the refinement limit of this coarse-graining procedure, we find a vast nontrivial fixed-point structure beyond the degenerate and the BF phase. In comparison to previous work, we use fixed-point intertwiners, inspired by Reisenberger's construction principle [M. P. Reisenberger, J. Math. Phys. (N.Y.) 40, 2046 (1999)] and the recent work [B. Dittrich and W. Kaminski, arXiv:1311.1798], as the initial parametrization. In this new parametrization fine-tuning is not required in order to flow to these new fixed points. Encouragingly, each fixed point has an associated extended phase, which allows for the study of phase transitions in the future. Finally we also present an interpretation of spin nets in terms of melonic spin foams. The coarse-graining flow of spin nets can thus be interpreted as describing the effective coupling between two spin foam vertices or space time atoms.
How nonperturbative is the infrared regime of Landau gauge Yang-Mills correlators?
NASA Astrophysics Data System (ADS)
Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N.
2017-07-01
We study the Landau gauge correlators of Yang-Mills fields for infrared Euclidean momenta in the context of a massive extension of the Faddeev-Popov Lagrangian which, we argue, underlies a variety of continuum approaches. Standard (perturbative) renormalization group techniques with a specific, infrared-safe renormalization scheme produce so-called decoupling and scaling solutions for the ghost and gluon propagators, which correspond to nontrivial infrared fixed points. The decoupling fixed point is infrared stable and weakly coupled, while the scaling fixed point is unstable and generically strongly coupled except for low dimensions d →2 . Under the assumption that such a scaling fixed point exists beyond one-loop order, we find that the corresponding ghost and gluon scaling exponents are, respectively, 2 αF=2 -d and 2 αG=d at all orders of perturbation theory in the present renormalization scheme. We discuss the relation between the ghost wave function renormalization, the gluon screening mass, the scale of spectral positivity violation, and the gluon mass parameter. We also show that this scaling solution does not realize the standard Becchi-Rouet-Stora-Tyutin symmetry of the Faddeev-Popov Lagrangian. Finally, we discuss our findings in relation to the results of nonperturbative continuum methods.
Stochastic oscillations in models of epidemics on a network of cities
NASA Astrophysics Data System (ADS)
Rozhnova, G.; Nunes, A.; McKane, A. J.
2011-11-01
We carry out an analytic investigation of stochastic oscillations in a susceptible-infected-recovered model of disease spread on a network of n cities. In the model a fraction fjk of individuals from city k commute to city j, where they may infect, or be infected by, others. Starting from a continuous-time Markov description of the model the deterministic equations, which are valid in the limit when the population of each city is infinite, are recovered. The stochastic fluctuations about the fixed point of these equations are derived by use of the van Kampen system-size expansion. The fixed point structure of the deterministic equations is remarkably simple: A unique nontrivial fixed point always exists and has the feature that the fraction of susceptible, infected, and recovered individuals is the same for each city irrespective of its size. We find that the stochastic fluctuations have an analogously simple dynamics: All oscillations have a single frequency, equal to that found in the one-city case. We interpret this phenomenon in terms of the properties of the spectrum of the matrix of the linear approximation of the deterministic equations at the fixed point.
Fuel optimal maneuvers for spacecraft with fixed thrusters
NASA Technical Reports Server (NTRS)
Carter, T. C.
1982-01-01
Several mathematical models, including a minimum integral square criterion problem, were used for the qualitative investigation of fuel optimal maneuvers for spacecraft with fixed thrusters. The solutions consist of intervals of "full thrust" and "coast" indicating that thrusters do not need to be designed as "throttleable" for fuel optimal performance. For the primary model considered, singular solutions occur only if the optimal solution is "pure translation". "Time optimal" singular solutions can be found which consist of intervals of "coast" and "full thrust". The shape of the optimal fuel consumption curve as a function of flight time was found to depend on whether or not the initial state is in the region admitting singular solutions. Comparisons of fuel optimal maneuvers in deep space with those relative to a point in circular orbit indicate that qualitative differences in the solutions can occur. Computation of fuel consumption for certain "pure translation" cases indicates that considerable savings in fuel can result from the fuel optimal maneuvers.
Loff, Steffan; Wirth, Hartmut; Jester, Iwgo; Hosie, Stuart; Wollmann, Carmen; Schaible, Thomas; Ataman, Ozge; Waag, Karl-Ludwig
2005-11-01
Large defects in patients with congenital diaphragmatic hernia (CDH) are frequently closed with a polytetrafluoroethylene patch (PTFE). Intraoperative problems include lack of abdominal domain for the reduction of organs and closure of the abdominal wall. Main surgical postoperative complication is the recurrence of the hernia. We suggest a new and easy method of patch implantation, improving these problems, and report first follow-up results. In our clinic, 103 children with CDH were treated, and 87 children underwent reconstruction of the diaphragm in the 5 years between 1998 and 2002. In 52 patients, a patch implantation had to be performed. We have been optimizing our complete pediatric and surgical procedure and present a new standardized technique of preparation and implantation of a PTFE patch. The flat patch is folded to a 90 degrees cone. The cone is fixed in its form with few single stitches. It is implanted with an overlapping border of 1 cm circumferentially. The border is separately fixed with absorbable single stitches to keep from rolling up. The rough side of the patch points toward the rim of the diaphragm to enable ingrowth of the connective tissue. In a 1-year follow-up study, the recurrences in the 3 following groups of PTFE patches were studied: conventional implantation (simple patch without overlapping border), patch with separately fixed overlapping border, and cone-shaped patch with overlapping separately fixed border. Thirty-three patients were included in the study. After conventional PTFE-patch implantation, 6 (46%) of 13 patients developed reherniation. After PTFE-patch implantation with separately fixed overlapping border, 1 (11%) of 9 patients had a recurrent hernia. In the group with the PTFE-cone implantation, 1 (9%) of 11 patients developed a recurrence. Meanwhile, another 20 CDH patients received implantation of a cone-shaped patch, and no further recurrence occurred up to now. With the additional space (20 mL) provided by the cone-shaped patch, the closure of the abdomen was easier, and the fundus had intraoperatively a physiological position. This optimized patch implantation technique in large diaphragmatic defects offers considerable advantages especially regarding recurrence of the hernia and closure of the abdomen, which are currently the most challenging surgical problems. 1. The cone-shaped 3-dimensional patch increases abdominal capacity. 2. Redundant chest capacity is reduced, and the reconstructed diaphragm shows a physiological shape. 3. The dome of the patch allows a physiological position of the gastric fundus and a normal Hiss angle, thus preventing gastroesophageal reflux. 4. Additional safety of the implantation is achieved by separate fixation of the overlapping border of the cone, preventing recurrence.
Cosmic infinity: a dynamical system approach
NASA Astrophysics Data System (ADS)
Bouhmadi-López, Mariam; Marto, João; Morais, João; Silva, César M.
2017-03-01
Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identify normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.
Quantum corrections to non-Abelian SUSY theories on orbifolds
NASA Astrophysics Data System (ADS)
Groot Nibbelink, Stefan; Hillenbach, Mark
2006-07-01
We consider supersymmetric non-Abelian gauge theories coupled to hyper multiplets on five and six dimensional orbifolds, S/Z and T/Z, respectively. We compute the bulk and local fixed point renormalizations of the gauge couplings. To this end we extend supergraph techniques to these orbifolds by defining orbifold compatible delta functions. We develop their properties in detail. To cancel the bulk one-loop divergences the bulk gauge kinetic terms and dimension six higher derivative operators are required. The gauge couplings renormalize at the Z fixed points due to vector multiplet self interactions; the hyper multiplet renormalizes only non- Z fixed points. In 6D the Wess-Zumino-Witten term and a higher derivative analogue have to renormalize in the bulk as well to preserve 6D gauge invariance.
Non-Kondo many-body physics in a Majorana-based Kondo type system
NASA Astrophysics Data System (ADS)
van Beek, Ian J.; Braunecker, Bernd
2016-09-01
We carry out a theoretical analysis of a prototypical Majorana system, which demonstrates the existence of a Majorana-mediated many-body state and an associated intermediate low-energy fixed point. Starting from two Majorana bound states, hosted by a Coulomb-blockaded topological superconductor and each coupled to a separate lead, we derive an effective low-energy Hamiltonian, which displays a Kondo-like character. However, in contrast to the Kondo model which tends to a strong- or weak-coupling limit under renormalization, we show that this effective Hamiltonian scales to an intermediate fixed point, whose existence is contingent upon teleportation via the Majorana modes. We conclude by determining experimental signatures of this fixed point, as well as the exotic many-body state associated with it.
