Seasonal changes in Fe along a glaciated Greenlandic fjord.
NASA Astrophysics Data System (ADS)
Hopwood, Mark; Connelly, Douglas; Arendt, Kristine; Juul-Pedersen, Thomas; Stinchcombe, Mark; Meire, Lorenz; Esposito, Mario; Krishna, Ram
2016-03-01
Greenland's ice sheet is the second largest on Earth, and is under threat from a warming Arctic climate. An increase in freshwater discharge from Greenland has the potential to strongly influence the composition of adjacent water masses with the largest impact on marine ecosystems likely to be found within the glaciated fjords. Here we demonstrate that physical and chemical estuarine processes within a large Greenlandic fjord are critical factors in determining the fate of meltwater derived nutrients and particles, especially for non-conservative elements such as Fe. Concentrations of Fe and macronutrients in surface waters along Godthåbsfjord, a southwest Greenlandic fjord with freshwater input from 6 glaciers, changed markedly between the onset and peak of the meltwater season due to the development of a thin (<10 m), outflowing, low-salinity surface layer. Dissolved (<0.2 µm) Fe concentrations in meltwater entering Godthåbsfjord (200 nM), in freshly melted glacial ice (mean 38 nM) and in surface waters close to a land terminating glacial system (80 nM) all indicated high Fe inputs into the fjord in summer. Total dissolvable (unfiltered at pH <2.0) Fe was similarly high with concentrations always in excess of 100 nM throughout the fjord and reaching up to 5.0 µM close to glacial outflows in summer. Yet, despite the large seasonal freshwater influx into the fjord, Fe concentrations near the fjord mouth in the out-flowing surface layer were similar in summer to those measured before the meltwater season. Furthermore, turbidity profiles indicated that sub-glacial particulate Fe inputs may not actually mix into the outflowing surface layer of this fjord. Emphasis has previously been placed on the possibility of increased Fe export from Greenland as meltwater fluxes increase. Here we suggest that in-fjord processes may be effective at removing Fe from surface waters before it can be exported to coastal seas.
NASA Astrophysics Data System (ADS)
Snow, T.; Shepherd, B.; Skinner, S.; Abdalati, W.; Scambos, T. A.
2017-12-01
The Greenland ice sheet (GIS) contributes one-quarter of the globe's total sea level rise each year and one-third of its mass loss occurs at outlet glaciers. One mechanism for this loss is through melting at the ice-ocean boundary through interactions with relatively warm ocean water. In situ ocean measurements serve as the predominant method for studying these harsh and remote fjord environments, but have often only been acquired within the last decade in most Greenland fjords. Since many outlet glaciers began to accelerate and retreat before that period, the lack of earlier measurements requires us to rely on an understanding of contemporary fjord processes and inference of past conditions to evaluate the ocean's role in observed glacier change. Remotely sensed sea surface temperature (SST) have been widely unused in studies of glacial fjords and may hold clues to fjord circulation and ice-ocean interactions spanning before rapid change began at the turn of the century. However, the utility of this method in studying glacial fjords has not been thoroughly explored. In this study, we compare remotely sensed SSTs to previously published in situ ocean temperature measurements taken from 2009 to present at the Sermilik Fjord and 2015-2016 at the Petermann, in order to determine the utility of SSTs in studying polar fjord waters. SSTs were derived from Landsat 7 and 8 thermal infrared imagery to produce a time series of the fjord surface. The time series was correlated with coincident mooring and shipboard ocean temperature measurements using various lags and spatial offsets. Sermilik Fjord SSTs frequently gave temperatures 2C warmer than adjacent surface in situ measurements, while Petermann temperatures show much closer relationships. These trends are likely driven by variability in wind velocities and density gradients that influence mixing within the surface layer of the ocean. However, variability in the offsets between SSTs and in situ measurements also provides insight into subglacial discharge, fjord circulation, and subglacial melting between seasons. Continued work at the Sermilik and Petermann Fjords will help to determine further linkages between SSTs and the fjord water column and how that relationship varies from one glacier system to the next.
Subglacial discharge-driven renewal of tidewater glacier fjords
NASA Astrophysics Data System (ADS)
Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.
2017-08-01
The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.
Synoptic events force biological productivity in Patagonian fjord ecosystems
NASA Astrophysics Data System (ADS)
Daneri, Giovanni
2016-04-01
The annual cycle of primary productivity of the Patagonian fjords has, to date, been described as a two phase system consisting of a short non productive winter phase (during June and July) and a productive phase extending from late winter (August) to autumn (May). Low levels of primary production, phytoplankton biomass and high concentrations of surface nutrients have been described as characterizing winter conditions while pulsed productivity events typifies the productivity pattern during the extended productive season. Pulsed productivity events characterize coastal waters where inorganic nutrients in surface layers are replenished following periods of intensive utilization by autotrophs. Freshwater input in Patagonian fjords in southern Chile (41-55°S) results in one of the largest estuarine regions worldwide. Here strong haline water column stratification prevents nutrient mixing to the surface layers thus potentially shutting off algal production. Our working hypothesis considered that in order to reconcile the observed pulsed productivity pattern, periodic breaking (associated to surface nutrient replenishment) and re-establishment of estuarine conditions (associated to water column stratification) would be required. Up to now however our understanding of the physical processes that control water column conditions in the Patagonian fjord area has been extremely limited. Here we present evidence linking the passage of synoptic low pressure fronts to pulsed productivity events in the Patagonian fjord area. These front controls and influence local processes of interaction between the fjord and the atmosphere generating a rapid water column response. In the specific case of the Puyuhuapi fjord we have been able to show that such synoptic fronts induce surface flow reversal and water column mixing. Phytoplankton blooming occurs after the passage of the synoptic front once calmer conditions prevail and estuarine conditions are re established. The occurrence of an extremely productive bloom of the dinoflagellate Heterocapsa sp. in July 2014, after the passage of a synoptic low pressure front provided, for the first time, strong evidence that phytoplankton blooming in the Patagonian fjord ecosystems is controlled by synoptic processes and that they are not limited by light as previously reported. This research was funded by COPAS Sur-Austral (PFB-31) and FONDECYT 1131063
NASA Astrophysics Data System (ADS)
Stigebrandt, Anders
1990-10-01
Baroclinic water exchange through a fjord mouth, driven by a slowly varying density field outside the mouth, is modelled by a simple quasi-steady frictionless model. It is assumed that a certain fraction of the horizontal pressure difference between the coastal water and the fjord is used to accelerate the fluid into the mouth. The continuous vertical density distribution in the fjord, which changes in response to the water exchange, is modelled using a time-dependent, one-dimensional advective-diffusive 'filling-box' type of model. The model has been tested against an almost one-year-long time series of salinity and temperature from the Ørsta fjord (horizontal surface area about 15km2) on the Norwegian west coast. It is found that for this particular fjord, the mean externally forced baroclinic water exchange is one order of magnitude greater than the mean water exchange driven by the estuarine circulation (600 and 60m3 s
1 respectively). Such a vigorous water exchange between a fjord and the external area implies that the time-averaged concentrations of many biological and chemical species above the sill level in the fjord are approximately equal to those in the coastal water outside the fjords.
NASA Astrophysics Data System (ADS)
Gay, S. M., III
2016-02-01
Using spatial principal component (PC) analysis, the variation in freshwater contents and temperatures in the upper 100m are quantified for small fjords and primary basins within Prince William Sound, Alaska. Two EOF modes explain over 90% of the variance in the freshwater content anomalies (FWCA) giving the total magnitude and vertical structure of the FWCAs respectively. Large, positive PC amplitudes (PCAs) of modes 1 and 2 indicate stratification from surface freshening, shown also by negative surface salinity anomalies, whereas positive FWCA PCAs in conjunction with negative mode 2 amplitudes infer higher subsurface freshening due to either vertical mixing or advection. In contrast, basins with negative mode 1 amplitudes are typically salty to slightly brackish, but the mode 2 PCAs determine if the FWC is concentrated near the surface or mixed deeper in the water column. The vertical structure of the temperature anomalies (TA) is more complicated, and at least three EOF modes are required to explain over 90% of the variance. The reasons for this include differences in solar heating (i.e. local climates) modulated by cold alpine runoff and advection of cold, brackish surface and subsurface glacial water. Fjords and major basins influenced by the latter exhibit large, positive mode 1 amplitudes of FWCA and negative mode 1 and 2 PCAs of TA and FWCA respectively. In certain fjords, however, advection of glacial water into the outer basins enhances the total FWC, whereas other fjords exhibit atypically low FWC due to unusual topographic features of the watersheds and inner basins. This combination of factors leads to generally poor correlations between average FWC and watershed to fjord surface area ratios or hydrology. With exception of a few sites, gradients in FWC between the small fjords and major basins are relatively weak. Thus the main driver of baroclinic flow in northern and western PWS is cold, brackish surface and subsurface water propagating from large tidewater glacial fjords. The glacial water has a marked affect on the dynamic topography, which shows southerly baroclinic-geostrophic flows within the western sound. At Montague Strait and Hinchinbrook Entrance inflows may occur from either fresh or salty conditions; low water density of the latter being shown by negative (positive) FWCA (TA) PCAs respectively.
NASA Astrophysics Data System (ADS)
Storesund, Julia E.; Sandaa, Ruth-Anne; Thingstad, T. Frede; Asplin, Lars; Albretsen, Jon; Erga, Svein Rune
2017-12-01
Here we present novel data on bacterial assemblages along a coast-fjord gradient in the Sognefjord, the deepest (1308 m) and longest (205 km) ice-free fjord in the world. Data were collected on two cruises, one in November 2012, and one in May 2013. Special focus was on the impact of advective processes and how these are reflected in the autochthonous and allochthonous fractions of the bacterial communities. Both in November and May bacterial community composition, determined by Automated Ribosomal Intergenic Spacer Analyses (ARISA), in the surface and intermediate water appeared to be highly related to bacterial communities originating from freshwater runoff and coastal water, whereas the sources in the basin water were mostly unknown. Additionally, the inner part of the Sognefjord was more influenced by side-fjords than the outer part, and changes in bacterial community structure along the coast-fjord gradient generally showed higher correlation with environmental variables than with geographic distances. High resolution model simulations indicated a surprisingly high degree of temporal and spatial variation in both current speed and direction. This led to a more episodic/discontinuous horizontal current pattern, with several vortices (10-20 km wide) being formed from time to time along the fjord. We conclude that during periods of strong wind forcing, advection led to allochthonous species being introduced to the surface and intermediate layers of the fjord, and also appeared to homogenize community composition in the basin water. We also expect vortices to be active mixing zones where inflowing bacterial populations on the southern side of the fjord are mixed with the outflowing populations on the northern side. On average, retention time of the fjord water was sufficient for bacterial communities to be established.
Ocean circulation and properties in Petermann Fjord, Greenland
NASA Astrophysics Data System (ADS)
Johnson, H. L.; Münchow, A.; Falkner, K. K.; Melling, H.
2011-01-01
The floating ice shelf of Petermann glacier interacts directly with the ocean and is thought to lose at least 80% of its mass through basal melting. Based on three opportunistic ocean surveys in Petermann Fjord we describe the basic oceanography: the circulation at the fjord mouth, the hydrographic structure beneath the ice shelf, the oceanic heat delivered to the under-ice cavity, and the fate of the resulting melt water. The 1100 m deep fjord is separated from neighboring Hall Basin by a sill between 350 and 450 m deep. Fjord bottom waters are renewed by episodic spillover at the sill of Atlantic water from the Arctic. Glacial melt water appears on the northeast side of the fjord at depths between 200 m and that of the glacier's grounding line (about 500 m). The fjord circulation is fundamentally three-dimensional; satellite imagery and geostrophic calculations suggest a cyclonic gyre within the fjord mouth, with outflow on the northeast side. Tidal flows are similar in magnitude to the geostrophic flow. The oceanic heat flux into the fjord appears more than sufficient to account for the observed rate of basal melting. Cold, low-salinity water originating in the surface layer of Nares Strait in winter intrudes far under the ice. This may limit basal melting to the inland half of the shelf. The melt rate and long-term stability of Petermann ice shelf may depend on regional sea ice cover and fjord geometry, in addition to the supply of oceanic heat entering the fjord.
NASA Astrophysics Data System (ADS)
Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren
2014-09-01
Runoff from the Greenland Ice Sheet, local glaciers, and snowmelt along the northeastern Greenland coastline has a significant impact on coastal water masses flowing south toward Denmark Strait. Very few direct measurements of runoff currently exist in this large area, and the water masses near the coast are also difficult to measure due to the presence of icebergs and sea ice. Measurements from the Zackenberg Research station, located in Young Sound/Tyrolerfjord in northeast Greenland (74°N), provide some of the few observations of hydrographic, hydrologic, and atmospheric parameters from this remote area. Here we analyze measurements from the fjord and also measurements in the ambient water masses, which are found in the outer fjord and between the fjord and the East Greenland Current and validate and apply a numerical model of the fjord. A model sensitivity study allows us to constrain runoff estimates for the area. We also show that a total runoff between 0.9 and 1.4 km3 in 2006 is in accordance with observed surface salinities and calculated freshwater content in the fjord. This indicates that earlier reported runoff to the area is significantly underestimated and that melt from glaciers and the Greenland Ice Sheet in this region may be up to 50% larger than the current estimate. Model simulations indicate the presence of a cold low-saline coastal water mass formed by runoff from fjords north of the Young Sound/Tyrolerfjord system. Simulations of passive and age tracers show that residence time of river water during the summer period is about 1 month in the inner part of the fjord. This article was corrected on 10 OCT 2014. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Carroll, D.; Sutherland, D.; Nash, J. D.; Shroyer, E.; de Steur, L.; Catania, G. A.; Stearns, L. A.
2016-12-01
The acceleration, retreat, and thinning of Greenland's outlet glaciers coincided with a warming of Atlantic waters, suggesting that marine-terminating glaciers are sensitive to ocean forcing. However, we still lack a precise understanding of what factors control the variability of ocean heat transport toward the glacier terminus. Here we use an idealized ocean general circulation model (3D MITgcm) to systematically evaluate how fjord circulation driven by subglacial plumes, wind stress (along-fjord and along-shelf), and tides depends on grounding line depth, fjord width, sill height, and latitude. Our results indicate that while subglacial plumes in deeply grounded systems can draw shelf waters over a sill and toward the glacier, shallowly grounded systems require external forcing to renew basin waters. We use a coupled sea ice model to explore the competing influence of tidal mixing and surface buoyancy forcing on fjord stratification. Passive tracers injected in the plume, fjord basin, and shelf waters are used to quantify turnover timescales. Finally, we compare our model results with a two-year mooring record to explain fundamental differences in observed circulation and hydrography in Rink Isbræ and Kangerlussuup Sermia fjords in west Greenland. Our results underscore the first-order effect that geometry has in controlling fjord circulation and, thus, ocean heat flux to the ice.
Oceanographic gradients and seabird prey community dynamics in glacial fjords
Arimitsu, Mayumi L.; Piatt, John F.; Madison, Erica N.; Conaway, Jeffrey S.; Hillgruber, N.
2012-01-01
Glacial fjord habitats are undergoing rapid change as a result of contemporary global warming, yet little is known about how glaciers influence marine ecosystems. These ecosystems provide important feeding, breeding and rearing grounds for a wide variety of marine organisms, including seabirds of management concern. To characterize ocean conditions and marine food webs near tidewater glaciers, we conducted monthly surveys of oceanographic variables, plankton, fish and seabirds in Kenai Fjords, Alaska, from June to August of 2007 and 2008. We also measured tidal current velocities near glacial features. We found high sediment load from glacial river runoff played a major role in structuring the fjord marine ecosystem. Submerged moraines (sills) isolated cool, fresh, stratified and silt-laden inner fjord habitats from oceanic influence. Near tidewater glaciers, surface layers of turbid glacial runoff limited availability of light to phytoplankton, but macrozooplankton were abundant in surface waters, perhaps due to the absence of a photic cue for diel migration. Fish and zooplankton community structure varied along an increasing temperature gradient throughout the summer. Acoustic measurements indicated that low density patches of fish and zooplankton were available in the surface waters near glacial river outflows. This is the foraging habitat occupied most by Kittlitz's murrelet (Brachyramphus brevirostris), a rare seabird that appears to be specialized for life in glacially influenced environments. Kittlitz's murrelets were associated with floating glacial ice, and they were more likely to occur near glaciers, in deeper water, and in areas with high acoustic backscatter. Kittlitz's murrelet at-sea distribution was limited to areas influenced by turbid glacial outflows, and where prey was concentrated near the surface in waters with low light penetration. Tidewater glaciers impart unique hydrographic characteristics that influence marine plankton and fish communities, and this has cascading effects on marine food webs in these ecosystems.
Deep ventilation process in Patagonian fjord, Chile
NASA Astrophysics Data System (ADS)
Pérez-Santos, Iván; Silvan, Nelson; Castillo, Manuel; Mayorga, Nicolas; Schneider, Wolfgang; Montero, Paulina; Daneri, Giovanni; Valle-Levinson, Arnoldo; Pizarro, Oscar; Ramirez, Nadín; Igor, Gabriela; Navarro, Eduardo
2017-04-01
The Puyuhuapi Fjord (44.6° S) has previously been reported as one of the hypoxic fjords in Chilean Patagonia (dissolved oxygen -DO below 2 mL L-1). Hydrographic sampling between 1995-2016 confirmed hypoxia below 100 m depth, down to the bottom (250 m). A line of sensors at an oceanographic mooring in Puyuhuapi were deployed to continuously record the temporal-vertical behaviour of water column temperature and salinity from the surface down to 120 m, from February to July 2015. A multi-Parameter water quality sonde was deployed at the bottom of the line, with a DO optical sensor. From February to mid-May, hypoxia was sustained (1.4-1.6 mL L-1). However, from May until the end of June, DO values increased (2.8 mL L-1), exceeding the hypoxia threshold. This was the first event of deep ventilation reported in a Chilean Patagonian Fjord. During this time period, deep water temperatures increased by 1.3 °C, coinciding with the decreased in salinity from 33.6 to 32.8. The main cause of this event was attributed to the arrival of a new volume of mixed oceanic water into the fjord, transported by Modified Subantartic Water, with warm temperatures, lower salinities and slightly higher DO values, given its origin in the surface layer of the outer oceanic region. A new experiment was carried out during January-November, 2016 in order to corroborate the ventilation process and its connection with the adjacent ocean. Temperature, salinity and DO sensors were deployed in the outside fjords region close to the ocean (Melinka Channel) and in Puyuhuapi Fjord, to record the data at very high temporal resolution. The distance between both stations was 150 km. In the oceanic mooring the DO time series collected at 150 m depth showed hypoxia in summer related to the position of the Equatorial Sub-surface water, but from fall DO started to increase registering high values in August and September (4-5 mL/L) when the Subantartic Water arrive. The DO records in Puyuhuapi at 120 m showed a similar behaviour but with lower magnitude, confirmed the 2015 results. Winds and internal wave, registered with acoustic current profilers, contributed to this connection. The deep ventilation recorded in Patagonian Fjords would be helping to maintain their environmental health avoiding dead zones due to the increasing input of organic matter from salmon aquaculture.
NASA Astrophysics Data System (ADS)
Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren
2017-04-01
Subglacial discharge from tidewater outlet glaciers forms convective bouyant freshwater plumes ascending close the glacier face, and entrainment of ambient bottom water increases the salinity of the water until the plume reaches its level of neutral buoyancy at sub-surface levels or reaches the surface. Relatively warm bottom water masses characterize many fjords around Greenland and therefore entrainment would also increase the temperature in the plumes and, thereby, impact the heat transport in the fjords. However, relatively few oceanographic measurements have been made in or near plumes from subglacial discharge and, therefore, the potential for subglacial discharge for increasing heat transport towards the tidewater outlet glaciers are poorly understood. We present the first direct hydrographic measurements in a plume from subglacial discharge in Godthåbsfjord (located on the western coast of Greenland) where a XCTD was launched from a helicopter directly into the plume. Measurements of the surface salinity showed that the plume only contained 7% of freshwater at the surface, implying a large entrainment with a mixing ratio of 1:13 between outflowing meltwater and saline fjord water. These observations are analyzed together with seasonal observations of ocean heat transport towards the tidewater outlet glaciers in Godthåbsfjord and we show that subglacial discharge only had modest effects on the overall heat budget in front of the glacier. These results were supported from a high-resolution three-dimensional model of Godthåbsfjord. The model explicitly considered subglacial freshwater discharge from three tidewater outlet glaciers where entrainment of bottom water was taken into account. Model results showed that subglacial discharge only affected the fjord circulation relatively close ( 10 km) to the glaciers. Thus, the main effect on heat transport was due to the freshwater discharge itself whereas the subsurface discharge and associated entrainment only had a minor dynamical effect on the fjord circulation. However, mixing of bottom water by subglacial discharge also brings large amounts of nutrients to the surface and estimates of the potential nutrient transport show that this may have a significant impact on the biological production in front of tidewater outlet glaciers. Related publications: Bendtsen, J., Mortensen, J., Lennert, K. and S. Rysgaard (2015), Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: the role of subglacial freshwater discharge, Geophys. Res. Lett., 42, doi:10.1002/2015GL063846. Bendtsen, J., Mortensen, J., and Rysgaard, S. (2015), Modelling subglacial discharge and its influence on ocean heat transport in Arctic fjords, Ocean Dynamics, 65, 1535-1546, 10.1007/s10236-015-0883-1. Mortensen, J., J. Bendtsen, K. Lennert, and S. Rysgaard (2014), Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N), J. Geophys. Res. Earth Surf., 119, 2591-2603, doi:10.1002/2014JF003267. Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M., Fahnestock, M. and S. Rysgaard (2013), On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. 118, 1-14, doi:10.1002/jgrc.20134.
NASA Astrophysics Data System (ADS)
Snow, T.; Shepherd, B.; Abdalati, W.; Scambos, T. A.
2016-12-01
Dynamic processes at marine-terminating outlet glaciers are responsible for over one-third of Greenland Ice Sheet (GIS) mass loss. Enhanced intrusion of warm ocean waters at the termini of these glaciers has contributed to elevated rates of ice thinning and terminus retreat over the last two decades. In situ oceanographic measurements and modeling studies show that basal melting of glaciers and subglacial discharge can cause buoyant plumes of water to rise to the fjord surface and influence fjord circulation characteristics. The temperature of these surface waters holds clues about ice-ocean interactions and small-scale circulation features along the glacier terminus that could contribute to outlet glacier mass loss, but the magnitude and duration of temperature variability remains uncertain. Satellite remote sensing has proven very effectiver for acquiring sea surface temperatuer (SST) data from these remote regions on a long-term, consistent basis and shows promise for identifying temperature anomalies at the ice front. However, these data sets have not been widely utilized to date. Here, we use satellite-derived sea surface temperatures to identify fjord surface outflow characteristics from 2000 to present at the Petermann Glacier, which drains 4% of the GIS and is experiencing 80% of its mass loss from basal melt. We find a general SST warming trend that coincides with early sea ice breakup and precedes two major calving events and ice speedup that began in 2010. Persistent SST anomalies along the terminus provide evidence of warm outflow that is consistent with buoyant plume model predictions. However, the anomalies are not evident early in the time series, suggesting that ocean inflow and ice-ocean interactions have experienced a regime shift since 2000. Our results provide valuable insight into fjord circulation patterns and the forcing mechanisms that contribute to terminus retreat. Comparing our results to ongoing modeling experiments, time series from other outlet glaciers, and coincident in situ measurements, will help to further explain the physical processes occurring at the ice-ocean boundary and provide useful insights into the changes taking place at other GIS marine-terminating outlet glaciers.
Sub-tidal Circulation in a deep-silled fjord: Douglas Channel, British Columbia (Canada)
NASA Astrophysics Data System (ADS)
Wan, Di; Hannah, Charles; Foreman, Mike
2016-04-01
Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in Kitimat fjord system that opens to Queen Charlotte Sound and Hecate Strait. The fjord is separated from the open shelf by a broad sill that is about 150 m deep, and there is another sill (200 m) that separates the fjord into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected from three moorings deployed during 2013-2015, and the water property observations collected during six cruises (2014 and 2015). Estuarine flow dominates the circulation above the sill-depth. The deep flows are dominated by a yearly renewal that takes place from early June to September, and this dense water renews both basins in the form of gravity currents at 0.1 - 0.2 m/s with a thickness of 100 m. At other times of the year, the deep flow structures and water properties suggest horizontal and vertical processes and support the re-circulation idea in the inner and the outer basins. The near surface current velocity fluctuations are dominated by the along-channel wind. Overall, the circulation in the meteorological band is a mix of the estuarine flow, direct wind driven flow, and the baroclinic response to changes to the surface pressure gradient caused by the wind driven currents.
Richter, Claudio
2013-01-01
Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century. PMID:24255810
Fillinger, Laura; Richter, Claudio
2013-01-01
Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.
NASA Astrophysics Data System (ADS)
Milzer, G.; Giraudeau, J.; Faust, J.; Knies, J.; Schmidt, S.; Rühlemann, C.
2012-04-01
The Trondheimfjord is located at the west coast of Mid-Norway and is characterized by local environmental and hydrological changes that are linked to regional oceanographic and atmospheric processes in the Norwegian Sea. The North Atlantic Current (NAC) and the Norwegian Coastal Current (NCC), two major northward flowing sea surface/intermediate currents, strongly contribute to the oceanography of the Norwegian Sea and thus, to the hydrological settings of the fjord. Instrumental records indicate that the renewal of the fjord water by Atlantic-derived water masses occurs twice a year and that bottom water temperature and salinity changes reflect NAC variability. Sedimentation rates in the fjord basin exceed several mm/yr. Hence, the Trondheimfjord is an ideal location for high resolution studies of important climate-sensitive parameters such as characteristics of Atlantic-derived waters, freshwater discharge and sedimentary patterns. We measured stable isotope ratios in tests of the benthic foraminifera Melonis barleanus from surface sediments of the Trondheimfjord; δ18O ratios vary according to circulation and stratification patterns in the fjord which are linked to the topography. Based on these surface sediment measurements, as well as previous sediment core studies (Milzer et al, unpublished), we assume that benthic δ18O ratios in sedimentary archives from the Trondheimfjord reflect ocean circulation changes in the Norwegian Sea. In order to examine to which extent physico-chemical characteristics of the prevailing water masses are affecting the benthic signal in the Trondheimfjord, and how these findings can be related to oceanographic changes in the Norwegian Sea, we analyze benthic δ18O ratios from three multi-cores distributed along the fjord axis. According to 210Pb and 137Cs chronology these multi-cores contain undisturbed sedimentary records for the last 10 to 50 years, with sedimentation rates ranging from 2.5 to 7 mm/yr. We perform this analysis by comparing our stable isotope data with instrumental time-series from hydrological stations in the fjord area and over the Norwegian margin. On a decadal scale the variability of the benthic δ18O signal concurs with the temperature and salinity variability of the bottom water of the Trondheimfjord measured at different stations along the fjord axis. On a multidecadal scale, benthic δ18O variability and the instrumental datasets show different patterns, and point out the peculiarity of each core location in terms of topographic and hydrological settings. In addition, we present dinocyst census counts on the same sedimentary archives as tracers of changes in water mass characteristics induced both by NAC ventilation of the Trondheimfjord and regional climate patterns. The results show characteristic dinocyst assemblages for estuaries including seasonal hydrological variations in the Trondheimfjord which result in changes of food availability as well as mixing of water masses in the fjord.
NASA Astrophysics Data System (ADS)
Sutherland, D.; Carroll, D.; Nash, J. D.; Shroyer, E.; Mickett, J.; Stearns, L. A.; Fried, M.; Bartholomaus, T.; Catania, G. A.
2015-12-01
Hydrographic and velocity observations in Greenland's outlet glacier fjords have revealed, unsurprisingly, a rich set of dynamics over a range of spatial and temporal scales. Through teasing apart the distinct processes that control circulation within these fjords, we are likely to better understand the impact of fjord circulation on modulating outlet glacier dynamics, and thus, changes in Greenland Ice Sheet mass balance. Here, we report on data from the summers of 2013-2015 in two neighboring fjords in the Uummannaq Bay region of west Greenland: Kangerlussuup Sermia (KS) and Rink Isbræ (RI). We find strong subglacial discharge driven plumes in both systems that evolve on synoptic and seasonal time scales, without the complicating presence of other circulation processes. The plumes both modify fjord water properties and respond to differences in ambient water properties, supporting the notion that a feedback exists between subglacial discharge plume circulation and water mass properties. This feedback between subglacial discharge and water properties potentially influences submarine melt rates at the glacier termini. Observed plume properties, including the vertical structure of velocity, and temperature and salinity anomalies, are compared favorably to model estimates. In KS, we find a near-surface intensified plume with high sediment content that slows and widens as it evolves downstream. In contrast, the plume in RI is entirely subsurface, ranging from 100-300 m depth at its core during summer, although it shows similar temperature, salinity, and optical backscatter signals to the KS plume. Importantly, the distinct vertical plume structures imprint on the overall water mass properties found in each fjord, raising the minimum temperatures by up to 1-2°C in the case of RI.
Recent variability in the Atlantic water intrusion and water masses in Kongsfjorden, an Arctic fjord
NASA Astrophysics Data System (ADS)
Divya, David T.; Krishnan, K. P.
2017-03-01
The present study reports high inter-annual variability in the water masses and in the intrusion of Atlantic origin waters in Kongsfjorden from 2000 to 2013 using both the historical (2000-2010 summers) and recent CTD measurements (2011-2013 summer/fall). An earlier intrusion of Atlantic Water (AW) into Kongsfjorden was observed in the contemporary years. An overall summertime subsurface warming is evident from the maximum September AW temperature in 2011 (4.8 °C), 2012 (5.8 °C) and 2013 (7 °C). The combination of a compensating surface flow to the subsurface intrusion of AW and the strong southeasterly surface winds during the peak summer, resulted in a corresponding net outflow of the surface fresh water layer from Kongsfjorden. This led to the decreased freshwater volume inside the fjord during 2013 (1 km3) compared to 2011 (3.1 km3) and 2012 (2.3 km3).
Oxygen intrusion into anoxic fjords leads to increased methylmercury availability
NASA Astrophysics Data System (ADS)
Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy
2013-04-01
Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the surface layer to 6.5 ng/L at maximum depth (10 m). However, the pattern of MeHg concentrations in the water column changed with relatively high concentrations present already at 4.5 m depth (2.2 ng/L). The environmental consequence of this oxygen intrusion is the appearance in shallower water of toxic MeHg formed in the anoxic layer. As a result of this, MeHg can possibly undergo transport from the anoxic fjord to the surrounding areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khangaonkar, Tarang; Wang, Taiping
Circulation in typical fjords is characterized by a shallow brackish layer at the surface over a deep long and narrow saltwater column. This surface layer is responsible for the outflow of water from the fjord, is easily disrupted by external forces, such as wind, and is influenced by freshwater inflow. In this paper, we postulate that the stability of fjordal circulation may also be vulnerable to impacts from anthropogenic alterations, such as floating structures, that could constrict the mixing and transport in the upper layers of the water column. The potential for alteration of circulation in Hood Canal, a silled-fjordmore » located inside Puget Sound, Washington, has been examined. Using classical analytical treatments along the lines formulated by Hansen and Rattray [1965], Rattray [1967], Dyer [1973] and more recently, MacCready [2004], we develop a solution applicable to a range of estuary classifications varying from a partially mixed estuary regime to classical fjord conditions. Both estuary types exist in the Puget Sound system, and we compare our analytical solution with observed data. The analysis is based on an exponential variation of eddy viscosity with depth, and it has been extended further with modifications of the free surface boundary conditions to develop a solution representing the presence of a floating bridge at the estuary/fjord entrance. The model results show that tidally averaged mean circulation under the influence of such a constraint could reduce by as much as 30 to 50 percent. The overall water quality of fjords and narrow estuaries is dependent on net circulation and flushing. A potential decrease in residual flow or a corresponding increase in residence time of this magnitude merits further study.« less
Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords
Arimitsu, Mayumi L.; Piatt, John F.; Mueter, Franz J.
2016-01-01
To better understand the influence of glacier runoff on fjord ecosystems, we sampled oceanographic conditions, nutrients, zooplankton, forage fish and seabirds within 4 fjords in coastal areas of the Gulf Alaska. We used generalized additive models and geostatistics to identify the range of glacier runoff influence into coastal waters within fjords of varying estuarine influence and topographic complexity. We also modeled the response of depth-integrated chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. The effects of glacial runoff were traced at least 10 km into coastal fjords by cold, turbid, stratified and generally nutrient-rich near-surface conditions. Glacially modified physical gradients, nutrient availability and among-fjord differences explained 67% of the variation in phytoplankton abundance, which is a driver of ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were related to environmental gradients that could be traced to glacial freshwater input, particularly turbidity and temperature. Seabird density was predicted by prey availability and silicate concentrations, which may be a proxy for upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were attributable to an influx of cold, fresh and sediment-laden water, whereas differences were likely related to fjord topography and local differences in estuarine vs. ocean influence. We anticipate that continued changes in the timing and volume of glacial runoff will ultimately alter coastal ecosystems in the future.
Mapping tide-water glacier dynamics in east Greenland using landsat data
Dwyer, John L.
1995-01-01
Landsat multispectral scanner and thematic mapper images were co-registered For the Kangerdlugssuaq Fjord region in East Greenland and were used to map glacier drainage-basin areas, changes in the positions of tide-water glacier termini and to estimate surface velocities of the larger tide-water glaciers. Statistics were compiled to document distance and area changes to glacier termini. The methodologies developed in this study are broadly applicable to the investigation of tide-water glaciers in other areas. The number of images available for consecutive years and the accuracy with which images are co-registered are key factors that influence the degree to which regional glacier dynamics can be characterized using remotely sensed data.Three domains of glacier state were interpreted: net increase in terminus area in the southern part of the study area, net loss of terminus area for glaciers in upper Kangerdlugssuaq Fjord and a slight loss of glacier terminus area northward from Ryberg Fjord. Local increases in the concentrations of drifting icebergs in the fjords coincide with the observed extension of glacier termini positions Ice-surface velocity estimates were derived for several glaciers using automated image cross-correlation techniques The velocity determined for Kangerdlugssuaq Gletscher is approximately 5.0 km a−1 and that for Kong Christian IV Gletscher is 0.9 km a−1. The continuous presence of icebergs and brash ice in front of these glaciers indicates sustained rates of ice-front calving.
Benthic foraminiferal biogeography in NW European fjords: A baseline for assessing future change
NASA Astrophysics Data System (ADS)
Murray, John W.; Alve, Elisabeth
2016-11-01
The seaboard extending from northern Svalbard to Scotland is the only region of the world where fjords have been comprehensively studied for their live (stained) benthic foraminiferal faunas. These modern faunas provide essential baseline data for the interpretation of the postglacial and continuing environmental changes in those fjords and this is the first biogeographic synthesis. The data come from the surface sediment assemblages (mainly sampled in the 1990's) from all the available literature. Due to limited information of shallow water assemblages in the north, only the species occurrences in deeper water from below the halocline are considered. Amongst these, only "common species" species occurring in more than one fjord are included. There is a clear pattern of distribution with five groups of taxa: 5 widespread species found throughout the region; 53 species reaching their northern limit; 13 species reaching their southern limit; 11 deep-sea species; 1 recently introduced species. Although there is an abrupt change in temperature from Tanafjorden in northern Norway to Hornsund in southern Svalbard, the faunal change from N to S is progressive throughout the investigated region. The area of overlap of the northern and southern species corresponds with the previously recognised boundary between the Barents Sea Province and the Norwegian Coast Province based on shelf and upper slope invertebrate macrofaunal benthos and plankton. Temperature is the main abiotic control on the distributions. For the fjords which have shallow sills separating them from the open shelf it is likely that most of the foraminiferal colonisers of the deeper fjord basins are sourced from the shelf or slope via propagules. One species has recently been introduced from further south into the southern region probably through the discharge of ballast water from ships. The biodiversity of the pristine Svalbard fjords extends below what is considered to reflect acceptable ecological status for mainland Norway, illustrating the need to introduce new methods to determine possible deviations from the reference conditions as defined in the EU's Water Framework Directive (WFD; 2000/60/EC). Altogether 347 species have so far been recorded in Norwegian waters: 214 in fjords (60 above and 180 below the halocline of which 26 occur both above and below the halocline) and 266 on the shelf and slope (133 of which also occur in fjords).
Gwynn, Justin P; Nikitin, Aleksander; Shershakov, Viacheslav; Heldal, Hilde Elise; Lind, Bjørn; Teien, Hans-Christian; Lind, Ole Christian; Sidhu, Rajdeep Singh; Bakke, Gunnar; Kazennov, Alexey; Grishin, Denis; Fedorova, Anastasia; Blinova, Oxana; Sværen, Ingrid; Lee Liebig, Penny; Salbu, Brit; Wendell, Cato Christian; Strålberg, Elisabeth; Valetova, Nailja; Petrenko, Galina; Katrich, Ivan; Logoyda, Igor; Osvath, Iolanda; Levy, Isabelle; Bartocci, Jean; Pham, Mai Khanh; Sam, Adam; Nies, Hartmut; Rudjord, Anne Liv
2016-01-01
This paper reports the main results of the 2012 joint Norwegian-Russian expedition to investigate the radioecological situation of the Stepovogo Fjord on the eastern coast of Novaya Zemlya, where the nuclear submarine K-27 and solid radioactive waste was dumped. Based on in situ gamma measurements and the analysis of seawater and sediment samples taken around the submarine, there was no indication of any leakage from the reactor units of K-27. With regard to the radioecological status of Stepovogo Fjord, activity concentrations of all radionuclides in seawater, sediment and biota in 2012 were in general lower than reported from the previous investigations in the 1990s. However in 2012, the activity concentrations of (137)Cs and, to a lesser extent, those of (90)Sr remained elevated in bottom water from the inner part of Stepovogo Fjord compared with surface water and the outer part of Stepovogo Fjord. Deviations from expected (238)Pu/(239,240)Pu activity ratios and (240)Pu/(239)Pu atom ratios in some sediment samples from the inner part of Stepovogo Fjord observed in this study and earlier studies may indicate the possibility of leakages from dumped waste from different nuclear sources. Although the current environmental levels of radionuclides in Stepovogo Fjord are not of immediate cause for concern, further monitoring of the situation is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.
Solberg, Ingrid; Kaartvedt, Stein
2014-01-01
Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat ( Sprattus sprattus ) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day -1 . The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established.
NASA Astrophysics Data System (ADS)
Arendt, Kristine Engel; Agersted, Mette Dalgaard; Sejr, Mikael Kristian; Juul-Pedersen, Thomas
2016-12-01
Freshwater runoff from the Greenland Ice Sheet (GIS) can be an important driver influencing plankton community structure in Greenland fjords. In the present study, we describe physical, taxonomic and functional differences in the plankton community in Young Sound, a NE Greenland fjord, from the inner fjord close to the GIS towards the coastal region in late summer. The fjord is influenced by runoff from land-terminating glaciers that separated the surface layer from cold underlying waters. The highest chlorophyll a concentration (<2.5 μg l-1) was found in the coastal region at 20-50 m depth. The most profound difference in the mesozooplankton community structure along the section was seen in the abundance of the copepods Microcalanus spp., which were present in the coastal region in the upper 100 m, and Pseudocalanus spp., which only occurred in the surface layers and mainly in the inner part of the fjord. In addition to this, both species have been observed to change in abundance within the last decade. Calanus spp. copepods made up > 74.9% of the total copepod biomass at all stations, and their grazing impact was the highest among the copepod groups. Copepod grazing impact on the phytoplankton standing stock, however, was exceeded by microzooplankton grazing, investigated by dilution experiments, with the highest grazing impact on the phytoplankton standing stock of 63% d-1 in the inner part of the fjord. In spite of high phytoplankton instantaneous growth rates at the innermost fjord station, proto-zooplankton was capable of controlling the phytoplankton production. The study showed functional differences within the system and provides indications of how dynamic the coastal ecosystem of Greenland can be.
Bathymetry and geology of Greenlandic fjords from Operation IceBridge airborne gravimetry
NASA Astrophysics Data System (ADS)
Tinto, K. J.; Cochran, J. R.; Bell, R. E.; Charles, K.; Dube, J.; McLeish, M.; Burton, B. L.
