Accuracy of cancellous bone volume fraction measured by micro-CT scanning.
Ding, M; Odgaard, A; Hvid, I
1999-03-01
Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed.
SU-E-J-187: Management of Optic Organ Motion in Fractionated Stereotactic Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, M; Maurer, J
2015-06-15
Purpose: Fractionated stereotactic radiotherapy (FSRT) for optic nerve tumors can potentially use planning target volume (PTV) expansions as small as 1–5 mm. However, the motion of the intraorbital segment of the optic nerve has not been studied. Methods: A subject with a right optic nerve sheath meningioma underwent CT simulation in three fixed gaze positions: right, left, and fixed forward at a marker. The gross tumor volume (GTV) and the organs-at-risk (OAR) were contoured on all three scans. An IMRT plan using 10 static non-coplanar fields to 50.4 Gy in 28 fractions was designed to treat the fixed-forward gazing GTVmore » with a 1 mm PTV, then resulting coverage was evaluated for the GTV in the three positions. As an alternative, the composite structures were computed to generate the internal target volume (ITV), 1 mm expansion free-gazing PTV, and planning organat-risk volumes (PRVs) for free-gazing treatment. A comparable IMRT plan was created for the free-gazing PTV. Results: If the patient were treated using the fixed forward gaze plan looking straight, right, and left, the V100% for the GTV was 100.0%, 33.1%, and 0.1%, respectively. The volumes of the PTVs for fixed gaze and free-gazing plans were 0.79 and 2.21 cc, respectively, increasing the PTV by a factor of 2.6. The V100% for the fixed gaze and free-gazing plans were 0.85 cc and 2.8 cc, respectively increasing the treated volume by a factor of 3.3. Conclusion: Fixed gaze treatment appears to provide greater organ sparing than free-gazing. However unanticipated intrafraction right or left gaze can produce a geometric miss. Further study of optic nerve motion appears to be warranted in areas such as intrafraction optical confirmation of fixed gaze and optimized gaze directions to minimize lens and other normal organ dose in cranial radiotherapy.« less
NASA Astrophysics Data System (ADS)
Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel
2017-06-01
In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.
A study of the rheology and micro-structure of dumbbells in shear geometries
NASA Astrophysics Data System (ADS)
Mandal, Sandip; Khakhar, D. V.
2018-01-01
We study the flow of frictional, inelastic dumbbells made of two fused spheres of different aspect ratios down a rough inclined plane and in a simple shear cell, using discrete element simulations. At a fixed inclination angle, the mean velocity decreases, and the volume fraction increases significantly with increasing aspect ratio in the chute flow. At a fixed solid fraction, the shear stress and pressure decrease significantly with increasing aspect ratio in the shear cell flow. The micro-structure of the flow is characterized. The translational diffusion coefficient in the normal direction to the flow is found to scale as Dy y=b γ ˙ d2, independent of aspect ratio, where b is a constant, γ ˙ is the shear rate, and d is the diameter of the constituent spheres of the dumbbells. The effective friction coefficient (μ, the ratio of shear stress to pressure) increases by 30%-35% on increasing the aspect ratio λ, from 1.0 to 1.7, for a fixed inertial number I. The volume fraction (ϕ) also increases significantly with increasing aspect ratio, especially at high inertial numbers. The effective friction coefficient and volume fraction are found to follow simple scalings of the form μ = μ(I, λ) and ϕ = ϕ(I, λ) for all the data from both systems, and the results are in reasonable agreement with kinetic theory predictions at low I. The computational results are in reasonable agreement with the experimental data for flow in a rotating cylinder.
Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction
NASA Astrophysics Data System (ADS)
Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.
2017-11-01
Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
Prodanović, M; Lindquist, W B; Seright, R S
2006-06-01
Using oil-wet polyethylene core models, we present the development of robust throat finding techniques for the extraction, from X-ray microtomographic images, of a pore network description of porous media having porosity up to 50%. Measurements of volume, surface area, shape factor, and principal diameters are extracted for pores and area, shape factor and principal diameters for throats. We also present results on the partitioning of wetting and non-wetting phases in the pore space at fixed volume increments of the injected fluid during a complete cycle of drainage and imbibition. We compare these results with fixed fractional flow injection, where wetting and non-wetting phase are simultaneously injected at fixed volume ratio. Finally we demonstrate the ability to differentiate three fluid phases (oil, water, air) in the pore space.
Gyenge, Christina C; Tenstad, Olav; Wiig, Helge
2003-01-01
In order to estimate the magnitude of electrostatic exclusion provided by the fixed negative charges of the skin and muscle interstitia of rat in vivo we measured the distribution volumes of two differently charged albumin probes within these tissues. An implanted osmotic pump was used to reach and maintain a steady-state extracellular concentration of a mixture containing two iodine-labelled probes: a charged-modified human serum albumin, cHSA (i.e. a positive probe, isoelectirc point (pI) = 7.6) and a native human serum albumin, HSA (i.e. a normally charged, negative probe, pI = 5.0). Steady-state tissue concentrations were achieved after intravenous infusion of probes for 5–7 days. At the end of this period the animals were nephrectomized and a bolus of 51Cr-EDTA was administered for estimating the extracellular volume. Plasma volumes were measured as 5-min distribution volume of 125I-HSA in separate experiments. The steady-state interstitial fluid concentrations of all probes were determined using nylon wicks implanted postmortem. Calculations of labelled probes were made for interstitial fluid volumes (Vi), extravascular albumin distribution volumes (Vav,a) and relative interstitial excluded volume fractions (Vex,a/Vi). We found that the positive probe is excluded from a significantly smaller fraction of the interstitium. Specifically, the average relative albumin exclusion fractions obtained were: 16% and 26% in skeletal muscle and 30% and 40% in skin, for cHSA and HSA, respectively. On average, the fixed negative charges of the interstitium are responsible for about 40% of the total albumin exclusion in skeletal muscle and 25% in the whole skin tissue and thus, contribute significantly to volume exclusion in these tissues. PMID:12937287
Gyenge, Christina C; Tenstad, Olav; Wiig, Helge
2003-11-01
In order to estimate the magnitude of electrostatic exclusion provided by the fixed negative charges of the skin and muscle interstitia of rat in vivo we measured the distribution volumes of two differently charged albumin probes within these tissues. An implanted osmotic pump was used to reach and maintain a steady-state extracellular concentration of a mixture containing two iodine-labelled probes: a charged-modified human serum albumin, cHSA (i.e. a positive probe, isoelectirc point (pI) = 7.6) and a native human serum albumin, HSA (i.e. a normally charged, negative probe, pI = 5.0). Steady-state tissue concentrations were achieved after intravenous infusion of probes for 5-7 days. At the end of this period the animals were nephrectomized and a bolus of 51Cr-EDTA was administered for estimating the extracellular volume. Plasma volumes were measured as 5-min distribution volume of 125I-HSA in separate experiments. The steady-state interstitial fluid concentrations of all probes were determined using nylon wicks implanted postmortem. Calculations of labelled probes were made for interstitial fluid volumes (Vi), extravascular albumin distribution volumes (Vav,a) and relative interstitial excluded volume fractions (Vex,a/Vi). We found that the positive probe is excluded from a significantly smaller fraction of the interstitium. Specifically, the average relative albumin exclusion fractions obtained were: 16% and 26% in skeletal muscle and 30% and 40% in skin, for cHSA and HSA, respectively. On average, the fixed negative charges of the interstitium are responsible for about 40% of the total albumin exclusion in skeletal muscle and 25% in the whole skin tissue and thus, contribute significantly to volume exclusion in these tissues.
NASA Astrophysics Data System (ADS)
Dong, Shuai; Wang, Xiaojie
2018-03-01
Conductive polymer composites (CPCs) consist of multi-walled carbon nanotubes (MWCNTs), a few carbonyl iron particles (CIPs) and polydimethylsiloxane (PDMS) are fabricated under a moderate magnetic field. The alignment of CIPs will change the structure of MWCNT network, and consequently the electrical properties of CPCs. The volume fraction of CIPs is fixed at 0.08 vol% at which CIPs will not directly participate in electric conduction. The electrical resistivity of CPCs and the changes of resistance versus strain are evaluated at various MWCNT volume fractions. The testing results show that a percolation threshold as low as 0.19 vol% is obtained due to the effect of aligned CIPs, comparing with 0.39 vol% of isotropic MWCNT/CIP/PDMS (prepared without magnetic field). Meanwhile, the anisotropic structure reduces the electrical resistivity by more than 80% when the MWCNT volume fractions is over the percolation threshold.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin
2018-01-01
This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (
Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V
2006-01-01
Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.
NASA Technical Reports Server (NTRS)
Cutten, D. R.; Jarzembski, M. A.; Srivastava, V.; Pueschel, R. F.; Howard, S. D.; McCaul, E. W., Jr.
2003-01-01
An inversion technique has been developed to determine volume fractions of an atmospheric aerosol composed primarily of ammonium sulfate and ammonium nitrate and water combined with fixed concentration of elemental and organic carbon. It is based on measured aerosol backscatter obtained with 9.11 - and 10.59-micron wavelength continuous wave CO2 lidars and modeled backscatter from aerosol size distribution data. The technique is demonstrated during a flight of the NASA DC-8 aircraft over the Sierra Nevada Mountain Range, California on 19 September, 1995. Volume fraction of each component and effective complex refractive index of the composite particle were determined assuming an internally mixed composite aerosol model. The volume fractions were also used to re-compute aerosol backscatter, providing good agreement with the lidar-measured data. The robustness of the technique for determining volume fractions was extended with a comparison of calculated 2.1,-micron backscatter from size distribution data with the measured lidar data converted to 2.1,-micron backscatter using an earlier derived algorithm, verifying the algorithm as well as the backscatter calculations.
Optical properties of anisotropic 3D nanoparticles arrays
NASA Astrophysics Data System (ADS)
Santiago, E. Y.; Esquivel-Sirvent, R.
2017-07-01
The optical properties of 3D periodic arrays of spheroidal Au nanoparticles are calculated using a Bruggeman effective medium approximation. The optical response of the supra-crystal depends on the volume fraction of the nanoparticles and their aspect or size ratio (major/minor axis). All the nanoparticles have the same orientation, and this defines an anisotropic dielectric function of the crystal. As a function of the filling fraction, while keeping the size ratio fixed, the maximum in the extinction spectra along the major and minor axes does not show a significant change. However, for a fixed filling fraction, varying the aspect ratio of the particles induces a shift of several hundred of nanometers in the maximum of the extinction spectra along the major axis and almost no changes along the minor axis. Depending on the aspect ratio and the filling fraction, we show that the supra-crystal has three regimes with different values of an effective plasma frequency. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.
NASA Technical Reports Server (NTRS)
Rosenfeld, Moshe
1990-01-01
The development, validation and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems are discussed. A solution method that combines a finite-volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries was previously developed for fixed-grids. In the present research effort, this solution method is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugano, Yasutaka; Mizuta, Masahiro; Takao, Seishin
Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of themore » tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.« less
Ross, Michael B.; Ku, Jessie C.; Blaber, Martin G.; ...
2015-08-03
Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. In this paper, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (~5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter)more » each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. Finally, these data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.« less
NASA Astrophysics Data System (ADS)
Tripathy, Mukta; Schweizer, Kenneth S.
2011-04-01
In paper II of this series we apply the center-of-mass version of Nonlinear Langevin Equation theory to study how short-range attractive interactions influence the elastic shear modulus, transient localization length, activated dynamics, and kinetic arrest of a variety of nonspherical particle dense fluids (and the spherical analog) as a function of volume fraction and attraction strength. The activation barrier (roughly the natural logarithm of the dimensionless relaxation time) is predicted to be a rich function of particle shape, volume fraction, and attraction strength, and the dynamic fragility varies significantly with particle shape. At fixed volume fraction, the barrier grows in a parabolic manner with inverse temperature nondimensionalized by an onset value, analogous to what has been established for thermal glass-forming liquids. Kinetic arrest boundaries lie at significantly higher volume fractions and attraction strengths relative to their dynamic crossover analogs, but their particle shape dependence remains the same. A limited universality of barrier heights is found based on the concept of an effective mean-square confining force. The mean hopping time and self-diffusion constant in the attractive glass region of the nonequilibrium phase diagram is predicted to vary nonmonotonically with attraction strength or inverse temperature, qualitatively consistent with recent computer simulations and colloid experiments.
Bao, Hua; Ruan, Xiulin; Fisher, Timothy S
2010-03-15
A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.
Groenewold, Gary S; Scott, Jill R; Rae, Catherine
2011-07-04
Recovery of chemical contaminants from fixed surfaces for analysis can be challenging, particularly if it is not possible to acquire a solid sample to be taken to the laboratory. A simple device is described that collects semi-volatile organic compounds from fixed surfaces by creating an enclosed volume over the surface, then generating a modest vacuum. A solid-phase microextraction (SPME) fiber is then inserted into the evacuated volume where it functions to sorb volatilized organic contaminants. The device is based on a syringe modified with a seal that is used to create the vacuum, with a perforable plunger through which the SPME fiber is inserted. The reduced pressure speeds partitioning of the semi-volatile compounds into the gas phase and reduces the boundary layer around the SPME fiber, which enables a fraction of the volatilized organics to partition into the SPME fiber. After sample collection, the SPME fiber is analyzed using conventional gas chromatography/mass spectrometry. The methodology has been used to collect organophosphorus compounds from glass surfaces, to provide a simple test for the functionality of the devices. Thirty minute sampling times (ΔT(vac)) resulted in fractional recovery efficiencies that ranged from 10(-3) to >10(-2), and in absolute terms, collection of low nanograms was demonstrated. Fractional recovery values were positively correlated to the vapor pressure of the compounds being sampled. Fractional recovery also increased with increasing ΔT(vac) and displayed a roughly logarithmic profile, indicating that an operational equilibrium is being approached. Fractional recovery decreased with increasing time between exposure and sampling; however, recordable quantities of the phosphonates could be collected three weeks after exposure. Copyright © 2011 Elsevier B.V. All rights reserved.
Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids.
Saltzman, Erica J; Schweizer, Kenneth S
2008-05-01
Our microscopic stochastic nonlinear Langevin equation theory of activated dynamics has been employed to study the real-space van Hove function of dense hard sphere fluids and suspensions. At very short times, the van Hove function is a narrow Gaussian. At sufficiently high volume fractions, such that the entropic barrier to relaxation is greater than the thermal energy, its functional form evolves with time to include a rapidly decaying component at small displacements and a long-range exponential tail. The "jump" or decay length scale associated with the tail increases with time (or particle root-mean-square displacement) at fixed volume fraction, and with volume fraction at the mean alpha relaxation time. The jump length at the alpha relaxation time is predicted to be proportional to a measure of the decoupling of self-diffusion and structural relaxation. At long times corresponding to mean displacements of order a particle diameter, the volume fraction dependence of the decay length disappears. A good superposition of the exponential tail feature based on the jump length as a scaling variable is predicted at high volume fractions. Overall, the theoretical results are in good accord with recent simulations and experiments. The basic aspects of the theory are also compared with a classic jump model and a dynamically facilitated continuous time random-walk model. Decoupling of the time scales of different parts of the relaxation process predicted by the theory is qualitatively similar to facilitated dynamics models based on the concept of persistence and exchange times if the elementary event is assumed to be associated with transport on a length scale significantly smaller than the particle size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Y.; Neal, C.; Salari, K.
Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time formore » each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.« less
Characterization of morphology and composition of inorganic fillers in dental alginates.
Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho
2014-01-01
Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.
The influence of voxel size on atom probe tomography data.
Torres, K L; Daniil, M; Willard, M A; Thompson, G B
2011-05-01
A methodology for determining the optimal voxel size for phase thresholding in nanostructured materials was developed using an atom simulator and a model system of a fixed two-phase composition and volume fraction. The voxel size range was banded by the atom count within each voxel. Some voxel edge lengths were found to be too large, resulting in an averaging of compositional fluctuations; others were too small with concomitant decreases in the signal-to-noise ratio for phase identification. The simulated methodology was then applied to the more complex experimentally determined data set collected from a (Co(0.95)Fe(0.05))(88)Zr(6)Hf(1)B(4)Cu(1) two-phase nanocomposite alloy to validate the approach. In this alloy, Zr and Hf segregated to an intergranular amorphous phase while Fe preferentially segregated to a crystalline phase during the isothermal annealing step that promoted primary crystallization. The atom probe data analysis of the volume fraction was compared to transmission electron microscopy (TEM) dark-field imaging analysis and a lever rule analysis of the volume fraction within the amorphous and crystalline phases of the ribbon. Copyright © 2011 Elsevier B.V. All rights reserved.
François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less
StimuFrac Compressibility as a Function of CO2 Molar Fraction
Carlos A. Fernandez
2016-04-29
Compressibility values were obtained in a range of pressures at 250degC by employing a fixed volume view cell completely filled with PAA aqueous solution and injecting CO2 at constant flow rate (0.3mL/min). Pressure increase as a function of supercritical CO2 (scCO2) mass fraction in the mixture was monitored. The plot shows the apparent compressibility of Stimufrac as a function of scCO2 mass fraction obtained in a pressure range between 2100-7000 psi at 250degC. At small mass fractions of scCO2 the compressibility increases probably due to the dissolution/reaction of CO2 in aqueous PAA and reaches a maximum at mCO2/mH2O = 0.06. Then, compressibility decreases showing a linear relationship with scCO2 mass fraction due to the continuous increase in density of the binary fluid associated to the pressure increase.
Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; ...
2017-02-24
We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less
Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution.
Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Tsai, De-Hao; Ilavsky, Jan
2017-03-21
We present an experimental study of the structural and dynamical properties of bimodal, micrometer-sized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular-weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXS-based X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5% and systematically increased the volume fraction of the small particles from 0 to 5% to evaluate their effects on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can be satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard-sphere potential when the size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles did not exhibit a significant variation with increasing volume fraction of the small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of the small particles. The dynamics of single-component large-particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate a strong dependence on the fraction of small particles. We also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with the theoretical predictions, which suggest that the complex mutual interactions between the large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.
Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.
We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less
Ganguly, R; Choudhury, N
2012-04-15
AOT-based water in oil (w/o) microemulsions are one of the most extensively studied reverse micellar systems because of their rich phase behavior and their ability to form in the absence of any co-surfactant. The aggregation characteristics and interaction of the microemulsion droplets in these systems are known to be governed by AOT-oil compatibility and water to AOT molar ratio (w). In this manuscript by using Dynamic Light Scattering (DLS) and viscometry techniques, we show that droplet volume fraction too plays an important role in shaping the phase behavior of these microemulsions in dodecane. The phase separation characteristics and the evolution of the viscosity and the hydrodynamic radius of the microemulsion droplets on approaching the cloud points have thus been found to undergo complete transformation as one goes from low to high droplet volume fraction even at a fixed 'w'. Modeling of the DLS data attributes this to the weakening of inter droplet attractive interaction caused by the growing dominance of the excluded volume effect with increase in droplet volume fraction. In the literature, the inter droplet attractive interaction driven phase separation in these microemulsions is explained based on gas-liquid type phase transition, conceptualized in the framework of Baxter adhesive hard sphere theory. The modeling of our viscosity data, however, does not support such proposition as the characteristic stickiness parameter (τ(-1)) of the microemulsion droplets in this system remains much lower than the critical value (τ(c)(-1)≈10.25) required to enforce such phase transition. Copyright © 2012 Elsevier Inc. All rights reserved.
Characterization of Morphology and Composition of Inorganic Fillers in Dental Alginates
Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho
2014-01-01
Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt). The filler fractions in volume (vt) were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology. PMID:25165690
Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites
Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.
2016-01-01
The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315
Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.
Forest, M Gregory; Wang, Qi; Zhou, Ruhai
2015-08-28
Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic state, consisting of discrete 1d banded or 2d cellular patterns depending on nanorod volume fraction. Increasing activation strength further induces a sequence of attractor bifurcations, including oscillations superimposed on the 1d and 2d stationary patterns, a uniform translational motion of 1d and 2d oscillating patterns, and periodic switching between 1d and 2d patterns. These results imply that active macromolecular suspensions are capable of long-range spatial and dynamic organization at isotropic equilibrium concentrations, provided particle-scale activation is sufficiently strong.
NASA Astrophysics Data System (ADS)
Achsah, R. S.; Shyam, S.; Mayuri, N.; Anantharaj, R.
2018-04-01
Deep eutectic solvents (DES) and ionic liquids (ILs) have their applications in various fields of research and in industries due to their attractive physiochemical properties. In this study, the combined thermodynamic properties of DES (choline chloride-glycerol) + IL1 (1-butyl-3-methylimiazolium acetate) and DES(choline chloride-glycerol) + IL2 (1-ethyl-3-methylimadzolium ethyl sulphate) have been studied. The thermodynamic properties such as excess molar volume, partial molar volume, excess partial molar volume and apparent molar volume were calculated for different mole fractions ranging from 0 to 1 and varying temperatures from 293.15 K to 343.15 K. In order to know the solvent properties of DESs and ILs mixtures at different temperatures and their molecular interactions to enhance the solvent performance and process efficiency at fixed composition and temperature the thermodynamic properties were analyzed.
Micro-Mechanical Modeling of Ductile Fracture in Welded Aluminum-Lithium Alloys
NASA Technical Reports Server (NTRS)
Ibrahim, Ahmed
2002-01-01
This computation model for microscopic crack growth in welded aluminum-lithium alloys consists of a cavity with initial volume specified by the fraction f(sub 0), i.e. the void volume relative to the cell volume. Thus, cell size D and initial porosity f(sub 0) defines the key parameters in this model. The choice of cell size requires: 1) D must be representative of the large inclusion spacing. 2) Predicted R-curves scale almost proportionally with D for fixed f(sub 0). 3) mapping of one finite element per cell must provide adequate resolution of the stress-strain fields in the active layer and the adjacent material. For the ferritic steels studied thus far with this model, calibrated cell sizes range from 50-200 microns with f(sub 0) in the 0.0001 to 0.004 micron range. This range of values for D and f (sub 0) satisfies issues 1) and 3). This computational model employs the Gurson and Tvergaard constitutive model for porous plastic materials to describe the progressive damage of cells due to the growth of pre-existing voids. The model derives from a rigid-plastic limit analysis of a solid having a volume fraction (f) of voids approximated by a homogenous spherical body containing a spherical void.
Diffusion anisotropy in fresh and fixed prostate tissue ex vivo.
Bourne, Roger M; Bongers, Andre; Chatterjee, Aritrick; Sved, Paul; Watson, Geoffrey
2016-08-01
To investigate diffusion anisotropy in whole human prostate specimens Seven whole radical prostatectomy specimens were obtained with informed patient consent and institutional ethics approval. Diffusion tensor imaging was performed at 9.4 Tesla. Diffusion tensors were calculated from the native acquired data and after progressive downsampling Fractional anisotropy (FA) decreased as voxel volume increased, and differed widely between prostates. Fixation decreased mean FA by ∼0.05-0.08 at all voxel volumes but did not alter principle eigenvector orientation. In unfixed tissue high FA (> 0.6) was found only in voxels of volume <0.5 mm(3) , and then only in a small fraction of all voxels. At typical clinical voxel volumes (4-16 mm(3) ) less than 50% of voxels had FA > 0.25. FA decreased at longer diffusion times (Δ = 60 or 80 ms compared with 20 ms), but only by ∼0.02 at typical clinical voxel volume. Peripheral zone FA was significantly lower than transition zone FA in five of the seven prostates FA varies widely between prostates. The very small proportion of clinical size voxels with high FA suggests that in clinical DWI studies ADC based on three-direction measurements will be minimally affected by anisotropy. Magn Reson Med 76:626-634, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Effect of hydration on interstitial distribution of charged albumin in rat dermis in vitro
Wiig, Helge; Tenstad, Olav; Bert, Joel L
2005-01-01
At physiological pH, negatively charged glycosaminoglycans in the extracellular matrix may influence distribution volume of macromolecular probes, a phenomenon of importance for hydration of the interstitium and therefore for body fluid balance. We hypothesized that such charge effect was dependent on hydration. Human serum albumin (HSA) (the pH value for the isoelectric point (pI) = 4.9) was made neutral by cationization (cHSA) (pI = 7.6). Rat dermis was studied in vitro in a specially designed equilibration cell allowing control of hydration. Using a buffer containing labelled native HSA and cHSA, the distribution volumes were calculated relative to that of 51Cr-EDTA, an extracellular tracer. During changes in hydration (H), defined as (wet weight – dry weight) (dry weight)−1), the slope of the equation describing the relationship between extracellular fluid volume (Vx) (in g H2O (g dry weight)−1) and H (Vx = 0.925 H + 0.105) differed significantly from that for available volumes of cHSA (Va,cHSA = 0.624 H – 0.538) and HSA (Va,HSA = 0.518 H – 0.518). A gradual reduction in H led to a reduction in difference between available volumes for the two albumin species. Screening the fixed charges by 1 m NaCl resulted in similar available and excluded volumes of native HSA and neutral cHSA. We conclude that during gradual dehydration, there is a reduced effect of fixed negative charges on interstitial exclusion of charged macromolecules. This effect may be explained by a reduced hydration domain surrounding tissue and probe macromolecules in conditions of increased electrostatic interactions. Furthermore, screening of negative charges suggested that hyaluronan associated with collagen may influence intrafibrillar volume of collagen and thereby available and excluded volume fraction. PMID:16210353
Incorporation of physical constraints in optimal surface search for renal cortex segmentation
NASA Astrophysics Data System (ADS)
Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie
2012-02-01
In this paper, we propose a novel approach for multiple surfaces segmentation based on the incorporation of physical constraints in optimal surface searching. We apply our new approach to solve the renal cortex segmentation problem, an important but not sufficiently researched issue. In this study, in order to better restrain the intensity proximity of the renal cortex and renal column, we extend the optimal surface search approach to allow for varying sampling distance and physical separation constraints, instead of the traditional fixed sampling distance and numerical separation constraints. The sampling distance of each vertex-column is computed according to the sparsity of the local triangular mesh. Then the physical constraint learned from a priori renal cortex thickness is applied to the inter-surface arcs as the separation constraints. Appropriate varying sampling distance and separation constraints were learnt from 6 clinical CT images. After training, the proposed approach was tested on a test set of 10 images. The manual segmentation of renal cortex was used as the reference standard. Quantitative analysis of the segmented renal cortex indicates that overall segmentation accuracy was increased after introducing the varying sampling distance and physical separation constraints (the average true positive volume fraction (TPVF) and false positive volume fraction (FPVF) were 83.96% and 2.80%, respectively, by using varying sampling distance and physical separation constraints compared to 74.10% and 0.18%, respectively, by using fixed sampling distance and numerical separation constraints). The experimental results demonstrated the effectiveness of the proposed approach.
On stability of fixed points and chaos in fractional systems.
Edelman, Mark
2018-02-01
In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0<α<2. The method is tested on various forms of fractional generalizations of the standard and logistic maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding continuous fractional systems.
Impact of Major Pulmonary Resections on Right Ventricular Function: Early Postoperative Changes.
Elrakhawy, Hany M; Alassal, Mohamed A; Shaalan, Ayman M; Awad, Ahmed A; Sayed, Sameh; Saffan, Mohammad M
2018-01-15
Right ventricular (RV) dysfunction after pulmonary resection in the early postoperative period is documented by reduced RV ejection fraction and increased RV end-diastolic volume index. Supraventricular arrhythmia, particularly atrial fibrillation, is common after pulmonary resection. RV assessment can be done by non-invasive methods and/or invasive approaches such as right cardiac catheterization. Incorporation of a rapid response thermistor to pulmonary artery catheter permits continuous measurements of cardiac output, right ventricular ejection fraction, and right ventricular end-diastolic volume. It can also be used for right atrial and right ventricular pacing, and for measuring right-sided pressures, including pulmonary capillary wedge pressure. This study included 178 patients who underwent major pulmonary resections, 36 who underwent pneumonectomy assigned as group (I) and 142 who underwent lobectomy assigned as group (II). The study was conducted at the cardiothoracic surgery department of Benha University hospital in Egypt; patients enrolled were operated on from February 2012 to February 2016. A rapid response thermistor pulmonary artery catheter was inserted via the right internal jugular vein. Preoperatively the following was recorded: central venous pressure, mean pulmonary artery pressure, pulmonary capillary wedge pressure, cardiac output, right ventricular ejection fraction and volumes. The same parameters were collected in fixed time intervals after 3 hours, 6 hours, 12 hours, 24 hours, and 48 hours postoperatively. For group (I): There were no statistically significant changes between the preoperative and postoperative records in the central venous pressure and mean arterial pressure; there were no statistically significant changes in the preoperative and 12, 24, and 48 hour postoperative records for cardiac index; 3 and 6 hours postoperative showed significant changes. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index, in all postoperative records. For group (II): There were no statistically significant changes between the preoperative and all postoperative records for the central venous pressure, mean arterial pressure and cardiac index. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index in all postoperative records. There were statistically significant changes between the two groups in all postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index. There is right ventricular dysfunction early after major pulmonary resection caused by increased right ventricular afterload. This dysfunction is more present in pneumonectomy than in lobectomy. Heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction, and right ventricular end diastolic volume index are significantly affected by pulmonary resection.
Rheology and microstructure of filled polymer melts
NASA Astrophysics Data System (ADS)
Anderson, Benjamin John
The states of particle dispersion in polymer nanocomposite melts are studied through rheological characterization of nanocomposite melt mechanical properties and small angle X-ray scattering measurement of the particle microstructure. The particle microstructure probed with scattering is related to bulk flow mechanics to determine the origin of slow dynamics in these complex dispersions: whether a gel or glass transition or a slowing down of dispersing phase dynamics. These studies were conducted to understand polymer mediated particle-particle interactions and potential particle-polymer phase separation. The phase behavior of the dispersion will be governed by enthalpic and entropic contributions. A variety of phases are expected: homogeneous fluid, phase separated, or non-equilibrium gel. The effects of dispersion control parameters, namely particle volume fraction, polymer molecular weight, and polymer-particle surface affinity, on the phase behavior of 44 nm silica dispersions are studied in low molecular weight polyethylene oxide (PEO), polyethylene oxide dimethylether (PEODME), and polytetrahydrofuran (PTHF). Scattering measurements of the particle second virial coefficient in PEO melts indicates repulsive particles by a value slightly greater than unity. In PEO nanocomposites, dispersion dynamics slow down witnessed by a plateau in the elastic modulus as the particle separation approaches the length scale of the polymer radius of gyration. As the polymer molecular weight is increased, the transition shifts to lower particle volume fractions. Below polymer entanglement, the slow dynamics mimics that of a colloidal glass by the appearance of two relaxation times in the viscous modulus that display power law scaling with volume fraction. Above entanglement, the slow dynamics is qualitatively different resembling the behavior of a gelled suspension yet lacking any sign of scattering from particle agglomerates. As polymer molecular weight is increased at a fixed volume fraction, two strain yielding events emerge. Further particle loading leads to the formation of a particle-polymer network and the onset of brittle mechanical behavior. The performance of PEO nanocomposites is contrasted by PEODME and PTHF nanocomposites where a change in the polymer segment-surface activity changes the slow dynamics of the nanocomposite and the microstructure of particles in the melt. Slow dynamics and the particle microstructure indicate a gelled suspension as volume fraction is raised with particles in or near contact and support the turning on of particle attractions in the melt.
Morse, A; Yu, N Y C; Peacock, L; Mikulec, K; Kramer, I; Kneissel, M; McDonald, M M; Little, D G
2015-02-01
Sclerostin deficiency, via genetic knockout or anti-Sclerostin antibody treatment, has been shown to cause increased bone volume, density and strength of calluses following endochondral bone healing. However, there is limited data on the effect of Sclerostin deficiency on the formative early stage of fibrocartilage (non-bony tissue) formation and removal. In this study we extensively investigate the early fibrocartilage callus. Closed tibial fractures were performed on Sost(-/-) mice and age-matched wild type (C57Bl/6J) controls and assessed at multiple early time points (7, 10 and 14days), as well as at 28days post-fracture after bony union. External fixation was utilized, avoiding internal pinning and minimizing differences in stability stiffness, a variable that has confounded previous research in this area. Normal endochondral ossification progressed in wild type and Sost(-/-) mice with equivalent volumes of fibrocartilage formed at early day 7 and day 10 time points, and bony union in both genotypes by day 28. There were no significant differences in rate of bony union; however there were significant increases in fibrocartilage removal from the Sost(-/-) fracture calluses at day 14 suggesting earlier progression of endochondral healing. Earlier bone formation was seen in Sost(-/-) calluses over wild type with greater bone volume at day 10 (221%, p<0.01). The resultant Sost(-/-) united bony calluses at day 28 had increased bone volume fraction compared to wild type calluses (24%, p<0.05), and the strength of the fractured Sost(-/-) tibiae was greater than that that of wild type fractured tibiae. In summary, bony union was not altered by Sclerostin deficiency in externally-fixed closed tibial fractures, but fibrocartilage removal was enhanced and the resultant united bony calluses had increased bone fraction and increased strength. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, L; Hu, W; Moyers, M
2015-06-15
Purpose: Positron-emitting isotope distributions can be used for the image fusion of the carbon ion planning CT and online target verification PETCT, after radiation in the same decay period,the relationship between the same target volume and the SUV value of different every single fraction dose can be found,then the range of SUV for the radiation target could be decided.So this online range also can provide reference for the correlation and consistency in planning target dose verification and evaluation for the clinical trial. Methods: The Rando head phantom can be used as real body,the 10cc cube volume target contouring is done,beammore » ISO Center depth is 7.6cm and the 90 degree fixed carbon ion beams should be delivered in single fraction effective dose of 2.5GyE,5GyE and 8GyE.After irradiation,390 seconds later the 30 minutes PET-CT scanning is performed,parameters are set to 50Kg virtual weight,0.05mCi activity.MIM Maestro is used for the image processing and fusion,five 16mm diameter SUV spheres have been chosen in the different direction in the target.The average SUV in target for different fraction dose can be found by software. Results: For 10cc volume target,390 seconds decay period,the Single fraction effective dose equal to 2.5Gy,Ethe SUV mean value is 3.42,the relative range is 1.72 to 6.83;Equal to 5GyE,SUV mean value is 9.946,the relative range is 7.016 to 12.54;Equal or above to 8GyE,SUV mean value is 20.496,the relative range is 11.16 to 34.73. Conclusion: Making an evaluation for accuracy of the dose distribution using the SUV range which is from the planning CT with after treatment online PET-CT fusion for the normal single fraction carbon ion treatment is available.Even to the plan which single fraction dose is above 2GyE,in the condition of other parameters all the same,the SUV range is linearly dependent with single fraction dose,so this method also can be used in the hyper-fraction treatment plan.« less
Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints
NASA Astrophysics Data System (ADS)
Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.
2017-10-01
The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.
NASA Astrophysics Data System (ADS)
Ghafouri, A.; Pourmahmoud, N.; Jozaei, A. F.
2017-03-01
The thermal performance of a nanofluid in a cooling chamber with variations of the nanoparticle diameter is numerically investigated. The chamber is filled with water and nanoparticles of alumina (Al2O3). Appropriate nanofluid models are used to approximate the nanofluid thermal conductivity and dynamic viscosity by incorporating the effects of the nanoparticle concentration, Brownian motion, temperature, nanoparticles diameter, and interfacial layer thickness. The horizontal boundaries of the square domain are assumed to be insulated, and the vertical boundaries are considered to be isothermal. The governing stream-vorticity equations are solved by using a secondorder central finite difference scheme coupled with the mass and energy conservation equations. The results of the present work are found to be in good agreement with the previously published data for special cases. This study is conducted for the Reynolds number being fixed at Re = 100 and different values of the nanoparticle volume fraction, Richardson number, nanofluid temperature, and nanoparticle diameter. The results show that the heat transfer rate and the Nusselt number are enhanced by increasing the nanoparticle volume fraction and decreasing the Richardson number. The Nusselt number also increases as the nanoparticle diameter decreases.
Structure and effective interactions of comb polymer nanocomposite melts.
Xu, Qinzhi; Xu, Mengjin; Feng, Yancong; Chen, Lan
2014-11-28
In this work, the structure and effective interactions of branched comb polymer nanocomposite (PNC) melts are investigated by using the polymer reference interaction site model (PRISM) integral equation theory. It is observed that the nanoparticle contact (bridging) aggregation is formed when the nanoparticle-monomer attraction strength is relatively weak (large) in comb PNCs. The organization states of aggregation for the moderate nanoparticle-monomer attraction strength can be well suppressed by the comb polymer architecture, while the bridging structure for relatively large attraction is obviously promoted. With the increase of the particle volume fraction, the organization states of bridging-type structure become stronger and tighter; however, this effect is weaker than that of the nanoparticle-monomer attraction strength. When the particle volume fraction and moderate nanoparticle-monomer attraction strength are fixed, the effects of degree of polymerization, side chain number, side chain length, and nanoparticle-monomer size ratio on the organization states of PNC melts are not prominent and the nanoparticles can well disperse in comb polymer. All the observations indicate that the present PRISM theory can give a detailed description of the comb PNC melts and assist in future design control of new nanomaterials.
Membrane filtration of olive mill wastewater and exploitation of its fractions.
Paraskeva, C A; Papadakis, V G; Kanellopoulou, D G; Koutsoukos, P G; Angelopoulos, K C
2007-04-01
Olive mill wastewater (OMW) produced from small units scattered in rural areas of Southern Europe is a major source of pollution of surface and subsurface water. In the present work, a treatment scheme based on physical separation methods is presented. The investigation was carried out using a pilot-plant unit equipped with ultrafiltration, nanofiltration, and reverse osmosis membranes. Approximately 80% of the total volume of wastewater treated by the membrane units was sufficiently cleaned to meet the standards for irrigation water. The concentrated fractions collected in the treatment concentrates were characterized by high organic load and high content of phenolic compounds. The concentrates were tested in hydroponic systems to examine their toxicity towards undesired herbs. The calculations of the cost of the overall process showed that fixed and operational costs could be recovered from the exploitation of OMW byproducts as water for irrigation and/or as bioherbicides.
Complement-fixing Activity of Fulvic Acid from Shilajit and Other Natural Sources
Schepetkin, Igor A.; Xie, Gang; Jutila, Mark A.; Quinn, Mark T.
2008-01-01
Shilajit has been used traditionally in folk medicine for treatment of a variety of disorders, including syndromes involving excessive complement activation. Extracts of Shilajit contain significant amounts of fulvic acid (FA), and it has been suggested that FA is responsible for many therapeutic properties of Shilajit. However, little is known regarding physical and chemical properties of Shilajit extracts, and nothing is known about their effects on the complement system. To address this issue, we fractionated extracts of commercial Shilajit using anion exchange and size-exclusion chromatography. One neutral (S-I) and two acidic (S-II and S-III) fractions were isolated, characterized, and compared with standardized FA samples. The most abundant fraction (S-II) was further fractionated into three sub-fractions (S-II-1 to S-II-3). The van Krevelen diagram showed that the Shilajit fractions are products of polysaccharide degradation, and all fractions, except S-II-3, contained type II arabinogalactan. All Shilajit fractions exhibited dose-dependent complement-fixing activity in vitro with high potency. Furthermore, we found a strong correlation between complement-fixing activity and carboxylic group content in the Shilajit fractions and other FA sources. These data provide a molecular basis to explain at least part of the beneficial therapeutic properties of Shilajit and other humic extracts. PMID:19107845
Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures
NASA Technical Reports Server (NTRS)
MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.
2012-01-01
Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.
NASA Astrophysics Data System (ADS)
Zhang, Wei-Guo; Li, Zhe; Liu, Yong-Jun
2018-01-01
In this paper, we study the pricing problem of the continuously monitored fixed and floating strike geometric Asian power options in a mixed fractional Brownian motion environment. First, we derive both closed-form solutions and mixed fractional partial differential equations for fixed and floating strike geometric Asian power options based on delta-hedging strategy and partial differential equation method. Second, we present the lower and upper bounds of the prices of fixed and floating strike geometric Asian power options under the assumption that both risk-free interest rate and volatility are interval numbers. Finally, numerical studies are performed to illustrate the performance of our proposed pricing model.
Assessment of angiogenesis in osseointegration of a silica-collagen biomaterial using 3D-nano-CT.
Alt, Volker; Kögelmaier, Daniela Vera; Lips, Katrin S; Witt, Vera; Pacholke, Sabine; Heiss, Christian; Kampschulte, Marian; Heinemann, Sascha; Hanke, Thomas; Thormann, Ulrich; Schnettler, Reinhard; Langheinrich, Alexander C
2011-10-01
Bony integration of biomaterials is a complex process in which angiogenesis plays a crucial role. We evaluated micro- and nano-CT imaging to demonstrate and quantify neovascularization in bony integration of a biomaterial and to give an image based estimation for the needed resolution for imaging angiogenesis in an animal model of femora defect healing. In 8 rats 5mm full-size defects were created at the left femur that was filled with silica-collagen bone substitute material and internally fixed with plate osteosynthesis. After 6 weeks the femora were infused in situ with Microfil, harvested and scanned for micro-CT (9 μm)(3) and nano-CT (3 μm)(3) imaging. Using those 3D images, the newly formed blood vessels in the area of the biomaterial were assessed and the total vascular volume fraction, the volume of the bone substitute material and the volume of the bone defect were quantitatively characterized. Results were complemented by histology. Differences were statistically assessed using (ANOVA). High-resolution nano-CT demonstrated new blood vessel formation surrounding the biomaterial in all animals at capillary level. Immunohistochemistry confirmed the newly formed blood vessels surrounding the bone substitute material. The mean vascular volume fraction (VVF) around the implant was calculated to be 3.01 ± 0.4%. The VVF was inversely correlated with the volume of the bone substitute material (r=0.8) but not with the dimension of the fracture zone (r=0.3). Nano-CT imaging is feasible for quantitative analysis of angiogenesis during bony integration of biomaterials and a promising tool in this context for the future. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Crystallization of Deformable Spherical Colloids
NASA Astrophysics Data System (ADS)
Batista, Vera M. O.; Miller, Mark A.
2010-08-01
We introduce and characterize a first-order model for a generic class of colloidal particles that have a preferred spherical shape but can undergo deformations while always maintaining hard-body interactions. The model consists of hard spheres that can continuously change shape at fixed volume into prolate or oblate ellipsoids of revolution, subject to an energetic penalty. The severity of this penalty is specified by a single parameter that determines the flexibility of the particles. The deformable hard spheres crystallize at higher packing fractions than rigid hard spheres, have a narrower solid-fluid coexistence region and can reach high densities by a second transition to an orientationally ordered crystal.
Zhao, Xiaodong; Zhao, Jun; Cao, Jian-Ping; Wang, Xiaoyan; Chen, Min; Dang, Zhi-Min
2013-02-28
In this work, the dielectric properties of immiscible polystyrene (PS)/poly(vinylidene fluoride) (PVDF) blends are tuned by selectively localizing carbon black (CB) nanoparticles in different phases. The PS/PVDF blends have a wide window of cocontinuity (ca. 30-80 vol % in terms of the volume fraction of PS component (v(PS))). The selective localization of CB nanoparticles is achieved by using the masterbatch process during melt mixing. For the volume ratio PS/PVDF 1/1 and the volume fraction of CB nanoparticles (v(CB)) below but close to the percolation threshold (v(c)(CB)), the selective localization of CB nanoparticles in PVDF phase produces higher dielectric constant (ε) than that in PS phase, whereas the ε of the ternary mixtures without selective localization of fillers is in the middle. For the volume ratios PS/PVDF 1/2 and 2/1, the selective location of CB nanoparticles in different phases can be used to easily tune the system from conductive to insulating or inverse, which might have potential applications in industry. The fillers are found to be "fixed" in the masterbatch of PS or PVDF component and there is no migration of the fillers to another phase occurring during the further mixing process for the mixing time up to 30 min. Furthermore, the addition of CB nanoparticles to the polymer matrix is found to induce the brittle-ductile transition in the system and increase the compatibility between the immiscible PS and PVDF components, which should benefit the mechanical properties.
Effect of cold drawing ratio on γ′ precipitation in Inconel X-750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Jeong Won; Research and Development Center, KOS Limited, Yangsan 626-230; Seong, Baek Seok
2014-10-15
Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawingmore » ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M{sub 23}C{sub 6}, and the fast diffusion path, i.e., dislocation, needed to form M{sub 23}C{sub 6}. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction.« less
Thermal and ultrasonic evaluation of porosity in composite laminates
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.
1992-01-01
The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.
Complement-fixing activity of fulvic acid from Shilajit and other natural sources.
Schepetkin, Igor A; Xie, Gang; Jutila, Mark A; Quinn, Mark T
2009-03-01
Shilajit has been used traditionally in folk medicine for the treatment of a variety of disorders, including syndromes involving excessive complement activation. Extracts of Shilajit contain significant amounts of fulvic acid (FA), and it has been suggested that FA is responsible for many therapeutic properties of Shilajit. However, little is known regarding the physical and chemical properties of Shilajit extracts, and nothing is known about their effects on the complement system. To address this issue, extracts of commercial Shilajit were fractionated using anion exchange and size-exclusion chromatography. One neutral (S-I) and two acidic (S-II and S-III) fractions were isolated, characterized and compared with standardized FA samples. The most abundant fraction (S-II) was further fractionated into three sub-fractions (S-II-1 to S-II-3). The van Krevelen diagram showed that the Shilajit fractions are the products of polysaccharide degradation, and all fractions, except S-II-3, contained type II arabinogalactan. All Shilajit fractions exhibited dose-dependent complement-fixing activity in vitro with high potency. Furthermore, a strong correlation was found between the complement-fixing activity and carboxylic group content in the Shilajit fractions and other FA sources. These data provide a molecular basis to explain at least part of the beneficial therapeutic properties of Shilajit and other humic extracts. (c) 2008 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn
The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less
Applicator-guided volumetric-modulated arc therapy for low-risk endometrial cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cilla, Savino, E-mail: savinocilla@gmail.com; Macchia, Gabriella; Sabatino, Domenico
2013-04-01
The aim of this study was to report the feasibility of volumetric-modulated arc therapy (VMAT) in the postoperative irradiation of the vaginal vault. Moreover, the VMAT technique was compared with 3D conformal radiotherapy (3D-CRT) and fixed-field intensity-modulated radiotherapy (IMRT), in terms of target coverage and organs at risk sparing. The number of monitor units and the delivery time were analyzed to score the treatment efficiency. All plans were verified in a dedicated solid water phantom using a 2D array of ionization chambers. Twelve patients with endometrial carcinoma who underwent radical hystero-adenexectomy and fixed-field IMRT treatments were retrospectively included in thismore » analysis; for each patient, plans were compared in terms of dose-volume histograms, homogeneity index, and conformity indexes. All techniques met the prescription goal for planning target volume coverage, with VMAT showing the highest level of conformity at all dose levels. VMAT resulted in significant reduction of rectal and bladder volumes irradiated at all dose levels compared with 3D-CRT. No significant differences were found with respect to IMRT. Moreover, a significant improvement of the dose conformity was reached by VMAT technique not only at the 95% dose level (0.74 vs. 0.67 and 0.62) but also at 50% and 75% levels of dose prescription. In addition, VMAT plans showed a significant reduction of monitor units by nearly 28% with respect to IMRT, and reduced treatment time from 11 to <3 minutes for a single 6-Gy fraction. In conclusion, VMAT plans can be planned and carried out with high quality and efficiency for the irradiation of vaginal vault alone, providing similar or better sparing of organs at risk to fixed-field IMRT and resulting in the most efficient treatment option. VMAT is currently our standard approach for radiotherapy of low-risk endometrial cancer.« less
A Volume Flux Approach to Cryolava Dome Emplacement on Europa
NASA Technical Reports Server (NTRS)
Quick, Lynnae C.; Fagents, Sarah A.; Hurford, Terry A.; Prockter, Louise M.
2017-01-01
We previously modeled a subset of domes on Europa with morphologies consistent with emplacement by viscous extrusions of cryolava. These models assumed instantaneous emplacement of a fixed volume of fluid onto the surface, followed by relaxation to form domes. However, this approach only allowed for the investigation of late-stage eruptive processes far from the vent and provided little insight into how cryolavas arrived at the surface. Consideration of dome emplacement as cryolavas erupt at the surface is therefore pertinent. A volume flux approach, in which lava erupts from the vent at a constant rate, was successfully applied to the formation of steep-sided volcanic domes on Venus. These domes are believed to have formed in the same manner as candi-date cryolava domes on Europa. In order to gain a more complete understanding of the potential for the emplacement of Europa domes via extrusive volcanism, we have applied this new volume flux approach to the formation of putative cryovolcanic domes on Europa. Assuming as in that europan cryolavas are briny, aqueous solutions which may or may not contain some ice crystal fraction, we present the results of this modeling and explore theories for the formation of low-albedo moats that surround some domes.
NASA Astrophysics Data System (ADS)
Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi
2005-03-01
In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.
Mazur, Peter; Pinn, Irina L.; Kleinhans, F.W.
2009-01-01
We have previously reported [11] that intracellular ice formation (IIF) in mouse oocytes suspended in various concentrations of glycerol and ethylene glycol (EG) occurs at temperatures where the percentage of unfrozen water is about 6% and 12% respectively even though the IIF temperatures varied from −14° to −41°C. However, because of the way the solutions were prepared, the concentrations of salt and glycerol or EG in that unfrozen fraction at IIF were also rather tightly grouped. The experiments reported in the present paper were designed to separate the effects of the unfrozen fraction at IIF from that of the solute concentration in the unfrozen fraction. This separation makes use of two facts. One is that the concentration of solutes in the residual liquid at a given subzero temperature is fixed regardless of their concentration in the initial unfrozen solution. However, second, the fraction unfrozen at a given temperature is dependent on the initial solute concentration. Experimentally, oocytes were suspended in solutions of glycerol/buffered saline and EG/buffered saline of varying total solute concentration with the restriction that the mass ratio of glycerol and EG to salts are held constant. The oocytes were then cooled rapidly enough (20°C/min) to avoid significant osmotic shrinkage, and the temperature at which IIF occurred as noted. When this is done, we find, as previously that the fraction of water remaining unfrozen at the temperature of IIF remains nearly constant at 5 to 8% for both glycerol and EG even though the IIF temperatures vary from −14°C to −50°C. But unlike the previous results, the salt and CPA concentrations in the unfrozen fraction vary by a factor of three. The present procedure for preparing the solutions produces a potentially complicating factor; namely, the cell volumes vary substantially prior to freezing: Substantially greater than isotonic in some solution; substantially smaller in others. However, the data in toto demonstrate that cell volume is not a determining factor in the IIF temperature. PMID:17379206
Mazur, Peter; Pinn, Irina L; Kleinhans, F W
2007-04-01
We have previously reported [Cryobiology 51 (2005) 29-53] that intracellular ice formation (IIF) in mouse oocytes suspended in various concentrations of glycerol and ethylene glycol (EG) occurs at temperatures where the percentage of unfrozen water is about 6% and 12%, respectively, even though the IIF temperatures varied from -14 to -41 degrees C. However, because of the way the solutions were prepared, the concentrations of salt and glycerol or EG in that unfrozen fraction at IIF were also rather tightly grouped. The experiments reported in the present paper were designed to separate the effects of the unfrozen fraction at IIF from that of the solute concentration in the unfrozen fraction. This separation makes use of two facts. One is that the concentration of solutes in the residual liquid at a given subzero temperature is fixed regardless of their concentration in the initial unfrozen solution. However, second, the fraction unfrozen at a given temperature is dependent on the initial solute concentration. Experimentally, oocytes were suspended in solutions of glycerol/buffered saline and EG/buffered saline of varying total solute concentration with the restriction that the mass ratios of glycerol and EG to salts are held constant. The oocytes were then cooled rapidly enough (20 degrees C/min) to avoid significant osmotic shrinkage, and the temperature at which IIF occurred was noted. When this is done, we find, as previously that the fraction of water remaining unfrozen at the temperature of IIF remains nearly constant at 5-8% for both glycerol and EG even though the IIF temperatures vary from -14 to -50 degrees C. But unlike the previous results, the salt and CPA concentrations in the unfrozen fraction vary by a factor of three. The present procedure for preparing the solutions produces a potentially complicating factor; namely, the cell volumes vary substantially prior to freezing: substantially greater than isotonic in some solutions; substantially smaller in others. However, the data in toto demonstrate that cell volume is not a determining factor in the IIF temperature.
Koyama, Kazuya; Mitsumoto, Takuya; Shiraishi, Takahiro; Tsuda, Keisuke; Nishiyama, Atsushi; Inoue, Kazumasa; Yoshikawa, Kyosan; Hatano, Kazuo; Kubota, Kazuo; Fukushi, Masahiro
2017-09-01
We aimed to determine the difference in tumor volume associated with the reconstruction model in positron-emission tomography (PET). To reduce the influence of the reconstruction model, we suggested a method to measure the tumor volume using the relative threshold method with a fixed threshold based on peak standardized uptake value (SUV peak ). The efficacy of our method was verified using 18 F-2-fluoro-2-deoxy-D-glucose PET/computed tomography images of 20 patients with lung cancer. The tumor volume was determined using the relative threshold method with a fixed threshold based on the SUV peak . The PET data were reconstructed using the ordered-subset expectation maximization (OSEM) model, the OSEM + time-of-flight (TOF) model, and the OSEM + TOF + point-spread function (PSF) model. The volume differences associated with the reconstruction algorithm (%VD) were compared. For comparison, the tumor volume was measured using the relative threshold method based on the maximum SUV (SUV max ). For the OSEM and TOF models, the mean %VD values were -0.06 ± 8.07 and -2.04 ± 4.23% for the fixed 40% threshold according to the SUV max and the SUV peak, respectively. The effect of our method in this case seemed to be minor. For the OSEM and PSF models, the mean %VD values were -20.41 ± 14.47 and -13.87 ± 6.59% for the fixed 40% threshold according to the SUV max and SUV peak , respectively. Our new method enabled the measurement of tumor volume with a fixed threshold and reduced the influence of the changes in tumor volume associated with the reconstruction model.
Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E
2017-11-01
The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Local noise reduction for emphysema scoring in low-dose CT images
NASA Astrophysics Data System (ADS)
Schilham, Arnold; Prokop, Mathias; Gietema, Hester; van Ginneken, Bram
2005-04-01
Computed Tomography (CT) has become the new reference standard for quantification of emphysema. The most popular measure for emphysema derived from CT is the Pixel Index (PI), which expresses the fraction of the lung volume with abnormally low intensity values. As PI is calculated from a single, fixed threshold on intensity, this measure is strongly influenced by noise. This effect shows up clearly when comparing the PI score for a high-dose scan to the PI score for a low-dose (i.e. noisy) scan of the same subject. This paper presents a class of noise filters that make use of a local noise estimate to specify the filtering strength: Local Noise Variance Weighted Averaging (LNVWA). The performance of the filter is assessed by comparing high-dose and low-dose PI scores for 11 subjects. LNVWA improves the reproducibility of high-dose PI scores: For an emphysema threshold of -910 HU, the root-mean-square difference in PI score drops from 10% of the lung volume to 3.3% of the lung volume if LNVWA is used.
Counterflow heat exchanger with core and plenums at both ends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bejan, A.; Alalaimi, M.; Lorente, S.
2016-04-22
Here, this paper illustrates the morphing of flow architecture toward greater performance in a counterflow heat exchanger. The architecture consists of two plenums with a core of counterflow channels between them. Each stream enters one plenum and then flows in a channel that travels the core and crosses the second plenum. The volume of the heat exchanger is fixed while the volume fraction occupied by each plenum is variable. Performance is driven by two objectives, simultaneously: low flow resistance and low thermal resistance. The analytical and numerical results show that the overall flow resistance is the lowest when the coremore » is absent, and each plenum occupies half of the available volume and is oriented in counterflow with the other plenum. In this configuration, the thermal resistance also reaches its lowest value. These conclusions hold for fully developed laminar flow and turbulent flow through the core. The curve for effectiveness vs number of heat transfer units (N tu) is steeper (when N tu < 1) than the classical curves for counterflow and crossflow.« less
Asset Prices and Trading Volume under Fixed Transactions Costs.
ERIC Educational Resources Information Center
Lo, Andrew W.; Mamaysky, Harry; Wang, Jiang
2004-01-01
We propose a dynamic equilibrium model of asset prices and trading volume when agents face fixed transactions costs. We show that even small fixed costs can give rise to large "no-trade" regions for each agent's optimal trading policy. The inability to trade more frequently reduces the agents' asset demand and in equilibrium gives rise to a…
Quantitative tomographic measurements of opaque multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less
NASA Technical Reports Server (NTRS)
Andrews, C. W.
1976-01-01
Volume fraction of a constituent or phase was estimated in six specimens of conventional and DS-eutectic superalloys, using ASTM E562-76, a new standard recommended practice for determining volume fraction by systematic manual point count. Volume fractions determined ranged from 0.086 to 0.36, and with one exception, the 95 percent relative confidence limits were approximately 10 percent of the determined volume fractions. Since the confidence-limit goal of 10 percent, which had been arbitrarily chosen previously, was achieved in all but one case, this application of the new practice was considered successful.
NASA Technical Reports Server (NTRS)
Conklin, Lindsey
2017-01-01
Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.
Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.J.; Chun, Y.J.
2005-07-01
The separation of four kinds of nitrogen heterocyclic compounds (NHCs) from a model mixture comprising NHCs (indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)), three kinds of bicyclic aromatic compounds (BACs; 1-methyl-naphthalene (IMN), 2-methyl naphthalene (2MN), dimethylnaphthalene (DMN)), biphenyl (Bp) and phenyl ether (Pe) was examined by a solvent extraction. The model mixture used as a raw material of this work was prepared according to the components and compositions contained in coal tar fraction (the temperature ranges of fraction: 240-265{sup o}C). An aqueous solution of methanol, ethanol, iso-propyl alcohol, N,N-dimethyl acetamide, DMF, formamide, N-methylformamide/methanol, and formamide/methanol were used as solvents.more » An aqueous solution of formamide was found suitable for separating NHCs contained in coal tar fraction based on distribution coefficient and selectivity. The effect of operation factors on separating NHCs was investigated by the distribution equilibrium using an aqueous solution of formamide. Increasing the operation temperature and the volume ratio of solvent to feed at initial (S/F)(o) resulted in improving the distribution coefficients of each NHC, but increasing the volume fraction of water in the solvent at initial (y(w,O)) resulted in deteriorating the distribution coefficients of each NHC. With increasing y(w,O) and (S/F)(o), the selectivities of each NHC in reference to DMN increased. Increase in operation temperature resulted in decrease in selectivities of each NHC in reference to DMN. At an experimental condition fixed, the sequence of the distribution coefficient and selectivity in reference to DMN for each NHC was In {gt} iQ {gt} Q {gt} Qu, and also the sequence of the distribution coefficient for each BAC was IMN {gt} 2MN {gt} DMN. The sequence of the distribution coefficient for entire compounds analyzed by this work was In {gt} iQ {gt} Q {gt} Qu {gt} BP {gt} 1MN {gt} 2MN {gt} Pe {gt} DMN.« less
Øien, Alf H; Wiig, Helge
2016-07-07
Interstitial exclusion refers to the limitation of space available for plasma proteins and other macromolecules based on collagen and negatively charged glycosaminoglycans (GAGs) in the interstitial space. It is of particular importance to interstitial fluid and plasma volume regulation. Here we present a novel mechanical and mathematical model of the dynamic interactions of structural elements within the interstitium of the dermis at the microscopic level that may explain volume exclusion of charged and neutral macroparticles. At this level, the interstitium is considered to consist of elements called extracellular matrix (ECM) cells, again containing two main interacting structural components on a fluid background including anions and cations setting up osmotic forces: one smaller GAG component, having an intrinsic expansive electric force, and one bigger collagen component, having an intrinsic elastic force. Because of size differences, the GAG component interacts with a fraction of the collagen component only at normal hydration. This fraction, however, increases with rising hydration as a consequence of the modeled form of the interaction force between the GAGs and collagen. Collagen is locally displaced at variable degrees as hydration changes. Two models of GAGs are considered, having largely different geometries which demands different, but related, forms of GAG-collagen interaction forces. The effects of variable fixed charges on GAGs and of GAG density in tissue are evaluated taking into account observed volume exclusion properties of charged macromolecules as a function of tissue hydration. The presented models may improve our biophysical understanding of acting forces influencing tissue fluid dynamics. Such knowledge is significant when evaluating the transport of electrically charged and neutral macromolecules into and through the interstitium, and therefore to drug uptake and the therapeutic effects of macromolecular agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakanaka, Katsuyuki; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Sato, Sayaka
This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor unitsmore » were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.« less
Fixed site neutralization model programmer's manual. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engi, D.; Chapman, L.D.; Judnick, W.
This report relates to protection of nuclear materials at nuclear facilities. This volume presents the source listings for the Fixed Site Neutralization Model and its supporting modules, the Plex Preprocessor and the Data Preprocessor. (DLC)
Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao
2016-01-07
With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.
Effect of radiation protraction on BED in the case of large fraction dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, V. Y.
2013-08-15
Purpose: To investigate the effect of radiation protraction on biologically effective dose (BED) in the case when dose per fraction is significantly greater than the standard dose of 2 Gy.Methods: By using the modified linear-quadratic model with monoexponential repair, the authors investigate the effect of long treatment times combined with dose escalation.Results: The dependences of the protraction factor and the corresponding BED on fraction time were determined for different doses per fraction typical for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). In the calculations, the authors consider changes in the BED to the normal tissue under the conditionmore » of fixed BED to the target.Conclusion: The obtained results demonstrate that simultaneous increase in fraction time and dose per fraction can be beneficial for SRS and SBRT because of the related decrease in BED to normal structures while BED to the target is fixed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teoh, May, E-mail: m.teoh@nhs.net; Beveridge, Sabeena; Wood, Katie
2013-04-01
Fluorine-18-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG-PET)–guided focal dose escalation in oropharyngeal cancer may potentially improve local control. We evaluated the feasibility of this approach using volumetric-modulated arc therapy (RapidArc) and compared these plans with fixed-field intensity-modulated radiotherapy (IMRT) focal dose escalation plans. Materials and methods: An initial study of 20 patients compared RapidArc with fixed-field IMRT using standard dose prescriptions. From this cohort, 10 were included in a dose escalation planning study. Dose escalation was applied to {sup 18}F-FDG-PET–positive regions in the primary tumor at dose levels of 5% (DL1), 10% (DL2), and 15% (DL3) above standard radical dose (65 Gymore » in 30 fractions). Fixed-field IMRT and double-arc RapidArc plans were generated for each dataset. Dose-volume histograms were used for plan evaluation and comparison. The Paddick conformity index (CI{sub Paddick}) and monitor units (MU) for each plan were recorded and compared. Both IMRT and RapidArc produced clinically acceptable plans and achieved planning objectives for target volumes. Dose conformity was significantly better in the RapidArc plans, with lower CI{sub Paddick} scores in both primary (PTV1) and elective (PTV2) planning target volumes (largest difference in PTV1 at DL3; 0.81 ± 0.03 [RapidArc] vs. 0.77 ± 0.07 [IMRT], p = 0.04). Maximum dose constraints for spinal cord and brainstem were not exceeded in both RapidArc and IMRT plans, but mean doses were higher with RapidArc (by 2.7 ± 1 Gy for spinal cord and 1.9 ± 1 Gy for brainstem). Contralateral parotid mean dose was lower with RapidArc, which was statistically significant at DL1 (29.0 vs. 29.9 Gy, p = 0.01) and DL2 (29.3 vs. 30.3 Gy, p = 0.03). MU were reduced by 39.8–49.2% with RapidArc (largest difference at DL3, 641 ± 94 vs. 1261 ± 118, p < 0.01). {sup 18}F-FDG-PET–guided focal dose escalation in oropharyngeal cancer is feasible with RapidArc. Compared with conventional fixed-field IMRT, RapidArc can achieve better dose conformity, improve contralateral parotid sparing, and uses fewer MU.« less
NASA Technical Reports Server (NTRS)
Pan, Ning
1992-01-01
Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Schwartz, J; Mayr, N
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
NASA Astrophysics Data System (ADS)
Nurdin, Irwan; Satriananda
2017-03-01
Thermal conductivity of maghemite nanofluids were experimentally investigated at different maghemite nanoparticles volume fraction and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. The thermal conductivity ratio of maghemite nanofluids was linearly increase with increasing particle volume fraction and temperature. The highest enhancement of thermal conductivity is 42.5% which is obtained at particle volume fraction 2.5% and temperature 60 °C.
Phase-field simulations of coherent precipitate morphologies and coarsening kinetics
NASA Astrophysics Data System (ADS)
Vaithyanathan, Venugopalan
2002-09-01
The primary aim of this research is to enhance the fundamental understanding of coherent precipitation reactions in advanced metallic alloys. The emphasis is on a particular class of precipitation reactions which result in ordered intermetallic precipitates embedded in a disordered matrix. These precipitation reactions underlie the development of high-temperature Ni-base superalloys and ultra-light aluminum alloys. Phase-field approach, which has emerged as the method of choice for modeling microstructure evolution, is employed for this research with the focus on factors that control the precipitate morphologies and coarsening kinetics, such as precipitate volume fractions and lattice mismatch between precipitates and matrix. Two types of alloy systems are considered. The first involves L1 2 ordered precipitates in a disordered cubic matrix, in an attempt to model the gamma' precipitates in Ni-base superalloys and delta' precipitates in Al-Li alloys. The effect of volume fraction on coarsening kinetics of gamma' precipitates was investigated using two-dimensional (2D) computer simulations. With increase in volume fraction, larger fractions of precipitates were found to have smaller aspect ratios in the late stages of coarsening, and the precipitate size distributions became wider and more positively skewed. The most interesting result was associated with the effect of volume fraction on the coarsening rate constant. Coarsening rate constant as a function of volume fraction extracted from the cubic growth law of average half-edge length was found to exhibit three distinct regimes: anomalous behavior or decreasing rate constant with volume fraction at small volume fractions ( ≲ 20%), volume fraction independent or constant behavior for intermediate volume fractions (˜20--50%), and the normal behavior or increasing rate constant with volume fraction for large volume fractions ( ≳ 50%). The second alloy system considered was Al-Cu with the focus on understanding precipitation of metastable tetragonal theta'-Al 2Cu in a cubic Al solid solution matrix. In collaboration with Chris Wolverton at Ford Motor Company, a multiscale model, which involves a novel combination of first-principles atomistic calculations with a mesoscale phase-field microstructure model, was developed. Reliable energetics in the form of bulk free energy, interfacial energy and parameters for calculating the elastic energy were obtained using accurate first-principles calculations. (Abstract shortened by UMI.)
Hagiwara, A; Hori, M; Yokoyama, K; Nakazawa, M; Ueda, R; Horita, M; Andica, C; Abe, O; Aoki, S
2017-10-01
Myelin and axon volume fractions can now be estimated via MR imaging in vivo, as can the g-ratio, which equals the ratio of the inner to the outer diameter of a nerve fiber. The purpose of this study was to evaluate WM damage in patients with MS via this novel MR imaging technique. Twenty patients with relapsing-remitting MS with a combined total of 149 chronic plaques were analyzed. Myelin volume fraction was calculated based on simultaneous tissue relaxometry. Intracellular and CSF compartment volume fractions were quantified via neurite orientation dispersion and density imaging. Axon volume fraction and g-ratio were calculated by combining these measurements. Myelin and axon volume fractions and g-ratio were measured in plaques, periplaque WM, and normal-appearing WM. All metrics differed significantly across the 3 groups ( P < .001, except P = .027 for g-ratio between periplaque WM and normal-appearing WM). Those in plaques differed most from those in normal-appearing WM. The percentage changes in plaque and periplaque WM metrics relative to normal-appearing WM were significantly larger in absolute value for myelin volume fraction than for axon volume fraction and g-ratio ( P < .001, except P = .033 in periplaque WM relative to normal-appearing WM for comparison between myelin and axon volume fraction). In this in vivo MR imaging study, the myelin of WM was more damaged than axons in plaques and periplaque WM of patients with MS. Myelin and axon volume fractions and g-ratio may potentially be useful for evaluating WM damage in patients with MS. © 2017 by American Journal of Neuroradiology.
An oil fraction neural sensor developed using electrical capacitance tomography sensor data.
Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita
2013-08-26
This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical Capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes.
An Oil Fraction Neural Sensor Developed Using Electrical capacitance Tomography Sensor Data
Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita
2013-01-01
This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes. PMID:24064598
The 'fixed cost effect' on practice management.
Tipton, E F; Finley, J B
1999-01-01
To obtain a better understanding of the behavior of "non-professional" costs in a medical practice, the authors analyzed the expenses of a 19-doctor practice. The analysis revealed that 80 percent of these expenses were fixed costs. Fixed costs, as opposed to variable costs, remain static in total but vary on a per unit basis as volume changes. Organizations with high fixed cost must maximize capacity to achieve profitability. Thus, the relationship among volume, capacity, cost and profit must be understood by medical practices negotiating rates for service units.
Fractional populations in sex-linked inheritance
NASA Astrophysics Data System (ADS)
Pyo Lee, Seung; Chung, Myung-Hoon; Koo Kim, Chul; Nahm, Kyun
2001-03-01
We study the fractional populations in chromosome inherited diseases. The governing equations for the fractional populations are found and solved in the presence of mutation and selection. The physical fixed points obtained are used to discuss the cases of color blindness and hemophilia.
Measuring the fraction of pool volume filled with fine sediment
Sue Hilton; Thomas E. Lisle
1993-01-01
The fraction of pool volume filled with fine sediment (usually fine sand to medium gravel) can be a useful index of the sediment supply and substrate habitat of gravel-bed channels. It can be used to evaluate and monitor channel condition and to detect and evaluate sediment sources. This fraction (V*) is the ratio of fine-sediment volume to pool water volume plus fine-...
Characterization and Demonstrations of Laser-Induced Incandescence in both Normal and Low-Gravity
NASA Technical Reports Server (NTRS)
VanderWal, Randall L.
1997-01-01
Knowledge of soot volume fraction is important to a wide range of combustion studies in microgravity. Laser-induced incandescence (LII) offers high sensitivity, high temporal and spatial resolution in addition to geometric versatility for real-time determination of soot volume fraction. Implementation of LII into the 2.2 see drop tower at The NASA-Lewis Research Center along with system characterization is described. Absolute soot volume fraction measurements are presented for laminar and turbulent gas-jet flames in microgravity to illustrate the capabilities of LII in microgravity. Comparison between LII radial intensity profiles with soot volume fraction profiles determined through a full-field light extinction technique are also reported validating the accuracy of LII for soot volume fraction measurements in a microgravity environment.
Site-specific volumetric analysis of lung tumour motion
NASA Astrophysics Data System (ADS)
Pepin, Eric W.; Wu, Huanmei; Sandison, George A.; Langer, Mark; Shirato, Hiroki
2010-06-01
The treatment of lung cancer with radiation therapy is hindered by respiratory motion. Real-time adjustments to compensate for this motion are hampered by mechanical system latencies and imaging-rate restrictions. To better understand tumour motion behaviour for adaptive image-guided radiation therapy of lung cancer, the volume of a tumour's motion space was investigated. Motion data were collected by tracking an implanted fiducial using fluoroscopy at 30 Hz during treatment sessions. A total of 637 treatment fractions from 31 tumours were used in this study. For each fraction, data points collected from three consecutive breathing cycles were used to identify instantaneous tumour location. A convex hull was created over these data points, defining the tumour motion envelope. The study sought a correlation between the tumour location in the lung and the convex hull's volume and shape. It was found that tumours located in the upper apex had smaller motion envelopes (<50 mm3), whereas tumours located near the chest wall or diaphragm had larger envelopes (>70 mm3). Tumours attached to fixed anatomical structures had small motion spaces. Three general shapes described the tumour motion envelopes: 50% of motion envelopes enclosed largely 1D oscillation, 38% enclosed an ellipsoid path, 6% enclosed an arced path and 6% were of hybrid shape. This location-space correlation suggests it may be useful in developing a predictive model, but more work needs to be done to verify it.
Novel technique for online characterization of cartilaginous tissue properties.
Yuan, Tai-Yi; Huang, Chun-Yuh; Yong Gu, Wei
2011-09-01
The goal of tissue engineering is to use substitutes to repair and restore organ function. Bioreactors are an indispensable tool for monitoring and controlling the unique environment for engineered constructs to grow. However, in order to determine the biochemical properties of engineered constructs, samples need to be destroyed. In this study, we developed a novel technique to nondestructively online-characterize the water content and fixed charge density of cartilaginous tissues. A new technique was developed to determine the tissue mechano-electrochemical properties nondestructively. Bovine knee articular cartilage and lumbar annulus fibrosus were used in this study to demonstrate that this technique could be used on different types of tissue. The results show that our newly developed method is capable of precisely predicting the water volume fraction (less than 3% disparity) and fixed charge density (less than 16.7% disparity) within cartilaginous tissues. This novel technique will help to design a new generation of bioreactors which are able to actively determine the essential properties of the engineered constructs, as well as regulate the local environment to achieve the optimal conditions for cultivating constructs.
NASA Astrophysics Data System (ADS)
Hong, J. P.; Kim, C. O.; Nahm, T. U.; Kim, C. M.
2000-02-01
Microcrystalline silicon films have been prepared on indium-coated glass utilizing a layer-by-layer technique with a plasma-enhanced chemical-vapor deposition system. The microcrystalline films were fabricated by varying the number of cycles from 10 to 60 under a fixed H2 time (t2) of 120 s, where the corresponding deposition time (t1) of amorphous silicon thin film was 60 s. Structural properties, such as the crystalline volume fraction (Xc) and grain sizes were analyzed by using Raman spectroscopy and a scanning electron microscopy. The carrier transport was characterized by the temperature dependence of dark conductivity, giving rise to the calculation of activation energy (Ea). Optical energy gaps (Eg) were also investigated using an ultraviolet spectrophotometer. In addition, the process under different hydrogen plasma time (t2) at a fixed number of 20 cycles was extensively carried out to study the dominant role of hydrogen atoms in layer-by-layer deposition. Finally, the correlation between structural and electrical properties has been discussed on the basis of experimental results.
Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier
2016-11-18
The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina
2014-06-15
Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractionsS{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina
2014-06-01
In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractions S2 can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.
NASA Astrophysics Data System (ADS)
Jadhav, Shital; Powar, Amit; Patil, Sandip; Supare, Ashish; Farane, Bhagwan; Singh, Rajkumar, Dr.
2017-05-01
The present study was performed to investigate the effect of volume fraction of alpha and transformed beta phase on the high-cycle fatigue (HCF) properties of the bimodal titanium Ti6Al4V alloy. The effect of such morphology on mechanical properties was studied using tensile and rotating bending fatigue test as per ASTM standards. Microstructures and fractography of the specimens were studied using optical and scanning electron microscopy (SEM) respectively.Ti6Al4V alloy samples were heat treated to have three distinctive volume fractions of alpha and transformed beta phase. With an increase in quench delay from 30,50 and 70 sec during quenching after solutionizing temperature of 967°C, the volume fraction of alpha was found to be increased from 20% to 67%. Tests on tensile and rotating bending fatigue showed that the specimen with 20% volume fraction of alpha phase exhibited the highest tensile and fatigue strength, however the properties gets deteriorate with increase in volume fraction of alpha.
NASA Astrophysics Data System (ADS)
Saeedi, Amir Hussein; Akbari, Mohammad; Toghraie, Davood
2018-05-01
In this paper, the nanofluid dynamic viscosity composed of CeO2- Ethylene Glycol is examined within 25-50 °C with 5 °C intervals and at six volume fractions (0.05, 0.1, 0.2, 0.4, 0.8 and 1.2%) experimentally. The nanofluid was exposed to ultrasound waves for various durations to study the effect of this parameter on dynamic viscosity of the fluid. We found that at a constant temperature, nanofluid viscosity increases with increases in the volume fraction of the nanoparticles. Also, at a given volume fraction, nanofluid viscosity decreases when temperature is increased. Maximum increase in nanofluid viscosity compared to the base fluid viscosity occurs at 25 °C and volume fraction of 1.2%. It can be inferred that the obtained mathematical relationship is a suitable predicting model for estimating dynamic viscosity of CeO2- Ethylene Glycol (EG) at different volume fractions and temperatures and its results are consistent to laboratory results in the set volume fraction and temperature ranges.
A discrete model of Ostwald ripening based on multiple pairwise interactions
NASA Astrophysics Data System (ADS)
Di Nunzio, Paolo Emilio
2018-06-01
A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, T; Lin, X; Yin, Y
Purpose: To compare the dosimetric differences among fixed field intensity-modulated radiotherapy (IMRT) and double-arc volumetricmodulated arc therapy (VMAT) plans with simultaneous integrated boost in rectal cancer. Methods: Ten patients with rectal cancer previously treated with IMRT were included in this analysis. For each patient, two treatment techniques were designed for each patient: the fixed 7 fields IMRT and double-arc VMAT with RapidArc technique. The treatment plan was designed to deliver in one process with simultaneous integrated boost (SIB). The prescribed doses to the planning target volume of the subclinical disease (PTV1) and the gross disease (PTV2) were 45 Gy andmore » 55 Gy in 25 fractions, respectively. The dose distribution in the target, the dose to the organs at risk, total MU and the delivery time in two techniques were compared to explore the dosimetric differences. Results: For the target dose and homogeneity in PTV1 and PTV2, no statistically differences were observed in the two plans. VMAT plans showed a better conformity in PTV1. VMAT plans reduced the mean dose to bladder, small bowel, femur heads and iliac wings. For iliac wings, VMAT plans resulted in a statistically significant reduction in irradiated volume of 15 Gy, 20 Gy, 30 Gy but increased the 10 Gy irradiated volume. VMAT plans reduced the small bowel irradiated volume of 20 Gy and 30 Gy. Compared with IMRT plans, VMAT plans showed a significant reduction of monitor units by nearly 30% and reduced treatment time by an average of 70% Conclusion: Compared to IMRT plans, VMAT plans showed the similar target dose and reduced the dose of the organs at risk, especially for small bowel and iliac wings. For rectal cancer, VMAT with simultaneous integrated boost can be carried out with high quality and efficiency.« less
NASA Astrophysics Data System (ADS)
Nurdin, I.; Johan, M. R.; Ang, B. C.
2018-03-01
Thermal conductivity and kinematic viscosity of maghemite nanofluids were experimentally investigated at a small volume fraction of maghemite nanoparticles and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. Results show that the thermal conductivity of maghemite nanofluids linearly increase with increasing particle volume fraction and temperature, while kinematic viscosity increase with increasing particle volume fraction and decrease with increasing temperature. The highest enhancement of thermal conductivity and kinematic viscosity are 18.84% and 13.66% respectively, at particle volume fraction 0.6% and temperature 35.
Predicting Morphology of Polymers Using Mesotek+
2010-02-01
file is then produced for Mesotek+ to reproduce the phase behavior for an experimental system of poly (styrene-b- isoprene ) in the solvent tetradecane...theoretical code 3a and (b) experimental code 3b. .....6 Figure 3. Results from 40/60 volume styrene-b- isoprene + tetradecane using gnuplot: A...styrene volume fraction, B) isoprene volume fraction, and C) tetradecane volume fraction. The color bar to the right of each plot indicates how the
The jammed-to-mobile transition in frozen sand under stress
NASA Astrophysics Data System (ADS)
Durham, W. B.; Pathare, A.; Stern, L. A.; Lenferink, H. J.
2009-12-01
We conducted laboratory deformation experiments on sand-rich mixtures of sand + ice under sufficient confinement to inhibit macroscopic dilation. Dry sand packs constrained not to dilate when they are under a shearing load reach an immobile or “jammed” state, as load-supporting “force chains” of sand particles form after a small amount of strain and cannot be broken without volume expansion. Our research objective here was to find the minimum volume fraction of ice required to overcome the jammed state. The result surprised us: the required volume fraction is not a fixed number, but depends on the packing characteristics of the sand in question. Experiments were carried out in a triaxial gas deformation rig at confining pressures (60 - 200 MPa) always at least twice the level of differential stresses (11 - 50 MPa) in order to suppress dilatancy. Run temperatures were 223 - 243 K. We used two kinds of quartz sand, one well-sorted, with a maximum dry packing density (MDPD) of about 0.68 sand by volume, and the other a mixture of two sizes, having a higher MDPD of 0.75. Ice volume fraction ranged from well below saturation (where unfilled porosity necessarily remained) to slightly greater than the value of porosity at MDPD. We tested these frozen sands in compression under constant applied differential stress (creep). Strain rates were very low at these conditions, and runs took days or weeks to complete. The amount of strain required to reach the jammed state in ice-undersaturated samples was approximately 0.04, and did not show an obvious dependence on ice content. For both sands, the onset of mobility occurred at approximately 5% above the value of pore volume at MDPD. Furthermore, viscosity of mobile frozen sand near the transition point was extremely sensitive to ice fraction, which implies that at geologic strain rates, far slower than we can reach in the lab, the ice fraction at transition may lie closer to that at MDPD. Cryogenic scanning electron microscopy shows that fracturing of sand grains occurs in ice-undersaturated samples, but gradually disappears as saturation is reached. There are no fractured sand grains in deforming mobile frozen sand packs. One application of this work is to the regolith of Mars at mid-latitudes and poleward, where significant ice is expected to be present. Partially relaxed (“softened”) landforms such as craters require the presence of ice, but also suggest strengths far higher than that of ice. The extreme sensitivity of viscosity to ice content near the mobility boundary, and the near coincidence of mobility and saturation at MDPD together suggest a plausible explanation for partial landform softening on Mars that does not require a fortuitous ice content or an unrealistically brief period of saturation; namely, that the water content of the Martian regolith lies at or near saturation. If true, we can estimate the historical water content of the Martian regolith for reasonable soil densities as being between 120 and 240 global meters of water for the upper kilometer of crust. This is somewhat lower than previous estimates.
Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate
NASA Astrophysics Data System (ADS)
Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei
2018-05-01
The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.
DOT National Transportation Integrated Search
1978-04-01
Volume 2 defines a new algorithm for the network equilibrium model that works in the space of path flows and is based on the theory of fixed point method. The goals of the study were broadly defined as the identification of aggregation practices and ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynampati, D; Scripes, P Godoy; Kuo, H
2015-06-15
Purpose: To evaluate dosimetric differences between superposition beam model (AAA) and determinant photon transport solver (AXB) in lung SBRT and Cranial SRS dose computations. Methods: Ten Cranial SRS and ten Lung SBRT plans using Varian, AAA -11.0 were re-planned using Acuros -XB-11.0 with fixed MU. 6MV photon Beam model with HD120-MLC used for dose calculations. Four non-coplanar conformal arcs used to deliver 21Gy or 18Gy to SRS targets (0.4 to 6.2cc). 54Gy (3Fractions) or 50Gy (5Fractions) was planned for SBRT targets (7.3 to 13.9cc) using two VAMT non-coplanar arcs. Plan comparison parameters were dose to 1% PTV volume (D1), dosemore » to 99% PTV volume( D99), Target mean (Dmean), Conformity index (ratio of prescription isodose volume to PTV), Homogeneity Index [ (D2%-D98%)/Dmean] and R50 (ratio of 50% of prescription isodose volume to PTV). OAR parameters were Brain volume receiving 12Gy dose (V12Gy) and maximum dose (D0.03) to Brainstem for SRS. For lung SBRT, maximum dose to Heart and Cord, Mean lung dose (MLD) and volume of lung receiving 20Gy (V20Gy) were computed. PTV parameters compared by percentage difference between AXB and AAA parameters. OAR parameters and HI compared by absolute difference between two calculations. For analysis, paired t-test performed over the parameters. Results: Compared to AAA, AXB SRS plans have on average 3.2% lower D99, 6.5% lower CI and 3cc less Brain-V12. However, AXB SBRT plans have higher D1, R50 and Dmean by 3.15%, 1.63% and 2.5%. For SRS and SBRT, AXB plans have average HI 2 % and 4.4% higher than AAA plans. In both techniques, all other parameters vary within 1% or 1Gy. In both sets only two parameters have P>0.05. Conclusion: Even though t-test results signify difference between AXB and AAA plans, dose differences in dose estimations by both algorithms are clinically insignificant.« less
Bassand, J P; Faivre, R; Berthout, P; Cardot, J C; Verdenet, J; Bidet, R; Maurat, J P
1985-06-01
Previous studies have shown that variations of the ejection fraction (EF) during exercise were representative of the contractile state of the left ventricle: an increased EF on effort is considered to be physiological, whilst a decrease would indicate latent LV dysfunction unmasked during exercise. This hypothesis was tested by performing Technetium 99 gamma cineangiography at equilibrium under basal conditions and at maximal effort in 8 healthy subjects and 44 patients with pure, severe aortic regurgitation to measure the ejection and regurgitant fractions and the variations in end systolic and end diastolic LV volume. In the control group the EF increased and end systolic volume decreased significantly on effort whilst the regurgitant fraction and end diastolic volume were unchanged. In the 44 patients with aortic regurgitation no significant variations in EF, end systolic and end diastolic volumes were observed because the individual values were very dispersed. Variations of the EF and end systolic volume were inversely correlated. The regurgitant fraction decreased significantly on effort. Based on the variations of the EF and end systolic volume three different types of response to effort could be identified: in 7 patients, the EF increased on effort and end systolic volume decreased without any significant variation in the end diastolic volume, as in the group of normal control subjects; in 22 patients, a reduction in EF was observed on effort, associated with an increased end systolic volume. These changes indicated latent IV dysfunction inapparent at rest and unmasked by exercise; in a third group of 15 patients, the EF decreased on effort despite a physiological decrease in end systolic volume due to a greater decrease in end diastolic volume.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid
2017-03-01
In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.
De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2016-08-12
When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.
Latent Computational Complexity of Symmetry-Protected Topological Order with Fractional Symmetry.
Miller, Jacob; Miyake, Akimasa
2018-04-27
An emerging insight is that ground states of symmetry-protected topological orders (SPTOs) possess latent computational complexity in terms of their many-body entanglement. By introducing a fractional symmetry of SPTO, which requires the invariance under 3-colorable symmetries of a lattice, we prove that every renormalization fixed-point state of 2D (Z_{2})^{m} SPTO with fractional symmetry can be utilized for universal quantum computation using only Pauli measurements, as long as it belongs to a nontrivial 2D SPTO phase. Our infinite family of fixed-point states may serve as a base model to demonstrate the idea of a "quantum computational phase" of matter, whose states share universal computational complexity ubiquitously.
Positive solutions of fractional integral equations by the technique of measure of noncompactness.
Nashine, Hemant Kumar; Arab, Reza; Agarwal, Ravi P; De la Sen, Manuel
2017-01-01
In the present study, we work on the problem of the existence of positive solutions of fractional integral equations by means of measures of noncompactness in association with Darbo's fixed point theorem. To achieve the goal, we first establish new fixed point theorems using a new contractive condition of the measure of noncompactness in Banach spaces. By doing this we generalize Darbo's fixed point theorem along with some recent results of (Aghajani et al. (J. Comput. Appl. Math. 260:67-77, 2014)), (Aghajani et al. (Bull. Belg. Math. Soc. Simon Stevin 20(2):345-358, 2013)), (Arab (Mediterr. J. Math. 13(2):759-773, 2016)), (Banaś et al. (Dyn. Syst. Appl. 18:251-264, 2009)), and (Samadi et al. (Abstr. Appl. Anal. 2014:852324, 2014)). We also derive corresponding coupled fixed point results. Finally, we give an illustrative example to verify the effectiveness and applicability of our results.
Roshan Deen, G; Oliveira, Cristiano L P; Pedersen, Jan Skov
2009-05-21
The phase behavior and phase separation kinetics of a model ternary nonionic microemulsion system composed of pentaethylene glycol dodecyl ether (C12E5), water, and 1-chlorotetradecane were studied. With increasing temperature, the microemulsion exhibits the following rich phase behavior: oil-in-water phase (L1+O), droplet microemulsion phase (L1), lamellar liquid crystalline phase (Lproportional), and sponge-like (liquid) phase (L3). The microemulsion with a fixed surfactant-to-oil volume fraction ratio (Phis/Phio) of 0.81 and droplet volume fraction of 0.087 was perturbed from equilibrium by a temperature quench from the L1 region (24 degrees C) to an unstable region L1+O (13 degrees C), where the excess oil phase is in equilibrium with the microemulsion droplets. The process of phase separation in the unstable region was followed by time-resolved small-angle X-ray scattering (TR-SAXS) and time-resolved turbidity methods. Due to the large range of scattering vector (q=0.004-0.22 A(-1)) that is possible to access with the TR-SAXS method, the growth of the oil droplets and shrinking of the microemulsion droplets as a result of phase separation could be studied simultaneously. By using an advanced polydisperse ellipsoidal hard-sphere model, the experimental curves have been quantitatively analyzed. The microemulsion droplets were modeled as polydisperse core-shell ellipsoidal particles, using molecular constraints, and the oil droplets are modeled as polydisperse spheres. The radius of gyration (Rg) of the growing oil droplets, volume fraction of oil in the microemulsion droplets, and polydispersity were obtained from the fit parameters. The volume equivalent radius at the neutral plane between the surfactant head and tail of the microemulsion droplet decreased from 76 to 51 A, while the radius of oil drop increased to 217 A within the 160 min of the experiment. After about 48 min from the temperature quench, the system reaches a steady state and continues to coarsen at a constant fraction of the oil of 0.51 in the oil phase by Ostwald ripening with the power law dependence of Roil proportional, variant t1/3. The size of the oil droplets determined by the time-resolved turbidity method is in good agreement with that of the TR-SAXS, highlighting the usefulness of the method in the size determination of oil-in-water microemulsions on an absolute scale.
Use of radiation protraction to escalate biologically effective dose to the treatment target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, V. Y.; Spradlin, G. S.; Department of Mathematics, Embry-Riddle University, Daytona Beach, Florida 32114
2011-12-15
Purpose: The aim of this study is to evaluate how simultaneously increasing fraction time and dose per fraction affect biologically effective dose for the target (BED{sub tar}) while biologically effective dose for the normal tissue (BED{sub nt}) is fixed. Methods: In this investigation, BED{sub tar} and BED{sub nt} were studied by assuming mono-exponential repair of sublethal damage with tissue dependent repair half-time. Results: Our results demonstrate that under certain conditions simultaneously increasing fraction time and dose per fraction result in increased BED{sub tar} while BED{sub nt} is fixed. The dependence of biologically effective dose on fraction time is influenced bymore » the dose rate. In this investigation we analytically determined time-varying dose rate R-tilde which minimizes BED. Changes in BED with fraction time were compared for constant dose rate and for R-tilde. Conclusions: A number of recent experimental and theoretical studies have demonstrated that slow delivery of radiation (known as radiation protraction) leads to reduced therapeutic effect because of increased repair of sublethal damage. In contrast, our analysis shows that under certain conditions simultaneously increasing fraction time and dose per fraction are radiobiologically advantageous.« less
Dielectric and piezoelectric properties of percolative three-phase piezoelectric polymer composites
NASA Astrophysics Data System (ADS)
Sundar, Udhay
Three-phase piezoelectric bulk composites were fabricated using a mix and cast method. The composites were comprised of lead zirconate titanate (PZT), aluminum (Al) and an epoxy matrix. The volume fraction of the PZT and Al were varied from 0.1 to 0.3 and 0.0 to 0.17, respectively. The influences of three entities on piezoelectric and dielectric properties: inclusion of an electrically conductive filler (Al), poling process (contact and Corona) and Al surface treatment, were observed. The piezoelectric strain coefficient, d33, effective dielectric constant, epsilon r, capacitance, C, and resistivity were measured and compared according to poling process, volume fraction of constituent phases and Al surface treatment. The maximum values of d33 were 3.475 and 1.0 pC/N for Corona and contact poled samples respectively, for samples with volume fractions of 0.40 and 0.13 of PZT and Al (surface treated) respectively. Also, the maximum dielectric constant for the surface treated Al samples was 411 for volume fractions of 0.40 and 0.13 for PZT and Al respectively. The percolation threshold was observed to occur at an Al volume fraction of 0.13. The composites achieved a percolated state for Al volume fractions >0.13 for both contact and corona poled samples. In addition, a comparative time study was conducted to examine the influence of surface treatment processing time of Al particles. The effectiveness of the surface treatment, sample morphology and composition was observed with the aid of SEM and EDS images. These images were correlated with piezoelectric and dielectric properties. PZT-epoxy-aluminum thick films (200 mum) were also fabricated using a two-step spin coat deposition and annealing method. The PZT volume fraction were varied from 0.2, 0.3 and 0.4, wherein the Aluminum volume fraction was varied from 0.1 to 0.17 for each PZT volume fraction, respectively. The two-step process included spin coating the first layer at 500 RPM for 30 seconds, and the second layer at 1000 RPM for 1 minute. The piezoelectric strain coefficients d33 and d31, capacitance and the dielectric constant were measured, and were studied as a function of Aluminum volume fraction.
SU-C-19A-05: Treatment Chairs for Modern Radiation Therapy Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Court, L; Fullen, D; Tharp, K
2014-06-15
Purpose: Treating patients in a seated position has potential advantages including improved comfort, increased lung volume, and reduced respiratory motion. We compared chair designs for head and neck, thoracic and breast patients for use with either IGRT linacs or a proposed low-cost fixed horizontal beam-line machine. Methods: Three treatment chairs were designed and constructed. Two of the chairs are based on a massage-chair, with the patient angled slightly forwards and knee rests used to minimize intra-fraction slouch. The third chair design is more conventional; the patient is angled backwards, with indexed positioning devices and the ability to attach thermoplastic masks.more » Patient geometries, including PTV location and patient sizes, were extracted from 137 CTs of past patients were used to model the probability of collision between the patient and the linac for various seated positions. All chairs were designed around the weight limits for couches on our linacs. At the time of writing we have just received IRB approval for imaging studies to evaluate comfort, and intra- and interfraction reproducibility. Results: The geometric analysis showed that head and neck patients and thoracic patients could be treated without collision. However, there is very limited space between the patient and the treatment/imaging devices, so careful design of the chair is essential. The position of the treatment target and extended arm positioning means that this is a particular concern for thoracic and breast patients. This was demonstrated for one of the prototype chairs designed for breast treatment where the arm holders would collide with the kV detector. The extra clearance of a dedicated fixed-beam linac would overcome these difficulties. Intra- and inter-fraction reproducibility results will be presented at the meeting. Conclusion: To take advantage of the clinical advantages of seated treatments, appropriate treatment chairs are needed. A dedicate fixed-beam linac may enable more options. This work was partially funded by Varian Medical Systems.« less
NASA Astrophysics Data System (ADS)
Webb, Anthony J.
Phase Change Materials (PCMs), like paraffin wax, can be used for passive thermal management of portable electronics if their overall bulk thermal conductivity is increased through the addition of highly conducting nanoparticles. Finite Element Analysis (FEA) is used to investigate the influence of nanoparticle agglomeration on the overall conductive thermal transport in a nanoenhanced composite by dictating the thermal conductivity of individual elements according to their local inclusion volume fraction and characteristics inside a low conducting PCM matrix. The inclusion density distribution is dictated by an agglomeration factor, and the effective thermal conductivity of each element is calculated from the nanoparticle volume fraction using a method similar to the Representative Volume Element (RVE) methodology. FEA studies are performed for 2-D and 3-D models. In the 2-D model, the grain boundary is fixed at x = 0 for simplicity. For the 3-D model, the grain boundary geometry is randomly varied. A negligible 2-D effect on thermal transport in the 2-D model is seen, so a 1-D thermal resistance network is created for comparison, and the results agree within 4%.The influence of the agglomeration factor and contact Biot number on the overall bulk thermal conductivity is determined by applying Fourier's Law on the entire simulated composite. For the 2-D and 3-D models with a contact Biot number above 1, the overall bulk thermal conductivity decreases prior to the percolation threshold being met and then increases with increasing agglomeration. Finally, a MatlabRTM based image processing tool is created to estimate the agglomeration factor based on an experimental image of a nanoparticle distribution, with a calculated approximate agglomeration value of Beta*L = 5 which results in a bulk thermal conductivity of 0.278 W/(m-K).
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning material and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of...
NASA Technical Reports Server (NTRS)
Schuller, F. T.
1973-01-01
This publication is the result of over 260 fractional-frequency-whirl stability tests on a variety of fixed-geometry journal bearings. It is intended principally as a guide in the selection and design of antiwhirl bearings that must operate at high speeds and low loads in low-viscosity fluids such as water or liquid metals. However, the various fixed-geometry configurations can be employed as well in applications where other lubricants, such as oil, are used and fractional-frequency whirl is a problem. The important parameters that effect stability are discussed for each bearing type, and design curves to facilitate the design of optimum-geometry bearings are included. A comparison of the stability of the different bearing configurations tested is also given.
Scaling of the Propulsive Capability of Aluminized Gelled Nitromethane
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Higgins, Andrew; Frost, David; Zhang, Fan
2017-06-01
It is well accepted that small mass fractions (<20%) of micron-scale aluminum particles added to a high explosive can react quickly and with sufficient exothermicity to improve metal-acceleration ability (AA) relative to an equal volume of only the base explosive. In order for the aluminum to increase AA, exothermicity must more than offset losses in gas-production and from heating and accelerating the solid particle in the flow. Furthermore, particles must react promptly to deliver this energy prior to loss in driving pressure with product expansion or acoustic decoupling from the driven material. For these reasons many aluminized formulations exhibit slight or no increase in AA ability. Furthermore, AA ability is typically studied using the cylinder test, which specifies a fixed, heavy copper wall. In the present study the authors have used symmetric sandwiches of flyer plates of varying thicknesses to examine how charge scaling and plate acceleration timescales influence the enhancement in AA for different mass fractions and sizes of aluminum particles. Nitromethane gelled with 4% Poly(methyl methacrylate) by mass was used as the base explosive. 3M K1 microballoons were added at a mass fraction of 0.5% to sensitize the mixture. Mass fraction of aluminum was varied between 10% and 40% and particle size was varied from 2 μm to 100 μm. For small mass fractions of alumimum, an enhancement in AA was observed for all particle sizes and flyer configurations and indicated an onset of reaction very close to the sonic plane of the detonation wave.
Electrokinetics of diffuse soft interfaces. 1. Limit of low Donnan potentials.
Duval, Jérôme F L; van Leeuwen, Herman P
2004-11-09
The current theoretical approaches to electrokinetics of gels or polyelectrolyte layers are based on the assumption that the position of the very interface between the aqueous medium and the gel phase is well defined. Within this assumption, spatial profiles for the volume fraction of polymer segments (phi), the density of fixed charges in the porous layer (rho fix), and the coefficient modeling the friction to hydrodynamic flow (k) follow a step-function. In reality, the "fuzzy" nature of the charged soft layer is intrinsically incompatible with the concept of a sharp interface and therefore necessarily calls for more detailed spatial representations for phi, rho fix, and k. In this paper, the notion of diffuse interface is introduced. For the sake of illustration, linear spatial distributions for phi and rho fix are considered in the interfacial zone between the bulk of the porous charged layer and the bulk electrolyte solution. The corresponding distribution for k is inferred from the Brinkman equation, which for low phi reduces to Stokes' equation. Linear electrostatics, hydrodynamics, and electroosmosis issues are analytically solved within the context of streaming current and streaming potential of charged surface layers in a thin-layer cell. The hydrodynamic analysis clearly demonstrates the physical incorrectness of the concept of a discrete slip plane for diffuse interfaces. For moderate to low electrolyte concentrations and nanoscale spatial transition of phi from zero (bulk electrolyte) to phi o (bulk gel), the electrokinetic properties of the soft layer as predicted by the theory considerably deviate from those calculated on the basis of the discontinuous approximation by Ohshima.
Ahmed, Khalil; Nasir, Muhammad; Fatima, Nasreen; Khan, Khalid M.; Zahra, Durey N.
2014-01-01
This paper presents the comparative results of a current study on unsaturated polyester resin (UPR) matrix composites processed by filament winding method, with cotton spun yarn of different mass irregularities and two different volume fractions. Physical and mechanical properties were measured, namely ultimate stress, stiffness, elongation%. The mechanical properties of the composites increased significantly with the increase in the fiber volume fraction in agreement with the Counto model. Mass irregularities in the yarn structure were quantitatively measured and visualized by scanning electron microscopy (SEM). Mass irregularities cause marked decrease in relative strength about 25% and 33% which increases with fiber volume fraction. Ultimate stress and stiffness increases with fiber volume fraction and is always higher for yarn with less mass irregularities. PMID:26644920
Acoustic analysis of the composition of human blood serum
NASA Astrophysics Data System (ADS)
Gurbatov, S. N.; Demin, I. Yu.; Klemina, A. V.; Klemin, V. A.
2009-10-01
New acoustic methods of determining total protein, protein fractions, and lipid components of the human blood serum are presented. Acoustic methods are based on high-precision measurements of velocity and temperature dependences and frequency and temperature dependences of ultrasound absorption. Acoustic characteristics of the blood serum were measured using the method of a fixed length interferometer in acoustic cells ˜80 mcl in volume in the temperature range from 15 to 40°C and the 4-9 MHz frequency range with the acoustic analyzer developed by BIOM company. An error in measuring ultrasound velocity in the blood serum was 3 × 10-5; that of absorption, 2 × 10-2. The developed acoustic methods were clinically tested and recommended for application at clinical diagnostic laboratories with RF treatment-and-prophylactics establishments.
Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C
2007-06-01
Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.
NASA Astrophysics Data System (ADS)
Yang, Yang; Sun, Xiaoxia; Zhao, Yongfang
2017-07-01
Fixatives are traditionally used in marine ecosystem research. The bias introduced by fixatives on the dimensions of plankton cells may lead to an overestimation or underestimation of the carbon biomass. To determine the impact of traditional fixatives on dinoflagellates during short- and long-term fixation, we analyzed the degree of change in three bloom-forming dinoflagellates ( Prorocentrum micans, Scrippsiella trochoidea and Noctiluca scintillans) brought about by Lugol's iodine solution (hereafter Lugol's) and formalin. The fixation effects were species-specific. P. micans cell volume showed no significant change following long-term preservation, and S. trochoidea swelled by approximately 8.06% in Lugol's and by 20.97% in formalin as a percentage of the live cell volume, respectively. N. scintillans shrank significantly in both fixatives. The volume change due to formalin in N. scintillans was not concentration-dependent, whereas the volume shrinkage of N. scintillans cells fixed with Lugol's at a concentration of 2% was nearly six-fold that in cells fixed with Lugol's at a concentration of 0.6%-0.8%. To better estimate the volume of N. scintillans fixed in formalin at a concentration of 5%, we suggest that the conversion relationship was as follows: volume of live cell=volume of intact fixed cell/0.61. Apart from size change, damage induced by fixatives on N. scintillans was obvious. Lugol's is not a suitable fixative for N. scintillans due to high frequency of broken cells. Accurate carbon biomass estimate of N. scintillans should be performed on live samples. These findings help to improve the estimate of phytoplankton cell volume and carbon biomass in marine ecosystem.
Laser-Induced Incandescence Measurements in Low Gravity
NASA Technical Reports Server (NTRS)
VanderWal, R. L.
1997-01-01
A low-gravity environment offers advantages to investigations concerned with soot growth or flame radiation by eliminating of buoyancy-induced convection. Basic to each type of study is knowledge of spatially resolved soot volume fraction, (f(sub v). Laser-induced incandescence (LII) has emerged as a diagnostic for soot volume fraction determination because it possesses high temporal and spatial resolution, geometric versatility and high sensitivity. Implementation and system characterization of LII in a drop tower that provides 2.2 sec of low-gravity (micro)g) at the NASA Lewis Research Center are described here. Validation of LII for soot volume fraction determination in (micro)g is performed by comparison between soot volume fraction measurements obtained by light extinction [20] and LII in low-gravity for a 50/50 mixture (by volume) of 0 acetylene/nitrogen issuing into quiescent air. Quantitative soot volume fraction measurements within other laminar flames of ethane and propane and a turbulent diffusion flame in (micro)g via LII are also demonstrated. An analysis of LII images of a turbulent acetylene diffusion flame in 1-g and (micro)g is presented.
Destruction of the Fractional Quantum Hall Effect by Disorder
DOE R&D Accomplishments Database
Laughlin, R. B.
1985-07-01
It is suggested that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordinary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed point, which is identified with the destruction of the fractional states by disorder. 15 refs., 3 figs.
Quantification of skeletal fraction volume of a soil pit by means of photogrammetry
NASA Astrophysics Data System (ADS)
Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens
2015-04-01
The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.
40 CFR 63.3930 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating... coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction... rather than a record of the volume used. (e) A record of the mass fraction of organic HAP for each...
29 CFR 1910.27 - Fixed ladders.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Walking-Working Surfaces § 1910.27 Fixed ladders. (a) Design... fraction thereof, except that, where no cage, well, or ladder safety device is provided, landing platforms...
Sathiyaraj, T; Balasubramaniam, P
2017-11-30
This paper presents a new set of sufficient conditions for controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion (fBm) in finite dimensional space using fractional calculus, fixed point technique and stochastic analysis approach. In particular, we discuss the complete controllability for nonlinear fractional stochastic integrodifferential systems under the proved result of the corresponding linear fractional system is controllable. Finally, an example is presented to illustrate the efficiency of the obtained theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Lookback Option Pricing with Fixed Proportional Transaction Costs under Fractional Brownian Motion.
Sun, Jiao-Jiao; Zhou, Shengwu; Zhang, Yan; Han, Miao; Wang, Fei
2014-01-01
The pricing problem of lookback option with a fixed proportion of transaction costs is investigated when the underlying asset price follows a fractional Brownian motion process. Firstly, using Leland's hedging method a partial differential equation satisfied by the value of the lookback option is derived. Then we obtain its numerical solution by constructing a Crank-Nicolson format. Finally, the effectiveness of the proposed form is verified through a numerical example. Meanwhile, the impact of transaction cost rate and volatility on lookback option value is discussed.
Lookback Option Pricing with Fixed Proportional Transaction Costs under Fractional Brownian Motion
Sun, Jiao-Jiao; Zhou, Shengwu; Zhang, Yan; Han, Miao; Wang, Fei
2014-01-01
The pricing problem of lookback option with a fixed proportion of transaction costs is investigated when the underlying asset price follows a fractional Brownian motion process. Firstly, using Leland's hedging method a partial differential equation satisfied by the value of the lookback option is derived. Then we obtain its numerical solution by constructing a Crank-Nicolson format. Finally, the effectiveness of the proposed form is verified through a numerical example. Meanwhile, the impact of transaction cost rate and volatility on lookback option value is discussed. PMID:27433525
The purpose of this SOP is to describe the general procedures for the operation, calibration, and maintenance of fixed- and adjustable-volume pipette guns. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the "Border" study. Ke...