Nonminimal hints for asymptotic safety
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Lippoldt, Stefan; Skrinjar, Vedran
2018-01-01
In the asymptotic-safety scenario for gravity, nonzero interactions are present in the ultraviolet. This property should also percolate into the matter sector. Symmetry-based arguments suggest that nonminimal derivative interactions of scalars with curvature tensors should therefore be present in the ultraviolet regime. We perform a nonminimal test of the viability of the asymptotic-safety scenario by working in a truncation of the renormalization group flow, where we discover the existence of an interacting fixed point for a corresponding nonminimal coupling. The back-coupling of such nonminimal interactions could in turn destroy the asymptotically safe fixed point in the gravity sector. As a key finding, we observe nontrivial indications of stability of the fixed-point properties under the impact of nonminimal derivative interactions, further strengthening the case for asymptotic safety in gravity-matter systems.
Dissociation Predicts Later Attention Problems in Sexually Abused Children
ERIC Educational Resources Information Center
Kaplow, Julie B.; Hall, Erin; Koenen, Karestan C.; Dodge, Kenneth A.; Amaya-Jackson, Lisa
2008-01-01
Objective: The goals of this research are to develop and test a prospective model of attention problems in sexually abused children that includes fixed variables (e.g., gender), trauma, and disclosure-related pathways. Methods: At Time 1, fixed variables, trauma variables, and stress reactions upon disclosure were assessed in 156 children aged…
High order multi-grid methods to solve the Poisson equation
NASA Technical Reports Server (NTRS)
Schaffer, S.
1981-01-01
High order multigrid methods based on finite difference discretization of the model problem are examined. The following methods are described: (1) a fixed high order FMG-FAS multigrid algorithm; (2) the high order methods; and (3) results are presented on four problems using each method with the same underlying fixed FMG-FAS algorithm.
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2009-02-01
Four independent radiation temperature scales approximating the ITS-90 at 900 nm, 950 nm and 1.6 µm have been realized from the indium point (429.7485 K) to the copper point (1357.77 K) which were used to derive by extrapolation the transition temperature T90(Co-C) of the cobalt-carbon eutectic fixed point. An INRIM cell was investigated and an average value T90(Co-C) = 1597.20 K was found with the four values lying within 0.25 K. Alternatively, thermodynamic approximated scales were realized by assigning to the fixed points the best presently available thermodynamic values and deriving T(Co-C). An average value of 1597.27 K was found (four values lying within 0.25 K). The standard uncertainties associated with T90(Co-C) and T(Co-C) were 0.16 K and 0.17 K, respectively. INRIM determinations are compatible with recent thermodynamic determinations on three different cells (values lying between 1597.11 K and 1597.25 K) and with the result of a comparison on the same cell by an absolute radiation thermometer and an irradiance measurement with filter radiometers which give values of 1597.11 K and 1597.43 K, respectively (Anhalt et al 2006 Metrologia 43 S78-83). The INRIM approach allows the determination of both ITS-90 and thermodynamic temperature of a fixed point in a simple way and can provide valuable support to absolute radiometric methods in defining the transition temperature of new high-temperature fixed points.
A Comparison of Escalating versus Fixed Reinforcement Schedules on Undergraduate Quiz Taking
ERIC Educational Resources Information Center
Mahoney, Amanda
2017-01-01
Drug abstinence studies indicate that escalating reinforcement schedules maintain abstinence for longer periods than fixed reinforcement schedules. The current study evaluated whether escalating reinforcement schedules would maintain more quiz taking than fixed reinforcement schedules. During baseline and for the control group, bonus points were…
La, Moonwoo; Park, Sang Min; Kim, Dong Sung
2015-01-01
In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical. PMID:25610516
libFLASM: a software library for fixed-length approximate string matching.
Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad
2016-11-10
Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here suggest that other applications could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.
Multistep integration formulas for the numerical integration of the satellite problem
NASA Technical Reports Server (NTRS)
Lundberg, J. B.; Tapley, B. D.
1981-01-01
The use of two Class 2/fixed mesh/fixed order/multistep integration packages of the PECE type for the numerical integration of the second order, nonlinear, ordinary differential equation of the satellite orbit problem. These two methods are referred to as the general and the second sum formulations. The derivation of the basic equations which characterize each formulation and the role of the basic equations in the PECE algorithm are discussed. Possible starting procedures are examined which may be used to supply the initial set of values required by the fixed mesh/multistep integrators. The results of the general and second sum integrators are compared to the results of various fixed step and variable step integrators.
Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem.
Nallaperuma, Samadhi; Neumann, Frank; Sudholt, Dirk
2017-01-01
Randomized search heuristics are frequently applied to NP-hard combinatorial optimization problems. The runtime analysis of randomized search heuristics has contributed tremendously to our theoretical understanding. Recently, randomized search heuristics have been examined regarding their achievable progress within a fixed-time budget. We follow this approach and present a fixed-budget analysis for an NP-hard combinatorial optimization problem. We consider the well-known Traveling Salesperson Problem (TSP) and analyze the fitness increase that randomized search heuristics are able to achieve within a given fixed-time budget. In particular, we analyze Manhattan and Euclidean TSP instances and Randomized Local Search (RLS), (1+1) EA and (1+[Formula: see text]) EA algorithms for the TSP in a smoothed complexity setting, and derive the lower bounds of the expected fitness gain for a specified number of generations.
Approximation algorithm for the problem of partitioning a sequence into clusters
NASA Astrophysics Data System (ADS)
Kel'manov, A. V.; Mikhailova, L. V.; Khamidullin, S. A.; Khandeev, V. I.
2017-08-01
We consider the problem of partitioning a finite sequence of Euclidean points into a given number of clusters (subsequences) using the criterion of the minimal sum (over all clusters) of intercluster sums of squared distances from the elements of the clusters to their centers. It is assumed that the center of one of the desired clusters is at the origin, while the center of each of the other clusters is unknown and determined as the mean value over all elements in this cluster. Additionally, the partition obeys two structural constraints on the indices of sequence elements contained in the clusters with unknown centers: (1) the concatenation of the indices of elements in these clusters is an increasing sequence, and (2) the difference between an index and the preceding one is bounded above and below by prescribed constants. It is shown that this problem is strongly NP-hard. A 2-approximation algorithm is constructed that is polynomial-time for a fixed number of clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gariboldi, C.; E-mail: cgariboldi@exa.unrc.edu.ar; Tarzia, D.
2003-05-21
We consider a steady-state heat conduction problem P{sub {alpha}} with mixed boundary conditions for the Poisson equation depending on a positive parameter {alpha} , which represents the heat transfer coefficient on a portion {gamma} {sub 1} of the boundary of a given bounded domain in R{sup n} . We formulate distributed optimal control problems over the internal energy g for each {alpha}. We prove that the optimal control g{sub o}p{sub {alpha}} and its corresponding system u{sub go}p{sub {alpha}}{sub {alpha}} and adjoint p{sub go}p{sub {alpha}}{sub {alpha}} states for each {alpha} are strongly convergent to g{sub op},u{sub gop} and p{sub gop} ,more » respectively, in adequate functional spaces. We also prove that these limit functions are respectively the optimal control, and the system and adjoint states corresponding to another distributed optimal control problem for the same Poisson equation with a different boundary condition on the portion {gamma}{sub 1} . We use the fixed point and elliptic variational inequality theories.« less
A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem
NASA Astrophysics Data System (ADS)
Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid
2016-09-01
Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.
ERIC Educational Resources Information Center
Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo
2009-01-01
An apparently unnoticed analogy between the torque-free motion of a rotating rigid body about a fixed point and the propagation of light in anisotropic media is stated. First, a new plane construction for visualizing this torque-free motion is proposed. This method uses an intrinsic representation alternative to angular momentum and independent of…
PPF Dependent Fixed Point Results for Triangular α c-Admissible Mappings
Ćirić, Ljubomir; Alsulami, Saud M.; Salimi, Peyman
2014-01-01
We introduce the concept of triangular α c-admissible mappings (pair of mappings) with respect to η c nonself-mappings and establish the existence of PPF dependent fixed (coincidence) point theorems for contraction mappings involving triangular α c-admissible mappings (pair of mappings) with respect to η c nonself-mappings in Razumikhin class. Several interesting consequences of our theorems are also given. PMID:24672352
Probabilistic cluster labeling of imagery data
NASA Technical Reports Server (NTRS)
Chittineni, C. B. (Principal Investigator)
1980-01-01
The problem of obtaining the probabilities of class labels for the clusters using spectral and spatial information from a given set of labeled patterns and their neighbors is considered. A relationship is developed between class and clusters conditional densities in terms of probabilities of class labels for the clusters. Expressions are presented for updating the a posteriori probabilities of the classes of a pixel using information from its local neighborhood. Fixed-point iteration schemes are developed for obtaining the optimal probabilities of class labels for the clusters. These schemes utilize spatial information and also the probabilities of label imperfections. Experimental results from the processing of remotely sensed multispectral scanner imagery data are presented.
Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models
NASA Astrophysics Data System (ADS)
Kuznetsov, Sergey P.
2015-05-01
Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe-Kaneko, Belmonte-Eisenberg-Moses and Andersen-Pesavento-Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).
NASA Astrophysics Data System (ADS)
Levine, Zachary H.; Pintar, Adam L.
2015-11-01
A simple algorithm for averaging a stochastic sequence of 1D arrays in a moving, expanding window is provided. The samples are grouped in bins which increase exponentially in size so that a constant fraction of the samples is retained at any point in the sequence. The algorithm is shown to have particular relevance for a class of Monte Carlo sampling problems which includes one characteristic of iterative reconstruction in computed tomography. The code is available in the CPC program library in both Fortran 95 and C and is also available in R through CRAN.
On the efficient and reliable numerical solution of rate-and-state friction problems
NASA Astrophysics Data System (ADS)
Pipping, Elias; Kornhuber, Ralf; Rosenau, Matthias; Oncken, Onno
2016-03-01
We present a mathematically consistent numerical algorithm for the simulation of earthquake rupture with rate-and-state friction. Its main features are adaptive time stepping, a novel algebraic solution algorithm involving nonlinear multigrid and a fixed point iteration for the rate-and-state decoupling. The algorithm is applied to a laboratory scale subduction zone which allows us to compare our simulations with experimental results. Using physical parameters from the experiment, we find a good fit of recurrence time of slip events as well as their rupture width and peak slip. Computations in 3-D confirm efficiency and robustness of our algorithm.
Wu, Abby; McGrath, Colman; Wong, Ricky W K; Wiechmann, Dirk; Rabie, A Bakr M
2011-06-01
Our objective was to compare the oral impacts experienced by patients treated with labial or customized lingual fixed orthodontic appliances. This was an age- and sex-matched prospective longitudinal study of 60 adult patients treated with either labial or customized lingual fixed orthodontic appliances over a 3-month period. Ratings of oral impacts experienced and satisfaction were made on visual analog scales at 3 time points after appliance fixation. Variations in oral impacts and satisfaction over the trajectory of treatment were assessed. Area-under-the-curve analyses were conducted to assess variations in oral impacts and satisfaction between the groups. All patients experienced oral impact disturbances, although these disturbances decreased over time (P < 0.001). Patients treated with customized lingual appliances reported more oral discomfort (P < 0.001), dietary changes (P < 0.001), swallowing difficulty (P < 0.001), speech disturbances (P < 0.001), and social problems (P < 0.001) than did those in the other group. There was no significant difference between the groups regarding ratings of oral self-care, mastication, and satisfaction level of treatment (P > 0.05). The findings indicate that oral impacts are commonly experienced during both labial and customized lingual fixed orthodontic therapies. However, the oral impacts decreased over the observational period. Patients treated with customized lingual appliances experienced more oral impacts. Both groups had similar levels of treatment satisfaction. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Precise Point Positioning with Partial Ambiguity Fixing.
Li, Pan; Zhang, Xiaohong
2015-06-10
Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate.
Precise Point Positioning with Partial Ambiguity Fixing
Li, Pan; Zhang, Xiaohong
2015-01-01
Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate. PMID:26067196
NASA Astrophysics Data System (ADS)
Battuello, M.; Florio, M.; Girard, F.
2010-06-01
An indirect determination of the thermodynamic temperature of the fixed point of copper was made at INRIM by measuring four cells with a Si-based and an InGaAs-based precision radiation thermometer carrying approximated thermodynamic scales realized up to the Ag point. An average value TCu = 1357.840 K was found with a standard uncertainty of 0.047 K. A consequent (T - T90)Cu value of 70 mK can be derived which is 18 mK higher than, but consistent with, the presently available (T - T90)Cu as elaborated by the CCT-WG4.
A test of the AdS/CFT duality on the Coulomb branch
NASA Astrophysics Data System (ADS)
Costa, M. S.
2000-06-01
We consider the /N=4 /SU(N) Super Yang Mills theory on the Coulomb branch with gauge symmetry broken to S(U(N1)×U(N2)). By integrating the W particles, the effective action near the IR SU(Ni) conformal fixed points is seen to be a deformation of the Super Yang Mills theory by a non-renormalized, irrelevant, dimension 8 operator. The correction to the two-point function of the dilaton field dual operator near the IR is related to a three-point function of chiral primary operators at the conformal fixed points and agrees with the classical gravity prediction, including the numerical factor.
Review of the inverse scattering problem at fixed energy in quantum mechanics
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.
Floquet stability analysis of the longitudinal dynamics of two hovering model insects
Wu, Jiang Hao; Sun, Mao
2012-01-01
Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980
NASA Astrophysics Data System (ADS)
da Silva, Rodrigo; Pearce, Jonathan V.; Machin, Graham
2017-06-01
The fixed points of the International Temperature Scale of 1990 (ITS-90) are the basis of the calibration of standard platinum resistance thermometers (SPRTs). Impurities in the fixed point material at the level of parts per million can give rise to an elevation or depression of the fixed point temperature of order of millikelvins, which often represents the most significant contribution to the uncertainty of SPRT calibrations. A number of methods for correcting for the effect of impurities have been advocated, but it is becoming increasingly evident that no single method can be used in isolation. In this investigation, a suite of five aluminium fixed point cells (defined ITS-90 freezing temperature 660.323 °C) have been constructed, each cell using metal sourced from a different supplier. The five cells have very different levels and types of impurities. For each cell, chemical assays based on the glow discharge mass spectroscopy (GDMS) technique have been obtained from three separate laboratories. In addition a series of high quality, long duration freezing curves have been obtained for each cell, using three different high quality SPRTs, all measured under nominally identical conditions. The set of GDMS analyses and freezing curves were then used to compare the different proposed impurity correction methods. It was found that the most consistent corrections were obtained with a hybrid correction method based on the sum of individual estimates (SIE) and overall maximum estimate (OME), namely the SIE/Modified-OME method. Also highly consistent was the correction technique based on fitting a Scheil solidification model to the measured freezing curves, provided certain well defined constraints are applied. Importantly, the most consistent methods are those which do not depend significantly on the chemical assay.
NASA Technical Reports Server (NTRS)
Tarras, A.
1987-01-01
The problem of stabilization/pole placement under structural constraints of large scale linear systems is discussed. The existence of a solution to this problem is expressed in terms of fixed modes. The aim is to provide a bibliographic survey of the available results concerning the fixed modes (characterization, elimination, control structure selection to avoid them, control design in their absence) and to present the author's contribution to this problem which can be summarized by the use of the mode sensitivity concept to detect or to avoid them, the use of vibrational control to stabilize them, and the addition of parametric robustness considerations to design an optimal decentralized robust control.
Analyzing the multiple-target-multiple-agent scenario using optimal assignment algorithms
NASA Astrophysics Data System (ADS)
Kwok, Kwan S.; Driessen, Brian J.; Phillips, Cynthia A.; Tovey, Craig A.
1997-09-01
This work considers the problem of maximum utilization of a set of mobile robots with limited sensor-range capabilities and limited travel distances. The robots are initially in random positions. A set of robots properly guards or covers a region if every point within the region is within the effective sensor range of at least one vehicle. We wish to move the vehicles into surveillance positions so as to guard or cover a region, while minimizing the maximum distance traveled by any vehicle. This problem can be formulated as an assignment problem, in which we must optimally decide which robot to assign to which slot of a desired matrix of grid points. The cost function is the maximum distance traveled by any robot. Assignment problems can be solved very efficiently. Solution times for one hundred robots took only seconds on a silicon graphics crimson workstation. The initial positions of all the robots can be sampled by a central base station and their newly assigned positions communicated back to the robots. Alternatively, the robots can establish their own coordinate system with the origin fixed at one of the robots and orientation determined by the compass bearing of another robot relative to this robot. This paper presents example solutions to the multiple-target-multiple-agent scenario using a matching algorithm. Two separate cases with one hundred agents in each were analyzed using this method. We have found these mobile robot problems to be a very interesting application of network optimization methods, and we expect this to be a fruitful area for future research.