2011-12-01
The Greenland Ice Sheet is drained by outlet glaciers that commonly flow into long, deep fjords. Glacier flow is controlled in part by the topography and geology of the glacier bed, and is also affected by the interaction between ice and sea water in the fjords. This interaction depends on the bathymetry of the fjords, and particularly on the presence of bathymetric sills, which can control the influx of warm, saline water towards the grounding zone. The bathymetry and geology of these fjords provide boundary conditions for models of the behaviour of the glaciers and ice sheet. Greenlandic fjords can be over 100 km long and up to 1000 m deep, with sills a few hundred metres above the bottom of the fjord. Where bathymetry is not well known, the scale of these features makes them appropriate targets for aerogravity surveys. Where bathymetry is known, aerogravity can provide information on the geology of the fjord, but the sometimes narrow, sinuous fjords present challenges for both data acquisition and interpretation. In 2010 and 2011 Operation IceBridge flew the Sander Geophysics AIRGrav system along the axes of more than 40 outlet glaciers distributed around the coast of Greenland. The AIRGrav system has high precision, fast recovery from turns and the capacity for draped flights, all of which improve the quality of data acquisition along fjord axes. Operation IceBridge survey flights are conducted at or lower than 500 m above ground surface, at speeds of ~140 m/s, allowing full amplitude resolution of features larger than ~5 km, and detection of smaller scale features. Fjord axis data are commonly of lower quality than data from grid-based gravity surveys. Interpretation of these data is improved by combining repeated survey lines from both seasons as well as incorporating other datasets, such as radar, and magnetic data from Operation IceBridge, digital elevation models and geological maps. While most fjords were surveyed by a single axial track, surveys of Petermann Glacier include parallel flow lines, allowing new constraints on the bathymetry under its floating ice to be more reliably modelled. This work is a preliminary review of the fjord axes surveyed by Operation IceBridge and presents models of representative fjords. The surveys include major features, such as the fjord in front of Kangerdlugssuaq Glacier and under the the floating ice in front of Petermann, 79 N and Zachariae Glaciers and results identify the limits and applications of IceBridge aerogravity in the Greenland fjords.
Controlled artificial upwelling in a fjord to combat toxic algae
NASA Astrophysics Data System (ADS)
McClimans, T. A.; Hansen, A. H.; Fredheim, A.; Lien, E.; Reitan, K. I.
2003-04-01
During the summer, primary production in the surface layers of some fjords depletes the nutrients to the degree that some arts of toxic algae dominate the flora. We describe an experiment employing a bubble curtain to lift significant amounts of nutrient-rich seawater to the light zone and provide an environment in which useful algae can survive. The motivation for the experiment is to provide a local region in which mussels can be cleansed from the effects of toxic algae. Three 100-m long, perforated pipes were suspended at 40 m depth in the Arnafjord, a side arm of the Sognefjord. Large amounts of compressed air were supplied during a period of three weeks. The deeper water mixed with the surface water and flowed from the mixing region at 5 to 15 m depth. Within a few days, the mixture of nutrient-rich water covered most of the inner portion of Arnafjord. Within 10 days, the plankton samples showed that the artificial upwelling produced the desired type of algae and excluded the toxic blooms that were occurring outside the manipulated fjord arm. The project (DETOX) is supported by the Norwegian ministries of Fisheries, Agriculture and Public Administration.
NASA Astrophysics Data System (ADS)
Schild, K. M.; Hawley, R. L.
2013-12-01
Marine-terminating outlet glaciers discharge most of Greenland's mass, but the subglacial transport of meltwater is not well understood. The coincident rise in both ice velocity and surface melt during the last decade points to a possible link between the amount of surface melt, glacier velocities, and discharge rates through processes including basal lubrication and/or an increase in melt at the terminus due to discharge plume enhanced entrainment of warm ocean waters. Characterizing the response of the Greenland Ice Sheet to increasing melt is limited in part by the lack of direct observation of the subglacial system. We use ground-based observations (time lapse cameras, DMI weather stations) and satellite remote sensing (MODIS) to infer the subglacial hydrological evolution of a tidewater glacier by identifying the lag between meltwater availability, inferred from warm temperatures and supraglacial lake drainage, and the appearance of a sediment plume at the terminus. The detection of sediment plumes is constrained by melange presence in the spring and decreasing solar illumination in the fall. At Rink Isbræ, West Greenland, we find the appearance of sediment plumes lagging the onset of positive temperatures from 2007-2011 by approximately 44 days, but the plumes are present as the melange clears suggesting this lag may be much shorter but is undetectable. We also observe an abundance of sediment plumes each season (11-25 individual events), which indicates supraglacial drainage events are not the sole source for all sediment plumes. These findings suggest multiple passageways exist from the surface to the subglacial system and the presence of a well-established drainage network early in the melt season. In this poster, we will discuss potential mechanisms for the episodic nature of the recorded plume events; whether they are the product of variable subglacial water supply (suggesting the presence of pulse drainages from subglacial storage basins), highly variable fjord circulation (only allowing subglacial sediment plumes to appear at the surface under specific fjord and plume conditions), or a combination. A clearer understanding of sediment plumes are important for understanding the subglacial hydrological system of tidewater glaciers, as well as gauging the impact of rapid fresh water delivery to melange/sea ice extent in the fjord, terminus stability, submarine melting and fjord circulation.
College Fjord, Prince Williams Sound
NASA Technical Reports Server (NTRS)
2000-01-01
The College Fjord with its glaciers was imaged by ASTER on June 24, 2000.This image covers an area 20 kilometers (13 miles) wide and 24 kilometers (15 miles) long in three bands of the reflected visible and infrared wavelength region. College Fjord is located in Prince Williams Sound, east of Seward, Alaska. Vegetation is in red, and snow and ice are white and blue. Ice bergs calved off of the glaciers can be seen as white dots in the water. At the head of the fjord, Harvard Glacier (left) is one of the few advancing glaciers in the area; dark streaks on the glacier are medial moraines: rock and dirt that indicate the incorporated margins of merging glaciers. Yale Glacier to the right is retreating, exposing (now vegetated) bedrock where once there was ice. On the west edge of the fjord, several small glaciers enter the water. This fjord is a favorite stop for cruise ships plying Alaska's inland passage.This image is located at 61.2 degrees north latitude and 147.7 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.NASA Astrophysics Data System (ADS)
Joo, Y. J.; Nam, S. I.; Son, Y. J.; Forwick, M.
2017-12-01
Fjords in the Svalbard archipelago are characterized by an extreme environmental gradient between 1) the glacial system affected by tidewater glaciers and seasonal sea ice inside the fjords and 2) the warm Atlantic Water intrusion by the West Spitsbergen Current from open ocean. As sediment is largely supplied from the terrestrial source area exposed along the steep slopes of the fjords, the changes in the surface processes affected by glaciers are likely preserved in the sediments in the inner fjords. On the other hand, variations in the influence of the warm Atlantic Water in the marine realm (e.g. marine productivity) can be archived in the sediment deposited in the vicinity of the entrance to the fjords. Since the last deglaciation of the Svalbard-Barents ice sheet ( 13000 yrs BP), the Svalbard fjords have faced dramatic climate changes including the early Holocene Climate Optimum (HCO) and subsequent cooling that eventually led to the current cold and dry climate. We investigate the Holocene environmental changes in both terrestrial and marine realms based on stable isotopic and inorganic geochemical analyses of sediments deposited in Dicksonfjorden and Woodfjorden in the western and northern Spitsbergen, respectively. The two fjords are expected to provide intriguing information regarding how terrestrial and marine realms of the Arctic fjords system responded to regional and global climate changes. Being a branch of the larger Isfjorden, Dicksonfjorden penetrates deeply to the land, whereas Woodfjorden is rather directly connected to the open ocean. Accordingly, the results suggest that the Dicksonfjorden sediment records mainly terrestrial signals with marked fluctuations in sediment composition that coincide with major climate changes (e.g. HCO). On the contrary, the two Woodfjorden cores collected from different parts of the fjord exhibit contrasting results, likely illustrating differing response of terrestrial and marine realms to the climate changes in terms of behavior of tidewater glaciers and inflow of the warm West Spitsbergen Current and their possible interactions. This study aims to disentangle the interaction between the fjords and the global climate changes and provide a holistic view to the Arctic fjords system with strong environmental gradients.
NASA Astrophysics Data System (ADS)
Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf
2015-06-01
Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.
Organic carbon in glacial fjords of Chilean Patagonia
NASA Astrophysics Data System (ADS)
Pantoja, Silvio; Gutiérrez, Marcelo; Tapia, Fabián; Abarzúa, Leslie; Daneri, Giovanni; Reid, Brian; Díez, Beatriz
2016-04-01
The Southern Ice Field in Chilean Patagonia is the largest (13,000 km2) temperate ice mass in the Southern hemisphere, yearly transporting ca. 40 km3 of freshwater to fjords. This volume of fresh and cold water likely affects adjacent marine ecosystems by changing circulation, productivity, food web dynamics, and the abundance and distribution of planktonic and benthic organisms. We hypothesize that freshwater-driven availability of inorganic nutrient and transport of organic and inorganic suspended matter, as well as microbes, become a controlling factor for productivity in the fjord associated with the Baker river and Jorge Montt glacier. Both appear to be sources of silicic acid, but not of nitrate and particulate organic carbon, especially during summer, when surface PAR and glacier thawing are maximal. In contrast to Baker River, the Jorge Montt glacier is also a source of dissolved organic carbon towards a proglacial fjord and the Baker Channel, indicating that a thorough chemical description of sources (tidewater glacier and glacial river) is needed. Nitrate in fiord waters reaches ca. 15 μM at 25 m depth with no evidence of mixing up during summer. Stable isotope composition of particulate organic nitrogen reaches values as low as 3 per mil in low-salinity waters near both glacier and river. Nitrogen fixation could be depleting δ15N in organic matter, as suggested by the detection at surface waters of nif H genes belonging to diazotrophs near the Montt glacier. As diazotrophs have also been detected in other cold marine waters (e.g. Baltic Sea, Arctic Ocean) as well as glaciers and polar terrestrial waters, there is certainly a potential for both marine and freshwater microbes to contribute and have a significant impact on the Patagonian N and C budgets. Assessing the impact of freshwater on C and N fluxes and the microbial community structure in Patagonian waters will allow understanding future scenarios of rapid glacier melting. This research was funded by COPAS Sur-Austral (PFB-31).
Oceanography of Glacier Bay, Alaska: Implications for biological patterns in a glacial fjord estuary
Etherington, L.L.; Hooge, P.N.; Hooge, Elizabeth Ross; Hill, D.F.
2007-01-01
Alaska, U.S.A, is one of the few remaining locations in the world that has fjords that contain temperate idewater glaciers. Studying such estuarine systems provides vital information on how deglaciation affects oceanographic onditions of fjords and surrounding coastal waters. The oceanographic system of Glacier Bay, Alaska, is of particular interest ue to the rapid deglaciation of the Bay and the resulting changes in the estuarine environment, the relatively high oncentrations of marine mammals, seabirds, fishes, and invertebrates, and the Bay’s status as a national park, where ommercial fisheries are being phased out. We describe the first comprehensive broad-scale analysis of physical and iological oceanographic conditions within Glacier Bay based on CTD measurements at 24 stations from 1993 to 2002. easonal patterns of near-surface salinity, temperature, stratification, turbidity, and euphotic depth suggest that freshwater nput was highest in summer, emphasizing the critical role of glacier and snowmelt to this system. Strong and persistent tratification of surface waters driven by freshwater input occurred from spring through fall. After accounting for seasonal nd spatial variation, several of the external physical factors (i.e., air temperature, precipitation, day length) explained a large mount of variation in the physical properties of the surface waters. Spatial patterns of phytoplankton biomass varied hroughout the year and were related to stratification levels, euphotic depth, and day length. We observed hydrographic atterns indicative of strong competing forces influencing water column stability within Glacier Bay: high levels of freshwater ischarge promoted stratification in the upper fjord, while strong tidal currents over the Bay’s shallow entrance sill enhanced ertical mixing. Where these two processes met in the central deep basins there were optimal conditions of intermediate tratification, higher light levels, and potential nutrient renewal. These conditions were associated with high and sustained hlorophylla levels observed from spring through fall in these zones of the Bay and provide a framework for understanding he abundance patterns of higher trophic levels within this estuarine system.
Pathways of Petermann Glacier's Meltwaters, Greenland
NASA Astrophysics Data System (ADS)
Heuzé, C.; Wahlin, A.; Johnson, H. L.; Muenchow, A.
2016-02-01
Radar and satellite observations suggest that the floating ice shelf of Petermann glacier, north Greenland, loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic water into the fjord and under the ice shelf. Although Greenland meltwaters are key to sea level rise projections and can potentially disrupt the whole ocean circulation, the fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise onboard I/B Oden in August 2015. Two layers are found: one at 200 m (i.e. terminus depth) mostly on the eastern side of the fjord where a calving event occurred this summer, and one around 500 m depth (i.e. the grounding line) on the western side. At the sill, approximately 3 mSv of freshwater leave the fjord around 150 m on the eastern side. On the western side, a more complex circulation occurs as waters intrude in. Outside of the fjord in Hall Basin, only one layer is found, around 300 m, but its oxygen content and T-S properties suggests it is a mixture between Petermann's meltwater, meltwater from the neighbouring glaciers, surface run-off and sea ice. As Atlantic water warms up, it is key to monitor Greenland melting glaciers to properly assess sea level rise.
NASA Astrophysics Data System (ADS)
Sulak, D. J.; Sutherland, D.; Stearns, L. A.; Hamilton, G. S.
2015-12-01
Understanding fjord circulation in Greenland's outlet glacial fjords is crucial to explaining recent temporal and spatial variability in glacier dynamics, as well as freshwater transport on the continental shelf. The fjords are commonly assumed to exhibit a plume driven circulation that draws in warmer and saltier Atlantic-origin water toward the glacier at depth. Freshwater input at glacier termini directly drives this circulation and significantly influences water column stratification, which indirectly feeds back on the plume driven circulation. Previous work has focused on freshwater inputs from surface runoff and submarine melting, but the contribution from iceberg melt, a potentially important freshwater source, has not been quantified. Here, we develop a new technique combining in situ observations of movement from iceberg-mounted GPS units with multispectral satellite imagery from Landsat 8. The combination of datasets allows us to examine the details of iceberg movement and quantify mean residence times in a given fjord. We then use common melt rate parameterizations to estimate freshwater input for a given iceberg, utilizing novel satellite-derived iceberg distributions to scale up to a fjord-wide freshwater contribution. We apply this technique to Rink Isbræ and Kangerlussuup Sermia in west Greenland, and Helheim Glacier in southeast Greenland. The analysis can be rapidly expanded to look at other systems as well as seasonal and interannual changes in how icebergs affect the circulation and stratification of Greenland's outlet glacial fjords. Ultimately, this work will lead to a more complete understanding of the wide range of factors that control the observed regional variability in Greenland's glaciers.
NASA Astrophysics Data System (ADS)
González, H. E.; Castro, L. R.; Daneri, G.; Iriarte, J. L.; Silva, N.; Tapia, F.; Teca, E.; Vargas, C. A.
2013-12-01
Patagonian fjord systems, and in particular the fjords and channels associated with the Baker/Pascua Rivers, are currently under conspicuous natural and anthropogenic perturbations. These systems display very high variability, where limnetic and oceanic features overlap generating strong vertical and horizontal physicochemical gradients. The CIMAR 14-Fiordos cruise was conducted in the Chilean fjords located between 47° and 50°S during the spring (October-November) of 2008. The main objectives were to study vertical and horizontal gradients in physical, chemical and biological characteristics of the water column, and to assess plankton dynamics and trophic carbon fluxes in the fjords and channels of central-south Patagonia. The water column was strongly stratified, with a pycnocline at ca. 20 m depth separating a surface layer of silicic acid-rich freshwater discharged by rivers, from the underlying nitrate- and orthophosphate-rich Subantarctic waters. The outflows from the Baker and Pascua Rivers, which range annually between 500 and 1500 m3 s-1, generate the strong land-ocean gradient in salinity (1-32 psu) and inorganic nutrient concentrations (2-8 and 2-24 μM in nitrate and silicic-acid, respectively) we observed along the Baker Fjord. The POC:chl-a ratio fluctuated from 1087 near the fjord’s head to 175 at its oceanic end in the Penas Gulf. This change was mainly due to an increase in diatom dominance and a concurrent decrease in allochthonous POC towards the ocean. Depth-integrated net primary production (NPP) and bacterial secondary production (BSP) fluctuated between 49 and 1215 and 36 and 150 mg C m-2 d-1, respectively, with higher rates in oceanic waters. At a time series station located close to the Baker River mouth, the average NPP was lower (average 360 mg C m-2 d-1) than at more oceanic stations (average 1063 mg C m-2 d-1), and numerically dominated (45%) by the picoplankton (<2 μm) and nanoplankton (2-20 μm) size fractions. The high average vertical carbon flux (234 mg m-2 d-1) and high export production (65% of the NPP) support the idea that Patagonian fjords may behave as a net sink for CO2 during the productive (spring) season. Trophic fluxes near the head of the fjords, with oligotrophic low-salinity waters, were dominated by heterotrophic nanoflagellates (HNF) and small copepods (52 mg C m-2 d-1, each), suggesting that the microbial food web is the main trophic pathway in these environments.
A simple approach to adjust tidal forcing in fjord models
NASA Astrophysics Data System (ADS)
Hjelmervik, Karina; Kristensen, Nils Melsom; Staalstrøm, André; Røed, Lars Petter
2017-07-01
To model currents in a fjord accurate tidal forcing is of extreme importance. Due to complex topography with narrow and shallow straits, the tides in the innermost parts of a fjord are both shifted in phase and altered in amplitude compared to the tides in the open water outside the fjord. Commonly, coastal tide information extracted from global or regional models is used on the boundary of the fjord model. Since tides vary over short distances in shallower waters close to the coast, the global and regional tidal forcings are usually too coarse to achieve sufficiently accurate tides in fjords. We present a straightforward method to remedy this problem by simply adjusting the tides to fit the observed tides at the entrance of the fjord. To evaluate the method, we present results from the Oslofjord, Norway. A model for the fjord is first run using raw tidal forcing on its open boundary. By comparing modelled and observed time series of water level at a tidal gauge station close to the open boundary of the model, a factor for the amplitude and a shift in phase are computed. The amplitude factor and the phase shift are then applied to produce adjusted tidal forcing at the open boundary. Next, we rerun the fjord model using the adjusted tidal forcing. The results from the two runs are then compared to independent observations inside the fjord in terms of amplitude and phases of the various tidal components, the total tidal water level, and the depth integrated tidal currents. The results show improvements in the modelled tides in both the outer, and more importantly, the inner parts of the fjord.
Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland
NASA Astrophysics Data System (ADS)
Kjellerup Kjeldsen, Kristian; Weinrebe, Reimer Wilhelm; Bendtsen, Jørgen; Anker Bjørk, Anders; Kjær, Kurt Henrik
2017-08-01
We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1-2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater. Data are available through the PANGAEA website at https://doi.pangaea.de/10.1594/PANGAEA.860627.
NASA Astrophysics Data System (ADS)
Cenedese, C.
2014-12-01
Idealized laboratory experiments investigate the glacier-ocean boundary dynamics near a vertical 'glacier' (i.e. no floating ice tongue) in a two-layer stratified fluid, similar to Sermilik Fjord where Helheim Glacier terminates. In summer, the discharge of surface runoff at the base of the glacier (subglacial discharge) intensifies the circulation near the glacier and increases the melt rate with respect to that in winter. In the laboratory, the effect of subglacial discharge is simulated by introducing fresh water at melting temperatures from either point or line sources at the base of an ice block representing the glacier. The circulation pattern observed both with and without subglacial discharge resembles those observed in previous studies. The buoyant plume of cold meltwater and subglacial discharge water entrains ambient water and rises vertically until it finds either the interface between the two layers or the free surface. The results suggest that the meltwater deposits within the interior of the water column and not entirely at the free surface, as confirmed by field observations. The submarine melt rate increases with the subglacial discharge rate. Furthermore, the same subglacial discharge causes greater submarine melting if it exits from a point source rather than from a line source. When the subglacial discharge exits from two point sources, two buoyant plumes are formed which rise vertically and interact. The results suggest that the distance between the two subglacial discharges influences the entrainment in the plumes and consequently the amount of submarine melting and the final location of the meltwater within the water column. Hence, the distribution and number of sources of subglacial discharge may play an important role in glacial melt rates and fjord stratification and circulation. Support was given by NSF project OCE-113008.
Field Survey of the 17 June 2017 Landslide and Tsunami in Karrat Fjord, Greenland
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Giachetti, T.; Anderson, S.; Gauthier, D.
2017-12-01
On 17 June 2017 a massive landslide generated tsunami impacted Karrat Fjord and the Uummannaq fjord system located some 280 km north of Ilulissat in western Greenland. The eastern of two easily recognized landslides detached completely and fell approximately 1 km to sea level, before plunging into the Karrat Fjord and generating a tsunami within the fjord system. The landslide generated tsunami washed 4 victims and several houses into the fjord at Nuugaatsiaq, about 30 km west of the landslide. Eyewitnesses at Nuugaatsiaq and Illorsuit recorded the tsunami inundation on videos. The active western landslide features a back scarp and large cracks, and therefore remains a threat in Karrat Fjord. The villages of Nuugaatsiaq and Illorsuit remain evacuated. The Geotechnical Extreme Events Reconnaissance (GEER) survey team deployed to Greenland from July 6 to 9, 2017. The reconnaissance on July 8 involved approximately 800 km of helicopter flight and landings in several key locations. The survey focused on the landslides and coastlines within 30 km of the landslide in either fjord direction. The aerial reconnaissance collected high quality oblique aerial photogrammetry (OAP) of the landslide, scarp, and debris avalanche track. The 3D model of the landslide provides the ability to study the morphology of the slope on July 8, it provides a baseline model for future surveys, and it can be used to compare to earlier imagery to estimate what happened on June 17. Change detection using prior satellite imagery indicates an approximate 55 million m3 total landslide volume of which 45 million m3 plunged into the fjord from elevations up to 1200 m above the water surface. The ground based tsunami survey documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, performance of the man-made infrastructure, and impact on the natural and glacial environment. Perishable high-water marks include changes in vegetation and damage to roots, deposits and scour of soil and rock, stranded icebergs, as well as damage to homes and infrastructure. The tsunami runup heights exceeded 90 m laterally to the west of the landslide and 50 m across the 6 km wide fjord. The Greenland landslide generated tsunami highlights coastal hazards to communities not commonly exposed to earthquake generated tsunamis.
Earthquakes, Subaerial and Submarine Landslides, Tsunamis and Volcanoes in Aysén Fjord, Chile
NASA Astrophysics Data System (ADS)
Lastras, G.; Amblas, D.; Calafat-Frau, A. M.; Canals, M.; Frigola, J.; Hermanns, R. L.; Lafuerza, S.; Longva, O.; Micallef, A.; Sepulveda, S. A.; Vargas Easton, G.; Azpiroz, M.; Bascuñán, I.; Duhart, P.; Iglesias, O.; Kempf, P.; Rayo, X.
2014-12-01
The Aysén fjord, 65 km long and east-west oriented, is located at 45.4ºS and 73.2ºW in Chilean Patagonia. It has a maximum water depth of 345 m. It collects the inputs of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding Patagonian Andes. The fjord is crossed by the Liquiñe-Ofqui Fault Zone, a seismically active trench parallel intra-arc fault system. On 21 April 2007, an Mw 6.2 earthquake triggered numerous subaerial and submarine landslides along the fjord flanks. Some of the subaerial landslides reached the water mass, generating tsunami-like displacement waves that flooded the adjacent coastlines, withlocal >50 m high run-ups, causing ten fatalities and damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013, aiming to characterise the landslides and their effects, mapped with great detail the submerged morphology of the fjord. Multibeam data display deformation structures created by the impact of the landslides in the inner fjord floor. Landslide material descended and accelerated down the highly sloping fjord flanks, and reached the fjord floor at 200 m water depth generating large, 10-m-deep impact depressions. Fjord floor sediment was pushed and piled up in arcuate deformation areas formed by 15-m-high compressional ridges, block fields and a narrow frontal depression. Up to six >1.5 km2 of these structures have been identified. In addition, the cruise mapped the outer fjord floor beyond the Cuervo ridge. This ridge, previously interpreted as a volcanic transverse structure, most probably acted as a limit for grounding ice in the past, as suggested by the presence of a melt-water channel. The fjord smoothens and deepens to more than 330 m forming an enclosed basin, before turning SW across a field of streamlined hills of glacial origin. Three volcanic cones, one of them forming Isla Colorada and the other two totally submerged and previously unknown, have been mapped in the outer fjord. The largest one is 160 m high, 1.3 km in diameter and tops at 67 m water depth. This high-resolution data set illustrates a wide set of geohazards in the recent lively geological history of Aysén fjord.
NASA Astrophysics Data System (ADS)
Piquet, A. M.-T.; van de Poll, W. H.; Visser, R. J. W.; Wiencke, C.; Bolhuis, H.; Buma, A. G. J.
2014-04-01
The hydrographic properties of the Kongsfjorden-Krossfjorden system (79° N, Spitsbergen) are affected by Atlantic water incursions as well as glacier meltwater runoff. This results in strong physical gradients (temperature, salinity and irradiance) within the fjords. Here, we tested the hypothesis that glaciers affect phytoplankton dynamics as early as the productive spring bloom period. During two campaigns in 2007 (late spring) and 2008 (early spring) we studied hydrographic characteristics and phytoplankton variability along two transects in both fjords, using high-performance liquid chromatography (HPLC)-CHEMTAX pigment fingerprinting, molecular fingerprinting (denaturing gradient gel electrophoresis, or DGGE) and sequencing of 18S rRNA genes. The sheltered inner fjord locations remained colder during spring as opposed to the outer locations. Vertical light attenuation coefficients increased from early spring onwards, at all locations, but in particular at the inner locations. In late spring meltwater input caused stratification of surface waters in both fjords. The inner fjord locations were characterized by overall lower phytoplankton biomass. Furthermore HPLC-CHEMTAX data revealed that diatoms and Phaeocystis sp. were replaced by small nano- and picophytoplankton during late spring, coinciding with low nutrient availability. The innermost stations showed higher relative abundances of nano- and picophytoplankton throughout, notably of cyanophytes and cryptophytes. Molecular fingerprinting revealed a high similarity between inner fjord samples from early spring and late spring samples from all locations, while outer samples from early spring clustered separately. We conclude that glacier influence, mediated by early meltwater input, modifies phytoplankton biomass and composition already during the spring bloom period, in favor of low biomass and small cell size communities. This may affect higher trophic levels especially when regional warming further increases the period and volume of meltwater.
NASA Astrophysics Data System (ADS)
Piquet, A. M.-T.; van de Poll, W. H.; Visser, R. J. W.; Wiencke, C.; Bolhuis, H.; Buma, A. G. J.
2013-10-01
The hydrographic properties of the Kongsfjorden - Krossfjorden system (79° N, Spitsbergen) are affected by Atlantic water incursions as well as glacier meltwater runoff. This results in strong physical gradients (temperature, salinity and irradiance) within the fjords. Here, we tested the hypothesis that glaciers affect phytoplankton dynamics as early as the productive spring bloom period. During two campaigns in 2007 (late spring) and 2008 (early spring) we studied hydrographic characteristics and phytoplankton variability along 2 transects in both fjords, using HPLC-CHEMTAX pigment fingerprinting, molecular fingerprinting (DGGE) and sequencing of 18S rRNA genes. The sheltered inner fjord locations remained colder during spring as opposed to the outer locations. Vertical light attenuation coefficients increased from early spring onwards, at all locations, but in particular at the inner locations. During the end of spring, meltwater input had stratified surface waters throughout the fjords. The inner fjord locations were characterized by overall lower phytoplankton biomass. Furthermore HPLC-CHEMTAX data revealed that diatoms and Phaeocystis sp. were replaced by small nano- and picophytoplankton during late spring, coinciding with low nutrient availability. The innermost stations showed higher relative abundances of nano- and picophytoplankton throughout, notably of cyanophytes and cryptophytes. Molecular fingerprinting revealed a high similarity between inner fjord samples from early spring and late spring samples from all locations, while outer samples from early spring clustered separately. We conclude that glacier influence, mediated by early meltwater input, modifies phytoplankton biomass and composition already during the spring bloom period, in favor of low biomass and small cell size communities. This may affect higher trophic levels especially when regional warming further increases the period and volume of meltwater.
The lively Aysén fjord, Chile: Records of multiple geological processes
NASA Astrophysics Data System (ADS)
Lastras, Galderic; Amblas, David; Calafat, Antoni; Canals, Miquel; Frigola, Jaime; Hermanns, Reginald L.; Lafuerza, Sara; Longva, Oddvar; Micallef, Aaron; Sepúlveda, Sergio A.; Vargas, Gabriel; Azpiroz, María; Bascuñán, Ignacio; Duhart, Paul; Iglesias, Olaia; Kempf, Philipp; Rayo, Xavier
2014-05-01
The Aysén fjord is a 65 km long, east-west oriented fjord in Chilean Patagonia, located approximately at 45.4ºS and 73.2ºW, with a maximum water depth of 345 m. The fjord receives at present the riverine input of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding up to 2000 m high Patagonian Andes. The fjord is crossed by a number of faults associated to the seismically active Liquiñe-Ofqui Fault Zone, a major trench parallel intra-arc fault system. After a four-month period of moderate seismicity, an Mw 6.2 earthquake on 21 April 2007 triggered dozens of subaerial landslides along the fjord flanks. Some of the landslides reached the fjord water mass, generating a series of tsunami-like displacement waves that impacted the adjacent coastlines with 3-12 m, locally over 50 m high run-ups, causing ten fatalities and severe damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013 mapped the submerged morphology of the fjord and gathered air-gun seismic profiles and sediment gravity cores in order to characterise the footprint of the landslides in the fjord floor. Very-high resolution multibeam bathymetry (4 m cell size) clearly shows the deformation structures created by the landslides in the inner fjord. The landslides descended and accelerated down the submerged fjord flanks, and reached the fjord floor at approx. 200 m water depth generating large, 1 to 10 m deep impact depressions. Sediment removed from these depressions moved radially and piled up in deformation rings formed by compressional ridges 10-15 m in height, block fields and a narrow frontal depression. Up to six >1.5 square km of these structures can be identified in the fjord. In addition, the DETSUFA survey extended beyond the SE-NW-oriented inner fjord past the Cuervo Ridge, located in front of the Cuervo river delta. The ridge, previously interpreted as a volcanic transverse structure, has most probably acted as a limit for grounding ice in the past, as suggested by the presence of melt-water channels lateral to the ridge. Beyond the ridge, the fjord smoothens and deepens to more than 330 m forming an enclosed basin before turning SW. There, it shallows back across a field of streamlined submerged hills of glacial origin. The external Aysén fjord, before joining to Canal Costa and Canal Moraleda, is characterized by three volcanic cones, one of them forming Isla Colorada - which also acted as a glacial limit - and the other two totally submerged and previously unknown. The largest one is 160 m high, 1.3 km in diameter and tops at 67 m water depth. This data set illustrates the complex interaction between fluvial, glacial, tectonic, volcanic and gravity processes and evidences the recent lively geological history of Aysén fjord.
NASA Astrophysics Data System (ADS)
Jakacki, Jaromir; Przyborska, Anna; Sunfjord, Arild; Albertsen, Jon; Białoskórski, Michał; Pliszka, Bartosz
2016-04-01
Hornsund is the southernmost fjord of the Svalbard archipelago island - Spitsbergen. It is under the influence of two main currents - the coastal Sørkapp Current (SC) carrying fresher and colder water masses from the Barents Sea and the West Spitsbergen Current (WSC), which is the branch of the Norwegian Atlantic Current (NwAC) and carries warm and salty waters from the North Atlantic. The main local forcing, which is tidal motion, brings shelf waters into the central fjord basin and then the transformed masses are carried into the easternmost part of the fjord, Brepolen. For the purpose of studying circulation and water exchange in this area a three-dimensional hydrodynamic model has been implemented and validated. The model is based on MIKE by DHI product and covers the Hornsund fjord with the shelf area, which is the fjord foreground. It is sigma a coordinate model (in our case 35 vertical levels) with variable horizontal resolution (mesh grid). The smallest cell has a horizontal dimension less than one hundred meters and the largest cells about 5 km. In spite of model limitations, the model reproduces the main circulation and water pathways in the Brepolen area. Seasonal and annual volume, heat and salt exchanges have been also estimated. The influence of freshwater discharge on shelf-fjord exchange will be also analyzed. The model results allow to study full horizontal and vertical fields of physical parameters (temperature, salinity, sea level variations and currents). The model integration covers only years 2005-2010 and the presented results will be based on this simulation. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018
NASA Astrophysics Data System (ADS)
Sejrup, H. P.; Haflidason, H.; Flatebø, T.; Klitgaard Kristensen, D.; Grøsfjeld, K.; Larsen, E.
2001-02-01
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine-grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9-7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large-scale sliding on the continental margin off Norway (the Storegga Tsunami).During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea-surface summer temperatures, possibly with year-round sea-ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea-surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4-9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4-0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large-scale oceanic circulation.
Atlantic water variability on the SE Greenland continental shelf and its relationship to SST
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Straneo, F.; Rosing-Asvid, A.; Stenson, G.; Davidson, F. J.; Hammill, M.
2012-12-01
Interaction of warm, Atlantic-origin water (AW) and colder, polar origin water (PW) advecting southward in the East Greenland Current (EGC) influences the heat content of water entering Greenland's outlet glacial fjords. Here we use depth and temperature data derived from deep-diving seals to map out water mass variability across the continental shelf and to augment existing bathymetric products. We find two dominant modes in the vertical temperature structure: a cold mode, with the typical AW/PW layering observed in the EGC, and a warm mode, where AW is present throughout the water column. The prevalence of these modes varies seasonally and spatially across the continental shelf, implying distinct AW pathways. In addition, we find that satellite sea surface temperatures (SST) correlate significantly with temperatures in the upper 50 m (R=0.54), but this correlation decreases with depth (R=0.22 at 200 m), and becomes insignificant below 250 m. Thus, care must be taken in using SST as a proxy for heat content, as AW mainly resides in these deeper layers. Regional map showing the location of all seal tracks originating from Canada and Greenland (stars). Tracks passing inside (red) or outside (blue) the SE Greenland region (black) were subdivided into continental shelf regions (green boxes) near Sermilik Fjord (SF), Cape Farewell (CF) and Kangerdlugssuaq Fjord (KG). GEBCO bathymetry is contoured at 200, 1000, 2000, and 3000 m.
Ocean-Glaciers Interactions in the Southern Svalbard Fjord, Hornsund.
NASA Astrophysics Data System (ADS)
Walczowski, W.; Beszczynska-Moeller, A.; Prominska, A.; Kruss, A.
2017-12-01
The Arctic fjords constitute a link between the ocean and land, therefore there are highly vulnerable to warming and are expected to exhibit the earliest environmental changes resulting from anthropogenic impacts on climate. In the Arctic, the inshore boundary of a fjord system is usually dominated by tidewater glaciers while its offshore boundary is strongly influenced by warm oceanic waters. Improved understanding of the fjord-ocean exchange and processes within Arctic fjords is of a highest importance because their response to atmospheric, oceanic and glacial variability provides a key to understand the past and to forecast the future of the high latitude glaciers and Arctic climate. The results of field measurements in the Hornsund fjord (southern Svalbard), collected under the Polish-Norwegian projects GLAERE and AWAKE-2, will be presented. Interannual variability of warm Atlantic water entering the fjord, seasonal changes of ocean properties in the glacier bays and the structure of the water column in the vicinity of the glacier termination will be addressed. Direct contact of warm oceanic water with a glacier's wall causes submarine melting, undercutting and glacier calving. Turbulent plumes of subglacial meltwater constitute an important mechanism of heat transfer and also influence a glacier retreat. However our understanding of these processes is limited due to problems with obtaining in situ data close to the glacier wall. Therefore special attention will be paid to observations of the underwater parts of Hornsund glaciers and new measurements of water column fine structure and mixing in the turbulent meltwater plumes.
A fjord-glacier coupled system model
NASA Astrophysics Data System (ADS)
de Andrés, Eva; Otero, Jaime; Navarro, Francisco; Prominska, Agnieszka; Lapazaran, Javier; Walczowski, Waldemar
2017-04-01
With the aim of studying the processes occurring at the front of marine-terminating glaciers, we couple a fjord circulation model with a flowline glacier dynamics model, with subglacial discharge and calving, which allows the calculation of submarine melt and its influence on calving processes. For ocean modelling, we use a general circulation model, MITgcm, to simulate water circulation driven by both fjord conditions and subglacial discharge, and for calculating submarine melt rates at the glacier front. To constrain freshwater input to the fjord, we use estimations from European Arctic Reanalysis (EAR). To determine the optimal values for each run period, we perform a sensitivity analysis of the model to subglacial discharge variability, aimed to get the best fit of model results to observed temperature and salinity profiles in the fjord for each of these periods. Then, we establish initial and boundary fjord conditions, which we vary weekly-fortnightly, and calculate the submarine melt rate as a function of depth at the calving front. These data are entered into the glacier-flow model, Elmer/Ice, which has been added a crevasse-depth calving model, to estimate the glacier terminus position at a weekly time resolution. We focus our study on the Hansbreen Glacier-Hansbukta Fjord system, in Southern Spitsbergen, Svalbard, where a large set of data are available for both glacier and fjord. The bathymetry of the entire system has been determined from ground penetrating radar and sonar data. In the fjord we have got temperature and salinity data from CTDs (May to September, 2010-2014) and from a mooring (September to May, 2011-2012). For Hansbreen, we use glacier surface topography data from the SPIRIT DEM, surface mass balance from EAR, centre line glacier velocities from stake measurements (May 2005-April 2011), weekly terminus positions from time-lapse photos (Sept. 2009-Sept. 2011), and sea-ice concentrations from time-lapse photos and Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. Results suggest submarine melt rates at Hansbreen terminus implying noticeable changes in the glacier front geometry, and hence the stress field, which favour the occurrence of calving events. In this way, submarine melt at the glacier front could be a first-order mechanism in determining the terminus position in late summer.
NASA Astrophysics Data System (ADS)
Abulaitijiang, Adili; Baltazar Andersen, Ole; Stenseng, Lars
2014-05-01
Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry. This enabled qualified measurements of sea surface height (SST) in the fjords in Greenland. Scoresbysund fjord on the east coast of Greenland is the largest fjord in the world which is also covered by CryoSat-2 SAR-In mask making it a good test region. Also, the tide gauge operated by DTU Space is sitting in Scoresbysund bay, which provides solid ground-based sea level variation records throughout the year. We perform an investigation into sea surface height variation since the start of the Cryosat-2 mission using SAR-In L1B data processed with baseline B processing. We have employed a new develop method for projecting all SAR-In observations in the Fjord onto a centerline up the Fjord. Hereby we can make solid estimates of the annual and (semi-) annual signal in sea level/sea ice freeboard within the Fjord. These seasonal height variations enable us to derive sea ice freeboard changes in the fjord from satellite altimetry. Derived sea level and sea-ice freeboard can be validated by comparison with the tide gauge observations for sea level and output from the Microwave Radiometer derived observations of sea ice freeboard developed at the Danish Meteorological Institute.
NASA Astrophysics Data System (ADS)
Montero, P.; Pérez-Santos, I.; Daneri, G.; Gutiérrez, M. H.; Igor, G.; Seguel, R.; Purdie, D.; Crawford, D. W.
2017-12-01
A dense winter bloom of the dinoflagellate Heterocapsa triquetra was observed at a fixed station (44°35.3‧S; 72°43.6‧W) in the Puyuhuapi Fjord in Chilean Patagonia during July 2015. H. triquetra dominated the phytoplankton community in the surface waters between 2 and 15 m (13-58 × 109 cell m-2), with abundances some 3 to 15 times higher than the total abundance of the diatom assemblage, which was dominated by Skeletonema spp. The high abundance of dinoflagellates was reflected in high rates of gross primary production (GPP; 0.6-1.6 g C m-2 d-1) and chlorophyll-a concentration (Chl-a; 70-199.2 mg m-2) that are comparable to levels reported in spring diatom blooms in similar Patagonian fjords. We identify the main forcing factors behind a pulse of organic matter production during the non-productive winter season, and test the hypothesis that low irradiance levels are a key factor limiting phytoplankton blooms and subsequent productivity during winter. Principal Component Analysis (PCA) indicated that GPP rates were significantly correlated (r = -0.8, p < 0.05) with a decrease in salinity/temperature and the presence of the Heterocapsa bloom. The bloom occurred under low surface irradiance levels characteristic of austral winter and was accompanied by strong northern winds, associated with the passage of a low-pressure system, and a water column dominated by double diffusive layering. To our knowledge, this is the first report of a dense dinoflagellate bloom during deep austral winter in a Patagonian fjord, and our data challenge the paradigm of light limitation as a factor controlling phytoplankton blooms in this region in winter.
Multibeam Mapping of Remote Fjords in Southeast-Greenland
NASA Astrophysics Data System (ADS)
Weinrebe, W.; Kjaer, K. H.; Kjeldsen, K. K.; Bjork, A. A.