NASA Astrophysics Data System (ADS)
Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing
2018-03-01
Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.
Long-term aging behaviors in a model soft colloidal system.
Li, Qi; Peng, Xiaoguang; McKenna, Gregory B
2017-02-15
Colloidal and molecular systems share similar behaviors near to the glass transition volume fraction or temperature. Here, aging behaviors after volume fraction up-jump (induced by performing temperature down-jumps) conditions for a PS-PNIPAM/AA soft colloidal system were investigated using light scattering (diffusing wave spectroscopy, DWS). Both aging responses and equilibrium dynamics were investigated. For the aging responses, long-term experiments (100 000 s) were performed, and both equilibrium and non-equilibrium behaviors of the system were obtained. In the equilibrium state, as effective volume fraction increases (or temperature decreases), the colloidal dispersion displays a transition from the liquid to a glassy state. The equilibrium α-relaxation dynamics strongly depend on both the effective volume fraction and the initial mass concentration for the studied colloidal systems. Compared with prior results from our lab [X. Di, X. Peng and G. B. McKenna, J. Chem. Phys., 2014, 140, 054903], the effective volume fractions investigated spanned a wider range, to deeper into the glassy domain. The results show that the α-relaxation time τ α of the samples aged into equilibrium deviate from the classical Vogel-Fulcher-Tammann (VFT)-type expectations and the super-Arrhenius signature disappears above the glass transition volume fraction. The non-equilibrium aging response shows that the time for the structural evolution into equilibrium and the α-relaxation time are decoupled. The DWS investigation of the aging behavior after different volume fraction jumps reveals a different non-equilibrium or aging behavior for the considered colloidal systems compared with either molecular glasses or the macroscopic rheology of a similar colloidal dispersions.
NASA Astrophysics Data System (ADS)
Stevens, Adam R. H.; Brown, Toby
2017-10-01
We combine the latest spectrally stacked data of 21-cm emission from the Arecibo Legacy Fast ALFA survey with an updated version of the Dark Sage semi-analytic model to investigate the relative contributions of secular and environmental astrophysical processes on shaping the H I fractions and quiescence of galaxies in the local Universe. We calibrate the model to match the observed mean H I fraction of all galaxies as a function of stellar mass. Without consideration of stellar feedback, disc instabilities and active galactic nuclei, we show how the slope and normalization of this relation would change significantly. We find Dark Sage can reproduce the relative impact that halo mass is observed to have on satellites' H I fractions and quiescent fraction. However, the model satellites are systematically gas-poor. We discuss how this could be affected by satellite-central cross-contamination from the group-finding algorithm applied to the observed galaxies, but that it is not the full story. From our results, we suggest the anticorrelation between satellites' H I fractions and host halo mass, seen at fixed stellar mass and fixed specific star formation rate, can be attributed almost entirely to ram-pressure stripping of cold gas. Meanwhile, stripping of hot gas from around the satellites drives the correlation of quiescent fraction with halo mass at fixed stellar mass. Further detail in the modelling of galaxy discs' centres is required to solidify this result, however. We contextualize our results with those from other semi-analytic models and hydrodynamic simulations.
NASA Technical Reports Server (NTRS)
Morris, Kenneth R.; Schwaller, Mathew
2011-01-01
With the availability of active weather radar observations from space from the Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TR.MM) satellite, numerous studies have been performed comparing PR reflectivity and derived rain rates to similar observations from ground-based weather radars (GR). These studies have used a variety of algorithms to compute matching PR and GR volumes for comparison. Most studies have used a fixed 3-dimensional Cartesian grid centered on the ground radar, onto which the PR and GR data are interpolated using a proprietary approach and/or commonly available GR analysis software (e.g., SPRINT, REORDER). Other studies have focused on the intersection of the PR and GR viewing geometries either explicitly or using a hybrid of the fixed grid and PR/GR common fields of view. For the Dual-Frequency Precipitation Radar (DPR) of the upcoming Global Precipitation Measurement (GPM) mission, a prototype DPR/GR comparison algorithm based on similar TRMM PR data has been developed that defines the common volumes in terms of the geometric intersection of PR and GR rays, where smoothing of the PR and GR data are minimized and no interpolation is performed. The PR and GR volume-averaged reflectivity values of each sample volume are accompanied by descriptive metadata, for attributes including the variability and maximum of the reflectivity within the sample volume, and the fraction of range gates in the sample average having reflectivity values above an adjustable detection threshold (typically taken to be 18 dBZ for the PR). Sample volumes are further characterized by rain type (Stratiform or Convective), proximity to the melting layer, underlying surface (land/water/mixed), and the time difference between the PR and GR observations. The mean reflectivity differences between the PR and GR can differ between data sets produced by the different analysis methods; and for the GPM prototype, by the type of constraints and categorization applied to the data. In this paper, we will show results comparing the 3-D gridded analysis "black box" approach to the GPM prototype volume-matching approach, using matching TRMM PR and WSR-88D ground radar data. The affects of applying data constraints and data categorizations on the volume-matched data to the results will be shown, and explanations of the differences in terms of data and analysis algorithm characteristics will be presented. Implications of the differences to the determination of PR/DPR calibration differences and use of ground radar data to evaluate the PR and DPR attenuation correction algorithms will be discussed.
2016-07-01
Predicted variation in (a) hot-spot number density , (b) hot-spot volume fraction, and (c) hot-spot specific surface area for each ensemble with piston speed...packing density , characterized by its effective solid volume fraction φs,0, affects hot-spot statistics for pressure dominated waves corresponding to...distribution in solid volume fraction within each ensemble was nearly Gaussian, and its standard deviation decreased with increasing density . Analysis of
Lamb Wave Assessment of Fiber Volume Fraction in Composites
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.
1998-01-01
Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.
Estimation of the fractional coverage of rainfall in climate models
NASA Technical Reports Server (NTRS)
Eltahir, E. A. B.; Bras, R. L.
1993-01-01
The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.
Liu, X. Sherry; Stein, Emily M.; Zhou, Bin; Zhang, Chiyuan A.; Nickolas, Thomas L.; Cohen, Adi; Thomas, Valerie; McMahon, Donald J.; Cosman, Felicia; Nieves, Jeri; Shane, Elizabeth; Guo, X. Edward
2011-01-01
Osteoporosis is typically diagnosed by dual energy x-ray absorptiometry (DXA) measurements of areal bone mineral density (aBMD). Emerging technologies, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), may increase the diagnostic accuracy of DXA and enhance our mechanistic understanding of decreased bone strength in osteoporosis. Women with (n=68) and without (n=101) a history of postmenopausal fragility fracture had aBMD measured by DXA, trabecular plate and rod microarchitecture measured by HR-pQCT image-based individual trabeculae segmentation (ITS) analysis, and whole bone and trabecular bone stiffness by micro finite element analysis (μFEA) of HR-pQCT images at the radius and tibia. DXA T-scores were similar in women with and without fractures at the spine, hip and 1/3 radius, but lower in fracture subjects at the ultradistal radius. Trabecular microarchitecture of fracture subjects was characterized by preferential reductions in trabecular plate bone volume, number, and connectivity over rod trabecular parameters, loss of axially aligned trabeculae, and a more rod-like trabecular network. In addition, decreased thickness and size of trabecular plates were observed at the tibia. The differences between groups were greater at the radius than the tibia for plate number, rod bone volume fraction and number and plate-rod and rod-rod junction densities. Most differences between groups remained after adjustment for T-score by DXA. At a fixed bone volume fraction, trabecular plate volume, number and connectivity were directly associated with bone stiffness. In contrast, rod volume, number and connectivity were inversely associated with bone stiffness. In summary, HR-pQCT-based ITS and μFEA measurements discriminate fracture status in postmenopausal women independent of DXA measurements. Moreover, these results suggest that preferential loss of plate-like trabeculae contribute to lower trabecular bone and whole bone stiffness in women with fractures. We conclude that HR-pQCT-based ITS and μFEA measurements increase our understanding of the microstructural pathogenesis of fragility fracture in postmenopausal women. PMID:22072446
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passoni, Paolo, E-mail: passoni.paolo@hsr.it; Reni, Michele; Cattaneo, Giovanni M.
2013-12-01
Purpose: To determine the maximum tolerated radiation dose (MTD) of an integrated boost to the tumor subvolume infiltrating vessels, delivered simultaneously with radical dose to the whole tumor and concomitant capecitabine in patients with pretreated advanced pancreatic adenocarcinoma. Methods and Materials: Patients with stage III or IV pancreatic adenocarcinoma without progressive disease after induction chemotherapy were eligible. Patients underwent simulated contrast-enhanced four-dimensional computed tomography and fluorodeoxyglucose-labeled positron emission tomography. Gross tumor volume 1 (GTV1), the tumor, and GTV2, the tumor subvolume 1 cm around the infiltrated vessels, were contoured. GTVs were fused to generate Internal Target Volume (ITV)1 and ITV2.more » Biological tumor volume (BTV) was fused with ITV1 to create the BTV+Internal Target Volume (ITV) 1. A margin of 5/5/7 mm (7 mm in cranium-caudal) was added to BTV+ITV1 and to ITV2 to create Planning Target Volume (PTV) 1 and PTV2, respectively. Radiation therapy was delivered with tomotherapy. PTV1 received a fixed dose of 44.25 Gy in 15 fractions, and PTV2 received a dose escalation from 48 to 58 Gy as simultaneous integrated boost (SIB) in consecutive groups of at least 3 patients. Concomitant chemotherapy was capecitabine, 1250 mg/m{sup 2} daily. Dose-limiting toxicity (DLT) was defined as any treatment-related G3 nonhematological or G4 hematological toxicity occurring during the treatment or within 90 days from its completion. Results: From June 2005 to February 2010, 25 patients were enrolled. The dose escalation on the SIB was stopped at 58 Gy without reaching the MTD. One patient in the 2{sup nd} dose level (50 Gy) had a DLT: G3 acute gastric ulcer. Three patients had G3 late adverse effects associated with gastric and/or duodenal mucosal damage. All patients received the planned dose of radiation. Conclusions: A dose of 44.25 Gy in 15 fractions to the whole tumor with an SIB of 58 Gy to small tumor subvolumes concomitant with capecitabine is feasible in chemotherapy-pretreated patients with advanced pancreatic cancer.« less
The purpose of this SOP is to describe the general procedures for the operation, calibration, and maintenance of fixed- and adjustable-volume pipette guns. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the Border study. Keyw...
La, Moonwoo; Park, Sang Min; Kim, Dong Sung
2015-01-01
In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical. PMID:25610516
Jwo, Ching-Song; Chang, Ho; Teng, Tun-Ping; Kao, Mu-Jnug; Guo, Yu-Ting
2007-06-01
By using copper oxide nanofluid fabricated by the self-made Submerged Arc Nanofluid Synthesis System (SANSS), this paper measures the thermal conductivity under different volume fractions and different temperatures by thermal properties analyzer, and analyzes the correlation among the thermal conductivity, volume fraction, and temperature of nanofluid. The CuO nanoparticles used in the experiment are needle-like, with a mean particle size of about 30 nm. They can be stably suspended in deionized water for a long time. The experimental results show that under the condition that the temperature is 40 degrees C, when the volume fraction of nanofluid increases from 0.2% to 0.8%, the thermal conductivity increment of the prepared nanofluid towards deionized water can be increased from 14.7% to 38.2%. Under the condition that the volume fraction is 0.8%, as the temperature of nanofluid rises from 5 degrees C to 40 degrees C, the thermal conductivity increment of the prepared nanofluid towards deionized water increases from 5.9% to 38.2%. Besides, the effects of temperature change are greater than the effects of volume fraction on the thermal conductivity of nanofluid. Therefore, when the self-made copper oxide nanofluid is applied to the heat exchange device under medium and high temperature, an optimal radiation effect can be acquired.
Existence of a coupled system of fractional differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Rabha W.; Siri, Zailan
2015-10-22
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.
Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas.
Farzin, Mostafa; Molls, Michael; Astner, Sabrina; Rondak, Ina-Christine; Oechsner, Markus
2015-12-01
In 20 patients with high-grade gliomas, we compared two methods of planning for volumetric-modulated arc therapy (VMAT): simultaneous integrated boost (SIB) vs. sequential boost (SEB). The investigation focused on the analysis of dose distributions in the target volumes and the organs at risk (OARs). After contouring the target volumes [planning target volumes (PTVs) and boost volumes (BVs)] and OARs, SIB planning and SEB planning were performed. The SEB method consisted of two plans: in the first plan the PTV received 50 Gy in 25 fractions with a 2-Gy dose per fraction. In the second plan the BV received 10 Gy in 5 fractions with a dose per fraction of 2 Gy. The doses of both plans were summed up to show the total doses delivered. In the SIB method the PTV received 54 Gy in 30 fractions with a dose per fraction of 1.8 Gy, while the BV received 60 Gy in the same fraction number but with a dose per fraction of 2 Gy. All of the OARs showed higher doses (Dmax and Dmean) in the SEB method when compared with the SIB technique. The differences between the two methods were statistically significant in almost all of the OARs. Analysing the total doses of the target volumes we found dose distributions with similar homogeneities and comparable total doses. Our analysis shows that the SIB method offers advantages over the SEB method in terms of sparing OARs.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-11-02
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-01-01
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701
Local structure of percolating gels at very low volume fractions
NASA Astrophysics Data System (ADS)
Griffiths, Samuel; Turci, Francesco; Royall, C. Patrick
2017-01-01
The formation of colloidal gels is strongly dependent on the volume fraction of the system and the strength of the interactions between the colloids. Here we explore very dilute solutions by the means of numerical simulations and show that, in the absence of hydrodynamic interactions and for sufficiently strong interactions, percolating colloidal gels can be realised at very low values of the volume fraction. Characterising the structure of the network of the arrested material we find that, when reducing the volume fraction, the gels are dominated by low-energy local structures, analogous to the isolated clusters of the interaction potential. Changing the strength of the interaction allows us to tune the compactness of the gel as characterised by the fractal dimension, with low interaction strength favouring more chain-like structures.
Dependence of particle volume fraction on sound velocity and attenuation of EPDM composites.
Kim, K S; Lee, K I; Kim, H Y; Yoon, S W; Hong, S H
2007-05-01
The sound velocity and the attenuation coefficient of EPDM (Ethylene-propylene Diene Monomer) composites incorporated with Silicon Carbide particles (SiCp's) of various volume fractions (0-40%) were experimentally and theoretically investigated. For the experiment a through-transmission technique was used. For the theoretical prediction, some mechanical property models such as Reuss model and Coherent Potential Approximation (CPA) model etc. were employed. The experimental results showed that the sound velocity decreased with the increase of the SiCp volume fraction up to 30% and then increased with the 40 vol% specimen. The attenuation coefficient was increased with the increasing SiCp volume fractions. The modified Reuss model with a longitudinal elastic modulus predicted most well the experimental sound velocity and elastic modulus results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajani, Abdallah A.; Qureshi, Muhammad M.; Kovalchuk, Nataliya
To evaluate the change in volume and movement of the parotid gland measured by serial contrast-enhanced computed tomography scans in patients with head and neck cancer treated with parotid-sparing intensity-modulated radiotherapy (IMRT). A prospective study was performed on 13 patients with head and neck cancer undergoing dose-painted IMRT to 69.96 Gy in 33 fractions. Serial computed tomography scans were performed at baseline, weeks 2, 4, and 6 of radiotherapy (RT), and at 6 weeks post-RT. The parotid volume was contoured at each scan, and the movement of the medial and lateral borders was measured. The patient's body weight was recordedmore » at each corresponding week during RT. Regression analyses were performed to ascertain the rate of change during treatment as a percent change per fraction in parotid volume and distance relative to baseline. The mean parotid volume decreased by 37.3% from baseline to week 6 of RT. The overall rate of change in parotid volume during RT was−1.30% per fraction (−1.67% and−0.91% per fraction in≥31 Gy and<31 Gy mean planned parotid dose groups, respectively, p = 0.0004). The movement of parotid borders was greater in the≥31 Gy mean parotid dose group compared with the<31 Gy group (0.22% per fraction and 0.14% per fraction for the lateral border and 0.19% per fraction and 0.06% per fraction for the medial border, respectively). The median change in body weight was−7.4% (range, 0.75% to−17.5%) during RT. A positive correlation was noted between change in body weight and parotid volume during the course of RT (Spearman correlation coefficient, r = 0.66, p<0.01). Head and neck IMRT results in a volume loss of the parotid gland, which is related to the planned parotid dose, and the patient's weight loss during RT.« less
Static Analysis of Functionally Graded Composite Beams
NASA Astrophysics Data System (ADS)
Das, S.; Sarangi, S. K.
2016-09-01
This paper presents a study of functionally graded (FG) composite beam. The FG material for the beam is considered to be composed of different layers of homogeneous material. The fiber volume fraction corresponding to each layer is calculated by considering its variation along the thickness direction (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and a beam composed of this FG material is modelled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG beam. The model developed is validated by comparing the results with those numerical results available in literature. Results are presented for simply supported and fixed boundary conditions for the FG beam. The stress distribution across the thickness of the FG composite beam has also been analyzed.
Change in Seroma Volume During Whole-Breast Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rajiv; Spierer, Marnee; Mutyala, Subhakar
2009-09-01
Purpose: After breast-conserving surgery, a seroma often forms in the surgical cavity. If not drained, it may affect the volume of tumor bed requiring a boost after whole-breast radiation therapy (WBRT). Our objective was to evaluate the change in seroma volume that occurs during WBRT, before boost planning. Methods and Materials: A retrospective review was performed of women receiving breast-conserving therapy with evidence of seroma at the time of WBRT planning. Computed tomography (CT) simulation was performed before WBRT and before the tumor bed boost. All patients received either a hypofractionated (42.4 Gy/16 fraction + 9.6 Gy/4 fraction boost) ormore » standard fractionated (50.4 Gy/28 fraction + 10 Gy/5 fraction boost) regimen. Seroma volumes were contoured and compared on CT at the time of WBRT simulation and tumor bed boost planning. Results: Twenty-four patients with evidence of seroma were identified and all patients received WBRT without drainage of the seroma. Mean seroma volume before WBRT and at boost planning were significantly different at 65.7 cm{sup 3} (SD, 50.5 cm{sup 3}) and 35.6 cm{sup 3} (SD, 24.8 cm{sup 3}), respectively (p < 0.001). Mean and median reduction in seroma volume during radiation were 39.6% (SD, 23.8%) and 46.2% (range, 10.7-76.7%), respectively. Fractionation schedule was not correlated with change in seroma volume. Length of time from surgery to start of radiation therapy showed an inverse correlation with change in seroma volume (Pearson correlation r = -0.53, p < 0.01). Conclusions: The volume of seroma changes significantly during WBRT. Consequently, the accuracy of breast boost planning is likely affected, as is the volume of normal breast tissue irradiated. CT-based boost planning before boost irradiation is suggested to ensure appropriate coverage.« less
Identification of the Centrifuged Lipoaspirate Fractions Suitable for Postgrafting Survival.
Qiu, Lihong; Su, Yingjun; Zhang, Dongliang; Song, Yajuan; Liu, Bei; Yu, Zhou; Guo, Shuzhong; Yi, Chenggang
2016-01-01
The Coleman centrifugation procedure generates fractions with different adipocyte and progenitor cell densities. This study aimed to identify all fractions that are feasible for implantation. Human lipoaspirates were processed by Coleman centrifugation. The centrifugates were divided arbitrarily into upper, middle, and lower layers. Adipocyte viability, morphology, numbers of stromal vascular fraction cells, and adipose-derived mesenchymal stem cells of each layer were determined. The 12-week volume retention of subcutaneously implanted 0.3-ml lipoasperate of each layer was investigated in an athymic mice model. Most damaged adipocytes were located in the upper layers, whereas the intact adipocytes were distributed in the middle and lower layers. A gradient of stromal vascular fraction cell density was formed in the centrifugates. The implant volume retentions of samples from the upper, middle, and lower layers were 33.44 ± 5.9, 55.11 ± 4.4, and 71.2 ± 5.8 percent, respectively. Furthermore, the middle and lower layers contained significantly more adipose-derived stem cells than did the upper layer. The lower layer contains more viable adipocytes and stromal vascular fraction cells leading to the highest implant volume retention, whereas the most impaired cells are distributed in the upper layer, leading to the least volume retention. Although with a lower stromal vascular fraction content, the middle layer has a substantial number of intact adipocytes that are capable of retaining partial adipose tissue volume after implantation, suggesting that the middle layer may be an alternative fat source when large volumes of fat grafts are needed for transplantation.
Intra-fraction motion of larynx radiotherapy
NASA Astrophysics Data System (ADS)
Durmus, Ismail Faruk; Tas, Bora
2018-02-01
In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.
NASA Astrophysics Data System (ADS)
Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.
2014-12-01
The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.
Pharmacokinetic evidence for improved ophthalmic drug delivery by reduction of instilled volume.
Patton, T F
1977-07-01
The bioavailability of topically applied pilocarpine nitrate was studied as a function of instilled volume. As the instilled volume decreased, the fraction of dose absorbed increased. The relationship between fraction absorbed and instilled volume was not direct, but appropriate adjustment of instilled volume and concentration should permit substantial dosage reductions without sacrifice of drug concentration in the eye. The implications of these findings from both a therapeutic and toxicity standpoint are discussed.
The RESOLVE Survey Atomic Gas Census and Environmental Influences on Galaxy Gas Reservoirs
NASA Astrophysics Data System (ADS)
Stark, David V.; Kannappan, Sheila J.; Eckert, Kathleen D.; Florez, Jonathan; Hall, Kirsten R.; Watson, Linda C.; Hoversten, Erik A.; Burchett, Joseph N.; Guynn, David T.; Baker, Ashley D.; Moffett, Amanda J.; Berlind, Andreas A.; Norris, Mark A.; Haynes, Martha P.; Giovanelli, Riccardo; Leroy, Adam K.; Pisano, D. J.; Wei, Lisa H.; Gonzalez, Roberto E.; Calderon, Victor F.
2016-12-01
We present the H I mass inventory for the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey, a volume-limited, multi-wavelength census of >1500 z = 0 galaxies spanning diverse environments and complete in baryonic mass down to dwarfs of ∼109 {M}ȯ . This first 21 cm data release provides robust detections or strong upper limits (1.4M H I < 5%–10% of stellar mass M *) for ∼94% of RESOLVE. We examine global atomic gas-to-stellar mass ratios (G/S) in relation to galaxy environment using several metrics: group dark matter halo mass M h, central/satellite designation, relative mass density of the cosmic web, and distance to the nearest massive group. We find that at fixed M *, satellites have decreasing G/S with increasing M h starting clearly at M h ∼ 1012 {M}ȯ , suggesting the presence of starvation and/or stripping mechanisms associated with halo gas heating in intermediate-mass groups. The analogous relationship for centrals is uncertain because halo abundance matching builds in relationships between central G/S, stellar mass, and halo mass, which depend on the integrated group property used as a proxy for halo mass (stellar or baryonic mass). On larger scales G/S trends are less sensitive to the abundance matching method. At fixed M h ≤ 1012 {M}ȯ , the fraction of gas-poor centrals increases with large-scale structure density. In overdense regions, we identify a rare population of gas-poor centrals in low-mass (M h < 1011.4 {M}ȯ ) halos primarily located within ∼1.5× the virial radius of more massive (M h > 1012 {M}ȯ ) halos, suggesting that gas stripping and/or starvation may be induced by interactions with larger halos or the surrounding cosmic web. We find that the detailed relationship between G/S and environment varies when we examine different subvolumes of RESOLVE independently, which we suggest may be a signature of assembly bias.
Matsumura, Noboru; Oguro, Sota; Okuda, Shigeo; Jinzaki, Masahiro; Matsumoto, Morio; Nakamura, Masaya; Nagura, Takeo
2017-10-01
In patients with rotator cuff tears, muscle degeneration is known to be a predictor of irreparable tears and poor outcomes after surgical repair. Fatty infiltration and volume of the whole muscles constituting the rotator cuff were quantitatively assessed using 3-dimensional 2-point Dixon magnetic resonance imaging. Ten shoulders with a partial-thickness tear, 10 shoulders with an isolated supraspinatus tear, and 10 shoulders with a massive tear involving supraspinatus and infraspinatus were compared with 10 control shoulders after matching age and sex. With segmentation of muscle boundaries, the fat fraction value and the volume of the whole rotator cuff muscles were computed. After reliabilities were determined, differences in fat fraction, muscle volume, and fat-free muscle volume were evaluated. Intra-rater and inter-rater reliabilities were regarded as excellent for fat fraction and muscle volume. Tendon rupture adversely increased the fat fraction value of the respective rotator cuff muscle (P < .002). In the massive tear group, muscle volume was significantly decreased in the infraspinatus (P = .035) and increased in the teres minor (P = .039). With subtraction of fat volume, a significant decrease of fat-free volume of the supraspinatus muscle became apparent with a massive tear (P = .003). Three-dimensional measurement could evaluate fatty infiltration and muscular volume with excellent reliabilities. The present study showed that chronic rupture of the tendon adversely increases the fat fraction of the respective muscle and indicates that the residual capacity of the rotator cuff muscles might be overestimated in patients with severe fatty infiltration. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scorsetti, Marta; Bignardi, Mario; Clivio, Alessandro
Purpose: A planning study was performed to evaluate RapidArc (RA), a volumetric modulated arc technique, on malignant pleural mesothelioma. The benchmark was conventional fixed-field intensity-modulated radiotherapy (IMRT). Methods and materials: The computed tomography data sets of 6 patients were included. The plans for IMRT with nine fixed beams were compared against double-modulated arcs with a single isocenter. All plans were optimized for 15-MV photon beams. The dose prescription was 54 Gy to the planning target volume. The planning objectives for the planning target volume were a minimal dose of >95% and maximal dose of <107%. For the organs at risk,more » the parameters were as follows: contralateral lung, percentage of volume receiving 5 Gy (V{sub 5Gy}) <60%, V{sub 20Gy} < 10%, mean <10.0 Gy; liver, V{sub 30Gy} <33%, mean <31 Gy; heart, V{sub 45Gy} <30%, V{sub 50Gy} <20%, dose received by 1% of the volume (D{sub 1%}) <60 Gy; contralateral kidney, V{sub 15Gy} <20%; spine, D{sub 1%} <45 Gy; esophagus, V{sub 55Gy} <30%; and spleen, V{sub 40Gy} <50%. The monitor units (MUs) and delivery time were scored to measure the treatment efficiency. The pretreatment portal dosimetry scored delivery to the calculation agreement with the Gamma Agreement Index. Results: RA and IMRT provided equivalent coverage and homogeneity. Both techniques fulfilled objectives on organs at risk with a tendency of RA to improve sparing. The conformity index was 1.9 {+-} 0.1 for RA and IMRT. The number of MU/2Gy was 734 {+-} 82 for RA and 2,195 {+-} 317 for IMRT. The planning vs. delivery agreement revealed a Gamma Agreement Index for IMRT of 96.0% {+-} 2.6% and for RA of 95.7% {+-} 1.5%. The treatment time was 3.7 {+-} 0.3min for RA and 13.4 {+-} 0.1min for IMRT. Conclusion: RA demonstrated compared with conventional IMRT, similar target coverage and better dose sparing to the organs at risks. The number of MUs and the time required to deliver a 2-Gy fraction were much lower for RA, allowing the possibility to incorporate this technique in the treatment options for mesothelioma patients.« less
Effect of ethanol on crystallization of the polymorphs of L-histidine
NASA Astrophysics Data System (ADS)
Wantha, Lek; Punmalee, Neeranuch; Sawaddiphol, Vanida; Flood, Adrian E.
2018-05-01
It is known that the antisolvents used for crystallization can affect the crystallization outcome and may promote the crystallization of a specific polymorph. In this study L-histidine (L-his) is used as a model substance, and ethanol was selected to be an antisolvent. The formation of the polymorphs of L-his in antisolvent crystallization as a function of supersaturation, ethanol volume fraction, and temperature was studied. The induction time for the antisolvent crystallization was also measured. The results showed that the induction time decreases with higher supersaturation and ethanol volume fraction, indicating that the nucleation rate of L-his from antisolvent crystallization (where water was used as the solvent and ethanol as the antisolvent) increases with higher supersaturation, as expected, and ethanol fraction. At all temperatures studied, the pure metastable polymorph B of L-his was obtained initially at higher ethanol volume fraction and supersaturation, while a mixture of the polymorphs A and B was obtained at lower ethanol volume fraction and supersaturation.
Do Low Surface Brightness Galaxies Host Stellar Bars?
NASA Astrophysics Data System (ADS)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo
2017-09-01
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
Do Low Surface Brightness Galaxies Host Stellar Bars?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Hrycushko, B; Jiang, S
2014-06-01
Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less
Effect on the operation properties of DMBR with the addition of GAC
NASA Astrophysics Data System (ADS)
Lin, Jizhi; Zhang, Qian; Hong, Junming
2017-01-01
The membrane bioreactor and dynamic membrane bioreactor were used to examine the effect of granular activated carbon (GAC) on the treatment of synthetic wastewater. After the addition of different volume fractions GAC in the DMBR, the operation parameters, effluent COD, NH4 +-N, NO3 --N, TN concentrations and sludge viscosity of the bioreactor was investigated. The results showed that the addition of GAC could relieve the membrane fouling and improve the removal efficiencies of pollutants in the DMBR. The effluent concentrations of pollutants were linear correlation with the addition of volume fractions of GAC in the bioreactor. The value of R2 of each modulation was almost more than 0.9. The sludge viscosity was almost not affected by the volume fractions of GAC in the bioreactor. The best volume fractions of GAC were 20% in the DMBR.
Yu, Qiang; Reutens, David; O'Brien, Kieran; Vegh, Viktor
2017-02-01
Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Turbulent forced convection of nanofluids downstream an abrupt expansion
NASA Astrophysics Data System (ADS)
Kimouche, Abdelali; Mataoui, Amina
2018-03-01
Turbulent forced convection of Nanofluids through an axisymmetric abrupt expansion is investigated numerically in the present study. The governing equations are solved by ANYS 14.0 CFD code based on the finite volume method by implementing the thermo-physical properties of each nanofluid. All results are analyzed through the evolutions of skin friction coefficient and Nusselt number. For each nanofluid, the effect of both volume fraction and Reynolds number on this type of flow configuration, are examined. An increase on average Nusselt number with the volume fraction and Reynolds number, are highlighted and correlated. Two relationships are proposed. The first one, determines the average Nusselt number versus Reynolds number, volume fraction and the ratio of densities of the solid particles to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, ρ_s/ρ_f) ). The second one varies according Reynolds number, volume fraction and the conductivities ratio of solid particle to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, k_s/k_f) ).
SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
2014-06-01
Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less
Planar measurements of soot volume fraction and OH in a JP-8 pool fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G.
2009-07-15
The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near themore » base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, Vedang, E-mail: vmurthy@actrec.gov.in; Shukla, Pragya; Adurkar, Pranjal
2012-09-01
Purpose: To evaluate whether information from the initial fractions can determine which patients are likely to consistently exceed their planning dose-volume constraints during the course of radiotherapy for prostate cancer. Methods and Materials: Ten patients with high-risk prostate cancer were treated with helical tomotherapy to a dose of 60 Gy in 20 fractions. The prostate, rectum, and bladder were recontoured on their daily megavoltage computed tomography scans and the dose was recalculated. The bladder and rectal volumes (in mL) receiving {>=}100% and {>=}70% of the prescribed dose in each fraction and in the original plans were recorded. A fraction formore » which the difference between planned and delivered was more than 2 mL was considered a volume failure. Similarly if the difference in the planned and delivered maximum dose (D{sub max}) was {>=}1% for the rectum and bladder, the fraction was considered a dose failure. Each patient's first 3 to 5 fractions were analyzed to determine if they correctly identified those patients who would consistently fail (i.e., {>=}20% of fractions) during the course of their radiotherapy. Results: Six parameters were studied; the rectal volume (RV) and bladder volumes (BV) (in mL) received {>=}100% and {>=}70% of the prescribed dose and maximum dose to 2 mL of the rectum and bladder. This was given by RV{sub 100}, RV{sub 70}, BV{sub 100}, BV{sub 70}, RD{sub max}, and BD{sub max}, respectively. When more than 1 of the first 3 fractions exceed the planning constraint as defined, it accurately predicts consistent failures through the course of the treatment. This method is able to correctly identify the consistent failures about 80% (RV{sub 70}, BV{sub 100}, and RV{sub 100}), 90% (BV{sub 70}), and 100% (RD{sub max} and BD{sub max}) of the times. Conclusions: This study demonstrates the feasibility of a method accurately identifying patients who are likely to consistently exceed the planning constraints during the course of their treatment, using information from the first 3 to 5 fractions.« less
Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.
2013-01-01
The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175
Mucosal Malignant Melanoma of the Head and Neck Treated by Carbon Ion Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagi, Takeshi; Mizoe, Jun-etsu; Hasegawa, Azusa
2009-05-01
Purpose: To evaluate the efficacy of carbon ion radiotherapy for mucosal malignant melanoma of the head and neck. Methods and Materials: Between 1994 and 2004, 72 patients with mucosal malignant melanoma of the head and neck were treated with carbon ion beams in three prospective studies. Total dose ranged from 52.8 GyE to 64 GyE given in 16 fixed fractions over 4 weeks. Clinical parameters including gender, age, Karnofsky index, tumor site, tumor volume, tumor status, total dose, fraction size, and treatment time were evaluated in relation to local control and overall survival. Results: The median follow-up period was 49.2more » months (range, 16.8-108.5 months). Treatment toxicity was within acceptable limits, and no patients showed Grade 3 or higher toxicity in the late phase. The 5-year local control rate was 84.1%. In relation to local control, there were no significant differences in any parameters evaluated. The 5-year overall and cause-specific survival rates were 27.0% and 39.6%, respectively. For overall survival, however, tumor volume ({>=}100 mL) was found to be the most significant prognostic parameter. Of the patients who developed distant metastasis, 85% were free from local recurrence. Conclusion: Carbon ion radiotherapy is a safe and effective treatment for mucosal malignant melanoma of the head and neck in terms of high local control and acceptable toxicities. Overall survival rate was better than in those treated with conventional radiotherapy and was comparable to that with surgery.« less
Characterizing pixel and point patterns with a hyperuniformity disorder length
NASA Astrophysics Data System (ADS)
Chieco, A. T.; Dreyfus, R.; Durian, D. J.
2017-09-01
We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns—where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h =L /2 . Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h =(L /2 )(f /d ) for small f , and h =L /2 for f →1 . And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L ,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h (L ) versus L . We call this approach "hyperuniformity disorder length spectroscopy".
Characterizing pixel and point patterns with a hyperuniformity disorder length.
Chieco, A T; Dreyfus, R; Durian, D J
2017-09-01
We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns-where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h=L/2. Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h=(L/2)(f/d) for small f, and h=L/2 for f→1. And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h(L) versus L. We call this approach "hyperuniformity disorder length spectroscopy".
Properties of the Tent map for decimal fractions with fixed precision
NASA Astrophysics Data System (ADS)
Chetverikov, V. M.
2018-01-01
The one-dimensional discrete Tent map is a well-known example of a map whose fixed points are all unstable on the segment [0,1]. This map leads to the positivity of the Lyapunov exponent for the corresponding recurrent sequence. Therefore in a situation of general position, this sequence must demonstrate the properties of deterministic chaos. However if the first term of the recurrence sequence is taken as a decimal fraction with a fixed number “k” of digits after the decimal point and all calculations are carried out accurately, then the situation turns out to be completely different. In this case, first, the Tent map does not lead to an increase in significant digits in the terms of the sequence, and secondly, demonstrates the existence of a finite number of eventually periodic orbits, which are attractors for all other decimal numbers with the number of significant digits not exceeding “k”.
Soriano, Brian D; Hoch, Martin; Ithuralde, Alejandro; Geva, Tal; Powell, Andrew J; Kussman, Barry D; Graham, Dionne A; Tworetzky, Wayne; Marx, Gerald R
2008-04-08
Quantitative assessment of ventricular volumes and mass in pediatric patients with single-ventricle physiology would aid clinical management, but it is difficult to obtain with 2-dimensional echocardiography. The purpose of the present study was to compare matrix-array 3-dimensional echocardiography (3DE) measurements of single-ventricle volumes, mass, and ejection fraction with those measured by cardiac magnetic resonance (CMR) in young patients. Twenty-nine patients (median age, 7 months) with a functional single ventricle undergoing CMR under general anesthesia were prospectively enrolled. The 3DE images were acquired at the conclusion of the CMR. Twenty-seven of 29 3DE data sets (93%) were optimal for 3DE assessment. Two blinded and independent observers performed 3DE measurements of volume, mass, and ejection fraction. The 3DE end-diastolic volume correlated well (r=0.96) but was smaller than CMR by 9% (P<0.01), and 3DE ejection fraction was smaller than CMR by 11% (P<0.01). There was no significant difference in measurements of end-systolic volume and mass. The 3DE interobserver differences for mass and volumes were not significant except for ejection fraction (8% difference; P<0.05). Intraobserver differences were not significant. In young pediatric patients with a functional single ventricle, matrix-array 3DE measurements of mass and volumes compare well with those obtained by CMR. 3DE will provide an important modality for the serial analysis of ventricular size and performance in young patients with functional single ventricles.
Claessens, T E; Georgakopoulos, D; Afanasyeva, M; Vermeersch, S J; Millar, H D; Stergiopulos, N; Westerhof, N; Verdonck, P R; Segers, P
2006-04-01
The linear time-varying elastance theory is frequently used to describe the change in ventricular stiffness during the cardiac cycle. The concept assumes that all isochrones (i.e., curves that connect pressure-volume data occurring at the same time) are linear and have a common volume intercept. Of specific interest is the steepest isochrone, the end-systolic pressure-volume relationship (ESPVR), of which the slope serves as an index for cardiac contractile function. Pressure-volume measurements, achieved with a combined pressure-conductance catheter in the left ventricle of 13 open-chest anesthetized mice, showed a marked curvilinearity of the isochrones. We therefore analyzed the shape of the isochrones by using six regression algorithms (two linear, two quadratic, and two logarithmic, each with a fixed or time-varying intercept) and discussed the consequences for the elastance concept. Our main observations were 1) the volume intercept varies considerably with time; 2) isochrones are equally well described by using quadratic or logarithmic regression; 3) linear regression with a fixed intercept shows poor correlation (R(2) < 0.75) during isovolumic relaxation and early filling; and 4) logarithmic regression is superior in estimating the fixed volume intercept of the ESPVR. In conclusion, the linear time-varying elastance fails to provide a sufficiently robust model to account for changes in pressure and volume during the cardiac cycle in the mouse ventricle. A new framework accounting for the nonlinear shape of the isochrones needs to be developed.
Gas flow meter and method for measuring gas flow rate
Robertson, Eric P.
2006-08-01
A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.
Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume
2012-12-17
A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-28
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-01
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers (lf of 13 mm) with longer fibers (lf of 19.5 mm and 30 mm). PMID:28772477
Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System
NASA Technical Reports Server (NTRS)
Moskito, John
1996-01-01
This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.
NASA Astrophysics Data System (ADS)
Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.
2011-06-01
The structure, ferroelectric and piezoelectric properties of <001> textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the <001> texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.
Laser-induced incandescence calibration via gravimetric sampling
NASA Technical Reports Server (NTRS)
Choi, M. Y.; Vander Wal, R. L.; Zhou, Z.
1996-01-01
Absolute calibration of laser-induced incandescence (LII) is demonstrated via comparison of LII signal intensities with gravimetrically determined soot volume fractions. This calibration technique does not rely upon calculated or measured optical characteristics of soot. The variation of the LII signal with gravimetrically measured soot volume fractions ranging from 0.078 to 1.1 ppm established the linearly of the calibration. With the high spatial and temporal resolution capabilities of laser-induced incandescence (LII), the spatial and temporal fluctuations of the soot field within a gravimetric chimney were characterized. Radial uniformity of the soot volume fraction, f(sub v) was demonstrated with sufficient averaging of the single laser-shot LII images of the soot field thus confirming the validity of the calibration method for imaging applications. As illustration, instantaneous soot volume fractions within a Re = 5000 ethylene/air diffusion flame measured via planar LII were established quantitatively with this calibration.
Baran, Timothy M; Foster, Thomas H
2014-02-01
For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D90) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180-8080 J in order to deposit 90 J/cm(2) in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270-2350 J (333-1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485-3600 J were required, compared to ten flat cleaved fibers delivering 2780-3600 J. For the same number of fibers, cylindrical diffusers allow for a shorter treatment duration compared to flat cleaved fibers. For the same energy delivered per fiber, diffusers allow for the insertion of fewer fibers in order to deliver the same light dose to a target volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baran, Timothy M., E-mail: timothy.baran@rochester.edu; Foster, Thomas H.
Purpose: For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Methods: Treatment planning software for iPDT was developed based on graphics processing unit enhanced Montemore » Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D{sub 90}) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. Results: When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180–8080 J in order to deposit 90 J/cm{sup 2} in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270–2350 J (333–1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485–3600 J were required, compared to ten flat cleaved fibers delivering 2780–3600 J. Conclusions: For the same number of fibers, cylindrical diffusers allow for a shorter treatment duration compared to flat cleaved fibers. For the same energy delivered per fiber, diffusers allow for the insertion of fewer fibers in order to deliver the same light dose to a target volume.« less
Patel, Amit R; Fatemi, Omid; Norton, Patrick T; West, J Jason; Helms, Adam S; Kramer, Christopher M; Ferguson, John D
2008-06-01
Left atrial (LA) volume determines prognosis and response to therapy for atrial fibrillation. Integration of electroanatomic maps with three-dimensional images rendered from computed tomography and magnetic resonance imaging (MRI) is used to facilitate atrial fibrillation ablation. The purpose of this study was to measure LA volume changes and regional motion during the cardiac cycle that might affect the accuracy of image integration and to determine their relationship to standard LA volume measurements. MRI was performed in 30 patients with paroxysmal atrial fibrillation. LA time-volume curves were generated and used to divide LA ejection fraction into pumping ejection fraction and conduit ejection fraction and to determine maximum LA volume (LA(max)) and preatrial contraction volume. LA volume was measured using an MRI angiogram and traditional geometric models from echocardiography (area-length model and ellipsoid model). In-plane displacement of the pulmonary veins, anterior left atrium, mitral annulus, and LA appendage was measured. LA(max) was 107 +/- 36 mL and occurred at 42% +/- 5% of the R-R interval. Preatrial contraction volume was 86 +/- 34 mL and occurred at 81% +/- 4% of the R-R interval. LA ejection fraction was 45% +/- 10%, and pumping ejection fraction was 31% +/- 10%. LA volume measurements made from MRI angiogram, area-length model, and ellipsoid model underestimated LA(max) by 21 +/- 25 mL, 16 +/- 26 mL, and 35 +/- 22 mL, respectively. Anterior LA, mitral annulus, and LA appendage were significantly displaced during the cardiac cycle (8.8 +/- 2.0 mm, 13.2 +/- 3.8 mm, and 10.2 +/- 3.4 mm, respectively); the pulmonary veins were not displaced. LA volume changes significantly during the cardiac cycle, and substantial regional variation in LA motion exists. Standard measurements of LA volume significantly underestimate LA(max) compared to the gold standard measure of three-dimensional volumetrics.
Safaei, M. R.; Mahian, O.; Garoosi, F.; Hooman, K.; Karimipour, A.; Kazi, S. N.; Gharehkhani, S.
2014-01-01
This paper addresses erosion prediction in 3-D, 90° elbow for two-phase (solid and liquid) turbulent flow with low volume fraction of copper. For a range of particle sizes from 10 nm to 100 microns and particle volume fractions from 0.00 to 0.04, the simulations were performed for the velocity range of 5–20 m/s. The 3-D governing differential equations were discretized using finite volume method. The influences of size and concentration of micro- and nanoparticles, shear forces, and turbulence on erosion behavior of fluid flow were studied. The model predictions are compared with the earlier studies and a good agreement is found. The results indicate that the erosion rate is directly dependent on particles' size and volume fraction as well as flow velocity. It has been observed that the maximum pressure has direct relationship with the particle volume fraction and velocity but has a reverse relationship with the particle diameter. It also has been noted that there is a threshold velocity as well as a threshold particle size, beyond which significant erosion effects kick in. The average friction factor is independent of the particle size and volume fraction at a given fluid velocity but increases with the increase of inlet velocities. PMID:25379542
Imai, Haruki; Tanaka, Yoji; Nomura, Naoyuki; Doi, Hisashi; Tsutsumi, Yusuke; Ono, Takashi; Hanawa, Takao
2017-02-01
Zr-Ag composites were fabricated to decrease the magnetic susceptibility by compensating for the magnetic susceptibility of their components. The Zr-Ag composites with a different Zr-Ag ratio were swaged, and their magnetic susceptibility, artifact volume, and mechanical properties were evaluated by magnetic balance, three-dimensional (3-D) artifact rendering, and a tensile test, respectively. These properties were correlated with the volume fraction of Ag using the linear rule of mixture. We successfully obtained the swaged Zr-Ag composites up to the reduction ratio of 96% for Zr-4, 16, 36, 64Ag and 86% for Zr-81Ag. However, the volume fraction of Ag after swaging tended to be lower than that before swaging, especially for Ag-rich Zr-Ag composites. The magnetic susceptibility of the composites linearly decreased with the increasing volume fraction of Ag. No artifact could be estimated with the Ag volume fraction in the range from 93.7% to 95.4% in three conditions. Young's modulus, ultimate tensile strength (UTS), and 0.2% yield strength of Zr-Ag composites showed slightly lower values compared to the estimated values using a linear rule of mixture. The decrease in magnetic susceptibility of Zr and Ag by alloying or combining would contribute to the decrease of the Ag fraction, leading to the improvement of mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K
1995-04-01
The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)
Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Ku, Jerry C.
1997-01-01
The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzelec, Andrea
2009-12-01
The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates frommore » biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments. Normalizing the reaction rate to the total carbon surface area available for reaction allowed for the definition of a single reaction rate with constant activation energy (112.5 {+-} 5.8 kJ/mol) for the oxidation of PM, independent of its fuel source. A kinetic model incorporating the surface area dependence of fixed carbon oxidation rate and the impact of the mobile carbon fraction was constructed and validated against experimental data.« less
Gong, Dan-yan; Pan, Yang; Huang, Yong; Bao, Wei; Li, Qian-qian
2016-03-15
Grain size distribution characteristics of suspended particulate matter (SPM) reflects the apparent polluted condition of the urban landscape water. In order to explore the internal relationship between the eutrophication of urban landscape water's apparent pollution and grain size distribution of SPM, and its influencing factors, this paper selected five representative sampling sites in Feng Jin River which is a typical eutrophication river in Suzhou City, measured the grain size distribution of SPM, sensation pollution index (SPI) and water quality index, and analyzed their correlation. The results showed that: The rich nutrient water possessed a similar characteristics in grain size distribution. The grain size distribution of SPM in water was multimodal, and the the peak position was roughly the same; the grain size distribution of SPM was composed by multiple components. It could be roughly divided into six parts with the particle size range of every group being < 1.5 µm, 1.5-8 µm, 8-35 µm, 35-186 µm, 186-516 µm, > 516 µm. The component III was superior (with an average volume fraction of 38.3%-43.2%), and its volume fraction had a significant positive relation with the SPI value and the Chl-a content. The increase of component III volume fraction was the reflection of particle size's result of increasing SPI value. The increase of component III volume fraction was mainly derived from the increasing algal content. The volume fraction of group IV + group VI + group V was significantly higher under the condition of exogenous enter. When there was no exogenous component, the volume fraction of group IV + group VI + group V had a significant negative correlation with SPI value; when there were exogenous components, the volume fraction of group IV + group VI + group V had a weak positive correlation with SPI value, but the correlation did not reach a significant level. Environmental factors (Fv/Fm and DO) and exogenous factors had an influence by functioning on the algal content which signified the polluted material, and then affected the volume fraction of particle size's components and the quality of apparent water. Hydrodynamic conditions mainly had a certain influence on the median particle size, and had no effect on the apparent polluted condition of water.
Standard filtration practices may significantly distort planktonic microbial diversity estimates.
Padilla, Cory C; Ganesh, Sangita; Gantt, Shelby; Huhman, Alex; Parris, Darren J; Sarode, Neha; Stewart, Frank J
2015-01-01
Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size) and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40 to 60% of prefilter datasets at low volumes (0.05-0.5 L) to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes, and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold). Taxon richness (97% similarity clusters) also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.
Testing the paradigms of the glass transition in colloids
NASA Astrophysics Data System (ADS)
Zia, Roseanna; Wang, Jialun; Peng, Xiaoguang; Li, Qi; McKenna, Gregory
2017-11-01
Many molecular liquids freeze upon fast enough cooling. This so-called glass state is path dependent and out of equilibrium, as measured by the Kovacs signature experiments, i.e. intrinsic isotherms, asymmetry of approach and memory effect. The reasons for this path- and time-dependence are not fully understood, due to fast molecular relaxations. Colloids provide a natural way to model such behavior, owing to disparity in colloidal versus solvent time scales that can slow dynamics. To shed light on the ambiguity of glass transition, we study via large-scale dynamic simulation of hard-sphere colloidal glass after volume-fraction jumps, where particle size increases at fixed system volume followed by protocols of the McKenna-Kovacs signature experiments. During and following each jump, the positions, velocities, and particle-phase stress are tracked and utilized to characterize relaxation time scales. The impact of both quench depth and quench rate on arrested dynamics and ``state'' variables is explored. In addition, we expand our view to various structural signatures, and rearrangement mechanism is proposed. The results provide insight into not only the existence of an ``ideal'' glass transition, but also the role of structure in such a dense amorphous system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru
2015-10-27
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less
NASA Astrophysics Data System (ADS)
Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.
2015-10-01
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chin-Cheng; Lee, Chen-Chiao, E-mail: joelee168@hotmail.co; Mah, Dennis
Because of the dose limit for critical structures such as brainstem and spinal cord, administering a dose of 60 Gy to patients with recurrent head and neck cancer is challenging for those who received a previous dose of 60-70 Gy. Specifically, previously irradiated head and neck patients may have received doses close to the tolerance limit to their brainstem and spinal cord. In this study, a reproducible intensity-modulated radiation therapy (IMRT) treatment design is presented to spare the doses to brainstem and spinal cord, with no compromise of prescribed dose delivery. Between July and November 2008, 7 patients with previouslymore » irradiated, recurrent head and neck cancers were treated with IMRT. The jaws of each field were set fixed with the goal of shielding the brainstem and spinal cord at the sacrifice of partial coverage of the planning target volume (PTV) from any particular beam orientation. Beam geometry was arranged to have sufficient coverage of the PTV and ensure that the constraints of spinal cord <10 Gy and brainstem <15 Gy were met. The mean maximum dose to the brainstem was 12.1 Gy (range 6.1-17.3 Gy), and the corresponding mean maximum dose to spinal cord was 10.4 Gy (range 8.2-14.1 Gy). For most cases, 97% of the PTV volume was fully covered by the 95% isodose volume. We found empirically that if the angle of cervical spine curvature (Cobb's angle) was less than {approx}30{sup o}, patients could be treated by 18 fields. Six patients met these criteria and were treated in 25 minutes per fraction. One patient exceeded a 30{sup o} Cobb's angle and was treated by 31 fields in 45 minutes per fraction. We have demonstrated a new technique for retreatment of head and neck cancers. The angle of cervical spine curvature plays an important role in the efficiency and effectiveness of our approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, J; Mehta, M; Molitoris, J
Purpose: The purpose of this study was to propose a method to implement arc therapy that is compatible with existing particle therapy systems having gantries and pencil-beam scanning capacities. Furthermore, we sought to demonstrate expected benefits of this method for selected clival chordoma patients. Methods: We propose that a desired particle arc treatment plan can be discretized into a finite number of fixed beams and that only one (or a subset) of these beams be delivered in any single treatment fraction; the target should receive uniform dose during each fraction. For 3 clival-chordoma patients, robust-optimized, scanned proton beams were simulatedmore » to deliver 78 Gy (RBE) to clinical target volumes (CTVs), using either a single-field plan with a posterior-anterior (PA) beam or a discrete-arc plan with 16 beams that were equally spaced throughout a 360-degree axial arc. Dose-volume metrics were compared with emphasis on the brainstem, since risk of radiation necrosis there can often restrict application of tumoricidal doses for chordomas. Results: The mean volume of brainstem receiving a dose of 60 Gy (RBE) or higher (V60Gy) was 10.3±0.9 cm{sup 3} for the single-field plan and 4.7±1.8 cm{sup 3} for the discrete-arc plan, a reduction of 55% in favor of arcs. The mean dose to the brainstem was also reduced using arcs, by 18%, while the maximum dose was nearly identical for both methods. For the whole brain, V60Gy was reduced by 23%, in favor of arcs. Mean dose to the CTVs were nearly identical for both strategies, within 0.3%. Conclusion: Discrete arc treatments can be implemented using existing scanned particle-beam facilities. Aside from the physical advantages, the biological uncertainties of particle therapy, particularly high in the distal edge, can be reduced by arc therapy via rotational smearing, which may be of benefit for tumors near the brainstem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimoto, Tetsuo; Katoh, Hiroyuki; Kitamoto, Yoshizumi
2006-06-01
Purpose: To evaluate the incidence of Grade 2 or worse rectal bleeding after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiotherapy (EBRT), with special emphasis on the relationship between the incidence of rectal bleeding and the rectal dose from HDR brachytherapy. Methods and Materials: The records of 100 patients who were treated by HDR brachytherapy combined with EBRT for {>=}12 months were analyzed. The fractionation schema for HDR brachytherapy was prospectively changed, and the total radiation dose for EBRT was fixed at 51 Gy. The distribution of the fractionation schema used in the patients was as follows: 5 Gy xmore » 5 in 13 patients; 7 Gy x 3 in 19 patients; and 9 Gy x 2 in 68 patients. Results: Ten patients (10%) developed Grade 2 or worse rectal bleeding. Regarding the correlation with dosimetric factors, no significant differences were found in the average percentage of the entire rectal volume receiving 30%, 50%, 80%, and 90% of the prescribed radiation dose from EBRT between those with bleeding and those without. The average percentage of the entire rectal volume receiving 10%, 30%, 50%, 80%, and 90% of the prescribed radiation dose from HDR brachytherapy in those who developed rectal bleeding was 77.9%, 28.6%, 9.0%, 1.5%, and 0.3%, respectively, and was 69.2%, 22.2%, 6.6%, 0.9%, and 0.4%, respectively, in those without bleeding. The differences in the percentages of the entire rectal volume receiving 10%, 30%, and 50% between those with and without bleeding were statistically significant. Conclusions: The rectal dose from HDR brachytherapy for patients with prostate cancer may have a significant impact on the incidence of Grade 2 or worse rectal bleeding.« less
Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
2015-12-01
The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.