NASA Astrophysics Data System (ADS)
Woollands, Robyn M.; Read, Julie L.; Probe, Austin B.; Junkins, John L.
2017-12-01
We present a new method for solving the multiple revolution perturbed Lambert problem using the method of particular solutions and modified Chebyshev-Picard iteration. The method of particular solutions differs from the well-known Newton-shooting method in that integration of the state transition matrix (36 additional differential equations) is not required, and instead it makes use of a reference trajectory and a set of n particular solutions. Any numerical integrator can be used for solving two-point boundary problems with the method of particular solutions, however we show that using modified Chebyshev-Picard iteration affords an avenue for increased efficiency that is not available with other step-by-step integrators. We take advantage of the path approximation nature of modified Chebyshev-Picard iteration (nodes iteratively converge to fixed points in space) and utilize a variable fidelity force model for propagating the reference trajectory. Remarkably, we demonstrate that computing the particular solutions with only low fidelity function evaluations greatly increases the efficiency of the algorithm while maintaining machine precision accuracy. Our study reveals that solving the perturbed Lambert's problem using the method of particular solutions with modified Chebyshev-Picard iteration is about an order of magnitude faster compared with the classical shooting method and a tenth-twelfth order Runge-Kutta integrator. It is well known that the solution to Lambert's problem over multiple revolutions is not unique and to ensure that all possible solutions are considered we make use of a reliable preexisting Keplerian Lambert solver to warm start our perturbed algorithm.
Reliability of High-Temperature Fixed-Point Installations over 8 Years
NASA Astrophysics Data System (ADS)
Elliott, C. J.; Ford, T.; Ongrai, O.; Pearce, J. V.
2017-12-01
At NPL, high-temperature metal-carbon eutectic fixed points have been set up for thermocouple calibration purposes since 2006, for realising reference temperatures above the highest point specified in the International Temperature Scale of 1990 for contact thermometer calibrations. Additionally, cells of the same design have been provided by NPL to other national measurement institutes (NMIs) and calibration laboratories over this period, creating traceable and ISO 17025 accredited facilities around the world for calibrating noble metal thermocouples at 1324 {°}C (Co-C) and 1492 {°}C (Pd-C). This paper shows collections of thermocouple calibration results obtained during use of the high-temperature fixed-point cells at NPL and, as further examples, the use of cells installed at CCPI Europe (UK) and NIMT (Thailand). The lifetime of the cells can now be shown to be in excess of 7 years, whether used on a weekly or monthly basis, and whether used in an NMI or industrial calibration laboratory.
Upper bound on the Abelian gauge coupling from asymptotic safety
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Versteegen, Fleur
2018-01-01
We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.
Fixed points, stable manifolds, weather regimes, and their predictability
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-10-27
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less
Fixed points, stable manifolds, weather regimes, and their predictability.
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-12-01
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model's fixed points in phase space. The model dynamics is characterized by the coexistence of multiple "weather regimes." To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, "bred vectors" and singular vectors. These results are then verified in the framework of ensemble forecasts issued from "clouds" (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.
Cosmic infinity: a dynamical system approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhmadi-López, Mariam; Marto, João; Morais, João
2017-03-01
Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identifymore » normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.« less
Active control of bearing preload using piezoelectric translators
NASA Technical Reports Server (NTRS)
Nye, Ted W.
1990-01-01
In many spacecraft applications, mechanisms are required to perform precision pointing operations or to sometimes dither about or track a moving object. These mechanisms perform in a predictable and repeatable manner in benign temperature environments. Severe thermal gradients experienced in actual space applications however, cause assemblies to expand and contract around their bearings. This results in unpredictable changes in bearing preload, and hence bearing friction. This becomes a limitation for servos controlling pointing accuracy. Likewise, uncontrollable vibrations may couple into fixed preload (hence, fixed stiffness) mechanisms and limit pointing accuracy. Consequently, a complex problem faced today is how to design mechanisms that remain insensitive to changing thermal and vibrational spacecraft environments. Research presented involves the simplified modeling and test results of an actuator module that used piezoelectrically preload controlled bearings. The feasibility of actively controlling bearing preload was demonstrated. Because bearing friction is related to preload, a thermally active system designed with aluminum components and a 440 C bearing, was friction tested at temperatures ranging from 0 to 70 C (32 to 158 F). Effectiveness of the translators were demonstrated by mapping a controllable friction range throughout tested temperatures. It was learned that constant preload for this system could be maintained over an approximate 44 C (79 F) temperature span. From testing, it was also discovered that at the more deviate temperatures, expansions were so large that radial clearances were taken up and the duplex bearing became radially preloaded. Thus, active control of bearing preload is feasible but may be limited by inherent geometry constraints and materials used in the system.
Design Methods and Optimization for Morphing Aircraft
NASA Technical Reports Server (NTRS)
Crossley, William A.
2005-01-01
This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.
NASA Astrophysics Data System (ADS)
Kunze, Herb; La Torre, Davide; Lin, Jianyi
2017-01-01
We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its fixed point f ¯ is sufficiently close to f in the Lp distance. Forte and Vrscay [1] showed how to reduce this problem to a quadratic optimization model. In this paper, we extend the collage-based method developed by Kunze, La Torre and Vrscay ([2][3][4]), by proposing the minimization of the 1-norm instead of the 0-norm. In fact, optimization problems involving the 0-norm are combinatorial in nature, and hence in general NP-hard. To overcome these difficulties, we introduce the 1-norm and propose a Sequential Quadratic Programming algorithm to solve the corresponding inverse problem. As in Kunze, La Torre and Vrscay [3] in our formulation, the minimization of collage error is treated as a multi-criteria problem that includes three different and conflicting criteria i.e., collage error, entropy and sparsity. This multi-criteria program is solved by means of a scalarization technique which reduces the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented.
Morgan, R L; Salzberg, C L
1992-01-01
Two studies investigated effects of video-assisted training on employment-related social skills of adults with severe mental retardation. In video-assisted training, participants discriminated a model's behavior on videotape and received feedback from the trainer for responses to questions about video scenes. In the first study, 3 adults in an employment program participated in video-assisted training to request their supervisor's assistance when encountering work problems. Results indicated that participants discriminated the target behavior on video but effects did not generalize to the work setting for 2 participants until they rehearsed the behavior. In the second study, 2 participants were taught to fix and report four work problems using video-assisted procedures. Results indicated that after participants rehearsed how to fix and report one or two work problems, they began to fix and report the remaining problems with video-assisted training alone. PMID:1378826
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malys, S.; Jensen, P.A.
1990-04-01
The Global Positioning System (GPS) carrier beat phase data collected by the TI4100 GPS receiver has been successfully utilized by the US Defense Mapping Agency in an algorithm which is designed to estimate individual absolute geodetic point positions from data collected over a few hours. The algorithm uses differenced data from one station and two to four GPS satellites at a series of epochs separated by 30 second intervals. The precise GPS ephemerides and satellite clock states, held fixed in the estimation process, are those estimated by the Naval Surface Warfare Center (NSWC). Broadcast ephemerides and clock states are alsomore » utilized for comparative purposes. An outline of the data corrections applied, the mathematical model and the estimation algorithm are presented. Point positioning results and statistics are presented for a globally-distributed set of stations which contributed to the CASA Uno experiment. Statistical assessment of 114 GPS point positions at 11 CASA Uno stations indicates that the overall standard deviation of a point position component, estimated from a few hours of data, is 73 centimeters. Solution of the long line geodetic inverse problem using repeated point positions such as these can potentially offer a new tool for those studying geodynamics on a global scale.« less
TARDEC FIXED HEEL POINT (FHP): DRIVER CAD ACCOMMODATION MODEL VERIFICATION REPORT
2017-11-09
SUPPLEMENTARY NOTES N/A 14. ABSTRACT Easy-to-use Computer-Aided Design (CAD) tools, known as accommodation models, are needed by the ground vehicle... designers when developing the interior workspace for the occupant. The TARDEC Fixed Heel Point (FHP): Driver CAD Accommodation Model described in this...is intended to provide the composite boundaries representing the body of the defined target design population, including posture prediction
G. J. Jordan; M. J. Ducey; J. H. Gove
2004-01-01
We present the results of a timed field trial comparing the bias characteristics and relative sampling efficiency of line-intersect, fixed-area, and point relascope sampling for downed coarse woody material. Seven stands in a managed northern hardwood forest in New Hampshire were inventoried. Significant differences were found among estimates in some stands, indicating...