2015-12-01
The fjords of Southeast-Greenland are among the most remote areas of the Northern Hemisphere. Access to this area is hampered by a broad belt of sea ice floating along the East-Greenland coast from North to South. Consequently, the majority of those fjords have never been surveyed in detail until now. During an expedition by the Center of GeoGenetics of the University of Copenhagen in summer of 2014 we were able to map the Skjoldungen Fjord system with multibeam bathymetry. The topsail schooner ACTIV, built 1951 as a cargo ship to supply remote settlements in Greenland was chosen for the expedition. Though a vintage vessel, the ACTIV was well suited to cross the belt of sea ice and to cruise the ice covered fjords. A portable ELAC-Seabeam 1050 multibeam system was temporarily installed on the vessel. The two transducer of the system were mounted at the lower end of a 6 m long pole attached outboard at port side to the hull of the vessel. Though the installation was quite demanding without any winches or cranes, the construction was sufficiently stable and easy to manage throughout the entire cruise. Nearly the entire fjord system, leaving only a small gap of 5 km at the innermost part and small stripes close to the shorelines could be surveyed during the cruise. For the first time, a comprehensive map of Skjoldungen Fjord is now available. The map displays water depths from close to zero up to 800 m, the deepest part along a stretch of about 10 km in the Southwest. The bathymetry of the northern fjord is remarkably different from the southern fjord: the southern fjord features an outer deep part showing water depths between 500 m and 800 m and a shallow inner part with depths less than 300 m and a prominent sill in between. The northern fjord shows a more gradual increase of water depths from 200 m in the inner part to 600 m at the entrance.
In-Situ Observations of a Subglacial Outflow Plume in a Greenland Fjord
NASA Astrophysics Data System (ADS)
Mankoff, K. D.; Straneo, F.; Singh, H.; Das, S. B.
2014-12-01
We present oceanographic observations collected in and immediately outside of a buoyant, fresh, sediment-laden subglacial outflow plume rising up the marine-terminating front of Sarqardleq Glacier, Greenland (68.9 N, 50.4 W). Subglacial outflow plumes, associated with the discharge at depth of upstream glacial surface melt, entrain the relatively warm fjord waters and are correlated with enhanced submarine melt and increased calving. Few in-situ observations exist due to the challenges of making measurements at the calving front of glaciers. Our data were collected using a small boat, a helicopter, and a JetYak (a remote-controlled jet-ski-powered kayak). Temperature and salinity profiles in, around, and far from the plume are used to described its oceanographic properties, spatial extent, and temporal variability. This plume rises vertically up the ice front expanding laterally and away from the ice, over-shoots its stable isopycnal and reaches the surface. Its surface expression is identified by colder, saltier, sediment-laden water flowing at ~5 m/s away from the ice face. Within ~300 m from the ice it submerges as it seeks buoyant stability.
Arnosti, Carol; Steen, Andrew D.
2013-01-01
The microbial community composition of polar and temperate ocean waters differs substantially, but the potential functional consequences of these differences are largely unexplored. We measured bacterial production, glucose metabolism, and the abilities of microbial communities to hydrolyze a range of polysaccharides in an Arctic fjord of Svalbard (Smeerenburg Fjord), and thus to initiate remineralization of high-molecular weight organic matter. We compared these data with similar measurements previously carried out in the northern Gulf of Mexico in order to investigate whether differences in the spectrum of enzyme activities measurable in Arctic and temperate environments are reflected in “downstream” aspects of microbial metabolism (metabolism of monomers and biomass production). Only four of six polysaccharide substrates were hydrolyzed in Smeerenburg Fjord; all were hydrolyzed in the upper water column of the Gulf. These patterns are consistent on an interannual basis. Bacterial protein production was comparable at both locations, but the pathways of glucose utilization differed. Glucose incorporation rate constants were comparatively higher in Svalbard, but glucose respiration rate constants were higher in surface waters of the Gulf. As a result, at the time of sampling ca. 75% of the glucose was incorporated into biomass in Svalbard, but in the northern Gulf of Mexico most of the glucose was respired to CO2. A limited range of enzyme activities is therefore not a sign of a dormant community or one unable to further process substrates resulting from extracellular enzymatic hydrolysis. The ultimate fate of carbohydrates in marine waters, however, is strongly dependent upon the specific capabilities of heterotrophic microbial communities in these disparate environments. PMID:24198812
Glacial runoff strongly influences food webs in Gulf of Alaska fjords
NASA Astrophysics Data System (ADS)
Arimitsu, M.; Piatt, J. F.; Mueter, F. J.
2015-12-01
Melting glaciers contribute large volumes of freshwater to the Gulf of Alaska coast. Rates of glacier volume loss have increased markedly in recent decades, raising concern about the eventual loss of glaciers as a source of freshwater in coastal waters. To better understand the influence of glacier melt water on fjord ecosystems, we sampled oceanography, nutrients, zooplankton, forage fish, and seabirds within four fjords in the coastal Gulf of Alaska. We used generalized additive models and geostatistics to identify the range of influence of glacier runoff in fjords of varying estuarine and topographic complexity. We also modeled the responses of chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. Physical and nutrient signatures of glacial runoff extended 10-20 km into coastal fjords. Glacially modified physical gradients and among-fjord differences explained 66% of the variation in phytoplankton abundance, which drives ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were also related to environmental gradients that could be traced to glacial freshwater input. Seabird density was predicted by prey availability and silica concentrations, which may indicate upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were due to influx of cold, fresh, sediment and nutrient laden water, while differences were due to fjord topography and the relative importance of estuarine vs. ocean influences. We anticipate continued changes in the volume and magnitude of glacial runoff will affect coastal marine food webs in the future.
NASA Astrophysics Data System (ADS)
Boone, W.; Rysgaard, S.; Kirillov, S.; Dmitrenko, I.; Bendtsen, J.; Mortensen, J.; Meire, L.; Petrusevich, V.; Barber, D. G.
2017-07-01
Fjords around Greenland connect the Greenland Ice Sheet to the ocean and their hydrography and circulation are determined by the interplay between atmospheric forcing, runoff, topography, fjord-shelf exchange, tides, waves, and seasonal growth and melt of sea ice. Limited knowledge exists on circulation in high-Arctic fjords, particularly those not impacted by tidewater glaciers, and especially during winter, when they are covered with sea-ice and freshwater input is low. Here, we present and analyze seasonal observations of circulation, hydrography and cross-sill exchange of the Young Sound-Tyrolerfjord system (74°N) in Northeast Greenland. Distinct seasonal circulation phases are identified and related to polynya activity, meltwater and inflow of coastal water masses. Renewal of basin water in the fjord is a relatively slow process that modifies the fjord water masses on a seasonal timescale. By the end of winter, there is two-layer circulation, with outflow in the upper 45 m and inflow extending down to approximately 150 m. Tidal analysis showed that tidal currents above the sill were almost barotropic and dominated by the M2 tidal constituent (0.26 m s-1), and that residual currents (∼0.02 m s-1) were relatively small during the ice-covered period. Tidal pumping, a tidally driven fjord-shelf exchange mechanism, drives a salt flux that is estimated to range between 145 kg s-1 and 603 kg s-1. Extrapolation of these values over the ice-covered period indicates that tidal pumping is likely a major source of dense water and driver of fjord circulation during the ice-covered period.
NASA Astrophysics Data System (ADS)
Nordberg, Kjell; Polovodova Asteman, Irina; Gallagher, Timothy M.; Robijn, Ardo
2017-09-01
Sannäs Fjord is a shallow fjord (< 32 m w.d.) with a sill depth of 8 m, located at the Swedish west coast of the Skagerrak (North Sea). The anthropogenic impact on the fjord represents combination of sewage from the local village of Sannäs and land run-off from agricultural areas. Sewage impact has been reduced since 1991 and today the fjord is included into several nature conservation programs administrated by the European Union. Yet, observations during the summers of 2008-2011 show that the shallow inner fjord inlet experiences severe oxygen depletion at 5-12 m water depth. To explore if the oxygen depletion is only a recent phenomenon and to evaluate the potential of fjord sediments to archive such environmental changes, in 2008 and 2009 seven sediment cores were taken along a transect oriented lengthwise in the fjord. The cores were analysed for organic carbon, C/N, benthic foraminifera and lead pollution records (as relative age marker). Carbon content increases in most of the cores since the 1970-80s, while C/N ratio decreases from the core base upward since 1995. Foraminiferal assemblages in most core stratigraphies are dominated by agglutinated species. Calcareous species (mainly elphidiids) have become dominant in the upper part of the records since the late 1990s or 2000 (the inner fjord and the deepest basin) and since the 1950-70s (the outer fjord). In the inner Sannäs Fjord, an increase of agglutinated foraminiferal species (e.g. Eggerelloides scaber) and organic inner linings occurred since the 1970s, suggesting an intensification of taphonomic processes affecting postmortem calcareous shell preservation. A study of living vs. dead foraminiferal assemblages undertaken during June-August 2013 demonstrates that in the shallow inner fjord, strong carbonate dissolution occurs within 1-3 months following the foraminiferal growth. The dissolution is linked to corrosive conditions present within the sediment - bottom water interface, and is likely caused by the organic matter decay, resulting in severe hypoxia to anoxia. Oxygen depletion at < 10 m w.d. develops fast due to the small water volume and limited bottom water exchange caused by a close proximity of pycnocline to the fjord bottom. Sediment cores from the deep fjord basin and the outer fjord are, on the contrary, characterized by good to excellent preservation of foraminiferal shells, higher sediment accumulation rates, and the greatest potential for high-resolution paleoenvironmental studies. Increased frequencies of low-oxygen tolerant species (e.g. Stainforthia fusiformis) in the outer fjord after the 1970s suggests that increased primary productivity and seasonal oxygen deficiency have existed in the area over the last century. Recent milder winters, absent sediment reworking by freezing and grounding of sea-ice, increased nutrient load due to higher precipitation and land run-off, and the luxuriant growth of filamentous green algae followed by the organic matter decay are discussed among the mechanisms driving formation of recent oxygen deficiency in the shallow fjord inlets.
Influence of Barrier Wind Forcing on Heat Delivery Toward the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Fraser, Neil J.; Inall, Mark E.
2018-04-01
A high-resolution numerical hydrodynamic model of Kangerdlugssuaq Fjord and the adjacent southeast Greenland shelf region was constructed in order to investigate the dynamics of fjord-shelf exchange. Recent studies have suggested that rapid exchange flows, driven by along-shelf barrier wind events, are the dominant agent of exchange between fjord and shelf. These events are prone to occur during the winter, when freshwater forcing is minimal and observations of the fjord interior are scarce. Subglacial freshwater discharge was held at zero, so that any buoyancy-driven overturning circulation was driven by melting alone. The model described a geostrophically balanced background flow transporting water masses between the fjord mouth and the glacier terminus, indicating that rotational effects are of order-one importance. Barrier wind events were found to trigger coastally trapped internal wave activity within fjord, temporarily enhancing exchange and vertical mixing, and causing warm water to oscillate in the along-fjord direction. These internal waves were also found to enhance the background flow via Stokes' drift. Heat delivery through the fjord mouth was smaller than that recorded in summer observations, however the system is more effective at delivering this heat to the head of the fjord. There exists the potential for wintertime melting at the ice-ocean interface to be significant to the same order as summertime melting.
Ocean observations from below Petermann Gletscher
NASA Astrophysics Data System (ADS)
Muenchow, A.; Nicholls, K. W.; Heuzé, C.; Wahlin, A.; Mix, A. C.
2015-12-01
Petermann Gletscher drains 4% of the Greenland ice sheet via a floating ice shelf that has shrunk from 1,300 to 900 km^2 in area via two calving events in 2010 and 2012. The glacier is thinning by about 10 vertical meters per year when integrated over 45 km from the grounding zone to the terminus. Most of this mass loss is caused by ocean melting, but only a single vertical ocean profile taken in 2002 exists. The fjord was mostly free of sea ice in August when we visited in 2003, 2006, 2007, 2009, and 2012 and noticed a small warming trend of bottom waters. During a 2-day survey of Petermann Fjord and adjacent Nares Strait in 2012 we documented a large intrusion of warmer Atlantic waters spilling over the 400 m deep sill and sinking to more than 800 m depth. These waters fill the deep basin of the fjord and move towards the grounding zone of glacier at 550 m below the sea surface. In August 2015 the Swedish icebreaker I/B Oden is scheduled to enter Nares Strait and Petermann Fjord to support field work on land, on water, and on the floating glacier. We here report preliminary results from both ocean surveys and ice shelf moorings. The moored observations from under the ice shelf extend synoptic survey data from Oden. The ice shelf moorings are designed to resolve tidal to interannual variations of water properties under the floating glacier. More specifically, we plan to install a total 13 discrete sensors to measure ocean temperature, salinity, and pressure at five locations distributed both along and across the floating glacier. Hot water drilling provides the holes through the 200 to 500 m thick glacier ice to collect sediment cores, take a profile of temperature and salinity, and deploy two to five cabled sensors per mooring. If successful, data from these cabled instruments will be distributed via surface Iridium connections and posted on the web in near real time. We will discuss successes and failures of this ambitious and high risk program that was facilitated by a bottom-up collaboration of British, Swedish, and US investigators and their respective funding agencies all working on very short and tense schedules. Figure: Sketch of mooring placement on a map (left panel) with 2014 flight tracks and glacier profiles (right panel) obtained from laser altimeter data along the tracks.
NASA Astrophysics Data System (ADS)
Jernas, Patrycja; Klitgaard-Kristensen, Dorthe; Husum, Katrine; Koç, Nalan; Tverberg, Vigdis; Loubere, Paul; Prins, Maarten; Dijkstra, Noortje; Gluchowska, Marta
2018-04-01
The relationships between modern Arctic benthic foraminifera and their ecological controls, along with their sensitivity to rapid environmental changes, is still poorly understood. This study examines how modern benthic foraminifera respond to annual environmental changes in the glaciated Arctic fjord Kongsfjorden, western Svalbard. Large environmental gradients due to the inflow of warm and saline Atlantic Water and the influence of tidewater glaciers characterise the fjord hydrography. A transect of six multi-corer stations, from the inner to the outer fjord, was sampled in the late summers of 2005 to 2008 to study the distribution of living (rose Bengal stained) benthic foraminifera. Physical properties of the water masses were measured concurrently. In general, nearly the entire Kongsfjorden region was dominated by ubiquitous N. labradorica foraminiferal assemblage that successfully exploited the local food resources and thrived particularly well in the presence of Atlantic-derived Transformed Atlantic Water (TAW). Further, the annual investigation revealed that Kongsfjorden underwent large interannual hydrological changes during the studied years related to variable inflow of warm and saline Atlantic Water. This led to a strong fauna variability particularly at the two marginal sites: the glacially influenced inner fjord and marine influenced shelf region. We also observed significant species shift from the 'cold' to 'warm' years and an expansion of widespread and sub-arctic to boreal species into the fjord.
Organic carbon burial in fjords: Terrestrial versus marine inputs
NASA Astrophysics Data System (ADS)
Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida; Smith, Richard W.
2016-10-01
Fjords have been identified as sites of enhanced organic carbon (OC) burial and may play an important role in regulating climate change on glacial-interglacial timescales. Understanding sediment processes and sources of sedimentary OC are necessary to better constrain OC burial in fjords. In this study, we use Fiordland, New Zealand, as a case study and present data on surface sediments, sediment down-cores and terrestrial end-members to examine dynamics of sediments and the sources of OC in fjord sediments. Sediment cores showed evidence of multiple particle sources, frequent bioturbation and mass-wasting events. A multi-proxy approach (stable isotopes, lignin-phenols and fatty acids) allowed for separation of marine, soil and vascular plant OC in surface sediments. The relationship between mass accumulation rate (MAR) and OC contents in fjord surface sediments suggested that mineral dilution is important in controlling OC content on a global scale, but is less important for specific regions (e.g., New Zealand). The inconsistency of OC budgets calculated by using MAR weighted %OC and OC accumulation rates (AR; 6 vs 21-31 Tg OC yr-1) suggested that sediment flux in fjords was likely underestimated. By using end-member models, we propose that 55% to 62% of total OC buried in fjords is terrestrially derived, and accounts for 17 ± 12% of the OCterr buried in all marine sediments. The strong correlation between MAR and OC AR indicated that OC flux will likely decrease in fjords in the future with global warming due to decrease in sediment flux caused by glacier denudation.
College Fjord, Prince Williams Sound
2001-07-21
The College Fjord with its glaciers was imaged by ASTER on June 24, 2000. This image covers an area 20 kilometers (13 miles) wide and 24 kilometers (15 miles) long in three bands of the reflected visible and infrared wavelength region. College Fjord is located in Prince Williams Sound, east of Seward, Alaska. Vegetation is in red, and snow and ice are white and blue. Ice bergs calved off of the glaciers can be seen as white dots in the water. At the head of the fjord, Harvard Glacier (left) is one of the few advancing glaciers in the area; dark streaks on the glacier are medial moraines: rock and dirt that indicate the incorporated margins of merging glaciers. Yale Glacier to the right is retreating, exposing (now vegetated) bedrock where once there was ice. On the west edge of the fjord, several small glaciers enter the water. This fjord is a favorite stop for cruise ships plying Alaska's inland passage. This image is located at 61.2 degrees north latitude and 147.7 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02664
NASA Astrophysics Data System (ADS)
An, L.; Rignot, E.; Mouginot, J.; Millan, R.
2018-04-01
The evolution of Greenland glaciers in a warming climate depends on their depth below sea level, flow speed, surface melt, and ocean-induced undercutting at the calving front. We present an innovative mapping of bed topography in the frontal regions of Sermeq Avannarleq and Kujalleq, two major glaciers flowing into the ice-choked Torssukatak Fjord, central west Greenland. The mapping combines a mass conservation algorithm inland, multibeam echo sounding data in the fjord, and high-resolution airborne gravity data at the ice-ocean transition where other approaches have traditionally failed. We obtain a reliable, precision (±40 m) solution for bed topography across the ice-ocean boundary. The results reveal a 700 m deep fjord that abruptly ends on a 100-300 m deep sill along the calving fronts. The shallow sills explain the presence of stranded icebergs, the resilience of the glaciers to ocean-induced undercutting by warm Atlantic water, and their remarkable stability over the past century.
NASA Astrophysics Data System (ADS)
Bertrand, Sébastien; Hughen, Konrad A.; Sepúlveda, Julio; Pantoja, Silvio
2012-01-01
The Patagonian fjords have a clear potential to provide high-resolution sedimentary and geochemical records of past climate and environmental change in the Southern Andes. To improve our ability to interpret these proxy records, we investigated the processes that control fjord sediment inorganic geochemistry through a geochemical, mineralogical and sedimentological analysis of surface sediment samples from the fjords of Northern Chilean Patagonia. A simple Terrestrial Index based on measurements of salinity and Fraction of Terrestrial Carbon was used to estimate the terrestrial input/river discharge at each site. Our results demonstrate that, under the cold climate conditions of Patagonia, chemical weathering is weak and the inorganic geochemical composition of the fjord sediments is primarily controlled by hydrodynamic mineralogical sorting, i.e., the intensity of river discharge. Our results suggest that the distribution of Fe, Ti and Zr in surface sediments is controlled by their association with heavy and/or coarse minerals, whereas Al is independent of hydrodynamic processes. The elemental ratios Fe/Al, Ti/Al and Zr/Al are therefore well suited for estimating changes in the energy of terrestrial sediment supply into the fjords through time. Zr/Al is particularly sensitive in proximal environments, while Fe/Al is most useful in the outer fjords and on the continental margin. In the most proximal environments, however, Fe/Al is inversely related to hydrodynamic conditions. Caution should therefore be exercised when interpreting Fe/Al ratios in terms of past river discharge. The application of these proxies to long sediment cores from Quitralco fjord and Golfo Elefantes validates our interpretations. Our results also emphasize the need to measure Al-based elemental ratios at high precision, which can be achieved using simultaneous acquisition ICP-AES technology. This study therefore constitutes a strong basis for the interpretation of sedimentary records from the Chilean Fjords.
NASA Astrophysics Data System (ADS)
Calleja, Maria Ll.; Kerhervé, P.; Bourgeois, S.; Kędra, M.; Leynaert, A.; Devred, E.; Babin, M.; Morata, N.
2017-12-01
Arctic fjords experience extremely pronounced seasonal variability and spatial heterogeneity associated with changes in ice cover, glacial retreat and the intrusion of continental shelf's adjacent water masses. Global warming intensifies natural environmental variability on these important systems, yet the regional and global effects of these processes are still poorly understood. In the present study, we examine seasonal and spatial variability in Kongsfjorden, on the western coast of Spitsbergen, Svalbard. We report hydrological, biological, and biogeochemical data collected during spring, summer, and fall 2012. Our results show a strong phytoplankton bloom with the highest chlorophyll a (Chla) levels ever reported in this area, peaking 15.5 μg/L during late May and completely dominated by large diatoms at the inner fjord, that may sustain both pelagic and benthic production under weakly stratified conditions at the glacier front. A progressively stronger stratification of the water column during summer and fall was shaped by the intrusion of warm Atlantic water (T > 3 °C and Sal > 34.65) into the fjord at around 100 m depth, and by turbid freshwater plumes (T < 1 °C and Sal < 34.65) at the surface due to glacier meltwater input. Biopolymeric carbon fractions and isotopic signatures of the particulate organic material (POM) revealed very fresh and labile material produced during the spring bloom (13C enriched, with values up to -22.7‰ at the highest Chl a peak, and high in carbohydrates and proteins content - up to 167 and 148 μg/L, respectively-), and a clear and strong continental signature of the POM present during late summer and fall (13C depleted, with values averaging -26.5‰, and high in lipid content - up to 92 μg/L-) when freshwater melting is accentuated. Our data evidence the importance of combining both physical (i.e. water mass dominance) and geochemical (i.e. characteristics of material released by glacier runoff) data in order to understand the timing, intensity and characteristics of the phytoplankton bloom in Kongsfjorden, a continuously changing system due to sustained warming. In a scenario where glacial retreat is predicted to increase the impacts of meltwater discharge and associated delivery of organic and inorganic material to the surrounding waters, special attention is required in order to predict the consequences for Arctic fjords and adjacent shelf ecosystems.
Modern deposition rates and patterns of organic carbon burial in Fiordland, New Zealand
NASA Astrophysics Data System (ADS)
Ramirez, Michael T.; Allison, Mead A.; Bianchi, Thomas S.; Cui, Xingqian; Savage, Candida; Schüller, Susanne E.; Smith, Richard W.; Vetter, Lael
2016-11-01
Fjords are disproportionately important for global organic carbon (OC) burial relative to their spatial extent and may be important in sequestering atmospheric CO2, providing a negative climate feedback. Within fjords, multiple locally variable delivery mechanisms control mineral sediment deposition, which in turn modulates OC burial. Sediment and OC sources in Fiordland, New Zealand, include terrigenous input at fjord heads, sediment reworking over fjord-mouth sills, and landslide events from steep fjord walls. Box cores were analyzed for sedimentary texture, sediment accumulation rate, and OC content to evaluate the relative importance of each delivery mechanism. Sediment accumulation was up to 3.4 mm/yr in proximal and distal fjord areas, with lower rates in medial reaches. X-radiograph and 210Pb stratigraphy indicate mass wasting and surface-sediment bioturbation throughout the fjords. Sediment accumulation rates are inversely correlated with %OC. Spatial heterogeneity in sediment depositional processes and rates is important when evaluating OC burial within fjords.
Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt
Pettit, Erin C.; Lee, Kevin M.; Brann, Joel P.; Nystuen, Jeffrey A.; Wilson, Preston S.; O'Neel, Shad
2015-01-01
In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and non-glacierized fjords). Icy Bay, Alaska has an annual average sound pressure level of 120 dB (re 1 μPa) with a broad peak between 1000 and 3000 Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.
Chlorophyll-a thin layers in the Magellan fjord system: The role of the water column stratification
NASA Astrophysics Data System (ADS)
Ríos, Francisco; Kilian, Rolf; Mutschke, Erika
2016-08-01
Fjord systems represent hotspots of primary productivity and organic carbon burial. However, the factors which control the primary production in mid-latitude fjords are poorly understood. In this context, results from the first fine-scale measurements of bio-oceanographic features in the water column of fjords associated with the Strait of Magellan are presented. A submersible fluorescence probe (FP) was used to measure the Chlorophyll-a (Chl-a) concentration in situ, along with conductivity, temperature, hydrostatic pressure (depth) and dissolved oxygen (CTD-O2) of the water column. The Austral spring results of 14 FP-CTD-O2 profiles were used to define the vertical and horizontal patches of the fluorescent pigment distribution and their spatial relations with respect to the observed hydrographic features. Three zones with distinct water structures were defined. In all zones, the 'brown' spectral group (diatoms and dinoflagellates) predominated accounting for >80 wt% of the phytoplankton community. Thin layers with high Chl-a concentration were detected in 50% of the profiles. These layers harbored a substantial amount (30-65 wt%) of the phytoplankton biomass. Stratification was positively correlated to the occurrence of Chl-a thin layers. In stable and highly stratified water columns the integrated Chl-a concentration was higher and frequently located within thin layers whereas well mixed water columns displayed lower values and more homogeneous vertical distribution of Chl-a. These results indicate that mixing/stability processes are important factors accounting to the vertical distribution of Chl-a in Magellan fjords.
NASA Astrophysics Data System (ADS)
Rignot, E.; Fenty, I.; Xu, Y.; Cai, C.; Velicogna, I.; Cofaigh, C. Ó.; Dowdeswell, J. A.; Weinrebe, W.; Catania, G.; Duncan, D.
2016-03-01
Marine-terminating glaciers play a critical role in controlling Greenland's ice sheet mass balance. Their frontal margins interact vigorously with the ocean, but our understanding of this interaction is limited, in part, by a lack of bathymetry data. Here we present a multibeam echo sounding survey of 14 glacial fjords in the Uummannaq and Vaigat fjords, west Greenland, which extends from the continental shelf to the glacier fronts. The data reveal valleys with shallow sills, overdeepenings (>1300 m) from glacial erosion, and seafloor depths 100-1000 m deeper than in existing charts. Where fjords are deep enough, we detect the pervasive presence of warm, salty Atlantic Water (AW) (>2.5°C) with high melt potential, but we also find numerous glaciers grounded on shallow (<200 m) sills, standing in cold (<1°C) waters in otherwise deep fjords, i.e., with reduced melt potential. Bathymetric observations extending to the glacier fronts are critical to understand the glacier evolution.
NASA Astrophysics Data System (ADS)
Placencia, Juan; Llanos, Gustavo; Contreras, Sergio
2017-04-01
The organic matter preserved in marine sediments contains contributions of allochthonous and autochthonous and variable source inputs. Allochthonous sources are terrestrial erosion (including anthropogenic material) of relatively labile and refractory material, while autochthonous sources including marine phytoplankton. In order to establish the sources of the organic matter (allochthonous/autochthonous) and how organic carbon is distributed along a salinity gradient, on this study we examined of organic Carbon/Nitrogen molar ratios (C:N), isotopic composition (δ13C) and n-alkanes (n-C24 to n-C34) in surface sediments from two continuous systems: river-fjord-ocean in Northern Patagonia (41°S-43°S), and glacier-fjord-ocean in central Patagonia (47°S-50°S). The continental inner fjord areas are characterized with sediment enriched in allochthonous organic carbon and high C:N (8-12) and low δ13C values (-23‰ to -26‰). Towards the Pacific Ocean, low C:N (6-7) and high δ13C values (-20‰ to -22‰) suggest prevalent autochthonous marine sources. Estuarine waters with salinity between 2 psu and 30 psu were associated with high C:N and low δ13C values together with odd over even long-chain n-alkane predominance (n-C31, n-C29 and n-C27) in surface sediments. All geochemical proxies suggest a great contribution of terrigenous input by glacier origin rivers, mainly from terrestrial plants in both areas. Our study provides a framework to guide future researches on environmental and climate change on these systems. This study was supported by the Chilean Navy's Hydrographic and Oceanographic Service, the Chilean National Oceanographic Committee through the Grants CONA C19F1308 and C20F1404, and the Research Office at Universidad Católica de la Ssma. Concepción.
NASA Astrophysics Data System (ADS)
Boone, Wieter; Rysgaard, Søren; Carlson, Daniel F.; Meire, Lorenz; Kirillov, Sergei; Mortensen, John; Dmitrenko, Igor; Vergeynst, Leendert; Sejr, Mikael K.
2018-03-01
The freshwater content of the Arctic Ocean and its bordering seas has recently increased. Observing freshening events is an important step toward identifying the drivers and understanding the effects of freshening on ocean circulation and marine ecosystems. Here we present a 13 year (2003-2015) record of temperature and salinity in Young Sound-Tyrolerfjord (74°N) in Northeast Greenland. Our observations show that strong freshening occurred from August 2005 to August 2007 (-0.92 psu or -0.46 psu yr-1) and from August 2009 to August 2013 (-0.66 psu or -0.17 psu yr-1). Furthermore, temperature-salinity analysis from 2004 to 2014 shows that freshening of the coastal water ( range at sill depth: 33.3 psu in 2005 to 31.4 psu in 2007) prevented renewal of the fjord's bottom water. These data provide critical observations of interannual freshening rates in a remote fjord in Greenland and in the adjacent coastal waters and show that coastal freshening impacts the fjord hydrography, which may impact the ecosystem dynamics in the long term.
Biodiversity and abundance patterns of rock encrusting fauna in a temperate fjord.
Kuklinski, Piotr
2013-01-01
Fjords are semi-enclosed systems often with usually strong physical and chemical gradients. These gradients provide the opportunity to test the influence of various physical and chemical factors on biodiversity. However study area of this investigation, Trondheimsfjord, is a large water body where especially salinity gradient along the fjord is not well pronounced. The goal of this study was to establish within a temperate fjord a baseline identifying encrusting fauna on rocks and determine the factors driving changes along the length of the fjord and changing depths. There was no trend in species composition change and increase or decrease in number of species, diversity and number of individuals along the fjord. This was likely due to the relative homogeneity of both substrate (rocks) and environmental parameters. Nevertheless, the influence of fresh water inflow in the vicinity of the river mouth was apparent by the presence of characteristic brackish-water species at these locations. Multidimensional scaling analysis revealed three separate assemblages: intertidal, shallow and deep subtidal (below 50 m). Intertidal assemblages were species poor (one to 11 species) but relatively abundant (six to 2374 indiv./m(2) of rocks). Number of individuals and biomass was highest in the shallow subtidal (2059-13,587 indiv./m(2) of rocks). Overall the highest species number (45) was recorded at 50 m depth which is probably result of low competition pressure yet still relatively high nutrient concentration in comparison to shallower locations. Environmental parameters (i.e., tidal currents, wave action, salinity) change more drastically with depth than along the fjord and these changes are the major driving forces in shaping encrusting assemblages in Trondheimsfjord. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lodeiro, Pablo; Achterberg, Eric P; Pampín, Joaquín; Affatati, Alice; El-Shahawi, Mohammed S
2016-01-01
This study provides quantitative information on the aggregation and dissolution behaviour of silver nanoparticles (AgNPs) upon discharge in fresh and sea waters, represented here as NaCl solutions of increasing ionic strength (up to 1M) and natural fjord waters. Natural polysaccharides, sodium alginate (ALG) and gum Arabic (GA), were used as coatings to stabilize the AgNPs and the compounds acted as models to study AgNP aggregation kinetics. The DLVO theory was used to quantitatively describe the interactions between the AgNPs. The stability of AgNPs was established using UV-Visible spectrophotometry, including unique information collected during the first seconds of the aggregaton process. Alginate coating resulted in a moderate stabilization of AgNPs in terms of critical coagulation concentration (~82mM NaCl) and a low dissolution of <10% total Ag in NaCl solutions up to 1M. Gum Arabic coated AgNPs were more strongly stabilized, with ~7-30% size increase up to 77mM NaCl, but only when the silver ion content initially present in solution was low (<10% total Ag). The ALG and GA coated AgNPs showed a strongly enhanced stability in natural fjord waters (ca. 5h required to reduce the area of the surface plasmon resonance band (SPRB) by two fold) compared with NaCl at an equivalent ionic strength (1-2min period for a two fold SPRB reduction). This is ascribed to a stabilizing effect from dissolved organic matter present in natural fjord waters. Interestingly, for AgNP-GA solutions with 40% of total silver present as unreacted silver ions in the NP stock solution, fast aggregation kinetics were observed in NaCl solutions (SPRB area was reduced by ca. 50% within 40-150min), with even more rapid removal in fjord waters, attributed to the high amount of silver-chloride charged species, that interact with the NP coating and/or organic matter and reduce the NPs stabilization. Copyright © 2015 Elsevier B.V. All rights reserved.
Forth, Michael; Liljebladh, Bengt; Stigebrandt, Anders; Hall, Per O J; Treusch, Alexander H
2015-01-01
Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l−1.We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event. PMID:25238400
Forth, Michael; Liljebladh, Bengt; Stigebrandt, Anders; Hall, Per O J; Treusch, Alexander H
2015-03-01
Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l(-1).We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event.
Palynofacies assemblages reflect sources of organic matter in New Zealand fjords
NASA Astrophysics Data System (ADS)
Prebble, Joseph G.; Hinojosa, Jessica L.; Moy, Christopher M.
2018-02-01
Understanding sources and transport pathways of organic carbon in fjord systems is important to quantify carbon cycling in coastal settings. Provenance of surficial sediment organic carbon in Fiordland National Park (southwestern New Zealand) has previously been estimated using a range of techniques, including mixing models derived from stable isotopes and lipid biomarker distributions. Here, we present the first application of palynofacies to explore the sources of particulate organic carbon to five fjords along the SW margin of New Zealand, to further discriminate the provenance of organic carbon in the fjords. We find good correlation between isotopic-and biomarker-derived proxies for organic carbon provenance and our new palynofacies observations. We observe strong down-fjord gradients of decreasing terrestrially derived organic carbon further from the river inflow at fjord heads. Fjords with small catchments and minor fresh water inflow exhibit reversed gradients, indicating that volume of freshwater entering at the fjord head is a primary mechanism to transport particulates down fjord rather than local transport from fjord sides. The palynofacies data also confirmed previously recorded latitudinal trends (i.e. between fjords), of less frequent and more weathered terrestrially derived organic carbon in the southern fjords, consistent with enhanced marine inflow and longer transport times in the southern catchments. Dinocyst assemblages also exhibit a strong latitudinal gradient, with assemblages dominated by heterotrophic forms in the north. In addition to providing support for previous studies, this approach allows finer discrimination of terrestrial organic carbon than previously, for example variation of leaf material. This study demonstrates that visual palynofacies analysis is a valuable tool to pinpoint origins of organic carbon in fjord systems, providing different but complementary information to other proxies.
Columbia Bay, Alaska: an 'upside down' estuary
Walters, R.A.; Josberger, E.G.; Driedger, C.L.
1988-01-01
Circulation and water properties within Columbia Bay, Alaska, are dominated by the effects of Columbia Glacier at the head of the Bay. The basin between the glacier terminus and the terminal moraine (sill depth of about 22 m) responds as an 'upside down' estuary with the subglacial discharge of freshwater entering at the bottom of the basin. The intense vertical mixing caused by the bouyant plume of freshwater creates a homogeneous water mass that exchanges with the far-field water through either a two- or a three-layer flow. In general, the glacier acts as a large heat sink and creates a water mass which is cooler than that in fjords without tidewater glaciers. The predicted retreat of Columbia Glacier would create a 40 km long fjord that has characteristics in common with other fjords in Prince William Sound. ?? 1988.
Long Wave Runup in Asymmetric Bays and in Fjords With Two Separate Heads
NASA Astrophysics Data System (ADS)
Raz, Amir; Nicolsky, Dmitry; Rybkin, Alexei; Pelinovsky, Efim
2018-03-01
Modeling of tsunamis in glacial fjords prompts us to evaluate applicability of the cross-sectionally averaged nonlinear shallow water equations to model propagation and runup of long waves in asymmetrical bays and also in fjords with two heads. We utilize the Tuck-Hwang transformation, initially introduced for the plane beaches and currently generalized for bays with arbitrary cross section, to transform the nonlinear governing equations into a linear equation. The solution of the linearized equation describing the runup at the shore line is computed by taking into account the incident wave at the toe of the last sloping segment. We verify our predictions against direct numerical simulation of the 2-D shallow water equations and show that our solution is valid both for bays with an asymmetric L-shaped cross section, and for fjords with two heads—bays with a W-shaped cross section.
NASA Astrophysics Data System (ADS)
Bustos, Claudia A.; Landaeta, Mauricio F.; Balbontín, Fernando
2011-03-01
The occidental shore of the southern tip of South America is one of the largest estuarine ecosystems around the world. Although demersal finfish fisheries are currently in full exploitation in the area, the fjords south of 47°S have been poorly investigated. Two bio-oceanographic cruises carried out in austral spring 1996 and 2008 between 47°S and 50°09'S were utilized to investigate the spatial distribution of fish eggs and larvae. Small differences in the environmental conditions were identified in the top 200 m of the water column between years (5.3-10.5 °C and 0.7-33.9 units of salinity in October 1996; 6.3-11.5 °C and 1.2-34.2 units of salinity in November 2008). The low salinity surface layer generated a highly stable water column within the fjords (Brunt-Väisälä frequency, N>0.1 rad/s; wave period <60 s), whereas a well-mixed water column occurred in the gulfs and open channels. For both years, the ichthyoplankton analysis showed that early life stages of lightfish Maurolicus parvipinnis were dominant (>75% total eggs and >70% total larvae) and they were collected throughout the area, irrespective of the water column stratification. However, other components of the ichthyoplankton such as Falkland sprat Sprattus fuegensis, rockfish Sebastes oculatus, and hoki Macruronus magellanicus were more abundant and found in a wider range of larval sizes in less stable waters ( N<0.1 rad/s). Oceanic taxa such as myctophids ( Lampanyctodes hectoris) and gonostomatids ( Cyclothone sp.) were collected exclusively in open waters. The October 1996 observation of Engraulis ringens eggs in plankton samples corresponded to the southernmost record of early stages of this fish in the Pacific Ocean. We found a significant negative relationship between the number of larval species and N, and a significant positive relationship between the number of larval species and wave period. Therefore, only some marine fish species are capable to utilize fjords systems as spawning and nursery grounds in areas having high amounts of freshwater discharges and very high vertical stratification during austral spring season.
Spatial and temporal variability in distribution of water masses in Hornsund, Spitsbergen
NASA Astrophysics Data System (ADS)
Promińska, Agnieszka; Falck, Eva; Walczowski, Waldemar; Sundfjord, Arild
2016-04-01
Arctic fjords constitute an important part of many recent investigations because this is the place where different water masses meet, mix, and transform, influencing the stability of glaciers. Hornsund, the southernmost fjord of West Spitsbergen, has been studied during the past 15 years. Observations were based primarily on high resolution measurements of water temperature and salinity along fixed sections, that have been performed every July between 2001-2015. Research carried out in years 2010 - 2015 under Polish - Norwegian projects AWAKE and AWAKE-2 allowed for expansion of the database with data covering the period from spring to autumn. During this time measurements were also conducted from a small boat in the vicinity of glaciers with a time resolution of 1-2 weeks in addition to a mooring system deployed in the fjord and on the shelf just outside Hornsund. Synthesis of our measurements give an overview of water masses observed in the fjord. From summer to summer observations reveal high variability in water temperature and salinity giving a distinct division into an area influenced by oceanic factors (Main Basin) and an area which is more influenced by local factors (Brepollen). The chronology of water mass transformation has been obtained indicating a time of transition between winter (Arctic type), additionally interrupted by temporary inflow of waters of Atlantic origin, and summer (Atlantic type) conditions.
Modern Deposition Rates and Patterns of Carbon Burial in Southern Fiordland, New Zealand
NASA Astrophysics Data System (ADS)
Ramirez, M. T.; Allison, M. A.; Vetter, L.; Cui, X.; Bianchi, T. S.; Smith, R. W.; Savage, C.; Schüller, S.
2016-02-01
Fjords have been recognized as a hotspot of organic carbon burial, as they accumulate a disproportionate quantity of organic carbon given their areal extent in comparison to other marine settings. However, organic carbon is buried in context with other biogenic and mineral sediments, so localized sedimentation processes play a critical role in determining rates of organic carbon burial. Therefore, it is important to assess the local sources and processes responsible for depositing inorganic sediment as a control on the burial of organic carbon. Here we evaluate three fjords in southern New Zealand that are not glaciated, with a sedimentary system that is dominantly controlled by terrigenous input at fjord heads, reworking of sediments over fjord-mouth sills, and landslide events from the steep fjord walls. Sediment cores were collected throughout the three southernmost fjord systems of Fiordland, New Zealand, and analyzed to determine sedimentary fabric, mass accumulation rates, and organic carbon content. Sediment mass accumulation rates from 210Pb geochronology range up to 500 mg/cm2/yr in proximal and distal areas of the fjords, with lower rates (below 200 mg/cm2/yr) in medial reaches, where terrestrial and marine sediment input is minimal. X-radiographs and 210Pb downcore activity trends show evidence of both mass wasting and surface-sediment bioturbation operating throughout the fjords. Percent organic carbon displays a negative correlation with mass accumulation rate and thickness of the sediment surface mixed layer. Rates of organic carbon accumulation ranged from 3.97 to 21.59 mg/cm2/yr, with a mean of 13.41 mg/cm2/yr. Organic carbon accumulation rates are dependent on the sediment accumulation rate and the percent organic carbon of the sediment. Our results highlight the importance of spatial variability in sedimentation processes and rates within fjords when evaluating organic carbon burial in these systems.