Tessonnier, Thomas; Mairani, Andrea; Chen, Wenjing; Sala, Paola; Cerutti, Francesco; Ferrari, Alfredo; Haberer, Thomas; Debus, Jürgen; Parodi, Katia
2018-01-09
Due to their favorable physical and biological properties, helium ion beams are increasingly considered a promising alternative to proton beams for radiation therapy. Hence, this work aims at comparing in-silico the treatment of brain and ocular meningiomas with protons and helium ions, using for the first time a dedicated Monte Carlo (MC) based treatment planning engine (MCTP) thoroughly validated both in terms of physical and biological models. Starting from clinical treatment plans of four patients undergoing proton therapy with a fixed relative biological effectiveness (RBE) of 1.1 and a fraction dose of 1.8 Gy(RBE), new treatment plans were optimized with MCTP for both protons (with variable and fixed RBE) and helium ions (with variable RBE) under the same constraints derived from the initial clinical plans. The resulting dose distributions were dosimetrically compared in terms of dose volume histograms (DVH) parameters for the planning target volume (PTV) and the organs at risk (OARs), as well as dose difference maps. In most of the cases helium ion plans provided a similar PTV coverage as protons with a consistent trend of superior OAR sparing. The latter finding was attributed to the ability of helium ions to offer sharper distal and lateral dose fall-offs, as well as a more favorable differential RBE variation in target and normal tissue. Although more studies are needed to investigate the clinical potential of helium ions for different tumour entities, the results of this work based on an experimentally validated MC engine support the promise of this modality with state-of-the-art pencil beam scanning delivery, especially in case of tumours growing in close proximity of multiple OARs such as meningiomas.
Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization.
Sen, Swati; Kundagrami, Arindam
2015-12-14
The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.
Wave energy devices with compressible volumes.
Kurniawan, Adi; Greaves, Deborah; Chaplin, John
2014-12-08
We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.
Wave energy devices with compressible volumes
Kurniawan, Adi; Greaves, Deborah; Chaplin, John
2014-01-01
We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s. PMID:25484609
Chavis, Michelle A.; Smilgies, Detlef-M.; Wiesner, Ulrich B.; Ober, Christopher K.
2015-01-01
Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, we investigated solvent vapor annealing in supported thin films of poly(2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate) [PHEMA-b-PMMA] by means of grazing incidence small angle X–ray scattering (GISAXS). A spin-coated thin film of lamellar block copolymer was solvent vapor annealed to induce microphase separation and improve the long-range order of the self-assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents (methanol, MeOH, and tetrahydrofuran, THF), which are chosen to be preferential for each block, enabled selective formation of ordered lamellae, gyroid, hexagonal or spherical morphologies from a single block copolymer with a fixed volume fraction. The selected microstructure was then kinetically trapped in the dry film by rapid drying. To our knowledge, this paper describes the first reported case where in-situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram. PMID:26819574
Mowlavi, Ali Asghar; Fornasier, Maria Rossa; Mirzaei, Mohammd; Bregant, Paola; de Denaro, Mario
2014-10-01
The beta and gamma absorbed fractions in organs and tissues are the important key factors of radionuclide internal dosimetry based on Medical Internal Radiation Dose (MIRD) approach. The aim of this study is to find suitable analytical functions for beta and gamma absorbed fractions in spherical and ellipsoidal volumes with a uniform distribution of iodine-131 radionuclide. MCNPX code has been used to calculate the energy absorption from beta and gamma rays of iodine-131 uniformly distributed inside different ellipsoids and spheres, and then the absorbed fractions have been evaluated. We have found the fit parameters of a suitable analytical function for the beta absorbed fraction, depending on a generalized radius for ellipsoid based on the radius of sphere, and a linear fit function for the gamma absorbed fraction. The analytical functions that we obtained from fitting process in Monte Carlo data can be used for obtaining the absorbed fractions of iodine-131 beta and gamma rays for any volume of the thyroid lobe. Moreover, our results for the spheres are in good agreement with the results of MIRD and other scientific literatures.
Nam, J G; Kang, K M; Choi, S H; Lim, W H; Yoo, R-E; Kim, J-H; Yun, T J; Sohn, C-H
2017-12-01
Glioblastoma is the most common primary brain malignancy and differentiation of true progression from pseudoprogression is clinically important. Our purpose was to compare the diagnostic performance of dynamic contrast-enhanced pharmacokinetic parameters using the fixed T1 and measured T1 on differentiating true from pseudoprogression of glioblastoma after chemoradiation with temozolomide. This retrospective study included 37 patients with histopathologically confirmed glioblastoma with new enhancing lesions after temozolomide chemoradiation defined as true progression ( n = 15) or pseudoprogression ( n = 22). Dynamic contrast-enhanced pharmacokinetic parameters, including the volume transfer constant, the rate transfer constant, the blood plasma volume per unit volume, and the extravascular extracellular space per unit volume, were calculated by using both the fixed T1 of 1000 ms and measured T1 by using the multiple flip-angle method. Intra- and interobserver reproducibility was assessed by using the intraclass correlation coefficient. Dynamic contrast-enhanced pharmacokinetic parameters were compared between the 2 groups by using univariate and multivariate analysis. The diagnostic performance was evaluated by receiver operating characteristic analysis and leave-one-out cross validation. The intraclass correlation coefficients of all the parameters from both T1 values were fair to excellent (0.689-0.999). The volume transfer constant and rate transfer constant from the fixed T1 were significantly higher in patients with true progression ( P = .048 and .010, respectively). Multivariate analysis revealed that the rate transfer constant from the fixed T1 was the only independent variable (OR, 1.77 × 10 5 ) and showed substantial diagnostic power on receiver operating characteristic analysis (area under the curve, 0.752; P = .002). The sensitivity and specificity on leave-one-out cross validation were 73.3% (11/15) and 59.1% (13/20), respectively. The dynamic contrast-enhanced parameter of rate transfer constant from the fixed T1 acted as a preferable marker to differentiate true progression from pseudoprogression. © 2017 by American Journal of Neuroradiology.
Language-associated cortical regions are proportionally larger in the female brain.
Harasty, J; Double, K L; Halliday, G M; Kril, J J; McRitchie, D A
1997-02-01
Many studies have demonstrated significant sexual dimorphism in verbal ability. However, few studies have examined anatomical differences between the sexes that may underlie such dimorphism. To examine sex differences in the absolute and proportional volumes of the main language-associated regions of the cerebral cortex. Control neuropathological case series of consecutive autopsies from a teaching hospital. No significant age-related volume changes were identified in the sample. Two language-associated cortical regions, the superior temporal gyrus (part of the Wernicke area) and its subdivisions (planum temporale, Heschl gyrus, and anterior superior temporal gyrus) and the inferior frontal gyrus (Broca area in the dominant hemisphere), and a non-language-associated region, the frontal pole, were measured using stereological techniques in brains fixed with formaldehyde solution serially sectioned at 3-mm intervals. Volume comparisons between the sexes and between brain hemispheres were performed using 2-way analysis of variance. Studies were conducted at the University of Sydney and the Prince of Wales Medical Research Institute, Sydney, Australia. Ten males and 11 females free from neurologic or neuropathological abnormalities. The volume of the superior temporal cortex, expressed as a proportion of total cerebral volume, was significantly larger in females compared with males (17.8% increase; P = .04). This was accounted for by 1 section of the superior temporal cortex, the planum temporale, which was 29.8% larger in females (P = .04). In addition, the cortical volume fraction of the Broca area in females was 20.4% larger than in males (P = .05). In contrast, no significant differences were found in the proportional volume of the frontal pole or in regional volumes between the left and right hemispheres in either sex group. Our results suggest that females have proportionally larger Wernicke and Broca language-associated regions compared with males. These anatomical differences may correlate with superior language skills previously demonstrated in females.
Jamil, Muhammad; Ng, E Y K
2015-07-01
Radiofrequency ablation (RFA) has been increasingly used in treating cancer for multitude of situations in various tissue types. To perform the therapy safely and reliably, the effect of critical parameters needs to be known beforehand. Temperature plays an important role in the outcome of the therapy and any uncertainties in temperature assessment can be lethal. This study presents the RFA case of fixed tip temperature where we've analysed the effect of electrical conductivity, thermal conductivity and blood perfusion rate of the tumour and surrounding normal tissue on the radiofrequency ablation. Ablation volume was chosen as the characteristic to be optimised and temperature control was achieved via PID controller. The effect of all 6 parameters each having 3 levels was quantified with minimum number of experiments harnessing the fractional factorial characteristic of Taguchi's orthogonal arrays. It was observed that as the blood perfusion increases the ablation volume decreases. Increasing electrical conductivity of the tumour results in increase of ablation volume whereas increase in normal tissue conductivity tends to decrease the ablation volume and vice versa. Likewise, increasing thermal conductivity of the tumour results in enhanced ablation volume whereas an increase in thermal conductivity of the surrounding normal tissue has a debilitating effect on the ablation volume and vice versa. With increase in the size of the tumour (i.e., 2-3cm) the effect of each parameter is not linear. The parameter effect varies with change in size of the tumour that is manifested by the different gradient observed in ablation volume. Most important is the relative insensitivity of ablation volume to blood perfusion rate for smaller tumour size (2cm) that is also in accordance with the previous results presented in literature. These findings will provide initial insight for safe, reliable and improved treatment planning perceptively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Three-Dimensional Viscous Flow Analysis for Moving Bodies Past Fixed Structures
1988-05-13
BELLEVUE, WA 98n)05 Research Triangle Park, UC 27709-2211 6Sý. NAME Of FUNDING I PONSORING O Ib. C’FFICE SYMBOL 9 . PROCUREMENT INSTRUMENT IPENTIFICATION...34 otheor sditico Grs IMa ý; pl S- Three- Dimvensio:.iýal Viscrous Flow Analysis for Moving Bodies Past Fixed Structures Fina.11Report, Kelton M. Peery and...Recommendations 40 List of Figures 1 Finite-Volume Mesh ......... ......................... 8 2 Finite-Volume Cell ....... ............................ 9 3
NASA Astrophysics Data System (ADS)
Sheikholeslami, M.; Ganji, D. D.
2017-12-01
In this paper, semi analytical approach is applied to investigate nanofluid Marangoni convection in presence of magnetic field. Koo-Kleinstreuer-Li model is taken into account to simulate nanofluid properties. Homotopy analysis method is utilized to solve the final ordinary equations which are obtained from similarity transformation. Roles of Hartmann number and nanofluid volume fraction are presented graphically. Results show that temperature augments with rise of nanofluid volume fraction. Impact of nanofluid volume fraction on normal velocity is more than tangential velocity. Temperature gradient enhances with rise of magnetic number.
Visualization of the hot chocolate sound effect by spectrograms
NASA Astrophysics Data System (ADS)
Trávníček, Z.; Fedorchenko, A. I.; Pavelka, M.; Hrubý, J.
2012-12-01
We present an experimental and a theoretical analysis of the hot chocolate effect. The sound effect is evaluated using time-frequency signal processing, resulting in a quantitative visualization by spectrograms. This method allows us to capture the whole phenomenon, namely to quantify the dynamics of the rising pitch. A general form of the time dependence volume fraction of the bubbles is proposed. We show that the effect occurs due to the nonlinear dependence of the speed of sound in the gas/liquid mixture on the volume fraction of the bubbles and the nonlinear time dependence of the volume fraction of the bubbles.
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
NASA Astrophysics Data System (ADS)
Gholipour Peyvandi, R.; Islami Rad, S. Z.
2017-12-01
The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.
Origins of microstructural transformations in charged vesicle suspensions: the crowding hypothesis.
Seth, Mansi; Ramachandran, Arun; Murch, Bruce P; Leal, L Gary
2014-09-02
It is observed that charged unilamellar vesicles in a suspension can spontaneously deflate and subsequently transition to form bilamellar vesicles, even in the absence of externally applied triggers such as salt or temperature gradients. We provide strong evidence that the driving force for this deflation-induced transition is the repulsive electrostatic pressure between charged vesicles in concentrated suspensions, above a critical effective volume fraction. We use volume fraction measurements and cryogenic transmission electron microscopy imaging to quantitatively follow both the macroscopic and microstructural time-evolution of cationic diC18:1 DEEDMAC vesicle suspensions at different surfactant and salt concentrations. A simple model is developed to estimate the extent of deflation of unilamellar vesicles caused by electrostatic interactions with neighboring vesicles. It is determined that when the effective volume fraction of the suspension exceeds a critical value, charged vesicles in a suspension can experience "crowding" due to overlap of their electrical double layers, which can result in deflation and subsequent microstructural transformations to reduce the effective volume fraction of the suspension. Ordinarily in polydisperse colloidal suspensions, particles interacting via a repulsive potential transform into a glassy state above a critical volume fraction. The behavior of charged vesicle suspensions reported in this paper thus represents a new mechanism for the relaxation of repulsive interactions in crowded situations.
Crystallization of sheared hard spheres at 64.5% volume fraction
NASA Astrophysics Data System (ADS)
Swinney, H. L.; Rietz, F.; Schroeter, M.; Radin, C.
2017-11-01
A classic experiment by G.D. Scott Nature 188, 908, 1960) showed that pouring balls into a rigid container filled the volume to an upper limit of 64% of the container volume, which is well below the 74% volume fraction filled by spheres in a hexagonal close packed (HCP) or face center cubic (FCC) lattice. Subsequent experiments have confirmed a ``random closed packed'' (RCP) fraction of about 64%. However, the physics of the RCP limit has remained a mystery. Our experiment on a cubical box filled with 49400 weakly sheared glass spheres reveals a first order phase transition from a disordered to an ordered state at a volume fraction of 64.5%. The ordered state consists of crystallites of mixed FCC and HCP symmetry that coexist with the amorphous bulk. The transition is initiated by homogeneous nucleation: in the shearing process small crystallites with about ten or fewer spheres dissolve, while larger crystallites grow. A movie illustrates the crystallization process. German Academic Exchange Service (DAAD), German Research Foundation (DFG), NSF DMS, and R.A. Welch Foundation.
Kühl, J Tobias; Lønborg, Jacob; Fuchs, Andreas; Andersen, Mads J; Vejlstrup, Niels; Kelbæk, Henning; Engstrøm, Thomas; Møller, Jacob E; Kofoed, Klaus F
2012-06-01
Measurement of left atrial (LA) maximal volume (LA(max)) using two-dimensional transthoracic echocardiography (TTE) provides prognostic information in several cardiac diseases. However, the relationship between LA(max) and LA function is poorly understood and TTE is less well suited for measuring dynamic LA volume changes. Conversely, cardiac magnetic resonance imaging (CMR) and multi-slice computed tomography (MSCT) appears more appropriate for such measures. We sought to determine the relationship between LA size assessed with TTE and LA size and function assessed with CMR and MSCT. Fifty-four patients were examined 3 months post myocardial infarction with echocardiography, CMR and MSCT. Left atrial volumes and LA reservoir function were assessed by TTE. LA time-volume curves were determined and LA reservoir function (cyclic change and fractional change), passive emptying function (reservoir volume) and pump function (left atrial ejection fraction-LAEF) were derived using CMR and MSCT. Left atrial fractional change and left atrial ejection fraction (LAEF) determined with CMR and MSCT were unrelated to LA(max) enlargement by echocardiography (P = NS). There was an overall good agreement between CMR and MSCT, with a small to moderate bias in LA(max) (4.9 ± 10.4 ml), CC (3.1 ± 9.1 ml) and reservoir volume (3.4 ± 9.1 ml). TTE underestimates LA(max) with up to 32% compared with CMR and MSCT (P < 0.001). Left atrial function assessed with MSCT and CMR as LA fractional change and LAEF is not significantly related to LA(max) measured by TTE. TTE systematically underestimated LA volumes, whereas there are good agreements between MSCT and CMR for volumetric and functional properties.
Pancreas volume and fat fraction in children with Type 1 diabetes.
Regnell, S E; Peterson, P; Trinh, L; Broberg, P; Leander, P; Lernmark, Å; Månsson, S; Elding Larsson, H
2016-10-01
People with Type 1 diabetes have smaller pancreases than healthy individuals. Several diseases causing pancreatic atrophy are associated with pancreatic steatosis, but pancreatic fat in Type 1 diabetes has not been measured. This cross-sectional study aimed to compare pancreas size and fat fraction in children with Type 1 diabetes and controls. The volume and fat fraction of the pancreases of 22 children with Type 1 diabetes and 29 controls were determined using magnetic resonance imaging. Pancreas volume was 27% smaller in children with diabetes (median 34.9 cm(3) ) than in controls (47.8 cm(3) ; P < 0.001). Pancreas volume correlated positively with age in controls (P = 0.033), but not in children with diabetes (P = 0.649). Pancreas volume did not correlate with diabetes duration, but it did correlate positively with units of insulin/kg body weight/day (P = 0.048). A linear model of pancreas volume as influenced by age, body surface area and insulin units/kg body weight/day found that insulin dosage correlated with pancreas volume after controlling for both age and body surface area (P = 0.009). Pancreatic fat fraction was not significantly different between the two groups (1.34% vs. 1.57%; P = 0.891). Our findings do not indicate that pancreatic atrophy in Type 1 diabetes is associated with an increased pancreatic fat fraction, unlike some other diseases featuring reduced pancreatic volume. We speculate that our results may support the hypotheses that much of pancreatic atrophy in Type 1 diabetes occurs before the clinical onset of the disease and that exogenous insulin administration decelerates pancreatic atrophy after diabetes onset. © 2016 Diabetes UK.
Yan, Xin; An, Hui
2017-10-01
The variation of soil properties, the fractal dimension of soil particle size, and the relationships between fractal dimension of soil particle size and soil properties in the process of desertification in desert grassland of Ningxia were discussed. The results showed that the fractal dimension (D) at different desertification stages in desert grassland varied greatly, the value of D was between 1.69 and 2.62. Except for the 10-20 cm soil layer, the value of D gradually declined with increa sing desertification of desert grassland at 0-30 cm soil layer. In the process of desertification in de-sert grassland, the grassland had the highest values of D , the volume percentage of clay and silt, and the lowest values of the volume percentage of very fine sand and fine sand. However, the mobile dunes had the lowest value of D , the volume percentage of clay and silt, and the highest value of the volume percentage of very fine sand and fine sand. There was a significant positive correlation between the soil fractal dimension value and the volume percentage of soil particles <50 μm, and a significant negative correlation between the soil fractal dimension value and the volume percentage of soil particles >50 μm. The grain size of 50 μm was the critical value for deciding the relationship between the soil particle fractal dimension and the volume percentage. Soil organic matter (SOM) and total nitrogen (TN) decreased gradually with increasing desertification of desert grassland, but soil bulk density increased gradually. Qualitative change from fixed dunes to semi fixed dunes with the rapid decrease of the volume percentage of clay and silt, SOM, TN and the rapid increase of volume percentage of very fine sand and fine sand, soil bulk density. Fractal dimension was significantly correlated to SOM, TN and soil bulk density. Fractal dimension 2.58 was a critical value of fixed dunes and semi fixed dunes. So, the fractal dimension of 2.58 could be taken as the desertification indicator of desert grassland.
Xia, Wei; Yan, Zhuangzhi; Gao, Xin
2017-10-01
To find early predictors of histologic response in soft tissue sarcoma through volume transfer constant (K trans ) analysis based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). 11 Patients with soft tissue sarcoma of the lower extremity that underwent preoperative chemoradiotherapy followed by limb salvage surgery were included in this retrospective study. For each patient, DCE-MRI data sets were collected before and two weeks after therapy initiation, and histologic tumor cell necrosis rate (TCNR) was reported at surgery. The DCE-MRI volumes were aligned by registration. Then, the aligned volumes were used to obtain the K trans variation map. Accordingly, three sub-volumes (with increased, decreased or unchanged K trans ) were defined and identified, and fractions of the sub-volumes, denoted as F + , F - and F 0 , respectively, were calculated. The predictive ability of volume fractions was determined by using area under a receiver operating characteristic curve (AUC). Linear regression analysis was performed to investigate the relationship between TCNR and volume fractions. In addition, the K trans values of the sub-volumes were compared. The AUC for F - (0.896) and F 0 (0.833) were larger than that for change of tumor longest diameter ΔD (0.625) and the change of mean K trans ΔK trans ¯ (0.792). Moreover, the regression results indicated that TCNR was directly proportional to F 0 (R 2 =0.75, P=0.0003), while it was inversely proportional to F - (R 2 =0.77, P=0.0002). However, TCNR had relatively weak linear relationship with ΔK trans ¯ (R 2 =0.64, P=0.0018). Additionally, TCNR did not have linear relationship with DD (R 2 =0.16, P=0.1246). The volume fraction F - and F 0 have potential as early predictors of soft tissue sarcoma histologic response. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pineyro, B.; Snively, J. B.
2017-12-01
Recent 1D and 2D nonlinear atmospheric models have provided important insight into acoustic waves generated by seismic events, which may steepen into shocks or saw-tooth trains while also dissipating strongly in the thermosphere [e.g., Chum et al., JGR, 121, 2016; Zettergren et al., JGR, 122, 2017]. Although they have yield results that agree with with observations of ionospheric perturbations, dynamical models for the diffusive and stratified lower thermosphere [e.g., Snively and Pasko, JGR, 113, 2008] often use single gas approximations with height-dependent physical properties (e.g. mean molecular weight, specific heats) that do not vary with time (fixed composition). This approximation is simpler and less computationally expensive than a true multi-fluid model, yet captures the important physical transition between molecular and atomic gases in the lower thermosphere. Models with time-dependent composition and properties have been shown to outperform commonly used models with fixed properties; these time-dependent effects have been included in a one-gas model by adding an advection equation for the molecular weight, finding closer agreement to a true binary-gas model [Walterscheid and Hickey, JGR, 106, 2001 and JGR, 117, 2012]. Here, a one-dimensional nonlinear mass fraction approach to multi-constituent gas modeling, motivated by the results of Walterscheid and Hickey [2001, 2012], is presented. The finite volume method of Bale et al. [SIAM JSC, 24, 2002] is implemented in Clawpack [http://www.clawpack.org; LeVeque, 2002] with a Riemann Solver to solve the Euler Equations including multiple species, defined by their mass fractions, as they undergo advection. Viscous dissipation and thermal conduction are applied via a fractional step method. The model is validated with shock tube problems for two species, and then applied to investigate propagating nonlinear acoustic waves from ground to thermosphere, such as following the 2011 Tohoku Earthquake [e.g., Zettergren et al., 2017] and rocket launches [Mabie et al., GRL, 43, 2016]. The limits of applicability are investigated for vertically propagating acoustic waves near the cut-off frequency, and for simulations of steepening waves at finite spatial resolution [Sabatini et al., JASA, 140, 2016].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, Robert W.; Duff, Michael, E-mail: mduff@cancercarewny.com; Catalfamo, Frank
2011-01-01
We compared normal tissue radiation dose for the treatment of prostate cancer using 2 different radiation therapy delivery methods: volumetric modulated arc therapy (VMAT) vs. fixed-field intensity-modulated radiation therapy (IMRT). Radiotherapy plans for 292 prostate cancer patients treated with VMAT to a total dose of 7740 cGy were analyzed retrospectively. Fixed-angle, 7-field IMRT plans were created using the same computed tomography datasets and contours. Radiation doses to the planning target volume (PTV) and organs at risk (bladder, rectum, penile bulb, and femoral heads) were measured, means were calculated for both treatment methods, and dose-volume comparisons were made with 2-tailed, pairedmore » t-tests. The mean dose to the bladder was lower with VMAT at all measured volumes: 5, 10, 15, 25, 35, and 50% (p < 0.05). The mean doses to 5 and 10% of the rectum, the high-dose regions, were lower with VMAT (p < 0.05). The mean dose to 15% of the rectal volume was not significantly different (p = 0.95). VMAT exposed larger rectal volumes (25, 35, and 50%) to more radiation than fixed-field IMRT (p < 0.05). Average mean dose to the penile bulb (p < 0.05) and mean dose to 10% of the femoral heads (p < 0.05) were lower with VMAT. VMAT therapy for prostate cancer has dosimetric advantages for critical structures, notably for high-dose regions compared with fixed-field IMRT, without compromising PTV coverage. This may translate into reduced acute and chronic toxicity.« less
Brown Adipose Tissue Quantification in Human Neonates Using Water-Fat Separated MRI
Rasmussen, Jerod M.; Entringer, Sonja; Nguyen, Annie; van Erp, Theo G. M.; Guijarro, Ana; Oveisi, Fariba; Swanson, James M.; Piomelli, Daniele; Wadhwa, Pathik D.
2013-01-01
There is a major resurgence of interest in brown adipose tissue (BAT) biology, particularly regarding its determinants and consequences in newborns and infants. Reliable methods for non-invasive BAT measurement in human infants have yet to be demonstrated. The current study first validates methods for quantitative BAT imaging of rodents post mortem followed by BAT excision and re-imaging of excised tissues. Identical methods are then employed in a cohort of in vivo infants to establish the reliability of these measures and provide normative statistics for BAT depot volume and fat fraction. Using multi-echo water-fat MRI, fat- and water-based images of rodents and neonates were acquired and ratios of fat to the combined signal from fat and water (fat signal fraction) were calculated. Neonatal scans (n = 22) were acquired during natural sleep to quantify BAT and WAT deposits for depot volume and fat fraction. Acquisition repeatability was assessed based on multiple scans from the same neonate. Intra- and inter-rater measures of reliability in regional BAT depot volume and fat fraction quantification were determined based on multiple segmentations by two raters. Rodent BAT was characterized as having significantly higher water content than WAT in both in situ as well as ex vivo imaging assessments. Human neonate deposits indicative of bilateral BAT in spinal, supraclavicular and axillary regions were observed. Pairwise, WAT fat fraction was significantly greater than BAT fat fraction throughout the sample (ΔWAT-BAT = 38%, p<10−4). Repeated scans demonstrated a high voxelwise correlation for fat fraction (Rall = 0.99). BAT depot volume and fat fraction measurements showed high intra-rater (ICCBAT,VOL = 0.93, ICCBAT,FF = 0.93) and inter-rater reliability (ICCBAT,VOL = 0.86, ICCBAT,FF = 0.93). This study demonstrates the reliability of using multi-echo water-fat MRI in human neonates for quantification throughout the torso of BAT depot volume and fat fraction measurements. PMID:24205024
An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties
NASA Technical Reports Server (NTRS)
Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.
2007-01-01
The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.
NASA Astrophysics Data System (ADS)
Hemmat Esfe, Mohammad; Firouzi, Masoumeh; Afrand, Masoud
2018-01-01
In this paper, functionalized single walled carbon nanotubes (FSWCNTs) were suspended in Ethylene Glycol (EG) at different volume fractions. A KD2 pro thermal conductivity meter was used to measure the thermal conductivity in the temperature range from 30 to 50 °C. Nanofluids were prepared in solid volume fraction of 0.02, 0.05, 0.075, 0.1, 0.25, 0.5 and, 0.75%. Experimental results revealed that the thermal conductivity of the nanofluid is a non-linear function of temperature and SWCNTs volume fraction in the range of this investigation. Thermal conductivity increases with temperature and nanoparticles volume fraction as usual for this type of nanofluid. Maximum increment in thermal conductivity of the nanofluids was found to be about 45% at 0.75 vol fractions loading at 50 °C. Finally, a new correlation based on artificial neural network (ANN) approach has been proposed for SWCNT-EG thermal conductivity in terms of nanoparticles volume fraction and temperature using the experimental data. Used ANN approach has estimated the experimental values of thermal conductivity with the absolute average relative deviation lower than 0.9%, mean square error of 3.67 × 10-5 and regression coefficient of 0.9989. Comparison between the suggested techniques with various used correlation in the literatures established that the ANN approach is better to other presented methods and therefore can be proposed as a useful means for predicting of the nanofluids thermal conductivity.
NASA Technical Reports Server (NTRS)
Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.
1983-01-01
Potential satellite-provided fixed communications services, baseline forecasts, net long haul forecasts, cost analysis, net addressable forecasts, capacity requirements, and satellite system market development are considered.
Abnormal brain white matter microstructure is associated with both pre-hypertension and hypertension
Gao, He; Bai, Wenjia; Evangelou, Evangelos; Glocker, Ben; O’Regan, Declan P.; Elliott, Paul; Matthews, Paul M.
2017-01-01
Objectives To characterize effects of chronically elevated blood pressure on the brain, we tested for brain white matter microstructural differences associated with normotension, pre-hypertension and hypertension in recently available brain magnetic resonance imaging data from 4659 participants without known neurological or psychiatric disease (62.3±7.4 yrs, 47.0% male) in UK Biobank. Methods For assessment of white matter microstructure, we used measures derived from neurite orientation dispersion and density imaging (NODDI) including the intracellular volume fraction (an estimate of neurite density) and isotropic volume fraction (an index of the relative extra-cellular water diffusion). To estimate differences associated specifically with blood pressure, we applied propensity score matching based on age, sex, educational level, body mass index, and history of smoking, diabetes mellitus and cardiovascular disease to perform separate contrasts of non-hypertensive (normotensive or pre-hypertensive, N = 2332) and hypertensive (N = 2337) individuals and of normotensive (N = 741) and pre-hypertensive (N = 1581) individuals (p<0.05 after Bonferroni correction). Results The brain white matter intracellular volume fraction was significantly lower, and isotropic volume fraction was higher in hypertensive relative to non-hypertensive individuals (N = 1559, each). The white matter isotropic volume fraction also was higher in pre-hypertensive than in normotensive individuals (N = 694, each) in the right superior longitudinal fasciculus and the right superior thalamic radiation, where the lower intracellular volume fraction was observed in the hypertensives relative to the non-hypertensive group. Significance Pathological processes associated with chronically elevated blood pressure are associated with imaging differences suggesting chronic alterations of white matter axonal structure that may affect cognitive functions even with pre-hypertension. PMID:29145428
Accelerated Gray and White Matter Deterioration With Age in Schizophrenia.
Cropley, Vanessa L; Klauser, Paul; Lenroot, Rhoshel K; Bruggemann, Jason; Sundram, Suresh; Bousman, Chad; Pereira, Avril; Di Biase, Maria A; Weickert, Thomas W; Weickert, Cynthia Shannon; Pantelis, Christos; Zalesky, Andrew
2017-03-01
Although brain changes in schizophrenia have been proposed to mirror those found with advancing age, the trajectory of gray matter and white matter changes during the disease course remains unclear. The authors sought to measure whether these changes in individuals with schizophrenia remain stable, are accelerated, or are diminished with age. Gray matter volume and fractional anisotropy were mapped in 326 individuals diagnosed with schizophrenia or schizoaffective disorder and in 197 healthy comparison subjects aged 20-65 years. Polynomial regression was used to model the influence of age on gray matter volume and fractional anisotropy at a whole-brain and voxel level. Between-group differences in gray matter volume and fractional anisotropy were regionally localized across the lifespan using permutation testing and cluster-based inference. Significant loss of gray matter volume was evident in schizophrenia, progressively worsening with age to a maximal loss of 8% in the seventh decade of life. The inferred rate of gray matter volume loss was significantly accelerated in schizophrenia up to middle age and plateaued thereafter. In contrast, significant reductions in fractional anisotropy emerged in schizophrenia only after age 35, and the rate of fractional anisotropy deterioration with age was constant and best modeled with a straight line. The slope of this line was 60% steeper in schizophrenia relative to comparison subjects, indicating a significantly faster rate of white matter deterioration with age. The rates of reduction of gray matter volume and fractional anisotropy were significantly faster in males than in females, but an interaction between sex and diagnosis was not evident. The findings suggest that schizophrenia is characterized by an initial, rapid rate of gray matter loss that slows in middle life, followed by the emergence of a deficit in white matter that progressively worsens with age at a constant rate.
NASA Astrophysics Data System (ADS)
Kupke, A.; Hodgson, P. D.; Weiss, M.
2017-07-01
The elastic recovery in dual-phase (DP) steels is not a linear process and changes with plastic deformation. The level of change in the apparent Young's modulus has been reported to depend on material composition and microstructure, but most previous experimental studies were limited to industrial DP steels and led to contradicting results. This work represents a first fundamental study that investigates the separate and combined effect of phase volume fraction and hardness on the change in apparent Young's modulus in DP steel. A common automotive DP steel (DP780) is heat treated to obtain seven different combinations of martensite and ferrite volume fraction and hardness while keeping the chemical composition as well as the shape of the martensite and ferrite phases unchanged. Loading-unloading tests were performed to analyze the chord modulus at various levels of pre-strain. The results suggest that the point of saturation of the chord modulus with pre-strain depends on the morphology of the microstructure, occurring earlier for microstructures consisting of ferrite grains surrounded by martensite laths. It is further revealed that the reduction of the apparent Young's modulus, which is the difference between the material's initial Young's modulus and the chord modulus, increases with martensite hardness if the martensite volume fraction is kept constant. A higher martensite volume fraction initially elevates the reduction of the apparent Young's modulus. After a critical volume fraction of martensite phase of 35%, a decrease in apparent Young's modulus reduction was observed. A comparison of the plastic unloading strain suggests that the mechanisms leading to a reduction in apparent Young's modulus are strongest for the microstructure consisting of 35% martensite volume fraction.
Laboratory experiments on fragmentation of highly-viscous bubbly syrup
NASA Astrophysics Data System (ADS)
Kurihara, H.; Kameda, M.; Ichihara, M.
2006-12-01
Fragmentation of vesicular magma by rapid decompression is a key process in explosive eruptions. To determine the fragmentation criteria, we carried out laboratory experiments on magma fragmentation using analogous materials. We used commercial syrup as an analogous material of magma, because the viscosity was widely altered by adding or subtracting water contents in the syrup. We made the bubbly syrup by adding hydrogen peroxide with manganese oxide in the syrup. The amount of hydrogen peroxide is proportional to the gas volume fraction in the syrup. We measured the rheological properties of the syrup. Zero shear viscosity η was measured by a rotating viscometer and a fiber elongation technique. Glass transition temperature was measured by differential scanning calorimetry. The measured data indicated that the temperature dependence of viscosity was described well using Williams-Landel-Ferry (WLF) equation. The solid content of syrup alters the viscosity as well as the glass transition temperature, though it may hardly affect the rigidity μ, which was measured by ultrasonic test in our previous work. We used a pressurized vertical tube with a large vacuum vessel to apply the rapid decompression on the material. An acrylic container, filled with the bubbly syrup, was placed in the bottom of the pressurized tube. By rupturing the diaphragms inserted between the tube and the vacuum vessel, the bubbly syrup is rapidly decompressed due to expansion of the pressurized gas in the tube. A high-speed video camera was used to obtain sequential images of the materials. Pressure transducers were mounted on the sidewall of the tube and the bottom of the container. The initial pressure was varied from 1 MPa to 5 MPa. The gas-volume fraction of the syrup under pressure was fixed as 2 % to 20%. The viscosity varied from 105 Pa·s to 108 Pa·s. We successfully observed three principal behaviors using the present analogous material; brittle fragmentation, partial fracture and ductile expansion without crack initiation. From all the experimental data, in conclusion, the fragmentation is observed when the pressure drop Δ p reaches a critical value within the order of relaxation time of syrup, which is defined as η/μ. Simultaneously, the initial gas volume fraction should be larger than a critical value, which decreases as the initial high-pressure is larger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, A; Underwood, T; Wo, J
2016-06-15
Purpose: Anal cancer patients treated using a posterior proton beam may be at risk of vaginal wall injury due to the increased linear energy transfer (LET) and relative biological effectiveness (RBE) at the beam distal edge. We investigate the vaginal dose received. Methods: Five patients treated for anal cancer with proton pencil beam scanning were considered, all treated to a prescription dose of 54 Gy(RBE) over 28–30 fractions. Dose and LET distributions were calculated using the Monte Carlo simulation toolkit TOPAS. In addition to the standard assumption of a fixed RBE of 1.1, variable RBE was considered via the applicationmore » of published models. Dose volume histograms (DVHs) were extracted for the planning treatment volume (PTV) and vagina, the latter being used to calculate the vaginal normal tissue complication probability (NTCP). Results: Compared to the assumption of a fixed RBE of 1.1, the variable RBE model predicts a dose increase of approximately 3.3 ± 1.7 Gy at the end of beam range. NTCP parameters for the vagina are incomplete in the current literature, however, inferring value ranges from the existing data we use D{sub 50} = 50 Gy and LKB model parameters a=1–2 and m=0.2–0.4. We estimate the NTCP for the vagina to be 37–48% and 42–47% for the fixed and variable RBE cases, respectively. Additionally, a difference in the dose distribution was observed between the analytical calculation and Monte Carlo methods. We find that the target dose is overestimated on average by approximately 1–2%. Conclusion: For patients treated with posterior beams, the vaginal wall may coincide with the distal end of the proton beam and may receive a substantial increase in dose if variable RBE models are applied compared to using the current clinical standard of RBE equal to 1.1. This could potentially lead to underestimating toxicities when treating with protons.« less
Burt, Dean; Lamb, Kevin; Nicholas, Ceri; Twist, Craig
2015-07-01
This study examined whether lower-volume exercise-induced muscle damage (EIMD) performed 2 weeks before high-volume muscle-damaging exercise protects against its detrimental effect on running performance. Sixteen male participants were randomly assigned to a lower-volume (five sets of ten squats, n = 8) or high-volume (ten sets of ten squats, n = 8) EIMD group and completed baseline measurements for muscle soreness, knee extensor torque, creatine kinase (CK), a 5-min fixed-intensity running bout and a 3-km running time-trial. Measurements were repeated 24 and 48 h after EIMD, and the running time-trial after 48 h. Two weeks later, both groups repeated the baseline measurements, ten sets of ten squats and the same follow-up testing (Bout 2). Data analysis revealed increases in muscle soreness and CK and decreases in knee extensor torque 24-48 h after the initial bouts of EIMD. Increases in oxygen uptake [Formula: see text], minute ventilation [Formula: see text] and rating of perceived exertion were observed during fixed-intensity running 24-48 h after EIMD Bout 1. Likewise, time increased and speed and [Formula: see text] decreased during a 3-km running time-trial 48 h after EIMD. Symptoms of EIMD, responses during fixed-intensity and running time-trial were attenuated in the days after the repeated bout of high-volume EIMD performed 2 weeks after the initial bout. This study demonstrates that the protective effect of lower-volume EIMD on subsequent high-volume EIMD is transferable to endurance running. Furthermore, time-trial performance was found to be preserved after a repeated bout of EIMD.
SDSS-IV MaNGA: Galaxy Pair Fraction and Correlated Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Fu, Hai; Steffen, Joshua L.; Gross, Arran C.; Dai, Y. Sophia; Isbell, Jacob W.; Lin, Lihwai; Wake, David; Xue, Rui; Bizyaev, Dmitry; Pan, Kaike
2018-04-01
We have identified 105 galaxy pairs at z ∼ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 and 30 kpc, and are selected to have radial velocity offsets less than 600 km s‑1 and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ∼3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGNs) are selected using emission-line ratios and Hα equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ∼24% of the paired galaxies and binary AGNs in ∼13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (∼5×) excess of binary AGNs over random pairing and a mild (∼20%) deficit of single AGNs. The binary AGN excess increases from ∼2× to ∼6× as the projected separation decreases from 10–30 to 1–10 kpc. Our results indicate that the pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.
NASA Astrophysics Data System (ADS)
Ha, Jeong Won; Seong, Baek Seok; Jeong, Hi Won; Choi, Yoon Suk; Kang, Namhyun
2015-02-01
Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ‧ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ‧ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ‧ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ‧ volume fraction and gained a smaller fraction of γ‧ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ‧ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M23C6 secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ‧ thereby decreasing the volume fraction of γ‧ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ‧ volume fraction was measured with loading rather than without. This is probably associated with the dislocation accumulation generated under loading that facilitate the nucleation and growth of heterogeneous γ‧ phase due to enhanced diffusion.
Kokeny, Paul; Cheng, Yu-Chung N; Xie, He
2018-05-01
Modeling MRI signal behaviors in the presence of discrete magnetic particles is important, as magnetic particles appear in nanoparticle labeled cells, contrast agents, and other biological forms of iron. Currently, many models that take into account the discrete particle nature in a system have been used to predict magnitude signal decays in the form of R2* or R2' from one single voxel. Little work has been done for predicting phase signals. In addition, most calculations of phase signals rely on the assumption that a system containing discrete particles behaves as a continuous medium. In this work, numerical simulations are used to investigate MRI magnitude and phase signals from discrete particles, without diffusion effects. Factors such as particle size, number density, susceptibility, volume fraction, particle arrangements for their randomness, and field of view have been considered in simulations. The results are compared to either a ground truth model, theoretical work based on continuous mediums, or previous literature. Suitable parameters used to model particles in several voxels that lead to acceptable magnetic field distributions around particle surfaces and accurate MR signals are identified. The phase values as a function of echo time from a central voxel filled by particles can be significantly different from those of a continuous cubic medium. However, a completely random distribution of particles can lead to an R2' value which agrees with the prediction from the static dephasing theory. A sphere with a radius of at least 4 grid points used in simulations is found to be acceptable to generate MR signals equivalent from a larger sphere. Increasing number of particles with a fixed volume fraction in simulations reduces the resulting variance in the phase behavior, and converges to almost the same phase value for different particle numbers at each echo time. The variance of phase values is also reduced when increasing the number of particles in a fixed voxel. These results indicate that MRI signals from voxels containing discrete particles, even with a sufficient number of particles per voxel, cannot be properly modeled by a continuous medium with an equivalent susceptibility value in the voxel. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Soltani, Omid; Akbari, Mohammad
2016-10-01
In this paper, the effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid is examined. The experiments carried out in the solid volume fraction range of 0 to 1.0% under the temperature ranging from 30 °C to 60 °C. The results showed that the hybrid nanofluid behaves as a Newtonian fluid for all solid volume fractions and temperatures considered. The measurements also indicated that the dynamic viscosity increases with increasing the solid volume fraction and decreases with the temperature rising. The relative viscosity revealed that when the solid volume fraction enhances from 0.1 to 1%, the dynamic viscosity increases up to 168%. Finally, using experimental data, in order to predict the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluids, a new correlation has been suggested. The comparisons between the correlation outputs and experimental results showed that the suggested correlation has an acceptable accuracy.
Dorin, Thomas; Donnadieu, Patricia; Chaix, Jean-Marc; Lefebvre, Williams; Geuser, Frédéric De; Deschamps, Alexis
2015-11-01
Transmission Electron Microscopy (TEM) can be used to measure the size distribution and volume fraction of fine scale precipitates in metallic systems. However, such measurements suffer from a number of artefacts that need to be accounted for, related to the finite thickness of the TEM foil and to the projected observation in two dimensions of the microstructure. We present a correction procedure to describe the 3D distribution of disc-like particles and apply this method to the plate-like T1 precipitates in an Al-Li-Cu alloy in two ageing conditions showing different particle morphologies. The precipitates were imaged in a High-Angular Annular Dark Field Microscope (HAADF-STEM). The corrected size distribution is further used to determine the precipitate volume fraction. Atom probe tomography (APT) is finally utilised as an alternative way to measure the precipitate volume fraction and test the validity of the electron microscopy results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Louis, P.; Gokhale, A. M.
1996-01-01
Computer simulation is a powerful tool for analyzing the geometry of three-dimensional microstructure. A computer simulation model is developed to represent the three-dimensional microstructure of a two-phase particulate composite where particles may be in contact with one another but do not overlap significantly. The model is used to quantify the "connectedness" of the particulate phase of a polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The simulations are utilized to estimate the morphological percolation volume fraction for electrical conduction, and the effective volume fraction of the particles that actually take part in the electrical conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent physical model for electrical conductivity. The predicted values of electrical conductivity are in very good agreement with the corresponding experimental data on a series of specimens having different particulate volume fraction.
NASA Technical Reports Server (NTRS)
Covey, Steven J.
1993-01-01
Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.
Stochastic oscillations in models of epidemics on a network of cities
NASA Astrophysics Data System (ADS)
Rozhnova, G.; Nunes, A.; McKane, A. J.
2011-11-01
We carry out an analytic investigation of stochastic oscillations in a susceptible-infected-recovered model of disease spread on a network of n cities. In the model a fraction fjk of individuals from city k commute to city j, where they may infect, or be infected by, others. Starting from a continuous-time Markov description of the model the deterministic equations, which are valid in the limit when the population of each city is infinite, are recovered. The stochastic fluctuations about the fixed point of these equations are derived by use of the van Kampen system-size expansion. The fixed point structure of the deterministic equations is remarkably simple: A unique nontrivial fixed point always exists and has the feature that the fraction of susceptible, infected, and recovered individuals is the same for each city irrespective of its size. We find that the stochastic fluctuations have an analogously simple dynamics: All oscillations have a single frequency, equal to that found in the one-city case. We interpret this phenomenon in terms of the properties of the spectrum of the matrix of the linear approximation of the deterministic equations at the fixed point.
Ground Vehicle System Integration (GVSI) and Design Optimization Model.
1996-07-30
number of stowed kills Same basic load lasts longer range Gun/ammo parameters impact system weight, under - armor volume requirements Round volume...internal volume is reduced, the model assumes that the crew’s ability to operate while under armor will be impaired. If the size of a vehicle crew is...changing swept volume will alter under armor volume requirements for the total system; if system volume is fixed, changing swept volume will
NASA Astrophysics Data System (ADS)
Liu, Fengshan; Rogak, Steven; Snelling, David R.; Saffaripour, Meghdad; Thomson, Kevin A.; Smallwood, Gregory J.
2016-11-01
Multimode pulsed Nd:YAG lasers are commonly used in auto-compensating laser-induced incandescence (AC-LII) measurements of soot in flames and engine exhaust as well as black carbon in the atmosphere. Such lasers possess a certain degree of fluence non-uniformity across the laser beam even with the use of beam shaping optics. Recent research showed that the measured volume fraction of ambient-temperature soot using AC-LII increases significantly, by about a factor of 5-8, with increasing the laser fluence in the low-fluence regime from a very low fluence to a relatively high fluence of near sublimation. The causes of this so-called soot volume fraction anomaly are currently not understood. The effects of laser fluence non-uniformity on the measured soot volume fraction using AC-LII were investigated. Three sets of LII experiments were conducted in the exhaust of a MiniCAST soot generator under conditions of high elemental carbon using Nd:YAG lasers operated at 1064 nm. The laser beams were shaped and relay imaged to achieve a relatively uniform fluence distribution in the measurement volume. To further homogenize the laser fluence, one set of LII experiments was conducted by using a diffractive optical element. The measured soot volume fractions in all three sets of LII experiments increase strongly with increasing the laser fluence before a peak value is reached and then start to decrease at higher fluences. Numerical calculations were conducted using the experimental laser fluence histograms. Laser fluence non-uniformity is found partially responsible for the soot volume fraction anomaly, but is insufficient to explain the degree of soot volume fraction anomaly observed experimentally. Representing the laser fluence variations by a histogram derived from high-resolution images of the laser beam energy profile gives a more accurate definition of inhomogeneity than a simple averaged linear profile across the laser beam.
NASA Astrophysics Data System (ADS)
Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.
2015-01-01
The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Shuja, S. Z.
2017-01-01
Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, D.G.; West, J.T.
FRAC-IN-THE-BOX is a computer code developed to calculate the fractions of rectangular parallelepiped mesh cell volumes that are intersected by combinatorial geometry type zones. The geometry description used in the code is a subset of the combinatorial geometry used in SABRINA. The input file may be read into SABRINA and three dimensional plots made of the input geometry. The volume fractions for those portions of the geometry that are too complicated to describe with the geometry routines provided in FRAC-IN-THE-BOX may be calculated in SABRINA and merged with the volume fractions computed for the remainder of the geometry. 21 figs.,more » 1 tab.« less
NASA Astrophysics Data System (ADS)
Hanafee, Z. M.; Khalina, A.; Norkhairunnisa, M.; Syams, Z. Edi; Liew, K. E.
2017-09-01
This paper investigates the effect of fibre volume fraction on mechanical properties of banana-pineapple leaf (PaLF)-glass reinforced epoxy resin under tensile loading. Uniaxial tensile tests were carried out on specimens with different fibre contents (30%, 40%, 50% in weight). The composite specimens consists of 13 different combinations. The effect of hybridisation between synthetic and natural fibre onto tensile properties was determined and the optimum fibre volume fraction was obtained at 50% for both banana and PaLF composites. Additional 1 layer of woven glass fibre increased the tensile strength of banana-PaLF composite up to 85%.
Enhanced thermoelectric response in the fractional quantum Hall effect
NASA Astrophysics Data System (ADS)
Roura-Bas, Pablo; Arrachea, Liliana; Fradkin, Eduardo
2018-02-01
We study the linear thermoelectric response of a quantum dot embedded in a constriction of a quantum Hall bar with fractional filling factors ν =1 /m within Laughlin series. We calculate the figure of merit Z T for the maximum efficiency at a fixed temperature difference. We find a significant enhancement of this quantity in the fractional filling in relation to the integer-filling case, which is a direct consequence of the fractionalization of the electron in the fractional quantum Hall state. We present simple theoretical expressions for the Onsager coefficients at low temperatures, which explicitly show that Z T and the Seebeck coefficient increase with m .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salem, Ahmed, E-mail: ahmed.salem@doctors.org.uk; Mohamad, Issa; Dayyat, Abdulmajeed
2015-10-01
Radiation pneumonitis is a well-documented side effect of radiation therapy for breast cancer. The purpose of this study was to compare combined photon-electron, photon-only, and electron-only plans in the radiation treatment of the supraclavicular lymph nodes. In total, 13 patients requiring chest wall and supraclavicular nodal irradiation were planned retrospectively using combined photon-electron, photon-only, and electron-only supraclavicular beams. A dose of 50 Gy over 25 fractions was prescribed. Chest wall irradiation parameters were fixed for all plans. The goal of this planning effort was to cover 95% of the supraclavicular clinical target volume (CTV) with 95% of the prescribed dosemore » and to minimize the volume receiving ≥ 105% of the dose. Comparative end points were supraclavicular CTV coverage (volume covered by the 95% isodose line), hotspot volume, maximum radiation dose, contralateral breast dose, mean total lung dose, total lung volume percentage receiving at least 20 Gy (V{sub 20} {sub Gy}), heart volume percentage receiving at least 25 Gy (V{sub 25} {sub Gy}). Electron and photon energies ranged from 8 to 18 MeV and 4 to 6 MV, respectively. The ratio of photon-to-electron fractions in combined beams ranged from 5:20 to 15:10. Supraclavicular nodal coverage was highest in photon-only (mean = 96.2 ± 3.5%) followed closely by combined photon-electron (mean = 94.2 ± 2.5%) and lowest in electron-only plans (mean = 81.7 ± 14.8%, p < 0.001). The volume of tissue receiving ≥ 105% of the prescription dose was higher in the electron-only (mean = 69.7 ± 56.1 cm{sup 3}) as opposed to combined photon-electron (mean = 50.8 ± 40.9 cm{sup 3}) and photon-only beams (mean = 32.2 ± 28.1 cm{sup 3}, p = 0.114). Heart V{sub 25} {sub Gy} was not statistically different among the plans (p = 0.999). Total lung V{sub 20} {sub Gy} was lowest in electron-only (mean = 10.9 ± 2.3%) followed by combined photon-electron (mean = 13.8 ± 2.3%) and highest in photon-only plans (mean = 16.2 ± 3%, p < 0.001). As expected, photon-only plans demonstrated the highest target coverage and total lung V{sub 20} {sub Gy}. The superiority of electron-only beams, in terms of decreasing lung dose, is set back by the dosimetric hotspots associated with such plans. Combined photon-electron treatment is a feasible technique for supraclavicular nodal irradiation and results in adequate target coverage, acceptable dosimetric hotspot volume, and slightly reduced lung dose.« less
Philippe, A M; Baravian, C; Bezuglyy, V; Angilella, J R; Meneau, F; Bihannic, I; Michot, L J
2013-04-30
In the present study, we investigate the evolution with shear of the viscosity of aqueous suspensions of size-selected natural swelling clay minerals for volume fractions extending from isotropic liquids to weak nematic gels. Such suspensions are strongly shear-thinning, a feature that is systematically observed for suspensions of nonspherical particles and that is linked to their orientational properties. We then combined our rheological measurements with small-angle X-ray scattering experiments that, after appropriate treatment, provide the orientational field of the particles. Whatever the clay nature, particle size, and volume fraction, this orientational field was shown to depend only on a nondimensional Péclet number (Pe) defined for one isolated particle as the ratio between hydrodynamic energy and Brownian thermal energy. The measured orientational fields were then directly compared to those obtained for infinitely thin disks through a numerical computation of the Fokker-Plank equation. Even in cases where multiple hydrodynamic interactions dominate, qualitative agreement between both orientational fields is observed, especially at high Péclet number. We have then used an effective approach to assess the viscosity of these suspensions through the definition of an effective volume fraction. Using such an approach, we have been able to transform the relationship between viscosity and volume fraction (ηr = f(φ)) into a relationship that links viscosity with both flow and volume fraction (ηr = f(φ, Pe)).