On stability of fixed points and chaos in fractional systems.
Edelman, Mark
2018-02-01
In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0<α<2. The method is tested on various forms of fractional generalizations of the standard and logistic maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding continuous fractional systems.
Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc
NASA Astrophysics Data System (ADS)
Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.
2017-01-01
Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.
NASA Astrophysics Data System (ADS)
Wähmer, M.; Anhalt, K.; Hollandt, J.; Klein, R.; Taubert, R. D.; Thornagel, R.; Ulm, G.; Gavrilov, V.; Grigoryeva, I.; Khlevnoy, B.; Sapritsky, V.
2017-10-01
Absolute spectral radiometry is currently the only established primary thermometric method for the temperature range above 1300 K. Up to now, the ongoing improvements of high-temperature fixed points and their formal implementation into an improved temperature scale with the mise en pratique for the definition of the kelvin, rely solely on single-wavelength absolute radiometry traceable to the cryogenic radiometer. Two alternative primary thermometric methods, yielding comparable or possibly even smaller uncertainties, have been proposed in the literature. They use ratios of irradiances to determine the thermodynamic temperature traceable to blackbody radiation and synchrotron radiation. At PTB, a project has been established in cooperation with VNIIOFI to use, for the first time, all three methods simultaneously for the determination of the phase transition temperatures of high-temperature fixed points. For this, a dedicated four-wavelengths ratio filter radiometer was developed. With all three thermometric methods performed independently and in parallel, we aim to compare the potential and practical limitations of all three methods, disclose possibly undetected systematic effects of each method and thereby confirm or improve the previous measurements traceable to the cryogenic radiometer. This will give further and independent confidence in the thermodynamic temperature determination of the high-temperature fixed point's phase transitions.
Permitted and forbidden sets in symmetric threshold-linear networks.
Hahnloser, Richard H R; Seung, H Sebastian; Slotine, Jean-Jacques
2003-03-01
The richness and complexity of recurrent cortical circuits is an inexhaustible source of inspiration for thinking about high-level biological computation. In past theoretical studies, constraints on the synaptic connection patterns of threshold-linear networks were found that guaranteed bounded network dynamics, convergence to attractive fixed points, and multistability, all fundamental aspects of cortical information processing. However, these conditions were only sufficient, and it remained unclear which were the minimal (necessary) conditions for convergence and multistability. We show that symmetric threshold-linear networks converge to a set of attractive fixed points if and only if the network matrix is copositive. Furthermore, the set of attractive fixed points is nonconnected (the network is multiattractive) if and only if the network matrix is not positive semidefinite. There are permitted sets of neurons that can be coactive at a stable steady state and forbidden sets that cannot. Permitted sets are clustered in the sense that subsets of permitted sets are permitted and supersets of forbidden sets are forbidden. By viewing permitted sets as memories stored in the synaptic connections, we provide a formulation of long-term memory that is more general than the traditional perspective of fixed-point attractor networks. There is a close correspondence between threshold-linear networks and networks defined by the generalized Lotka-Volterra equations.
Co-C and Pd-C Fixed Points for the Evaluation of Facilities and Scales Realization at INRIM and NMC
NASA Astrophysics Data System (ADS)
Battuello, M.; Wang, L.; Girard, F.; Ang, S. H.
2014-04-01
Two hybrid cells for realizing the Co-C and Pd-C fixed points and constructed at Istituto Nazionale di Ricerca Metrologica (INRIM) were used for an evaluation of facilities and procedures adopted by INRIM and National Metrology Institute of Singapore (NMC) for the realization of the solid-liquid phase transitions of high-temperature fixed points and for determining their transition temperatures. Four different furnaces were used for the investigations, i.e., two single-zone furnaces, one of them of the direct-heating type, and two identical three-zone furnaces. The transition temperatures were measured at both institutes by adopting different procedures for realizing the radiation scales, i.e., at INRIM a scheme based on the extrapolation of fixed-point interpolated scales and an International Temperature Scale of 1990 (ITS-90) approach at NMC. The point of inflection (POI) of the melting curves was determined and assumed as a practical representation of the melting temperature. Different methods for deriving the POI were used, and differences as large as some hundredths of a kelvin were found with the different approaches. The POIs of the different melting curves were analyzed with respect to the different possible operative conditions with the aim of deriving reproducibility figures to improve the estimated uncertainty. As regard to the institutes inter-comparison, differences of 0.13 K and 0.29 K were found between INRIM and NMC determinations at the Co-C and Pd-C points, respectively. Such differences are compatible with the combined standard uncertainties of the comparison, which are estimated to be 0.33 K and 0.36 K at the Co-C and Pd-C points, respectively.
Laser-Induced Melting of Co-C Eutectic Cells as a New Research Tool
NASA Astrophysics Data System (ADS)
van der Ham, E.; Ballico, M.; Jahan, F.
2015-08-01
A new laser-based technique to examine heat transfer and energetics of phase transitions in metal-carbon fixed points and potentially to improve the quality of phase transitions in furnaces with poor uniformity is reported. Being reproducible below 0.1 K, metal-carbon fixed points are increasingly used as reference standards for the calibration of thermocouples and radiation thermometers. At NMIA, the Co-C eutectic point is used for the calibration of thermocouples, with the fixed point traceable to the International Temperature Scale (ITS-90) using radiation thermometry. For thermocouple use, these cells are deep inside a high-uniformity furnace, easily obtaining excellent melting plateaus. However, when used with radiation thermometers, the essential large viewing cone to the crucible restricts the furnace depth and introduces large heat losses from the front furnace zone, affecting the quality of the phase transition. Short laser bursts have been used to illuminate the cavity of a conventional Co-C fixed-point cell during various points in its melting phase transition. The laser is employed to partially melt the metal at the rear of the crucible providing a liquid-solid interface close to the region being observed by the reference pyrometer. As the laser power is known, a quantitative estimate of can be made for the Co-C latent heat of fusion. Using a single laser pulse during a furnace-induced melt, a plateau up to 8 min is observed before the crucible resumes a characteristic conventional melt curve. Although this plateau is satisfyingly flat, well within 100 mK, it is observed that the plateau is laser energy dependent and elevates from the conventional melt "inflection-point" value.
NASA Astrophysics Data System (ADS)
Dermíšek, Radovan; McGinnis, Navin
2018-03-01
We use the IR fixed point predictions for gauge couplings and the top Yukawa coupling in the minimal supersymmetric model (MSSM) extended with vectorlike families to infer the scale of vectorlike matter and superpartners. We quote results for several extensions of the MSSM and present results in detail for the MSSM extended with one complete vectorlike family. We find that for a unified gauge coupling αG>0.3 vectorlike matter or superpartners are expected within 1.7 TeV (2.5 TeV) based on all three gauge couplings being simultaneously within 1.5% (5%) from observed values. This range extends to about 4 TeV for αG>0.2 . We also find that in the scenario with two additional large Yukawa couplings of vectorlike quarks the IR fixed point value of the top Yukawa coupling independently points to a multi-TeV range for vectorlike matter and superpartners. Assuming a universal value for all large Yukawa couplings at the grand unified theory scale, the measured top quark mass can be obtained from the IR fixed point for tan β ≃4 . The range expands to any tan β >3 for significant departures from the universality assumption. Considering that the Higgs boson mass also points to a multi-TeV range for superpartners in the MSSM, adding a complete vectorlike family at the same scale provides a compelling scenario where the values of gauge couplings and the top quark mass are understood as a consequence of the particle content of the model.
Censor, Yair; Unkelbach, Jan
2012-04-01
In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Experimental Replication of an Aeroengine Combustion Instability
NASA Technical Reports Server (NTRS)
Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.
2000-01-01
Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.
Quantitative ultrasonic evaluation of concrete structures using one-sided access
NASA Astrophysics Data System (ADS)
Khazanovich, Lev; Hoegh, Kyle
2016-02-01
Nondestructive diagnostics of concrete structures is an important and challenging problem. A recent introduction of array ultrasonic dry point contact transducer systems offers opportunities for quantitative assessment of the subsurface condition of concrete structures, including detection of defects and inclusions. The methods described in this paper are developed for signal interpretation of shear wave impulse response time histories from multiple fixed distance transducer pairs in a self-contained ultrasonic linear array. This included generalizing Kirchoff migration-based synthetic aperture focusing technique (SAFT) reconstruction methods to handle the spatially diverse transducer pair locations, creating expanded virtual arrays with associated reconstruction methods, and creating automated reconstruction interpretation methods for reinforcement detection and stochastic flaw detection. Interpretation of the reconstruction techniques developed in this study were validated using the results of laboratory and field forensic studies. Applicability of the developed methods for solving practical engineering problems was demonstrated.