NASA Astrophysics Data System (ADS)
Haflidason, H.; Thorsen, L.; Soldal, O. L.
2016-12-01
Following the initiation of the industrial revolution in Norway at the early 1900´s many of the heavy industrial factories established at that time were located in inner fjord systems of western Norway. The advantage was an easy access to cheap electricity, but the main disadvantage has been that the pollution from this industrial activity has been transported into fjord systems where the circulation of the water masses has been fairly limited leading to a high concentration of heavy metals in the fjord basin sediments. The recently developed non-destructive X-ray Fluorescence (XRF) core scanning technique offers new possibilities to obtain near-continuous records of bulk element composition in marine records. This new analytical geochemical method can measure the bulk element content directly from the surface sediment archives within a period of seconds and with a resolution up to 200 microns. By applying this method on rapidly deposited sediments one can reconstruct a continuous record of carbonate content on a sub-decadal to annual scale. This kind of high-resolution records can also be compared directly with historical and instrumental records from the same area. This offers new possibilities to identify in an effective way the geochemical anomalies in the sediment column and estimate the variability of the industrially produced elements as e.g. Cu, Zn and Pb and their distribution and thickness/quantity in fjord basin sediments. Examples will be presented demonstrating the close linkage between the industrial production history and the entrance of these elements in the fjord sediments. Identification of these elements offers an excellent opportunity to date the recent marine sediments using these elements as an event spike and also to reconstruct the history of pollution in these fjord basin sediments. As the precision of the XRF element detection is high the time of full recovery to natural conditions of the basin sediments, after close down of these factories, can be calculated.
Archean metamorphic sequence and surfaces, Kangerdlugssuaq Fjord, East Greenland
NASA Technical Reports Server (NTRS)
Kays, M. A.
1986-01-01
The characteristics of Archean metamorphic surfaces and fabrics of a mapped sequence of rocks older than about 3000 Ma provide information basic to an understanding of the structural evolution and metamorphic history in Kangerdlugssuaq Fjord, east Greenland. This information and the additional results of petrologic and geochemical studies have culminated in an extended chronology of Archean plutonic, metamorphic, and tectonic events. The basis for the chronology is considered, especially the nature of the metamorphic fabrics and surfaces in the Archean sequence. The surfaces, which are planar mineral parageneses, may prove to be mappable outside Kangerdlugssuaq Fjord, and if so, will be helpful in extending the events that they represent to other Archean sequences in east Greenland. The surfaces will become especially important reference planes if the absolute ages of their metamorphic assemblages can be determined in at least one location where strain was low subsequent to their recrystallization. Once an isochron is obtained, the dynamothermal age of the regionally identifiable metamorphic surface is determined everywhere it can be mapped.
NASA Astrophysics Data System (ADS)
Millan, R.; Rignot, E. J.; Mouginot, J.; Menemenlis, D.; Morlighem, M.; Wood, M.
2016-12-01
Southeast Greenland has been one of the largest contributors to ice mass losses in Greenland in the last few decades mostly as a result of changes in ice dynamics, and to a lesser extent due to the steady increase in runoff. In 1996, the region was thinning up to the ice divide (Krabill et al., 1999) and the change were clearly of ice dynamics nature. Ice-ocean interactions played a central role in triggering a faster, systematic retreat around year 2002-2005 as water of Atlantic origin started to intrude the fjords in larger amounts due to a change in oceanic circulation in the Irminger sea. The glacier response varied significantly from one glacier to the next in response to the oceanic change, which we attribute to variatioins in fjord bathymetry, geometry control on the glaciers and calving speed of the glaciers. This region is however characterized by a dearth of topography data: the fjords have never been mapped and bed topography is challenging to obtain with radio echo sounding techniques. Here, we employ a combination of Operation IceBridge (OIB) high-resolution airborne gravity from 2016, Ocean Melting Greenland (OMG) EVS-2 mission low resolution gravity from 2016, and OMG bathymetry data from 2016 to map the bed elevation of the glaciers and fjords over the entire southeast Greenland combining gravity, thickness, and bathymetry. The data reveal the true depth of the fjords and the glacier thickness at the ice front, in a seamless fashion. We combine these data with a history of ice discharge combining estimates of ice thickness with a time series of ice velocity going back to the early 1990s. We form a time series of ice discharge, glacier per glacier, which is compared with surface mass balance from the RACMO 1-km downscaled model. We compare the results with simulations of ice melt along the calving faces of the glaciers to draw conclusions about the sensitivity of each glacier to climate forcing and re-interpret their pattern of retreat in the last few decades. The simulation of ice melt employ the MITgcm ocean model constrained by water depth, thermal forcing from ECCO2 model and subglacial water fluxes from RACMO. This work was performed at UCI/JPL under a contract with NASA.
Interactions of the Greenland Petermann Glacier with the ocean: An initial perspective (Invited)
NASA Astrophysics Data System (ADS)
Falkner, K. K.; Johnson, H. L.; Melling, H.; Muenchow, A.; Samelson, R. M.; Friends Of Petermann
2010-12-01
Petermann Glacier is major outlet glacier that drains 6% of the area of the Greenland Ice Sheet in western North Greenland. It is one of four major outlet glaciers on Greenland with a grounding line substantially below sea level (about 500m) and one of two such glaciers to retain a substantial floating tongue. The floating ice tongue of Petermann glacier is thought to lose at least 80% of its mass through ocean interaction. Based on three opportunistic ocean surveys in Petermann Fjord, we present an overview of circulation at the fjord mouth, hydrographic structure beneath the ice tongue, oceanic heat delivered to the under-ice cavity and the fate of the resulting melt water. We also present an historical perspective on the August 2010 major calving event. The 1100m-deep fjord is separated from neighboring Hall Basin by a sill that is inferred to lie between 350m and 450m deep. Hall Basin is a section of Nares Strait that connects the Arctic Ocean (at the Lincoln Sea proceeding southward through Robeson Channel, Hall Basin, Kennedy Channel, Kane Basin and Smith Sound) to Baffin Bay. Sills in the Lincoln Sea (290m) and in Kane Basin (220m) restrict communication with the Arctic Ocean and Baffin Bay. The net flux of seawater through Nares Strait is southward and relatively fresh, conditioned by sources and processes within the Arctic Ocean and locally. Within Petermann Fjord, glacial melt water appears on the northeast side at 200-600m. A cyclonic gyre occurs within the fjord mouth, with outflow on the northeast side. Oceanic heat fluxes into the fjord are sufficient to account for the observed rate of basal melting. Cold, low salinity water intrudes far under the ice and likely limits basal melting to the inland half of the tongue. The recent major calving event resulted in a loss of 300 km2 or about 20% of the total area of the floating tongue, most of which remained intact as an ice island that garnered much media attention. Available observations show calving to be sporadic on a decadal timescale. Multiple factors likely contribute to calving events. These include the geometry of the fjord, absence of sea ice, preconditioning of the glacier by crevassing and melt related cracking and occurrence of strong katabatic or orographically channeled winds. The recent event falls within the realm of previously documented calving rates but the remaining tongue length is the shortest ever directly observed. Gaps in the 134 year record preclude final judgment about whether the recent calving is entirely unprecedented. Rising surface temperature trends and changed sea ice and ocean circulation patterns in the Arctic could render the tongue susceptible to collapse. As this could contribute to accelerated ice mass flux from Greenland, it is important to continue to observe and clarify processes operative in this system.
Tidal analysis of surface currents in the Porsanger fjord in northern Norway
NASA Astrophysics Data System (ADS)
Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata
2016-04-01
In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).
Using Icebergs to Constrain Fjord Circulation and Link to Glacier Dynamics
NASA Astrophysics Data System (ADS)
Sutherland, D.; Straneo, F.; Hamilton, G. S.; Stearns, L. A.; Roth, G.
2014-12-01
The importance of icebergs is increasingly being recognized in the ocean-glacier interactions community. Icebergs are ubiquitous in Greenland's outlet glacial fjords and provide a physical link between the glacier and the ocean into which they melt. The iceberg shape is influenced by glacier size and calving mechanics, while the amount of melt produced depends on ambient water properties and the residence time of the iceberg in the fjord. Here, we use hourly positions of icebergs tracked with helicopter deployed GPS sensors to calculate velocities in the Sermilik Fjord/Helheim Glacier system. Data comes from three summertime deployments in 2012-2014, where icebergs were tagged in the ice mélange and moved through the fjord and onto the continental shelf. The iceberg-derived velocities provide information on ice mélange movement, fjord variability, and coastal currents on the shelf. Using simple melt rate parameterizations, we estimate the total freshwater input due to iceberg melt in Sermilik Fjord based on the observed residence times and satellite-derived iceberg distributions. These observations complement conventional oceanographic and glaciological data, and can quickly, and relatively inexpensively, characterize circulation throughout any given glacier-ocean system.
NASA Astrophysics Data System (ADS)
Lydersen, Christian; Nøst, Ole Anders; Lovell, Phil; McConnell, Bernie J.; Gammelsrød, Tor; Hunter, Colin; Fedak, Michael A.; Kovacs, Kit M.
2002-12-01
In this study we report results from satellite-linked conductivity-temperature-depth (CTD) loggers that were deployed on wild, free-ranging white whales to study the oceanographic structure of an Arctic fjord, Storfjorden, Svalbard. The whales dove to the bottom of the fjord routinely during the study and occupied areas with up to 90% ice-cover, where performance of conventional ship-based CTD-casts would have been difficult. During the initial period of freezing in the fjord, over a period of approximately 2 weeks, 540 CTD profiles were successfully transmitted. The data indicate that Storfjorden has a substantial inflow of warm North Atlantic Water; this is contrary to conventional wisdom that has suggested that it contains only cold Arctic water. This study confirms that marine-mammal-based CTDs have enormous potential for cost-effective, future oceanographic studies; many different marine mammal species target oceanographic discontinuities for foraging and thus may be good `adaptive samplers' that naturally seek areas of high oceanographic interest.
Carbon Dynamics Along a Temperate Fjord-Head Delta: Linkages With Carbon Burial in Fjords
NASA Astrophysics Data System (ADS)
Cui, Xingqian; Bianchi, Thomas S.; Kenney, William F.; Wang, Jiaze; Curtis, Jason H.; Xu, Kehui; Savage, Candida
2017-12-01
We used seven 210Pb-dated sediment cores from the Gaer Arm in the Doubtful Sound fjord complex, Fiordland, New Zealand to evaluate organic carbon (OC) dynamics in a temperate fjord-head delta. The highly dynamic spatial features of this delta were clearly evident in the observed sediment properties such as mass accumulation rates that varied by a factor of 14, sediment grain size by a factor 5, and sedimentary OC content by a factor 6. Low lignin concentrations (e.g., 2.95 mg (100 mg OC)-1) and syringic/vanillic ratios of lignin phenols (S/V; e.g., 0.44) at the upper deltaic stations were representative of substantial autochthonous OC contributions to delta sediments. Significantly higher acid/aldehyde ratios of vanillic phenols [(Ad/Al)v] at the deltaic stations (0.45-0.82) than the surface grabs (0.26-0.30) indicated rapid degradation of OC within the delta. Despite being a "hot spot" for OC oxidation, the delta likely improves OC preservation in the adjacent fjord by filtering out coarse-grained particles and exporting fine-grained particles to fjord sediments. Our results showed that fjord-head deltas can influence sedimentation and OC dynamics in select regions of fjords and thus warrant more examination of fjord-head processes, particularly in areas where they are expanding. In particular, as Earth warms and glaciers retreat, the newly exposed fjord-head platforms in high-latitude environments may evolve into similar "hot spots" of OC oxidation, thereby altering the dynamics of OC burial in these systems.
Ecological overview of Kenai Fjords National Park
Spencer, Page; Irvine, Gail V.
2004-01-01
The major drivers of Kenai Fjords ecosystems are tectonics and climate. In this overview, we describe how these forces have contributed to the shaping of the lands and ecosystems of Kenai Fjords.Physically, the park is comprised of several distinct components, set within a broader ecophysical framework that includes the Kenai Peninsula and coastal marine waters and islands. Squeezed between the Gulf of Alaska and the Kenai Mountains, the coastal zone of the park is a narrow band of exposed headlands and deep fjords. The Harding Icefield caps the Kenai Mountains above the fjords with ice estimated to be 3,000 feet (1,000 m) thick (Figure 1). Although not included in the National Park Service jurisdiction, the park is ecologically linked to the offshore marine ecosystem, and the embedded offshore islands, most of which are part of the Alaska Maritime National Wildlife Refuge, managed by the U.S. Fish and Wildlife Service.
The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords
NASA Astrophysics Data System (ADS)
Carroll, D.; Sutherland, D. A.; Hudson, B.; Moon, T.; Catania, G. A.; Shroyer, E. L.; Nash, J. D.; Bartholomaus, T. C.; Felikson, D.; Stearns, L. A.; Noël, B. P. Y.; Broeke, M. R.
2016-09-01
Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on realistic ranges of subglacial discharge, glacier depth, and ocean stratification from 12 Greenland fjords. Our results show that grounding line depth is a strong control on plume-induced submarine melt: deep glaciers produce warm, salty subsurface plumes that undercut termini, and shallow glaciers produce cold, fresh surface-trapped plumes that can overcut termini. Due to sustained upwelling velocities, plumes in cold, shallow fjords can induce equivalent depth-averaged melt rates compared to warm, deep fjords. These results detail a direct ocean-ice feedback that can affect the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
González, H. E.; Castro, L.; Daneri, G.; Iriarte, J. L.; Silva, N.; Vargas, C. A.; Giesecke, R.; Sánchez, N.
2011-03-01
Two research cruises ( CIMAR 13 Fiordos) were conducted in the N-S oriented macrobasin of the Moraleda Channel (42-47°S), which includes the E-W oriented Puyuhuapi Channel and Aysen Fjord, during two contrasting productive seasons: austral winter (27 July-7 August 2007) and spring (2-12 November 2007). These campaigns set out to assess the spatio-temporal variability, defined by the local topography along Moraleda Channel, in the biological, physical, and chemical oceanographic characteristics of different microbasins and to quantify the carbon budget of the pelagic trophic webs of Aysen Fjord. Seasonal carbon fluxes and fjord-system functioning vary widely in our study area. In terms of spatial topography, two constriction sills (Meninea and Elefantes) define three microbasins along Moraleda Channel, herein the (1) north (Guafo-Meninea), (2) central (Meninea-Elefantes), and (3) south (Elefantes-San Rafael Lagoon) microbasins. In winter, nutrient concentrations were high (i.e. nitrate range: 21-14 μM) and primary production was low (153-310 mgC m -2 d -1), suggesting that reduced light radiation depressed the plankton dynamics throughout Moraleda Channel. In spring, primary production followed a conspicuous N-S gradient, which was the highest (5167 mgC m -2 d -1) in the north microbasin and the lowest (742 mgC m -2 d -1) in the south microbasin. The seasonal pattern of the semi-enclosed Puyuhuapi Channel and Aysen Fjord, however, revealed no significant differences in primary production (˜800 mgC m -2 d -1), and vertical fluxes of particulate organic carbon were nearly twice as high in spring as in winter (266 vs. 168 mgC m -2 d -1). At the time-series station (St. 79), the lithogenic fraction dominated the total sedimented matter (seston). The role of euphausiids in the biological carbon pump of the Patagonian fjords was evident, given the predominance of zooplankton fecal material, mostly euphausiid fecal strings (46% of all fecal material), among the recognizable particles contributing to the particulate organic carbon flux. The topographic constriction sills partially modulated the exchange of oceanic waters (Subantarctic Surface Water) with freshwater river discharges along the Moraleda Channel. This exchange affects salinity and nutrient availability and, thus, the plankton structure. The north microbasin was dominated by a seasonal alternation of the classical (spring) and microbial (winter) food webs. However, in the south microbasin, productivity was low and the system was dominated year-round by large inputs of glacier-derived, silt-rich freshwater carrying predominantly small-sized diatoms ( Skeletonema spp) and bacteria. When superimposed upon this scenario, highly variable (seasonal) solar radiation and photoperiods could exacerbate north-south differences along Moraleda Channel.
NASA Astrophysics Data System (ADS)
Jensen, M.; Choi, K.; Forwick, M.; Howe, J. A.; Husum, K.; Korsun, S.; Maat, D.; Nam, S. I.
2016-12-01
Valleys and fjords are the key transport and storage systems for sediments and biogeochemical elements from high arctic landscapes to the ocean. Sediment and nutrient fluxes are important for the biochemical cycle in the fjords and eventually in the ocean, and are important input data to earth system models. At present, high latitude systems are underrepresented in such models (Russell, 2014). Dicksonfjorden is a fjord in the larger Isfjorden system, Central Spitsbergen, Svalbard. It has no direct glacial input, in contrast to fjords affected by tidewater glaciers. The sediment supply is very high and the inner fjord receives sediment from a tide-influenced delta. This study is part of a multidisciplinary project aiming at mapping and quantifying sediment types and dispersal patterns in present Arctic valley - fjord systems and is the first comprehensive study of the depositional system in Dicksonfjorden. The first field campaign took place in summer 2016, when detailed mapping of the tidal delta and the sea floor in the inner fjord, coring onshore and offshore and sampling for foraminifera, nutrients and microbial abundances were performed. The surface mapping is based on high-resolution drone images, which will be processed to a high-resolution digital elevation model, and the bathymetry and sediment distribution data from the sea floor has been collected with a Gavia Offshore Surveyor AUV, providing high-resolution bathymetry and backscatter data of the seabed. Core transects from the delta surface will be described and compared to marine cores from the fjord basin retrieved from R/V Helmer Hanssen. Sediment accumulation rates will be assessed from 210Pb and 137Cs radionuclides. Preliminary results on the physical and chemical characteristics of the sedimentation system in inner Dicksonfjorden will be presented and implications for the fjord ecosystem will be discussed. References Russell , J.L., 2014. Control on the Latitudinal distribution of climate processes: Results from Earth System Model simulations. AAPG/SEPM Hedberg Research Conference "Latitudinal controls on stratigraphic models and sedimentary concepts, Banff, Alberta, Canada, September 28 - October 1, 2014, Abstract volume, 10-11.
NASA Astrophysics Data System (ADS)
Hatha, A. A. Mohamed; Neethu, C. S.; Nikhil, S. M.; Rahiman, K. M. Mujeeb; Krishnan, K. P.; Saramma, A. V.
2015-12-01
The objective of this study was to determine the prevalence of antibiotic resistance among aerobic heterotrophic bacteria and coliform bacteria from water and sediment of Kongsfjord. The study was based on the assumption that arctic fjord environments are relatively pristine and offer very little selection pressure for drug resistant mutants. In order to test the hypothesis, 200 isolates belonging to aerobic heterotrophic bacteria and 114 isolates belonging to coliforms were tested against 15 antibiotics belonging to 5 different classes such as beta lactams, aminoglycosides, quinolones, sulpha drugs and tetracyclines. Resistance to beta lactam and extended spectrum beta lactam (ESBL) antibiotics was considerably high and they found to vary significantly (p < 0.05) between heterotrophic and coliform bacteria. Though the coliforms showed significantly high level of antibiotic resistance against ESBL's extent and diversity of antibiotic resistance (as revealed by multiple antibiotic resistance index and resistance patterns), was high in the aerobic heterotrophic bacteria. Most striking observation was that isolates from fjord sediments (both heterotrophic bacteria and coliforms) in general showed relatively high prevalence of antibiotic resistance against most of the antibiotics tested, indicating to better selection pressure for drug resistance mutants in the fjord sediments.
NASA Astrophysics Data System (ADS)
Kaartvedt, Stein; Svendsen, Harald
1990-10-01
Investigations were carried out in a 20-km long fjord branch prior to, during, and partly after a 51-h controlled discharge from a hydroelectric power plant. The freshwater runoff (230 m 3 s -1) generated an estuarine circulation which was most prominent along the mid-axis of the fjord. High velocities were recorded both in the outgoing surface current, with a maximum of 1 m s -1 (10 km downstream of the power plant), and in a compensatory current (registration at 10-m depth) with a maximum of 0·6 m s -1 (3 km downstream). Velocities were low at 5-m depth. During discharge, salinity increased in the surface layer and decreased at a depth of several metres because of more extensive mixing. Phytoplankton was partly flushed out in the upper layers throughout the fjord branch, but abundance increased in deeper layers in an outer station, and the horizontal patchiness increased. The vertical centre of zooplankton biomass descended significantly during running of the plant. Biomass maxima in the ingoing compensation current indicate net zooplankton import during running of the power plant, but no change in total zooplankton biomass in the fjord branch was found during this experiment.
NASA Astrophysics Data System (ADS)
Zaborska, Agata; Włodarska-Kowalczuk, Maria; Legeżyńska, Joanna; Jankowska, Emilia; Winogradow, Aleksandra; Deja, Kajetan
2018-04-01
Mature ecosystems sequester little organic carbon (Corg) in sediments, as the complex and effective food webs consume most available organic matter within the water column and sediment, in contrast to young systems, where a large proportion of Corg is buried in deeper sediment layers. In this paper we hypothesize that "warmer" Atlantic water influenced fjord exhibits the 'mature' system features as compared to "cooler" Arctic water influenced fjord. Corg concentrations, sources and burial rates, as well as macrobenthic community standing stocks, taxonomic and functional composition and carbon demand, were compared in two west Spitsbergen fjords that are to different extents influenced by Atlantic water and can be treated as representing a cold one (Hornsund) and a warm one (Kongsfjorden). Water, sediments and macrofauna were collected at three stations in the central basin of each fjord. Corg, Ntot, δ13Corg and δ15N were measured in suspended matter, sediment cores and possible organic matter sources. The composition of sources of sedimentary organic matter was modeled by Mix-SIAR Bayesian stable isotope mixing models. The 210Pb method was used to calculate sediment accumulation rates, Corg accumulation and burial rates. The sedimentary Corg concentration and accumulation rate were larger in Hornsund than in Kongsfjorden. The contributions of pelagic sources to the Corg in sediments were similar in both fjords, macroalgal detritus had a higher importance in Kongsfjorden, while terrestrial sources were more important in Hornsund. Similar density and species richness were noted in both fjords, but higher biomass, individual biomass, production and carbon demand of benthic communities were noted in Kongsfjorden despite the lower amounts of Corg in sediments, indicating that macrobenthos responds to quality rather than quantity of available food. Subsurface tube-building conveyer belt detritus feeders (maldanids and oweniids) were responsible for higher standing stocks and carbon consumption in Kongsfjorden. As a result of the lower Corg pool and higher benthic mineralization, the burial rates in Kongsfjorden were much lower (15 g of Corg m- 2 yr- 1) than in Hornsund (38 g of Corg m- 2 yr- 1). Our study indicates that warming of the high latitude fjordic environments may reshape the relative proportions of organic carbon sources and induce maturing of the sea bottom systems, in terms of development of stable, biologically accommodated benthic communities which more efficiently mineralize organic matter and consequently lower sequestration of organic matter in deeper sediments.
Novel Measurements and Techniques for Outlet Glacier Fjord Ice/Ocean Interactions
NASA Astrophysics Data System (ADS)
Behar, A.; Howat, I. M.; Holland, D. M.; Ahlstrom, A. P.; Larsen, S. H.
2014-12-01
Glacier fjord bathymetry and conditions indicate that they play fundamental roles for outlet glacier dynamics and thus knowledge of these parameters is extremely beneficial to upcoming models that predict changes. In particular, the bathymetry of a fjord gives important information about the exchange between fjord waters close to marine-terminating glaciers and the shelf and ocean. Currently, only sparse bathymetric data near the ice fronts are available for the majority of fjords in Greenland. The challenge in obtaining these measurements is that the fjord melange environment is a terrible one for mechanical gear, or ship or any other kind of access. There is hope however, and this work focuses on novel ways of obtaining this data using a multitude of upcoming technologies and techniques that are now being tested and planned. The span of the techniques described include but are not limited to: 1) manned helicopter-based live-reading instruments and deployable/retriavable sensor packages http://www.motionterra.com/fjord/ 2) remote or autonomous unmanned miniature boats (Depth/CTD), and 3) UAV's that either read live data or deploy small sensors that can telemeter their data (ice-flow trackers, image acquisition, etc.). A review of current results obtained at Jakobshavn and Upernavik Glaciers will be given as well as a description of the techniques and hardware used.
Zeng, Yin-Xin; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong; Luo, Wei
2016-09-08
Dimethylsulfoniopropionate (DMSP), which is the major source of organic sulfur in the world's oceans, plays a significant role in the global sulfur cycle. This compound is rapidly degraded by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methylmercaptopropionate (MMPA). The diversity of genes encoding bacterial demethylation (dmdA) and DMS production (dddL and dddP) were measured in Arctic Kongsfjorden. Both dmdA and dddL genes were detected in all stations along a transect from the outer to the inner fjord, while dddP gene was only found in the outer and middle parts of the fjord. The dmdA gene was completely confined to the Roseobacter clade, while the dddL gene was confined to the genus Sulfitobacter. Although the dddP gene pool was also dominated by homologs from the Roseobacter clade, there were a few dddP genes showing close relationships to both Alphaproteobacter and Gammaproteobacter. The results of this study suggest that the Roseobacter clade may play an important role in DMSP catabolism via both demethylation and cleavage pathways in surface waters of Kongsfjorden during summer.
Numerical Simulations of Upstream Propagating Solitary Waves and Wave Breaking In A Stratified Fjord
NASA Astrophysics Data System (ADS)
Stastna, M.; Peltier, W. R.
In this talk we will discuss ongoing numerical modeling of the flow of a stratified fluid over large scale topography motivated by observations in Knight Inlet, a fjord in British Columbia, Canada. After briefly surveying the work done on the topic in the past we will discuss our latest set of simulations in which we have observed the gener- ation and breaking of three different types of nonlinear internal waves in the lee of the sill topography. The first type of wave observed is a large lee wave in the weakly strat- ified main portion of the water column, The second is an upward propagating internal wave forced by topography that breaks in the strong, near-surface pycnocline. The third is a train of upstream propagating solitary waves that, in certain circumstances, form as breaking waves consisting of a nearly solitary wave envelope and a highly unsteady core near the surface. Time premitting, we will comment on the implications of these results for our long term goal of quantifying tidally driven mixing in Knight Inlet.
NASA Astrophysics Data System (ADS)
Zeng, Yin-Xin; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong; Luo, Wei
2016-09-01
Dimethylsulfoniopropionate (DMSP), which is the major source of organic sulfur in the world’s oceans, plays a significant role in the global sulfur cycle. This compound is rapidly degraded by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methylmercaptopropionate (MMPA). The diversity of genes encoding bacterial demethylation (dmdA) and DMS production (dddL and dddP) were measured in Arctic Kongsfjorden. Both dmdA and dddL genes were detected in all stations along a transect from the outer to the inner fjord, while dddP gene was only found in the outer and middle parts of the fjord. The dmdA gene was completely confined to the Roseobacter clade, while the dddL gene was confined to the genus Sulfitobacter. Although the dddP gene pool was also dominated by homologs from the Roseobacter clade, there were a few dddP genes showing close relationships to both Alphaproteobacter and Gammaproteobacter. The results of this study suggest that the Roseobacter clade may play an important role in DMSP catabolism via both demethylation and cleavage pathways in surface waters of Kongsfjorden during summer.
Landslides Cause Tsunami Waves: Insights From Aysén Fjord, Chile
NASA Astrophysics Data System (ADS)
Lastras, Galderic; Amblas, David; Calafat, Antoni M.; Canals, Miquel; Frigola, Jaime; Hermanns, Reginald L.; Lafuerza, Sara; Longva, Oddvar; Micallef, Aaron; Sepúlveda, Sergio A.; Vargas, Gabriel; Batist, Marc De; Daele, Maarten Van; Azpiroz, María.; Bascuñán, Ignacio; Duhart, Paul; Iglesias, Olaia; Kempf, Philipp; Rayo, Xavier
2013-08-01
On 21 April 2007, an Mw 6.2 earthquake produced an unforeseen chain of events in the Aysén fjord (Chilean Patagonia, 45.5°S). The earthquake triggered hundreds of subaerial landslides along the fjord flanks. Some of the landslides eventually involved a subaqueous component that, in turn, generated a series of displacement waves—tsunami-like waves produced by the fast entry of a subaerial landmass into a water body—within the fjord [Naranjo et al., 2009; Sepúlveda and Serey, 2009; Hermanns et al., 2013]. These waves, with run-ups several meters high along the shoreline, caused 10 fatalities. In addition, they severely damaged salmon farms, which constitute the main economic activity in the region, setting free millions of cultivated salmon with still unknown ecological consequences.
Resolving bathymetry from airborne gravity along Greenland fjords
Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany L.; Bell, Robin E.
2015-01-01
Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.
Sedimentology and geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska
NASA Astrophysics Data System (ADS)
Dufresne, A.; Geertsema, M.; Shugar, D. H.; Koppes, M.; Higman, B.; Haeussler, P. J.; Stark, C.; Venditti, J. G.; Bonno, D.; Larsen, C.; Gulick, S. P. S.; McCall, N.; Walton, M.; Loso, M. G.; Willis, M. J.
2018-02-01
On 17 October 2015, a landslide of roughly 60 × 106 m3 occurred at the terminus of Tyndall Glacier in Taan Fiord, southeastern Alaska. It caused a tsunami that inundated an area over 20 km2, whereas the landslide debris itself deposited within a much smaller area of approximately 2 km2. It is a unique event in that the landslide debris was deposited into three very different environments: on the glacier surface, on land, and in the marine waters of the fjord. Part of the debris traversed the width of the fjord and re-emerged onto land, depositing coherent hummocks with preserved source stratigraphy on an alluvial fan and adjacent moraines on the far side of the fjord. Imagery from before the landslide shows that the catastrophic slope failure was preceded by deformation and sliding for at least the two decades since the glacier retreated to its current terminus location, exposing steep and extensively faulted slopes. A small volume of the total slide mass remains within the source area and is topped by striated blocks (> 10 m across) and standing trees that were transported down the slope in intact positions during the landslide. Field work was carried out in the summer of 2016, and by the time this paper was written, almost all of the supraglacial debris was advected into the fjord and half the subaerial hummocks were buried by glacial advance; this rapid change illustrates how highly active sedimentary processes in high-altitude glacial settings can skew any landslide-frequency analyses, and emphasizes the need for timely field investigations of these natural hazards.
A multiproxy fjord sediment record of Holocene climate change from the subantarctic Auckland Islands
NASA Astrophysics Data System (ADS)
Browne, I. M.; Moy, C. M.; Wilson, G. S.; Neil, H.; Riesselman, C. R.
2014-12-01
The Southern Hemisphere Westerly Winds (SHWW) and the associated oceanic fronts have a major influence on atmospheric and oceanic circulation in the Southern Hemisphere. Sediment cores recovered from fjords along the eastern margin of the sub-Antarctic Auckland Islands (51°S, 166°E) are ideally located to sensitively record changes in the strength and position of the SHWW throughout the Holocene. A 5.75m core from Hanfield Inlet preserves both marine and terrestrial environmental components, which we use to develop a multiproxy record of past climatic conditions. This core, composed entirely of brown marine mud and silt, was recovered from a depth of 44m. Based on the entrance sill depth of the fjord (10mbsl) and our knowledge of regional sea level rise, we infer that the base of the core will be early Holocene in age, which will be confirmed using radiocarbon age dating. Benthic foraminiferal assemblages (125-500μm fraction) in surface and downcore samples are dominated by three taxa, Nonionellina flemingi, Cassidulina carinata and Quinqueloculina seminula. These species are either shallow infaunal or infaunal. We will use stable carbon (δ¹³C) and oxygen (δ¹⁸O) isotope geochemistry of the benthic foraminifera Nonionellina flemingi, Bolivina cf. earlandi, Trifarina angulosa, Bulimina marginata f. marginata and Cibicides species (all identified from Rose Bengal stained box-core samples) to reconstruct water column fluctuations associated with frontal migration. These results will compliment bulk sediment C and N concentration and isotope reconstructions of terrestrial organic matter delivery to fjord sub-basins over the past 12,000 years.
NASA Astrophysics Data System (ADS)
Sutherland, D.; de Steur, L.; Nash, J. D.; Shroyer, E.; Mickett, J.
2016-02-01
Large-scale changes in ocean forcing, such as increased upper ocean heat content or variations in subpolar gyre circulation, are commonly implicated as factors causing the widespread retreat of Greenland's outlet glaciers. A recent surge in observational and modeling studies has shown how temperature increases and a changing subglacial discharge determine melt rates at glacier termini, driving a vigorous buoyancy-driven circulation. However, we still lack knowledge of what controls ambient water properties in the fjords themselves, i.e., how does the subpolar gyre communicate across the continental shelf towards the glacier termini. Here, we present a two-year mooring record of hydrographic variability in the Uummannaq Bay region of west Greenland. We focus on observations inside Rink Isbræ and Kangerlussuup Sermia fjords coupled with an outer mooring located in the submarine trough cutting across the shelf. We show how water properties vary seasonally inside the fjords and how they connect to variability in the trough. The two fjords exhibit large differences in temperature and salinity variability, which is possibly due to differences in the plume circulation driven by the glaciers themselves. We put these limited observations in temporal context by comparing them with observations from the nearby Davis Strait time array, and spatial context by comparing them with recent mooring records from Sermilik Fjord in southeast Greenland.
Measured and Modelled Tidal Circulation Under Ice Covered Van Mijenforden
NASA Astrophysics Data System (ADS)
Nilsen, F.
The observation and model area Van Mijenfjorden is situated at the west coast of Spits- bergen. An area of 533 km2 makes it the second largest fjord on Spitsbergen and the distance from the head to the mouth of the fjord is approximately 70 km. An 8.5km long and 1km wide island, Akseløya, is lying across the fjord mouth and blocking exchanges between the fjord and the coastal water masses outside. The sound Aksel- sundet on the northern side of the island is 1km wide and has a sill at 34m depth. On the southern side an islet, Mariaholmen, is between two sounds that are 200m wide and 2m deep, and 500m wide and 12m deep. Strong tidal currents exist in these sounds. Van Mijenfjorden has special ice conditions in that Akseløya almost closes the fjord, and comparatively little ice comes in from west. On the other hand, there are periods with fast ice in the fjord inside Akseløya longer than in other places, as the sea waves have little chance to break up fast ice here, or delay ice formation in autumn/winter. Van Mijenfjorden is often separated into two basins by a sill at 30m depth. The inner basin is typical 5km wide and has a maximum depth of 80m, while the outer basin is on average 10 km wide and has a maximum depth of 115m. Hydrographic measurements have been conducted since 1958 and up to the present. Through the last decade, The University Courses on Svalbard (UNIS) has used this fjord as a laboratory for their student excursions, in connection to courses in air-ice- ocean interaction and master programs, and build up an oceanographic data base. In this work, focus is put on the wintertime situation and the circulation under an ice covered fjord. Measurements show a mean cyclonic circulation pattern in the outer basin with tidal oscillation (mainly M2) superposed on this mean vector. A three- dimensional sigma layered numerical model called Bergen Ocean Model (BOM) was used to simulate the circulation in Van Mijenfjorden with only tidal forcing. The four most pronounced tidal components were used to force the model area outside Ak- seløya. The calculated cyclonic circulation pattern fits the measurements, proving that the fjord circulation is controlled by tides in periods when the ice cover shade the fjord water masses from direct wind forcing.
Circulation and sedimentation in a tidal-influenced fjord lake: Lake McKerrow, New Zealand
NASA Astrophysics Data System (ADS)
Pickrill, R. A.; Irwin, J.; Shakespeare, B. S.
1981-01-01
Lake McKerrow is a tide-influenced fjord lake, separated from the open sea by a Holocene barrier spit. Fresh, oxygenated waters of the epilimnion overlie saline, deoxygenated waters of the hypolimnion. During winter, water from the Upper Hollyford River interflows along the pycnocline, depositing coarse silt on the steep delta and transporting finer sediment down-lake. An extensive sub-lacustrine channel system on the foreset delta slope is possibly maintained by turbidity currents. Saline waters of the hypolimnion are periodically replenished. During high tides and low lake levels saline water flows into the lake and downslope into the lake basin as a density current in a well defined channel.
NASA Astrophysics Data System (ADS)
Moossen, H. M.; Abell, R.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.
2011-12-01
Holocene climate change is of significantly smaller amplitude than the Pleistocene Glacial-Interglacial cycles, but climatic variations have affected humans over at least the last 4000 years. Studying Holocene climate variations is important to disentangle climate change caused by anthropogenic influences from natural climate change. Sedimentary records stemming from fjords afford the opportunity to study marine and terrestrial paleo-climatic changes and linking the two together. Typically high sediment accumulation rates of fjordic environments facilitate resolution of rapid climate change (RCC) events. The fjords of Northwest Iceland are ideal for studying Holocene climate change as they receive warm water from the Irminger current, but are also influenced by the east Greenland current which brings polar waters to the region (Jennings et al., 2011). In the Holocene, Nordic Seas and the Arctic have been sensitive to climate change. The 8.2 ka event, a cool interval, highlights the sensitivity of that region. Recent climate variations such as the Little Ice Age have been detected in sedimentary records around Iceland (Sicre et al., 2008). We reconstruct Holocene marine and terrestrial climate change producing high resolution (1sample/ 30 years) records from 10700 cal a BP to 300 cal a BP using biomarkers. Alkenones, terrestrial leaf wax components, GDGTs and C/N ratios from a sediment core (MD99-2266) from the mouth of the Ìsafjardardjúp fjord were studied. For more information on the core and evolution of the fjord during the Holocene consult Quillmann et al., (2010) The average chain length (ACL) of terrestrial n-alkanes indicates changes in aridity, and the alkenone unsaturation index represents changes in sea surface temperature. These independent records exhibit similar trends over the studied time period. Our alkenone derived SST record shows the Holocene Thermal Maximum, Holocene Neoglaciation as well as climate change associated with the Medieval Warm Period and the Little Ice Age. References Jennings, A., Andrews, J., Wilson, L., (2011) Holocene environmental evolution of the SE Greenland Shelf North and South of the Denmark Strait: Irminger and East Greenland current interactions. Quaternary Science Reviews, 30(7-8), 980-998. Quillmann, U., Jennings, A., Andrews, J., (2010) Reconstructing Holocene palaeoclimate and palaeoceanography in Isafjaroardjup, northwest Iceland, from two fjord records overprinted by relative sea-level and local hydrographic changes. Journal of Quaternary Science, 25(7), 1144-1159. Sicre, M.A., Jacob, J., Ezat, U., Rousse, S., Kissel, C., Yiou, P., Eiriksson, J., Knudsen, K.L., Jansen, E., Turon, J.L., (2008) Decadal variability of sea surface temperatures off North Iceland over the last 2000 years. Earth and Planetary Science Letters, 268(1-2), 137-142.
Organic carbon storage and benthic consumption in sediments of northern fjords (60-80°N)
NASA Astrophysics Data System (ADS)
Włodarska-Kowalczuk, Maria; Zaborska, Agata; Jankowska, Emilia; Mazurkiewicz, Mikołaj
2017-04-01
Fjords have been recently recognized as hotspots of organic carbon storage, with organic carbon burial rates one hundred times larger than the global ocean average, accounting for 11% of global annual marine carbon burial (Smith et al. (2015) Nature Geoscience 8: 450-453). The organic carbon production and processing in coastal waters and sediments are controlled by environmental settings that are likely to be reshaped in the course of the global warming. The fastest and strongest changes are to occur in polar regions. In the present study we compare organic carbon stocks, accumulation and burial in temperate (Raunefjorden, Ullsfjorden, Balsfjorden) and Arctic (Hornsund, Kongsfjorden, Rijpfjorden) fjords located along the latitudinal/thermal gradient from the southern Norway (60 °N) to North of Svalbard (80 °N). The sediment cores were collected at 3 to 5 stations within the central basin at 150-300 m in each fjord during r/v Helmer Hansen and r/v Oceania cruises in 2014 and 2015. Vertical patterns of grain size and organic matter content and sources (Corg concentration, stable isotope δ13C signature, photosynthetic pigments concentration) have been analyzed. Sediment accumulation rates have been estimated with use of 210Pb dating method. Fresh carbon accumulation rate was estimated based on organic carbon concentration is surface sediments and mass sediment accumulation rate. The variability in metazoan productivity and carbon consumption (calculated based on the macro- and meiobenthic species biomass spectra in samples collected at the same stations) was also assessed to explore the patterns of biological controls of carbon storage in sediments. Carbon burial was estimated by multiplying organic carbon concentration in deepest sampled sediments and mass sediment accumulation rate. The effects of contrasting hydrological regimes and biological activity on the carbon storage in the studied fjords are discussed from the perspective of possible effects of climate warming driven changes on the Arctic fjordic sedimentary systems.