The effect of latent adenovirus 5 infection on cigarette smoke-induced lung inflammation.
Vitalis, T Z; Kern, I; Croome, A; Behzad, H; Hayashi, S; Hogg, J C
1998-03-01
The aim of this study was to test the hypothesis that latent adenovirus (Ad) 5 infection increases the lung inflammation that follows a single acute exposure to cigarette smoke. A recently developed model of latent adenoviral infection in guinea-pigs was used. Twelve animals were infected with Ad5 (10(8) plaque-forming units) and 12 animals were sham-infected. Thirty five days later six Ad5-infected and six sham-infected animals were exposed to the smoke from five cigarettes. The remaining animals were used as controls for both infection and smoking. As markers of inflammation, the volume fraction of macrophages, T-lymphocytes, neutrophils and eosinophils were measured by quantitative histology. We found that latent Ad5-infection alone, doubled the number of macrophages in the lung parenchyma and that smoking alone, doubled the volume fraction of neutrophils in the airway wall and the volume fraction of macrophages in the lung parenchyma. Neither viral infection nor smoking, alone, had an effect on T-lymphocytes or eosinophils. However, the combination of viral infection and smoking doubled the T-lymphocyte helper cells and quadrupled the volume fraction of macrophages in the lung parenchyma. We conclude that in guinea-pigs, latent adenovirus 5 infection increases the inflammation that follows a single acute exposure to cigarette smoke, by increasing the volume fraction of macrophages and T-lymphocyte helper cells.
Universal scaling of permeability through the granular-to-continuum transition
NASA Astrophysics Data System (ADS)
Wadsworth, F. B.; Scheu, B.; Heap, M. J.; Kendrick, J. E.; Vasseur, J.; Lavallée, Y.; Dingwell, D. B.
2015-12-01
Magmas fragment forming a transiently granular material, which can weld back to a fluid-continuum. This process results in dramatic changes in the gas-volume fraction of the material, which impacts the gas permeability. We collate published data for the gas-volume fraction and permeability of volcanic and synthetic materials which have undergone this process to different amounts and note that in all cases there exists a discontinuity in the relationship between these two properties. By discriminating data for which good microstructural information are provided, we use simple scaling arguments to collapse the data in both the still-granular, high gas-volume fraction regime and the fluid-continuum low gas-volume fraction regime such that a universal description can be achieved. We use this to argue for the microstructural meaning of the well-described discontinuity between gas-permeability and gas-volume fraction and to infer the controls on the position of this transition between dominantly granular and dominantly fluid-continuum material descriptions. As a specific application, we consider the transiently granular magma transported through and deposited in fractures in more-coherent magmas, thought to be a primary degassing pathway in high viscosity systems. We propose that our scaling coupled with constitutive laws for densification can provide insights into the longevity of such degassing channels, informing sub-surface pressure modelling at such volcanoes.
Applications for carbon fibre recovered from composites
NASA Astrophysics Data System (ADS)
Pickering; Liu, Z.; Turner, TA; Wong, KH
2016-07-01
Commercial operations to recover carbon fibre from waste composites are now developing and as more recovered fibre becomes available new applications for recovered fibre are required. Opportunities to use recovered carbon fibre as a structural reinforcement are considered involving the use of wet lay processes to produce nonwoven mats. Mats with random in-plane fibre orientation can readily be produced using existing commercial processes. However, the fibre volume fraction, and hence the mechanical properties that can be achieved, result in composites with limited mechanical properties. Fibre volume fractions of 40% can be achieved with high moulding pressures of over 100 bar, however, moulding at these pressures results in substantial fibre breakage which reduces the mean fibre length and the properties of the composite manufactured. Nonwoven mats made from aligned, short carbon fibres can achieve higher fibre volume fractions with lower fibre breakage even at high moulding pressure. A process for aligning short fibres is described and a composite of over 60% fibre volume fraction has been manufactured at a pressures up to 100 bar with low fibre breakage. Further developments of the alignment process have been undertaken and a composite of 46% fibre volume fraction has been produced moulded at a pressure of 7 bar in an autoclave, exhibiting good mechanical properties that compete with higher grade materials. This demonstrates the potential for high value applications for recovered carbon fibre by fibre alignment.
Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky
2016-09-01
Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Morphology and linear-elastic moduli of random network solids.
Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E
2011-06-17
The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lartizien, Carole; Kinahan, Paul E.; Comtat, Claude; Lin, Michael; Swensson, Richard G.; Trebossen, Regine; Bendriem, Bernard
2000-04-01
This work presents initial results from observer detection performance studies using the same volume visualization software tools that are used in clinical PET oncology imaging. Research into the FORE+OSEM and FORE+AWOSEM statistical image reconstruction methods tailored to whole- body 3D PET oncology imaging have indicated potential improvements in image SNR compared to currently used analytic reconstruction methods (FBP). To assess the resulting impact of these reconstruction methods on the performance of human observers in detecting and localizing tumors, we use a non- Monte Carlo technique to generate multiple statistically accurate realizations of 3D whole-body PET data, based on an extended MCAT phantom and with clinically realistic levels of statistical noise. For each realization, we add a fixed number of randomly located 1 cm diam. lesions whose contrast is varied among pre-calibrated values so that the range of true positive fractions is well sampled. The observer is told the number of tumors and, similar to the AFROC method, asked to localize all of them. The true positive fraction for the three algorithms (FBP, FORE+OSEM, FORE+AWOSEM) as a function of lesion contrast is calculated, although other protocols could be compared. A confidence level for each tumor is also recorded for incorporation into later AFROC analysis.
Fixed reproducible tangible wealth in the United States, 1925-94
DOT National Transportation Integrated Search
1999-08-01
This volume presents estimates of fixed reproducible tangible wealth in the United States for 192594 that were prepared by the Bureau of Economic Analysis (BEA). It includes the investment series that were used to construct these estimates; for mo...
Numerical simulation of convective heat transfer of nonhomogeneous nanofluid using Buongiorno model
NASA Astrophysics Data System (ADS)
Sayyar, Ramin Onsor; Saghafian, Mohsen
2017-08-01
The aim is to study the assessment of the flow and convective heat transfer of laminar developing flow of Al2O3-water nanofluid inside a vertical tube. A finite volume method procedure on a structured grid was used to solve the governing partial differential equations. The adopted model (Buongiorno model) assumes that the nanofluid is a mixture of a base fluid and nanoparticles, with the relative motion caused by Brownian motion and thermophoretic diffusion. The results showed the distribution of nanoparticles remained almost uniform except in a region near the hot wall where nanoparticles volume fraction were reduced as a result of thermophoresis. The simulation results also indicated there is an optimal volume fraction about 1-2% of the nanoparticles at each Reynolds number for which the maximum performance evaluation criteria can be obtained. The difference between Nusselt number and nondimensional pressure drop calculated based on two phase model and the one calculated based on single phase model was less than 5% at all nanoparticles volume fractions and can be neglected. In natural convection, for 4% of nanoparticles volume fraction, in Gr = 10 more than 15% enhancement of Nusselt number was achieved but in Gr = 300 it was less than 1%.
Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
NASA Astrophysics Data System (ADS)
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
Unique strain history during ejection in canine left ventricle.
Douglas, A S; Rodriguez, E K; O'Dell, W; Hunter, W C
1991-05-01
Understanding the relationship between structure and function in the heart requires a knowledge of the connection between the local behavior of the myocardium (e.g., shortening) and the pumping action of the left ventricle. We asked the question, how do changes in preload and afterload affect the relationship between local myocardial deformation and ventricular volume? To study this, a set of small radiopaque beads was implanted in approximately 1 cm3 of the isolated canine heart left ventricular free wall. Using biplane cineradiography, we tracked the motion of these markers through various cardiac cycles (controlling pre- and afterload) using the relative motion of six markers to quantify the local three dimensional Lagrangian strain. Two different reference states (used to define the strains) were considered. First, we used the configuration of the heart at end diastole for that particular cardiac cycle to define the individual strains (which gave the local "shortening fraction") and the ejection fraction. Second, we used a single reference state for all cardiac cycles i.e., the end-diastolic state at maximum volume, to define absolute strains (which gave local fractional length) and the volume fraction. The individual strain versus ejection fraction trajectories were dependent on preload and afterload. For any one heart, however, each component of absolute strain was more tightly correlated to volume fraction. Around each linear regression, the individual measurements of absolute strain scattered with standard errors that averaged less than 7% of their range. Thus the canine hearts examined had a preferred kinematic (shape) history during ejection, different from the kinematics of filling and independent or pre-or afterload and of stroke volume.
Enhanced explosive sensing based on bis(methyltetraphenyl)silole nanoaggregate
NASA Astrophysics Data System (ADS)
Shin, Bomina; Sohn, Honglae
2018-01-01
New photoluminescent bis(methyltetraphenyl)silole nanoaggregates for the detection of trinitrotoluene (TNT) were developed by using aggregation-induced emission property. Bis(methyltetraphenyl)silole nanoaggregates exhibited that photoluminescence (PL) intensity was increased when the water fraction was increased to 90% by volume. Relative PL efficiency of bis(methyltetraphenyl)silole nanoaggregates was exponentially increased to the percent of water fraction and particle diameter was dependent on solvent composition. Particle size of bis(methyltetraphenyl)silole nanoaggregates was tuned by controlling the water fraction by volume. Absolute quantum yield of bis(methyltetraphenyl)silole nanoaggregates in 90% water volume fraction were 32.4%, which increases by about 40 times. Detection of TNT was achieved from the quenching PL measurement of bis(methyltetraphenyl)silole nanoaggregates by adding the TNT. A linear Stern-Volmer relationship was observed for the detection of TNT.
Patel, Vipulkumar; Celec, Peter; Grunt, Magdalena; Schwarzenbach, Heidi; Jenneckens, Ingo; Hillebrand, Timo
2016-01-01
Circulating cell-free DNA (ccfDNA) is a promising diagnostic tool and its size fractionation is of interest. However, kits for isolation of ccfDNA available on the market are designed for small volumes hence processing large sample volumes is laborious. We have tested a new method that enables enrichment of ccfDNA from large volumes of plasma and subsequently allows size-fractionation of isolated ccfDNA into two fractions with individually established cut-off levels of ccfDNA length. This method allows isolation of low-abundant DNA as well as separation of long and short DNA molecules. This procedure may be important e.g., in prenatal diagnostics and cancer research that have been already confirmed by our primary experiments. Here, we report the results of selective separation of 200- and 500-bp long synthetic DNA fragments spiked in plasma samples. Furthermore, we size-fractionated ccfDNA from the plasma of pregnant women and verified the prevalence of fetal ccfDNA in all fractions.
Kostoglou, M; Varka, E-M; Kalogianni, E P; Karapantsios, T D
2010-09-01
Destabilization of hexane-in-water emulsions is studied by a continuous, non-intrusive, multi-probe, electrical conductance technique. Emulsions made of different oil fractions and surfactant (C(10)E(5)) concentrations are prepared in a stirred vessel using a Rushton turbine to break and agitate droplets. During the separation of phases, electrical signals from pairs of ring electrodes mounted at different heights onto the vessel wall, are recorded. The evolution of the local water volume fractions at the locations of the electrodes is estimated from these signals. It is found that in the absence of coalescence, the water fraction evolution curve from the bottom pair of electrodes is compatible with a bidisperse oil droplet size distribution. The sizes and volume fractions of the two droplet modes are estimated using theoretical arguments. The electrically determined droplet sizes are compared to data from microscopy image analysis. Results are discussed in detail. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.
2018-04-01
In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm
NASA Astrophysics Data System (ADS)
Schnyder, Simon K.; Skinner, Thomas O. E.; Thorneywork, Alice L.; Aarts, Dirk G. A. L.; Horbach, Jürgen; Dullens, Roel P. A.
2017-03-01
A binary mixture of superparamagnetic colloidal particles is confined between glass plates such that the large particles become fixed and provide a two-dimensional disordered matrix for the still mobile small particles, which form a fluid. By varying fluid and matrix area fractions and tuning the interactions between the superparamagnetic particles via an external magnetic field, different regions of the state diagram are explored. The mobile particles exhibit delocalized dynamics at small matrix area fractions and localized motion at high matrix area fractions, and the localization transition is rounded by the soft interactions [T. O. E. Skinner et al., Phys. Rev. Lett. 111, 128301 (2013), 10.1103/PhysRevLett.111.128301]. Expanding on previous work, we find the dynamics of the tracers to be strongly heterogeneous and show that molecular dynamics simulations of an ideal gas confined in a fixed matrix exhibit similar behavior. The simulations show how these soft interactions make the dynamics more heterogeneous compared to the disordered Lorentz gas and lead to strong non-Gaussian fluctuations.
Mukherjee, Kanchan Kumar; Kumar, Narendra; Tripathi, Manjul; Oinam, Arun S; Ahuja, Chirag K; Dhandapani, Sivashanmugam; Kapoor, Rakesh; Ghoshal, Sushmita; Kaur, Rupinder; Bhatt, Sandeep
2017-01-01
To evaluate the feasibility, safety and efficacy of dose fractionated gamma knife radiosurgery (DFGKRS) on a daily schedule beyond the linear quadratic (LQ) model, for large volume arteriovenous malformations (AVMs). Between 2012-16, 14 patients of large AVMs (median volume 26.5 cc) unsuitable for surgery or embolization were treated in 2-3 of DFGKRS sessions. The Leksell G frame was kept in situ during the whole procedure. 86% (n = 12) patients had radiologic evidence of bleed, and 43% (n = 6) had presented with a history of seizures. 57% (n = 8) patients received a daily treatment for 3 days and 43% (n = 6) were on an alternate day (2 fractions) regimen. The marginal dose was split into 2 or 3 fractions of the ideal prescription dose of a single fraction of 23-25 Gy. The median follow up period was 35.6 months (8-57 months). In the three-fraction scheme, the marginal dose ranged from 8.9-11.5 Gy, while in the two-fraction scheme, the marginal dose ranged from 11.3-15 Gy at 50% per fraction. Headache (43%, n = 6) was the most common early postoperative complication, which was controlled with short course steroids. Follow up evaluation of at least three years was achieved in seven patients, who have shown complete nidus obliteration in 43% patients while the obliteration has been in the range of 50-99% in rest of the patients. Overall, there was a 67.8% reduction in the AVM volume at 3 years. Nidus obliteration at 3 years showed a significant rank order correlation with the cumulative prescription dose (p 0.95, P value 0.01), with attainment of near-total (more than 95%) obliteration rates beyond 29 Gy of the cumulative prescription dose. No patient receiving a cumulative prescription dose of less than 31 Gy had any severe adverse reaction. In co-variate adjusted ordinal regression, only the cumulative prescription dose had a significant correlation with common terminology criteria for adverse events (CTCAE) severity (P value 0.04), independent of age, AVM volume, number of fractions and volume of brain receiving atleast 8 Gy of radiation. DFGKRS is feasible for large AVMs with a fair nidus obliteration rate and acceptable toxicity. Cumulative prescription dose seems to be the most significant independent predictor for outcome following DFGKRS with 29-30 Gy resulting in a fair nidus obliteration with least adverse events.
Davies, M W; Dunster, K R
2000-08-01
During partial liquid ventilation perfluorocarbon vapour is present in the exhaled gases. The volumes of these gases are measured by pneumotachometers. Error in measuring tidal volumes will give erroneous measurement of lung compliance during partial liquid ventilation. We aim to compare measured tidal volumes with and without perfluorocarbon vapour using tidal volumes suitable for use in neonates. Tidal volumes were produced with a 100 ml calibration syringe from 20 to 100 ml and with a calibrated Harvard rodent ventilator from 2.5 to 20 ml. Control tidal volumes were drawn from a humidifier chamber containing water vapour and the PFC tidal volumes were drawn from a humidifier chamber containing water and perfluorocarbon (FC-77) vapour. Tidal volumes were measured by a fixed orifice, target, differential pressure flowmeter (VenTrak) or a hot-wire anenometer (Bear Cub) placed between the calibration syringe or ventilator and the humidifier chamber. All tidal volumes measured with perfluorocarbon vapour were increased compared with control (ANOVA p < 0.001 and post t-test p < 0.0001). Measured tidal volume increased from 7 to 16% with the fixed orifice type flow-meter, and from 35 to 41% with the hot-wire type. In conclusion, perfluorocarbon vapour flowing through pneumotachometers gives falsely high tidal volume measurements. Calculation of lung compliance must take into account the effect of perfluorocarbon vapour on the measurement of tidal volume.
Kim, Ki-Hyun; Anthwal, A; Pandey, Sudhir Kumar; Kabir, Ehsanul; Sohn, Jong Ryeul
2010-11-01
In this study, a series of GC calibration experiments were conducted to examine the feasibility of the thermal desorption approach for the quantification of five carbonyl compounds (acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde) in conjunction with two internal standard compounds. The gaseous working standards of carbonyls were calibrated with the aid of thermal desorption as a function of standard concentration and of loading volume. The detection properties were then compared against two types of external calibration data sets derived by fixed standard volume and fixed standard concentration approach. According to this comparison, the fixed standard volume-based calibration of carbonyls should be more sensitive and reliable than its fixed standard concentration counterpart. Moreover, the use of internal standard can improve the analytical reliability of aromatics and some carbonyls to a considerable extent. Our preliminary test on real samples, however, indicates that the performance of internal calibration, when tested using samples of varying dilution ranges, can be moderately different from that derivable from standard gases. It thus suggests that the reliability of calibration approaches should be examined carefully with the considerations on the interactive relationships between the compound-specific properties and the operation conditions of the instrumental setups.
Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow
NASA Astrophysics Data System (ADS)
Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.
2000-09-01
We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.
Storage of H.sub.2 by absorption and/or mixture within a fluid medium
Berry, Gene David; Aceves, Salvador Martin
2007-03-20
For the first time, a hydrogen storage method, apparatus and system having a fluid mixture is provided. At predetermined pressures and/or temperatures within a contained substantially fixed volume, the fluid mixture can store a high density of hydrogen molecules, wherein a predetermined phase of the fluid mixture is capable of being withdrawn from the substantially fixed volume for use as a vehicle fuel or energy storage having reduced and/or eliminated evaporative losses, especially where storage weight, vessel cost, vessel shape, safety, and energy efficiency are beneficial.
Comparative stereology of the mouse and finch left ventricle.
Bossen, E H; Sommer, J R; Waugh, R A
1978-01-01
The volume fractions and surface per unit cell volume of some subcellular components of the left ventricles of the finch and mouse were quantitated by stereologic techniques. These species were chosen for study because they have similar heart rates but differ morphologically in some respects: fiber diameter is larger in the mouse; the mouse has transverse tubules while the finch does not; and the finch has a form of junctional sarcoplasmic reticulum (JSR), extended JSR (EJSR), located in the cell interior with no direct plasmalemmal contact, while the mouse interior JSR (IJSR) abuts on transverse tubules. Our data show that the volume fraction (Vv) and surface area per unit cell volume (Sv) of total SR, and free SR (FSR) are similar. The volume fractions of mitochondria, myofibrils, and total junctional SR were also similar. The Sv of the cell surface of the finch was similar to the Sv of the cell surface of the mouse (Sv-plasmalemma plus Sv of the transverse tubules). The principal difference was in the distribution of JSR; the mouse peripheral JSR (PJSR) represents only 9% of the total JSR, while the finch PJSR accounts for 24% of the bird's JSR. The similar volume fractions of total junctional SR (PJSR + EJSR in the finch; PJSR + IJSR in the mouse) suggest that the EJSR is not an embryologic remnant, and raises the possibility that some function of JSR is independent of plasmalemmal contact.
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Kar, Manoranjan
2018-05-01
Novel ceramic-polymer nanocomposites have great potential for electrical energy storage applications due to its high energy storage density. In the present work, BNT and PVDF based flexible polymer nanocomposites (BNT-PVDF) with different volume fraction (ϕ = 0, 5, 10, 15) were fabricated by solution casting method. Enhancement in beta phase of PVDF polymer matrix with the volume fraction (ϕ = 5, 10, 15) of BNT has been confirmed by X-ray diffraction (XRD) technique as well as Fourier transform infrared (FTIR) spectroscopy analysis. The enhancement of β phase increases as compared to (α) phases with volume fraction (ϕ) of nanofiller (BNT) in the matrix (PVDF) due to internal stress at the interface as well as structural modification of PVDF matrix. BNT-PVDF nanocomposites (with ϕ=10) showed a high dielectric constant (ɛr ≈ 78) relative to pure PVDF (ɛr ≈ 10) at 100 Hz. In addition to this, it exhibits relaxor type ferroelectric behavior with energy storage efficiency up to 77% for the volume fraction (ϕ) of 10.
Twinning and martensite in a 304 austenitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yongfeng; Li, Xi; Sun, Xin
2012-08-30
The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyondmore » that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Lavender, Curt
2015-05-08
Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; ...
2017-11-08
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Diurnal fluctuations in brain volume: Statistical analyses of MRI from large populations.
Nakamura, Kunio; Brown, Robert A; Narayanan, Sridar; Collins, D Louis; Arnold, Douglas L
2015-09-01
We investigated fluctuations in brain volume throughout the day using statistical modeling of magnetic resonance imaging (MRI) from large populations. We applied fully automated image analysis software to measure the brain parenchymal fraction (BPF), defined as the ratio of the brain parenchymal volume and intracranial volume, thus accounting for variations in head size. The MRI data came from serial scans of multiple sclerosis (MS) patients in clinical trials (n=755, 3269 scans) and from subjects participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI, n=834, 6114 scans). The percent change in BPF was modeled with a linear mixed effect (LME) model, and the model was applied separately to the MS and ADNI datasets. The LME model for the MS datasets included random subject effects (intercept and slope over time) and fixed effects for the time-of-day, time from the baseline scan, and trial, which accounted for trial-related effects (for example, different inclusion criteria and imaging protocol). The model for ADNI additionally included the demographics (baseline age, sex, subject type [normal, mild cognitive impairment, or Alzheimer's disease], and interaction between subject type and time from baseline). There was a statistically significant effect of time-of-day on the BPF change in MS clinical trial datasets (-0.180 per day, that is, 0.180% of intracranial volume, p=0.019) as well as the ADNI dataset (-0.438 per day, that is, 0.438% of intracranial volume, p<0.0001), showing that the brain volume is greater in the morning. Linearly correcting the BPF values with the time-of-day reduced the required sample size to detect a 25% treatment effect (80% power and 0.05 significance level) on change in brain volume from 2 time-points over a period of 1year by 2.6%. Our results have significant implications for future brain volumetric studies, suggesting that there is a potential acquisition time bias that should be randomized or statistically controlled to account for the day-to-day brain volume fluctuations. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Mitsuhiro; Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp; Nakamura, Akira
2012-04-01
Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports,more » was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the negligible range in achieving dose escalation with intensity-modulated RT combined with BH at EE.« less
Mitigation of biases in SMOS Level 2 soil moisture retrieval algorithm
NASA Astrophysics Data System (ADS)
Mahmoodi, Ali; Richaume, Philippe; Kerr, Yann
2017-04-01
The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency (ESA) relies on the L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer models to retrieve soil moisture (SM). These models require, as input, parameters which characterize the target like soil water content and temperature. The Soil Water Volume at Level 1 (SWVL1) from the European Centre for Medium-Range Weather Forecast (ECMWF) is used in the SMOS Level 2 SM algorithms as both an initial guess for SM in the iterative retrieval process and to compute fixed contributions from the so called "default" fractions. In case of mixed fractions of nominal (low vegetation land) and forest, retrieval is performed over one fraction while the contribution of the other is assumed to be fixed and known based on ECMWF data. Studies have shown that ECMWF SWVL1 is biased when compared to SMOS SM and represents values at a deeper layer of soil ( 7 cm) than that represented by SMOS ( 2 to 5 cm). This study uses a well know bias reduction technique based on matching of the Cumulative Distribution Functions (CDF) of the two distributions to help reduce the biases. Early results using a linear matching method provide very encouraging results. A complication with respect to performing CDF matching is that SMOS SM values are not available where they are needed, i.e. over the default fractions. In order to remedy this, we treat mixed fractions as homogeneous targets to retrieve SM over the whole target. The obtained values are then used to derive the CDF matching coefficients. A set of CDF coefficients derived using average and standard deviation of soil moisture values for 2014 has been used in reprocessing SMOS data for 2014 and 2015, as well as over selected sites (with in-situ data) over a longer period. The 2014 was selected due to its lower Radio Frequency Interference (RFI) contamination in comparison with other years. The application of CDF coefficients has lead to a wetter SM for many pixels (both in 2014 and 2015), where pixels are close to forested areas. It has also led to improvements in the frequency of successful retrievals for these pixels. These results are in agreement with our current state of knowledge that SMOS is dryer than expected near forests, and hence are encouraging and in support of future incorporation of CDF matching in the operational processor. We also discuss the performances of the CDF matched SM values in comparison with the operational ones over a number of sites where in-situ data is available, like Soil Climate Analysis Network (SCAN) in North America.
Roshani, G H; Karami, A; Khazaei, A; Olfateh, A; Nazemi, E; Omidi, M
2018-05-17
Gamma ray source has very important role in precision of multi-phase flow metering. In this study, different combination of gamma ray sources (( 133 Ba- 137 Cs), ( 133 Ba- 60 Co), ( 241 Am- 137 Cs), ( 241 Am- 60 Co), ( 133 Ba- 241 Am) and ( 60 Co- 137 Cs)) were investigated in order to optimize the three-phase flow meter. Three phases were water, oil and gas and the regime was considered annular. The required data was numerically generated using MCNP-X code which is a Monte-Carlo code. Indeed, the present study devotes to forecast the volume fractions in the annular three-phase flow, based on a multi energy metering system including various radiation sources and also one NaI detector, using a hybrid model of artificial neural network and Jaya Optimization algorithm. Since the summation of volume fractions is constant, a constraint modeling problem exists, meaning that the hybrid model must forecast only two volume fractions. Six hybrid models associated with the number of used radiation sources are designed. The models are employed to forecast the gas and water volume fractions. The next step is to train the hybrid models based on numerically obtained data. The results show that, the best forecast results are obtained for the gas and water volume fractions of the system including the ( 241 Am- 137 Cs) as the radiation source. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishibashi, Hidemi
2009-03-01
Laboratory measurements of viscosity were done for basalt erupted in 1707 AD from Fuji volcano, Japan, using a concentric cylinder rotational viscometer at temperatures of 1297-1157 °C, 1 atm pressure, and fO 2 near the Ni-NiO buffer. On cooling, elongated plagioclase crystals with a mean length/width ratio of ca. 8.5 appeared at 1237 °C, followed by olivine at 1157 °C. At progressively lower temperatures, the total crystal volume fraction increased monotonously to ca. 0.25; viscosity increased from 38.9 to 765 Pa s at a shear strain rate of 1 s - 1 . This basalt magma behaves as a Newtonian fluid at temperatures greater than 1217 °C, but shear-thinning behavior occurs at temperatures less than 1197 °C because of the suspended plagioclase crystals. This behavior is well approximated as a power law fluid. At the onset of shear thinning, the crystal volume fraction was between 0.06 and 0.13, which is attributed to the pronounced lath-shape of plagioclase crystals. The relative viscosity increases monotonously with increase of crystal volume fraction at a constant shear strain rate, and with decrease of shear strain rate at a constant crystal volume fraction. A modified form of the Krieger-Dougherty equation is introduced herein. It enables us to describe the dependencies of relative viscosity on both the crystal volume fraction and shear strain rate, and consequently the onset of shear-thinning behavior.
Kälin, Pascal S; Crawford, Rebecca J; Marcon, Magda; Manoliu, Andrei; Bouaicha, Samy; Fischer, Michael A; Ulbrich, Erika J
2018-04-23
We aimed to provide mean values for fat-fraction and volume for full-length bilateral rotator cuff and deltoid muscles in asymptomatic adults selected on the basis of their good musculoskeletal and systemic health, and to understand the influence of gender, age, and arm dominance. Seventy-six volunteers aged 20 to 60 years who were screened for normal BMI and high general health were included in the study. MRI was performed at 3 Tesla using three-point DIXON sequences. Volume and fat-signal fraction of the rotator cuff muscles and the deltoid muscle were determined with semi-automated segmentation of entire muscle lengths. Differences according to age, gender, and handedness per muscle were evaluated. Fat-signal fractions were comparable between genders (mean ± 2 SD, 95% CI, women 7.0 ± 3.0; 6.8-7.2%, men 6.8 ± 2.7; 6.7-7.0%) but did not show convincing changes with age. Higher shoulder muscle volume and lower fat-signal fraction in the dominant arm were shown for teres minor and deltoid (p < 0.01) with similar trends shown for the other rotator cuff muscles. Bilateral fat-signal fractions and volumes based on entire length shoulder muscles in asymptomatic 20-60 year old adults may provide reference for clinicians. Differences shown according to arm dominance should be considered and may rationalize the need for bilateral imaging in determining appropriate management.
Analyzing near infrared scattering from human skin to monitor changes in hematocrit
NASA Astrophysics Data System (ADS)
Chaiken, Joseph; Deng, Bin; Goodisman, Jerry; Shaheen, George; Bussjager, R. J.
2012-01-01
The leading preventable cause of death, world-wide, civilian or military, for all people between the ages of 18-45 is undetected internal hemorrhage. Autonomic compensation mechanisms mask changes such as e.g. hematocrit fluctuations that could give early warning if only they could be monitored continuously with reasonable degrees of precision and relative accuracy. Probing tissue with near infrared radiation (NIR) simultaneously produces remitted fluorescence and Raman scattering (IE) plus Rayleigh/Mie light scattering (EE) that noninvasively give chemical and physical information about the materials and objects within. We model tissue as a three-phase system: plasma and red blood cell (RBC) phases that are mobile and a static tissue phase. In vivo, any volume of tissue naturally experiences spatial and temporal fluctuations of blood plasma and RBC content. Plasma and RBC fractions may be discriminated from each other on the basis of their physical, chemical and optical properties. Thus IE and EE from NIR probing yield information about these fractions. Assuming there is no void volume in viable tissue, or that void volume is constant, changes in plasma and RBC volume fractions may be calculated from simultaneous measurements of the two observables, EE and IE. In a previously published analysis we showed the underlying phenomenology but did not provide an algorithm for calculating volume fractions from experimental data. Here we present a simple analysis that allows continuous monitoring of fluid fraction and hematocrit (Hct) changes by measuring IE and EE, and apply it to some experimental in vivo measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kai
Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cutmore » by the foil surface. The method can be performed on a regular foil specimen with a modern LaB{sub 6} or field-emission-gun transmission electron microscope. Precisions around ± 16% have been obtained for precipitate volume fractions of needle-like β″/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is close to that directly obtained using 3DAP analysis by a misfit of 4.5%, and the estimated precision for number density measurement is about ± 11%. The limitations of the method are also discussed. - Highlights: •A facile method for measuring volume fraction of nano-precipitates based on CBED •An equation to compensate for small invisible precipitates, with 3DAP verification •Precisions around ± 16% for volume fraction and ± 11% for number density.« less
Habibi, Mohammadali; Samiei, Sanaz; Ambale Venkatesh, Bharath; Opdahl, Anders; Helle-Valle, Thomas M; Zareian, Mytra; Almeida, Andre L C; Choi, Eui-Young; Wu, Colin; Alonso, Alvaro; Heckbert, Susan R; Bluemke, David A; Lima, João A C
2016-08-01
Early detection of structural changes in left atrium (LA) before atrial fibrillation (AF) development could be helpful in identification of those at higher risk for AF. Using cardiac magnetic resonance imaging, we examined the association of LA volume and function, and incident AF in a multiethnic population free of clinical cardiovascular diseases. In a case-cohort study embedded in MESA (Multi-Ethnic Study of Atherosclerosis), baseline LA size and function assessed by cardiac magnetic resonance feature-tracking were compared between 197 participants with incident AF and 322 participants randomly selected from the whole MESA cohort. Participants were followed up for 8 years. Incident AF cases had a larger LA volume and decreased passive, active, and total LA emptying fractions and peak global LA longitudinal strain (peak LA strain) at baseline. In multivariable analysis, elevated LA maximum volume index (hazard ratio, 1.38 per SD; 95% confidence interval, 1.01-1.89) and decreased peak LA strain (hazard ratio, 0.68 per SD; 95% confidence interval, 0.48-0.96), and passive and total LA emptying fractions (hazard ratio for passive LA emptying fractions, 0.55 per SD; 95% confidence interval, 0.40-0.75 and hazard ratio for active LA emptying fractions, 0.70 per SD; 95% confidence interval, 0.52-0.95), but not active LA emptying fraction, were associated with incident AF. Elevated LA volumes and decreased passive and total LA emptying fractions were independently associated with incident AF in an asymptomatic multiethnic population. Including LA functional variables along with other risk factors of AF may help to better risk stratify individuals at risk of AF development. © 2016 American Heart Association, Inc.
Modeling the effects of pH and ionic strength on swelling of anionic polyelectrolyte gels
NASA Astrophysics Data System (ADS)
Drozdov, A. D.; deClaville Christiansen, J.
2015-07-01
A constitutive model is developed for the elastic response of an anionic polyelectrolyte gel under swelling in water with an arbitrary pH and an arbitrary molar fraction of dissolved monovalent salt. A gel is treated as a three-phase medium consisting of a solid phase (polymer network), solvent (water), and solute (mobile ions). Transport of solvent and solute is thought of as their diffusion through the polymer network accelerated by an electric field formed by mobile and fixed ions and accompanied by chemical reactions (dissociation of functional groups attached to polymer chains and formation of ion pairs between bound charges and mobile counter-ions). Constitutive equations are derived by means of the free energy imbalance inequality for an arbitrary three-dimensional deformation with finite strains. These relations are applied to analyze equilibrium swelling diagrams on poly(acrylic acid) gel, poly(methacrylic acid) gel, and three composite hydrogels under water uptake in a bath (i) with a fixed molar fraction of salt and varied pH, and (ii) with a fixed pH and varied molar fraction of salt. To validate the ability of the model to predict observations quantitatively, material constants are found by matching swelling curves under one type of experimental conditions and results of simulation are compared with experimental data in the other type of tests.
Examining the effect of galaxy evolution on the stellar-halo mass relation in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Kulier, Andrea; Padilla, Nelson; Schaye, Joop; Crain, Robert; Schaller, Matthieu; Bower, Richard; Theuns, Tom; Paillas, Enrique
2018-01-01
The EAGLE hydrodynamical simulation was used in Matthee et al. 2016 to examine the scatter in the stellar mass-halo mass relation of central galaxies, finding that the stellar mass (M*) correlates well with the maximum circular velocity (Vmax) of the host halo, but with a substantial scatter that does not correlate significantly with other host halo properties. Here we further examine the scatter in the stellar mass-halo mass relation of central galaxies in EAGLE, its correlation with other properties, and its origin. We find that at fixed Vmax, galaxies with lower concentration have younger stellar populations, as expected from the relationship between concentration and halo assembly time. However, at fixed Vmax and halo concentration, galaxies with larger M* have younger stellar ages, so that combining the two effects, galaxies with younger stellar ages at fixed halo mass have higher stellar masses. The host halos of galaxies with larger M* at fixed Vmax and concentration also contain more gas than those with smaller stellar masses at z = 0.1, i.e. the baryon fraction of the halos is larger. There is an even stronger correlation between the scatter in M* at z = 0.1 and the scatter in the baryon fraction of the galaxy's progenitors at z ~ 1, such that the latter sets ~50% of the scatter in M* at z = 0.1. We conclude that most of the scatter between Vmax and M* at z = 0.1 is set at earlier redshifts by the scatter in the baryon fraction of halos, which in turn is primarily the result of differences in feedback strength within halos.
Scanning Cloud Radar Observations at the ARM sites
NASA Astrophysics Data System (ADS)
Kollias, P.; Clothiaux, E. E.; Shupe, M.; Widener, K.; Bharadwaj, N.; Miller, M. A.; Verlinde, H.; Luke, E. P.; Johnson, K. L.; Jo, I.; Tatarevic, A.; Lamer, K.
2012-12-01
Recently, the DOE Atmospheric Radiation Measurement (ARM) program upgraded its fixed and mobile facilities with the acquisition of state-of-the-art scanning, dual-wavelength, polarimetric, Doppler cloud radars. The scanning ARM cloud radars (SACR's) are the most expensive and significant radar systems at all ARM sites and eight SACR systems will be operational at ARM sites by the end of 2013. The SACR's are the primary instruments for the detection of 3D cloud properties (boundaries, volume cloud fractional coverage, liquid water content, dynamics, etc.) beyond the soda-straw (profiling) limited view. Having scanning capabilities with two frequencies and polarization allows more accurate probing of a variety of cloud systems (e.g., drizzle and shallow, warm rain), better correction for attenuation, use of attenuation for liquid water content retrievals, and polarimetric and dual-wavelength ratio characterization of non-spherical particles for improved ice crystal habit identification. Examples of SACR observations from four ARM sites are presented here: the fixed sites at Southern Great Plains (SGP) and North Slope of Alaska (NSA), and the mobile facility deployments at Graciosa Island, Azores and Cape Cod, Massachusetts. The 3D cloud structure is investigated both at the macro-scale (20-50 km) and cloud-scale (100-500 m). Doppler velocity measurements are corrected for velocity folding and are used either to describe the in-cloud horizontal wind profile or the 3D vertical air motions.
Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann
2014-01-01
Solid-liquid separation of animal slurry, with solid fractions used for composting, has gained interest recently. However, efficient composting of separated animal slurry solid fractions (SSFs) requires a better understanding of the process dynamics in terms of important physical parameters and their interacting physical relationships in the composting matrix. Here we monitored moisture content, bulk density, particle density and air-filled porosity (AFP) during composting of SSF collected from four commercially available solid-liquid separators. Composting was performed in laboratory-scale reactors for 30 days (d) under forced aeration and measurements were conducted on the solid samples at the beginning of composting and at 10-d intervals during composting. The results suggest that differences in initial physical properties of SSF influence the development of compost maximum temperatures (40-70 degreeC). Depending on SSF, total wet mass and volume losses (expressed as % of initial value) were up to 37% and 34%, respectively. After 30 d of composting, relative losses of total solids varied from 17.9% to 21.7% and of volatile solids (VS) from 21.3% to 27.5%, depending on SSF. VS losses in all composts showed different dynamics as described by the first-order kinetic equation. The estimated component particle density of 1441 kg m-3 for VS and 2625 kg m-3 for fixed solids can be used to improve estimates of AFP for SSF within the range tested. The linear relationship between wet bulk density and AFP reported by previous researchers held true for SSF.
Dual-Band Band-Pass Filter with Fixed Low Band and Fluidically-Tunable High Band
Park, Eiyong; Lim, Daecheon
2017-01-01
In this work, we present a dual-band band-pass filter with fixed low-band resonant frequency and tunable high-band resonant frequency. The proposed filter consists of two split-ring resonators (SRRs) with a stub and microfluidic channels. The lower resonant frequency is determined by the length of the SRR alone, whereas the higher resonant frequency is determined by the lengths of the SRR and the stub. Using this characteristic, we fix the lower resonant frequency by fixing the SRR length and tune the higher resonant frequency by controlling the stub length by injecting liquid metal in the microfluidic channel. We fabricated the filter on a Duroid substrate. The microfluidic channel was made from polydimethylsiloxane (PDMS), and eutectic gallium–indium (EGaIn) was used as the liquid metal. This filter operates in two states—with, and without, the liquid metal. In the state without the liquid metal, the filter has resonant frequencies at 1.85 GHz and 3.06 GHz, with fractional bandwidths of 4.34% and 2.94%, respectively; and in the state with the liquid metal, it has resonant frequencies at 1.86 GHz and 2.98 GHz, with fractional bandwidths of 4.3% and 2.95%, respectively. PMID:28813001
Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J
2016-04-01
Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Schiavo, M; Bagnara, M C; Pomposelli, E; Altrinetti, V; Calamia, I; Camerieri, L; Giusti, M; Pesce, G; Reitano, C; Bagnasco, M; Caputo, M
2013-09-01
Radioiodine is a common option for treatment of hyperfunctioning thyroid nodules. Due to the expected selective radioiodine uptake by adenoma, relatively high "fixed" activities are often used. Alternatively, the activity is individually calculated upon the prescription of a fixed value of target absorbed dose. We evaluated the use of an algorithm for personalized radioiodine activity calculation, which allows as a rule the administration of lower radioiodine activities. Seventy-five patients with single hyperfunctioning thyroid nodule eligible for 131I treatment were studied. The activities of 131I to be administered were estimated by the method described by Traino et al. and developed for Graves'disease, assuming selective and homogeneous 131I uptake by adenoma. The method takes into account 131I uptake and its effective half-life, target (adenoma) volume and its expected volume reduction during treatment. A comparison with the activities calculated by other dosimetric protocols, and the "fixed" activity method was performed. 131I uptake was measured by external counting, thyroid nodule volume by ultrasonography, thyroid hormones and TSH by ELISA. Remission of hyperthyroidism was observed in all but one patient; volume reduction of adenoma was closely similar to that assumed by our model. Effective half-life was highly variable in different patients, and critically affected dose calculation. The administered activities were clearly lower with respect to "fixed" activities and other protocols' prescription. The proposed algorithm proved to be effective also for single hyperfunctioning thyroid nodule treatment and allowed a significant reduction of administered 131I activities, without loss of clinical efficacy.
Hao, Tian
2015-09-14
The underlying relationships among viscosity equations of glass liquids and colloidal suspensions are explored with the aid of free volume concept. Viscosity equations of glass liquids available in literature are focused and found to have a same physical basis but different mathematical expressions for the free volume. The glass transitions induced by temperatures in glass liquids and the percolation transition induced by particle volume fractions in colloidal suspensions essentially are a second order phase transition: both those two transitions could induce the free volume changes, which in turn determines how the viscosities are going to change with temperatures and/or particle volume fractions. Unified correlations of the free volume to both temperatures and particle volume fractions are thus proposed. The resulted viscosity equations are reducible to many popular viscosity equations currently widely used in literature; those equations should be able to cover many different types of materials over a wide temperature range. For demonstration purpose, one of the simplified versions of those newly developed equations is compared with popular viscosity equations and the experimental data: it can well fit the experimental data over a wide temperature range. The current work reveals common physical grounds among various viscosity equations, deepening our understanding on viscosity and unifying the free volume theory across many different systems.
NASA Astrophysics Data System (ADS)
Mora, A.; Skurtys, O.; Osorio, F.
2015-04-01
The rheological properties of high molecular weight POE and CMC suspensions by adding micro-metric solid particles such as fibers or spheres were studied. The volume fraction, Φ, was varied between 0 and 0.4. Their rheological properties were obtained after fitting a Cross model. For POE suspending fluid with spherical particle, the behavior of the normalized steady shear viscosity, μ/μ0, as function of the fraction volume followed a Thomas model. However, for CMC suspensions, μ/μ0 seems to be lineal with Φ. For a pure fluid or a suspension with Φ = 0; 2, the suspension presented an elastic behavior whereas it was observed a viscous behavior when the volume fraction was increased.
Harbaugh, Calista M; Shlykov, Maksim A; Tsuchida, Ryan E; Holcombe, Sven A; Hirschl, Jake; Wang, Stewart C; Ehrlich, Peter F
2015-06-01
Motor vehicle crashes are the leading cause of injury-related mortality in children, with a higher rate of multiorgan injuries than in adults. This may be related to increased solid organ volume relative to abdominal cavity and decreased protection of an underdeveloped cartilaginous rib cage in young children. To date, these anatomic relationships have not been fully described. Our study used analytic morphomics to obtain precise measures of the pediatric liver, spleen, kidneys, and ribs. This pilot study included 215 trauma patients (aged 0-18 years) with anonymized computed tomography (CT) scans. Liver, spleen, and kidney volumes were modeled using semiautomatic algorithms (MATLAB 2013a, MathWorks Inc., Natick, MA). Thirty-one scans were adequate to model the rib cage. Pearson's r was used to correlate absolute organ volume, fractional organ volume, and organ exposure with age and weight. Spleen, right and left kidney, and liver volumes increased with age and weight (p < 0.01). Right/left kidney and liver fractional volumes decreased with age (p < 0.01), whereas spleen fractional volume remained relatively constant. Exposed surface area of the liver only significantly decreased with age in the anterior (p < 0.01), right (p < 0.01), and posterior views (p = 0.02). With this study, we have demonstrated the ability to model solid organ and rib cage anatomy of children using cross-sectional imaging. In younger children, there may be a decrease in fractional organ volume and increase in liver surface exposure, although analysis of a larger sample size is warranted. In the future, this information may be used to improve the design of safety restraints in motor vehicles.
NASA Astrophysics Data System (ADS)
Diaz, Victor Alfonzo; Giusti, Andrea
2018-03-01
The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.
Thermodynamic Pressure/Temperature Transducer Health Check
NASA Technical Reports Server (NTRS)
Immer, Christopher D. (Inventor); Eckhoff, Anthony (Inventor); Medelius, Pedro J. (Inventor); Deyoe, Richard T. (Inventor); Starr, Stanley O. (Inventor)
2004-01-01
A device and procedure for checking the health of a pressure transducer in situ is provided. The procedure includes measuring a fixed change in pressure above ambient pressure and a fixed change in pressure below ambient pressure. This is done by first sealing an enclosed volume around the transducer with a valve. A piston inside the sealed volume is increasing the pressure. A fixed pressure below ambient pressure is obtained by opening the valve, driving the piston The output of the pressure transducer is recorded for both the overpressuring and the underpressuring. By comparing this data with data taken during a preoperative calibration, the health of the transducer is determined from the linearity, the hysteresis, and the repeatability of its output. The further addition of a thermometer allows constant offset error in the transducer output to be determined.
Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.
Shah, Kamal; Khan, Rahmat Ali
2016-01-01
In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.
Morris, Denise; Podolski, Joseph; Kirsch, Alan; Wiehle, Ronald; Fleckenstein, Lawrence
2011-12-01
Telapristone is a selective progesterone antagonist that is being developed for the long-term treatment of symptoms associated with endometriosis and uterine fibroids. The population pharmacokinetics of telapristone (CDB-4124) and CDB-4453 was investigated using nonlinear mixed-effects modeling. Data from two clinical studies (n = 32) were included in the analysis. A two-compartment (parent) one compartment (metabolite) mixture model (with two populations for apparent clearance) with first-order absorption and elimination adequately described the pharmacokinetics of telapristone and CDB-4453. Telapristone was rapidly absorbed with an absorption rate constant (Ka) of 1.26 h(-1). Moderate renal impairment resulted in a 74% decrease in Ka. The population estimates for oral clearance (CL/F) for the two populations were 11.6 and 3.34 L/h, respectively, with 25% of the subjects being allocated to the high-clearance group. Apparent volume of distribution for the central compartment (V2/F) was 37.4 L, apparent inter-compartmental clearance (Q/F) was 21.9 L/h, and apparent peripheral volume of distribution for the parent (V4/F) was 120 L. The ratio of the fraction of telapristone converted to CDB-4453 to the distribution volume of CDB-4453 (Fmet(est)) was 0.20/L. Apparent volume of distribution of the metabolite compartment (V3/F) was fixed to 1 L and apparent clearance of the metabolite (CLM/F) was 2.43 L/h. A two-compartment parent-metabolite model adequately described the pharmacokinetics of telapristone and CDB-4453. The clearance of telapristone was separated into two populations and could be the result of metabolism via polymorphic CYP3A5.
On the mechanism of injury to slowly frozen erythrocytes.
Pegg, D E; Diaper, M P
1988-01-01
When cells are frozen slowly in aqueous suspensions, the solutes in the suspending solution concentrate as the amount of ice increases; the cells undergo osmotic dehydration and are sequestered in ever-narrowing liquid-filled channels. Cryoprotective solutes, such as glycerol, reduce the amount of ice that forms at any specified subzero temperature, thereby controlling the buildup in concentration of those other solutes present, as well as increasing the volume of the channels that remain to accommodate the cells. It has generally been thought that freezing injury is mediated by the increase in electrolyte concentration in the milieu surrounding the cells, rather than reduction of temperature or any direct action of ice. In this study we have frozen human erythrocytes in isotonic solutions of sodium chloride and glycerol and have demonstrated a correlation between the extent of damage at specific subzero temperatures, and that caused by the action at 0 degrees C of solutions having the same composition as those produced by freezing. The cell lysis observed increased directly with glycerol concentration, both in the freezing experiments and when the cells were exposed to corresponding solutions at 0 degrees C, showing that the concentration of sodium chloride alone is not sufficient to account quantitatively for the damage observed. We then studied the effect of freezing in anisotonic solutions to break the fixed relationship between solute concentration and the volume of the unfrozen fraction, as described by Mazur, P., W. F. Rall, and N. Rigopoulos (1981. Biophys. J. 653-675). We confirmed their experimental findings, but we explain them differently. We ascribe the apparently dominant effect of the unfrozen fraction to the fact that the cells were frozen in, and returned to, anisotonic solutions in which their volume was either less than, or greater than, their physiological volume. When similar cell suspensions were subjected to a similar cycle of increase and then decrease in solution strength, but in the absence of ice (at 20 degrees C), a similar pattern of hemolysis was observed. We conclude that freezing injury to human erythrocytes is due solely to changes that occur in the composition of their surrounding milieu, and is most probably mediated by a temporary leak in the plasma membrane that occurs during the thawing (reexpansion) phase. PMID:3207835
Coburn-Litvak, P S; Tata, D A; Gorby, H E; McCloskey, D P; Richardson, G; Anderson, B J
2004-01-01
Corticosterone (CORT), the predominant glucocorticoid in rodents, is known to damage hippocampal area CA3. Here we investigate how that damage is represented at the cellular and ultrastructural level of analyses. Rats were injected with CORT (26.8 mg/kg, s.c.) or vehicle for 56 days. Cell counts were estimated with the physical disector method. Glial and mitochondrial volume fractions were obtained from electron micrographs. The effectiveness of the CORT dose used was demonstrated in two ways. First, CORT significantly inhibited body weight gain relative to vehicles. Second, CORT significantly reduced adrenal gland, heart and gastrocnemius muscle weight. Both the adrenal and gastrocnemius muscle weight to body weight ratios were also significantly reduced. Although absolute brain weight was reduced, the brain to body weight ratio was higher in the CORT group relative to vehicles, suggesting that the brain is more resistant to the effects of CORT than many peripheral organs and muscles. Consistent with that interpretation, CORT did not alter CA3 cell density, cell layer volume, or apical dendritic neuropil volume. Likewise, CORT did not significantly alter glial volume fraction, but did reduce mitochondrial volume fraction. These findings highlight the need for ultrastructural analyses in addition to cellular level analyses before conclusions can be drawn about the damaging effects of prolonged CORT elevations. The relative reduction in mitochondria may indicate a reduction in bioenergetic capacity that, in turn, could render CA3 vulnerable to metabolic challenges.
Höfler, K; Schwarzer, S
2000-06-01
Building on an idea of Fogelson and Peskin [J. Comput. Phys. 79, 50 (1988)] we describe the implementation and verification of a simulation technique for systems of non-Brownian particles in fluids at Reynolds numbers up to about 20 on the particle scale. This direct simulation technique fills a gap between simulations in the viscous regime and high-Reynolds-number modeling. It also combines sufficient computational accuracy with numerical efficiency and allows studies of several thousand, in principle arbitrarily shaped, extended and hydrodynamically interacting particles on regular work stations. We verify the algorithm in two and three dimensions for (i) single falling particles and (ii) a fluid flowing through a bed of fixed spheres. In the context of sedimentation we compute the volume fraction dependence of the mean sedimentation velocity. The results are compared with experimental and other numerical results both in the viscous and inertial regime and we find very satisfactory agreement.
Effects of single-walled carbon nanotubes on lysozyme gelation.