Quasi-stationary mechanics of elastic continua with bending stiffness wrapping on a pulley system
NASA Astrophysics Data System (ADS)
Kaczmarczyk, S.; Mirhadizadeh, S.
2016-05-01
In many engineering applications elastic continua such as ropes and belts often are subject to bending when they pass over pulleys / sheaves. In this paper the quasi-stationary mechanics of a cable-pulley system is studied. The cable is modelled as a moving Euler- Bernoulli beam. The distribution of tension is non-uniform along its span and due to the bending stiffness the contact points at the pulley-beam boundaries are not unknown. The system is described by a set of nonlinear ordinary differential equations with undetermined boundary conditions. The resulting nonlinear Boundary Value Problem (BVP) with unknown boundaries is solved by converting the problem into the ‘standard’ form defined over a fixed interval. Numerical results obtained for a range of typical configurations with relevant boundary conditions applied demonstrate that due to the effects of bending stiffness the angels of wrap are reduced and the span tensions are increased.
Some Remarks on GMRES for Transport Theory
NASA Technical Reports Server (NTRS)
Patton, Bruce W.; Holloway, James Paul
2003-01-01
We review some work on the application of GMRES to the solution of the discrete ordinates transport equation in one-dimension. We note that GMRES can be applied directly to the angular flux vector, or it can be applied to only a vector of flux moments as needed to compute the scattering operator of the transport equation. In the former case we illustrate both the delights and defects of ILU right-preconditioners for problems with anisotropic scatter and for problems with upscatter. When working with flux moments we note that GMRES can be used as an accelerator for any existing transport code whose solver is based on a stationary fixed-point iteration, including transport sweeps and DSA transport sweeps. We also provide some numerical illustrations of this idea. We finally show how space can be traded for speed by taking multiple transport sweeps per GMRES iteration. Key Words: transport equation, GMRES, Krylov subspace
NASA Technical Reports Server (NTRS)
Periaux, J.
1979-01-01
The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.
An Exploration Of Fuel Optimal Two-impulse Transfers To Cyclers in the Earth-Moon System
NASA Astrophysics Data System (ADS)
Hosseinisianaki, Saghar
2011-12-01
This research explores the optimum two-impulse transfers between a low Earth orbit and cycler orbits in the Earth-Moon circular restricted three-body framework, emphasizing the optimization strategy. Cyclers are those types of periodic orbits that meet both the Earth and the Moon periodically. A spacecraft on such trajectories are under the influence of both the Earth and the Moon gravitational fields. Cyclers have gained recent interest as baseline orbits for several Earth-Moon mission concepts, notably in relation to human exploration. In this thesis it is shown that a direct optimization starting from the classic lambert initial guess may not be adequate for these problems and propose a three-step optimization solver to improve the domain of convergence toward an optimal solution. The first step consists of finding feasible trajectories with a given transfer time. I employ Lambert's problem to provide initial guess to optimize the error in arrival position. This includes the analysis of the liability of Lambert's solution as an initial guess. Once a feasible trajectory is found, the velocity impulse is only a function of transfer time, departure, and arrival points' phases. The second step consists of the optimization of impulse over transfer time which results in the minimum impulse transfer for fixed end points. Finally, the third step is mapping the optimal solutions as the end points are varied.
An Exploration Of Fuel Optimal Two-impulse Transfers To Cyclers in the Earth-Moon System
NASA Astrophysics Data System (ADS)
Hosseinisianaki, Saghar
This research explores the optimum two-impulse transfers between a low Earth orbit and cycler orbits in the Earth-Moon circular restricted three-body framework, emphasizing the optimization strategy. Cyclers are those types of periodic orbits that meet both the Earth and the Moon periodically. A spacecraft on such trajectories are under the influence of both the Earth and the Moon gravitational fields. Cyclers have gained recent interest as baseline orbits for several Earth-Moon mission concepts, notably in relation to human exploration. In this thesis it is shown that a direct optimization starting from the classic lambert initial guess may not be adequate for these problems and propose a three-step optimization solver to improve the domain of convergence toward an optimal solution. The first step consists of finding feasible trajectories with a given transfer time. I employ Lambert's problem to provide initial guess to optimize the error in arrival position. This includes the analysis of the liability of Lambert's solution as an initial guess. Once a feasible trajectory is found, the velocity impulse is only a function of transfer time, departure, and arrival points' phases. The second step consists of the optimization of impulse over transfer time which results in the minimum impulse transfer for fixed end points. Finally, the third step is mapping the optimal solutions as the end points are varied.
Closed loop problems in biomechanics. Part II--an optimization approach.
Vaughan, C L; Hay, J G; Andrews, J G
1982-01-01
A closed loop problem in biomechanics may be defined as a problem in which there are one or more closed loops formed by the human body in contact with itself or with an external system. Under certain conditions the problem is indeterminate--the unknown forces and torques outnumber the equations. Force transducing devices, which would help solve this problem, have serious drawbacks, and existing methods are inaccurate and non-general. The purposes of the present paper are (1) to develop a general procedure for solving closed loop problems; (2) to illustrate the application of the procedure; and (3) to examine the validity of the procedure. A mathematical optimization approach is applied to the solution of three different closed loop problems--walking up stairs, vertical jumping and cartwheeling. The following conclusions are drawn: (1) the method described is reasonably successful for predicting horizontal and vertical reaction forces at the distal segments although problems exist for predicting the points of application of these forces; (2) the results provide some support for the notion that the human neuromuscular mechanism attempts to minimize the joint torques and thus, to a certain degree, the amount of muscular effort; (3) in the validation procedure it is desirable to have a force device for each of the distal segments in contact with a fixed external system; and (4) the method is sufficiently general to be applied to all classes of closed loop problems.
78 FR 57472 - IFR Altitudes; Miscellaneous Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... BORDER DUNKIRK, NY VORTAC 18000 45000 DUNKIRK, NY VORTAC MTCAF, PA FIX 31000 45000 MTCAF, PA FIX LAKE... DUNKIRK, NY VORTAC 18000 45000 Airway segment Changeover points From To Distance From Sec. 95.8003 VOR...
Multiple positive solutions for a class of integral inclusions
NASA Astrophysics Data System (ADS)
Hong, Shihuang
2008-04-01
This paper deals with sufficient conditions for the existence of at least two positive solutions for a class of integral inclusions arising in the traffic theory. To show our main results, we apply a norm-type expansion and compression fixed point theorem for multivalued map due to Agarwal and O'Regan [A note on the existence of multiple fixed points for multivalued maps with applications, J. Differential Equation 160 (2000) 389-403].
Compendium of Applications Technology Satellite user experiments
NASA Technical Reports Server (NTRS)
Engler, N. A.; Strange, J. D.; Hein, G. F.
1976-01-01
The achievements of the user experiments performed with ATS satellites from 1967 to 1973 are summarized. Included are fixed and mobile point to point communications experiments involving voice, teletype and facsimile transmissions. Particular emphasis is given to the Alaska and Hawaii satellite communications experiments. The use of the ATS satellites for ranging and position fixing of ships and aircraft is also covered. The structure and operating characteristics of the various ATS satellite are briefly described.
Scale-chiral symmetry, ω meson, and dense baryonic matter
NASA Astrophysics Data System (ADS)
Ma, Yong-Liang; Rho, Mannque
2018-05-01
It is shown that explicitly broken scale symmetry is essential for dense skyrmion matter in hidden local symmetry theory. Consistency with the vector manifestation fixed point for the hidden local symmetry of the lowest-lying vector mesons and the dilaton limit fixed point for scale symmetry in dense matter is found to require that the anomalous dimension (|γG2| ) of the gluon field strength tensor squared (G2 ) that represents the quantum trace anomaly should be 1.0 ≲|γG2|≲3.5 . The magnitude of |γG2| estimated here will be useful for studying hadron and nuclear physics based on the scale-chiral effective theory. More significantly, that the dilaton limit fixed point can be arrived at with γG2≠0 at some high density signals that scale symmetry can arise in dense medium as an "emergent" symmetry.
Quantization improves stabilization of dynamical systems with delayed feedback
NASA Astrophysics Data System (ADS)
Stepan, Gabor; Milton, John G.; Insperger, Tamas
2017-11-01
We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.