An earthquake in Japan caused large waves in Norwegian fjords
NASA Astrophysics Data System (ADS)
Schult, Colin
2013-08-01
Early on a winter morning a few years ago, many residents of western Norway who lived or worked along the shores of the nation's fjords were startled to see the calm morning waters suddenly begin to rise and fall. Starting at around 7:15 A.M. local time and continuing for nearly 3 hours, waves up to 1.5 meters high coursed through the previously still fjord waters. The scene was captured by security cameras and by people with cell phones, reported to local media, and investigated by a local newspaper. Drawing on this footage, and using a computational model and observations from a nearby seismic station, Bondevik et al. identified the cause of the waves—the powerful magnitude 9.0 Tohoku earthquake that hit off the coast of Japan half an hour earlier.
The effect of sediment thermal conductivity on vertical groundwater flux estimates
NASA Astrophysics Data System (ADS)
Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos
2015-04-01
The interaction between groundwater and surface water is of great importance both from ecological and water management perspective. The exchange fluxes are often estimated based on vertical temperature profiles taken from shallow sediments assuming a homogeneous standard value of sediment thermal conductivity. Here we report on a field investigation in a stream and in a fjord, where vertical profiles of sediment thermal conductivity and temperatures were measured in order to, (i) define the vertical variability in sediment thermal conductivity, (ii) quantify the effect of heterogeneity in sediment thermal conductivity on the estimated vertical groundwater fluxes. The study was carried out at field sites located in Ringkøbing fjord and Holtum stream in Western Denmark. Both locations have soft, sandy sediments with an upper organic layer at the fjord site. First 9 and 12 vertical sediment temperature profiles up to 0.5 m depth below the sediment bed were collected in the fjord and in the stream, respectively. Later sediment cores of 0.05 m diameter were removed at the location of the temperature profiles. Sediment thermal conductivity was measured in the sediment cores at 0.1 m intervals with a Decagon KD2 Pro device. A 1D flow and heat transport model (HydroGeoSphere) was set up and vertical groundwater fluxes were estimated based on the measured vertical sediment temperature profiles by coupling the model with PEST. To determine the effect of heterogeneity in sediment thermal conductivity on estimated vertical groundwater fluxes, the model was run by assigning (i) a homogeneous thermal conductivity for all sediment layers, calculated as the average sediment thermal conductivity of the profile, (ii) measured sediment thermal conductivities to the different model layers. The field survey showed that sediment thermal conductivity over a 0.5 m profile below the sediment bed is not uniform, having the largest variability in the fjord where organic sediments were also present. Using the measured sediment thermal conductivity for the different model layers instead of a homogeneous distribution did not result in a better fit between observed and simulated sediment temperature profiles. The estimated groundwater fluxes however were greatly affected by using the measured thermal conductivities resulting in changes of ± 45% in estimated vertical fluxes.
NASA Astrophysics Data System (ADS)
Smiley, C. R.; Kamenos, N.; Hoey, T.; Cottier, F.; Ellam, R. M.
2014-12-01
Greenland Ice Sheet melt has the potential to affect global sea levels and the strength of the thermohaline circulation (THC). Investigating spatial mixing patterns of seawater in Greenlandic fjords can help reveal characteristics of changes in runoff from the GrIS; for example higher runoff may be associated with lower salinity within GrIS fjords, which can be recorded by palaeoenvironmental proxies (Kamenos et al 2012). The Kangerlussuaq Drainage Basin mirrors melt patterns of the whole GrIS and drains into Søndre Strømfjord, a 170km long fjord on the west coast of Greenland. Temperature and salinity profiles to 40m depth were obtained at 11 stations along Søndre Strømfjord during the 2014 melt season. Each station was sampled twice once at high KDB runoff and once at low KDB runoff. With increasing freshwater runoff, salinity decreases by 1.65 - 2.91 at each station over a 7 hour time period. Higher salinities occur at low run-off. In addition, with increasing run-off, the disparity between surface and deeper water (30m) becomes greater with a 19.3 difference between the surface and 30m. With higher KDB runoff temperature increases by 0.47oC - 2.34oC. This information will be integrated with oxygen and deuterium isotope patterns to pinpoint the exact source of the runoff causing salinity reductions. Our data show a relationship between KDB runoff and salinity of Søndre Strømfjord, data that will enable further calibration of marine proxies of GrIS melt.
Ocean Warming of Petermann Fjord and Glacier, North Greenland
NASA Astrophysics Data System (ADS)
Muenchow, A.; Washam, P.; Padman, L.; Nicholls, K. W.
2016-02-01
Petermann Fjord connects one of the largest floating ice shelves of Greenland to Nares Strait between northern Canada and Greenland. First ocean temperatures under the ice shelf and in the fjord were recorded in 2002 and 2003, respectively. Last observations were taken in August of 2015 as part of an interdisciplinary experiment of US, Swedish, and British scientists. The new ocean data include hydrographic sections along and across the 450-m deep sill at the entrance of the fjord, sections along and across the 200-m thick terminus of the glacier, and time series from three ocean-weather stations that collect ocean temperature, salinity, and pressure data from under the ice shelf of Petermann Gletscher in near real time. Our ocean data cover the entire 2002-2015 time period when we find statistically significant changes of ocean properties in space and time. The ocean under the ice shelf connects to ambient Nares Strait and to the grounding zone of the glacier at daily to weekly time scales via temperature and salinity correlation. More specifically, we find 1. substantial and significant ocean warming of deep fjord waters at Interannual time scales, 2. intense and rapid renewal of bottom waters inside the 1000-m deep fjord, and 3. large fluctuations of temperature and salinity within about 30-m of the glacier ice-ocean interface at daily to weekly time scales. Figure: Map of the study area with 2015 locations of CTD casts (blue and green dots), ocean-weather stations (green dots), and differential GPS (red triangles). Red contours are bottom depths at 500 and 1000-m while thick black line indicates the grounding zone where the glacier connects to the bed rock below.
Jamming of granular ice mélange in tidewater glacial fjords
NASA Astrophysics Data System (ADS)
Burton, J. C.; Cassotto, R.; Amundson, J. M.; Kuo, C. C.; Dennin, M.
2016-12-01
In tidewater glacial fjords, the open water in front of the glacier terminus is often filled with a collection of calved iceberg fragments and sea ice. For glaciers with large calving rates, this "mélange" of ice can be jam-packed, so that the flow is mostly determined by granular interactions, in addition to underlying fjord currents. As the glacier pushes the ice mélange through the fjord, the mélange will become jammed and may potentially influence calving rates if the back-stress applied to the glacier terminus is large enough. However, the stress applied by a granular ice mélange will depend on its rheology, i.e. iceberg-iceberg contact forces, geometry, friction, etc. Here we report 2D, discrete particle simulations to model the granular mechanics of ice mélange. A polydisperse collection of particles is packed into a long channel and pushed downfjord at a constant speed, the latter derived from terrestrial radar interferometry (TRI). Each individual particle experiences viscoelastic contact forces and tangential frictional forces upon collision with another particle or channel walls. We find the two most important factors that govern the total force applied to the glacier are the geometry of the channel, and the shape of the particles. In addition, our simulated velocity fields reveal shearing margins near the fjord walls with more uniform flow in the middle of the mélange, consistent with TRI observations. Finally, we find that the magnitude of the back-stress applied to the glacier terminus can influence calving, however, the maximum back-stress is limited by the buckling of icebergs into the fjord waters, so that the stress in the quasi-2D mélange is partially determined by the thickness of the mélange layer.
Organic Pollution in Surface Waters from the Fuglebekken Basin in Svalbard, Norwegian Arctic
Polkowska, Żaneta; Cichała-Kamrowska, Katarzyna; Ruman, Marek; Kozioł, Krystyna; Krawczyk, Wiesława Ewa; Namieśnik, Jacek
2011-01-01
The Fuglebekken basin is situated in the southern part of the island of Spitsbergen (Norwegian Arctic), on the Hornsund fjord (Wedel Jarlsberg Land). Surface water was collected from 24 tributaries (B1–B24) and from the main stream water in the Fuglebekken basin (25) between 10 July 2009 and 30 July 2009. The present investigation reveals the results of the analysis of these samples for their PAH and PCB content. Twelve of 16 PAHs and seven PCBs were determined in the surface waters from 24 tributaries and the main stream. Total PAH and PCB concentrations in the surface waters ranged from 4 to 600 ng/L and from 2 to 400 ng/L respectively. The highest concentrations of an individual PCB (138–308 ng/L and 123 ng/L) were found in samples from tributaries B9 and B5. The presence in the basin (thousands of kilometres distant from industrial centres) of PAHs and PCBs is testimony to the fact that these compounds are transported over vast distances with air masses and deposited in regions devoid of any human pressure. PMID:22164112
NASA Astrophysics Data System (ADS)
Cape, M. R.; Straneo, F.; Beaird, N.; Bundy, R.; Charette, M. A.
2016-12-01
Meltwater discharged at the margins of the Greenland Ice Sheet (GrIS) represents a potential source of nutrients to biological communities downstream. In Greenland's glacial fjords, this discharge occurs at depth below and along the face of deeply grounded marine-terminating glaciers. This process drives vigorous circulation and mixing between melt and ambient waters at the ice-ocean margins, giving rise to a new glacially modified water mass (GMW) which constitutes the primary vehicle for transport of meltwater in the marine environment. While previous field studies have noted nutrient enrichment in GMW with respect to unmodified waters along the shelf, the source of this enrichment, whether due to entrainment of deep ambient waters or input by meltwater, remains poorly understood. This knowledge is however critical in order to evaluate the current and future contributions of the GrIS to marine biogeochemical cycling. Here we shed light on the distribution, composition, and properties of GMW along the GrIS margin by analyzing integrated physical and chemical measurements collected in August 2015 in Sermilik Fjord, a major glacial freshwater export pathway. Our results document up to a doubling of nutrient concentrations (nitrate, silicate, phosphate, and iron) in GMW, which is distributed in the top 300 m of the water column throughout the fjord. Partitioning of ocean and ice sheet contributions to GMW nutrient load demonstrates that upwelled waters are the primary source of macro-nutrients to GMW. We expand on these results to discuss the magnitude of fluxes in context of previous observations along the GrIS margins, export pathways of GMW to the shelf, and knowledge gaps needed to be addressed to better constrain ice sheet contributions to marine ecosystem processes.
Benthic biodiversity and ecological gradients in the Seno Magdalena (Puyuhuapi Fjord, Chile)
NASA Astrophysics Data System (ADS)
Betti, F.; Bavestrello, G.; Bo, M.; Enrichetti, F.; Loi, A.; Wanderlingh, A.; Pérez-Santos, I.; Daneri, G.
2017-11-01
Due to its complex hydrological, geomorphological and climatic features, the Chilean fjords region is considered among the most productive areas of the world. The benthic fauna of this region accounts for more than 1600 species showing marked latitudinal biogeographic differences characterizing this as one of the most important hotspot of biodiversity of cold-temperate environments. Despite numerous studies have been conducted to depict the biological characteristics of the fjords, the present situation is strongly unbalanced towards specific taxa. Hence, this study takes into consideration a community approach, highlighting the distribution of six benthic assemblages thriving on vertical walls along the Seno Magdalena fjord (Aysen region). Underwater pictures were used to characterize the trends in abundance and diversity of the main taxa showing distinct responses to salinity and turbidity. Among the less tolerant taxa to high fresh water inputs there are encrusting algae, mainly found in the most external sites lashed by outer currents, far from the estuarine plume. The bathymetric zonation of the assemblages, instead, is characterized by a dense mussel belt in the first 10 m, within a thick layer of low-salinity, nutrient-enriched waters. Rich assemblages of sponges, brachiopods, gorgonians and scleractinians thrive in deeper, marine, clear waters. The evaluation of the ecological role of benthic species leads both to the definition of potential bioindicator taxa responding to anthropic disturbances and to the promotion of protected areas.
Biogeochemistry of Framvaren, A permanently Anoxic Fjord
NASA Astrophysics Data System (ADS)
Millero, Frank J.
Recently (May 28-30, 1986), a workshop was held in Farsund, Norway, to discuss the biogeochemistry of an anoxic fjord called Framvaren. In the last 7 years a group of marine scientists from Norway, Sweden, Canada, and the United States has been studying this fjord. The workshop was held to discuss the recent findings of this international effort. A new expedition is planned in February 1987 (provided that the ice is thick enough) and in June 1988. Marine chemists, microbiologists, or geologists interested in participating in this study should contact Jens Skei (Norwegian Institute of Water Research, PB Box 333, Blindern, Oslo 3, Norway), who is coordinating the investigations.
Export of Strongly Diluted Greenland Meltwater From a Major Glacial Fjord
NASA Astrophysics Data System (ADS)
Beaird, Nicholas L.; Straneo, Fiammetta; Jenkins, William
2018-05-01
The Greenland Ice Sheet has been, and will continue, losing mass at an accelerating rate. The influence of this anomalous meltwater discharge on the regional and large-scale ocean could be considerable but remains poorly understood. This uncertainty is in part a consequence of challenges in observing water mass transformation and meltwater spreading in coastal Greenland. Here we use tracer observations that enable unprecedented quantification of the export, mixing, and vertical distribution of meltwaters leaving one of Greenland's major glacial fjords. We find that the primarily subsurface meltwater input results in the upwelling of the deep fjord waters and an export of a meltwater/deepwater mixture that is 30 times larger than the initial meltwater release. Using these tracer data, the vertical structure of Greenland's summer meltwater export is defined for the first time showing that half the meltwater export occurs below 65 m.
Zooplankton Distribution in Four Western Norwegian Fjords
NASA Astrophysics Data System (ADS)
Gorsky, G.; Flood, P. R.; Youngbluth, M.; Picheral, M.; Grisoni, J.-M.
2000-01-01
A multi-instrumental array constructed in the Laboratoire d'Ecologie du Plancton Marin in Villefranche sur mer, France, named the Underwater Video Profiler (UVP), was used to investigate the vertical distribution of zooplankton in four western Norwegian fjords in the summer 1996. Six distinct zoological groups were monitored. The fauna included: (a) small crustaceans (mainly copepods), (b) ctenophores (mainly lobates), (c) siphonophores (mainly physonects), (d) a scyphomedusa Periphylla periphylla, (e) chaetognaths and (f) appendicularians. The use of the non-disturbing video technique demonstrated that the distribution of large zooplankton is heterogeneous vertically and geographically. Furthermore, the abundance of non-migrating filter feeders in the deep basins of the fjords indicates that there is enough food (living and non-living particulate organic matter) to support their dietary needs. This adaptation may be considered as a strategy for survival in fjords. Specifically, living in dark, deep water reduces visual predation and population loss encountered in the upper layer due to advective processes.
Barron, John A.; Bukry, David; Addison, Jason A.; Ager, Thomas A.
2016-01-01
Diatom and silicoflagellate assemblages in cores EW0408-47JC, -47TC, -46MC (57° 34.5278′ N, 136° 3.7764′ W, 114 m water depth) taken from the outer portion of Slocum Arm, a post-glacial fjord in southeastern Alaska, reveal the paleoclimatic and paleoceanographic evolution of the eastern margin of the Gulf of Alaska (GoA) during the past 10,000 years. Between ~ 10 and 6.8 cal ka, periods of low salinity and cool water conditions alternated with brief intervals marked by the increased influx of oceanic, more saline and likely warmer waters. Increased surface water stability characterized by a middle Holocene interval between ~ 6.8 and 3.2 cal ka is typified by increased abundances of northeastern Pacific Thalassiosira spp. that are indicative of spring coastal blooms and decreased abundances of warm and higher salinity oceanic diatoms. At ~ 3.2 cal ka, an abrupt increase in both the relative contribution of oceanic diatoms and silicoflagellates suggestive of cooler upwelling conditions occurred in the -47JC record. A stepwise increase in alkenone sea surface temperature in northern GoA core EW0408-85JC and increase in southern sourced precipitation in the carbonate δ18O record of Jellybean Lake (Yukon) present evidence that this ~ 3.2 cal ka event coincided with the onset of enhanced positive Pacific Decadal Oscillation-like (PDO) conditions in the GoA. These positive PDO-like conditions persisted until ~ 1.0 cal ka and were followed by high amplitude fluctuations in the relative abundance of diatom and silicoflagellate assemblages.
Three-dimensional simulation of a rock slide impact into water
NASA Astrophysics Data System (ADS)
Weaver, R.; Gisler, G.; Gittings, M.; Ranta, D.
2007-12-01
The steep-sided fjords of western Norway have experienced numerous rock slide events that sometimes produced devastating tsunamis. The 1934 slide in the Tafjord region, when some 3 million cubic meters of rock plunged into the water, resulted in waves tens of meters high that destroyed two villages and killed about 40 people. A similarly dangerous situation exists now in Sunnylvsfjord, where a major expanding crack in the fjord wall at Aknes threatens to release from 5 to 40 million cubic meters of rock into the water. Such an event would devastate a large region, including the Geiranger Fjord, a UN World Heritage Site that is extremely popular with tourists. The Norwegian Government's Aknes-Tafjord project is responsible for studying and monitoring the potential slide area and for providing adequate warning to protect lives and property. In order to better understand tsunami generation from such events, we have performed 3-dimensional fully compressible hydrodynamical simulations of the impact of a large number of boulders from a steep slope into a deep body of water. We use the Los Alamos/SAIC adaptive-mesh-refined SAGE code, previously used to model tsunamis from underwater explosions, asteroid impacts, and both subaqueous and subaerial landslide sources. We find the interaction of boulders and water to be extremely turbulent and dissipative. It differs markedly from simulations of large-block impacts in similar geometry. No more than about 15% of the potential energy of the boulders ends up in the water wave. The rest of the energy goes into heating the boulders (and presumably fragmenting them, though that physics is not included) into generating winds, heating air and water, and generating turbulence. In the near field, the waves produced by the impact can be quite high -- tens of meters -- and have the potential to devastate coastlines at substantial distances from the site along a narrow fjord system.
NASA Astrophysics Data System (ADS)
Smiley, Crystal; Kamenos, Nick; Hoey, Trevor; Cottier, Finlo; Ellam, Rob
2015-04-01
Greenland Ice Sheet melt has the potential to affect global sea levels and the strength of the thermohaline circulation (THC). Investigating spatial mixing patterns of seawater in Greenlandic fjords can help reveal characteristics of changes in runoff from the GrIS; for example higher runoff may be associated with lower salinity within GrIS fjords, which can be recorded by palaeoenvironmental proxies (Kamenos et al 2012). The Kangerlussuaq Drainage Basin mirrors melt patterns of the whole GrIS and drains into Søndre Strømfjord, a 170km long fjord on the west coast of Greenland. Temperature and salinity profiles to 40m depth were obtained at 11 stations along Søndre Strømfjord during the 2014 melt season. Each station was sampled twice once at high KDB runoff and once at low KDB runoff. With increasing freshwater runoff, salinity decreased by 1.65 - 2.91 and temperature increased by 0.47oC- 2.34oC at each station over a 7 hour time period. Higher salinities occurred at low run-off. In addition, with increasing run-off, the disparity between surface and deeper water (30m) salinity became greater with a 19.3 difference between the surface and 30m. This information was integrated with oxygen and deuterium isotopic signatures collected at 10 m depth from each station to pinpoint the exact source of the runoff causing salinity reductions. With increasing freshwater runoff, the chemistry of the fjord exhibits an enrichment of the heavier isotope. δ18Ovsmow values enrich by 7.40 permil while δDvsmow enrich 53.26 permil. Our data shows a relationship between KDB runoff, salinity, and oxygen, hydrogen isotopic chemistry of Søndre Strømfjord, data that will enable further calibration of marine proxies of GrIS melt. References Kamenos, N.A, Hoey, T.B, Nienow, P., Fallick, A.E., & Claverie, T., 2012: Reconstructing Greenland Ice Sheet runoff using coralline algae; Geological Society of America, Geology, doi: 10.1130/G33405.1
Bogen, J; Bønsnes, T E
2001-02-05
When the Svartisen hydroelectric power plant was put into operation, extensive sediment pollution was observed in the downstream fjord area. This paper discusses the impact of the power plant and the contribution from various sources of sediment. Computation of the sediment load was based on samples collected one to four times per day. Grain size distribution analyses of suspended sediments were carried out and used as input in a routing model to study the movement of sediments through the system. Suspended sediment delivered to the fjord before the power station was constructed was measured as 8360 metric tons as an annual mean for a 12-year period. During the years 1995-1996 when the power plant was operating, the total suspended load through the power station was measured as 32609 and 30254 metric tons, respectively. Grain size distribution analyses indicate a major change in the composition of the sediments from 9% clay before the power plant was operative to 50-60% clay afterwards. This change, together with the increase in sediment load, is believed to be one of the main causes of the drastic reduction in secchi depths in the fjord. The effect of the suspended sediment load on the fjord water turbidity was evaluated by co-plotting secchi depth and power station water discharge. Measurements during 1995 and 1996 showed that at the innermost of these locations the water failed to attain the minimum requirement of 2 m secchi depth. In later years secchi depths were above the specified level. In 1997 and 1998 the conditions improved. At the more distal locality, the conditions were acceptable with only a few exceptions. A routing model was applied to data acquired at a location 2 km from the power station in order to calculate the contributions from various sediment sources. This model indicated that the contribution from reservoir bed erosion dominated in 1994 but decreased significantly in 1995. Future operation of the power station will mostly take place with a high water level in the reservoir and is likely to result in acceptable water quality in the fjord. However, during periods of low drawdown, sediment pollution may again become a problem.
Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic
NASA Astrophysics Data System (ADS)
Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.
2017-12-01
Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.
NASA Astrophysics Data System (ADS)
Kerrigan, Elizabeth A.; Kienast, Markus; Thomas, Helmuth; Wallace, Douglas W. R.
2017-12-01
A weekly time-series of oxygen isotope (δ18O) measurements was collected over a 16-month period from near-surface (1 m) and near-bottom (60 m) waters of Bedford Basin, a coastal fjord adjacent to the Scotian Shelf, off eastern Canada. The time-series was complemented with δ18O measurements of local precipitation (rain and snow), river, and wastewater runoff. The isotopic composition of precipitation displayed strong seasonality with an average (volume-weighted) δ18O value of -5.39‰ (±0.96) for summer and a depleted value of -10.37‰ (±2.96) over winter. Winter precipitation exhibited more depleted and variable δ18O of solid precipitation relative to rainfall. The annual, amount-weighted average δ18O of Sackville River discharge (-6.49‰ ± 0.82) was not statistically different from precipitation (-7.24‰ ± 0.92), but exhibited less seasonal variation. Freshwater end-members (zero-salinity intercepts) estimated from annual and seasonal regressions of δ18O versus salinity (S) for Bedford Basin near-surface samples were consistent with the δ18O of summer precipitation and the annual, amount-weighted average for the Sackville River. However, the isotopically depleted signature of winter precipitation was not observed clearly in near-surface waters of Bedford Basin, which might reflect isotope enrichment during sublimation from accumulated snowfall prior to melting and discharge, or retention and mixing within the drainage basin. In near bottom waters, most of the δ18O-S variation (average freshwater end-member: 7.47‰ ± 2.17) could be explained by vertical mixing with near-surface waters (average freshwater end-member: -6.23‰ ± 0.34) and hence with locally-derived freshwater. However the near-bottom δ18O-S variation suggested an additional contribution of a freshwater end-member with a δ18O of -15.55‰ ± 2.3, consistent with a remotely-derived freshwater end-member identified previously for the Scotian Shelf. Residuals from a long-term regression of δ18O-S were generally within the range expected due to analytical uncertainty (±0.05); however near-surface waters exhibited seasonal variability of small amplitude, which was consistent with the timing and δ18O variability of local freshwater inputs.
NASA Astrophysics Data System (ADS)
Palma, Sergio; Silva, Nelson
2004-03-01
Interior waters of the fjords and channels of southern Chile (41.5°S-56°S) receive inputs of Subantarctic Water, Equatorial Subsuperficial Water and Western Pacific Subsurface Water from the adjacent Pacific Ocean by means of numerous connecting channels that lead inward from the ocean margin. These waters become mixed in the interior zone with freshwater from precipitation, river flow, and meltwater from cordilleran glaciers. A two-layered positive estuarine circulation becomes established, with a superficial layer having a net movement towards the adjacent ocean, and a deep layer with net movement towards the fjords. The biomass of the interior waters is composed principally of planktonic crustaceans (copepods and euphausiids), chaetognaths, and gelatinous carnivores. In a southerly direction, decreases are observed in biomass, in relative abundance, and in species diversity of siphonophores, chaetognaths, and euphausiids. Only a few species have been able to adapt successfully to the extreme oceanographic conditions typical of the region, reflected in dominant monospecific populations such as Muggiaea atlantica, Sagitta tasmanica, and Euphausia vallentini. The zooplankton fauna of interior waters, characterized by its low degree of specific richness, is made up of a mixture of species typical of Subantarctic Water (Sagitta tasmanica, S. decipiens, Euphausia lucens, Nematoscelis megalops, Thysanoessa gregaria), antarctic water (Pyrosthephos vanhoeffeni, Dimophyes arctica, Sagitta marri, S. gazellae, Eukrohnia hamata, E. bathyantarctica, Euphausia vallentini), temperate and warm epipelagic waters (Eudoxoides spiralis, Lensia conoidea, Chelophyes appendiculata, Muggiaea atlantica, Sphaeronectes gracilis, S. fragilis, Abylopsis tetragona, Sagitta enflata), and mesopelagic water (Physophora hydrostatica, Stylocheiron maximum, Vogtia pentacantha, V. serrata).
Effect of Topography on Subglacial Discharge and Submarine Melting During Tidewater Glacier Retreat
NASA Astrophysics Data System (ADS)
Amundson, J. M.; Carroll, D.
2018-01-01
To first order, subglacial discharge depends on climate, which determines precipitation fluxes and glacier mass balance, and the rate of glacier volume change. For tidewater glaciers, large and rapid changes in glacier volume can occur independent of climate change due to strong glacier dynamic feedbacks. Using an idealized tidewater glacier model, we show that these feedbacks produce secular variations in subglacial discharge that are influenced by subglacial topography. Retreat along retrograde bed slopes (into deep water) results in rapid surface lowering and coincident increases in subglacial discharge. Consequently, submarine melting of glacier termini, which depends on subglacial discharge and ocean thermal forcing, also increases during retreat into deep water. Both subglacial discharge and submarine melting subsequently decrease as glacier termini retreat out of deep water and approach new steady state equilibria. In our simulations, subglacial discharge reached peaks that were 6-17% higher than preretreat values, with the highest values occurring during retreat from narrow sills, and submarine melting increased by 14% for unstratified fjords and 51% for highly stratified fjords. Our results therefore indicate that submarine melting acts in concert with iceberg calving to cause tidewater glacier termini to be unstable on retrograde beds. The full impact of submarine melting on tidewater glacier stability remains uncertain, however, due to poor understanding of the coupling between submarine melting and iceberg calving.
Shoreline changes and its impact on archaeological sites in West Greenland
NASA Astrophysics Data System (ADS)
Fenger-Nielsen, R.; Kroon, A.; Elberling, B.; Hollesen, J.
2017-12-01
Coastal erosion is regarded as a major threat to archaeological sites in the Arctic region. The problem arises because the predominantly marine-focused lifeways of Arctic people means that the majority of archaeological sites are found near the coast. On a Pan-Arctic scale, coastal erosion is often explained by long-term processes such as sea level rise, lengthening of open water periods due to a decline in sea ice, and a predicted increase in the frequency of major storms. However, on a local scale other short-term processes may be important parameters determining the coastal development. In this study, we focus on the Nuuk fjord system in West Greenland, which has been inhabited over the past 4000 years by different cultures and holds around 260 registered archaeological settlements. The fjord is characterized by its large branching of narrow deep-water and well-shaded water bodies, where tidal processes and local sources of sediment supply by rivers are observed to be the dominant factors determining the coastal development. We present a regional model showing the vulnerability of the shoreline and archeological sites due to coastal processes. The model is based on a) levelling surveys and historical aerial photographs of nine specific sites distributed in the region, b) water level measurements at three sites representing the inner-, middle- and outer fjord system, c) aerial photographs, satellite images and meteorological data of the entire region used to up-scale our local information at a specific settlement scale towards a regional scale. This deals with spatial and temporal variability in erosion and accumulation patterns along the shores in fjords and open seas.
Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica.
Rebesco, M; Domack, E; Zgur, F; Lavoie, C; Leventer, A; Brachfeld, S; Willmott, V; Halverson, G; Truffer, M; Scambos, T; Smith, J; Pettit, E
2014-09-12
Grounding zones, where ice sheets transition between resting on bedrock to full floatation, help regulate ice flow. Exposure of the sea floor by the 2002 Larsen-B Ice Shelf collapse allowed detailed morphologic mapping and sampling of the embayment sea floor. Marine geophysical data collected in 2006 reveal a large, arcuate, complex grounding zone sediment system at the front of Crane Fjord. Radiocarbon-constrained chronologies from marine sediment cores indicate loss of ice contact with the bed at this site about 12,000 years ago. Previous studies and morphologic mapping of the fjord suggest that the Crane Glacier grounding zone was well within the fjord before 2002 and did not retreat further until after the ice shelf collapse. This implies that the 2002 Larsen-B Ice Shelf collapse likely was a response to surface warming rather than to grounding zone instability, strengthening the idea that surface processes controlled the disintegration of the Larsen Ice Shelf. Copyright © 2014, American Association for the Advancement of Science.
Preliminary validation of WRF model in two Arctic fjords, Hornsund and Porsanger
NASA Astrophysics Data System (ADS)
Aniskiewicz, Paulina; Stramska, Małgorzata
2017-04-01
Our research is focused on development of efficient modeling system for arctic fjords. This tool should include high-resolution meteorological data derived using downscaling approach. In this presentation we have focused on modeling, with high spatial resolution, of the meteorological conditions in two Arctic fjords: Hornsund (H), located in the western part of Svalbard archipelago and Porsanger (P) located in the coastal waters of the Barents Sea. The atmospheric downscaling is based on The Weather Research and Forecasting Model (WRF, www.wrf-model.org) with polar stereographic projection. We have created two parent domains with grid point distances of about 3.2 km (P) and 3.0 km (H) and with nested domains (almost 5 times higher resolution than parent domains). We tested what is the impact of the spatial resolution of the model on derived meteorological quantities. For both fjords the input topography data resolution is 30 sec. To validate the results we have used meteorological data from the Norwegian Meteorological Institute for stations Lakselv (L) and Honningsvåg (Ho) located in the inner and outer parts of the Porsanger fjord as well as from station in the outer part of the Hornsund fjord. We have estimated coefficients of determination (r2), statistical errors (St) and systematic errors (Sy) between measured and modelled air temperature and wind speed at each station. This approach will allow us to create high resolution spatially variable meteorological fields that will serve as forcing for numerical models of the fjords. We will investigate the role of different meteorological quantities (e. g. wind, solar insolation, precipitation) on hydrohraphic processes in fjords. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the Institute of Oceanology (IO PAN).
NASA Astrophysics Data System (ADS)
Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.
2014-12-01
The rate of mass loss from the Greenland Ice Sheet quadrupled over the last two decades and may be due in part to changes in ocean heat transport to marine-terminating outlet glaciers. Meltwater commonly discharges at the grounding line in these outlet glacier fjords, generating a turbulent upwelling plume that separates from the glacier face when it reaches neutral density. This mechanism is the current paradigm for setting the magnitude of net heat transport in Greenland's glacial fjords. However, sufficient observations of meltwater plumes are not available to test the buoyancy-driven circulation hypothesis. Here, we use an ocean general circulation model (MITgcm) of the near-glacier field to investigate how plume water properties, terminal height, centerline velocity and volume transport depend on the initial conditions and numerical parameter choices in the model. These results are compared to a hydrodynamic mixing model (CORMIX), typically used in civil engineering applications. Experiments using stratification profiles from the continental shelf quantify the errors associated with using far-field observatons to initialize near-glacier plume models. The plume-scale model results are then integrated with a 3-D fjord-scale model of the Rink Isbrae glacier/fjord system in west Greenland. We find that variability in the near-glacier plume structure can strongly control the resulting fjord-scale circulation. The fjord model is forced with wind and tides to examine how oceanic and atmospheric forcing influence net heat transport to the glacier.
Heavy metal contamination of a Greenland Fjord system by mine wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, D.H.; Asmund, G.
Since 1973, about 500,000 tons/yr of metal-rich particulate tailings from a lead/zinc flotation mill have been discharged through a submarine outfall into a two-fjord system on the west coast of Greenland. Differential solubilization of particulate metals by seawater, seasonal water mixing, and sill exchange tailings dispersal processes have resulted in high, but seasonally variable, Zn, Cd, and Pb contamination of the water and suspended particulate matter (SPM). Chemical partition of the SPM shows that most of the Pb, but relatively low proportions of Zn and Cd are weakly bound to the SPM. Such particulate metal characteristics allow the real timemore » effects of tailings discharges and dispersal on the system to be traced even in the sediments where tailings accumulation is very slow. Fjord seaweeds and blue mussels also contain varying amounts of Zn, Pb, and Cd, depending on the metal and their location relative to the tailings outfall. They apparently responded almost instantly to the metal contamination as did the water and SPM. High Pb concentrations in the fjord mussels most likely derive from the preferential uptake of available particulate Pb, whereas the seaweeds appear to derive most of their heavy metal concentrations from the dissolved phase. The evidence from this and other sites, and from experimental work, indicates that any discharge of Pb-particles into the marine environment, either directly as mine wastes or indirectly from natural runoff from current and former lead mining sites, results in immediate lead contamination of the in situ mussel population. 20 refs., 4 figs., 5 tab.« less
A coupled physical-biological pelagic model of a shallow sill fjord
NASA Astrophysics Data System (ADS)
Aksnes, Dag L.; Lie, Ulf
1990-10-01
A vertically resolved model for the land-locked fjord Lindåspollene, western Norway is presented. Salinity, temperature, oxygen, nitrogen-nutrients, silicate, and two groups of phytoplankton and herbivores are represented as dynamic variables. From 'below' the model is driven by solar radiation, precipitation, wind and tidal exchange and from 'above' by herbivore mortality. Simulation results are presented and discussed together with actual observations from Lindåspollene. The main seasonal and vertical characteristics of the phytoplankton and herbivore dynamics seem to be well reflected by the model, and realistic seasonal patterns may be produced for several successive years. The most characteristic vertical features are the formation of a summer surface production maximum and a deep chlorophyll maximum. Furthermore, a herbivore biomass which develops in the surface layer divides into a shallow and a deep component during summer and becomes concentrated in the surface layer again in the autumn. The nutricline and the pycnocline develop independently of one another, with consequences for the supply of nutrients to the upper euphotic zone. The bottom-up control exerted by the meteorological forcing, especially the freshwater runoff, seems to be of paramount significance for the observed vertical structure and seasonality of the present fjord system.
Bathymetry of Torssukatak fjord and one century of glacier stability
NASA Astrophysics Data System (ADS)
An, L.; Rignot, E. J.; Morlighem, M.
2017-12-01
Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet(GrIS) mass balance as they control 90% of the ice discharge into the ocean. Warm air temperatures thin the glaciers from the top to unground ice fronts from the bed. Warm oceans erode the submerged grounded ice, causing the grounding line to retreat. To interpret the recent and future evolution of two outlet glaciers, Sermeq Avangnardleq (AVA) and Sermeq Kujatdleq (KUJ) in central West Greenland, flowing into the ice-choked Torssukatak fjord (TOR), we need to know their ice thickness and bed topography and the fjord bathymetry. Here, we present a novel mapping of the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high resolution airborne gravity data from AIRGrav collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with submilligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We also employ MultiBeam Echo Sounding data (MBES) collected in the fjord since 2009. We had to wait until the summer of 2016, during Ocean Melting Greenland (OMG), to map the fjord bathymetry near the ice fronts for the first time. We constrain the 3D inversion of the gravity data with MBES in the fjord and a reconstruction of the glacier bed topography using mass conservation (MC) on land ice. The seamless topography obtained across the grounding line reveal the presence of a 300-m sill for AVA, which explains why this glacier has been stable for a century, despite changes in surface melt and ocean-induced melt and the presence of a deep fjord (800 m) in front of the glacier. For KUJ, we also reveal the presence of a wide sill (300 m depth) near the current ice front which explains its stability and the stranding of iceberg debris in front of the glacier. The results shed new light on the evolution of these glaciers and explain their apparent stability. The data also reveal the presence of a deep bed upstream, indicating a potential for rapid retreat if ocean and surface melting are able to dislodge the glaciers from their stabilizing sills. This work was funded by NASA Cryosphere Program and from a grant by the Gordon and Betty Moore Foundation.
NASA Astrophysics Data System (ADS)
Koziorowska, Katarzyna; Kuliński, Karol; Pempkowiak, Janusz
2016-02-01
The aim of this study was to estimate the spatial variability of organic carbon (Corg) and total nitrogen (Ntot) concentrations, Corg/Ntot ratios, stable isotopes of carbon and nitrogen (δ13Corg, δ15Ntot) and the proportions of autochthonous and allochtonous organic matter within recently deposited sediments of two Spitsbergen fjords: the Hornsund and the Adventfjord, which are affected to a different degree by the West Spitsbergen Current. Corg concentrations ranged from 1.38% to 1.98% in the Hornsund and from 1.73% to 3.85% in the Adventfjord. In both fjords the highest Corg concentrations were measured at the innermost stations and they decreased towards the mouths of the fjords. This suggests fresh water runoff to be an important source of organic matter (OM) for surface sediments. The results showed that both fjords differ significantly in terms of sedimentary organic matter characteristics. The samples from the Hornsund, except those from the innermost station in the Brepollen, had relatively low Corg/Ntot ratios, all within a narrow range (from 9.7 to 11.3). On the other hand significantly higher Corg/Ntot ratios, varying within a broad range (from 14.6 to 33.0), were measured in the Adventfjord. The samples from the Hornsund were characterized by higher δ13Corg (from -24.90‰ to -23.87‰) and δ15Ntot (from 3.02‰ to 4.93‰) than those from the Adventfjord (-25.94‰ to -24.69‰ and from 0.71‰ to 4.00‰, respectively). This is attributed to a larger proportion of marine organic matter. Using the two end-member approach proportions of terrestrial organic matter were evaluated. Terrestrial OM contribution for the Adventfjord was in the range of 82-83%, while in case of the Hornsund the results were in the range of 69-75%, with the exception of the innermost part of the fjord, where terrestrial organic matter contribution ranged from 80 to 82%. The strong positive correlation between δ13Corg and δ15Ntot was revealed. This was taken as an indicator that fresh, labile organic matter is the base of the trophic pyramid. The conclusion regarding a more complex food web in the Horsund, based on larger δ15Ntot values, is further substantiated by the larger proportion of autochthonous, labile organic matter found in the Hornsund's sediments.
Slack, John F.; Rosa, Diogo; Falck, Hendrik
2015-01-01
Bulk geochemical data acquired for host sedimentary rocks to the Late Ordovician Citronen Fjord sediment-hosted Zn-Pb deposit in North Greenland constrain the redox state of bottom waters prior to and during sulphide mineralization. Downhole profiles for one drill core show trends for redox proxies (MnO, Mo, Ce anomalies) that suggest the local basin bottom waters were initially oxic, changing to anoxic and locally sulphidic concurrent with sulphide mineralization. We propose that this major redox change was caused by two broadly coeval processes (1) emplacement of debris-flow conglomerates that sealed off the basin from oxic seawater, and (2) venting of reduced hydrothermal fluids into the basin. Both processes may have increased H2S in bottom waters and thus prevented the oxidation of sulphides on the sea floor.
Direct Measurements of Iceberg Melt in Greenland Tidewater Glacier Fjords
NASA Astrophysics Data System (ADS)
Schild, K. M.; Sutherland, D.; Straneo, F.; Elosegui, P.
2017-12-01
The increasing input of freshwater to the subpolar North Atlantic, both through glacier meltwater runoff and the melting of calved icebergs, has significant implications for the Atlantic meridional overturning circulation and regional scale circulation. However, the magnitude and timing of this meltwater input has been challenging to quantify because iceberg melt rates are largely unknown. Here we use data from a simultaneous glaciological and oceanographic field campaign conducted in Sermilik Fjord, southeast Greenland, during July 2017 to map the surface and submarine geometry of large icebergs and use repeat surveys to directly measure iceberg melt rates. We use a combination of coincident ship-based multibeam submarine scans, ocean hydrography measurements, aerial drone mapping, and high precision iceberg-mounted GPS measurements to construct a detailed picture of iceberg geometry and melt. This synthesis of in situ iceberg melt measurements is amongst the first of its kind. Here, we will discuss the results of the 2017 field campaign, the implications of variable iceberg meltwater input throughout the water column, and comparisons to standard melt rate parameterizations and tidewater glacier submarine melt rate calculations.