Tardani, Franco; La Mesa, Camillo
2014-09-01
The possibility to disperse carbon nanotubes in biocompatible matrices has got substantial interest from the scientific community. Along this research line, the inclusion of single walled carbon nanotubes in lysozyme-based hydrogels was investigated. Experiments were performed at different nanotube/lysozyme weight ratios. Carbon nanotubes were dispersed in protein solutions, in conditions suitable for thermal gelation. The state of the dispersions was determined before and after thermal treatment. Rheology, dynamic light scattering and different microscopies investigated the effect that carbon nanotubes exert on gelation. The gelation kinetics and changes in gelation temperature were determined. The effect of carbon and lysozyme content on the gel properties was, therefore, determined. At fixed lysozyme content, moderate amounts of carbon nanotubes do not disturb the properties of hydrogel composites. At moderately high volume fractions in carbon nanotubes, the gels become continuous in both lysozyme and nanotubes. This is because percolating networks are presumably formed. Support to the above statements comes by rheology. Copyright © 2014 Elsevier B.V. All rights reserved.
Numerical modeling of the early interaction of a planar shock with a dense particle field
NASA Astrophysics Data System (ADS)
Regele, Jonathan; Blanquart, Guillaume
2011-11-01
Dense compressible multiphase flows are of interest for multiphase turbomachinary and energetic material detonations. Still, there is little understanding of the detailed interaction mechanisms between shock waves and dense (particle volume fraction αd > 0 . 001) particle fields. A recent experimental study [Wagner et al, AIAA Aero. Sci., Orlando, 2011-188] has focused on the impingement of a planar shock wave on a dense particle curtain. In the present work, numerical solutions of the Euler equations in one and two dimensions are performed for a planar shock wave impinging on a fixed particle curtain and are compared to the experimental data for early times. Comparison of the one- and two-dimensional results demonstrate that the one-dimensional description captures the large scale flow behavior, but is inadequate to capture all the details observed in the experiments. The two-dimensional solutions are shown to reproduce the experimentally observed flow structures and provide insight into how these details originate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, Benjamin V.; Mao, Yao -Yuan; Becker, Matthew R.
Empirical methods for connecting galaxies to their dark matter halos have become essential for interpreting measurements of the spatial statistics of galaxies. In this work, we present a novel approach for parameterizing the degree of concentration dependence in the abundance matching method. Furthermore, this new parameterization provides a smooth interpolation between two commonly used matching proxies: the peak halo mass and the peak halo maximal circular velocity. This parameterization controls the amount of dependence of galaxy luminosity on halo concentration at a fixed halo mass. Effectively this interpolation scheme enables abundance matching models to have adjustable assembly bias in the resulting galaxy catalogs. With the newmore » $$400\\,\\mathrm{Mpc}\\,{h}^{-1}$$ DarkSky Simulation, whose larger volume provides lower sample variance, we further show that low-redshift two-point clustering and satellite fraction measurements from SDSS can already provide a joint constraint on this concentration dependence and the scatter within the abundance matching framework.« less
Lehmann, Benjamin V.; Mao, Yao -Yuan; Becker, Matthew R.; ...
2016-12-28
Empirical methods for connecting galaxies to their dark matter halos have become essential for interpreting measurements of the spatial statistics of galaxies. In this work, we present a novel approach for parameterizing the degree of concentration dependence in the abundance matching method. Furthermore, this new parameterization provides a smooth interpolation between two commonly used matching proxies: the peak halo mass and the peak halo maximal circular velocity. This parameterization controls the amount of dependence of galaxy luminosity on halo concentration at a fixed halo mass. Effectively this interpolation scheme enables abundance matching models to have adjustable assembly bias in the resulting galaxy catalogs. With the newmore » $$400\\,\\mathrm{Mpc}\\,{h}^{-1}$$ DarkSky Simulation, whose larger volume provides lower sample variance, we further show that low-redshift two-point clustering and satellite fraction measurements from SDSS can already provide a joint constraint on this concentration dependence and the scatter within the abundance matching framework.« less
Controlled breathing protocols probe human autonomic cardiovascular rhythms
NASA Technical Reports Server (NTRS)
Cooke, W. H.; Cox, J. F.; Diedrich, A. M.; Taylor, J. A.; Beightol, L. A.; Ames, J. E. 4th; Hoag, J. B.; Seidel, H.; Eckberg, D. L.
1998-01-01
The purpose of this study was to determine how breathing protocols requiring varying degrees of control affect cardiovascular dynamics. We measured inspiratory volume, end-tidal CO2, R-R interval, and arterial pressure spectral power in 10 volunteers who followed the following 5 breathing protocols: 1) uncontrolled breathing for 5 min; 2) stepwise frequency breathing (at 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 Hz for 2 min each); 3) stepwise frequency breathing as above, but with prescribed tidal volumes; 4) random-frequency breathing (approximately 0.5-0.05 Hz) for 6 min; and 5) fixed-frequency breathing (0.25 Hz) for 5 min. During stepwise breathing, R-R interval and arterial pressure spectral power increased as breathing frequency decreased. Control of inspired volume reduced R-R interval spectral power during 0.1 Hz breathing (P < 0.05). Stepwise and random-breathing protocols yielded comparable coherence and transfer functions between respiration and R-R intervals and systolic pressure and R-R intervals. Random- and fixed-frequency breathing reduced end-tidal CO2 modestly (P < 0.05). Our data suggest that stringent tidal volume control attenuates low-frequency R-R interval oscillations and that fixed- and random-rate breathing may decrease CO2 chemoreceptor stimulation. We conclude that autonomic rhythms measured during different breathing protocols have much in common but that a stepwise protocol without stringent control of inspired volume may allow for the most efficient assessment of short-term respiratory-mediated autonomic oscillations.
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
NASA Technical Reports Server (NTRS)
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
A model of thermal conductivity for planetary soils: 2. Theory for cemented soils
NASA Astrophysics Data System (ADS)
Piqueux, S.; Christensen, P. R.
2009-09-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s-0.5 m-2 K-1) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than ˜1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface.
Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y
2015-02-24
Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhainaut, J.F.; Devaux, J.Y.; Monsallier, J.F.
1986-07-01
Continuous positive pressure ventilation is associated with a reduction in left ventricular preload and cardiac output, but the mechanisms responsible are controversial. The decrease in left ventricular preload may result exclusively from a decreased systemic venous return due to increased pleural pressure, or from an additional effect such as decreased left ventricular compliance. To determine the mechanisms responsible, we studied the changes in cardiac output induced by continuous positive pressure ventilation in eight patients with the adult respiratory distress syndrome. We measured cardiac output by thermodilution, and biventricular ejection fraction by equilibrium gated blood pool scintigraphy. Biventricular end-diastolic volumes weremore » then calculated by dividing stroke volume by ejection fraction. As positive end-expiratory pressure increased from 0 to 20 cm H/sub 2/O, stroke volume and biventricular end-diastolic volumes fell about 25 percent, and biventricular ejection fraction remained unchanged. At 20 cm H/sub 2/O positive end-expiratory pressure, volume expansion for normalizing cardiac output restored biventricular end-diastolic volumes without markedly changing biventricular end-diastolic transmural pressures. The primary cause of the reduction in left ventricular preload with continuous positive pressure ventilation appears to be a fall in venous return and hence in right ventricular stroke volume, without evidence of change in left ventricular diastolic compliance.« less
Thermal Dose Fractionation Affects Tumor Physiologic Response
Thrall, Donald E; Maccarini, Paolo; Stauffer, Paul; MacFall, James; Hauck, Marlene; Snyder, Stacey; Case, Beth; Linder, Keith; Lan, Lan; McCall, Linda; Dewhirst, Mark W.
2013-01-01
Purpose It is unknown whether a thermal dose should be administered using a few large fractions with higher temperatures or a larger number of fractions with lower temperatures. To evaluate this, we assessed the effect of administering the same total thermal dose, approximately 30 CEM43T90, in 1 versus 3–4 fractions per week, over 5 weeks. Materials and Methods Canine sarcomas were randomized to receive one of the hyperthermia fractionation schemes along with fractionated radiotherapy. Tumor response was based on changes in tumor volume, oxygenation, water diffusion quantified using MRI, and a panel of histologic and immunohistochemical endpoints. Results There was a greater reduction in tumor volume and water diffusion at the end of therapy In tumors receiving 1 hyperthermia fraction per week. There was a weak but significant association between improved tumor oxygenation 24 hours after the first hyperthermia treatment and extent of volume reduction at the end of therapy. Finally, the direction of change of HIF 1α and CA IX immunoreactivity after the first hyperthermia fraction was similar and there was an inverse relationship between temperature and the direction of change of CA IX. There were no significant changes in interstitial fluid pressure, VEGF, wVf, apoptosis or necrosis as a function of treatment group or temperature. Conclusions We did not identify an advantage to a 3–4/week hyperthermia prescription and response data pointed to a 1/week prescription being superior. PMID:22804741
Dalino Ciaramella, Paolo; Vertemati, Maurizio; Petrella, Duccio; Bonacina, Edgardo; Grossrubatscher, Erika; Duregon, Eleonora; Volante, Marco; Papotti, Mauro; Loli, Paola
2017-07-01
Diagnosis of benign and purely localized malignant adrenocortical lesions is still a complex issue. Moreover, histology-based diagnosis may suffer of a moment of subjectivity due to inter- and intra-individual variations. The aim of the present study was to assess, by computerized morphometry, the morphological features in benign and malignant adrenocortical neoplasms. Eleven adrenocortical adenomas (ACA) were compared with 18 adrenocortical cancers (ACC). All specimens were stained with H&E, cellular proliferation marker Ki-67 and reticulin. We generated a morphometric model based on the analysis of volume fractions occupied by Ki-67 positive and negative cells (nuclei and cytoplasm), vascular and inflammatory compartment; we also analyzed the surface fraction occupied by reticulin. We compared the quantitative data of Ki-67 obtained by morphometry with the quantification resulting from pathologist's visual reading. The volume fraction of Ki-67 positive cells in ACCs was higher than in ACAs. The volume fraction of nuclei in unit volume and the nuclear/cytoplasmic ratio in both Ki-67 negative cells and Ki-67 positive cells were prominent in ACCs. The surface fraction of reticulin was considerably lower in ACCs. Our computerized morphometric model is simple, reproducible and can be used by the pathologist in the histological workup of adrenocortical tumors to achieve precise and reader-independent quantification of several morphological characteristics of adrenocortical tumors. Copyright © 2017 Elsevier GmbH. All rights reserved.
Thermosetting resins with high fractions of free volume and inherently low dielectric constants.
Lin, Liang-Kai; Hu, Chien-Chieh; Su, Wen-Chiung; Liu, Ying-Ling
2015-08-18
This work demonstrates a new class of thermosetting resins, based on Meldrum's acid (MA) derivatives, which have high fractions of free volume and inherently low k values of about 2.0 at 1 MHz. Thermal decomposition of the MA groups evolves CO2 and acetone to create air-trapped cavities so as to reduce the dielectric constants.
A smoothed two- and three-dimensional interface reconstruction method
Mosso, Stewart; Garasi, Christopher; Drake, Richard
2008-04-22
The Patterned Interface Reconstruction algorithm reduces the discontinuity between material interfaces in neighboring computational elements. This smoothing improves the accuracy of the reconstruction for smooth bodies. The method can be used in two- and three-dimensional Cartesian and unstructured meshes. Planar interfaces will be returned for planar volume fraction distributions. Finally, the algorithm is second-order accurate for smooth volume fraction distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roar Skartlien; Espen Sollum; Andreas Akselsen
2012-07-01
A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it atmore » later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.« less
Application of a Model for Quenching and Partitioning in Hot Stamping of High-Strength Steel
NASA Astrophysics Data System (ADS)
Zhu, Bin; Liu, Zhuang; Wang, Yanan; Rolfe, Bernard; Wang, Liang; Zhang, Yisheng
2018-04-01
Application of quenching and partitioning process in hot stamping has proven to be an effective method to improve the plasticity of advanced high-strength steels (AHSSs). In this study, the hot stamping and partitioning process of advanced high-strength steel 30CrMnSi2Nb is investigated with a hot stamping mold. Given the specific partitioning time and temperature, the influence of quenching temperature on the volume fraction of microstructure evolution and mechanical properties of the above steel are studied in detail. In addition, a model for quenching and partitioning process is applied to predict the carbon diffusion and interface migration during partitioning, which determines the retained austenite volume fraction and final properties of the part. The predicted trends of the retained austenite volume fraction agree with the experimental results. In both cases, the volume fraction of retained austenite increases first and then decreases with the increasing quenching temperature. The optimal quenching temperature is approximately 290 °C for 30CrMnSi2Nb with the partition conditions of 425 °C and 20 seconds. It is suggested that the model can be used to help determine the process parameters to obtain retained austenite as much as possible.
Chen, Zhen; Zhao, Kong-Shuang; Guo, Lin; Feng, Cai-Hong
2007-04-28
Dielectric measurements were carried out on colloidal suspensions of palladium nanoparticle chains dispersed in poly(vinyl pyrrolidone)/ethylene glycol (PVP/EG) solution with different particle volume fractions, and dielectric relaxation with relaxation time distribution and small relaxation amplitude was observed in the frequency range from 10(5) to 10(7) Hz. By means of the method based on logarithmic derivative of the dielectric constant and a numerical Kramers-Kronig transform method, two dielectric relaxations were confirmed and dielectric parameters were determined from the dielectric spectra. The dielectric parameters showed a strong dependence on the volume fraction of palladium nanoparticle chain. Through analyzing limiting conductivity at low frequency, the authors found the conductance percolation phenomenon of the suspensions, and the threshold volume fraction is about 0.18. It was concluded from analyzing the dielectric parameters that the high frequency dielectric relaxation results from interfacial polarization and the low frequency dielectric relaxation is a consequence of counterion polarization. They also found that the dispersion state of the palladium nanoparticle chain in PVP/EG solution is dependent on the particle volume fraction, and this may shed some light on a better application of this kind of materials.
Effects of C and Si on strain aging of strain-based API X60 pipeline steels
NASA Astrophysics Data System (ADS)
Sung, Hyo Kyung; Lee, Dong Ho; Lee, Sunghak; Lee, Byeong-Joo; Hong, Seung-Pyo; Kim, Young-Woon; Yoo, Jang Yong; Hwang, Byoungchul; Shin, Sang Yong
2017-05-01
Four types of strain-based API X60 pipeline steels were fabricated by varying the C and Si contents, and the effects of C and Si on strain aging were investigated. The 0.05 wt% C steels consisted mainly of polygonal ferrite (PF), whereas the 0.08 wt% C steels consisted of acicular ferrite (AF). The volume fraction of AF increased with increasing C content because C is an austenite stabilizer element. The volume fractions of bainitic ferrite (BF) of the 0.15 wt% Si steels were higher than those of the 0.25 wt% Si steels, whereas the volume fractions of the secondary phases were lower. From the tensile properties before and after the aging process of the strainbased API X60 pipeline steels, the yield strength increased and the uniform and total elongation decreased, which is the strain aging effect. The strain aging effect in the strain-based API X60 pipeline steels was minimized when the volume fraction of AF was increased and secondary phases were distributed uniformly. On the other hand, an excessively high C content formed fine precipitates, and the strain aging effect occurred because of the interactions among dislocations and fine precipitates.
Tensile strength and fracture of cemented granular aggregates.
Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V
2012-11-01
Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.
NASA Astrophysics Data System (ADS)
Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan
2017-03-01
Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.
NASA Astrophysics Data System (ADS)
Masuram, N. B.; Roux, J. A.; Jeswani, A. L.
2016-06-01
Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.
High solid loading aqueous base metal/ceramic feedstock for injection molding
NASA Astrophysics Data System (ADS)
Behi, Mohammad
2001-07-01
Increasing volume fraction of metal powder in feedstock provided lower shrinkage. Reduction of the shrinkage results in better dimensional precision. The rheology of the feedstock material plays an important role to allowing larger volume fractions of the metal powder to be incorporated in the feedstock formulations. The viscosity of the feedstock mainly depends on the binder viscosity, powder volume fraction and characteristics of metal powder. Aqueous polysaccharide agar was used as a baseline binder system for this study. The effect of several gel-strengthening additives on 1.5wt% and 2wt% agar gel was evaluated. A new gel-strengthening additive was found to be the most effective among the others. The effect of other additives such as glucose, sucrose and fructose on viscosity of baseline binder and feedstock was investigated. Two new agar based binder compositions were developed. The use of these new binder formulations significantly improved the volume fraction of the metal powder, the stability of the feedstock, and reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel metal powders, one gas atomized and, the other water atomized, were used for this research.
Effect of martensitic transformation on springback behavior of 304L austenitic stainless steel
NASA Astrophysics Data System (ADS)
Fathi, H.; Mohammadian Semnani, H. R.; Emadoddin, E.; Sadeghi, B. Mohammad
2017-09-01
The present paper studies the effect of martensitic transformation on the springback behavior of 304L austenitic stainless steel. Martensite volume fraction was determined at the bent portion under various strain rates after bending test. Martensitic transformation has a significant effect on the springback behavior of this material. The findings of this study indicated that the amount of springback was reduced under a situation of low strain rate, while a higher amount of springback was obtained with a higher strain rate. The reason for this phenomenon is that higher work hardening occurs during the forming process with the low strain rate due to the higher martensite volume fraction, therefore the formability of the sheet is enhanced and it leads to a decreased amount of springback after the bending test. Dependency of the springback on the martensite volume fraction and strain rate was expressed as formulas from the results of the experimental tests and simulation method. Bending tests were simulated using LS-DYNA software and utilizing MAT_TRIP to determine the martensite volume fraction and strain under various strain rates. Experimental result reveals good agreement with the simulation method.
Mayhew, Terry M; Lucocq, John M
2008-03-01
In quantitative immunoelectron microscopy, subcellular compartments that are preferentially labelled with colloidal gold particles can be identified by estimating labelling densities (LDs) and relative labelling indices (RLIs). Hitherto, this approach has been limited to compartments which are either surface occupying (membranes) or volume occupying (organelles) but not a mixture of both (membranes and organelles). However, some antigens are known to translocate between membrane and organelle compartments and the problem then arises of expressing gold particle LDs in a consistent manner (e.g., as number per compartment profile area). Here, we present one possible solution to tackle this problem. With this method, each membrane is treated as a volume-occupying compartment and this is achieved by creating an acceptance zone at a fixed distance on each side of membrane images. Gold signal intensity is then expressed as an LD within the membrane profile area so created and this LD can be compared to LDs found in volume-occupying compartments. Acceptance zone width is determined largely by the expected dispersion of gold labelling. In some cases, the zone can be applied to all visible membrane images but there is a potential problem when image loss occurs due to the fact that membranes are not cut orthogonal to their surface but are tilted within the section. The solution presented here is to select a subset of clear images representing orthogonally sectioned membranes (so-called local vertical windows, LVWs). The fraction of membrane images forming LVWs can be estimated in two ways: goniometrically (by determining the angle at which images become unclear) or stereologically (by counting intersections with test lines). The fraction obtained by either method can then be used to calculate a factor correcting for membrane image loss. In turn, this factor is used to estimate the total gold labelling associated with the acceptance zone of the entire (volume-occupying) membrane. However calculated, the LDs over the chosen (membrane and organelle) compartments are used to obtain observed and expected gold particle counts. The observed distribution is determined simply by counting gold particles associated with each compartment. Next, an expected distribution is created by randomly superimposing test points and counting those hitting each compartment. LDs of the chosen compartments are used to calculate RLI and chi-squared values and these serve to identify those compartments in which there is preferential labelling. The methods are illustrated by synthetic and real data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Charles, E-mail: charles.mayo@umassmemorial.or; Yorke, Ellen; Merchant, Thomas E.
Publications relating brainstem radiation toxicity to quantitative dose and dose-volume measures derived from three-dimensional treatment planning were reviewed. Despite the clinical importance of brainstem toxicity, most studies reporting brainstem effects after irradiation have fewer than 100 patients. There is limited evidence relating toxicity to small volumes receiving doses above 60-64 Gy using conventional fractionation and no definitive criteria regarding more subtle dose-volume effects or effects after hypofractionated treatment. On the basis of the available data, the entire brainstem may be treated to 54 Gy using conventional fractionation using photons with limited risk of severe or permanent neurological effects. Smaller volumesmore » of the brainstem (1-10 mL) may be irradiated to maximum doses of 59 Gy for dose fractions <=2 Gy; however, the risk appears to increase markedly at doses >64 Gy.« less
NASA Astrophysics Data System (ADS)
Hustedt, C. J.; Lambert, P. K.; Kannan, V.; Huskins-Retzlaff, E. L.; Casem, D. T.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Gruner, S. M.; Ramesh, K. T.; Hufnagel, T. C.
2018-04-01
We report in situ time-resolved measurements of the dynamic evolution of the volume fraction of extension twins in polycrystalline pure magnesium and in the AZ31B magnesium alloy, using synchrotron x-ray diffraction during compressive loading at high strain rates. The dynamic evolution of the twinning volume fraction leads to a dynamic evolution of the texture. Although both the pure metal and the alloy had similar initial textures, we observe that the evolution of texture is slower in the alloy. We also measured the evolution of the lattice strains in each material during deformation which, together with the twin volume fractions, allows us to place some constraints on the relative contributions of dislocation-based slip and deformation twinning to the overall plastic deformation during the dynamic deformations.
3D Modeling Effect of Spherical Inclusions on the Magnetostriction of Bulk Superconductors
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Pan, Baocai
2018-02-01
In this paper, the dependence of the effective magnetostriction of bulk superconductors on the elastic parameters including the volume fraction and elastic modulus ratio is studied by a three-dimensional model consisting of a spherical inclusion-superconducting matrix system. The effect of the elastic modulus and volume fraction on the magnetostriction is also obtained through the magnetostriction loop. The results indicate that the elastic modulus and volume fraction have obvious effects on the effective magnetostriction of the superconducting composite, which gives an explanation about the differences between the experimental and the theoretical results. Furthermore, it is worth pointing out that the linear field dependence of magnetostriction is unique to the Bean model by comparing the curve shapes of the magnetostriction loop with and without inclusion.
Damping behavior of polymer composites with high volume fraction of NiMnGa powders
NASA Astrophysics Data System (ADS)
Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying
2011-03-01
Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.
Greiner, Joachim; Sankarankutty, Aparna C; Seemann, Gunnar; Seidel, Thomas; Sachse, Frank B
2018-01-01
Computational modeling is an important tool to advance our knowledge on cardiac diseases and their underlying mechanisms. Computational models of conduction in cardiac tissues require identification of parameters. Our knowledge on these parameters is limited, especially for diseased tissues. Here, we assessed and quantified parameters for computational modeling of conduction in cardiac tissues. We used a rabbit model of myocardial infarction (MI) and an imaging-based approach to derive the parameters. Left ventricular tissue samples were obtained from fixed control hearts (animals: 5) and infarcted hearts (animals: 6) within 200 μm (region 1), 250-750 μm (region 2) and 1,000-1,250 μm (region 3) of the MI border. We assessed extracellular space, fibroblasts, smooth muscle cells, nuclei and gap junctions by a multi-label staining protocol. With confocal microscopy we acquired three-dimensional (3D) image stacks with a voxel size of 200 × 200 × 200 nm. Image segmentation yielded 3D reconstructions of tissue microstructure, which were used to numerically derive extracellular conductivity tensors. Volume fractions of myocyte, extracellular, interlaminar cleft, vessel and fibroblast domains in control were (in %) 65.03 ± 3.60, 24.68 ± 3.05, 3.95 ± 4.84, 7.71 ± 2.15, and 2.48 ± 1.11, respectively. Volume fractions in regions 1 and 2 were different for myocyte, myofibroblast, vessel, and extracellular domains. Fibrosis, defined as increase in fibrotic tissue constituents, was (in %) 21.21 ± 1.73, 16.90 ± 9.86, and 3.58 ± 8.64 in MI regions 1, 2, and 3, respectively. For control tissues, image-based computation of longitudinal, transverse and normal extracellular conductivity yielded (in S/m) 0.36 ± 0.11, 0.17 ± 0.07, and 0.1 ± 0.06, respectively. Conductivities were markedly increased in regions 1 ( + 75 , + 171, and + 100%), 2 ( + 53 , + 165, and + 80%), and 3 ( + 42 , + 141, and + 60%) . Volume fractions of the extracellular space including interlaminar clefts strongly correlated with conductivities in control and MI hearts. Our study provides novel quantitative data for computational modeling of conduction in normal and MI hearts. Notably, our study introduces comprehensive statistical information on tissue composition and extracellular conductivities on a microscopic scale in the MI border zone. We suggest that the presented data fill a significant gap in modeling parameters and extend our foundation for computational modeling of cardiac conduction.
Hoffmann, Aswin L; Nahum, Alan E
2013-10-07
The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.
Brain architecture and social complexity in modern and ancient birds.
Burish, Mark J; Kueh, Hao Yuan; Wang, Samuel S-H
2004-01-01
Vertebrate brains vary tremendously in size, but differences in form are more subtle. To bring out functional contrasts that are independent of absolute size, we have normalized brain component sizes to whole brain volume. The set of such volume fractions is the cerebrotype of a species. Using this approach in mammals we previously identified specific associations between cerebrotype and behavioral specializations. Among primates, cerebrotypes are linked principally to enlargement of the cerebral cortex and are associated with increases in the complexity of social structure. Here we extend this analysis to include a second major vertebrate group, the birds. In birds the telencephalic volume fraction is strongly correlated with social complexity. This correlation accounts for almost half of the observed variation in telencephalic size, more than any other behavioral specialization examined, including the ability to learn song. A prominent exception to this pattern is owls, which are not social but still have very large forebrains. Interpolating the overall correlation for Archaeopteryx, an ancient bird, suggests that its social complexity was likely to have been on a par with modern domesticated chickens. Telencephalic volume fraction outperforms residuals-based measures of brain size at separating birds by social structure. Telencephalic volume fraction may be an anatomical substrate for social complexity, and perhaps cognitive ability, that can be generalized across a range of vertebrate brains, including dinosaurs. Copyright 2004 S. Karger AG, Basel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedicini, Piernicola, E-mail: ppiern@libero.it; Strigari, Lidia; Benassi, Marcello
2014-04-01
To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volumemore » histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.« less
Composition and origin of basaltic magma of the Hawaiian Islands
Powers, H.A.
1955-01-01
Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of..., and cleaning material used during each compliance period. (e) A record of the mass fraction of organic...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...
A Computer-Interfaced Drop Counter as an Inexpensive Fraction Collector for Column Chromatography
ERIC Educational Resources Information Center
Nash, Barbara T.
2008-01-01
A computer-interfaced drop counter is described that serves as an inexpensive alternative to a fraction collector for column chromatography experiments. Undergraduate biochemistry laboratories frequently do not have the budget to purchase fraction collectors. Protocols that call for the manual measurement of fraction volumes as well as the manual…
Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V
2013-01-01
This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.
Niinemets, Ulo; Lukjanova, Aljona; Turnbull, Matthew H; Sparrow, Ashley D
2007-08-01
Acclimation potential of needle photosynthetic capacity varies greatly among pine species, but the underlying chemical, anatomical and morphological controls are not entirely understood. We investigated the light-dependent variation in needle characteristics in individuals of Pinus patula Schlect. & Cham., which has 19-31-cm long pendulous needles, and individuals of P. radiata D. Don., which has shorter (8-17-cm-long) stiffer needles. Needle nitrogen and carbon contents, mesophyll and structural tissue volume fractions, needle dry mass per unit total area (M(A)) and its components, volume to total area ratio (V/A(T)) and needle density (D = M(A)/(V/A(T))), and maximum carboxylase activity of Rubisco (V(cmax)) and capacity of photosynthetic electron transport (J(max)) were investigated in relation to seasonal mean integrated irradiance (Q(int)). Increases in Q(int) from canopy bottom to top resulted in proportional increases in both needle thickness and width such that needle total to projected surface area ratio, characterizing the efficiency of light interception, was independent of Q(int). Increased light availability also led to larger M(A) and nitrogen content per unit area (N(A)). Light-dependent modifications in M(A) resulted from increases in both V/A(T) and D, whereas N(A) changed because of increases in both M(A) and mass-based nitrogen content (N(M)) (N(A) = N(M)M(A)). Overall, the volume fraction of mesophyll cells increased with increasing irradiance and V/A(T) as the fraction of hypodermis and epidermis decreased with increasing needle thickness. Increases in M(A) and N(A) resulted in enhanced J(max) and V(cmax) per unit area in both species, but mass-based photosynthetic capacity increased only in P. patula. In addition, J(max) and V(cmax) showed greater plasticity in response to light in P. patula. Species differences in mesophyll volume fraction explained most of the variation in mass-based needle photosynthetic capacity between species, demonstrating that differences in plastic adjustments in mass-based photosynthetic activities among these representative individuals were mainly associated with contrasting investments in mesophyll cells. Greater area-based photosynthetic plasticity in P. patula relative to P. radiata was associated with larger increases in M(A) and mesophyll volume fraction with increasing irradiance. These data collectively demonstrate that light-dependent increases in mass-based nitrogen contents and photosynthetic activities were associated with an increased mesophyll volume fraction in needles at higher irradiances. They also emphasize the importance of light-dependent anatomical modifications in determining needle photosynthetic capacity.
NASA Technical Reports Server (NTRS)
Whitson, Peggy A. (Inventor); Clift, Vaughan L. (Inventor)
1997-01-01
The present invention provides an apparatus for separating a relatively large volume of blood into cellular and acellular fractions without the need for centrifugation. The apparatus comprises a housing divided by a fibrous filter into a blood sample collection chamber having a volume of at least about 1 milliliter and a serum sample collection chamber. The fibrous filter has a pore size of less than about 3 microns, and is coated with a mixture of mannitol and plasma fraction protein (or an animal or vegetable equivalent thereof). The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Yang, Z; Hu, W
2015-06-15
Purpose: This study was to investigate the dosimetric benefit of a novel intensity modulated radiation therapy (IMRT) technique for irradiating the left breast and regional lymph node (RLN). Methods: The breast and RLN (internal mammary node and periclavicular node) and normal tissue were contoured for 16 consecutive left-sided breast cancer patients previously treated with RT after lumpectomy. Nine equi-spaced fields IMRT (9 -field IMRT), tangential multi-beam IMRT (tangential-IMRT) and IMRT with fixed-jaw technique (FJT-IMRT) were developed and compared with three-dimensional conformal RT (3DCRT). Prescribed dose was 50 Gy in 25 fractions. Dose distributions and dose volume histograms were used tomore » evaluate plans. Results: All IMRTs achieved similar target coverage and substantially reduced heart V30 and V20 compared to the 3DCRT. The average heart mean dose had different changes, which were 9.0Gy for 9-field IMRT, 5.7Gy for tangential-IMRT and 4.2Gy for FJT-IMRT. For the contralateral lung and breast, the 9-field IMRT has the highest mean dose; and the FJT-IMRT and tangential-IMRT had similar lower value. For the thyroid, both 9-field IMRT and FJT-IMRT had similar V30 (20% and 22%) and were significantly lower than that of 3DCRT (34%) and tangential-IMRT (46%). Moreover, the thyroid mean dose of FJT-IMRT is the lowest. For cervical esophagus and humeral head, the FJT-IMRT also had the best sparing. Conclusion: All 9-field IMRT, tangential-IMRT and FJT-IMRT had superiority for targets coverage and substantially reduced the heart volume of high dose irradiation. The FJT-IMRT showed advantages of avoiding the contralateral breast and lung irradiation and decreasing the thyroid, humeral head and cervical esophagus radiation dose at the expense of a slight monitor units (MUs) increasing.« less
[Experience of a Break-Even Point Analysis for Make-or-Buy Decision.].
Kim, Yunhee
2006-12-01
Cost containment through continuous quality improvement of medical service is required in an age of a keen competition of the medical market. Laboratory managers should examine the matters on make-or-buy decision periodically. On this occasion, a break-even point analysis can be useful as an analyzing tool. In this study, cost accounting and break-even point (BEP) analysis were performed in case that the immunoassay items showing a recent increase in order volume were to be in-house made. Fixed and variable costs were calculated in case that alpha fetoprotein (AFP), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), ferritin, free thyroxine (fT4), triiodothyronine (T3), thyroid-stimulating hormone (TSH), CA 125, CA 19-9, and hepatitis B envelope antibody (HBeAb) were to be tested with Abbott AxSYM instrument. Break-even volume was calculated as fixed cost per year divided by purchasing cost per test minus variable cost per test and BEP ratio as total purchasing costs at break-even volume divided by total purchasing costs at actual annual volume. The average fixed cost per year of AFP, CEA, PSA, ferritin, fT4, T3, TSH, CA 125, CA 19-9, and HBeAb was 8,279,187 won and average variable cost per test, 3,786 won. Average break-even volume was 1,599 and average BEP ratio was 852%. Average BEP ratio without including quality costs such as calibration and quality control was 74%. Because the quality assurance of clinical tests cannot be waived, outsourcing all of 10 items was more adequate than in-house make at the present volume in financial aspect. BEP analysis was useful as a financial tool for make-or-buy decision, the common matter which laboratory managers meet with.
Respiration in heterotrophic unicellular eukaryotic organisms.
Fenchel, Tom
2014-08-01
Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.
Synthesis and Characterization of Functional Mesostructures Using Colloidal Crystal Templating
2004-01-01
fluorescent probes in aqueous polymer solutions . Khoury and co-workers measured the diffusion coefficient of several fluorescein-labeled proteins in...diffraction naq refractive index of the aqueous solution phase xvii ni refractive index of component i ngel refractive index of the hydrogel...phase Tg glass transition temperature α angle of diffraction φaq volume fraction of the aqueous solution phase φi volume fraction of
Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters
NASA Technical Reports Server (NTRS)
Frazier, Donald O.
1999-01-01
This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a 0 range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that predicted by TLS is proportional to v(sub v)(exp 1/2), whereas others suggcest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team. Our studies of ripening behavior using large-scale numerical simulations suggest that although there are different circumstances which can lead to either scaling law, the most important length scale at low volume fractions is the diffusional analog of the Debye screening length. The numerical simulations we employed exploit the use of a recently developed "snapshot" technique, and identifies the nature of the coarsening dynamics at various volume fractions. Preliminary results of numerical and experimental investigations, focused on the growth of finite particle clusters, provide important insight into the nature of the transition between the two scaling regimes. The companion microgravity experiment centers on the growth within finite particle clusters, and follows the temporal dynamics driving microstructural evolution, using holography.
NASA Astrophysics Data System (ADS)
Konishi, C.
2014-12-01
Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation. Furthermore, elastic properties are obtainable by general Hashin-Shtrikman-Walpole bounds. The predicted results by this new mixture model are qualitatively consistent with laboratory measurements and well log obtained for unconsolidated sediments. Acknowledgement: A part of this study was accomplished with a subsidy of River Environment Fund of Japan.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi
2017-12-01
The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi
2018-02-01
The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Huaping, E-mail: wuhuaping@gmail.com; Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540; Chai, Guozhong
The strain-mediated magnetoelectric (ME) property of self-assembled vertical multiferroic nanocomposite films epitaxially grown on cubic substrates was calculated by a nonlinear thermodynamic theory combined with the elastic theory. The dependent relations of phase state of ferroelectric films with the in-plane misfit strain, out-of-plane misfit strain, temperature, and volume fraction of ferromagnetic phase were confirmed. The effects of in-plane misfit strain and ferromagnetic volume fraction on the polarization and dielectric constant of ferroelectric films at room temperature were elaborately analyzed for the vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films. Our calculated results confirmed the relationship amongmore » ME effect and in-plane misfit strain and ferromagnetic volume fraction in the nanocomposite films. The ME voltage coefficients of vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films displayed various maximums and abrupt points at special phases and phase transition boundaries. The ME voltage coefficients of lead-free BaTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films epitaxially grown on different substrates could reach a comparative value of ∼2 V·cm{sup −1}·Oe{sup −1} under the controllable in-plane misfit strain induced by substrate clamping. Our results provided an available method for the optimal design of vertical multiferroic nanocomposites with adjustable ME effect by optimizing the ferromagnetic volume fraction and substrate type.« less
NASA Astrophysics Data System (ADS)
Grzegorz Kossakowski, Paweł; Wciślik, Wiktor
2017-10-01
The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.
Nanocomposites with increased energy density through high aspect ratio PZT nanowires.
Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A
2011-01-07
High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.
Sanyal, Arnav; Keaveny, Tony M.
2013-01-01
The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computer tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor. PMID:24121715
Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study.
Shard, Alexander G; Havelund, Rasmus; Spencer, Steve J; Gilmore, Ian S; Alexander, Morgan R; Angerer, Tina B; Aoyagi, Satoka; Barnes, Jean-Paul; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D P; Deeks, Christopher; Fletcher, John S; Graham, Daniel J; Heuser, Christian; Lee, Tae Geol; Marie, Camille; Marzec, Mateusz M; Mishra, Gautam; Rading, Derk; Renault, Olivier; Scurr, David J; Shon, Hyun Kyong; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua; Cristaudo, Vanina; Poleunis, Claude
2015-08-20
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.
Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shard, A. G.; Havelund, Rasmus; Spencer, Steve J.
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray Photoelectron Spectroscopy (XPS) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided withmore » the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants’ data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaojian; Qiao, Qiao; Department of Radiotherapy, First Hospital of China Medical University, Shenyang
Purpose: To evaluate the efficiency of standard image-guided radiation therapy (IGRT) to account for lumpectomy cavity (LC) variation during whole-breast irradiation (WBI) and propose an adaptive strategy to improve dosimetry if IGRT fails to address the interfraction LC variations. Methods and Materials: Daily diagnostic-quality CT data acquired during IGRT in the boost stage using an in-room CT for 19 breast cancer patients treated with sequential boost after WBI in the prone position were retrospectively analyzed. Contours of the LC, treated breast, ipsilateral lung, and heart were generated by populating contours from planning CTs to boost fraction CTs using an auto-segmentationmore » tool with manual editing. Three plans were generated on each fraction CT: (1) a repositioning plan by applying the original boost plan with the shift determined by IGRT; (2) an adaptive plan by modifying the original plan according to a fraction CT; and (3) a reoptimization plan by a full-scale optimization. Results: Significant variations were observed in LC. The change in LC volume at the first boost fraction ranged from a 70% decrease to a 50% increase of that on the planning CT. The adaptive and reoptimization plans were comparable. Compared with the repositioning plans, the adaptive plans led to an improvement in target coverage for an increased LC case (1 of 19, 7.5% increase in planning target volume evaluation volume V{sub 95%}), and breast tissue sparing for an LC decrease larger than 35% (3 of 19, 7.5% decrease in breast evaluation volume V{sub 50%}; P=.008). Conclusion: Significant changes in LC shape and volume at the time of boost that deviate from the original plan for WBI with sequential boost can be addressed by adaptive replanning at the first boost fraction.« less
Panichi, Vincenzo; De Ferrari, Giacomo; Saffioti, Stefano; Sidoti, Antonino; Biagioli, Marina; Bianchi, Stefano; Imperiali, Patrizio; Gabbrielli, Claudio; Conti, Paolo; Patrone, Pietro; Falqui, Valeria; Rombolà, Giuseppe; Mura, Carlo; Icardi, Andrea; Mulas, Donatella; Rosati, Alberto; Santori, Francesco; Mannarino, Antonio; Tomei, Valeria; Bertucci, Andrea; Steckiph, Denis; Palla, Roberto
2012-06-01
Mixed diffusive-convective dialysis therapies offer greater removal capabilities than conventional dialysis. The aim of this study was to compare two different on-line, post-dilution hemodiafiltration (HDF) treatments with regard to achieved convective volume and middle-molecule dialysis efficiency: standard volume control (sOL-HDF) and automated control of the transmembrane pressure (TMP) (UC-HDF). We enrolled 30 ESRD patients (55.9 ± 14.0 years, 20/10 M/F) in a randomized, prospective, cross-over study. The patients received a 3-month period of sOL-HDF followed by UC-HDF for a further 3 months, or vice versa, using the same dialysis machine. In sOL-HDF, fixed exchange volumes were set according to a filtration fraction greater than or equal to 25%. In UC-HDF therapy, the exchanged volume was driven by a biofeedback system controlling the TMP and its set point in a double loop. Patients maintained their treatment time, dialyzer, blood flow rate, and anticoagulant regimen unchanged throughout the study. Greater convective volumes were achieved in UC-HDF than in sOL-HDF (23.8 ± 3.9 vs.19.8 ± 4.8 L; p<0.001) with high pre-dialysis Ht value (sOL-HDF 34.0 ± 4.5% and UC-HDF 34.0 ± 4.4%; p = 0.91). The average clearance values of ß2m and P were higher in UC-HDF than in sOL-HDF (respectively 123 ± 24 vs. 111 ± 22 ml/min, p<0.002 and 158 ± 26 vs. 152 ± 25 ml/min, p<0.05). Moreover, the UC-HDF mode led to a significantly increased rate of call-free sessions from 88% to 97% (p<0.0001). This study showed that the biofeedback module, applied to the automatic control of TMP in on-line HDF, results in higher convective volumes and correspondingly higher ß2m and P clearances. By making the HDF treatment more automated and less complex to perform, it significantly reduced the staff workload.
Fractional labelmaps for computing accurate dose volume histograms
NASA Astrophysics Data System (ADS)
Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor
2017-03-01
PURPOSE: In radiation therapy treatment planning systems, structures are represented as parallel 2D contours. For treatment planning algorithms, structures must be converted into labelmap (i.e. 3D image denoting structure inside/outside) representations. This is often done by triangulated a surface from contours, which is converted into a binary labelmap. This surface to binary labelmap conversion can cause large errors in small structures. Binary labelmaps are often represented using one byte per voxel, meaning a large amount of memory is unused. Our goal is to develop a fractional labelmap representation containing non-binary values, allowing more information to be stored in the same amount of memory. METHODS: We implemented an algorithm in 3D Slicer, which converts surfaces to fractional labelmaps by creating 216 binary labelmaps, changing the labelmap origin on each iteration. The binary labelmap values are summed to create the fractional labelmap. In addition, an algorithm is implemented in the SlicerRT toolkit that calculates dose volume histograms (DVH) using fractional labelmaps. RESULTS: We found that with manually segmented RANDO head and neck structures, fractional labelmaps represented structure volume up to 19.07% (average 6.81%) more accurately than binary labelmaps, while occupying the same amount of memory. When compared to baseline DVH from treatment planning software, DVH from fractional labelmaps had agreement acceptance percent (1% ΔD, 1% ΔV) up to 57.46% higher (average 4.33%) than DVH from binary labelmaps. CONCLUSION: Fractional labelmaps promise to be an effective method for structure representation, allowing considerably more information to be stored in the same amount of memory.
Predicting pneumonitis risk: a dosimetric alternative to mean lung dose.
Tucker, Susan L; Mohan, Radhe; Liengsawangwong, Raweewan; Martel, Mary K; Liao, Zhongxing
2013-02-01
To determine whether the association between mean lung dose (MLD) and risk of severe (grade ≥3) radiation pneumonitis (RP) depends on the dose distribution pattern to normal lung among patients receiving 3-dimensional conformal radiation therapy for non-small-cell lung cancer. Three cohorts treated with different beam arrangements were identified. One cohort (2-field boost [2FB]) received 2 parallel-opposed (anteroposterior-posteroanterior) fields per fraction initially, followed by a sequential boost delivered using 2 oblique beams. The other 2 cohorts received 3 or 4 straight fields (3FS and 4FS, respectively), ie, all fields were irradiated every day. The incidence of severe RP was plotted against MLD in each cohort, and data were analyzed using the Lyman-Kutcher-Burman (LKB) model. The incidence of grade ≥3 RP rose more steeply as a function of MLD in the 2FB cohort (N=120) than in the 4FS cohort (N=138), with an intermediate slope for the 3FS group (N=99). The estimated volume parameter from the LKB model was n=0.41 (95% confidence interval, 0.15-1.0) and led to a significant improvement in fit (P=.05) compared to a fit with volume parameter fixed at n=1 (the MLD model). Unlike the MLD model, the LKB model with n=0.41 provided a consistent description of the risk of severe RP in all three cohorts (2FB, 3FS, 4FS) simultaneously. When predicting risk of grade ≥3 RP, the mean lung dose does not adequately take into account the effects of high doses. Instead, the effective dose, computed from the LKB model using volume parameter n=0.41, may provide a better dosimetric parameter for predicting RP risk. If confirmed, these findings support the conclusion that for the same MLD, high doses to small lung volumes ("a lot to a little") are worse than low doses to large volumes ("a little to a lot"). Copyright © 2013 Elsevier Inc. All rights reserved.
Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...
2016-11-15
The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less
NASA Astrophysics Data System (ADS)
Aman, Sidra; Zuki Salleh, Mohd; Ismail, Zulkhibri; Khan, Ilyas
2017-09-01
This article focuses on the flow of Maxwell nanofluids with graphene nanoparticles over a vertical plate (static) with constant wall temperature. Possessing high thermal conductivity, engine oil is useful to be chosen as base fluid with free convection. The problem is modelled in terms of PDE’s with boundary conditions. Some suitable non-dimensional variables are interposed to transform the governing equations into dimensionless form. The generated equations are solved via Laplace transform technique. Exact solutions are evaluated for velocity and temperature. These solutions are significantly controlled by some parameters involved. Temperature rises with elevation in volume fraction while Velocity decreases with increment in volume fraction. A comparison with previous published results are established and discussed. Moreover, a detailed discussion is made for influence of volume fraction on the flow and heat profile.
Mechanical properties of SiC fiber-reinforced reaction-bonded Si3N4 composites
NASA Technical Reports Server (NTRS)
Bhatt, R. T.
1985-01-01
The room temperature mechanical and physical properties of silicon carbide fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) have been evaluated. The composites contained 23 and 40 volume fraction of aligned 140 micro m diameter chemically vapor deposited SiC fibers. Preliminary results for composite tensile and bend strengths and fracture strain indicate that the composites displayed excellent properties when compared with unreinforced RBSN of comparable porosity. Fiber volume fraction showed little influence on matrix first cracking strain but did influence the stressed required for matrix first cracking and for ultimate composite fracture strength. It is suggested that by reducing matrix porosity and by increasing the volume fraction of the large diameter SiC fiber, it should be possible to further improve the composite stress at which the matrix first cracks.
NASA Astrophysics Data System (ADS)
Hunter, Gary L.; Chaikin, Paul; Blanco, Elena; Poon, Wilson
2014-03-01
``Conching'' is an intermediate step in the processing of chocolate where hydrophilic solid particles, such as sugar and milk proteins, are aggressively mixed into a fatty, fluid phase containing emulsifier, e.g. molten cocoa butter with lecithin. During conching, the system evolves from a fine powder to a coarser granulated material and ultimately into a thick cohesive paste. Our goal is to better understand the evolution of chocolate during conching and the transition from an effectively dry to a wet or immersed granular material. In particular, we focus on how mixing times change in response to variations in solid particle volume fractions and emulsifier concentration. As a function of volume fraction, mixing times are well-described by a conventional form that diverges at a finite volume fraction. Furthermore, mixing times can be collapsed onto a universal curve as a function of mixing speed and emulsifier concentration.
Mardanov, M J; Mahmudov, N I; Sharifov, Y A
2014-01-01
We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 < α ≤ 1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.
Gambarota, Giulio; Hitti, Eric; Leporq, Benjamin; Saint-Jalmes, Hervé; Beuf, Olivier
2017-01-01
Tissue perfusion measurements using intravoxel incoherent motion (IVIM) diffusion-MRI are of interest for investigations of liver pathologies. A confounding factor in the perfusion quantification is the partial volume between liver tissue and large blood vessels. The aim of this study was to assess and correct for this partial volume effect in the estimation of the perfusion fraction. MRI experiments were performed at 3 Tesla with a diffusion-MRI sequence at 12 b-values. Diffusion signal decays in liver were analyzed using the non-negative least square (NNLS) method and the biexponential fitting approach. In some voxels, the NNLS analysis yielded a very fast-decaying component that was assigned to partial volume with the blood flowing in large vessels. Partial volume correction was performed by biexponential curve fitting, where the first data point (b = 0 s/mm 2 ) was eliminated in voxels with a very fast-decaying component. Biexponential fitting with partial volume correction yielded parametric maps with perfusion fraction values smaller than biexponential fitting without partial volume correction. The results of the current study indicate that the NNLS analysis in combination with biexponential curve fitting allows to correct for partial volume effects originating from blood flow in IVIM perfusion fraction measurements. Magn Reson Med 77:310-317, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
On fixed-area plot sampling for downed coarse woody debris
Jeffrey H. Gove; Paul C. Van Deusen
2011-01-01
The use of fixed-area plots for sampling down coarse woody debris is reviewed. A set of clearly defined protocols for two previously described methods is established and a new method, which we call the 'sausage' method, is developed. All methods (protocols) are shown to be unbiased for volume estimation, but not necessarily for estimation of population...
The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Annex
NASA Technical Reports Server (NTRS)
Gamble, R. B.; Seltzer, H. R.; Speter, K. M.; Westheimer, M.
1979-01-01
A review of studies forecasting the communication market in the United States is given. The applicability of these forecasts to assessment of demand for the 30/20 GHz fixed communications system is analyzed. Costs for the 30/20 satellite trunking systems are presented and compared with the cost of terrestrial communications.
NASA Astrophysics Data System (ADS)
Koutika, Lydie-Stella; Mareschal, Louis; Mouanda, Cadeau; Epron, Daniel
2014-05-01
Most of African soils are inherently infertile and poor in nutrients mainly nitrogen and phosphorus. Several practices are used to improve soil fertility, increase productivity and ensure their sustainability. Soil fertility in the leguminous fallows was evaluated through particulate organic matter (POM), the more active part of soil organic matter (SOM) in Cameroon. The combination of mineral and organic (manure) fertilizers increased microbial P biomass allowing the release of P along the plant growing period in the Kenyan soils. Organic residues management and introduction of nitrogen fixing species (Acacia) were used to improve soil fertility and sustain forest productivity on the coastal plains of Congo. SOM fractionation was made under Pueraria, Mucuna fallows and natural regrowth mainly Chromolaena and under 3 forest plantation treatments installed in previous savanna: 1) no input, 2) normal input, and 3) double input of organic residues. Microbial P biomass and sequential P fractionation were evaluated in high and low P fixing soils. N, C, available P and pH were determined on soil sampled in acacia (100A), eucalypt (100E) and mixed-species (50A:50E) stands. N and P were determined in aboveground litters and in leaves, bark and wood of trees. The two leguminous fallows increased N content in POM fractions i.e., N >1% for Pueraria and Mucuna against N<1% for natural regrowth in the 0-0.10m depth, probably through N input from N2 fixation from the atmosphere (Cameroon).The addition of mineral fertilizers and farmyard manure increases P biomass (4.8 after 2 weeks to 15.2 after 16 weeks), and then decreased to 9.7 mg P g-1 soil (week 32). It also changes the P Hedley fractions partition in the high P fixing Kenyan soil (0-0.10m). After two rotations (14 years), SOM mineralization was the highest in the double input of organic residues treatment (low coarse POM 5.6 g kg-1 of soil and high organo-mineral fraction (OMF) 115 g kg-1 of soil). The introduction of A. mangium in eucalypt plantations increased the soil N concentration under the mixed-species stand (N>0.06%) compared to under the pure eucalypt stand (N<0.05%) in the 0-0.05 m, along with an increase in soil C concentration (C>1% in the mixed stand and C< 0.9 in the pure Eucalyptus stand).
NASA Technical Reports Server (NTRS)
Whiitson, Peggy A. (Inventor); Clift, Vaughan L. (Inventor)
1999-01-01
The present invention provides a method and apparatus for separating a blood sample having a volume of up to about 20 milliliters into cellular and acellular fractions. The apparatus includes a housing divided by a fibrous filter into a blood sample collection chamber having a volume of at least about 1 milliliter and a serum sample collection chamber. The fibrous filter has a pore size of less than about 3 microns, and is coated with a mixture including between about 1-40 wt/vol % mannitol and between about 0.1-15 wt/vol % of plasma fraction protein (or an animal or vegetable equivalent thereof). The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith Alice; Long, Kevin Nicholas
2017-05-01
This work was done to support customer questions about whether a Sylgard/Glass Microballoon (GMB) potting material in current use could be replaced with pure Sylgard and if this would significantly change stresses imparted to internal components under thermal cycling conditions. To address these questions, we provide micromechanics analysis of Sylgard/GMB materials using both analytic composite theory and finite element simulations to better understand the role of the GMB volume fraction in determining thermal expansion coefficient, elastic constants, and behavior in both confined and unconfined compression boundary value problems. A key finding is that damage accumulation in the material from breakagemore » of GMBs significantly limits the global stress magnitude and results in a plateau stress behavior over large ranges of compressive strain. The magnitude of this plateau stress is reduced with higher volume fractions of GMBs. This effect is particularly pronounced in confined compression, which we estimate bears the most similarity to the application of interest. This stress-limiting damage mechanism is not present in pure Sylgard, however, and the result is much higher stresses under confined compression. Thus, we recommend that some volume fraction greater than 10% GMBs be used for confined deformation applications.« less
The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1
NASA Technical Reports Server (NTRS)
Aikin, R. M., Jr.
1990-01-01
The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.
Startup of electrophoresis in a suspension of colloidal spheres.