Classification of attractors for systems of identical coupled Kuramoto oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelbrecht, Jan R.; Mirollo, Renato
2014-03-15
We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For N≠3 oscillators, there are four possible types of attractors: completely synchronized fixed points or limit cycles, and fixed points or limit cycles where all but one of the oscillators are synchronized. The case N = 3 is exceptional; systems of three identical Kuramoto oscillators can also posses attracting fixed points or limit cycles with all three oscillators out of sync, as well asmore » chaotic attractors. Our results rely heavily on the invariance of the flow for such systems under the action of the three-dimensional group of Möbius transformations, which preserve the unit disc, and the analysis of the possible limiting configurations for this group action.« less
UV conformal window for asymptotic safety
NASA Astrophysics Data System (ADS)
Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom
2018-02-01
Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.
A Machine-Checked Proof of A State-Space Construction Algorithm
NASA Technical Reports Server (NTRS)
Catano, Nestor; Siminiceanu, Radu I.
2010-01-01
This paper presents the correctness proof of Saturation, an algorithm for generating state spaces of concurrent systems, implemented in the SMART tool. Unlike the Breadth First Search exploration algorithm, which is easy to understand and formalise, Saturation is a complex algorithm, employing a mutually-recursive pair of procedures that compute a series of non-trivial, nested local fixed points, corresponding to a chaotic fixed point strategy. A pencil-and-paper proof of Saturation exists, but a machine checked proof had never been attempted. The key element of the proof is the characterisation theorem of saturated nodes in decision diagrams, stating that a saturated node represents a set of states encoding a local fixed-point with respect to firing all events affecting only the node s level and levels below. For our purpose, we have employed the Prototype Verification System (PVS) for formalising the Saturation algorithm, its data structures, and for conducting the proofs.
Two-point function of a d =2 quantum critical metal in the limit kF→∞ , Nf→0 with NfkF fixed
NASA Astrophysics Data System (ADS)
Säterskog, Petter; Meszena, Balazs; Schalm, Koenraad
2017-10-01
We show that the fermionic and bosonic spectrum of d =2 fermions at finite density coupled to a critical boson can be determined nonperturbatively in the combined limit kF→∞ ,Nf→0 with NfkF fixed. In this double scaling limit, the boson two-point function is corrected but only at one loop. This double scaling limit therefore incorporates the leading effect of Landau damping. The fermion two-point function is determined analytically in real space and numerically in (Euclidean) momentum space. The resulting spectrum is discontinuously connected to the quenched Nf→0 result. For ω →0 with k fixed the spectrum exhibits the distinct non-Fermi-liquid behavior previously surmised from the RPA approximation. However, the exact answer obtained here shows that the RPA result does not fully capture the IR of the theory.
Gravity Duals of Lifshitz-Like Fixed Points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Liu, Xiao
2008-11-05
We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t {yields} {lambda}{sup z}t, x {yields} {lambda}x; we focus on the case with z = 2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arisemore » at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.« less
1944-07-12
of tall area tlaes tall length are nearly the same. The airplane eas stable, « tick fixed, In all condi- tions except vave-off *lth the center of...in all conditions •icept aeve.off. A table of neutral points, both stick free end « tick flaed. for the XSBA-1 airplane «1th tall -it.figuration...I follostai Condition Ct Keutral point, Neutral point. • tick fixed •tlek free illding Cruising Cllablnc Landing approach •eve.off C.« 1.0
Field programmable gate array-assigned complex-valued computation and its limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com; Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien; Zwick, Wolfgang
We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.
Report on NIM-NMC bilateral comparison: SPRT calibration comparison from -190°C to 420°C
NASA Astrophysics Data System (ADS)
Sun, Jianping; Ye, Shaochun; Wang, Li; Zhang, Jintao; Kho, Haoyuan
2016-01-01
A bilateral comparison of local realization of the International temperature scale of 1990 (ITS-90) between National Institute of Metrology (NIM) and National Metrology Centre (NMC) was carried out over the temperature range from -190°C to 420°C. It involved six fixed points including the argon triple point, the mercury triple point, the triple point of water, the melting point of gallium, the freezing point of tin and the freezing point of zinc. In 2009, NMC asked NIM to participate in a bilateral comparison to link the NMC results to the Consultative Committee for Thermometry Key comparison 3 (CCT-K3) and facilitate the NMC's Calibration and measurement capabilities (CMCs) submission. This comparison was agreed by NIM and Asia Pacific Metrology Programme (APMP) in 2009, and registered in the Key Comparison Database (KCDB) in 2010 as CCT-K3.2. NMC supplied two 25 Ω fused silica sheath standard platinum resistance thermometers (SPRTs) as traveling standards. One of them was used at the Ga, Sn and Zn fixed points, while the other one was used at the Ar and Hg fixed point. NMC measured them before and after NIM measurement. During the comparison, a criterion for the SPRT was set as the stability at the triple point of water to be less than 0.3 mK. The results for both laboratories are summarized. A proposal for linking the NMC's comparison results to CCT-K3 is presented. The difference between NMC and NIM and the difference between NMC and the CCT-K3 Average Reference Value (ARV) using NIM as a link are reported with expanded uncertainties at each measured fixed point. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Scalable problems and memory bounded speedup
NASA Technical Reports Server (NTRS)
Sun, Xian-He; Ni, Lionel M.
1992-01-01
In this paper three models of parallel speedup are studied. They are fixed-size speedup, fixed-time speedup and memory-bounded speedup. The latter two consider the relationship between speedup and problem scalability. Two sets of speedup formulations are derived for these three models. One set considers uneven workload allocation and communication overhead and gives more accurate estimation. Another set considers a simplified case and provides a clear picture on the impact of the sequential portion of an application on the possible performance gain from parallel processing. The simplified fixed-size speedup is Amdahl's law. The simplified fixed-time speedup is Gustafson's scaled speedup. The simplified memory-bounded speedup contains both Amdahl's law and Gustafson's scaled speedup as special cases. This study leads to a better understanding of parallel processing.
Modified Interior Distance Functions (Theory and Methods)
NASA Technical Reports Server (NTRS)
Polyak, Roman A.
1995-01-01
In this paper we introduced and developed the theory of Modified Interior Distance Functions (MIDF's). The MIDF is a Classical Lagrangian (CL) for a constrained optimization problem which is equivalent to the initial one and can be obtained from the latter by monotone transformation both the objective function and constraints. In contrast to the Interior Distance Functions (IDF's), which played a fundamental role in Interior Point Methods (IPM's), the MIDF's are defined on an extended feasible set and along with center, have two extra tools, which control the computational process: the barrier parameter and the vector of Lagrange multipliers. The extra tools allow to attach to the MEDF's very important properties of Augmented Lagrangeans. One can consider the MIDFs as Interior Augmented Lagrangeans. It makes MIDF's similar in spirit to Modified Barrier Functions (MBF's), although there is a fundamental difference between them both in theory and methods. Based on MIDF's theory, Modified Center Methods (MCM's) have been developed and analyzed. The MCM's find an unconstrained minimizer in primal space and update the Lagrange multipliers, while both the center and the barrier parameter can be fixed or updated at each step. The MCM's convergence was investigated, and their rate of convergence was estimated. The extension of the feasible set and the special role of the Lagrange multipliers allow to develop MCM's, which produce, in case of nondegenerate constrained optimization, a primal and dual sequences that converge to the primal-dual solutions with linear rate, even when both the center and the barrier parameter are fixed. Moreover, every Lagrange multipliers update shrinks the distance to the primal dual solution by a factor 0 less than gamma less than 1 which can be made as small as one wants by choosing a fixed interior point as a 'center' and a fixed but large enough barrier parameter. The numericai realization of MCM leads to the Newton MCM (NMCM). The approximation for the primal minimizer one finds by Newton Method followed by the Lagrange multipliers update. Due to the MCM convergence, when both the center and the barrier parameter are fixed, the condition of the MDF Hessism and the neighborhood of the primal ninimizer where Newton method is 'well' defined remains stable. It contributes to both the complexity and the numerical stability of the NMCM.
NASA Astrophysics Data System (ADS)
Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.
2016-03-01
We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.
Compatible orders and fermion-induced emergent symmetry in Dirac systems
NASA Astrophysics Data System (ADS)
Janssen, Lukas; Herbut, Igor F.; Scherer, Michael M.