Erosion of mountain plateaus along Sognefjord, Norway, constrained by cosmogenic nuclides
NASA Astrophysics Data System (ADS)
Andersen, Jane Lund; Egholm, David L.; Knudsen, Mads F.; Linge, Henriette; Jansen, John D.
2016-04-01
Norway is famous for its deeply incised, steep-sided fjords, carved out by glacial erosion. The high relief of the fjords stands in contrast to the extensive areas of relatively low relief found between the fjords. The origin and development of these low-relief areas remain debated. The classical interpretation relates them to a Mesozoic peneplanation surface, uplifted to the current high elevation in the early Cenozoic (e.g. Nesje, 1994). The validity of this interpretation has, however, been repeatedly questioned in recent times (e.g. Nielsen et al. 2009, Steer et al. 2012). Recent studies point instead to a significant impact of glacial and periglacial erosion processes on the long-term development of the low-relief surfaces (Egholm et al. 2015). Here, we present a large new dataset of in-situ produced cosmogenic 10Be and 26Al in bedrock and boulders from the high, flat summit surfaces along a transect from the coast to the inner parts of Sognefjorden in Norway. Our results indicate substantial glacial modification of the sampled low-relief surfaces within the last 50 ka. Close to the coast, at an elevation of around 700 meters, the cosmogenic nuclide signal was reset around the Younger Dryas due to extensive glacial erosion. Regarding the higher surfaces further inland, our results indicate a maximum cosmogenic nuclide inheritance of 20-30 ka prior to the last deglaciation. We do not find any signs of exceptional longevity of the low-relief landscape. In contrast, our results indicate that the low-relief areas were continuously eroded by glacial and periglacial processes in the Quaternary. Nesje & Whillans. Erosion of Sognefjord, Norway. Geomorphology 9(1), 33-45, 1994. Nielsen et al. The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy-climate-erosion) hypothesis. Journal of Geodynamics 47(2), 72-95, 2009. Steer et al. Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia. Nature Geoscience 5(9), 635-639, 2012. Egholm et al. The periglacial engine of mountain erosion - Part 2: Modelling large-scale landscape evolution. Earth Surface Dynamics 3(4), 463-482, 2015.
NASA Astrophysics Data System (ADS)
Le Bel, D. A.; Brown, S.; Zappa, C. J.; Bell, R. E.; Frearson, N.; Tinto, K. J.
2014-12-01
Photogrammetric digital elevation models (DEMs) are a powerful approach for understanding elevation change and dynamics along the margins of the large ice sheets. The IcePod system, mounted on a New York Air National Guard LC-130, can measure high-resolution surface elevations with a Riegl VQ580 scanning laser altimeter and Imperx Bobcat IGV-B6620 color visible-wavelength camera (6600x4400 resolution); the surface temperature with a Sofradir IRE-640L infrared camera (spectral response 7.7-9.5 μm, 640x512 resolution); and the structure of snow and ice with two radar systems. We show the use of IcePod imagery to develop DEMs across calving fronts and meltwater channels in Greenland. Multiple over-flights of the Kangerlussaq Airport ramp have provided a test of the technique at a location with accurate, independently-determined elevation. Here the photogrammetric DEM of the airport, constrained by ground control measurements, is compared with the Lidar results. In July 2014 the IcePod ice-ocean imaging system surveyed the calving fronts of five outlet glaciers north of Jakobshavn Isbrae. We used Agisoft PhotoScan to develop a DEM of each calving front using imagery captured by the IcePod systems. Adjacent to the ice sheet, meltwater plumes foster mixing in the fjord, moving warm ocean water into contact with the front of the ice sheet where it can undercut the ice front and trigger calving. The five glaciers provide an opportunity to examine the calving front structure in relation to ocean temperature, fjord circulation, and spatial scale of the meltwater plumes. The combination of the accurate DEM of the calving front and the thermal imagery used to constrain the temperature and dynamics of the adjacent plume provides new insights into the ice-ocean interactions. Ice sheet margins provide insights into the connections between the surface meltwater and the fate of the water at the ice sheet base. Surface meltwater channels are visualized here for the first time using the combination of Lidar, photogrammetry DEMs and infrared imagery. These techniques leverage electromagnetic surface properties that allow us to identify the presence of water, measure the slope and elevation of the channel, as well as the two-dimensional temperature variability of the water/ice/snow in multiple melt channels within a drainage system.
The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway
NASA Astrophysics Data System (ADS)
Lydersen, Christian; Assmy, Philipp; Falk-Petersen, Stig; Kohler, Jack; Kovacs, Kit M.; Reigstad, Marit; Steen, Harald; Strøm, Hallvard; Sundfjord, Arild; Varpe, Øystein; Walczowski, Waldek; Weslawski, Jan Marcin; Zajaczkowski, Marek
2014-01-01
Approximately 60% of Svalbard's land areas are glaciated at the present time. The Archipelago has more than 1100 glaciers (> 1 km2) and 163 of these are “tidewater glaciers” - that is glaciers that terminate (with their calving front) at the sea. It has been known for a long time that these glacier front areas are important feeding areas for seabirds and marine mammals. Herein, we review current knowledge regarding the importance of these areas for these animals and reflect upon the processes that create these apparent “hotspots”. Kittiwakes Rissa tridactyla, routinely dominate avian assemblages in front of glaciers in Svalbard, but fulmars Fulmarus glacialis, ivory gulls Pagophila eburnea and glaucous gulls Larus hyperboreus also contribute to aggregations, which can sometimes comprise many thousands of individuals. The birds are often found in the so-called “brown zone”, which is an area in front of tidewater glaciers that is ice-free due to currents and muddy due to suspended sediments. Animals at these sites typically have their stomachs full of large zooplankton or fish. These brown zones are also foraging hotspots for Svalbard's ringed seals (Pusa hispida) and white whales (Delphinapterus leucas). Prime breeding habitat for ringed seals in Svalbard occurs deep in the fjords where ice pieces calved from the glacier fronts become frozen into land-fast sea-ice, promoting the accumulation of snow to a depth suitable for ringed seal females to dig out birth lairs above breathing holes in the ice. These pupping areas are important hunting areas for polar bears (Ursus maritimus) in spring, especially female bears with cubs of the year during the period following emergence from the winter/birthing den. Glacier-ice pieces floating in coastal areas are also important for all seal species in the region as dry platforms during moulting and also as general resting platforms for both birds and seals. During the last decade there have been several years with a complete lack of spring sea ice in many of the fjords along the west coast of Spitsbergen. During the spring periods in these years, bearded seals (Erignathus barbatus) have replaced their regular sea-ice platform with glacier ice, using it as a solid substrate for both birthing and nursing as well as general resting. The mechanisms that create foraging hotspots at the fronts of tidewater glaciers are related to the massive subsurface plumes of freshwater discharged from the glacier fronts. As these plumes rise towards the surface they entrain large volumes of ambient water, tens to hundreds of times the original discharge volume. This water is drawn from all depth levels as the plume ascends. This entrainment ensures a continuous resupply of intermediate depth waters from the outer parts of the fjords towards the glacier front and greatly amplifies the general estuarine circulation. The intermediate water masses carry plankton from a broad area, including the outer fjord, into the glacier front area, where they get entrained in the plume rising towards the surface, and often become stunned or die from freshwater osmotic shock. These small animals fall as an easy prey to the surface feeding predators. Large, strong swimming marine zooplankton species can sometimes escape by swimming below the inflow of marine water. But, they then become concentrated in a water layer near the bottom, making them of interest and susceptible to predators. The intermediate water masses also bring nutrients towards the glacier fronts where they are transported up to the surface layer where they can subsequently be utilized for post-bloom primary production. However, this tends to have greatest influence some distance away from the glacier front, when much of the outflow sediment has settled out. Currently, the mass balance for Svalbard glaciers is negative and climate change predictions for the future suggest continued warming, and hence continued glacial retreat. This will result in a reduction in both the number of glaciers calving into the ocean in Svalbard and the total length of calving fronts around the Archipelago. Similar to the retraction of the northern sea-ice edge (which is another diminishing foraging hotspot for these same arctic vertebrates), the climate-warming-induced changes in glaciers will likely lead to substantial distributional shifts and abundance reductions for many arctic species.
Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P.; González, Myriam; Moore, Edward R. B.; Seeger, Michael; Cámara, Beatriz
2016-01-01
Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds. PMID:27486455
The Influence of Subglacial Hydrology on Arctic Tidewater Glaciers and Fjords
NASA Astrophysics Data System (ADS)
Schild, Kristin M.
Mass loss from the Greenland Ice Sheet has accelerated throughout the last decade, predominantly due to a quadrupling of ice discharge by iceberg calving, submarine melting, and meltwater runoff at marine-terminating outlet glaciers. The recent acceleration has been linked to the transport of increasing amounts of meltwater, fuelled by warming temperatures. These processes include enhanced basal sliding, inefficient subglacial drainage networks, and a warming of ocean waters in contact with the glacier terminus. Understanding the impact of meltwater on tidewater glacier dynamics, both subglacially and proglacially, is a key component in predicting glacier health and future sea level rise. However, the spatial and temporal magnitude of this meltwater impact is poorly understood. The goals of this dissertation are to identify how meltwater travels subglacially through a tidewater glacier system, establish a method to monitor tidewater glacier discharge remotely, and calculate the impact of subglacial discharge on terminus stability.. The inaccessibility of subglacial and terminus environments prohibits direct hydrological observations. We use combinations of remote sensing, reanalysis models, and in situ fjord data to accomplish these research goals by measuring indicators of subglacial meltwater discharge and fjord circulation (sediment plumes exiting the terminus and the movement of small icebergs in the fjord). By monitoring the timing and duration of plumes exiting a fast-flowing Greenland tidewater glacier, we found short-term variability in meltwater discharge, persistent subglacial pathways, and evidence of over-winter subglacial storage. Using glaciers in Svalbard, we established a new method to determine sediment concentration from Landsat-8 spectral reflectance, and used this sediment concentration to quantify relative seasonal meltwater discharge at tidewater glaciers. Finally, we used the movement of icebergs and ocean temperatures to establish a terminus submarine melt rate for along-terminus fjord circulation, and use this to isolate calving due solely to subglacial meltwater discharge. The results of this dissertation help answer larger questions concerning the controls of water flow under a glacier and how that flow, and fjord circulation, influence glacier stability. Ultimately these results will inform coupled ice-ocean-climate models to predict glacier melt and sea level rise.
NASA Astrophysics Data System (ADS)
Hinojosa, Jessica L.; Stirling, Claudine H.; Reid, Malcolm R.; Moy, Christopher M.; Wilson, Gary S.
2016-04-01
Reconstructing the history of ocean oxygenation provides insight into links between ocean anoxia, biogeochemical cycles, and climate. Certain redox-sensitive elements respond to changes in marine oxygen content through phase shifts and concomitant isotopic fractionation, providing new diagnostic proxies of past ocean hypoxia. Here we explore the behavior and inter-dependence of a suite of commonly utilized redox-sensitive trace metals (U, Mo, Fe, and Mn) and the emerging ;stable; isotope system of U (238U/235U, or δ238U) in New Zealand fjords. These semi-restricted basins have chemical conditions spanning the complete redox spectrum from fully oxygenated to suboxic to intermittently anoxic/euxinic. In the anoxic water column, U and Mo concentrations decrease, while Fe and Mn concentrations increase. Similarly, signals of past euxinic conditions can be found by U, Mo, Fe, and Mn enrichment in the underlying sediments. The expected U isotopic shift toward a lower δ238U in the anoxic water column due to U(VI)-U(IV) reduction is not observed; instead, water column δ238U profiles are consistent in fjords of all oxygen content, falling within previously reported ranges for open ocean seawater (δ238U = -0.42 ± 0.07‰). Additionally, surface sediment δ238U results show evidence for competing U isotope fractionation processes. One site indicates increased export of 238U from seawater to the underlying sediments (fractionation between aqueous seawater U and particulate sediment U, or ΔU(aq)-U(solid) = -0.25‰), consistent with redox-driven fractionation. Another site suggests potential U(VI) adsorption-driven fractionation, reflecting increased export of 235U from seawater to sediments (ΔU(aq)-U(solid) = 0.25‰). We discuss several potential factors that could alter δ238U in waters and sediments beyond redox-driven shifts, including adsorption to organic matter in waters of high primary productivity, reaction rates for competing processes of U adsorption and release, and isotopic constraints of U coming into the system from terrestrial environments. These potential complications should be understood and constrained through observations, experiments, and models before future application of δ238U as a global paleoredox tracer can achieve its full potential.
Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul
2014-01-01
Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.
Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul
2014-01-01
Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems. PMID:24586915
NASA Astrophysics Data System (ADS)
Cieszyńska, Agata; Stramska, Małgorzata
2017-04-01
Climate change has significant effect on the Arctic environment, where global trends are amplified. In this study, we have focused on the Porsanger fjord, located in European Arctic in the coastal region of the Barents Sea. We have analyzed climate related trends and meteorological condititions in the area of interest. Meteorological data included wind speed and direction, air temperature (AT) and precipitation from Era-Interim reanalysis (1986-2015) and local observations (1996-2015) from Lakselv (L, fjord's head area) and Honningsvaag (H - fjord's exit area). Our results confirm that this region is undergoing climate change related warming, which is indicated by rising air temperatures. Based on long-term reanalysis data, estimated trends for air temperature (AT) in Porsanger fjord are: 0.0536 °C year-1 at fjord's exit and 0.0428 °C year-1 at fjord's head. The results show that climate change does not seem to have a significant effect on long-term changes of wind speed and precipitation in the Porsanger fjord. Statistical analysis underlined significant spatial variability of meteorological conditions inside the fjord. For example, there are large differences in the annual cycle of AT with monthly mean January and July values of -8.4 and 12.6 °C in L and -2.5 and 10.1 °C in H. Dominant wind directions in Lakselv are S and SSE, while in Honningsvaag S and SSW directions prevail. Strong wind events (above 12 m s-1) are more frequent in H than in L. Annual cycle is characterized by stronger winds in winter and seasonality of wind direction. Precipitation for a given location can change by about 50% between years and varies spatially. Synoptic scale and within day variability are extremely intense in the area of interest. Air temperature and wind speed and direction can change dramatically in hours. In addition, regular patterns of the daily cycle of AT have different intensity in L and H. It is interesting to note that in spring/summer season, the daily cycle of air temperature difference between L and H is also strong and has an influence on winds. Estimates of land-originated water discharge (derived from the E-Hype model) show seasonal cycle with the maximum runoff in late spring/early summer. The main features of climate related trends and the effects of oceanic/continental interactions, presented in this study, shape the environment of the fjord and are possible to be analogous in other Norwegian fjords with comparable geographical location. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).
Shallow Sub-Permafrost Groundwater Systems In A Buried Fjord: Taylor Valley, Antarctica
NASA Astrophysics Data System (ADS)
Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.
2014-12-01
The McMurdo Dry Valleys (MDV), Antarctica, represent a unique geologic setting where permanent lakes, ephemeral streams, and subglacial waters influence surface hydrology in a cold polar desert. Past research suggested that the MDV are underlain by several hundreds of meters of permafrost. Here, we present data collected from an Airborne EM (AEM) resistivity sensor flown over the MDV during the 2011-12 austral summer. A focus of our survey was over the Taylor Glacier where saline, iron-rich subglacial fluid releases at the glacier snout at a feature known as Blood Falls, and over Taylor Valley, where a series of isolated lakes lie between Taylor Glacier and the Ross Sea. Our data show that in Taylor Valley there are extensive areas of low resistivity, interpreted as hypersaline brines, beneath a relatively thin layer of high resistivity material, interpreted as dry- or ice-cemented permafrost. These hypersaline brines remain liquid at temperatures well below 0°C due to their salinity. They appear to be contained within the sedimentary fill deposited in Taylor Valley when it was still a fjord. This brine system continues up valley and has a subglacial extension beneath Taylor Glacier, where it may provide the source that feeds Blood Falls. By categorizing the resistivity measurements according to surficial land cover, we are able to distinguish between ice, permafrost, lake water, and seawater based on characteristic resistivity distributions. Furthermore, this technique shows that areas of surface permafrost become increasingly conductive (brine-filled) with depth, whereas the large lakes exhibit taliks that extend through the entire thickness of the permafrost. The subsurface brines represent a large, unstudied and potentially connected hydrogeologic system, in which subsurface flows may help transfer water and nutrients between lakes in the MDV and into the Ross Sea. Such a system is a potential habitat for extremophile life, similar to that already detected in the Blood Falls outflow, and may serve as a terrestrial analogue to potential extraterrestrial habits, where liquid surface waters are not expected to exist.
NASA Astrophysics Data System (ADS)
Vermassen, F.; Andresen, C. S.; Sabine, S.; Holtvoeth, J.; Cordua, A. E.; Wangner, D. J.; Dyke, L. M.; Kjaer, K. H.; Kokfelt, U.; Haubner, K.
2016-12-01
There is a growing body of evidence demonstrating that changes in warm water inflow to Greenlandic fjords are linked to the rapid retreat of marine-terminating outlet glaciers. This process is thought to be responsible for a substantial component of the increased mass loss from the Greenland Ice Sheet over the last two decades. Sediment cores from glaciated fjords provide high-resolution sedimentological and biological proxy records which can be used to evaluate the interplay of warm water inflow and glacier calving over recent time scales. In this study, multiple short cores ( 2 m) from Upernavik Isfjord, West Greenland, were analysed to establish a multi-proxy record of glacier behaviour and oceanographic conditions that spans the past 150 years. The down-core variation in the amount of ice-rafted debris reveals periods of increased glacier calving, and biomarker proxies are used to reconstruct variability in the inflow of warm, Atlantic-sourced water to the fjord. Measurements of the sortable silt grain size are used to reconstruct bottom-current strength; periods of vigorous current flow are assumed to be due to enhanced warm water inflow. Finally, a record of glacier terminus position changes, derived from historical observations and satellite imagery, allows comparison of our new proxy records with the retreat of the ice margin from 1849 onwards. We use these data to assess the relative importance of mechanisms controlling the (rapid) retreat of marine-terminating glaciers in Upernavik Isfjord.
Øverjordet, Ida Beathe; Gabrielsen, Geir Wing; Berg, Torunn; Ruus, Anders; Evenset, Anita; Borgå, Katrine; Christensen, Guttorm; Lierhagen, Syverin; Jenssen, Bjørn Munro
2015-03-01
Hepatic concentrations of mercury (Hg), selenium (Se) and cadmium (Cd) were determined in black-legged kittiwakes (Rissa tridactyla) and little auks (Alle alle) from two fjords in Svalbard (Kongsfjorden; 78°57'N, 12°12'E and Liefdefjorden; 79°37'N, 13°20'E). The inflow of Arctic and Atlantic water differs between the two fjords, potentially affecting element accumulation. Trophic positions (TP) were derived from stable nitrogen isotope ratios (δ(15)N), and stable carbon isotope ratios (δ(13)C) were assessed to evaluate the terrestrial influence on element accumulation. Mercury, Cd, TP and δ(13)C varied significantly between locations and years in both species. Trophic position and feeding habits explained Hg and Cd accumulation in kittiwakes, but not in little auks. Biomagnification of Hg and Cd were found in the food webs of both the Atlantic and the Arctic fjord, and no inter-fjord differences were detected. The δ(13)C were higher in the seabirds from Kongsfjorden than in Liefdefjorden, but this did not explain variations in element accumulation. Selenium concentrations were not influenced by Hg accumulation in kittiwakes, indicating baseline levels of Se in this species. In contrast, correlations between Hg and Se and lower Se:Hg ratios in little auks from Kongsfjorden than in Liefdefjorden indicate a more pronounced influence of Se-Hg complex formation in little auks feeding in Atlantic waters. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Norrbin, F.; Priou, P. D.; Varela, A. P.
2016-02-01
We studied the influence of dense layers of phytoplankton and aggregates on shaping the vertical distribution of zooplankton in a North Norwegian fjord using a Video Plankton Recorder (VPR). This instrument provided fine-scale vertical distribution (cm-m scale) of planktonic organisms as well as aggregates of marine snow in relation to environmental conditions. At the height - later stage of the spring phytoplankton bloom in May, the outer part of the fjord was dominated by Phaeocystis pouchetii, while diatoms (Chaetoceros spp.) were dominating in the innermost basin. Small copepods species like Pseudocalanus spp., Microsetella norvegica, and Oithona spp. prevailed over larger copepod species in the inner part of the fjord whereas the outer part was dominated by large copepods like Calanus finmarchicus. While the zooplankton where spread out over the water column during the early stage of the bloom, in May they were linked to the phytoplankton vertical distribution and in the winter situation they were found in deeper waters. Herbivorous zooplankton species were affected by phytoplankton species composition; C. finmarchicus and Pseudocalanus spp. avoided the dense layer of P. pouchetii while herbivorous zooplankton matched the distribution of the diatom-dominated bloom. Small, omnivorous copepod species like Microsetella sp., Oithona sp. and Pseudocalanus sp. were often associated with dense layers of snow aggregates. This distribution may provide a shelter from predators as well as a food source. Natural or anthropogenic-induced changes in phytoplankton composition and aggregate distribution may thus influence food-web interactions.
Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016).
León-Muñoz, Jorge; Urbina, Mauricio A; Garreaud, René; Iriarte, José Luis
2018-01-22
A harmful algal bloom (HAB) of the raphidophyta alga Pseudochattonella cf. verruculosa during the 2016 austral summer (February-March) killed nearly 12% of the Chilean salmon production, causing the worst mass mortality of fish and shellfish ever recorded in the coastal waters of western Patagonia. The HAB coincided with a strong El Niño event and the positive phase of the Southern Annular Mode that altered the atmospheric circulation in southern South America and the adjacent Pacific Ocean. This led to very dry conditions and higher than normal solar radiation reaching the surface. Using time series of atmospheric, hydrologic and oceanographic data we show here that an increase in surface water temperature and reduced freshwater input resulted in a weakening of the vertical stratification in the fjords and sounds of this region. This allowed the advection of more saline and nutrient-rich waters, ultimately resulting in an active harmful algal bloom in coastal southern Chile.
Working With Greenlandic Fishermen: A New Approach to Citizen Science
NASA Astrophysics Data System (ADS)
Turrin, M.; Porter, D. F.; Greve, S.
2014-12-01
'Leveraging Local Knowledge to Measure Greenland Fjords' is a science project designed with local knowledge sharing and data collection at its core. Citizen Science can take many different forms but in each instance it incorporates active participation of the general public in science research through integrating outreach, instruction, information gathering and data exchange. The strongest projects focus on two-way information exchange with both the citizen scientist and the professional scientist learning when they share their knowledge. Working in cooperation with both teachers and fishermen in a small local community in northwest Greenland, we collected novel oceanographic measurements from a small 5 m fishing boat in the local fjord. We established connections with the local school for developing education initiatives, sharing maps and other resources, and worked through the teachers to connect with the village residents. We hosted a community meeting to provide a forum for a two-way information exchange with the science team providing background on the research project and the local residents providing both narrative information on local environmental change over the last one to three decades, and more quantitative and immediately useful information on fjord depths, iceberg flow directions and timing of seasonal ice break up and move out. The local fishermen were intimately familiar with the local environment, having intrinsically collected data on fjord depth from their regular lowering of fishing line to catch Greenlandic halibut, a benthic fish. For our first trip they worked with us locating the deep and shallow parts of the fjord from many seasons of watching icebergs ground on the shallow shoals, and showed us how to navigate into the ice packed glacial front through the dense ice mélange. The local community interest in the project and in learning how to use the equipment we had brought encouraged us to discuss a long-term data gathering relationship, with the fishermen at the center of the collection. They were interested in the findings, wanting to see how the water temperature might differ from surface to depth. The same data we are interested in for better understanding glacial change is data they seek to explain impacts they have seen in their own fishing and hunting over the last several decades.
Comparison of climate related changes in two Arctic fjords, Hornsund and Porsanger
NASA Astrophysics Data System (ADS)
Aniskiewicz, Paulina; Stramska, Małgorzata
2017-04-01
In the Arctic zone the climate change is amplified in comparison to globally averaged trends, and the observed trends are variable spatially. Our research is focused on two Artic fjords: Porsanger and Horsund. Porsanger fjord is located in the coastal waters of the Barents Sea. Hornsund is one of fjords located in the western part of Svalbard archipelago. In this presentation we have used data provided by the Norwegian Meteorological Institute for three meteorological stations. Two of them are located in the Porsanger fjord (Lakselv - in the inner part, Honningsvåg - in the outer zone). The third station provides data from the Hornsund fjord. Using these data we have estimated the 33-year trends (1983-2015) of air temperature and relative humidity in each station using linear regression analysis (statistically significant at 95In the inner part of the Porsanger fjord (Lakselv) the multiyear trend of increasing annual mean air temperature has been estimated at 0.006°C per year. The monthly trends were statistically significant in May, September and November. The strongest seasonal warming has been observed in spring and autumn. The trends of increasing annual mean humidity was about 0.2In Hornsund the air temperature trend (0.2°C per year) is significantly larger than in Porsanger. The trends of air temperature were statistically significant for eight months (except March, April, June and July) and three seasons (besides spring). The trends of relative humidity were not statistically significant. Thanks to this research we can discuss how atmospheric conditions and climate related trends change in time and seasons of the year in two different Arctic regions. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the Institute of Oceanology (IO PAN).
NASA Astrophysics Data System (ADS)
Kopera, M. A.; Maslowski, W.; Giraldo, F.
2015-12-01
One of the key outstanding challenges in modeling of climate change and sea-level rise is the ice-sheet/ocean interaction in narrow, elongated and geometrically complicated fjords around Greenland. To address this challenge we propose a new approach, a separate fjord model using discontinuous Galerkin (DG) methods, or FDG. The goal of this project is to build a separate, high-resolution module for use in Earth System Models (ESMs) to realistically represent the fjord bathymetry, coastlines, exchanges with the outside ocean, circulation and fine-scale processes occurring within the fjord and interactions at the ice shelf interface. FDG is currently at the first stage of development. The DG method provides FDG with high-order accuracy as well as geometrical flexibility, including the capacity to handle non-conforming adaptive mesh refinement to resolve the processes occurring near the ice-sheet/ocean interface without introducing prohibitive computational costs. Another benefit of this method is its excellent performance on multi- and many-core architectures, which allows for utilizing modern high performance computing systems for high-resolution simulations. The non-hydrostatic model of the incompressible Navier-Stokes equation will account for the stationary ice-shelf with sub-shelf ocean interaction, basal melting and subglacial meltwater influx and with boundary conditions at the surface to account for floating sea ice. The boundary conditions will be provided to FDG via a flux coupler to emulate the integration with an ESM. Initially, FDG will be tested for the Sermilik Fjord settings, using real bathymetry, boundary and initial conditions, and evaluated against available observations and other model results for this fjord. The overarching goal of the project is to be able to resolve the ice-sheet/ocean interactions around the entire coast of Greenland and two-way coupling with regional and global climate models such as the Regional Arctic System Model (RASM), Community Earth System Model (CESM) or Advanced Climate Model for Energy (ACME).
Invisible polynyas: Modulation of fast ice thickness by ocean heat flux on the Canadian polar shelf
NASA Astrophysics Data System (ADS)
Melling, Humfrey; Haas, Christian; Brossier, Eric
2015-02-01
Although the Canadian polar shelf is dominated by thick fast ice in winter, areas of young ice or open water do recur annually at locations within and adjacent to the fast ice. These polynyas are detectable by eye and sustained by wind or tide-driven ice divergence and ocean heat flux. Our ice-thickness surveys by drilling and towed electromagnetic sounder reveal that visible polynyas comprise only a subset of thin-ice coverage. Additional area in the coastal zone, in shallow channels and in fjords is covered by thin ice which is too thick to be discerned by eye. Our concurrent surveys by CTD reveal correlation between thin fast ice and above-freezing seawater beneath it. We use winter time series of air and ocean temperatures and ice and snow thicknesses to calculate the ocean-to-ice heat flux as 15 and 22 W/m2 at locations with thin ice in Penny Strait and South Cape Fjord, respectively. Near-surface seawater above freezing is not a sufficient condition for ocean heat to reach the ice; kinetic energy is needed to overcome density stratification. The ocean's isolation from wind under fast ice in winter leaves tides as the only source. Two tidal mechanisms driving ocean heat flux are discussed: diffusion via turbulence generated by shear at the under-ice and benthic boundaries, and the internal hydraulics of flow over topography. The former appears dominant in channels and the coastal zone and the latter in some silled fjords where and when the layering of seawater density permits hydraulically critical flow.
Canales-Aguirre, Cristian B; Ferrada-Fuentes, Sandra; Galleguillos, Ricardo; Hernández, Cristián E
2016-01-01
Marine environmental variables can play an important role in promoting population genetic differentiation in marine organisms. Although fjord ecosystems have attracted much attention due to the great oscillation of environmental variables that produce heterogeneous habitats, species inhabiting this kind of ecosystem have received less attention. In this study, we used Sprattus fuegensis, a small pelagic species that populates the inner waters of the continental shelf, channels and fjords of Chilean Patagonia and Argentina, as a model species to test whether environmental variables of fjords relate to population genetic structure. A total of 282 individuals were analyzed from Chilean Patagonia with eight microsatellite loci. Bayesian and non-Bayesian analyses were conducted to describe the genetic variability of S. fuegensis and whether it shows spatial genetic structure. Results showed two well-differentiated genetic clusters along the Chilean Patagonia distribution (i.e. inside the embayment area called TicToc, and the rest of the fjords), but no spatial isolation by distance (IBD) pattern was found with a Mantel test analysis. Temperature and nitrate were correlated to the expected heterozygosities and explained the allelic frequency variation of data in the redundancy analyses. These results suggest that the singular genetic differences found in S. fuegensis from inside TicToc Bay (East of the Corcovado Gulf) are the result of larvae retention bya combination of oceanographic mesoscale processes (i.e. the west wind drift current reaches the continental shelf exactly in this zone), and the local geographical configuration (i.e. embayment area, islands, archipelagos). We propose that these features generated an isolated area in the Patagonian fjords that promoted genetic differentiation by drift and a singular biodiversity, adding support to the existence of the largest marine protected area (MPA) of continental Chile, which is the Tic-Toc MPA.
NASA Astrophysics Data System (ADS)
Straneo, F.
2017-12-01
The widespread speed up of Greenland's glaciers, over the last two decades, was unpredicted, revealing major gaps in our understanding of how ice sheets respond to a changing climate. Increased submarine melting at the edge of glaciers has emerged as a key trigger - indicating that glacier/ocean exchanges must be accounted for in ice sheet variability reconstructions and predictions. In parallel, the increasing freshwater discharge into the ocean, associated with Greenland's ice loss, has the potential to impact the North Atlantic's circulation and climate. Thus glacier/ocean exchanges are also relevant to understanding drivers of past and future changes in the North Atlantic Ocean's circulation. Here, I present recent findings from observations collected at the edge of several Greenland glaciers that reveal how melting is caused by intrusions of warm, subtropical waters into the fjords and enhanced by the release of surface melt hundreds of meters below sea level. Similarly, hydrographic and tracer data collected at the glaciers' margins, and within the glacial fjords, reveal how Greenland meltwater are exported in the form of highly diluted glacially modified waters, often subsurface, and temporally lagged with respect to the meltwater release. These findings underline the need for improved representation of ice/ocean exchanges in models in order understand and predict the ice sheet's impact on the ocean and the ocean's impact on the ice sheet.
NASA Astrophysics Data System (ADS)
Stanley, V.; Schoephoester, P.; Lodge, R. W. D.
2016-12-01
The widespread speed up of Greenland's glaciers, over the last two decades, was unpredicted, revealing major gaps in our understanding of how ice sheets respond to a changing climate. Increased submarine melting at the edge of glaciers has emerged as a key trigger - indicating that glacier/ocean exchanges must be accounted for in ice sheet variability reconstructions and predictions. In parallel, the increasing freshwater discharge into the ocean, associated with Greenland's ice loss, has the potential to impact the North Atlantic's circulation and climate. Thus glacier/ocean exchanges are also relevant to understanding drivers of past and future changes in the North Atlantic Ocean's circulation. Here, I present recent findings from observations collected at the edge of several Greenland glaciers that reveal how melting is caused by intrusions of warm, subtropical waters into the fjords and enhanced by the release of surface melt hundreds of meters below sea level. Similarly, hydrographic and tracer data collected at the glaciers' margins, and within the glacial fjords, reveal how Greenland meltwater are exported in the form of highly diluted glacially modified waters, often subsurface, and temporally lagged with respect to the meltwater release. These findings underline the need for improved representation of ice/ocean exchanges in models in order understand and predict the ice sheet's impact on the ocean and the ocean's impact on the ice sheet.
NASA Astrophysics Data System (ADS)
Vagsheyg Erenbjerg, Sissal; Albretsen, Jon; Asplin, Lars; Joensen, Erna; Sandvik, Anne; Simonsen, Knud; Kaas, Eigil
2017-04-01
The location of the Faroe Islands on the Greenland-Scotland ridge puts the oceanography on the boundary of deep water and shelf and fjord dynamics. This placement in close proximity of the deep ocean currents, important for heat transport towards the Arctic, makes the Faroe Islands higly exposed to climate change. Therefore it is important to understand the interaction of deep water oceanography and fjord dynamics in general, to be able to predict potential impact, due to changes in ocean parameters. The Faroe Islands consist of 18 islands. The topographic characteristics are typical for an ice sheet shaped land surface with long and slim islands, steep mountain sides divided by narrow and relatively deep fjords. This highly complex topography is greatly influenced by wind conditions. Sundalagið separates the two largest islands: Streymoy and Eysturoy and has three fjordarms and two main basins. The northern part (SUN) is 15km long and 100m-1.6km wide. The sound is bound to the north by a 9m deep sill. Towards the south by a narrowing of a 100 meter wide and around four meter deep sill, depending on tidal conditions. The southern part (SUS) is not as clearly constricted but contains three major basins with depths ranging from 70-100m (Hansen et al., 1990). We have implemented a nested model system using high resolution bathymetry in the fjords and the entire shelf as well as the open-source hydrodynamical model ROMS (Regional Ocean Modeling System, http://myroms.org). The Faroe Islands model applications are using triply, one way nested grids with 800 → 160 → 32 meter resolutions in the horizontal. This gives us the opportunity to both simulate the deep water oceanography applying 800m resolution as well as the dynamics in the shallow regions using finer resolution models. A particular interest in the area is the influence of the tidal regime. In SUN the tidal dynamics are quite limited due to the location of an amphidromeice point in the Nolsoy fjord (M2=10.4cm (www.dmi.dk)) whereas SUN is heavily dominated by tidal dynamics (M2=63.1cm). The general observation is a more pronounced stratification in SUN and higher vertical mixing in the water column in SUS (2016 CTD mesurements). Our ROMS simulations are run for the year 2013 (only part of the year for the 32m resolution) and forced with high-resolution atmospheric conditions (WRF-1km), large-scale ocean fields (ROMS 4km) of currents, hydrography and sea level (Lien et al., 2014), global tides (TPXO7.2) and climatological freshwater discharges including the main rivers. In this study we validate the model simulations using in-situ data coverage (ACDP) in the local area. A well-functioning dynamical model system is highly important for the Faroe Islands where aquaculture is by far the greatest industry. Linking this to a particle tracking module will further increase the understanding of climate impact in the Faroes in particular with regards to the changes for the biological cycle and mitigation of sea lice (a challenging parasite for the aquaculture) by temperature changes.
NASA Astrophysics Data System (ADS)
McFall, B. C.; Fritz, H. M.
2013-12-01
Tsunamis generated by landslides and volcano flank collapse can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. Two different materials are used to simulate landslides to study the granulometry effects: naturally rounded river gravel and cobble mixtures. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1
Marine benthic habitat mapping of the West Arm, Glacier Bay National Park and Preserve, Alaska
Hodson, Timothy O.; Cochrane, Guy R.; Powell, Ross D.
2013-01-01
Seafloor geology and potential benthic habitats were mapped in West Arm, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, groundtruthed observations, and geological interpretations. The West Arm of Glacier Bay is a recently deglaciated fjord system under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the recently developed Coastal and Marine Ecological Classification Standard (CMECS) by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Due to the high flux of glacially sourced fines, mud is the dominant substrate within the West Arm. Water-column characteristics are addressed using a combination of CTD and circulation model results. We also present sediment accumulation data derived from differential bathymetry. These data show the West Arm is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The results of these analyses serve as a test of the CMECS classification scheme and as a baseline for ongoing and future mapping efforts and correlations between seafloor substrate, benthic habitats, and glacimarine processes.
NASA Astrophysics Data System (ADS)
Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.
2017-05-01
Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.
NASA Astrophysics Data System (ADS)
Cui, Xingqian; Bianchi, Thomas S.; Hutchings, Jack A.; Savage, Candida; Curtis, Jason H.
2016-03-01
Transport of particles plays a major role in redistributing organic carbon (OC) along coastal regions. In particular, the global importance of fjords as sites of carbon burial has recently been shown to be even more important than previously thought. In this study, we used six surface sediments from Fiordland, New Zealand, to investigate the transport of particles and OC based on density fractionation. Bulk, biomarker, and principle component analysis were applied to density fractions with ranges of <1.6, 1.6-2.0, 2.0-2.5, and >2.5 g cm-3. Our results found various patterns of OC partitioning at different locations along fjords, likely due to selective transport of higher density but smaller size particles along fjord head-to-mouth transects. We also found preferential leaching of certain biomarkers (e.g., lignin) over others (e.g., fatty acids) during the density fractionation procedure, which altered lignin-based degradation indices. Finally, our results indicated various patterns of OC partitioning on density fractions among different coastal systems. We further propose that a combination of particle size-density fractionation is needed to better understand transport and distribution of particles and OC.
Grange, Laura J; Smith, Craig R
2013-01-01
Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436-725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400-700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the structure, dynamics and climate-sensitivity of WAP subpolar fjord ecosystems.
Grange, Laura J.; Smith, Craig R.
2013-01-01
Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the structure, dynamics and climate-sensitivity of WAP subpolar fjord ecosystems. PMID:24312442
Submarine glaciated landscapes of central and northern British Columbia, Canada
NASA Astrophysics Data System (ADS)
Shaw, John; Lintern, Gwyn
2015-04-01
Recent systematic multibeam sonar mapping and ground-truthing surveys in the fjords and coastal waters of central and northern British Columbia, Canada, provide information on glacial processes associated with the Cordilleran Ice Sheet, and also on postglacial processes that have strongly modified the glacial terrain. During the last glacial maximum, ice covered the Coast Range, except for nunataks. Convergent streamlined glacial landforms in the Strait of Georgia testify to a strong flow of ice towards the southeast, between Vancouver Island and the mainland. During ice retreat, thick deposits of acoustically stratified glaciomarine mud were deposited in glacially over deepened basins. Retreat through the Douglas Channel fjord system was punctuated by still stands, resulting in a series of submarine moraines. Postglacial processes have created a suite of landforms that mask the primary glacial terrain: 1) Fjord floors host thick deposits of acoustically transparent postglacial mud with highly variable distribution: banks up to 80-m thick are commonly adjacent to erosional zones with glaciomarine mud exposed at the seafloor; 2) In this region of high precipitation and snowpack melt, numerous cone-shaped Holocene fan deltas developed on the fjord sidewalls transport coarse sediment to the fjord floors. Larger deltas are developed at fjord heads, notably at Kitimat and Kildala; 3) Submarine slope failures in this tectonically active area have resulted in a suite of mass transport deposits on sidewalls and fjord floors. The very large submarine slope failures at Camano Sound and KitKat Inlet occurred on the steep, rear facets of large transverse moraines, and involved the failure of glaciomarine sediment that moved into deeper basins, perhaps as a retrogressive failure. The ages of these events are unknown, although the presence of postglacial mud in the slide scar at Caamano suggests that the event at that location occurred in the late glacial or early Holocene. Also, sub-bottom profiling shows that some mass transport deposits apparent on the multibeam imagery are not recent, and are blanketed by postglacial mud. Thus, submarine slope failure has been occurring throughout postglacial time; 4) Large, detached bedrock blocks on the fjord sidewall are currently being investigated with a view to understanding their rates of movement. They are provisionally interpreted as creep features, similar to terrestrial sackung.
NASA Astrophysics Data System (ADS)
Montero, Paulina; Daneri, Giovanni; González, Humberto E.; Iriarte, Jose Luis; Tapia, Fabián J.; Lizárraga, Lorena; Sanchez, Nicolas; Pizarro, Oscar
2011-03-01
We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30'S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region. Depth-integrated gross primary production estimates were higher (0.4-3.8 g C m -2 d -1) in the productive season (October, February, and May), and lower (0.1-0.2 g C m -2 d -1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m -2 d -1 and 0.05 to 0.4 g C m -2 d -1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m -2 d -1 and 0.05 to 0.2 g C m -2 d -1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8-59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.