Chiang, Chia C; Keh, Huan J
2015-12-01
The transient electrophoretic response of a homogeneous suspension of spherical particles to the step application of an electric field is analyzed. The electric double layer encompassing each particle is assumed to be thin but finite, and the effect of dynamic electroosmosis within it is incorporated. The momentum equation for the fluid outside the double layers is solved through the use of a unit cell model. Closed-form formulas for the time-evolving electrophoretic and settling velocities of the particles in the Laplace transform are obtained in terms of the electrokinetic radius, relative mass density, and volume fraction of the particles. The time scale for the development of electrophoresis and sedimentation is significantly smaller for a suspension with a higher particle volume fraction or a smaller particle-to-fluid density ratio, and the electrophoretic mobility at any instant increases with an increase in the electrokinetic particle radius. The transient electrophoretic mobility is a decreasing function of the particle volume fraction if the particle-to-fluid density ratio is relatively small, but it may increase with an increase in the particle volume fraction if this density ratio is relatively large. The particle interaction effect in a suspension on the transient electrophoresis is much weaker than that on the transient sedimentation of the particles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Joshi, Pranit Satish; Mahapatra, Pallab Sinha; Pattamatta, Arvind
2017-12-01
Experiments and numerical simulation of natural convection heat transfer with nanosuspensions are presented in this work. The investigations are carried out for three different types of nanosuspensions: namely, spherical-based (alumina/water), tubular-based (multi-walled carbon nanotube/water), and flake-based (graphene/water). A comparison with in-house experiments is made for all the three nanosuspensions at different volume fractions and for the Rayleigh numbers in the range of 7 × 105-1 × 107. Different models such as single component homogeneous, single component non-homogeneous, and multicomponent non-homogeneous are used in the present study. From the present numerical investigation, it is observed that for lower volume fractions (˜0.1%) of nanosuspensions considered, single component models are in close agreement with the experimental results. Single component models which are based on the effective properties of the nanosuspensions alone can predict heat transfer characteristics very well within the experimental uncertainty. Whereas for higher volume fractions (˜0.5%), the multi-component model predicts closer results to the experimental observation as it incorporates drag-based slip force which becomes prominent. The enhancement observed at lower volume fractions for non-spherical particles is attributed to the percolation chain formation, which perturbs the boundary layer and thereby increases the local Nusselt number values.
NASA Astrophysics Data System (ADS)
Laufer, N.; Hansmann, H.; Koch, M.
2017-01-01
In this study, the rheological properties of wood plastic composites (WPC) with different polymeric matrices (LDPE, low-density polyethylene and PP, polypropylene) and with different types of wood filler (hardwood flour and softwood flour) have been investigated by means of high pressure capillary rheometry. The volume fraction of wood was varied between 0 and 60 %. The shear thinning behaviour of the WPC melts can be well described by the Ostwald - de Waele power law relationship. The flow consistency index K of the power law shows a good correlation with the volume fraction of wood. Interparticular interaction effects of wood particles can be mathematically taken into account by implementation of an interaction exponent (defined as the ratio between flow exponent of WPC and flow exponent of polymeric matrix). The interaction exponent shows a good correlation with the flow consistency index. On the basis of these relationships the concept of shear-stress-equivalent inner shear rate has been modified. Thus, the flow behaviour of the investigated wood filled polymer melts could be well described mathematically by the modified concept of shear-stress-equivalent inner shear rate. On this basis, the shear thinning behaviour of WPC can now be estimated with good accuracy, taking into account the volume fraction of wood.
Stochastic 3D modeling of Ostwald ripening at ultra-high volume fractions of the coarsening phase
NASA Astrophysics Data System (ADS)
Spettl, A.; Wimmer, R.; Werz, T.; Heinze, M.; Odenbach, S.; Krill, C. E., III; Schmidt, V.
2015-09-01
We present a (dynamic) stochastic simulation model for 3D grain morphologies undergoing a grain coarsening phenomenon known as Ostwald ripening. For low volume fractions of the coarsening phase, the classical LSW theory predicts a power-law evolution of the mean particle size and convergence toward self-similarity of the particle size distribution; experiments suggest that this behavior holds also for high volume fractions. In the present work, we have analyzed 3D images that were recorded in situ over time in semisolid Al-Cu alloys manifesting ultra-high volume fractions of the coarsening (solid) phase. Using this information we developed a stochastic simulation model for the 3D morphology of the coarsening grains at arbitrary time steps. Our stochastic model is based on random Laguerre tessellations and is by definition self-similar—i.e. it depends only on the mean particle diameter, which in turn can be estimated at each point in time. For a given mean diameter, the stochastic model requires only three additional scalar parameters, which influence the distribution of particle sizes and their shapes. An evaluation shows that even with this minimal information the stochastic model yields an excellent representation of the statistical properties of the experimental data.
Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; ...
2015-11-23
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using amore » load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.« less
Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using amore » load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.« less
Varghese, Jobin; Nair, Dinesh Raghavan; Mohanan, Pezholil; Sebastian, Mailadil Thomas
2015-06-14
A low cost and low dielectric loss zirconium silicate (ZrSiO4) reinforced HDPE (high-density polyethylene) composite has been developed for antenna applications. The 0-3 type composite is prepared by dispersing ZrSiO4 fillers for various volume fractions (0.1 to 0.5) in the HDPE matrix by the melt mixing process. The composite shows good microwave dielectric properties with a relative permittivity of 5.6 and a dielectric loss of 0.003 at 5 GHz at the maximum filler loading of 0.5 volume fraction. The composite exhibits low water absorption, excellent thermal and mechanical properties. It shows a water absorption of 0.03 wt%, a coefficient of thermal expansion of 70 ppm per °C and a room temperature thermal conductivity of 2.4 W mK(-1). The composite shows a tensile strength of 22 MPa and a microhardness of 13.9 kg mm(-2) for the filler loading of 0.5 volume fraction. The HDPE-ZrSiO4 composites show good dielectric, thermal and mechanical properties suitable for microwave soft substrate applications. A microstrip patch antenna is designed and fabricated using the HDPE-0.5 volume fraction ZrSiO4 substrate and the antenna parameters are investigated.
NASA Astrophysics Data System (ADS)
Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.
2017-12-01
The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.
Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube
Niu, Jun; Fu, Ceji; Tan, Wenchang
2012-01-01
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared. PMID:22615961
Mansour, Joseph M; Gu, Di-Win Marine; Chung, Chen-Yuan; Heebner, Joseph; Althans, Jake; Abdalian, Sarah; Schluchter, Mark D; Liu, Yiying; Welter, Jean F
2014-10-01
Our ultimate goal is to non-destructively evaluate mechanical properties of tissue-engineered (TE) cartilage using ultrasound (US). We used agarose gels as surrogates for TE cartilage. Previously, we showed that mechanical properties measured using conventional methods were related to those measured using US, which suggested a way to non-destructively predict mechanical properties of samples with known volume fractions. In this study, we sought to determine whether the mechanical properties of samples, with unknown volume fractions could be predicted by US. Aggregate moduli were calculated for hydrogels as a function of SOS, based on concentration and density using a poroelastic model. The data were used to train a statistical model, which we then used to predict volume fractions and mechanical properties of unknown samples. Young's and storage moduli were measured mechanically. The statistical model generally predicted the Young's moduli in compression to within <10% of their mechanically measured value. We defined positive linear correlations between the aggregate modulus predicted from US and both the storage and Young's moduli determined from mechanical tests. Mechanical properties of hydrogels with unknown volume fractions can be predicted successfully from US measurements. This method has the potential to predict mechanical properties of TE cartilage non-destructively in a bioreactor.
Mansour, Joseph M.; Gu, Di-Win Marine; Chung, Chen-Yuan; Heebner, Joseph; Althans, Jake; Abdalian, Sarah; Schluchter, Mark D.; Liu, Yiying; Welter, Jean F.
2016-01-01
Introduction Our ultimate goal is to non-destructively evaluate mechanical properties of tissue-engineered (TE) cartilage using ultrasound (US). We used agarose gels as surrogates for TE cartilage. Previously, we showed that mechanical properties measured using conventional methods were related to those measured using US, which suggested a way to non-destructively predict mechanical properties of samples with known volume fractions. In this study, we sought to determine whether the mechanical properties of samples, with unknown volume fractions could be predicted by US. Methods Aggregate moduli were calculated for hydrogels as a function of SOS, based on concentration and density using a poroelastic model. The data were used to train a statistical model, which we then used to predict volume fractions and mechanical properties of unknown samples. Young's and storage moduli were measured mechanically. Results The statistical model generally predicted the Young's moduli in compression to within < 10% of their mechanically measured value. We defined positive linear correlations between the aggregate modulus predicted from US and both the storage and Young's moduli determined from mechanical tests. Conclusions Mechanical properties of hydrogels with unknown volume fractions can be predicted successfully from US measurements. This method has the potential to predict mechanical properties of TE cartilage non-destructively in a bioreactor. PMID:25092421
NASA Astrophysics Data System (ADS)
Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor
2013-12-01
Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.
Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain
NASA Astrophysics Data System (ADS)
Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; DeMauro, Edward P.; Pruett, Brian O.
2015-12-01
The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas-solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer-Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. The bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.
Levitan, Emily B; Ahmed, Ali; Arnett, Donna K; Polak, Joseph F; Hundley, W Gregory; Bluemke, David A; Heckbert, Susan R; Jacobs, David R; Nettleton, Jennifer A
2016-01-01
Background: Data are limited on the relation between dietary patterns and left ventricular (LV) structure and function. Objective: We examined cross-sectional associations of a diet-score assessment of a Mediterranean dietary pattern with LV mass, volume, mass-to-volume ratio, stroke volume, and ejection fraction. Design: We measured LV variables with the use of cardiac MRI in 4497 participants in the Multi-Ethnic Study of Atherosclerosis study who were aged 45–84 y and without clinical cardiovascular disease. We calculated a Mediterranean diet score from intakes of fruit, vegetables, nuts, legumes, whole grains, fish, red meat, the monounsaturated fat:saturated fat ratio, and alcohol that were self-reported with the use of a food-frequency questionnaire. We used linear regression with adjustment for body size, physical activity, and cardiovascular disease risk factors to model associations and assess the shape of these associations (linear or quadratic). Results: The Mediterranean diet score had a slight U-shaped association with LV mass (adjusted means: 146, 145, 146, and 147 g across quartiles of diet score, respectively; P-quadratic trend = 0.04). The score was linearly associated with LV volume, stroke volume, and ejection fraction: for each +1-U difference in score, LV volume was 0.4 mL higher (95% CI: 0.0, 0.8 mL higher), the stroke volume was 0.5 mL higher (95% CI: 0.2, 0.8 mL higher), and the ejection fraction was 0.2 percentage points higher (95% CI: 0.1, 0.3 percentage points higher). The score was not associated with the mass-to-volume ratio. Conclusions: A higher Mediterranean diet score is cross-sectionally associated with a higher LV mass, which is balanced by a higher LV volume as well as a higher ejection fraction and stroke volume. Participants in this healthy, multiethnic sample whose dietary patterns most closely conformed to a Mediterranean-type pattern had a modestly better LV structure and function than did participants with less–Mediterranean-like dietary patterns. This trial was registered at clinicaltrials.gov as NCT00005487. PMID:27488238
Levitan, Emily B; Ahmed, Ali; Arnett, Donna K; Polak, Joseph F; Hundley, W Gregory; Bluemke, David A; Heckbert, Susan R; Jacobs, David R; Nettleton, Jennifer A
2016-09-01
Data are limited on the relation between dietary patterns and left ventricular (LV) structure and function. We examined cross-sectional associations of a diet-score assessment of a Mediterranean dietary pattern with LV mass, volume, mass-to-volume ratio, stroke volume, and ejection fraction. We measured LV variables with the use of cardiac MRI in 4497 participants in the Multi-Ethnic Study of Atherosclerosis study who were aged 45-84 y and without clinical cardiovascular disease. We calculated a Mediterranean diet score from intakes of fruit, vegetables, nuts, legumes, whole grains, fish, red meat, the monounsaturated fat:saturated fat ratio, and alcohol that were self-reported with the use of a food-frequency questionnaire. We used linear regression with adjustment for body size, physical activity, and cardiovascular disease risk factors to model associations and assess the shape of these associations (linear or quadratic). The Mediterranean diet score had a slight U-shaped association with LV mass (adjusted means: 146, 145, 146, and 147 g across quartiles of diet score, respectively; P-quadratic trend = 0.04). The score was linearly associated with LV volume, stroke volume, and ejection fraction: for each +1-U difference in score, LV volume was 0.4 mL higher (95% CI: 0.0, 0.8 mL higher), the stroke volume was 0.5 mL higher (95% CI: 0.2, 0.8 mL higher), and the ejection fraction was 0.2 percentage points higher (95% CI: 0.1, 0.3 percentage points higher). The score was not associated with the mass-to-volume ratio. A higher Mediterranean diet score is cross-sectionally associated with a higher LV mass, which is balanced by a higher LV volume as well as a higher ejection fraction and stroke volume. Participants in this healthy, multiethnic sample whose dietary patterns most closely conformed to a Mediterranean-type pattern had a modestly better LV structure and function than did participants with less-Mediterranean-like dietary patterns. This trial was registered at clinicaltrials.gov as NCT00005487. © 2016 American Society for Nutrition.
Basu-Roy, Somapriya; Kar, Sanjay Kumar; Das, Sounik; Lahiri, Annesha
2017-01-01
Purpose This study is intended to compare dose-volume parameters evaluated using different forward planning- optimization techniques, involving two applicator systems in intracavitary brachytherapy for cervical cancer. It looks for the best applicator-optimization combination to fulfill recommended dose-volume objectives in different high-dose-rate (HDR) fractionation schedules. Material and methods We used tandem-ring and Fletcher-style tandem-ovoid applicator in same patients in two fractions of brachytherapy. Six plans were generated for each patient utilizing 3 forward optimization techniques for each applicator used: equal dwell weight/times (‘no optimization’), ‘manual dwell weight/times’, and ‘graphical’. Plans were normalized to left point A and dose of 8 Gy was prescribed. Dose volume and dose point parameters were compared. Results Without graphical optimization, maximum width and thickness of volume enclosed by 100% isodose line, dose to 90%, and 100% of clinical target volume (CTV); minimum, maximum, median, and average dose to both rectum and bladder are significantly higher with Fletcher applicator. Even if it is done, dose to both points B, minimum dose to CTV, and treatment time; dose to 2 cc (D2cc) rectum and rectal point etc.; D2cc, minimum, maximum, median, and average dose to sigmoid colon; D2cc of bladder remain significantly higher with this applicator. Dose to bladder point is similar (p > 0.05) between two applicators, after all optimization techniques. Conclusions Fletcher applicator generates higher dose to both CTV and organs at risk (2 cc volumes) after all optimization techniques. Dose restriction to rectum is possible using graphical optimization only during selected HDR fractionation schedules. Bladder always receives dose higher than recommended, and 2 cc sigmoid colon always gets permissible dose. Contrarily, graphical optimization with ring applicators fulfills all dose volume objectives in all HDR fractionations practiced. PMID:29204164
SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bichay, T; Mayville, A
2016-06-15
Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fractionmore » and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.« less
Kamiya, Kouhei; Hori, Masaaki; Miyajima, Masakazu; Nakajima, Madoka; Suzuki, Yuriko; Kamagata, Koji; Suzuki, Michimasa; Arai, Hajime; Ohtomo, Kuni; Aoki, Shigeki
2014-01-01
Previous studies suggest that compression and stretching of the corticospinal tract (CST) potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH). Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI) analysis. Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( = axon diameter) and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001), whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.
Are artificial opals non-close-packed fcc structures?
NASA Astrophysics Data System (ADS)
García-Santamaría, F.; Braun, P. V.
2007-06-01
The authors report a simple experimental method to accurately measure the volume fraction of artificial opals. The results are modeled using several methods, and they find that some of the most common yield very inaccurate results. Both finite size and substrate effects play an important role in calculations of the volume fraction. The experimental results show that the interstitial pore volume is 4%-15% larger than expected for close-packed structures. Consequently, calculations performed in previous work relating the amount of material synthesized in the opal interstices with the optical properties may need revision, especially in the case of high refractive index materials.
Ting, Hsien-Hung; Hou, Shuhn-Shyurng
2016-01-01
This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2%) and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8%) are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data. PMID:28773698
Mechanical Properties and Shear Strengthening Capacity of High Volume Fly Ash-Cementitious Composite
NASA Astrophysics Data System (ADS)
Joseph, Aswin K.; Anand, K. B.
2018-02-01
This paper discusses development of Poly Vinyl Alcohol (PVA) fibre reinforced cementitious composites taking into account environmental sustainability. Composites with fly ash to cement ratios from 0 to 3 are investigated in this study. The mechanical properties of HVFA-cement composite are discussed in this paper at PVA fiber volume fraction maintained at 1% of total volume of composite. The optimum replacement of cement with fly ash was found to be 75%, i.e. fly ash to cement ratio (FA/C) of 3. The increase in fiber content from 1% to 2% showed better mechanical performance. A strain capacity of 2.38% was obtained for FA/C ratio of 3 with 2% volume fraction of fiber. With the objective of evaluating the performance of cementitious composites as a strengthening material in reinforced concrete beams, the beams deficient in shear capacity were strengthened with optimal mix having 2% volume fraction of fiber as the strengthening material and tested under four-point load. The reinforced concrete beams designed as shear deficient were loaded to failure and retrofitted with the composite in order to assess the efficiency as a repair material under shear.
NASA Astrophysics Data System (ADS)
Perugini, G.; Ricci-Tersenghi, F.
2018-01-01
We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of extremal solutions for the BP equations, and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the extremal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one hand this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other hand we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions about the physics of this class of models.
Estimating the exceedance probability of rain rate by logistic regression
NASA Technical Reports Server (NTRS)
Chiu, Long S.; Kedem, Benjamin
1990-01-01
Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.
Blaesi, Aron H; Saka, Nannaji
2017-11-01
In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz
2016-03-01
Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (μ), was shown to increase with the increased void fraction.
Characterization of airborne particles at a high-btu coal-gasification pilot plant.
Davidson, C I; Santhanam, S; Stetter, J R; Flotard, R D; Gebert, E
1982-12-01
Airborne particles in fugitive emissions have been measured at a slagging fixed-bed coal-gasification pilot plant using lignite. Sampling was conducted during shutdown operations and opening of the gasifier following an aborted startup. Aerosol collected with a Sierra high-volume impactor was subjected to analysis by gas chromatography, mass spectrometry, and scanning electron microscopy; aerosol collected with an Andersen low-volume impactor was subjected to flameless atomic absorption analysis. The data show that the bulk of the trace organic material is associated with small particles: these data are similar to data on ambient air reported in the literature. Particle morphologies resemble those of fly ash from coal combustion, including smooth spheres, vesicular spheres, and crystalline material. Trace element size distributions are bimodal and resemble data for ambient air. Pb-containing particles are generally submicron, while particles containing Al, Fe, and other crustal species are mostly of supermicron size. Aluminum-based aerosol enrichment factors calculated from the lignite composition show that the composition of the aerosol resembles that of the coal, with the exception of modest enrichments of Mg, Na, As, and Pb in the submicron size range. Aerosol enrichment factors based on the earth's crustal composition are somewhat greater than those based on coal composition for several elements, suggesting potential errors in using crustal enrichment data to investigate chemical fractionation during aerosol formation.
Tree form quotients as variables in volume estimation.
Gerald E. Hoyer
1985-01-01
The study reviews Hohenadl's procedure for defining form quotients and tree volume from diameters measured at fixed proportions of total tree height. Modifications of Hohenadl's procedure were applied to two sets of data for western hemlock (Tsuga heterophylla (Raf.) Sarg.) from the Pacific Northwest. The procedure was used to define...
78 FR 17943 - Draft Program-Specific Guidance About Fixed Gauge Licenses
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-25
... is requesting public comment on draft NUREG-1556, Volume 4, Revision 1, ``Consolidated Guidance About... sensitive information, and changes in regulatory policies and practices. This document is intended for use...-415- 4737, or by email to [email protected] . The draft NUREG-1556, Volume 4, Revision 1, is...
Defect-induced solid state amorphization of molecular crystals
NASA Astrophysics Data System (ADS)
Lei, Lei; Carvajal, Teresa; Koslowski, Marisol
2012-04-01
We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.
Echocardiographic Parameters and Survival in Chagas Heart Disease with Severe Systolic Dysfunction
Rassi, Daniela do Carmo; Vieira, Marcelo Luiz Campos; Arruda, Ana Lúcia Martins; Hotta, Viviane Tiemi; Furtado, Rogério Gomes; Rassi, Danilo Teixeira; Rassi, Salvador
2014-01-01
Background Echocardiography provides important information on the cardiac evaluation of patients with heart failure. The identification of echocardiographic parameters in severe Chagas heart disease would help implement treatment and assess prognosis. Objective To correlate echocardiographic parameters with the endpoint cardiovascular mortality in patients with ejection fraction < 35%. Methods Study with retrospective analysis of pre-specified echocardiographic parameters prospectively collected from 60 patients included in the Multicenter Randomized Trial of Cell Therapy in Patients with Heart Diseases (Estudo Multicêntrico Randomizado de Terapia Celular em Cardiopatias) - Chagas heart disease arm. The following parameters were collected: left ventricular systolic and diastolic diameters and volumes; ejection fraction; left atrial diameter; left atrial volume; indexed left atrial volume; systolic pulmonary artery pressure; integral of the aortic flow velocity; myocardial performance index; rate of increase of left ventricular pressure; isovolumic relaxation time; E, A, Em, Am and Sm wave velocities; E wave deceleration time; E/A and E/Em ratios; and mitral regurgitation. Results In the mean 24.18-month follow-up, 27 patients died. The mean ejection fraction was 26.6 ± 5.34%. In the multivariate analysis, the parameters ejection fraction (HR = 1.114; p = 0.3704), indexed left atrial volume (HR = 1.033; p < 0.0001) and E/Em ratio (HR = 0.95; p = 0.1261) were excluded. The indexed left atrial volume was an independent predictor in relation to the endpoint, and values > 70.71 mL/m2 were associated with a significant increase in mortality (log rank p < 0.0001). Conclusion The indexed left atrial volume was the only independent predictor of mortality in this population of Chagasic patients with severe systolic dysfunction. PMID:24553982
Echocardiographic parameters and survival in Chagas heart disease with severe systolic dysfunction.
Rassi, Daniela do Carmo; Vieira, Marcelo Luiz Campos; Arruda, Ana Lúcia Martins; Hotta, Viviane Tiemi; Furtado, Rogério Gomes; Rassi, Danilo Teixeira; Rassi, Salvador
2014-03-01
Echocardiography provides important information on the cardiac evaluation of patients with heart failure. The identification of echocardiographic parameters in severe Chagas heart disease would help implement treatment and assess prognosis. To correlate echocardiographic parameters with the endpoint cardiovascular mortality in patients with ejection fraction < 35%. Study with retrospective analysis of pre-specified echocardiographic parameters prospectively collected from 60 patients included in the Multicenter Randomized Trial of Cell Therapy in Patients with Heart Diseases (Estudo Multicêntrico Randomizado de Terapia Celular em Cardiopatias) - Chagas heart disease arm. The following parameters were collected: left ventricular systolic and diastolic diameters and volumes; ejection fraction; left atrial diameter; left atrial volume; indexed left atrial volume; systolic pulmonary artery pressure; integral of the aortic flow velocity; myocardial performance index; rate of increase of left ventricular pressure; isovolumic relaxation time; E, A, Em, Am and Sm wave velocities; E wave deceleration time; E/A and E/Em ratios; and mitral regurgitation. In the mean 24.18-month follow-up, 27 patients died. The mean ejection fraction was 26.6 ± 5.34%. In the multivariate analysis, the parameters ejection fraction (HR = 1.114; p = 0.3704), indexed left atrial volume (HR = 1.033; p < 0.0001) and E/Em ratio (HR = 0.95; p = 0.1261) were excluded. The indexed left atrial volume was an independent predictor in relation to the endpoint, and values > 70.71 mL/m2 were associated with a significant increase in mortality (log rank p < 0.0001). The indexed left atrial volume was the only independent predictor of mortality in this population of Chagasic patients with severe systolic dysfunction.
Left Atrial Volume Determinants in Patients with Non-Ischemic Dilated Cardiomyopathy
Mancuso, Frederico José Neves; Moisés, Valdir Ambrósio; Almeida, Dirceu Rodrigues; Poyares, Dalva; Storti, Luciana Julio; Oliveira, Wércules Antonio; Brito, Flavio Souza; de Paola, Angelo Amato Vincenzo; Carvalho, Antonio Carlos Camargo; Campos, Orlando
2015-01-01
Background Left atrial volume (LAV) is a predictor of prognosis in patients with heart failure. Objective We aimed to evaluate the determinants of LAV in patients with dilated cardiomyopathy (DCM). Methods Ninety patients with DCM and left ventricular (LV) ejection fraction ≤ 0.50 were included. LAV was measured with real-time three-dimensional echocardiography (eco3D). The variables evaluated were heart rate, systolic blood pressure, LV end-diastolic volume and end-systolic volume and ejection fraction (eco3D), mitral inflow E wave, tissue Doppler e´ wave, E/e´ ratio, intraventricular dyssynchrony, 3D dyssynchrony index and mitral regurgitation vena contracta. Pearson´s coefficient was used to identify the correlation of the LAV with the assessed variables. A multiple linear regression model was developed that included LAV as the dependent variable and the variables correlated with it as the predictive variables. Results Mean age was 52 ± 11 years-old, LV ejection fraction: 31.5 ± 8.0% (16-50%) and LAV: 39.2±15.7 ml/m2. The variables that correlated with the LAV were LV end-diastolic volume (r = 0.38; p < 0.01), LV end-systolic volume (r = 0.43; p < 0.001), LV ejection fraction (r = -0.36; p < 0.01), E wave (r = 0.50; p < 0.01), E/e´ ratio (r = 0.51; p < 0.01) and mitral regurgitation (r = 0.53; p < 0.01). A multivariate analysis identified the E/e´ ratio (p = 0.02) and mitral regurgitation (p = 0.02) as the only independent variables associated with LAV increase. Conclusion The LAV is independently determined by LV filling pressures (E/e´ ratio) and mitral regurgitation in DCM. PMID:25993483
Left Atrial Volume Determinants in Patients with Non-Ischemic Dilated Cardiomyopathy.
Mancuso, Frederico José Neves; Moisés, Valdir Ambrósio; Almeida, Dirceu Rodrigues; Poyares, Dalva; Storti, Luciana Julio; Oliveira, Wércules Antonio; Brito, Flavio Souza; Paola, Angelo Amato Vincenzo de; Carvalho, Antonio Carlos Camargo; Campos, Orlando
2015-07-01
Left atrial volume (LAV) is a predictor of prognosis in patients with heart failure. We aimed to evaluate the determinants of LAV in patients with dilated cardiomyopathy (DCM). Ninety patients with DCM and left ventricular (LV) ejection fraction ≤ 0.50 were included. LAV was measured with real-time three-dimensional echocardiography (eco3D). The variables evaluated were heart rate, systolic blood pressure, LV end-diastolic volume and end-systolic volume and ejection fraction (eco3D), mitral inflow E wave, tissue Doppler e' wave, E/e' ratio, intraventricular dyssynchrony, 3D dyssynchrony index and mitral regurgitation vena contracta. Pearson's coefficient was used to identify the correlation of the LAV with the assessed variables. A multiple linear regression model was developed that included LAV as the dependent variable and the variables correlated with it as the predictive variables. Mean age was 52 ± 11 years-old, LV ejection fraction: 31.5 ± 8.0% (16-50%) and LAV: 39.2±15.7 ml/m2. The variables that correlated with the LAV were LV end-diastolic volume (r = 0.38; p < 0.01), LV end-systolic volume (r = 0.43; p < 0.001), LV ejection fraction (r = -0.36; p < 0.01), E wave (r = 0.50; p < 0.01), E/e' ratio (r = 0.51; p < 0.01) and mitral regurgitation (r = 0.53; p < 0.01). A multivariate analysis identified the E/e' ratio (p = 0.02) and mitral regurgitation (p = 0.02) as the only independent variables associated with LAV increase. The LAV is independently determined by LV filling pressures (E/e' ratio) and mitral regurgitation in DCM.
NASA Technical Reports Server (NTRS)
Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.
2004-01-01
Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30 x 30 x 10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/sq m. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.
NASA Technical Reports Server (NTRS)
Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.
2004-01-01
Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30x30x10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/m2. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.
Equilibration and aging of dense soft-sphere glass-forming liquids
NASA Astrophysics Data System (ADS)
Sánchez-Díaz, Luis Enrique; Ramírez-González, Pedro; Medina-Noyola, Magdaleno
2013-05-01
The recently developed nonequilibrium extension of the self-consistent generalized Langevin equation theory of irreversible relaxation [Ramírez-González and Medina-Noyola, Phys. Rev. E10.1103/PhysRevE.82.061503 82, 061503 (2010); Ramírez-González and Medina-Noyola, Phys. Rev. E10.1103/PhysRevE.82.061504 82, 061504 (2010)] is applied to the description of the irreversible process of equilibration and aging of a glass-forming soft-sphere liquid that follows a sudden temperature quench, within the constraint that the local mean particle density remains uniform and constant. For these particular conditions, this theory describes the nonequilibrium evolution of the static structure factor S(k;t) and of the dynamic properties, such as the self-intermediate scattering function FS(k,τ;t), where τ is the correlation delay time and t is the evolution or waiting time after the quench. Specific predictions are presented for the deepest quench (to zero temperature). The predicted evolution of the α-relaxation time τα(t) as a function of t allows us to define the equilibration time teq(ϕ), as the time after which τα(t) has attained its equilibrium value ταeq(ϕ). It is predicted that both, teq(ϕ) and ταeq(ϕ), diverge as ϕ→ϕ(a), where ϕ(a) is the hard-sphere dynamic-arrest volume fraction ϕ(a)(≈0.582), thus suggesting that the measurement of equilibrium properties at and above ϕ(a) is experimentally impossible. The theory also predicts that for fixed finite waiting times t, the plot of τα(t;ϕ) as a function of ϕ exhibits two regimes, corresponding to samples that have fully equilibrated within this waiting time (ϕ≤ϕ(c)(t)), and to samples for which equilibration is not yet complete (ϕ≥ϕ(c)(t)). The crossover volume fraction ϕ(c)(t) increases with t but saturates to the value ϕ(a).
NASA Astrophysics Data System (ADS)
Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng
2018-06-01
We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.
Mechanical Properties versus Morphology of Ordered Polymers. Volume III. Part I
1982-08-01
measured by wide angle x-ray scattering and differential scanning calorimetry, is unrelated to the diffuse scattered intensity [62]. Cellulose acetate which...increasing void fraction, in air swollen cellulose . Comparison of the volume fraction of voids calculated from the SAXS integrated intensity with...1964). 63. P.H. Hermans, D. Heikens, and A. Weidinger, "A Quantitative Investigation on the X-Ray Small Angle Scattering of Cellulose Fibers. Part II
Lightweight armor system and process for producing the same
Chu, Henry S.; Bruck, H. Alan; Strempek, Gary C.; Varacalle, Jr., Dominic J.
2004-01-20
A lightweight armor system may comprise a substrate having a graded metal matrix composite layer formed thereon by thermal spray deposition. The graded metal matrix composite layer comprises an increasing volume fraction of ceramic particles imbedded in a decreasing volume fraction of a metal matrix as a function of a thickness of the graded metal matrix composite layer. A ceramic impact layer is affixed to the graded metal matrix composite layer.
Method for beam hardening correction in quantitative computed X-ray tomography
NASA Technical Reports Server (NTRS)
Yan, Chye Hwang (Inventor); Whalen, Robert T. (Inventor); Napel, Sandy (Inventor)
2001-01-01
Each voxel is assumed to contain exactly two distinct materials, with the volume fraction of each material being iteratively calculated. According to the method, the spectrum of the X-ray beam must be known, and the attenuation spectra of the materials in the object must be known, and be monotonically decreasing with increasing X-ray photon energy. Then, a volume fraction is estimated for the voxel, and the spectrum is iteratively calculated.
Microstructural Characterization and Modeling of SLM Superalloy 718
NASA Technical Reports Server (NTRS)
Smith, Tim M.; Sudbrack, Chantal K.; Bonacuse, Pete; Rogers, Richard
2017-01-01
Superalloy 718 is an excellent candidate for selective laser melting (SLM) fabrication due to a combination of excellent mechanical properties and workability. Predicting and validating the microstructure of SLM-fabricated Superalloy 718 after potential post heat-treatment paths is an important step towards producing components comparable to those made using conventional methods. At present, obtaining accurate volume fraction and size measurements of gamma-double-prime, gamma-prime and delta precipitates has been challenging due to their size, low volume fractions, and similar chemistries. A technique combining high resolution distortion corrected SEM imaging and with x-ray energy dispersive spectroscopy has been developed to accurately and independently measure the size and volume fractions of the three precipitates. These results were further validated using x-ray diffraction and phase extraction methods and compared to the precipitation kinetics predicted by PANDAT and JMatPro. Discrepancies are discussed in context of materials properties, model assumptions, sampling, and experimental errors.
Method and apparatus for probing relative volume fractions
Jandrasits, Walter G.; Kikta, Thomas J.
1998-01-01
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.
CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe
NASA Astrophysics Data System (ADS)
Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin
2017-08-01
In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.
Method and apparatus for probing relative volume fractions
Jandrasits, W.G.; Kikta, T.J.
1998-03-17
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction. 9 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmaeili, Shahrzad; Lloyd, David J.
2005-11-15
Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results frommore » a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods.« less
Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids
NASA Astrophysics Data System (ADS)
Bhatti, M. M.; Zeeshan, A.; Tripathi, D.; Ellahi, R.
2018-04-01
In this article, effects of heat and mass transfer on MHD peristaltic motion of solid particles in a dusty fluid are investigated. The effects of nonlinear thermal radiation and Hall current are also taken into account. The relevant flow analysis is modelled for fluid phase and dust phase in wave frame by means of Casson fluid model. Computation of solutions is presented for velocity profile, temperature profile and concentration profile. The effects of all the physical parameters such as particle volume fraction, Hartmann number, Hall Effect, Prandtl number, Eckert number, Schmidt number and Soret number are discussed mathematically and graphically. It is noted that the influence of magnetic field and particle volume fraction opposes the flow. Also, the impact of particle volume fraction is quite opposite on temperature and concentration profile. This model is applicable in smart drug delivery systems and bacteria movement in urine flow through the ureter.
Communication: Influence of nanophase segregation on ion transport in room temperature ionic liquids
Griffin, Philip J.; Wang, Yangyang; Holt, Adam P.; ...
2016-04-21
In this paper, we report measurements of the ionic conductivity, shear viscosity, and structural dynamics in a homologous series of quaternary ammonium ionic liquids (ILs) and a prototypical imidazolium-based IL over a wide range of temperatures down to the glass transition. We find that the ionic conductivity of these materials generally decreases, while the shear viscosity correspondingly increases, with increasing volume fraction of aliphatic side groups. Upon crossing an aliphatic volume fraction of ~0.40, we observe a sharp, order-of-magnitude decrease in ionic conductivity and enhancement of viscosity, which coincides with the presence of long-lived, nanometer-sized alkyl aggregates. These strong changesmore » in dynamics are not mirrored in the ionicity of these ILs, which decreases nearly linearly with aliphatic volume fraction. Finally, our results demonstrate that nanophase segregation in neat ILs strongly reduces ionic conductivity primarily due to an aggregation-induced suppression of dynamics.« less
Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.
2005-01-01
A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.
NASA Astrophysics Data System (ADS)
Carson, James K.
2018-06-01
Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.
NASA Astrophysics Data System (ADS)
Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D.; Taggart-Scarff, Joshua K.; Qing, Bo; Van Vliet, Krystyn J.; Li, Richard; Wardle, Brian L.; Strano, Michael S.
2016-07-01
Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.
Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D; Taggart-Scarff, Joshua K; Qing, Bo; Van Vliet, Krystyn J; Li, Richard; Wardle, Brian L; Strano, Michael S
2016-07-22
Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction. Copyright © 2016, American Association for the Advancement of Science.
Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions
Tsouris, Constantinos; Dong, Junhang
2002-01-01
The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.
Jiang, Zheng; Wang, Hong; Wu, Qi-nan
2015-06-01
To optimize the processing of polysaccharide extraction from Spirodela polyrrhiza. Five factors related to extraction rate of polysaccharide were optimized by the Plackett-Burman design. Based on this study, three factors, including alcohol volume fraction, extraction temperature and ratio of material to liquid, were regarded as investigation factors by Box-Behnken response surface methodology. The effect order of three factors on the extraction rate of polysaccharide from Spirodela polyrrhiza were as follows: extraction temperature, alcohol volume fraction,ratio of material to liquid. According to Box-Behnken response, the best extraction conditions were: alcohol volume fraction of 81%, ratio of material to liquid of 1:42, extraction temperature of 100 degrees C, extraction time of 60 min for four times. Plackett-Burman design and Box-Behnken response surface methodology used to optimize the extraction process for the polysaccharide in this study is effective and stable.
40 CFR 63.3930 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP...
40 CFR 63.3930 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP...
40 CFR 63.3930 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP...
Solomatova, Natalia V.; Jackson, Jennifer M.; Sturhahn, Wolfgang; ...
2016-05-01
Iron-bearing periclase is thought to represent a significant fraction of Earth’s lower mantle. However, the concentration of iron in (Mg,Fe)O is not well constrained at all mantle depths. Therefore, understanding the effect of iron on the density and elastic properties of this phase plays a major role in interpreting seismically observed complexity in the deep Earth. Here in this paper, we examine the high-pressure behavior of polycrystalline (Mg,Fe)O containing 48 mol% FeO, loaded hydrostatically with neon as a pressure medium. Using X-ray diffraction and synchrotron Mössbauer spectroscopy, we measure the equation of state to about 83 GPa and hyperfine parametersmore » to 107 GPa at 300 K. A gradual volume drop corresponding to a high-spin (HS) to low-spin (LS) crossover is observed between ~45 and 83 GPa with a volume drop of 1.85% at 68.8(2.7) GPa, the calculated spin transition pressure. Using a newly formulated spin crossover equation of state, the resulting zero-pressure isothermal bulk modulus K 0T,HS for the HS state is 160(2) GPa with a K' 0T,HS of 4.12(14) and a V 0,HS of 77.29(0) Å 3. For the LS state, the K 0T,LS is 173(13) GPa with a K' 0T,LS fixed to 4 and a V 0,LS of 73.64(94) Å 3. To confirm that the observed volume drop is due to a spin crossover, the quadrupole splitting (QS) and isomer shift (IS) are determined as a function of pressure. At low pressures, the Mössbauer spectra are well explained with two Fe 2+-like sites. At pressure between 44 and 84, two additional Fe 2+-like sites with a QS of 0 are required, indicative of low-spin iron. Above 84 GPa, two low-spin Fe 2+-like sites with increasing weight fraction explain the data well, signifying the completion of the spin crossover. To systematically compare the effect of iron on the equation of state parameters for (Mg,Fe)O, a spin crossover equation of state was fitted to the pressure-volume data of previous measurements. Our results show that K 0,HS is insensitive to iron concentration between 10 to 60 mol% FeO, while the spin transition pressure and width generally increases from about 50–80 and 2–25 GPa, respectively. A key implication is that iron-rich (Mg,Fe)O at the core-mantle boundary would likely contain a significant fraction of high-spin (less dense) iron, contributing a positive buoyancy to promote observable topographic relief in tomographic images of the lowermost mantle.« less
Murray's law, the "Yarrum'" optimum, and the hydraulic architecture of compound leaves
Katherine A. McCulloh; John S. Sperry; Frederick C. Meinzer; Barbara Lachenbruch; Cristian Atala
2009-01-01
There are two optima for maximizing hydraulic conductance per vasculature volume in plants. Murray's law (ML) predicts the optimal conduit taper for a fixed change in conduit number across branch ranks. The opposite, the Yarrum optimum (YO), predicts the optimal change in conduit number for a fixed taper. We derived the solution for YO and then evaluated...
Analysis of Phoenix Anomalies and IV and V Findings Applied to the GRAIL Mission
NASA Technical Reports Server (NTRS)
Larson, Steve
2012-01-01
Analysis of patterns in IV&V findings and their correlation with post-launch anomalies allowed GRAIL to make more efficient use of IV&V services . Fewer issues. . Higher fix rate. . Better communication. . Increased volume of potential issues vetted, at lower cost. . Hard to make predictions of post-launch performance based on IV&V findings . Phoenix made sound fix/use as-is decisions . Things that were fixed eliminated some problems, but hard to quantify. . Broad predictive success in one area, but inverse relationship in others.
NASA Astrophysics Data System (ADS)
Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin
2017-08-01
Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.
A new study of the kinetics of curd production in the process of cheese manufacture.
Muñoz, Susana Vargas; Torres, Maykel González; Guerrero, Francisco Quintanilla; Talavera, Rogelio Rodríguez
2017-11-01
We studied the role played by temperature and rennet concentration in the coagulation process for cheese manufacture and the evaluation of their kinetics. We concluded that temperature is the main factor that determines the kinetics. The rennet concentration was unimportant probably due to the fast action of the enzyme chymosin. The Dynamic light scattering technique allowed measuring the aggregate's size and their formation kinetics. The volume fraction of solids was determined from viscosity measurements, showing profiles that are in agreement with the size profiles. The results indicate that the formation of the aggregates for rennet cheese is strongly dependent on temperature and rennet concentration. The results revealed that at 35·5 °C the volume fraction of solids has the maximum slope, indicating that at this temperature the curd is formed rapidly. The optimal temperature throughout the process was established. Second-order kinetics were obtained for the process. We observed a quadratic dependence between the rennet volume and the volume fraction of solids (curd), thereby indicating that the kinetics of the curd production should be of order two.
Rheological properties of concentrated, nonaqueous silicon nitride suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergstroem, L.
1996-12-01
The rheological properties of nonaqueous silicon nitride powder suspensions have been investigated using steady shear and viscoelastic measurements. The polymeric dispersant, Hypermer KD-3, adsorbed strongly on the powder surfaces, and colloidally stable, fluid suspensions up to a volume fraction of {Phi} = 0.50 could be prepared. The concentrated suspensions all displayed a shear thinning behavior which could be modeled using the high shear form of the Cross equation. The viscoelastic response at high concentrations was dominated by particle interactions, probably due to interpenetration of the adsorbed polymer layers, and a thickness of the adsorbed Hypermer KD-3 layer, {Delta} {approx} 10more » nm, was estimated. The volume fraction dependences of the high shear viscosity of three different silicon nitride powders were compared and the differences, analyzed by using a modified Krieger-Dougherty model, were related to effective volume effects and the physical characteristics of the powders. The significantly lower maximum volume fraction, {Phi}{sub m} = 0.47, of the SN E-10 powder was referred to the narrow particle size distribution and the possibility of an unfavorable particle morphology.« less
NASA Astrophysics Data System (ADS)
Russell, Bobby Glenn
Epoxy resins are thermosets with extraordinary adhesion; high strength; good resistance to creep, heat, and chemicals; and they have low shrinkage. Conversely, these polymers are brittle, they are sensitive to moisture, and they exhibit poor toughness. To improve their toughness, they are often modified by introducing dispersed rubber particles in the primary phase. In this study, the epoxy resin was modified with carboxyl-terminated butadiene acrylonitrile (CTBN), liquid-reactive rubbers. The initiator concentration, percent acrylonitrile in the CTBN rubber, and cure temperatures were altered to give varying materials properties. Statistical analysis of the morphology data showed that the percentage of rubber acrylonitrile had an effect on both the rubber particle size and volume fraction. The cure temperature had an effect on the rubber particle volume and modulus. Plots of the rubber particle size, volume fraction, and modulus versus bulk elastic storage modulus and fracture toughness revealed that rubber particle size had no effect on bulk properties, volume fraction and rubber particle modulus had an effect on both the bulk storage elastic modulus and fracture toughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ispir, B; Akdeniz, Y; Ugurluer, G
2015-06-15
Purpose: To evaluate prostate volume changes during radiation therapy using implanted gold markers and on-board imaging. Methods: Twenty-five patients were included who underwent an implantation of three gold markers. Cartesian coordinates of markers were assessed in kV-images. The coordinates of centers of two markers were measured on kV-images from the center of the marker at the apex which was reference. The distances between the markers were extrapolated from the coordinates using the Euclid formula. The radius of the sphere through markers was calculated using sinus theorem. The prostate volume for the first and last fraction was substituted with a spheremore » model and was calculated for each patient. The t-test was used for analysis. Results: The mean prostate volume for first and last fraction was 24.65 and 20.87 cc, respectively (p≤0.05). The prostate volume was smaller for 23 patients, whereas there was an expansion for 2 patients. Fifteen patients had androgen deprivation during radiotherapy (H group) and ten did not (NH group). The mean prostate volume for the first and last fraction for the NH group was 30.73 cc and 24.89 cc and for the H group 20.84 cc and 18.19 cc, respectively. There was a 15.8% volume change during treatment for the NH group and 12.2% for the H group, but the difference was not statistically significant. The radius difference of the theoretical sphere for the first and last fraction was 0.98 mm (range, 0.09–2.95 mm) and remained below 2 mm in 88% of measurements. Conclusion: There was a significant volume change during prostate radiotherapy. The difference between H group and NH group was not significant. The radius changes did not exceed 3 mm and it was below adaptive treatment requirements. Our results indicate that prostate volume changes during treatment should be taken into account during contouring and treatment planning.« less
Hashmi, Ahmed; Guckenberger, Matthias; Kersh, Ron; Gerszten, Peter C; Mantel, Frederick; Grills, Inga S; Flickinger, John C; Shin, John H; Fahim, Daniel K; Winey, Brian; Oh, Kevin; John Cho, B C; Létourneau, Daniel; Sheehan, Jason; Sahgal, Arjun
2016-11-01
OBJECTIVE This study is a multi-institutional pooled analysis specific to imaging-based local control of spinal metastases in patients previously treated with conventional external beam radiation therapy (cEBRT) and then treated with re-irradiation stereotactic body radiotherapy (SBRT) to the spine as salvage therapy, the largest such study to date. METHODS The authors reviewed cases involving 215 patients with 247 spinal target volumes treated at 7 institutions. Overall survival was calculated on a patient basis, while local control was calculated based on the spinal target volume treated, both using the Kaplan-Meier method. Local control was defined as imaging-based progression within the SBRT target volume. Equivalent dose in 2-Gy fractions (EQD2) was calculated for the cEBRT and SBRT course using an α/β of 10 for tumor and 2 for both spinal cord and cauda equina. RESULTS The median total dose/number of fractions of the initial cEBRT was 30 Gy/10. The median SBRT total dose and number of fractions were 18 Gy and 1, respectively. Sixty percent of spinal target volumes were treated with single-fraction SBRT (median, 16.6 Gy and EQD2/10 = 36.8 Gy), and 40% with multiple-fraction SBRT (median 24 Gy in 3 fractions, EQD2/10 = 36 Gy). The median time interval from cEBRT to re-irradiation SBRT was 13.5 months, and the median duration of patient follow-up was 8.1 months. Kaplan-Meier estimates of 6- and 12-month overall survival rates were 64% and 48%, respectively; 13% of patients suffered a local failure, and the 6- and 12-month local control rates were 93% and 83%, respectively. Multivariate analysis identified Karnofsky Performance Status (KPS) < 70 as a significant prognostic factor for worse overall survival, and single-fraction SBRT as a significant predictive factor for better local control. There were no cases of radiation myelopathy, and the vertebral compression fracture rate was 4.5%. CONCLUSIONS Re-irradiation spine SBRT is effective in yielding imaging-based local control with a clinically acceptable safety profile. A randomized trial would be required to determine the optimal fractionation.
Fontanini, G.; Pingitore, R.; Bigini, D.; Vignati, S.; Pepe, S.; Ruggiero, A.; Macchiarini, P.
1992-01-01
Results generated by the immunohistochemical staining with PC10, a new monoclonal antibody recognizing PCNA (a nuclear protein associated with cell proliferation) in formalin-fixed and paraffin-embedded tissue were compared with those of Ki-67 labeling and DNA flow cytometry in 47 consecutive non-small cell lung cancer (NSCLC). PCNA reactivity was observed in all samples and confined to the nuclei of cancer cells. Its frequency ranged from 0 to 80% (37.7 +/- 23.6) and larger sized, early-staged and DNA aneuploid tumors expressed a significant higher number of PCNA-reactive cells. The PCNA and Ki-67 labeling rates were closely correlated (r = 0.383, P = 0.009). By flow cytometry, we observed a good correlation among PCNA labeling and S-phase fraction (r = 0.422, P = .0093) and G1 phase (r = 0.303, P = .051) of the cell cycle. Results indicate that PCNA labeling with PC10 is a simple method for assessing the proliferative activity in formalin-fixed, paraffin-embedded tissue of NSCLC and correlates well with Ki-67 labeling and S-phase fraction of the cell cycle. Images Figure 2 PMID:1361306
DOE Office of Scientific and Technical Information (OSTI.GOV)
REICH, F.R.
The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by a privatization contractor from two double-shell feed tanks, 241-AP-102 and 241-AP-104. Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a nested, fixed-depth sampling system. This sampling system will provide large volume, representative samples without the environmental, radiation exposure, and sample volume impacts of the current base-line ''grab'' sampling method. A plan has been developed for the cold testing of this nested, fixed-depth sampling system with simulant materials. The sampling system willmore » fill the 500-ml bottles and provide inner packaging to interface with the Hanford Sites cask shipping systems (PAS-1 and/or ''safe-send''). The sampling system will provide a waste stream that will be used for on-line, real-time measurements with an at-tank analysis system. The cold tests evaluate the performance and ability to provide samples that are representative of the tanks' content within a 95 percent confidence interval, to sample while mixing pumps are operating, to provide large sample volumes (1-15 liters) within a short time interval, to sample supernatant wastes with over 25 wt% solids content, to recover from precipitation- and settling-based plugging, and the potential to operate over the 20-year expected time span of the privatization contract.« less
TH-E-BRF-06: Kinetic Modeling of Tumor Response to Fractionated Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Gordon, J; Chetty, I
2014-06-15
Purpose: Accurate calibration of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on calibrated parameters. In this study, we have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for calibrating radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time Td, half-life of dying cells Tr and cellmore » survival fraction SFD under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models, Chvetsov model (C-model) and Lim model (L-model). The C-model and L-model were optimized with the parameter Td fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43±0.08, and the half-life of dying cells averaged over the six patients is 17.5±3.2 days. The parameters Tr and SFD optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the Td-fixed C-model, and by 32.1% and 112.3% from those optimized with the Td-fixed L-model, respectively. Conclusion: The Z-model was analytically constructed from the cellpopulation differential equations to describe changes in the number of different tumor cells during the course of fractionated radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The developed modeling and optimization methods may help develop high-quality treatment regimens for individual patients.« less
Mixing and segregation of microspheres in microchannel flows of mono- and bidispersed suspensions
NASA Astrophysics Data System (ADS)
Gao, C.; Xu, B.; Gilchrist, J. F.
2009-03-01
We investigate the mixing and segregation of mono- and bidispersed microsphere suspensions in microchannel flows. These flows are common in biological microelectromechanical systems (BioMEMS) applications handling blood or suspensions of DNA. Suspension transport in pressure driven flows is significantly hindered by shear-induced migration, where particles migrate away from the walls and are focused in the center due to multibody hydrodynamic interactions. The microchannels used in this study have geometries that induce chaotic advection in Newtonian fluids. Our results show that mixing in straight, herringbone and staggered herringbone channels depends strongly on volume fraction. Due to this complex interplay of advection and shear-induced migration, a staggered herringbone channel that typically results in chaotic mixing is not always effective for dispersing particles. The maximum degree of segregation is observed in a straight channel once the maximum packing fraction is reached at channel center. We modify a one-dimensional suspension balance model [R. Miller and J. Morris, J. Non-Newtonian Fluid Mech. 135, 149 (2006)] to describe the behavior at the center of the straight channel. The degree of mixing is then calculated as a function of bulk volume fraction, predicting the volume fraction that results in the maximum degree of segregation. In bidispersed suspension flow, it is shown that mixing of the larger species is enhanced in straight and staggered herringbone channels while segregation is enhanced at moderate volume fractions in herringbone channels. This suggests mixing and separations can be tailored by adjusting both the suspension properties and the channel geometry.
NASA Astrophysics Data System (ADS)
Morissette, Sherry L.
A new gelcasting system based on aqueous, alumina-poly(vinyl alcohol) (PVA) suspensions cross-linked by an organotitanate coupling agent has been developed. Both the chemorheological properties and forming behavior of this system exhibited a strong compositional dependence. A sol- gel phase diagram was established, which yielded the critical titanium concentration [Ti] c required for gelation at a given PVA volume fraction, as well as the minimum PVA volume fraction ( fminPVA = 0.0245) and titanium PVA concentration ([Ti]min = 9.984 x 10--4 g Ti/ml) below which gelation was not observed irrespective of solution composition. The gelation time of suspensions of constant PVA volume fraction ( fsolnPVA ) decreased with increasing cross-linking agent concentration, PVA temperature, and solids volume fraction. The steady-state viscosity and elastic modulus of polymer solutions ( fsolnPVA = 0.05) of varying [Ti] were well described by the PVA percolation model, giving scaling exponents of 0.84 and 1.79, respectively. The steady-state elastic modulus of gel casting suspensions, which provides a measure of their handling strength in the as-gelled state, increased with increasing solids volume fraction. Gelcasting suspensions were used as feedstock for solid free-form fabrication (SFF) of ceramic components. The influence of processing conditions (e.g., tip diameter, mixing rate, table speed, etc.) and suspension rheology on deposition behavior was investigated. Continuous printablity was achieved for tip diameters ranging from dt = 0.254 -- 1.370 mm for all mixing rates (Rmix 5 -- 300 rpm) and suspension compositions (i.e., fAl2O3 = 0.45, φPVA = 0.275, [Ti] 0 -- 6.30 x 10--3 g Ti/ml) probed, where the minimum tip diameter for continuous printing was 0.203 mm. Printed lines were uniform with good edge definition. Line dimensions were independent of mixing rate for the given process conditions. The as-cast alumina volume fraction ( fAl2O3 ) depended on casting conditions and cross-linking agent concentration, where fAl2O3 decreased with increasing tip diameter and increased with increasing cross-linking agent concentration. Free-fomied Al2O3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no detectable micro-defects (e.g., bubbles or cracking).