2018-01-01
We study the quantum multicritical point in a (2+1)-dimensional Dirac system between the semimetallic phase and two ordered phases that are characterized by anticommuting mass terms with O (N1) and O (N2) symmetries, respectively. Using ɛ expansion around the upper critical space-time dimension of four, we demonstrate the existence of a stable renormalization-group fixed point, enabling a direct and continuous transition between the two ordered phases directly at the multicritical point. This point is found to be characterized by an emergent O (N1+N2) symmetry for arbitrary values of N1 and N2 and fermion flavor numbers Nf as long as the corresponding representation of the Clifford algebra exists. Small O (N ) -breaking perturbations near the chiral O (N ) fixed point are therefore irrelevant. This result can be traced back to the presence of gapless Dirac degrees of freedom at criticality, and it is in clear contrast to the purely bosonic O (N ) fixed point, which is stable only when N <3 . As a by-product, we obtain predictions for the critical behavior of the chiral O (N ) universality classes for arbitrary N and fermion flavor number Nf. Implications for critical Weyl and Dirac systems in 3+1 dimensions are also briefly discussed.
2012-01-01
A lumped model of neural activity in neocortex is studied to identify regions of multi-stability of both steady states and periodic solutions. Presence of both steady states and periodic solutions is considered to correspond with epileptogenesis. The model, which consists of two delay differential equations with two fixed time lags is mainly studied for its dependency on varying connection strength between populations. Equilibria are identified, and using linear stability analysis, all transitions are determined under which both trivial and non-trivial fixed points lose stability. Periodic solutions arising at some of these bifurcations are numerically studied with a two-parameter bifurcation analysis. PMID:22655859
NASA Astrophysics Data System (ADS)
Chen, Chun-Chi; Lin, Shih-Hao; Lin, Yi
2014-06-01
This paper proposes a time-domain CMOS smart temperature sensor featuring on-chip curvature correction and one-point calibration support for thermal management systems. Time-domain inverter-based temperature sensors, which exhibit the advantages of low power and low cost, have been proposed for on-chip thermal monitoring. However, the curvature is large for the thermal transfer curve, which substantially affects the accuracy as the temperature range increases. Another problem is that the inverter is sensitive to process variations, resulting in difficulty for the sensors to achieve an acceptable accuracy for one-point calibration. To overcome these two problems, a temperature-dependent oscillator with curvature correction is proposed to increase the linearity of the oscillatory width, thereby resolving the drawback caused by a costly off-chip second-order master curve fitting. For one-point calibration support, an adjustable-gain time amplifier was adopted to eliminate the effect of process variations, with the assistance of a calibration circuit. The proposed circuit occupied a small area of 0.073 mm2 and was fabricated in a TSMC CMOS 0.35-μm 2P4M digital process. The linearization of the oscillator and the effect cancellation of process variations enabled the sensor, which featured a fixed resolution of 0.049 °C/LSB, to achieve an optimal inaccuracy of -0.8 °C to 1.2 °C after one-point calibration of 12 test chips from -40 °C to 120 °C. The power consumption was 35 μW at a sample rate of 10 samples/s.
A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning
Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin
2016-01-01
Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively. PMID:27222361
A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning.
Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin
2016-05-25
Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively.
Pin routability and pin access analysis on standard cells for layout optimization
NASA Astrophysics Data System (ADS)
Chen, Jian; Wang, Jun; Zhu, ChengYu; Xu, Wei; Li, Shuai; Lin, Eason; Ou, Odie; Lai, Ya-Chieh; Qu, Shengrui
2018-03-01
At advanced process nodes, especially at sub-28nm technology, pin accessibility and routability of standard cells has become one of the most challenging design issues due to the limited router tracks and the increased pin density. If this issue can't be found and resolved during the cell design stage, the pin access problem will be very difficult to be fixed in implementation stage and will make the low efficiency for routing. In this paper, we will introduce a holistic approach for the pin accessibility scoring and routability analysis. For accessibility, the systematic calculator which assigns score for each pin will search the available access points, consider the surrounded router layers, basic design rule and allowed via geometry. Based on the score, the "bad" pins can be found and modified. On pin routability analysis, critical pin points (placing via on this point would lead to failed via insertion) will be searched out for either layout optimization guide or set as OBS for via insertion blocking. By using this pin routability and pin access analysis flow, we are able to improve the library quality and performance.
NASA Astrophysics Data System (ADS)
Gutin, Gregory; Kim, Eun Jung; Soleimanfallah, Arezou; Szeider, Stefan; Yeo, Anders
The NP-hard general factor problem asks, given a graph and for each vertex a list of integers, whether the graph has a spanning subgraph where each vertex has a degree that belongs to its assigned list. The problem remains NP-hard even if the given graph is bipartite with partition U ⊎ V, and each vertex in U is assigned the list {1}; this subproblem appears in the context of constraint programming as the consistency problem for the extended global cardinality constraint. We show that this subproblem is fixed-parameter tractable when parameterized by the size of the second partite set V. More generally, we show that the general factor problem for bipartite graphs, parameterized by |V |, is fixed-parameter tractable as long as all vertices in U are assigned lists of length 1, but becomes W[1]-hard if vertices in U are assigned lists of length at most 2. We establish fixed-parameter tractability by reducing the problem instance to a bounded number of acyclic instances, each of which can be solved in polynomial time by dynamic programming.
Newell, Felicity L.; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D.; Buehler, David A.; Keyser, Patrick D.; Larkin, Jeffrey L.; Beachy, Tiffany A.; Bakermans, Marja H.; Boves, Than J.; Evans, Andrea; George, Gregory A.; McDermott, Molly E.; Perkins, Kelly A.; White, Matthew; Wigley, T. Bently
2013-01-01
Point counts are commonly used to assess changes in bird abundance, including analytical approaches such as distance sampling that estimate density. Point-count methods have come under increasing scrutiny because effects of detection probability and field error are difficult to quantify. For seven forest songbirds, we compared fixed-radii counts (50 m and 100 m) and density estimates obtained from distance sampling to known numbers of birds determined by territory mapping. We applied point-count analytic approaches to a typical forest management question and compared results to those obtained by territory mapping. We used a before–after control impact (BACI) analysis with a data set collected across seven study areas in the central Appalachians from 2006 to 2010. Using a 50-m fixed radius, variance in error was at least 1.5 times that of the other methods, whereas a 100-m fixed radius underestimated actual density by >3 territories per 10 ha for the most abundant species. Distance sampling improved accuracy and precision compared to fixed-radius counts, although estimates were affected by birds counted outside 10-ha units. In the BACI analysis, territory mapping detected an overall treatment effect for five of the seven species, and effects were generally consistent each year. In contrast, all point-count methods failed to detect two treatment effects due to variance and error in annual estimates. Overall, our results highlight the need for adequate sample sizes to reduce variance, and skilled observers to reduce the level of error in point-count data. Ultimately, the advantages and disadvantages of different survey methods should be considered in the context of overall study design and objectives, allowing for trade-offs among effort, accuracy, and power to detect treatment effects.
A dual method for optimal control problems with initial and final boundary constraints.
NASA Technical Reports Server (NTRS)
Pironneau, O.; Polak, E.
1973-01-01
This paper presents two new algorithms belonging to the family of dual methods of centers. The first can be used for solving fixed time optimal control problems with inequality constraints on the initial and terminal states. The second one can be used for solving fixed time optimal control problems with inequality constraints on the initial and terminal states and with affine instantaneous inequality constraints on the control. Convergence is established for both algorithms. Qualitative reasoning indicates that the rate of convergence is linear.
NASA Astrophysics Data System (ADS)
Fu, Junjie; Wang, Jin-zhi
2017-09-01
In this paper, we study the finite-time consensus problems with globally bounded convergence time also known as fixed-time consensus problems for multi-agent systems subject to directed communication graphs. Two new distributed control strategies are proposed such that leaderless and leader-follower consensus are achieved with convergence time independent on the initial conditions of the agents. Fixed-time formation generation and formation tracking problems are also solved as the generalizations. Simulation examples are provided to demonstrate the performance of the new controllers.
Profit intensity and cases of non-compliance with the law of demand/supply
NASA Astrophysics Data System (ADS)
Makowski, Marcin; Piotrowski, Edward W.; Sładkowski, Jan; Syska, Jacek
2017-05-01
We consider properties of the measurement intensity ρ of a random variable for which the probability density function represented by the corresponding Wigner function attains negative values on a part of the domain. We consider a simple economic interpretation of this problem. This model is used to present the applicability of the method to the analysis of the negative probability on markets where there are anomalies in the law of supply and demand (e.g. Giffen's goods). It turns out that the new conditions to optimize the intensity ρ require a new strategy. We propose a strategy (so-called à rebours strategy) based on the fixed point method and explore its effectiveness.