NASA Astrophysics Data System (ADS)
Przybylak, Rajmund; Araźny, Andrzej; Wyszyński, Przemysław; Budzik, Tomasz; Wawrzyniak, Tomasz
2016-04-01
The article presents preliminary results of studies into the spatial diversity of air temperature and relative humidity (overground layer, 2 m a.g.l.) in the area of the Hornsund fjord (S Spitsbergen, approx. 77°N), based on data collected between 1 July 2014 and 30 June 2015. The Hornsund fjord runs latitudinal along approx. 40 km and its average width is about 10 km. Numerous glaciers flow into the fjord and the mountain ridges around it often exceed 700 m a.s.l. Data series obtained from 11 sites equipped with automatic weather stations (Vaisala, Campbell, Davis) or HOBO temperature and humidity sensors were used. Two sites (Hornsund HOR and the Hans Glacier HG4) have been operating for years, whereas 9 new ones (Bogstranda BOG, Fugleberget FUG, Gnålodden GNA, Gåshamnoyra GAS, Hyttevika HYT, Lisbetdalen LIS, Ostrogradskijfjella OST, Treskelodden TRE and Wilczekodden WIL) were established within the Polish-Norwegian AWAKE-2 project. Three of the sites (BOG, GAS and OST) were damaged by polar bears, hence their measurement series are shorter. A substantial spatial diversity was found in the air temperature and relative humidity in the area, mostly influenced by elevation, type of surface and distance from the Greenland Sea's open water. During the year (July 2014 - June 2015), the areas of HYT (-1.1°C) and WIL (-1.9°C) were the warmest. Both sites are located on the west coast of the fjord. The HYT demonstrates the most favourable temperature conditions, being orographically sheltered from the east and its cold and dry air masses. The coldest sites were the mountain-top site of FUG (-5.9°C) and the glacier-located HG4 (-4.3°C). The low temperature at FUG resulted from its elevation (568 m a.s.l.), whereas at HG4 (184 m a.s.l) the glaciated surface also added up to the result. In the analysed period, the annual course of air temperature in the area had a clear minimum in February, when the lowest mean monthly values ranged from -9.4°C at HYT to -15.1°C at FUG. The highest temperature was recorded at all the sites in July, when its highest mean values were observed at GAS and HYT (6.1°C and 6.0°C, respectively), while the lowest occurred at FUG (2.4°C) and HG4 (3.1°C). The other meteorological element considered was relative humidity, which positively correlates with the course of air temperature. During the year, the most humid sites were those located at the mountain top (FUG) and on the Treskelen peninsula (TRE), towards the end of the fjord (94% and 91%, respectively). The lowest RH values were measured at HOR and HYT (80% in both). In the annual course, the lowest RH was observed in February with the lowest mean monthly values (74%) at HOR and HYT, and the highest at FUG (88%) and TRE (87%). As with air temperature, the highest relative humidity occurred in July. Its lowest mean values were recorded at HOR (87%), and the highest - at FUG (96%).
NASA Astrophysics Data System (ADS)
Kienholz, C.; Amundson, J. M.; Jackson, R. H.; Motyka, R. J.; Nash, J. D.; Sutherland, D.
2017-12-01
Tidewater glacier behavior is driven by poorly understood processes occurring at the ice-ocean interface, including sedimentation and erosion, iceberg calving, and submarine melting. These processes are inherently difficult to observe, calling for innovative field techniques and numerical models. As part of a multi-year field effort to constrain ocean-glacier heat and mass exchange, we deployed an array of high-rate time-lapse cameras (sampling intervals between 15 seconds and 2 minutes) to monitor the terminus of LeConte Glacier and its proglacial fjord. The camera array has operated continuously for more than a year. Our high sampling rates enable tracking of iceberg motion with optical flow algorithms, which have been used widely in computer vision but less so in glaciology and oceanography. Such algorithms track individual features (e.g., corners of icebergs), which is ideal for iceberg-rich fjords, where motion can vary substantially over short temporal and spatial scales (e.g., due to complex surface currents or different iceberg sizes). We process our data to quantify subdaily to seasonal patterns in surface currents and relate them to forcing from tides, wind, and glacier runoff. Flow is most variable close to the glacier terminus due to frequent calving events and turbulent plume dynamics. Farther down fjord, more consistent patterns emerge, driven by tides, wind, and runoff and altered by fjord geometry. Our tracking results compare favorably to and complement our Acoustic Doppler Current Profiler measurements from boats and moorings. Given their high spatial and temporal resolution, our observations will place important surface constraints on forthcoming hydrodynamic modeling efforts. The deployment of the cameras in a harsh environment and the corresponding image processing provided an opportunity to test hardware and software thoroughly, which will prove useful for similar systems at other glaciers.
Identifying the optimal depth for mussel suspended culture in shallow and turbid environments
NASA Astrophysics Data System (ADS)
Filgueira, Ramón; Grant, Jon; Petersen, Jens Kjerulf
2018-02-01
Bivalve aquaculture is commonly carried out in shallow water systems, which are susceptible to resuspension of benthic particulate matter by natural processes such as tidal currents, winds and wave action, as well as human activity. The resuspended material can alter the availability of food particles for cultured bivalves. The effect of resuspended material on bivalve bioenergetics and growth is a function of the quality and concentration of resuspended particles and background diet in the water column. Given the potential for positive or negative impacts on bivalve growth and consequently on farm productivity, farmers must position the cultured biomass at the appropriate depth to benefit from or mitigate the impact of this resuspended material. A combination of field measurements, a 1-D vertical resuspension model and a bioenergetic model for mussels based on Dynamic Energy Budget (DEB) theory has been carried out for a mussel farm in Skive Fjord, a shallow Danish fjord, with the aim of identifying the optimal depth for culture. Observations at the farm location revealed that horizontal advection is more important than vertical resuspension during periods with predominant Eastern winds. In addition, high background seston in the water column reduces the impact of resuspension on the available food for mussels. The simulation of different scenarios in terms of food availability suggested minimal effects of resuspension on mussel growth. Based on this finding and the fact that phytoplankton concentration, the main food source for mussels, is usually higher in the upper part of the water column, suspended culture in the top 3 m of the water column seems to be the optimal practice to produce mussels in Skive Fjord.
Sources and turnover of organic carbon and methane in fjord and shelf sediments off northern Norway
NASA Astrophysics Data System (ADS)
Sauer, Simone; Hong, Wei-Li; Knies, Jochen; Lepland, Aivo; Forwick, Matthias; Klug, Martin; Eichinger, Florian; Baranwal, Soma; Crémière, Antoine; Chand, Shyam; Schubert, Carsten J.
2016-10-01
To better understand the present and past carbon cycling and transformation processes in methane-influenced fjord and shelf areas of northern Norway, we compared two sediment cores from the Hola trough and from Ullsfjorden. We investigated (1) the organic matter composition and sedimentological characteristics to study the sources of organic carbon (Corg) and the factors influencing Corg burial, (2) pore water geochemistry to determine the contribution of organoclastic sulfate reduction and methanogenesis to total organic carbon turnover, and (3) the carbon isotopic signature of hydrocarbons to identify the carbon transformation processes and gas sources. High sedimentation and Corg accumulation rates in Ullsfjorden support the notion that fjords are important Corg sinks. The depth of the sulfate-methane-transition (SMT) in the fjord is controlled by the supply of predominantly marine organic matter to the sediment. Organoclastic sulfate reduction accounts for 60% of the total depth-integrated sulfate reduction in the fjord. In spite of the presence of ethane, propane, and butane, we suggest a purely microbial origin of light hydrocarbons in the sediments based on their low δ13C values. In the Hola trough, sedimentation and Corg accumulation rates changed during the deglacial-to-post-glacial transition from approximately 80 cm ka-1 to erosion at present. Thus, Corg burial in this part of the shelf is presently absent. Low organic matter content in the sediment and low rates of organoclastic sulfate reduction (only 3% of total depth-integrated sulfate reduction) entail that the shallow depth of the SMT is controlled mostly by ascending thermogenic methane from deeper sources.
Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard)
NASA Astrophysics Data System (ADS)
Meslard, Florian; Bourrin, François; Many, Gaël; Kerhervé, Philippe
2018-05-01
An experiment was carried out during summer 2015 in the inner part of the Kongsfjorden to study the inputs of meltwater and behaviour of associated suspended particles. We used a wide range of oceanographic instruments to assess the hydrological and hydrodynamic characteristics of coastal waters. The transfer of suspended particles occurs from a large surface plume fed by two main sources: the most important one is the upwelling of fresh and turbid water coming from a tide-water glacier: the Kronebreen, and the second one from a continental glacier: the Kongsvegen. We estimated that these two sources discharged about 2.48 ± 0.37 × 106 t of suspended sediments during the two months of melting. The major part of these sediments is deposited within the first kilometre due to flocculation phenomena. Flocculation is initiated below the surface turbid plume and is mainly caused by the salinity gradient and high suspended particle concentration. Finally, our estimates of suspended particle fluxes by a typical Arctic coastal glacier showed the need to consider suspended sediment fluxes from high-latitude areas into global budgets in the context of climate change.
Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK
Love, Katherine B; Hallet, Bernard; Pratt, Thomas L.; O'Neel, Shad
2016-01-01
To explore links between glacier dynamics, sediment yields and the accumulation of glacial sediments in a temperate setting, we use extensive glaciological observations for Columbia Glacier, Alaska, and new oceanographic data from the fjord exposed during its retreat. High-resolution seismic data indicate that 3.2 × 108 m3 of sediment has accumulated in Columbia Fjord over the past three decades, which corresponds to ~5 mm a−1 of erosion averaged over the glaciated area. We develop a general model to infer the sediment-flux history from the glacier that is compatible with the observed retreat history, and the thickness and architecture of the fjord sediment deposits. Results reveal a fivefold increase in sediment flux from 1997 to 2000, which is not correlated with concurrent changes in ice flux or retreat rate. We suggest the flux increase resulted from an increase in the sediment transport capacity of the subglacial hydraulic system due to the retreat-related steepening of the glacier surface over a known subglacial deep basin. Because variations in subglacial sediment storage can impact glacial sediment flux, in addition to changes in climate, erosion rate and glacier dynamics, the interpretation of climatic changes based on the sediment record is more complex than generally assumed.
Effect of fjord geometry on tidewater glacier stability
NASA Astrophysics Data System (ADS)
Åkesson, Henning; Nisancioglu, Kerim H.; Nick, Faezeh M.
2016-04-01
Many marine-terminating glaciers have thinned, accelerated and retreated during the last two decades, broadly consistent with warmer atmospheric and oceanic conditions. However, these patterns involve considerable spatial and temporal variability, with diverse glacier behavior within the same regions. Similarly, reconstructions of marine-terminating glaciers indicate highly asynchronous retreat histories. While it is well known that retrograde slopes can cause marine ice sheet instabilities, the effect of lateral drag and fjord width has received less attention. Here, we test the hypothesis that marine outlet glacier stability is largely controlled by fjord width, and to a less extent by regional climate forcing. We employ a dynamic flowline model on idealized glacier geometries (representative of different outlet glaciers) to investigate geometric controls on decadal and longer times scales. The model accounts for driving and resistive stresses of glacier flow as well as along-flow stress transfer. It has a physical treatment of iceberg calving and a time-adaptive grid allowing for continuous tracking of grounding-line migration. We apply changes in atmospheric and oceanic forcing and show how wide and narrow fjord sections foster glacier (in)stabilities. We also evaluate the effect of including a surface mass balance - elevation feedback in such a setting. Finally, the relevance of these results to past and future marine-terminating glacier stability is discussed.
Refsgaard, A; Jacobsen, T; Jacobsen, B; Ørum, J-E
2007-01-01
The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse the effects of specific, localized basin water management plans. The paper also includes a land rent modelling approach which can be used to choose the most cost-effective measures and the location of these measures. As a forerunner to the use of basin-scale models in WFD basin water management plans this project demonstrates the potential and limitations of comprehensive, integrated modelling tools.
Nonlinear Response of Iceberg Melting to Ocean Currents
NASA Astrophysics Data System (ADS)
Cenedese, C.; FitzMaurice, A.; Straneo, F.
2017-12-01
Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg on the melt plumes generated along the iceberg sides is not fully captured by existing parameterizations. We present a series of novel laboratory experiments to determine the dependence of side submarine melt rates on a background flow. We show, for the first time, that two distinct regimes of melting exist depending on the melt plume behavior (side-attached or side-detached). These two regimes produce a nonlinear dependence of melt rate on velocity, and different distributions of meltwater in the water column. Iceberg meltwater may either be confined to a thin surface layer, when the melt plumes are side-attached, or mixed down to the iceberg draft, when the melt plumes are side-detached. In a two-layer vertically sheared flow the average flow speed in existing melt parameterizations gives an underestimate of the submarine melt rate, in part due to the nonlinearity of the dependence of melt rate on flow speed, but also because vertical shear in the velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. Including this nonlinear velocity dependence in melting parameterizations applied to observed icebergs increases iceberg side melt in the attached regime, improving agreement with observations of iceberg submarine melt rates. We show that both attached and detached plume regimes are relevant to icebergs observed in a Greenland fjord.
NASA Astrophysics Data System (ADS)
Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.; Cheseby, M.; Albert, S. W.; Wiest, J.
2016-12-01
An international and interdisciplinary expedition to Nares Strait and Petermann Fjord, Northwest Greenland, onboard the Swedish Icebreaker Oden July-September 2015 (OD1507) sought to understand the Holocene history of the Petermann glacial system among other research objectives. Petermann Glacier, which terminates as a floating ice-tongue in Petermann Fjord, is thought to be especially sensitive to ice-ocean interactions. While limited historical observations dating back to 1876 suggest the Petermann Ice Tongue extends about 70-90 km from the grounding-line, large calving events in 2010 and 2012 reduced the ice-tongue extent to about 45 km from the grounding-line. A suite of 14 marine sediment cores recovered a range of glacio-marine facies that form an along fjord (15-80 km from the grounding-line) and an across fjord depth (473-1041 meters water depth) transect. CT scans clearly identify four primary fjord facies, including bioturbated, IRD-rich, laminated and mud with stratified graded sand layers. The latter of these occurs near the modern grounding-line. Additionally, a new MATLAB routine is used to quantify clasts >2 mm in size from the CT scans. XRF sediment geochemical changes mirror magnetic mineral concentrations and are driven by varying contribution of Ca-rich and Ca-poor sources, which we interpret as a reflection of the mixing of the local carbonate rocks and crystalline basement excavated by the ice sheet. Initial paleomagnetic results isolate a strong and stable characteristic remanent magnetization which show remarkable similarity to paleosecular variation (PSV) recorded in nearby mid-late Holocene varved lakes on Ellesmere Island. This non-destructive dataset provides robust correlations, indicating a coherent and dynamic record of changes in the Petermann glacial system during the late Holocene, including evidence for a significant grounding-line retreat followed by the growth and relative paleo-extent of the modern Petermann Ice Tongue.
A Sensitivity Analysis of Triggers and Mechanisms of Mass Movements in Fjords
NASA Astrophysics Data System (ADS)
Overeem, I.; Lintern, G.; Hill, P.
2016-12-01
Fjords are characterized by rapid sedimentation as they typically drain glaciated river catchments with high seasonal discharges and large sediment evacuation rates. For this reason, fjords commonly experience submarine mass movements; failures of the steep delta front that trigger tsunamis, and turbidity currents or debris flows. Repeat high-resolution bathymetric surveys, and in-situ process measurements collected in fjords in British Columbia, Canada, indicate that mass movements occur many times per year in some fjords and are more rare and of larger magnitude in other fjords. We ask whether these differences can be attributed to river discharge characteristics or to grainsize characteristics of the delivered sediment. To test our ideas, we couple a climate-driven river sediment transport model, HydroTrend, and a marine sedimentation model, Sedflux2D, to explore the triggers of submarine failures and mechanisms of subsequent turbidity and debris flows. HydroTrend calculates water and suspended sediment transport on a daily basis based on catchment characteristics, glaciated area, lakes and temperature and precipitation regime. Sedflux uses the generated river time-series to simulate delta plumes, failures and mass movements with separate process models. Model uncertainty and parameter sensitivity are assessed using Dakota Tools, which allows for a systematic exploration of the effects of river basin characteristics and climate scenarios on occurrence of hyperpycnal events, delta front sedimentation rate, submarine pore pressure, failure frequency and size, and run-out distances. Preliminary simulation results point to the importance of proglacial lakes and lakes abundance in the river basin, which has profound implications for event-based sediment delivery to the delta apex. Discharge-sediment rating curves can be highly variable based on these parameters. Distinction of turbidity currents and debris flows was found to be most sensitive to both earthquake frequency and delta front grainsize. As a first step we compare these model experiments against field data from the Squamish River and Delta in Howe Sound, BC.
Ferrada-Fuentes, Sandra; Galleguillos, Ricardo; Hernández, Cristián E.
2016-01-01
Marine environmental variables can play an important role in promoting population genetic differentiation in marine organisms. Although fjord ecosystems have attracted much attention due to the great oscillation of environmental variables that produce heterogeneous habitats, species inhabiting this kind of ecosystem have received less attention. In this study, we used Sprattus fuegensis, a small pelagic species that populates the inner waters of the continental shelf, channels and fjords of Chilean Patagonia and Argentina, as a model species to test whether environmental variables of fjords relate to population genetic structure. A total of 282 individuals were analyzed from Chilean Patagonia with eight microsatellite loci. Bayesian and non-Bayesian analyses were conducted to describe the genetic variability of S. fuegensis and whether it shows spatial genetic structure. Results showed two well-differentiated genetic clusters along the Chilean Patagonia distribution (i.e. inside the embayment area called TicToc, and the rest of the fjords), but no spatial isolation by distance (IBD) pattern was found with a Mantel test analysis. Temperature and nitrate were correlated to the expected heterozygosities and explained the allelic frequency variation of data in the redundancy analyses. These results suggest that the singular genetic differences found in S. fuegensis from inside TicToc Bay (East of the Corcovado Gulf) are the result of larvae retention bya combination of oceanographic mesoscale processes (i.e. the west wind drift current reaches the continental shelf exactly in this zone), and the local geographical configuration (i.e. embayment area, islands, archipelagos). We propose that these features generated an isolated area in the Patagonian fjords that promoted genetic differentiation by drift and a singular biodiversity, adding support to the existence of the largest marine protected area (MPA) of continental Chile, which is the Tic-Toc MPA. PMID:27505009
Pathways of Petermann Glacier meltwater, Greenland
NASA Astrophysics Data System (ADS)
Heuzé, Céline; Wåhlin, Anna; Johnson, Helen; Münchow, Andreas
2016-04-01
Radar and satellite observations suggest that the floating ice shelf of Petermann Glacier loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic Water into the fjord and under the ice shelf. The fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise on board I/B Oden in August 2015. Two methods are used to detect the meltwater from Petermann: a mathematical one that provides the concentration of ice shelf meltwater, and a geometrical one to distinguish the meltwater from Petermann and the meltwater from other ice shelves. The meltwater from Petermann mostly circulates on the north side of the fjord. At the sill, 0.5 mSv of meltwater leave the fjord, mostly on the northeastern side between 100 and 350 m depth, but also in the central channel, albeit with a lesser concentration. Meltwater from Petermann is found in all the casts in Hall Basin, notably north of the sill by Greenland coast. The geometrical method reveals that the casts closest to the Canadian side mostly contain meltwater from other, unidentified glaciers. As Atlantic Water warms up, it is key to monitor Greenland melting glaciers and track their meltwater to properly assess their impact on the ocean circulation and sea level rise.
Arimitsu, Mayumi L.; Piatt, John F.; Romano, Marc D.; van Pelt, Thomas I.
2011-01-01
The Kittlitz's Murrelet Brachyramphus brevirostris is a candidate species for listing under the US Endangered Species Act because of its apparent declines within core population areas of coastal Alaska. During the summers of 2006-2008, we conducted surveys in marine waters adjacent to Kenai Fjords National Park, Alaska, to estimate the current population size of Kittlitz's and Marbled murrelets B. marmoratus and examine seasonal variability in distribution within coastal fjords. We also evaluated historical data to estimate trend. Based on an average of point estimates, we find the recent population (95% CI) of Kittlitz's Murrelet to be 716 (353-1080) individuals, that of Marbled Murrelet to be 6690 (5427-7953) individuals, and all Brachyramphus murrelets combined to number 8186 (6978-9393) birds. Within-season density estimates showed Kittlitz's Murrelets generally increased between June and July, but dispersed rapidly by August, while Marbled Murrelets generally increased throughout the summer. Trends in Kittlitz's and Marbled murrelet populations were difficult to assess with confidence. Methods for counting or sampling murrelets varied in early decades of study, while in later years there is uncertainty due to highly variable counts among years, which may be due in part to timing of surveys relative to the spring bloom in coastal waters of the Gulf of Alaska.
Scott, Clinton T.; Slack, John F.; Kelley, Karen Duttweiler
2017-01-01
Black shales of the Late Devonian to Early Mississippian Bakken Formation are characterized by high concentrations of organic carbon and the hyper-enrichment (> 500 to 1000s of mg/kg) of V and Zn. Deposition of black shales resulted from shallow seafloor depths that promoted rapid development of euxinic conditions. Vanadium hyper-enrichments, which are unknown in modern environments, are likely the result of very high levels of dissolved H2S (~ 10 mM) in bottom waters or sediments. Because modern hyper-enrichments of Zn are documented only in Framvaren Fjord (Norway), it is likely that the biogeochemical trigger responsible for Zn hyper-enrichment in Framvaren Fjord was also present in the Bakken basin. With Framvaren Fjord as an analogue, we propose a causal link between the activity of phototrophic sulfide oxidizing bacteria, related to the development of photic-zone euxinia, and the hyper-enrichment of Zn in black shales of the Bakken Formation.
NASA Astrophysics Data System (ADS)
McNabb, R. W.; Womble, J. N.; Prakash, A.; Gens, R.; Ver Hoef, J.
2014-12-01
Tidewater glaciers play an important role in many landscape and ecosystem processes in fjords, terminating in the sea and calving icebergs and discharging meltwater directly into the ocean. Tidewater glaciers provide floating ice for use as habitat for harbor seals (Phoca vitulina richardii) for resting, pupping, nursing, molting, and avoiding predators. Tidewater glaciers are found in high concentrations in Southeast and Southcentral Alaska; currently, many of these glaciers are retreating or have stabilized in a retracted state, raising questions about the future availability of ice in these fjords as habitat for seals. Our primary objective is to investigate the relationship between harbor seal distribution and ice availability at an advancing tidewater glacier in Johns Hopkins Inlet, Glacier Bay National Park, Alaska. To this end, we use a combination of visible and infrared aerial photographs, object-based image analysis (OBIA), and statistical modeling techniques. We have developed a workflow to automate the processing of the imagery and the classification of the fjordscape (e.g., individual icebergs, brash ice, and open water), providing quantitative information on ice coverage as well as properties not typically found in traditional pixel-based classification techniques, such as block angularity and seal density across the fjord. Reflectance variation in the red channel of the optical images has proven to be the most important first-level criterion to separate open water from floating ice. This first-level criterion works well in areas without dense brash ice, but tends to misclassify dense brash ice as single icebergs. Isolating these large misclassified regions and applying a higher reflectance threshold as a second-level criterion helps to isolate individual ice blocks surrounded by dense brash ice. We present classification results from surveys taken during June and August, 2007-2013, as well as preliminary results from statistical modeling of the spatio-temporal distribution of seals and ice. OBIA is a powerful method of habitat classification and offers an effective approach to compare the spatio-temporal distribution and availability of glacial ice habitats for harbor seals in tidewater glacial fjords.
The Hornsund fjord - modeling of the general circulation, heat exchange and water masses transport.
NASA Astrophysics Data System (ADS)
Przyborska, Anna; Jakacki, Jaromir; Kosecki, Szymon; Sundfjord, Arild
2015-04-01
The MIKE3D hydrodynamic model has been implemented for diagnosis an ecosystem status in the most southern fjord of the Svalbard Archipelago. The model is based on MIKE 3 Flow Model FM that uses flexible mesh grid. The spatial discretization in solutions of equations is performed by the finite element method. The regional scale of the model implicated implementation of external data at the lateral boundary region. In our case Flather's boundary condition let us to force the model with combined information. At the same time tidal ordinate and barotropic component of velocity that reflects the West Spitsbergen Current are implemented. Also salinity and temperature were nested at the boundary area. The upper boundary conditions was also introduced. The data for the boundary were taken from Global Tide Model (all tidal components), an 800 m ROMS simulation of the Svalbard area made by the Norwegian Institute of Marine Research (bartoropic velocities, temperature and salinity), European Centre for Medium Weather Forecast (ECMWF) and also from Global Data Assimilation System (GDAS). Implemented model was validated and the mean circulation and its seasonal variability will be presented. Also influence of the shelf water masses on the fjord will be discussed. Fresh water transport from glaciers, run off and snow will be estimated. Results are based on 5 years simulation (2005-2010) This work was partially performed in the frame of the projects GAME (DEC-2012/04/A/NZ8/00661) and AWAKE2 (Pol-Nor/198675/17/2013)
Subtidal circulation in a deep-silled fjord: Douglas Channel, British Columbia
NASA Astrophysics Data System (ADS)
Wan, Di; Hannah, Charles G.; Foreman, Michael G. G.; Dosso, Stan
2017-05-01
Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in the fjord system that connects the town of Kitimat to Queen Charlotte Sound and Hecate Strait. A 200 m depth sill divides Douglas Channel into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected at three moorings deployed during 2013-2015. The deep flows are dominated by a yearly renewal that takes place from May/June to early September. A dense bottom layer with a thickness of 100 m that cascades through the system at the speed of 0.1-0.2 m s-1, which is consistent with gravity currents. Estuarine flow dominates the circulation above the sill depth, and the observed landward net volume flux suggests that it is necessary to include the entire complex channel network to fully understand the estuarine circulation in the system. The influence of the wind forcing on the subtidal circulation is not only at the surface, but also at middepth. The along-channel wind dominates the surface current velocity fluctuations and the sea level response to the wind produces a velocity signal at 100-120 m in the counter-wind direction. Overall, the circulation in the seasonal and the meteorological bands is a mix of estuarine flow, direct wind-driven flow, and the barotropic and baroclinic responses to changes to the surface pressure gradient caused by the wind stress.
Davidsen, J.G.; Rikardsen, A.H.; Halttunen, E.; Thorstad, E.B.; Okland, F.; Letcher, B.H.; Skarhamar, J.; Naesje, T.F.
2009-01-01
To study smolt behaviour and survival of a northern Atlantic salmon Salmo salar population during river descent, sea entry and fjord migration, 120 wild S. salar were tagged with acoustic tags and registered at four automatic listening station arrays in the mouth of the north Norwegian River Alta and throughout the Alta Fjord. An estimated 75% of the post-smolts survived from the river mouth, through the estuary and the first 17 km of the fjord. Survival rates in the fjord varied with fork length (LF), and ranged from 97??0 to 99??5% km-1. On average, the post-smolts spent 1??5 days (36 h, range 11-365 h) travelling from the river mouth to the last fjord array, 31 km from the river mouth. The migratory speed was slower (1??8 LF s-1) in the first 4 km after sea entry compared with the next 27 km (3??0 LF s-1). Post-smolts entered the fjord more often during the high or ebbing tide (70%). There was no clear diurnal migration pattern within the river and fjord, but most of the post-smolts entered the fjord at night (66%, 2000-0800 hours), despite the 24 h daylight at this latitude. The tidal cycle, wind-induced currents and the smolts' own movements seemed to influence migratory speeds and routes in different parts of the fjord. A large variation in migration patterns, both in the river and fjord, might indicate that individuals in stochastic estuarine and marine environments are exposed to highly variable selection regimes, resulting in different responses to environmental factors on both temporal and spatial scales. Post-smolts in the northern Alta Fjord had similar early marine survival rates to those observed previously in southern fjords; however, fjord residency in the north was shorter. ?? 2009 The Fisheries Society of the British Isles.
Arimitsu, Mayumi L.; Piatt, John F.; Romano, Marc D.; Madison, E.N.; Conaway, Jeffrey S.
2010-01-01
Kittlitz’s murrelets (Brachyramphus brevirostris) and marbled murrelets (B. marmoratus) are small diving seabirds and are of management concern because of population declines in coastal Alaska. In 2006–08, we conducted a study in Kenai Fjords National Park, south-central Alaska, to estimate the recent population size of Brachyramphus murrelets, to evaluate productivity based on juvenile to adult ratios during the fledgling season, and to describe and compare their use of marine habitat. We also attempted a telemetry study to examine Kittlitz’s murrelet nesting habitat requirements and at-sea movements. We estimated that the Kittlitz’s murrelet population was 671 ± 144 birds, and the marbled murrelet population was 5,855 ± 1,163 birds. Kittlitz’s murrelets were limited to the heads of three fjords with tidewater glaciers, whereas marbled murrelets were more widely distributed. Population estimates for both species were lower in 2007 than in 2006 and 2008, possibly because of anomalous oceanographic conditions that may have delayed breeding phenology. During late season surveys, we observed few hatch-year marbled murrelets and only a single hatch-year Kittlitz’s murrelet over the course of the study. Using radio telemetry, we found a likely Kittlitz’s murrelet breeding site on a mountainside bordering one of the fjords. We never observed radio-tagged Kittlitz’s murrelets greater than 10 kilometer from their capture sites, suggesting that their foraging range during breeding is narrow. We observed differences in oceanography between fjords, reflecting differences in sill characteristics and orientation relative to oceanic influence. Acoustic biomass, a proxy for zooplankton and small schooling fish, generally decreased with distance from glaciers in Northwestern Lagoon, but was more variable in Aialik Bay where dense forage fish schools moved into glacial areas late in the summer. Pacific herring (Clupea pallasii), capelin (Mallotus villosus) and Pacific sand lance (Ammodytes hexapterus) were important forage species for murrelets in Kenai Fjords. Euphausiids also may have been an important forage resource for Kittlitz’s murrelets in turbid glacial outflows in shallow waters during daytime. Marbled murrelets generally were more tolerant to a wider range of foraging habitat conditions although they tended to avoid the ice-covered silty waters close to glaciers. In contrast, Kittlitz’s murrelets preferred areas where the influence of tidewater glaciers was the greatest and where their distribution was determined largely by prey availability. This work highlights an important link between interannual variability in murrelet counts at sea and mesoscale oceanographic conditions that influence marine productivity and prey distribution.
Modern sedimentation patterns in Potter Cove, King George Island, Antarctica
NASA Astrophysics Data System (ADS)
Hass, H. Christian; Kuhn, Gerhard; Wölfl, Anne-Cathrin; Wittenberg, Nina; Betzler, Christian
2013-04-01
IMCOAST among a number of other initiatives investigates the modern and the late Holocene environmental development of south King George Island with a strong emphasis on Maxwell Bay and its tributary fjord Potter Cove (maximum water depth: about 200 m). In this part of the project we aim at reconstructing the modern sediment distribution in the inner part of Potter Cove using an acoustic ground discrimination system (RoxAnn) and more than136 ground-truth samples. Over the past 20 years the air temperatures in the immediate working area increased by more than 0.6 K (Schloss et al. 2012) which is less than in other parts of the West Antarctic Peninsula (WAP) but it is still in the range of the recovery of temperatures from the Little Ice Age maximum to the beginning of the 20th century. Potter Cove is a small fjord characterized by a series of moraine ridges produced by a tidewater glacier (Fourcade Glacier). Presumably, the farthest moraine is not much older than about 500 years (LIA maximum), hence the sediment cover is rather thin as evidenced by high resolution seismic data. Since a few years at least the better part of the tidewater glacier retreated onto the island's mainland. It is suggested that such a fundamental change in the fjord's physiography has also changed sedimentation patterns in the area. Potter Cove is characterized by silty-clayey sediments in the deeper inner parts of the cove. Sediments are coarser (fine to coarse sands and boulders) in the shallower areas; they also coarsen from the innermost basin to the mouth of the fjord. Textural structures follow the seabed morphology, i.e. small v-shaped passages through the moraine ridges. The glacier still produces large amounts of turbid melt waters that enter the cove at various places. We presume that very fine-grained sediments fall out from the meltwater plumes and are distributed by mid-depth or even bottom currents, thus suggesting an anti-estuarine circulation pattern. Older sediments that are more distal to the glacier front and sediments in shallower places (e.g. on top of the moraine ridges) become increasingly overprinted by coarser sediments from the shallow areas of the fjord. These areas are prone to wave induced winnowing effects as well as disturbances by ploughing icebergs. It can be concluded that coarsening of the fjord sediments will continue while the supply of fine-grained meltwater sediments might cease due to exhaustion of the reservoirs.
NASA Astrophysics Data System (ADS)
Millan, R.; Rignot, E.; Mouginot, J.; Wood, M.; Bjørk, A. A.; Morlighem, M.
2018-03-01
We employ National Aeronautics and Space Administration (NASA)'s Operation IceBridge high-resolution airborne gravity from 2016, NASA's Ocean Melting Greenland bathymetry from 2015, ice thickness from Operation IceBridge from 2010 to 2015, and BedMachine v3 to analyze 20 major southeast Greenland glaciers. The results reveal glacial fjords several hundreds of meters deeper than previously thought; the full extent of the marine-based portions of the glaciers; deep troughs enabling warm, salty Atlantic Water (AW) to reach the glacier fronts and melt them from below; and few shallow sills that limit the access of AW. The new oceanographic and topographic data help to fully resolve the complex pattern of historical ice front positions from the 1930s to 2017: glaciers exposed to AW and resting on retrograde beds have retreated rapidly, while glaciers perched on shallow sills or standing in colder waters or with major sills in the fjords have remained stable.
Ocean forcing drives glacier retreat sometimes
NASA Astrophysics Data System (ADS)
Bassis, J. N.; Ultee, E.; Ma, Y.
2015-12-01
Observations show that marine-terminating glaciers respond to climate forcing nonlinearly, with periods of slow or negligible glacier advance punctuated by abrupt, rapid retreat. Once glacier retreat has initiated, glaciers can quickly stabilize with a new terminus position. Alternatively, retreat can be sustained for decades (or longer), as is the case for Columbia Glacier, Alaska where retreat initiated ~1984 and continues to this day. Surprisingly, patterns of glacier retreat show ambiguous or even contradictory correlations with atmospheric temperature and glacier surface mass balance. Despite these puzzles, observations increasingly show that intrusion of warm subsurface ocean water into fjords can lead to glacier erosion rates that can account for a substantial portion of the total mass lost from glaciers. Here we use a simplified flowline model to show that even relatively modest submarine melt rates (~100 m/a) near the terminus of grounded glaciers can trigger large increases in iceberg calving leading to rapid glacier retreat. However, the strength of the coupling between submarine melt and calving is a strong function of the geometry of the glacier (bed topography, ice thickness and glacier width). This can lead to irreversible retreat when the terminus is thick and grounded deeply beneath sea level or result in little change when the glacier is relatively thin, grounded in shallow water or pinned in a narrow fjord. Because of the strong dependence on glacier geometry, small perturbations in submarine melting can trigger glaciers in their most advanced—and geometrically precarious—state to undergo sudden retreat followed by much slower re-advance. Although many details remain speculative, our model hints that some glaciers are more sensitive than others to ocean forcing and that some of the nonlinearities of glacier response to climate change may be attributable to variations in difficult-to-detect subsurface water temperatures that need to be better understood.
NASA Astrophysics Data System (ADS)
Chauché, N.; Hubbard, A.; Gascard, J.-C.; Box, J. E.; Bates, R.; Koppes, M.; Sole, A.; Patton, H.
2013-11-01
Warm sub-polar mode water (SPMW) has been identified as a primary driver of mass loss of marine terminating glaciers draining the Greenland Ice Sheet (GrIS) yet, the specific mechanisms by which SPMW interacts with these tidewater termini remain uncertain. We present oceanographic data from Rink Glacier (RG) and Store Glacier (SG) fjords, two major marine outlets draining the western sector of the GrIS into Baffin Bay over the contrasting melt-seasons of 2009 and 2010. Submarine melting occurs wherever ice is in direct contact with warmer water and the consistent presence of 2.8 °C SPMW adjacent to both ice fronts below 400 m throughout all surveys indicates that melting is maintained by a combination of molecular diffusion and large scale, weak convection, diffusional (hereafter called ubiquitous) melting. At shallower depths (50-200 m), cold, brine-enriched water (BEW) formed over winter appears to persist into the summer thereby buffering this melt by thermal insulation. Our surveys reveal four main modes of glacier-ocean interaction, governed by water depth and the rate of glacier runoff water (GRW) injected into the fjord. Deeper than 200 m, submarine melt is the only process observed, regardless of the intensity of GRW or the depth of injection. However, between the surface and 200 m depth, three further distinct modes are observed governed by the GRW discharge. When GRW is weak (≲1000 m3 s-1), upward motion of the water adjacent to the glacier front is subdued, weak forced or free convection plus diffusional submarine melting dominates at depth, and seaward outflow of melt water occurs from the glacier toe to the base of the insulating BEW. During medium intensity GRW (∼1500 m3 s-1), mixing with SPMW yields deep mixed runoff water (DMRW), which rises as a buoyant plume and intensifies local submarine melting (enhanced buoyancy-driven melting). In this case, DMRW typically attains hydrostatic equilibrium and flows seaward at an intermediate depth of ∼50-150 m, taking the BEW with it. Strong GRW (≳ 2000 m3 s-1) yields vigorous, buoyant DMRW, which has sufficient vertical momentum to break the sea surface before sinking and flowing seaward, thereby leaving much of the BEW largely intact. Whilst these modes of glacier-ocean interaction significantly affect the ice-ocean interaction in the upper water column (0-200 m), below 200 m both RG and SG are dominated by the weak forced convection/diffusional (herein termed ubiquitous) melting due to the presence of SPMW.
Bathymetry in Petermann fjord from Operation IceBridge aerogravity
NASA Astrophysics Data System (ADS)
Tinto, Kirsty J.; Bell, Robin E.; Cochran, James R.; Münchow, Andreas
2015-07-01
Petermann Glacier is a major glacier in northern Greenland, maintaining one of the few remaining floating ice tongues in Greenland. Monitoring programs, such as NASA's Operation IceBridge have surveyed Petermann Glacier over several decades and have found it to be stable in terms of mass balance, velocity and grounding-line position. The future vulnerability of this large glacier to changing ocean temperatures and climate depends on the ocean-ice interactions beneath its floating tongue. These cannot currently be predicted due to a lack of knowledge of the bathymetry underneath the ice tongue. Here we use aerogravity data from Operation IceBridge, together with airborne radar and laser data and shipborne bathymetry-soundings to model the bathymetry beneath the Petermann ice tongue. We find a basement-cored inner sill at 540-610 m depth that results in a water cavity with minimum thickness of 400 m about 25 km from the grounding line. The sill is coincident with the location of the melt rate minimum. Seaward of the sill the fjord is strongly asymmetric. The deepest point occurs on the eastern side of the fjord at 1150 m, 600 m deeper than on the western side. This asymmetry is due to a sedimentary deposit on the western side of the fjord. A 350-410 m-deep outer sill, also mapped by marine surveys, marks the seaward end of the fjord. This outer sill is aligned with the proposed Last Glacial Maximum (LGM) grounding-line position for Petermann Glacier. The inner sill likely provided a stable pinning point for the grounding line in the past, punctuating the retreat of Petermann Glacier since the LGM.
Salbu, B; Nikitin, A I; Strand, P; Christensen, G C; Chumichev, V B; Lind, B; Fjelldal, H; Bergan, T D; Rudjord, A L; Sickel, M; Valetova, N K; Føyn, L
1997-08-25
Russian-Norwegian expeditions to the Kara Sea and to dumping sites in the fjords of Novaya Zemlya have taken place annually since 1992. In the fjords, dumped objects were localised with sonar and ROV equipped with underwater camera. Enhanced levels of 137Cs, 60Co, 90Sr and 239,240Pu in sediments close to dumped containers in the Abrosimov and Stepovogo fjords demonstrated that leaching from dumped material has taken place. The contamination was inhomogeneously distributed and radioactive particles were identified in the upper 10 cm of the sediments. 137Cs was strongly associated with sediments, while 90Sr was more mobile. The contamination was less pronounced in the areas where objects presumed to be reactor compartments were located. The enhanced level of radionuclides observed in sediments close to the submarine in Stepovogo fjord in 1993 could, however, not be confirmed in 1994. Otherwise, traces of 60Co in sediments were observed in the close vicinity of all localised objects. Thus, the general level of radionuclides in waters, sediments and biota in the fjords is, somewhat higher or similar to that of the open Kara Sea, i.e. significantly lower than in other adjacent marine systems (e.g. Irish Sea, Baltic Sea, North Sea). The main sources contributing to radioactive contamination were global fallout from atmospheric nuclear weapon tests, river transport from Ob and Yenisey, marine transport of discharges from Sellafield, UK and fallout from Chernobyl. Thus, the radiological impact to man and the arctic environment of the observed leakages from dumped radioactive waste today, is considered to be low. Assuming all radionuclides are released from the waste, preliminary assessments indicate a collective dose to the world population of less than 50 man Sv.