NASA Astrophysics Data System (ADS)
Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav
2004-08-01
Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained.
Neukamm, Christian; Try, Kirsti; Norgård, Gunnar; Brun, Henrik
2014-01-01
A technique that uses two-dimensional images to create a knowledge-based, three-dimensional model was tested and compared to magnetic resonance imaging. Measurement of right ventricular volumes and function is important in the follow-up of patients after pulmonary valve replacement. Magnetic resonance imaging is the gold standard for volumetric assessment. Echocardiographic methods have been validated and are attractive alternatives. Thirty patients with tetralogy of Fallot (25 ± 14 years) after pulmonary valve replacement were examined. Magnetic resonance imaging volumetric measurements and echocardiography-based three-dimensional reconstruction were performed. End-diastolic volume, end-systolic volume, and ejection fraction were measured, and the results were compared. Magnetic resonance imaging measurements gave coefficient of variation in the intraobserver study of 3.5, 4.6, and 5.3 and in the interobserver study of 3.6, 5.9, and 6.7 for end-diastolic volume, end-systolic volume, and ejection fraction, respectively. Echocardiographic three-dimensional reconstruction was highly feasible (97%). In the intraobserver study, the corresponding values were 6.0, 7.0, and 8.9 and in the interobserver study 7.4, 10.8, and 13.4. In comparison of the methods, correlations with magnetic resonance imaging were r = 0.91, 0.91, and 0.38, and the corresponding coefficient of variations were 9.4, 10.8, and 14.7. Echocardiography derived volumes (mL/m(2)) were significantly higher than magnetic resonance imaging volumes in end-diastolic volume 13.7 ± 25.6 and in end-systolic volume 9.1 ± 17.0 (both P < .05). The knowledge-based three-dimensional right ventricular volume method was highly feasible. Intra and interobserver variabilities were satisfactory. Agreement with magnetic resonance imaging measurements for volumes was reasonable but unsatisfactory for ejection fraction. Knowledge-based reconstruction may replace magnetic resonance imaging measurements for serial follow-up, whereas magnetic resonance imaging should be used for surgical decision making.
Sharen, Gao-Wa; Zhang, Jun; Qin, Chuan; Lv, Qing
2017-02-01
The dynamic characteristics of the area of the atrial septal defect (ASD) were evaluated using the technique of real-time three-dimensional echocardiography (RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane (LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group (n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method (4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the right atrial volume occurred in the end-systolic period when the peak of the curve appeared. The minimum value of the changes occurred in the end-systolic period and was located at the lowest point of the volume variation curve. The area variation curve for ASD and the motion variation curve for the tricuspid annulus in the cardiac cycle were the same. The displacement of the tricuspid annulus exhibited directionality. The measured values of the area of ASD at P wave vertex, R wave vertex, T wave starting point, T wave terminal point and in the T-P section were properly correlated with the right atrial volume (P<0.001). The area of ASD and the motion displacement distance of the tricuspid annulus were negatively correlated (P<0.05). The right atrial volumes in the ASD group in the cardiac cycle in various time phases increased significantly as compared with those in the normal control group (P=0.0001). The motion displacement distance of the tricuspid annulus decreased significantly in the ASD group as compared with that in the normal control group (P=0.043). The right ventricular ejection fraction in the ASD group was lower than that in the normal control group (P=0.032). The ejection fraction of the cardiac apex trabecula of the ASD patients was significantly lower than the ejection fractions of the right ventricular outflow tract and inflow tract and overall ejection fraction. The difference was statistically significant (P=0.005). The right ventricular local and overall dilatation and end-systolic volumes in the ASD group increased significantly as compared with those in the normal control group (P=0.031). The aRVEF and the overall ejection fraction decreased in the ASD group as compared with those in the normal control group (P=0.0005). The dynamic changes in the area of ASD and the motion curves for the right atrial volume and tricuspid annulus have the same dynamic characteristics. RT 3DE can be used to accurately evaluate the local and overall volume and functions of the right ventricle. The local and overall volume loads of the right ventricle in the ASD patients increase significantly as compared with those of the normal people. The right ventricular cardiac apex and the overall systolic function decrease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurkovic, I; Stathakis, S; Markovic, M
Purpose: To assess the value of cone beam CT (CBCT) combined with deformable image registration in estimating the accuracy of the delivered treatment and the suitability of the applied target margins. Methods: Two patients with lung tumor were selected. Using their CT images intensity modulated radiation therapy (IMRT) treatment plans were developed to deliver 66Gy to the 95% of the PTV in 2Gy fractions. Using the Velocity AI software, the planning CT of each patient was registered with the fractional CBCT images that were obtained through the course of the treatment. After a CT to CBCT deformable image registration (DIR),more » the same fractional deformation matrix was used for the deformation of the planned dose distributions, as well as of all the contoured volumes, to each CBCT dataset. The dosimetric differences between the planning target volume (PTV) and various organs at risk (OARs) were recorded and compared. Results: CBCT data such as CTV volume change and PTV coverage was analyzed. There was a moderate relationship between volume changes and contouring method (automatic contouring using the DIR transformation vs. manual contouring on each CBCT) for patient #1 (r = 0.49), and a strong relationship for patient #2 (r = 0.83). The average PTV volume coverage from all the CBCT datasets was 91.2% for patient #1 and 95.6% for patient #2. Conclusion: Daily setup variations, tumor volume motion and lung deformation due to breathing yield differences in the actual delivered dose distributions versus the planned ones. The results presented indicate that these differences are apparent even with the use of daily IGRT. In certain fractions, the margins used seem to be insufficient to ensure acceptable lung tumor coverage. The observed differences notably depend on the tumor volume size and location. A larger cohort of patient is under investigation to verify those findings.« less
Economical and ecological comparison of granular activated carbon (GAC) adsorber refill strategies.
Bayer, Peter; Heuer, Edda; Karl, Ute; Finkel, Michael
2005-05-01
Technical constraints can leave a considerable freedom in the design of a technology, production or service strategy. Choosing between economical or ecological decision criteria then characteristically leads to controversial solutions of ideal systems. For the adaptation of granular-activated carbon (GAC) fixed beds, various technical factors determine the adsorber volume required to achieve a desired service life. In considering carbon replacement and recycling, a variety of refill strategies are available that differ in terms of refill interval, respective adsorber volume, and time-dependent use of virgin, as well as recycled GAC. Focusing on the treatment of contaminant groundwater, we compare cost-optimal reactor configurations and refill strategies to the ecologically best alternatives. Costs and consumption of GAC are quantified within a technical-economical framework. The emissions from GAC production out of hard coal, transport and recycling are equally derived through a life cycle impact assessment. It is shown how high discount rates lead to a preference of small fixed-bed volumes, and accordingly, a high number of refills. For fixed discount rates, the investigation reveals that both the economical as well as ecological assessment of refill strategies are especially sensitive to the relative valuation of virgin and recycled GAC. Since recycling results in economic and ecological benefits, optimized systems thus may differ only slightly.
PRESSURE-VOLUME RELATIONSHIP OF THE FUNDULUS EGG IN SEA WATER AND IN SUCROSE
Kao, C. Y.
1956-01-01
Upon activation, an internal hydrostatic pressure develops within the Fundulus egg, and compresses the egg proper to a reduced volume. When the perivitelline pressure is abolished by a highly hypertonic sucrose solution, the egg volume increases. As sucrose penetrates the chorion, the volume again decreases. The relation between P and V in these conditions is inverse, and approximates a rectangular hyperbola. The limiting factor causing most of the deviation is shown to be the incompressible fraction. It is concluded that the volume of the egg proper is controlled by the perivitelline pressure, and that the effect of hypertonic sucrose solution is exerted by lowering the pressure and thereby increasing membrane permeability non-specifically. It is also shown that some permanent alterations occur within the plasma membrane during activation that reduce the permeance, and thereby, increase the incompressible fraction. PMID:13357739
Heat transfer augmentation of a car radiator using nanofluids
NASA Astrophysics Data System (ADS)
Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.
2014-05-01
The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berzi, Diego; Vescovi, Dalila
2015-01-15
We use previous results from discrete element simulations of simple shear flows of rigid, identical spheres in the collisional regime to show that the volume fraction-dependence of the stresses is singular at the shear rigidity. Here, we identify the shear rigidity, which is a decreasing function of the interparticle friction, as the maximum volume fraction beyond which a random collisional assembly of grains cannot be sheared without developing force chains that span the entire domain. In the framework of extended kinetic theory, i.e., kinetic theory that accounts for the decreasing in the collisional dissipation due to the breaking of molecularmore » chaos at volume fractions larger than 0.49, we also show that the volume fraction-dependence of the correlation length (measure of the velocity correlation) is singular at random close packing, independent of the interparticle friction. The difference in the singularities ensures that the ratio of the shear stress to the pressure at shear rigidity is different from zero even in the case of frictionless spheres: we identify that with the yield stress ratio of granular materials, and we show that the theoretical predictions, once the different singularities are inserted into the functions of extended kinetic theory, are in excellent agreement with the results of numerical simulations.« less
NASA Astrophysics Data System (ADS)
Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.
2016-11-01
Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.
Zhao, Ningbo; Li, Zhiming
2017-01-01
To effectively predict the thermal conductivity and viscosity of alumina (Al2O3)-water nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly, using a two-step method, four Al2O3-water nanofluids were prepared respectively by dispersing different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial basis function (RBF) neural network was constructed to predict the thermal conductivity and viscosity of Al2O3-water nanofluids as a function of nanoparticle volume fraction and temperature. The experimental results showed that both nanoparticle volume fraction and temperature could enhance the thermal conductivity of Al2O3-water nanofluids. However, the viscosity only depended strongly on Al2O3 nanoparticle volume fraction and was increased slightly by changing temperature. In addition, the comparative analysis revealed that the RBF neural network had an excellent ability to predict the thermal conductivity and viscosity of Al2O3-water nanofluids with the mean absolute percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an effective way to predict the thermophysical properties of nanofluids with limited experimental data. PMID:28772913
Zhao, Ningbo; Li, Zhiming
2017-05-19
To effectively predict the thermal conductivity and viscosity of alumina (Al₂O₃)-water nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly, using a two-step method, four Al₂O₃-water nanofluids were prepared respectively by dispersing different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial basis function (RBF) neural network was constructed to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids as a function of nanoparticle volume fraction and temperature. The experimental results showed that both nanoparticle volume fraction and temperature could enhance the thermal conductivity of Al₂O₃-water nanofluids. However, the viscosity only depended strongly on Al₂O₃ nanoparticle volume fraction and was increased slightly by changing temperature. In addition, the comparative analysis revealed that the RBF neural network had an excellent ability to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids with the mean absolute percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an effective way to predict the thermophysical properties of nanofluids with limited experimental data.
Volumetric response of intracranial meningioma after photon or particle irradiation.
Mozes, Petra; Dittmar, Jan Oliver; Habermehl, Daniel; Tonndorf-Martini, Eric; Hideghety, Katalin; Dittmar, Anne; Debus, Jürgen; Combs, Stephanie E
2017-03-01
Meningiomas are usually slow growing, well circumscribed intracranial tumors. In symptom-free cases observation with close follow-up imaging could be performed. Symptomatic meningiomas could be surgically removed and/or treated with radiotherapy. The study aimed to evaluate the volumetric response of intracranial meningiomas at different time points after photon, proton, and a mixed photon and carbon ion boost irradiation. In Group A 38 patients received proton therapy (median dose: 56 GyE in 1.8-2 GyE daily fractions) or a mixed photon/carbon ion therapy (50 Gy in 2 Gy daily fractions with intensity modulated radiotherapy (IMRT) and 18 GyE in 3 GyE daily dose carbon ion boost). Thirty-nine patients (Group B) were treated by photon therapy with IMRT or fractionated stereotactic radiotherapy technique (median dose: 56 Gy in 1.8-2 Gy daily fractions). The delineation of the tumor volume was based on the initial, one- and two-year follow-up magnetic resonance imaging and these volumes were compared to evaluate the volumetric tumor response. Significant tumor volume shrinkage was detected at one- and at two-year follow-up both after irradiation by particles and by photons. No significant difference in tumor volume change was observed between photon, proton or combined photon plus carbon ion boost treated patients. WHO grade and gender appear to be determining factors for tumor volume shrinkage. Significant volumetric shrinkage of meningiomas could be observed independently of the applied radiation modality. Long-term follow-up is recommended to evaluate further dynamic of size reduction and its correlation with outcome data.
NASA Astrophysics Data System (ADS)
Kari, Leif
2017-09-01
The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kainz, K; Prah, D; Ahunbay, E
2014-06-01
Purpose: A novel modulated arc therapy technique, mARC, enables superposition of step-and-shoot IMRT segments upon a subset of the optimization points (OPs) of a continuous-arc delivery. We compare two approaches to mARC planning: one with the number of OPs fixed throughout optimization, and another where the planning system determines the number of OPs in the final plan, subject to an upper limit defined at the outset. Methods: Fixed-OP mARC planning was performed for representative cases using Panther v. 5.01 (Prowess, Inc.), while variable-OP mARC planning used Monaco v. 5.00 (Elekta, Inc.). All Monaco planning used an upper limit of 91more » OPs; those OPs with minimal MU were removed during optimization. Plans were delivered, and delivery times recorded, on a Siemens Artiste accelerator using a flat 6MV beam with 300 MU/min rate. Dose distributions measured using ArcCheck (Sun Nuclear Corporation, Inc.) were compared with the plan calculation; the two were deemed consistent if they agreed to within 3.5% in absolute dose and 3.5 mm in distance-to-agreement among > 95% of the diodes within the direct beam. Results: Example cases included a prostate and a head-and-neck planned with a single arc and fraction doses of 1.8 and 2.0 Gy, respectively. Aside from slightly more uniform target dose for the variable-OP plans, the DVHs for the two techniques were similar. For the fixed-OP technique, the number of OPs was 38 and 39, and the delivery time was 228 and 259 seconds, respectively, for the prostate and head-and-neck cases. For the final variable-OP plans, there were 91 and 85 OPs, and the delivery time was 296 and 440 seconds, correspondingly longer than for fixed-OP. Conclusion: For mARC, both the fixed-OP and variable-OP approaches produced comparable-quality plans whose delivery was successfully verified. To keep delivery time per fraction short, a fixed-OP planning approach is preferred.« less
Hejri-Zarifi, Sudiyeh; Ahmadian-Kouchaksaraei, Zahra; Pourfarzad, Amir; Khodaparast, Mohammad Hossein Haddad
2014-12-01
Germinated palm date seeds were milled into two fractions: germ and residue. Dough rheological characteristics, baking (specific volume and sensory evaluation), and textural properties (at first day and during storage for 5 days) were determined in Barbari flat bread. Germ and residue fractions were incorporated at various levels ranged in 0.5-3 g/100 g of wheat flour. Water absorption, arrival time and gelatination temperature were decreased by germ fraction but accompanied by an increasing effect on the mixing tolerance index and degree of softening in most levels. Although improvement in dough stability was monitored but specific volume of bread was not affected by both fractions. Texture analysis of bread samples during 5 days of storage indicated that both fractions of germinated date seeds were able to diminish bread staling. Avrami non-linear regression equation was chosen as useful mathematical model to properly study bread hardening kinetics. In addition, principal component analysis (PCA) allowed discriminating among dough and bread specialties. Partial least squares regression (PLSR) models were applied to determine the relationships between sensory and instrumental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, J. J., E-mail: johnjosephwilliamson@gmail.com; Evans, R. M. L.
We dynamically simulate fractionation (partitioning of particle species) during spinodal gas-liquid separation of a size-polydisperse colloid, using polydispersity up to ∼40% and a skewed parent size distribution. We introduce a novel coarse-grained Voronoi method to minimise size bias in measuring local volume fraction, along with a variety of spatial correlation functions which detect fractionation without requiring a clear distinction between the phases. These can be applied whether or not a system is phase separated, to determine structural correlations in particle size, and generalise easily to other kinds of polydispersity (charge, shape, etc.). We measure fractionation in both mean size andmore » polydispersity between the phases, its direction differing between model interaction potentials which are identical in the monodisperse case. These qualitative features are predicted by a perturbative theory requiring only a monodisperse reference as input. The results show that intricate fractionation takes place almost from the start of phase separation, so can play a role even in nonequilibrium arrested states. The methods for characterisation of inhomogeneous polydisperse systems could in principle be applied to experiment as well as modelling.« less
Curvature computation in volume-of-fluid method based on point-cloud sampling
NASA Astrophysics Data System (ADS)
Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.
2018-01-01
This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.
NASA Astrophysics Data System (ADS)
Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol Kajetan
2014-04-01
We establish several properties of the solutions to the linear integral equations describing the infinite volume properties of the XXZ spin-1/2 chain in the disordered regime. In particular, we obtain lower and upper bounds for the dressed energy, dressed charge and density of Bethe roots. Furthermore, we establish that given a fixed external magnetic field (or a fixed magnetization) there exists a unique value of the boundary of the Fermi zone.
Effect of Cross-Linking on Free Volume Properties of PEG Based Thiol-Ene Networks
NASA Astrophysics Data System (ADS)
Ramakrishnan, Ramesh; Vasagar, Vivek; Nazarenko, Sergei
According to the Fox and Loshaek theory, in elastomeric networks, free volume decreases linearly with the cross-link density increase. The aim of this study is to show whether the poly(ethylene glycol) (PEG) based multicomponent thiol-ene elastomeric networks demonstrate this model behavior? Networks with a broad cross-link density range were prepared by changing the ratio of the trithiol crosslinker to PEG dithiol and then UV cured with PEG diene while maintaining 1:1 thiol:ene stoichiometry. Pressure-volume-temperature (PVT) data of the networks was generated from the high pressure dilatometry experiments which was fit using the Simha-Somcynsky Equation-of-State analysis to obtain the fractional free volume of the networks. Using Positron Annihilation Lifetime Spectroscopy (PALS) analysis, the average free volume hole size of the networks was also quantified. The fractional free volume and the average free volume hole size showed a linear change with the cross-link density confirming that the Fox and Loshaek theory can be applied to this multicomponent system. Gas diffusivities of the networks showed a good correlation with free volume. A free volume based model was developed to describe the gas diffusivity trends as a function of cross-link density.
Echocardiographic measurements of left ventricular mass by a non-geometric method
NASA Technical Reports Server (NTRS)
Parra, Beatriz; Buckey, Jay; Degraff, David; Gaffney, F. Andrew; Blomqvist, C. Gunnar
1987-01-01
The accuracy of a new nongeometric method for calculating left ventricular myocardial volumes from two-dimensional echocardiographic images was assessed in vitro using 20 formalin-fixed normal human hearts. Serial oblique short-axis images were acquired from one point at 5-deg intervals, for a total of 10-12 cross sections. Echocardiographic myocardial volumes were calculated as the difference between the volumes defined by the epi- and endocardial surfaces. Actual myocardial volumes were determined by water displacement. Volumes ranged from 80 to 174 ml (mean 130.8 ml). Linear regression analysis demonstrated excellent agreement between the echocardiographic and direct measurements.
Howards, Stuart S.; Davis, Bernard B.; Knox, Franklyn G.; Wright, Fred S.; Berliner, Robert W.
1968-01-01
The effect of infusions of hyperoncotic solutions on fractional sodium reabsorption by the proximal tubule of the dog was studied by the recollection micropuncture method. Tubule fluid to plasma inulin concentration ratios were measured for identified proximal tubule segments before and after infusion of 25% albumin or dextran solutions. Results were compared with changes in fractional reabsorption during saline diuresis. Plasma volume increased 66% ± SE 5.8 after infusion of albumin solution and 94% ± SE 8.2 after infusion of dextran solution. Fractional sodium reabosorption by the proximal tubule was depressed after infusion of both of these hyperoncotic solutions. Nevertheless, changes in sodium excretion after infusion of albumin and dextran were small. In contrast, after infusions of isotonic sodium chloride solution, which increased plasma volume 61% ± SE 5.8, a decrease in fractional reabsorption of 50.7% ± SE 7.2 was associated with large changes in sodium excretion. PMID:5658588
Modelling compressible dense and dilute two-phase flows
NASA Astrophysics Data System (ADS)
Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin
2017-06-01
Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various test problems ranging from separated phases in a shock tube to shock-particle cloud interaction. Its predictions are compared to BN and Marble models as well as against experimental data showing clear improvements.
The single scattering properties of soot aggregates with concentric core-shell spherical monomers
NASA Astrophysics Data System (ADS)
Wu, Yu; Cheng, Tianhai; Gu, Xingfa; Zheng, Lijuan; Chen, Hao; Xu, Hui
2014-03-01
Anthropogenic soot aerosols are shown as complex, fractal-like aggregated structures with high light absorption efficiency. In atmospheric environment, soot monomers may tend to acquire a weakly absorbing coating, such as an organic coating, which introduces further complexity to the optical properties of the aggregates. The single scattering properties of soot aggregates can be significantly influenced by the coated status of these kinds of aerosols. In this article, the monomers of fractal soot aggregates are modelled as semi-external mixtures (physical contact) with constant radius of soot core and variable sizes of the coating for specific soot volume fractions. The single scattering properties of these coated soot particles, such as phase function, the cross sections of extinction and absorption, single scattering albedo (SSA) and asymmetry parameter (ASY), are calculated using the numerically exact superposition T-matrix method. The random-orientation averaging results have shown that the single scattering properties of these coated soot aggregates are significantly different from the single volume-equivalent core-shell sphere approximation using the Mie theory and the homogeneous aggregates with uncoated monomers using the effective medium theory, such as Maxwell-Garnett and Bruggemann approximations, which overestimate backscattering of coated soot. It is found that the SSA and cross sections of extinction and absorption are increased for soot aggregates with thicker weakly absorbing coating on the monomers. Especially, the SSA values of these simulated aggregates with less soot core volume fractions are remarkably (~50% for core volume fraction of soot aggregates of 0.5, ~100% for a core volume fraction of 0.2, at 0.67 μm) larger than for uncoated soot particles without consideration of coating. Moreover, the cross sections of extinction and absorption are underestimated by the computation of equivalent homogeneous fractal aggregate approximation (within 5% for the T-matrix method and 10-25% for the Rayleigh-Debye-Gans approximation due to different soot volume fractions). Further understanding of the optical properties of these coated soot aggregates would be helpful for both environment monitoring and climate studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Linda X.; Garg, Madhur; Lasala, Patrick
2011-03-15
Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans. Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS. Among them, tumors had maximum diameters {<=}20 mm: 31; between 20 and 30 mm: 21; and >30 mm: 13. All patients were treated with 6 MV photons on a Trilogy linear accelerator (Varian Medical Systems,more » Palo Alto, CA) with a tertiary m3 high-resolution mMLC (Brainlab, Feldkirchen, Germany), using either noncoplanar conformal fixed fields or dynamic conformal arcs. The authors also created retrospective study plans with identical beam arrangement as the treated plan but with different tumor dose inhomogeneity by varying the beam margins around the planning target volume (PTV). All retrospective study plans were normalized so that the minimum PTV dose was the prescription dose (PD). Isocenter dose, mean PTV dose, RTOG conformity index (CI), RTOG homogeneity index (HI), dose gradient index R{sub 50}-R{sub 100} (defined as the difference between equivalent sphere radius of 50% isodose volume and prescription isodose volume), and normal tissue volume (as a ratio to PTV volume) receiving 50% prescription dose (NTV{sub 50}) were calculated. Results: HI was inversely related to the beam margins around the PTV. CI had a ''V'' shaped relationship with HI, reaching a minimum when HI was approximately 1.3. Isocenter dose and mean PTV dose (as percentage of PD) increased linearly with HI. R{sub 50}-R{sub 100} and NTV{sub 50} initially declined with HI and then reached a plateau when HI was approximately 1.3. These trends also held when tumors were grouped according to their maximum diameters. The smallest tumor group (maximum diameters {<=}20 mm) had the most HI dependence for dose fall off. For treated plans, CI averaged 2.55{+-}0.79 with HI 1.23{+-}0.06; the average R{sub 50}-R{sub 100} was 0.41{+-}0.08, 0.55{+-}0.10, and 0.65{+-}0.09 cm, respectively, for tumors {<=}20 mm, between 20 and 30 mm, and >30 mm. Conclusions: Tumor dose inhomogeneity can be used as an important and convenient parameter to evaluate mMLC LINAC-based SRS plans. Sharp dose fall off in the normal tissue is achieved with sufficiently high tumor dose inhomogeneity. By adjusting beam margins, a homogeneity index of approximately 1.3 would provide best conformity for the authors' SRS system.« less
Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.
2013-01-01
Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.
Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H
2016-01-01
Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas. © 2016 by American Journal of Neuroradiology.
The effects of particle shape, size, and interaction on colloidal glasses and gels
NASA Astrophysics Data System (ADS)
Kramb, Ryan C.
Using multiple step seeded emulsion polymerization reactions, colloid particles of tunable shape are synthesized from polystyrene. In all, four particle shapes are studied referred to as spheres (S), heteronuclear dicolloids (hDC), symmetric homonuclear dicolloids (sDC), and tricolloids (TC). Two size ranges of particles are studied with approximate diameters in the range of 200-300nm and 1.1-1.3mum. The solvent ionic strength is varied from 10 -3M to 1M resulting in particle interaction potentials that range from repulsive to attractive. The effect of anisotropic shape is found to increase the glass transition volume fraction (φg) in good agreement with activated naive Mode Coupling Theory (nMCT) calculations. Differences in φg and the linear elastic modulus (G0') due to particle shape can be understood in terms of the Random Close Packed volume fraction (φRCP ) for each shape; φRCP- φg is a constant. In addition, a reentrant phase diagram is found for S and sDC particles with a maximum in the fluid state volume fraction found at weakly attractive interaction potential, in agreement well with theoretical calculations. Nonlinear rheology and yielding behavior of repulsive and attractive spheres and anisotropic particles are examined and understood in terms of barriers constraining motion. The barriers are due to interparticle bonds or cages constraining translational or rotational motion. Yield stress has similar volume fraction dependence as G 0' and a similar framework is used to understand differences due to particle shape and interaction. For larger particles, the effects of shape and interaction are studied with respect to dynamic yielding and shear thickening. The dynamic yield stress is found to increase with volume fraction while the stress at thickening is constant. The intersection of these indicates a possible jamming point below φRCP.
The hydraulic permeability of blood clots as a function of fibrin and platelet density.
Wufsus, A R; Macera, N E; Neeves, K B
2013-04-16
Interstitial fluid flow within blood clots is a biophysical mechanism that regulates clot growth and dissolution. Assuming that a clot can be modeled as a porous medium, the physical property that dictates interstitial fluid flow is the hydraulic permeability. The objective of this study was to bound the possible values of the hydraulic permeability in clots formed in vivo and present relationships that can be used to estimate clot permeability as a function of composition. A series of clots with known densities of fibrin and platelets, the two major components of a clot, were formed under static conditions. The permeability was calculated by measuring the interstitial fluid velocity through the clots at a constant pressure gradient. Fibrin gels formed with a fiber volume fraction of 0.02-0.54 had permeabilities of 1.2 × 10(-1)-1.5 × 10(-4)μm(2). Platelet-rich clots with a platelet volume fraction of 0.01-0.61 and a fibrin volume fraction of 0.03 had permeabilities over a range of 1.1 × 10(-2)-1.5 × 10(-5)μm(2). The permeability of fibrin gels and of clots with platelet volume fraction of <0.2 were modeled as an array of disordered cylinders with uniform diameters. Clots with a platelet volume fraction of >0.2 were modeled as a Brinkman medium of coarse solids (platelets) embedded in a mesh of fine fibers (fibrin). Our data suggest that the permeability of clots formed in vivo can vary by up to five orders of magnitude, with pore sizes that range from 4 to 350 nm. These findings have important implications for the transport of coagulation zymogens/enzymes in the interstitial spaces during clot formation, as well as the design of fibrinolytic drug delivery strategies. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The Hydraulic Permeability of Blood Clots as a Function of Fibrin and Platelet Density
Wufsus, A.R.; Macera, N.E.; Neeves, K.B.
2013-01-01
Interstitial fluid flow within blood clots is a biophysical mechanism that regulates clot growth and dissolution. Assuming that a clot can be modeled as a porous medium, the physical property that dictates interstitial fluid flow is the hydraulic permeability. The objective of this study was to bound the possible values of the hydraulic permeability in clots formed in vivo and present relationships that can be used to estimate clot permeability as a function of composition. A series of clots with known densities of fibrin and platelets, the two major components of a clot, were formed under static conditions. The permeability was calculated by measuring the interstitial fluid velocity through the clots at a constant pressure gradient. Fibrin gels formed with a fiber volume fraction of 0.02–0.54 had permeabilities of 1.2 × 10−1–1.5 × 10−4μm2. Platelet-rich clots with a platelet volume fraction of 0.01–0.61 and a fibrin volume fraction of 0.03 had permeabilities over a range of 1.1 × 10−2–1.5 × 10−5μm2. The permeability of fibrin gels and of clots with platelet volume fraction of <0.2 were modeled as an array of disordered cylinders with uniform diameters. Clots with a platelet volume fraction of >0.2 were modeled as a Brinkman medium of coarse solids (platelets) embedded in a mesh of fine fibers (fibrin). Our data suggest that the permeability of clots formed in vivo can vary by up to five orders of magnitude, with pore sizes that range from 4 to 350 nm. These findings have important implications for the transport of coagulation zymogens/enzymes in the interstitial spaces during clot formation, as well as the design of fibrinolytic drug delivery strategies. PMID:23601328
Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S; Singh, Rajesh R; Roy-Chowdhuri, Sinchita
2015-08-28
Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.
Pinning Susceptibility at the Jamming Transition
NASA Astrophysics Data System (ADS)
Graves, Amy; Padgett, Elliot; Goodrich, Carl; Liu, Andrea
2013-03-01
Jamming in the presence of fixed or pinned obstacles, representing quenched disorder, is a situation of both practical and theoretical interest. We study the jamming of soft, bidisperse discs in which a subset of discs are pinned while the remaining particles equilibrate around them at a given volume fraction. The obstacles provide a supporting structure for the jammed configuration which not only lowers the jamming threshold, ϕJ, but affects the coordination number and other parameters of interest as the critical point is approached. In the limit of low obstacle density, one can calculate a pinning susceptibility χP, analogous to the magnetic susceptibility, with obstacle density playing the role of the magnetic field. The pinning susceptibility is thus expected to diverge in the thermodynamic limit as χP ~| ϕ -ϕJ | -γP . Finite-size scaling calculations allow us to confirm this and calculate the critical exponent, γP. Acknowledgement is made to the Donors of the Petrolium Research Fund administered by the American Chemical Society, Swarthmore College's Eugene M. Lang Faculty Fellowship, NSF grant DMR-1062638 and DOE grant DE-FG02-05ER46199.
Influence of Casting Section Thickness on Fatigue Strength of Austempered Ductile Iron
NASA Astrophysics Data System (ADS)
Olawale, J. O.; Ibitoye, S. A.
2017-10-01
The influence of casting section thickness on fatigue strength of austempered ductile iron was investigated in this study. ASTM A536 65-45-12 grade of ductile iron was produced, machined into round samples of 10, 15, 20 and 25 mm diameter, austenitized at a temperature of 820 °C, quenched into an austempering temperature (TA) of 300 and 375 °C and allowed to be isothermally transformed at these temperatures for a fixed period of 2 h. From the samples, fatigue test specimens were machined to conform to ASTM E-466. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) methods were used to characterize microstructural morphology and phase distribution of heat-treated samples. The fatigue strength decreases as the section thickness increases. The SEM image and XRD patterns show a matrix of acicular ferrite and carbon-stabilized austenite with ferrite coarsening and volume fraction of austenite reducing as the section thickness increases. The study concluded that the higher the value of carbon-stabilized austenite the higher the fatigue strength while it decreases as the ausferrite structure becomes coarse.
Entropically Driven Self-Assembly of Colloidal Crystals on Templates in Space
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.; Zimmerli, Gregory A.
2002-01-01
These experiments aim to create new colloidal crystalline materials, to study the assembly and thermodynamics of these materials, to measure the optical properties of these materials. and to fix the resulting structures so that they can be brought back and studied on earth. In microgravity, the elimination of particle sedimentation effects creates a purely "thermodynamic" environment for colloidal suspensions wherein particle size, volume fraction, and interparticle interactions are the primary determinants of the assembled structures. We will control the colloidal assembly process using attractive, entropic particle interactions brought about by the depletion effect. By using attractive interactions for colloidal assembly we create conditions for growth that resemble those associated with "conventional" microscopic systems such as atoms and molecules. This approach differs qualitatively from the more common "space-filling" mode of colloidal crystal growth that is driven purely by packing constraints. It is anticipated that at least some of the solidified structures will survive reentry to earth's gravitational field, and that their optical, magnetic, and electrical properties can then be studied in detail upon return.
Wang, Jingtao; Liu, Jinxia; Han, Junjie; Guan, Jing
2013-02-08
A boundary integral method is developed to investigate the effects of inner droplets and asymmetry of internal structures on rheology of two-dimensional multiple emulsion particles with arbitrary numbers of layers and droplets within each layer. Under a modest extensional flow, the number increment of layers and inner droplets, and the collision among inner droplets subject the particle to stronger shears. In addition, the coalescence or release of inner droplets changes the internal structure of the multiple emulsion particles. Since the rheology of such particles is sensitive to internal structures and their change, modeling them as the core-shell particles to obtain the viscosity equation of a single particle should be modified by introducing the time-dependable volume fraction Φ(t) of the core instead of the fixed Φ. An asymmetric internal structure induces an oriented contact and merging of the outer and inner interface. The start time of the interface merging is controlled by adjusting the viscosity ratio and enhancing the asymmetry, which is promising in the controlled release of inner droplets through hydrodynamics for targeted drug delivery.
Low temperature synthesis of monolithic transparent Ta2O5 gels from hydrolysis of metal alkoxide
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1993-01-01
Tantalum oxide gels in the form of transparent monoliths and powder were prepared from hydrolysis of tantalum pentaethoxide under controlled conditions using different mole ratios of Ta(OC2H5)5:C2H50H:H20:HCl. Alcohol acts as the mutual solvent and HCl as the deflocculating agent. For a fixed alkoxide:water:HCl ratio, time of gel formation increased with the alcohol to alkoxide mole ratio. Thermal evolution of the physical and structural changes in the gel was monitored by differential thermal analysis, thermogravimetric analysis, x-ray diffraction, and infrared spectroscopy. On heating to approximately 400 C, the amorphous gel crystallized into the low temperature orthorhombic phase Beta-Ta2O5, which transformed into the high temperature tetragonal phase Alpha-Ta2O5 when further heated to approximately 1450 C. The volume fraction of the crystalline phase increased with the firing temperature. The Alpha-Ta205 converted back into the low temperature phase, Beta-Ta2O5, on slow cooling through the transformation temperature of 1360 C indicating a slow but reversible transformation.
Ahn, S S; Kim, S H; Lee, J E; Ahn, K J; Kim, D J; Choi, H S; Kim, J; Shin, N-Y; Lee, S-K
2015-02-01
BBB disruption after acute ischemic stroke and subsequent permeability increase may be enhanced by reperfusion. Agmatine has been reported to attenuate BBB disruption. Our aim was to evaluate the effects of agmatine on BBB stabilization in a rat model of transient cerebral ischemia by using permeability dynamic contrast-enhanced MR imaging at early stages and subsequently to demonstrate the feasibility of dynamic contrast-enhanced MR imaging for the investigation of new therapies. Thirty-four male Sprague-Dawley rats were subjected to transient MCA occlusion for 90 minutes. Immediately after reperfusion, agmatine (100 mg/kg) or normal saline was injected intraperitoneally into the agmatine-treated group (n = 17) or the control group, respectively. MR imaging was performed after reperfusion. For quantitative analysis, regions of interest were defined within the infarct area, and values for volume transfer constant, rate transfer coefficient, volume fraction of extravascular extracellular space, and volume fraction of blood plasma were obtained. Infarct volume, infarct growth, quantitative imaging parameters, and numbers of factor VIII-positive cells after immunohistochemical staining were compared between control and agmatine-treated groups. Among the permeability parameters, volume transfer constant and volume fraction of extravascular extracellular space were significantly lower in the agmatine-treated group compared with the control group (0.05 ± 0.02 minutes(-1) versus 0.08 ± 0.03 minute(-1), P = .012, for volume transfer constant and 0.12 ± 0.06 versus 0.22 ± 0.15, P = .02 for volume fraction of extravascular extracellular space). Other permeability parameters were not significantly different between the groups. The number of factor VIII-positive cells was less in the agmatine-treated group than in the control group (3-fold versus 4-fold, P = .037). In ischemic stroke, agmatine protects the BBB, which can be monitored in vivo by quantification of permeability by using dynamic contrast-enhanced MR imaging. Therefore, dynamic contrast-enhanced MR imaging may serve as a potential imaging biomarker for assessing the BBB stabilization properties of pharmacologic agents. © 2015 by American Journal of Neuroradiology.
Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites
NASA Astrophysics Data System (ADS)
Maaroufi, A.; Oabi, O.; Lucas, B.
2016-07-01
The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.
Miniaturized Nanocomposite Piezoelectric Microphones for UAS Applications
2012-10-22
volume fraction for three different materials: ZnO/SU-8 composite, ZnO thin film, and PZT thin film. This was computed for a microphone of outer...radius, 2 400R mμ= , and a thickness 1t mμ= . Note the significant increase in sensitivity compared to a solid ZnO or PZT film. This arises because, as...predicted range. An optimal volume fraction of 0.3 yielded a 17-fold increase in sensitivity over ZnO and a 49-fold increase over PZT . Figure 6
NASA Astrophysics Data System (ADS)
Madrigal, R. F.; Blaya, L. Carretero S.; Ulibarrena, M.; Beléndez, A.; Fimia, A.
2002-01-01
In this paper we present the theoretical and experimental study of diffraction efficiency of unbleached holograms, showing that the volume fraction of metallic silver inside the gelatin after development ( q) is the main parameter in the behavior of the holographic grating properties. Using this fact, and the obtained relationship between pH and q, we have found values of diffraction efficiencies near 30% with a developing time of 3 min without bleaching step.
[Stereological analysis of rat bone tissue after a flight on the Kosmos-1129 biosatellite].
Prokhonchukov, A A; Peschanskiĭ, V S
1982-01-01
Stereological measurements of volume fractions of 53 samples of compact and spongy structures of bones of 15 rats were carried out. The measurements were performed on cortical lamellae, trabecules and lacunae, channels of osteons and matrices of femoral, tibial and fibular bones of rats. Postflight no significant changes were seen in the above parameters as compared to the vivarium controls. During readaptation to I g a slight increase in the volume fraction of spongy bones was noted.
Wong, M; Wuethrich, P; Eggli, P; Hunziker, E
1996-05-01
A new methodology was developed to measure spatial variations in chondrocyte/matrix structural parameters and chondrocyte biosynthetic activity in articular cartilage. This technique is based on the use of a laser scanning confocal microscope that can "optically" section chemically fixed, unembedded tissue. The confocal images are used for morphometric measurement of stereologic parameters such as cell density (cells/mm3), cell volume fraction (%), surface density (l/cm), mean cell volume (micron3), and mean cell surface area (micron2). Adjacent pieces of tissue are simultaneously processed for conventional liquid emulsion autoradiography, and a semiautomated grain counting program is used to measure the silver grain density at regions corresponding to the same sites used for structural measurements. An estimate of chondrocyte biosynthetic activity in terms of grains per cell is obtained by dividing the value for grain density by that for cell density. In this paper, the newly developed methodology was applied to characterize the zone-specific behavior of adult articular cartilage in the free-swelling state. Cylinders of young adult bovine articular cartilage were labelled with either [3H]proline or [35S]sulfate, and chondrocyte biosynthesis and structural parameters were measured from the articular surface to the tidemark. The results showed that chondrocytes of the radial zone occupied twice the volume and surface area of the chondrocytes of the superficial zone but were 10 times more synthetically active. This efficient and unbiased technique may prove useful in studying the correlation between mechanically induced changes in cell form and biosynthetic activity within inhomogeneous tissue as well as metabolic changes in cartilage due to ageing and disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre
2012-12-01
Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumormore » (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.« less
NASA Technical Reports Server (NTRS)
Chang, Katarina L.; Pennline, James A.
2013-01-01
During long-duration missions at the International Space Station, astronauts experience weightlessness leading to skeletal unloading. Unloading causes a lack of a mechanical stimulus that triggers bone cellular units to remove mass from the skeleton. A mathematical system of the cellular dynamics predicts theoretical changes to volume fractions and ash fraction in response to temporal variations in skeletal loading. No current model uses image technology to gather information about a skeletal site s initial properties to calculate bone remodeling changes and then to compare predicted bone strengths with the initial strength. The goal of this study is to use quantitative computed tomography (QCT) in conjunction with a computational model of the bone remodeling process to establish initial bone properties to predict changes in bone mechanics during bone loss and recovery with finite element (FE) modeling. Input parameters for the remodeling model include bone volume fraction and ash fraction, which are both computed from the QCT images. A non-destructive approach to measure ash fraction is also derived. Voxel-based finite element models (FEM) created from QCTs provide initial evaluation of bone strength. Bone volume fraction and ash fraction outputs from the computational model predict changes to the elastic modulus of bone via a two-parameter equation. The modulus captures the effect of bone remodeling and functions as the key to evaluate of changes in strength. Application of this time-dependent modulus to FEMs and composite beam theory enables an assessment of bone mechanics during recovery. Prediction of bone strength is not only important for astronauts, but is also pertinent to millions of patients with osteoporosis and low bone density.
Arizmendi, Luis; Ambite, Emilio J
2012-02-20
We used a digital feedback control loop system to produce reproducible fixed volume transmission holograms of high diffraction efficiency. Different strategies were investigated to obtain holograms of good quality and the highest refractive index modulation depth. Using this control system, we were able to record holograms with stationary fringes. Additionally to using the stationary fringe recording, a double recording-fixing schedule resulted in being the most appropriate one to produce reproducible holograms of better characteristics. This strategy is discussed and compared with other already established ones. © 2012 Optical Society of America
Extremely low order time-fractional differential equation and application in combustion process
NASA Astrophysics Data System (ADS)
Xu, Qinwu; Xu, Yufeng
2018-11-01
Fractional blow-up model, especially which is of very low order of fractional derivative, plays a significant role in combustion process. The order of time-fractional derivative in diffusion model essentially distinguishes the super-diffusion and sub-diffusion processes when it is relatively high or low accordingly. In this paper, the blow-up phenomenon and condition of its appearance are theoretically proved. The blow-up moment is estimated by using differential inequalities. To numerically study the behavior around blow-up point, a mixed numerical method based on adaptive finite difference on temporal direction and highly effective discontinuous Galerkin method on spatial direction is proposed. The time of blow-up is calculated accurately. In simulation, we analyze the dynamics of fractional blow-up model under different orders of fractional derivative. It is found that the lower the order, the earlier the blow-up comes, by fixing the other parameters in the model. Our results confirm the physical truth that a combustor for explosion cannot be too small.
NASA Astrophysics Data System (ADS)
Røthe Arnesen, Marius; Paulsen Hellebust, Taran; Malinen, Eirik
2017-03-01
Tumour shrinkage occurs during fractionated radiotherapy and is regulated by radiation induced cellular damage, repopulation of viable cells and clearance of dead cells. In some cases additional tumour shrinkage during external beam therapy may be beneficial, particularly for locally advanced cervical cancer where a small tumour volume may simplify and improve brachytherapy. In the current work, a mathematical tumour model is utilized to investigate how local dose escalation affects tumour shrinkage, focusing on implications for brachytherapy. The iterative two-compartment model is based upon linear-quadratic radiation response, a doubling time for viable cells and a half-time for clearance of dead cells. The model was individually fitted to clinical tumour volume data from fractionated radiotherapy of 25 cervical cancer patients. Three different fractionation patterns for dose escalation, all with an additional dose of 12.2 Gy, were simulated and compared to standard fractionation in terms of tumour shrinkage. An adaptive strategy where dose escalation was initiated after one week of treatment was also considered. For 22 out of 25 patients, a good model fit was achieved to the observed tumour shrinkage. A large degree of inter-patient variation was seen in predicted volume reduction following dose escalation. For the 10 best responding patients, a mean tumour volume reduction of 34 ± 3% (relative to standard treatment) was estimated at the time of brachytherapy. Timing of initiating dose escalation had a larger impact than the number of fractions applied. In conclusion, the model was found useful in evaluating the impact from dose escalation on tumour shrinkage. The results indicate that dose escalation could be conducted from the start of external beam radiotherapy in order to obtain additional tumour shrinkage before brachytherapy.
Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI
Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.
2014-01-01
The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328
Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich
2016-08-15
Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.
Chapdelaine, Isabelle; Nubé, Menso J; Blankestijn, Peter J; Bots, Michiel L; Konings, Constantijn J A M; Kremer Hovinga, Ton K; Molenaar, Femke M; van der Weerd, Neelke C; Grooteman, Muriel P C
2017-01-01
Abstract Background. Available evidence suggests a reduced mortality risk for patients treated with high-volume postdilution hemodiafiltration (HDF) when compared with hemodialysis (HD) patients. As the magnitude of the convection volume depends on treatment-related factors rather than patient-related characteristics, we prospectively investigated whether a high convection volume (defined as ≥22 L/session) is feasible in the majority of patients (>75%). Methods. A multicenter study was performed in adult prevalent dialysis patients. Nonparticipating eligible patients formed the control group. Using a stepwise protocol, treatment time (up to 4 hours), blood flow rate (up to 400 mL/min) and filtration fraction (up to 33%) were optimized as much as possible. The convection volume was determined at the end of this optimization phase and at 4 and 8 weeks thereafter. Results. Baseline characteristics were comparable in participants (n = 86) and controls (n = 58). At the end of the optimization and 8 weeks thereafter, 71/86 (83%) and 66/83 (80%) of the patients achieved high-volume HDF (mean 25.5 ± 3.6 and 26.0 ± 3.4 L/session, respectively). While treatment time remained unaltered, mean blood flow rate increased by 27% and filtration fraction increased by 23%. Patients with <22 L/session had a higher percentage of central venous catheters (CVCs), a shorter treatment time and lower blood flow rate when compared with patients with ≥22 L/session. Conclusions. High-volume HDF is feasible in a clear majority of dialysis patients. Since none of the patients agreed to increase treatment time, these findings indicate that high-volume HDF is feasible just by increasing blood flow rate and filtration fraction. PMID:29225810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alpatov, A. V., E-mail: pgnv@mail.ru; Vikhrov, S. P.; Kazanskii, A. G.
The correlation properties of the structure of nc-Si/a-Si:H films with different volume fractions of the crystalline phase are studied using 2D detrended fluctuation analysis. Study of the surface relief of experimental samples showed that with increasing in volume fraction of the crystalline phase in the nc-Si/a-Si:H films, the size and number of nanoclusters on their surface grow. The size of Si nanocrystals in the a-Si:H matrix (6–8 nm) indicates the formation of coarse nanoclusters due to the self-organization of Si nanocrystals in groups under laser radiation. According to 2D detrended fluctuation analysis data, the number of correlation vectors (harmonic components)more » in the nc-Si/a-Si:H film structure increased with an increase in the nanocrystal fraction in the films.« less
NASA Astrophysics Data System (ADS)
Schidlowski, Manfred
1985-12-01
The isotopic composition of organic carbon from extant stromatolite-type microbial ecosystems is commonly slanted toward heavy δ13 C values as compared to respective compositions of average organic matter (including that from Precambrian stromatolites). This seems the more enigmatic as the bulk of primary producers from benthic microbial communities are known to fix carbon via the C3 pathway normally entailing the sizable fractionations of the RuBP carboxylase reaction. There is reason to believe that the small fractionations displayed by aquatic microorganisms result from the limitations of a diffusion-controlled assimilatory pathway in which the isotope effect of the enzymatic reaction is largely suppressed. Apart from the diffusion-control exercised by the aqueous environment, transport of CO2 to the photosynthetically active sites will be further impeded by the protective slime (polysaccharide) coatings commonly covering microbial mats in which gas diffusivities are extremely low. Ineffective discrimination against13C becomes, however, most pronounced in hypersaline environments where substantially reduced CO2 solubilities tend to push carbon into the role of a limiting nutrient (brine habitats constitute preferential sanctuaries of mat-forming microbenthos since the emergence of Metazoan grazers ˜ 0.7 Ga ago). As the same microbial communities had been free to colonize normal marine environments during the Precambrian, the CO2 concentration effect was irrelevant to the carbon-fixing pathway of these ancient forms. Therefore, it might not surprise that organic matter from Precambrian stromatolites displays the large fractionations commonly associated with C3 photosynthesis. Increased mixing ratios of CO2 in the Precambrian atmosphere may have additionally contributed to the elimination of the diffusion barrier in the carbon-fixing pathways of ancient mat-forming microbiota.
Samuelsen, Anne Berit; Westereng, Bjørge; Yousif, Osman; Holtekjølen, Ann Katrin; Michaelsen, Terje E; Knutsen, Svein H
2007-02-01
Leaves of different cabbage species are used both as food and as wound healing remedies in traditional medicine. This supposed wound healing activity might be connected to presence of immunomodulating water soluble polysaccharides. To study this, three different cabbage varieties, white cabbage (W), kale (K), and red kale (RK), were pretreated with 80% ethanol and then extracted with water at 50 degrees C and 100 degrees C for isolation of polysaccharide-containing fractions. The fractions were analyzed for monosaccharide composition, glycosidic linkages, Mw distribution, protein content, and phenolic compounds and then tested for complement-fixing activity. All fractions contained pectin type polysaccharides with linkages corresponding to homogalacturonan and hairy regions. Those extracted at 50 degrees C contained higher amounts of neutral side chains and were more active in the complement-fixation test than those extracted at 100 degrees C. The fractions can be ranged by decreasing activity: K-50 > RK-50 > W-50 approximately = K-100 > RK100 approximately = W-100. Studies on structure-activity relationships (SAR) employing multivariate statistical analysis strongly suggest that the magnitude of the measured activity is influenced by the content of certain side chains in the polymers. High activity correlates to large neutral side chains with high amounts of (1-->6)- and (1-->3,6)-linked Gal and low amounts of (1-->4)-linked GalA but not on molecular weight distribution of the polymers.
SU-E-T-548: How To Decrease Spine Dose In Patients Who Underwent Sterotactic Spine Radiosurgery?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, H; Altinok, A; Kucukmorkoc, E
2014-06-01
Purpose: Stereotactic radiosurgery for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to dosimetrically compare stereotactic spine radiosurgery(SRS) plans using a recently new volumetric modulated arc therapy(VMAT) technique against fix-field intensity-modulated radiotherapy(IMRT). Plans were evaluated for target conformity and spinal cord sparing. Methods: Fifteen previously treated patients were replanned using the Eclipse 10.1 TPS AAA calculation algorithm. IMRT plans with 7 fields were generated. The arc plans used 2 full arc configurations. Arc and IMRT plans were normalized and prescribed to deliver 16.0 Gy in a single fraction to 90% of themore » planning target volume(PTV). PTVs consisted of the vertebral body expanded by 3mm, excluding the PRV-cord, where the cord was expanded by 2mm.RTOG 0631 recommendations were applied for treatment planning. Partial spinal cord volume was defined as 5mm above and below the radiosurgery target volume. Plans were compared for conformity and gradient index as well as spinal cord sparing. Results: The conformity index values of fifteen patients for two different treatment planning techniques were shown in table 1. Conformity index values for 2 full arc planning (average CI=0.84) were higher than that of IMRT planning (average CI=0.79). The gradient index values of fifteen patients for two different treatment planning techniques were shown in table 2. Gradient index values for 2 full arc planning (average GI=3.58) were higher than that of IMRT planning (average GI=2.82).The spinal cord doses of fifteen patients for two different treatment planning techniques were shown in table 3. D0.35cc, D0.03cc and partial spinal cord D10% values in 2 full arc plannings (average D0.35cc=819.3cGy, D0.03cc=965.4cGy, 10%partial spinal=718.1cGy) were lower than IMRT plannings (average D0.35cc=877.4cGy, D0.03c=1071.4cGy, 10%partial spinal=805.1cGy). Conclusions: The two arc VMAT technique is superior to 7 field IMRT technique in terms of both spinal cord sparing and better conformity and gradient indexes.« less
Determination of a Jet Fuel Metal Deactivator by High Performance Liquid Chromatography
1983-06-01
bonded phase chromatography (Reference 2). 73 AFWAL-TR-82-2128 Bonded phase packings offer distinct advantages over other packings: a. Irreversible...were then oven dried and placed in a dessicator for cooling and storage until use. The bottles were subsequently silanized with "Glas-TREET" ( Alltech ... advantages of a loop injector are: (1) The volume injected is far more repeatable since a fixed volume loop has a constant volume and is flushed with a