Urgeles, R.; Locat, J.; Lee, H.J.; Martin, F.
2002-01-01
In 1996 a major flood occurred in the Saguenay region, Quebec, Canada, delivering several km3 of sediment to the Saguenay Fjord. Such sediments covered large areas of the, until then, largely contaminated fjord bottom, thus providing a natural capping layer. Recent swath bathymetry data have also shown that sediment landslides are widely present in the upper section of the Saguenay Fjord, and therefore, should a new event occur, it would probably expose the old contaminated sediments. Landslides in the Upper Saguenay Fjord are most probably due to earthquakes given its proximity to the Charlevoix seismic region and to that of the 1988 Saguenay earthquake. In consequence, this study tries to characterize the permanent ground deformations induced by different earthquake scenarios from which shallow sediment landslides could be triggered. The study follows a Newmark analysis in which, firstly, the seismic slope performance is assessed, secondly, the seismic hazard analyzed, and finally an evaluation of the seismic landslide hazard is made. The study is based on slope gradients obtained from EM1000 multibeam bathymetry data as well as water content and undrained shear strength measurements made in box and gravity cores. Ground motions integrating local site conditions were simulated using synthetic time histories. The study assumes the region of the 1988 Saguenay earthquake as the most likely source area for earthquakes capable of inducing large ground motions in the Upper Saguenay region. Accordingly, we have analyzed several shaking intensities to deduce that generalized sediment displacements will begin to occur when moment magnitudes exceed 6. Major displacements, failure, and subsequent landslides could occur only from earthquake moment magnitudes exceeding 6.75. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rebolledo, Lorena; Lange, Carina; Muñoz, Práxedes; Salamanca, Marco
2014-05-01
The Chilean fjords are excellent archives of paleoearthquakes, tsunamis and landslides (St-Onge et al., 2012 in Sedimentary Geology 243-244: 89-107). Here we report on new sedimentological and geochemical evidence of past earthquakes in sediments of the Reloncavi fjord, Northern Patagonia (41° S, 72° W), during the last ~1000 years. We recovered four sediment cores from the Reloncaví fjord (RH-5B, RH-5C, RH-6B, RH7B, water depth range = 90-260 m; core length range = 45-75 cm). Age models were based on 210Pb, AMS-14C and the first appearance of the diatom Rhizosolenia setigera cf. pungens in the fossil record as statigraphic marker. The cores span the last ~122 to 800 years of sedimentation with sedimentation rates ranging between 0.1 and 0.24 cm yr-1. The cores revealed evidence of turbidites associated with the historical earthquakes of 1960, 1837, 1737 and 1575 AD, and an earlier period for which there is no historical information, 1200-1400 AD. The turbidites exhibit a grading-up pattern with sand layers, and are characterized by a decrease in organic carbon and biogenic opal, an increase in the C/N molar ratio, negative values of δ13Corg(average -27),and an increase in the relative abundance of Paralia sulcata, a diatom associated with sandy environments, being the turbite layers mainly freshwater in origen. We suggest that these turbidite layers were triggered by past earthquakes that produced movement of land from the cliff areas that surround the Reloncaví fjord. Funding: Project FONDECYT # 11110103 and COPAS Sur-Austral project PFB-31.
NASA Astrophysics Data System (ADS)
Vargas, Cristian A.; Cuevas, L. Antonio; Silva, Nelson; González, Humberto E.; De Pol-Holz, Ricardo; Narváez, Diego A.
2018-01-01
The Chilean Patagonia constitutes one of the most important and extensive fjord systems worldwide, therefore can be used as a natural laboratory to elucidate the pathway of both organic and inorganic matter in the receiving environment. In this study we use data collected during an intensive oceanographic cruise along the Magellan Strait into the Almirantazgo Fjord in southern Patagonia to evaluate how different sources of dissolved inorganic carbon (DIC) and recycling may impact particulate organic carbon (POC) δ13C and influence the nutrients and carbonate system spatial distribution. The carbonate system presented large spatial heterogeneity. The lowest total alkalinity and DIC were associated to freshwater dilution observed near melting glaciers. The δ13CDIC analysis suggests that most DIC in the upper 50 m depth was not derived from terrestrial organic matter remineralization. 13C-depleted riverine and ice-melting DIC influence the DIC pool along the study area, but due to that DIC concentration from rivers and glaciers is relatively low, atmospheric carbon contribution or biological processes seem to be more relevant. Intense undersaturation of CO2 was observed in high chlorophyll waters. Respired DIC coming from the bottom waters seems to be almost insignificant for the inorganic carbon pool and therefore do not impact significantly the stable carbon isotopic composition of dissolved organic carbon and POC in the upper 50 m depth. Considering the combined effect of cold and low alkalinity waters due to ice melting, our results highlight the importance of these processes in determining corrosive waters for CaCO3 and local acidification processes associated to calving glacier in fjord ecosystems.
Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach.
McNabb, Robert W; Womble, Jamie N; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E
2016-01-01
Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability.
Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach
McNabb, Robert W.; Womble, Jamie N.; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E.
2016-01-01
Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice (x¯ = 45.2%, SD = 41.5%), water (x¯ = 52.7%, SD = 42.3%), and icebergs (x¯ = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability. PMID:27828967
Trusel, Luke D.; Cochrane, Guy R.; Etherington, Lisa L.; Powell, Ross D.; Mayer, Larry A.
2010-01-01
Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes.
Bhaskar, Jane T; Tripathy, S C; Sabu, P; Laluraj, C M; Rajan, S
2016-04-01
Phytoplankton species distribution and composition were determined by using microscopy and pigment ratios in the Kongsfjorden during early autumn 2012. Variation in sea surface temperature (SST) was minimal and matched well with satellite-derived SST. Nutrients were generally limited. Surface phytoplankton abundance ranged from 0.21 × 10(3) to 10.28 × 10(3) cells L(-1). Phytoplankton abundance decreased with depth and did not show any significant correlation with chlorophyll a (chl a). Column-integrated phytoplankton cell counts (PCC) ranged from 94.3 × 10(6) cells m(-2) (Kf4) to 13.7 × 10(6) cells m(-2) (Kf5), while chl a was lowest at inner part of the fjord (6.3 mg m(-2)) and highest towards the mouth (24.83 mg m(-2)). Biomass from prymnesiophytes and raphidophytes dominated at surface and 10 m, respectively. The contribution of Bacillariophyceae to biomass was low. Generally, heterotrophic dinoflagellates were great in abundance (12.82 %) and ubiquitous in nature and were major contributors to biomass. Various chl pigments (chl b, chl c, phaeopigments (phaeo)) were measured to obtain pigment/chl a ratios to ascertain phytoplankton composition. Phaeo were observed only in inner fjord. Chl b:a ratios and microscopic observations indicated dominance of Chlorophyceae at greater depths than surface. Furthermore, microscopic observations confirmed dominance of chl c containing algae throughout the fjord. The study indicates that pigment ratios can be used as a tool for preliminary identification of major phytoplankton groups. However, under the presence of a large number of heterotrophic dinoflagellates such as Gymnodinium sp. and Gyrodinium sp., pigment signatures need to be supplemented by microscopic observations.
NASA Astrophysics Data System (ADS)
Moyer, Alexis N.; Nienow, Peter W.; Gourmelen, Noel; Sole, Andrew J.; Slater, Donald A.
2017-12-01
Oceanic forcing of the Greenland Ice Sheet is believed to promote widespread thinning at tidewater glaciers, with submarine melting proposed as a potential trigger of increased glacier calving, retreat, and subsequent acceleration. The precise mechanism(s) driving glacier instability, however, remain poorly understood, and while increasing evidence points to the importance of submarine melting, estimates of melt rates are uncertain. Here we estimate submarine melt rate by examining freeboard changes in the seasonal ice tongue of Kangiata Nunaata Sermia at the head of Kangersuneq Fjord, southwest Greenland. We calculate melt rates for March and May 2013 by differencing along-fjord surface elevation, derived from high-resolution TanDEM-X digital elevation models, in combination with ice velocities derived from offset tracking applied to TerraSAR-X imagery. Estimated steady state melt rates reach up to 1.4 ± 0.5 m d^-1 near the glacier grounding line, with mean values of up to 0.8 ± 0.3 and 0.7 ± 0.3 m d^1 for the eastern and western parts of the ice tongue, respectively. Melt rates decrease with distance from the ice front and vary across the fjord. This methodology reveals spatio-temporal variations in submarine melt rates at tidewater glaciers which develop floating termini, and can be used to improve our understanding of ice-ocean interactions and submarine melting in glacial fjords.
Carbon cycling in a high-arctic marine ecosystem - Young Sound, NE Greenland
NASA Astrophysics Data System (ADS)
Rysgaard, Søren; Nielsen, Torkel Gissel
2006-10-01
Young Sound is a deep-sill fjord in NE Greenland (74°N). Sea ice usually begins to form in late September and gains a thickness of ∼1.5 m topped with 0-40 cm of snow before breaking up in mid-July the following year. Primary production starts in spring when sea ice algae begin to flourish at the ice-water interface. Most biomass accumulation occurs in the lower parts of the sea ice, but sea ice algae are observed throughout the sea ice matrix. However, sea ice algal primary production in the fjord is low and often contributes only a few percent of the annual phytoplankton production. Following the break-up of ice, the immediate increase in light penetration to the water column causes a steep increase in pelagic primary production. Usually, the bloom lasts until August-September when nutrients begin to limit production in surface waters and sea ice starts to form. The grazer community, dominated by copepods, soon takes advantage of the increased phytoplankton production, and on an annual basis their carbon demand (7-11 g C m -2) is similar to phytoplankton production (6-10 g C m -2). Furthermore, the carbon demand of pelagic bacteria amounts to 7-12 g C m -2 yr -1. Thus, the carbon demand of the heterotrophic plankton is approximately twice the estimated pelagic primary production, illustrating the importance of advected carbon from the Greenland Sea and from land in fuelling the ecosystem. In the shallow parts of the fjord (<40 m) benthic primary producers dominate primary production. As a minimum estimate, a total of 41 g C m -2 yr -1 is fixed by primary production, of which phytoplankton contributes 15%, sea ice algae <1%, benthic macrophytes 62% and benthic microphytes 22%. A high and diverse benthic infauna dominated by polychaetes and bivalves exists in these shallow-water sediments (<40 m), which are colonized by benthic primary producers and in direct contact with the pelagic phytoplankton bloom. The annual benthic mineralization is 32 g C m -2 yr -1 of which megafauna accounts for 17%. In deeper waters benthic mineralization is 40% lower than in shallow waters and megafauna, primarily brittle stars, accounts for 27% of the benthic mineralization. The carbon that escapes degradation is permanently accumulated in the sediment, and for the locality investigated a rate of 7 g C m -2 yr -1 was determined. A group of walruses (up to 50 adult males) feed in the area in shallow waters (<40 m) during the short, productive, ice-free period, and they have been shown to be able to consume <3% of the standing stock of bivalves ( Hiatella arctica, Mya truncata and Serripes Groenlandicus), or half of the annual bivalve somatic production. Feeding at greater depths is negligible in comparison with their feeding in the bivalve-rich shallow waters.
Reproduction of the cold-water coral Primnoella chilensis (Philippi, 1894)
NASA Astrophysics Data System (ADS)
Rossin, Ashley M.; Waller, Rhian G.; Försterra, Gunter
2017-07-01
This study examined the reproduction of a cold-water coral, Primnoella chilensis (Philippi, 1894) from the Comau and Reñihué fjords in Chilean Patagonia. Samples were collected in September and November of 2012 and April, June, and September of 2013 from three sites within the two fjords. The sexuality, reproductive mode, spermatocyst stage, oocyte size, and fecundity were determined using histological techniques. This species is gonochoristic with one aberrant hermaphrodite identified in this study. Reproduction was found to be seasonal, with the initiation of oogenesis in September and suggested a broadcast spawning event between June and September. The maximum oocyte size was 752.96 μm, suggesting a lecithotrophic larvae. The maximum fecundity was 36 oocytes per polyp. Male individuals were only found in April and June. In June, all four spermatocyst stages were present. This suggests that spermatogenesis requires less time than oogenesis in P. chilensis.
Evidence of local and regional freshening of Northeast Greenland coastal waters.
Sejr, Mikael K; Stedmon, Colin A; Bendtsen, Jørgen; Abermann, Jakob; Juul-Pedersen, Thomas; Mortensen, John; Rysgaard, Søren
2017-10-13
The supply of freshwater to fjord systems in Greenland is increasing as a result of climate change-induced acceleration in ice sheet melt. However, insight into the marine implications of the melt water is impaired by lack of observations demonstrating the fate of freshwater along the Greenland coast and providing evaluation basis for ocean models. Here we present 13 years of summer measurements along a 120 km transect in Young Sound, Northeast Greenland and show that sub-surface coastal waters are decreasing in salinity with an average rate of 0.12 ± 0.05 per year. This is the first observational evidence of a significant freshening on decadal scale of the waters surrounding the ice sheet and comes from a region where ice sheet melt has been less significant. It implies that ice sheet dynamics in Northeast Greenland could be of key importance as freshwater is retained in southward flowing coastal currents thus reducing density of water masses influencing major deep water formation areas in the Subarctic Atlantic Ocean. Ultimately, the observed freshening could have implications for the Atlantic meridional overturning circulation.
NASA Astrophysics Data System (ADS)
Barba, M.; Willis, M. J.; Tiampo, K. F.; Lynett, P. J.; Mätzler, E.; Thorsøe, K.; Higman, B. M.; Thompson, J. A.; Morin, P. J.
2017-12-01
We use a combination of geodetic imaging techniques and modelling efforts to examine the June 2017 Karrat Fjord, West Greenland, landslide and tsunami event. Our efforts include analysis of pre-cursor motions extracted from Sentinal SAR interferometry that we improved with high-resolution Digital Surface Models derived from commercial imagery and geo-coded Structure from Motion analyses. We produce well constrained estimates of landslide volume through DSM differencing by improving the ArcticDEM coverage of the region, and provide modeled tsunami run-up estimates at villages around the region, constrained with in-situ observations provided by the Greenlandic authorities. Estimates of run-up at unoccupied coasts are derived using a blend of high resolution imagery and elevation models. We further detail post-failure slope stability for areas of interest around the Karrat Fjord region. Warming trends in the region from model and satellite analysis are combined with optical imagery to ascertain whether the influence of melting permafrost and the formation of small springs on a slight bench on the mountainside that eventually failed can be used as indicators of future events.
Cornelissen, Gerard; Schaanning, Morten; Gunnarsson, Jonas S; Eek, Espen
2016-04-01
The longer-term effect (3-5 y) of thin-layer capping on in situ sediment-to-surface water fluxes was monitored in a large-scale field experiment in the polychlorinated dibenzodioxin and dibenzofuran (PCDD/F) contaminated Grenlandfjords, Norway (4 trial plots of 10,000 to 40,000 m(2) at 30 to 100 m water depth). Active caps (designed thickness 2.5 cm) were established in 2 fjords, consisting of dredged clean clay amended with powdered activated carbon (PAC) from anthracite. These active caps were compared to 2 nonactive caps in one of the fjords (designed thickness 5 cm) consisting of either clay only (i.e., without PAC) or crushed limestone. Sediment-to-water PCDD/F fluxes were measured in situ using diffusion chambers. An earlier study showed that during the first 2 years after thin-layer capping, flux reductions relative to noncapped reference fields were more extensive at the fields capped with nonactive caps (70%-90%) than at the ones with PAC-containing caps (50%-60%). However, the present work shows that between 3 and 5 years after thin-layer capping, this trend was reversed and cap effectiveness in reducing fluxes was increasing to 80% to 90% for the PAC caps, whereas cap effectiveness of the nonactive caps decreased to 20% to 60%. The increasing effectiveness over time of PAC-containing "active" caps is explained by a combination of slow sediment-to-PAC mass transfer of PCDD/Fs and bioturbation by benthic organisms. The decreasing effectiveness of "nonactive" limestone and clay caps is explained by deposition of contaminated particles on top of the caps. The present field data indicate that the capping efficiency of thin active caps (i.e., enriched with PAC) can improve over time as a result of slow diffusive PCDD/F transfer from sediment to PAC particles and better mixing of the PAC by bioturbation. © 2015 SETAC.
δ13C Analysis of Dissolved Organic Carbon in Eastern Canadian Coastal Waters
NASA Astrophysics Data System (ADS)
Gelinas, Y.; Barber, A.
2016-12-01
The application of carbon stable isotope analysis on dissolved organic carbon (δ13C-DOC) from natural seawater samples has been limited owing to the difficulty of such analysis, with order of magnitude differences between interfering ions and analyte concentrations. High temperature catalytic oxidation allows for the separation of interferences from the organic carbon by precipitation on quartz chips upstream from the oxidation catalyst. Unlike wet chemical oxidation, where salts inhibit the oxidation of organic matter to CO2 via side reactions between the salt anions and the persulfate oxidizing agent, high temperature combustion ensures complete organic matter oxidation in a stream of O2. Using a programmable chemical trap to switch carrier gasses from O2 to He, the OI 1030C combustion unit can be coupled to and IRMS, allowing for the analysis of low DOC content saline waters with relatively high throughput. The analytical limitations and large water volumes traditionally required for these types of analyses have prevented any large-scale δ13C-DOC studies. Here we present DOC concentrations and δ13C-DOC signatures for surface and bottom waters obtained along Canada's East Coast. Included in the study are samples from the Esquiman channel (between Newfoundland and Labrador), Lake Melville, the Saglek and Nachvak Fjords, the Hudson Strait and finally covering the salinity gradient across the Gulf of the St. Lawrence, the St. Lawrence Estuary and the Saguenay Fjord. Measured δ13C-DOC signatures ranged from predominantly marine values of -21.3 ± 0.6 ‰ (vs. VPDB) off the coast of Newfoundland to predominantly terrestrial signatures of -25.8 ± 0.1‰ in Lake Melville. Overall, proper blank subtraction using the isotope mass balance equation and four replicate injections are crucial for the collection of meaningful high quality δ13C-DOC signatures on natural abundance, seawater samples.
Methane oxidation in Saanich Inlet during summer stratification
NASA Technical Reports Server (NTRS)
Ward, B. B.; Kilpatrick, K. A.; Wopat, A. E.; Minnich, E. C.; Lidstrom, M. E.
1989-01-01
Saanich Inlet, British Columbia, an fjord on the southeast coast of Vancouver Island, typically stratifies in summer, leading to the formation of an oxic-anoxic interface in the water column and accumulation of methane in the deep water. The results of methane concentration measurements in the water column of the inlet at various times throughout the summer months in 1983 are presented. Methane gradients and calculated diffusive fluxes across the oxic-anoxic interface increased as the summer progressed. Methane distribution and consumption in Saanich Inlet were studied in more detail during August 1986. At this time, a typical summer stratification with an oxic-anoxic interface around 140 m was present. At the interface, steep gradients in nutrient concentrations, bacterial abundance and methane concentration were observed. Methane oxidation was detected in the aerobic surface waters and in the anaerobic deep layer, but highest rates occurred in a narrow layer at the oxic-anoxic interface. Estimated methane oxidation rates were suffcient to consume 100 percent of the methane provided by diffusive flux from the anoxic layer. Methane oxidation is thus a mechanism whereby atmospheric flux from anoxic waters is minimized.
NASA Astrophysics Data System (ADS)
Muenchow, A.; Falkner, K. K.; Melling, H.; Johnson, H. L.; Huntley, H. S.; Ryan, P.; Friends Of Petermann
2010-12-01
Petermann Glacier at 81 N latitude is a major outlet glacier adjacent to Nares Strait. It terminates in a long (70 km), narrow (16 km) and thin (50 m) floating tongue and has a grounding line more than 500 m below sea level. A calving event in 2010 reduced the floating area by 25% and produced a single 240 km2 ice island currently moving south in Nares Strait where it will likely interact with island to potentially create a temporary polynya in Nares Strait. The 2010 calving from Petermann Glacier contributes <10% to its mass balance as more than 80% is lost due to basal melting by the ocean. Hence the largely unexplored physics at the ice-ocean interface determine how a changing climate impacts this outlet glacier. Conducting exploratory surveys inside Petermann Fjord in 2003, 2007, and 2009, we find a 1100 m deep fjord connected to Nares Strait via a sill at 350-450 m depth. The fjord receives about 3 times the amount of heat required for the basal melt rates. Furthermore, limited data and analytical modeling suggests a 3-dimensional circulation over the upper 300-m of the water column with a coastally trapped buoyant outflow. We integrate these findings with more complete oceanic time series data from an array moored in Nares Strait from 2003 through 2009 near 80.5 N. In the past Nares Strait and Petermann Fjord were covered by land fast sea ice during the 9-10 month long winter season. Archeological and remotely sensed records indicate that an ice bridge formed regularly at the southern end of Nares Strait creating the North-Water polynya near 79 N latitude. Since 2006 this ice bridge has largely failed to form, leading, perhaps, to the occasional formation of a secondary ice bridge 300 km to the north where Nares Strait connects to the Arctic Ocean. However, this ice bridge appears to form for shorter periods only. Consequently Arctic sea ice can now exit the Arctic in winter via pathways to the west of Greenland all year. We speculate that this changed ocean and sea ice regime in Nares Strait and the Arctic Ocean may contribute to the recently observed calving events in Petermann Fjord.
Greenland's glacial fjords and their role in regional biogeochemical dynamics.
NASA Astrophysics Data System (ADS)
Crosby, J.; Arndt, S.
2017-12-01
Greenland's coastal fjords serve as important pathways that connect the Greenland Ice Sheet (GrIS) and the surrounding oceans. They export seasonal glacial meltwater whilst being significant sites of primary production. These fjords are home to some of the most productive ecosystems in the world and possess high socio-economic value via fisheries. A growing number of studies have proposed the GrIS as an underappreciated yet significant source of nutrients to surrounding oceans. Acting as both transfer routes and sinks for glacial nutrient export, fjords have the potential to act as significant biogeochemical processors, yet remain underexplored. Critically, an understanding of the quantitative contribution of fjords to carbon and nutrient budgets is lacking, with large uncertainties associated with limited availability of field data and the lack of robust upscaling approaches. To close this knowledge gap we developed a coupled 2D physical-biogeochemical model of the Godthåbsfjord system, a sub-Arctic sill fjord in southwest Greenland, to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Glacial meltwater is found to be a key driver of fjord-scale circulation patterns, whilst tracer simulations reveal the relative nutrient contributions from meltwater-driven upwelling and meltwater export from the GrIS. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum, demonstrating the complex pattern of carbon and nutrient cycling at this critical land-ocean interface.
NASA Astrophysics Data System (ADS)
St-Onge, Guillaume; Chapron, Emmanuel; Mulsow, Sandor; Salas, Marcos; Viel, Matias; Debret, Maxime; Foucher, Anthony; Mulder, Thierry; Winiarski, Thierry; Desmet, Marc; Costa, Pedro J. M.; Ghaleb, Bassam; Jaouen, Alain; Locat, Jacques
2012-01-01
High-resolution seismic profiles along with physical and sedimentological properties of sediment cores from the Saguenay (Eastern Canada) and Reloncavi (Chile) Fjords allowed the identification of several decimeter to meter-thick turbidites. In both fjords, the turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M > 7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M ~ 8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In the Saguenay Fjord, the earthquake-triggered turbidites are sometimes underlying a hyperpycnite associated with the rapid breaching and draining of a natural dam formed by earthquake-triggered landslides. Similar hyperpycnal floods were also recorded in historical and continental geological archives for the 1960 and 1575 AD Chilean subduction earthquakes, highlighting the risk of such flood events several weeks or months after main earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, this paper also emphasizes the sensitivity of fjords to record historic and pre-historic seismicity.
NASA Astrophysics Data System (ADS)
Lequy, Emeline; Ibrom, Andreas; Ambus, Per; Massad, Raia-Silvia; Markager, Stiig; Asmala, Eero; Garnier, Josette; Gabrielle, Benoit; Loubet, Benjamin
2015-04-01
The greenhouse gas nitrous oxide (N2O) mainly originates in direct emissions from agricultural soils due to microbial reactions stimulated by the use of nitrogen fertilisers. Indirect N2O emissions from water systems due to nitrogen leaching and deposition from crop fields range between 26 and 37% of direct agricultural emissions, indicating their potential importance and uncertainty (Reay et al. 2012). The study presented here couples a top-down approach with eddy covariance (EC) and a bottom-up approach using different models and measurements. A QCL sensor at 96-m height on a tall tower measures the emissions of N2O from 1100 ha of crop fields and from the south part of the Roskilde fjord, in a 5-km radius area around the tall tower at Roskilde, Denmark. The bottom-up approach includes ecosystem modelling with CERES-EGC for the crops and PaSIM for the grasslands, and the N2O fluxes from the Roskilde fjord are derived from N2O sea water concentration measurements. EC measurements are now available from July to December 2014, and indicate a magnitude of the emissions from the crop fields around 0.2 mg N2O-N m-2 day-1 (range -9 to 5) which is consistent with the CERES-EGC simulations and calculations using IPCC emission factors. N2O fluxes from the Roskilde fjord in May and July indicated quite constant N2O concentrations around 0.1 µg N L-1 despite variations of nitrate and ammonium in the fjord. The calculated fluxes from these concentrations and the tall tower measurements consistently ranged between -7 and 6 mg N2O-N m-2 day-1. The study site also contains a waste water treatment plant, whose direct emissions will be measured in early 2015 using a dynamic plume tracer dispersion method (Mønster et al. 2014). A refined source attribution methodology together with more measurements and simulations of the N2O fluxes from the different land uses in this study site will provide a clearer view of the dynamics and budgets of N2O at the regional scale. The complementarity between these bottom-up and top-down approaches and their usefulness to disentangle direct and indirect N2O fluxes will also be discussed. Acknowledgements: This work was funded by the EU-FP7 InGOS project. References: Mønster JG, Samuelsson J, Kjeldsen P, Rella CW, Scheutz C. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements - A sensitivity analysis based on multiple field surveys. Waste Management. 2014 Aug;34(8):1416-28. Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, et al. Global agriculture and nitrous oxide emissions. Nature Clim Change. 2012 Jun;2(6):410-6.
NASA Astrophysics Data System (ADS)
Kubiszyn, A. M.; Wiktor, J. M.; Wiktor, J. M.; Griffiths, C.; Kristiansen, S.; Gabrielsen, T. M.
2017-05-01
We investigated the size and trophic structure of the annual planktonic protist community structure in the ice-free Adventfjorden in relation to environmental factors. Our high-resolution (weekly to monthly) study was conducted in 2012, when warm Atlantic water was advected into the fjord in winter and summer. We observed a distinct seasonality in the protist communities. The winter protist community was characterised by extremely low levels of protist abundance and biomass (primarily Dinophyceae, Ciliophora and Bacillariophyceae) in a homogenous water column. In the second half of April, the total protist abundance and biomass rapidly increased, thus initiating the spring bloom in a still well-mixed water column. The spring bloom was initially dominated by the prymnesiophyte Phaeocystis pouchetii and Bacillariophyceae (primarily from the genera Thalassiosira, Fragilariopsis and Chaetoceros) and was later strictly dominated by Phaeocystis colonies. When the bloom terminated in mid-June, the community shifted towards flagellates (Dinophyceae, Ciliophora, Cryptophyceae and nanoflagellates 3-7 μm in size) in a stratified, nutrient-depleted water column. Decreases in the light intensity decreased the protist abundance and biomass, and the fall community (Dinophyceae, Cryptophyceae and Bacillariophyceae) was followed by the winter community.
The history of hexachlorobenzene accumulation in Svalbard fjords.
Pouch, A; Zaborska, A; Pazdro, K
2018-05-24
In the present study, we investigated the spatial and historical trends of hexachlorobenzene (HCB) contamination in dated sediments of three Svalbard fjords (Kongsfjorden, Hornsund, Adventfjorden) differing in environmental conditions and human impact. HCB concentrations ranging from below limit of quantification (6.86 pg/g d.w.) to 143.99 pg/g d.w. were measured. The highest concentrations were measured in two surface sediment layers of the core collected in Hornsund near the melting glacier. The lowest concentrations of HCB were measured in Adventfjorden, suggesting that local source of HCB is not significant and global transport processes are the major transport pathways. The history of HCB deposition did not fully reflect the history of HCB emission (largest in 1950s and 1960s). In case of several sediment cores, the HCB enrichment in surface (recent) sediments was noticed. This can indicate importance of secondary sources of HCB, e.g., the influx of HCB accumulated over decades on the surface of glaciers. Detected levels of HCB were generally low and did not exceed background concentration levels; thus, a negative effect on benthic organisms is not expected.
NASA Astrophysics Data System (ADS)
Porter, D. F.; Turrin, M.; Tinto, K. J.; Giulivi, C. F.; Cochran, J. R.; Bell, R. E.
2014-12-01
Warming ocean waters around Greenland have been implicated, along with warmer air temperatures, in the rapid increase of melt of the tidewater glaciers that drain the ice sheet. Most available regional oceanographic measurements have been collected during the summer seasons and are concentrated near the largest and most accessible glaciers. In order to gain a more comprehensive picture of the changing environment around the entirety of Greenland, more fjords, especially in the north, must be sampled. In July 2014, we travelled to Kullorsuaq in Northwest Greenland in order to foster a partnership with the local community to obtain new hydrographic data from CTD casts near Alison Glacier (74.6N, 57W). The terminus of this glacier abruptly retreated 10 km between 2000 and 2006. Although adequate observations from that time period are unavailable, our recently collected temperature and salinity data suggests that the deep water near Alison is similar to the waters further south, where near-synchronous ocean warming and glacial acceleration has been documented. Over the course of two sampling days, a hand-operated winch from a small boat was used to make standard CTD casts in front of Alison Glacier. We find evidence of glacial and mélange melt and the signature of both Polar and Atlantic Water masses at depth. Along-fjord casts illustrate how the ocean waters are modified as they circulate in and out of the fjord and the interaction of this water with the melting glacial front. At 500m depths, ocean temperatures are about 3°C above the in-situ freezing point of seawater, suggesting a possible influence of warm ocean waters on the mass loss of Alison Glacier. Using NASA Operation IceBridge and satellite altimetry data, we relate our new hydrographic data to the observed recent changes in Alison Glacier. An additional important result is that this short field campaign uncovered the possibility of working with local Greenlandic communities to aid scientists in both environmental monitoring and scientific discovery. Plans are underway to collaborate with the same and other communities in Greenland to take additional oceanographic measurements throughout the year.
NASA Astrophysics Data System (ADS)
Millan, R.; Rignot, E. J.; Morlighem, M.; Bjork, A. A.; Mouginot, J.; Wood, M.
2017-12-01
Southeast Greenland has been one of the largest contributors to ice mass loss in Greenland in part because of significant changes in glacier dynamics. The leading hypothesis for the changes in glacier dynamics is that enhanced thermal forcing from the ocean has dislodged a number of glaciers from their anchoring positions and some of them retreated rapidly along a reverse bed. The glaciers response has been observed to vary significantly from one fjord to the next, but until now there was not enough data to understand or interpret these changes. In particular, there was no data on glacier bed topography and seafloor bathymetry in the fjords. Here we present the results of new fjord mapping by the NASA Ocean Melting Greenland mission combined with a recent high-resolution airborne gravity survey by NASA Operation IceBridge. We combine these data with a reconstruction of the bed using a mass conservation approach upstream extending into the glacial fjords for the first time. In the fjord and along the ice-ocean transition, we employ a 3D inversion of gravity data to infer the bed elevation along a set of 9 survey boxes spanning south of Helheim Glacier to the southern tip of Southeast Greenland. We combine the results with an analysis of the glacier front history since the 1930's and Conductivity Temperature Depth data obtained in the fjord by OMG in 2016. The data reveals bed elevations several 100-m deeper than previously thought, for almost all the glaciers, up to 500 m for some of them. For many glaciers, the bed profiles help to completely understand the history of retreat of the glaciers. For instance, glaciers stranded on sills have been stable; glaciers on a reverse slope have retreated rapidly; and glaciers with a normal slope have retreated slowly. The mapping also helps document the extent of the marine portion of the glacier basins. In many of the fjords, we document the presence of warm, salty Atlantic Water which fuels large melt rates. We employ simulations from the MITgcm model to estimate the melt rates and further interpret the glacier retreat pattern. In addition, we estimate that more than half of the glaciers surveyed in most detail is very likely to retreat rapidly in the near future because they stand neat retrograde slope. These glaciers will contribute further to the mass loss from this part of Greenland into the ocean.
Olsen, Marianne; Schaanning, Morten Thorne; Braaten, Hans Fredrik Veiteberg; Eek, Espen; Moy, Frithjof E; Lydersen, Espen
2018-01-01
Macrophytes are shown to affect the microbial activity in different aqueous environments, with an altering of the sediment cycling of mercury (Hg) as a potential effect. Here, we investigated how a meadow with permanently submerged macrophytes in a contaminated brackish fjord in southern Norway influenced the conditions for sulfate reducing microbial activity, the methyl-Hg (MeHg) production and the availability of MeHg. Historically discharged Hg from a chlor-alkali plant (60-80tons, 1947-1987) was evident through high Hg concentrations (491mgTot-Hgkg -1 , 268μgMeHgkg -1 ) in intermediate sediment depths (10-20cm) outside of the meadow, with reduced concentrations within the meadow. Natural recovery of the fjord was revealed by lower sediment surface concentrations (1.9-15.5mgTot-Hgkg -1 , 1.3-3.2μgMeHgkg -1 ). Within the meadow, vertical gradients of sediment hydrogen sulfide (H 2 S) E h and pH suggested microbial sulfate reduction in 2-5cm depths, coinciding with peak values of relative MeHg levels (0.5% MeHg). We assume that MeHg production rates was stimulated by the supply and availability of organic carbon, microbial activity and a sulfide oxidizing agent (e.g. O 2 ) within the rhizosphere. Following this, % MeHg in sediment (0-5cm) within the meadow was approximately 10× higher compared to outside the meadow. Further, enhanced availability of MeHg within the meadow was demonstrated by significantly higher fluxes (p<0.01) from sediment to overlying water (0.1-0.6ngm -2 d -1 ) compared to sediment without macrophytes (0.02-0.2ngm -2 d -1 ). Considering the productivity and species richness typical for such habitats, submerged macrophyte meadows located within legacy Hg contaminated sediment sites may constitute important entry points for MeHg into food webs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stenberg, Erik; Ezhova, Ekaterina; Cenedese, Claudia; Brandt, Luca
2017-04-01
We the report results of large eddy simulations of a turbulent buoyant plume in a configuration providing an idealized model of subglacial discharge from a submarine glacier in stratifications typical of Greenland Fjords. We neglect a horizontal momentum of the plume and assume that its influence on the plume dynamics is small and important only close to the source. Moreover, idealized models have considered the plume adjacent to the glacier as a half-conical plume (e.g., [1]). Thus, to compare the results for such plume with the classical plume theory, developed for free plumes entraining ambient fluid from all directions, it is convenient to add the second half-conical part and consider a free plume with double the total discharge as a model. Given the estimate of the total subglacial discharge for Helheim Glacier in Sermilik Fjord [2], we perform simulations with double the total discharge in order to investigate the dynamics of the flow in typical winter and summer stratifications in Greenland fjords [3]. The plume is discharged from a round source of various diameters. In winter, when the stratification is similar to an idealised two-layers case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates non-linear internal waves which are able to mix this layer even if the plume does not penetrate to the surface. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions of the plume parameters in the weakly stratified lower layer up to the pycnocline. [1] Mankoff, K. D., F. Straneo, C. Cenedese, S. B. Das, C. D. Richards, and H. Singh, 2016: Structure and dynamics of a subglacial discharge plume in a Greenland Fjord. J. Geophys. Res., 121, doi:10.1002/2016JC011764. [2] Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118, 2492-2506. [3] Straneo, F., R. Curry, D. Sutherland, G. Hamilton, C. Cenedese, K. Vage, and L. Stearns, 2011: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geosci., 4, 322-327.
A submarine landslide source for the devastating 1964 Chenega tsunami, southern Alaska
Brothers, Daniel; Haeussler, Peter J.; Lee Liberty,; David Finlayson,; Geist, Eric L.; Labay, Keith A.; Michael Byerly,
2016-01-01
During the 1964 Great Alaska earthquake (Mw 9.2), several fjords, straits, and bays throughout southern Alaska experienced significant tsunami runup of localized, but unexplained origin. Dangerous Passage is a glacimarine fjord in western Prince William Sound, which experienced a tsunami that devastated the village of Chenega where 23 of 75 inhabitants were lost – the highest relative loss of any community during the earthquake. Previous studies suggested the source of the devastating tsunami was either from a local submarine landslide of unknown origin or from coseismic tectonic displacement. Here we present new observations from high-resolution multibeam bathymetry and seismic reflection surveys conducted in the waters adjacent to the village of Chenega. The seabed morphology and substrate architecture reveal a large submarine landslide complex in water depths of 120–360 m. Analysis of bathymetric change between 1957 and 2014 indicates the upper 20–50 m (∼0.7 km3) of glacimarine sediment was destabilized and evacuated from the steep face of a submerged moraine and an adjacent ∼21 km2 perched sedimentary basin. Once mobilized, landslide debris poured over the steep, 130 m-high face of a deeper moraine and then blanketed the terminal basin (∼465 m water depth) in 11 ± 5 m of sediment. These results, combined with inverse tsunami travel-time modeling, suggest that earthquake- triggered submarine landslides generated the tsunami that struck the village of Chenega roughly 4 min after shaking began. Unlike other tsunamigenic landslides observed in and around Prince William Sound in 1964, the failures in Dangerous Passage are not linked to an active submarine delta. The requisite environmental conditions needed to generate large submarine landslides in glacimarine fjords around the world may be more common than previously thought.
Swarzenski, P.W.; McKee, B.A.; Skei, J.M.; Todd, J.F.
1999-01-01
During August 1995, the vertical concentration profile of dissolved and particulate uranium exhibited strong non-conservative characteristics in the upper 30 m of Framvaren Fjord. There was a pronounced peak in both particulate (> 0.2 ??m; 1.09 nM) and dissolved (< 0.2 ??m; 17.06 nM) uranium in the finely stratified waters at the O2/H2S interface which is positioned well within the euphotic zone at about 20-21 m. Such concentration maxima at the redox boundary are also observed for dissolved organic carbon (DEC), Sr and Ba. Dissolved U levels seen in the water column from 18 m down to 30 m exceeded the high salinity (salinity = 35) U concentrations (13.63 ?? 0.84 nM; Chen, J.H., Edwards, R.L., Wasserburg, G.L., 1986. 238U, 234U and 232Th in seawater. Earth Planet Sci. Lett. 80, 241-251.) observed uniformly in the open ocean. A prolific population of S microbes (e.g., Chromatium, Chlorobium sp.) flourishes at the O2/H2S interface. The source of elevated U at the redox boundary must be due to microbial uptake and subsequent release processes rather than dilution from oceanic uranium. Uranium oxidation state determinations in waters from 1, 22 and 30 m depth reveal that reduced U(IV) is not present in significant abundance, and that the chemical and/or biological reduction of hexavalent uranium is largely inhibited. Our results suggest that U and other trace constituents such as DOC, Sr, Ba, Fe(II), Mn(II) are greatly modified by direct and indirect microbial transformation reactions which are most concentrated across the redox transition zone in Framvaren Fjord.
Erosion of modern terrestrial organic matter as a major component of sediments in fjords
NASA Astrophysics Data System (ADS)
Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida
2017-02-01
Fjords have recently been recognized as "hot spots" of carbon burial. In this study, we investigated organic carbon (OC) and biomarker radiocarbon values in fjord sediments from New Zealand. Our results showed that OC was mostly modern with the most aged OC in middle reaches of fjords, likely related to hydrodynamic sorting and inputs along adjacent slopes. Radiocarbon ages of sedimentary OC increased from north-to-south, consistent with the Fiordland regional gradients of lower fjord slopes and less rainfall. Our biomarker results suggested that lignin and long-chain fatty acids were preferentially linked with fresh terrestrial debris and degraded soil, respectively, likely due to their chemical and physical properties. Finally, we propose that fjords are a significant sink of modern OC, in contrast to large lowland coastal systems as a major sink of preaged OC. Overall, this study indicated that radiocarbon techniques are critical in investigating carbon dynamics in coastal systems.
Spatially Estimating Disturbance of Harbor Seals (Phoca vitulina)
Jansen, John K.; Brady, Gavin M.; Ver Hoef, Jay M.; Boveng, Peter L.
2015-01-01
Tidewater glacial fjords in Alaska provide habitat for some of the largest aggregations of harbor seals (Phoca vitulina), with calved ice serving as platforms for birthing and nursing pups, molting, and resting. These fjords have also been popular destinations for tour ships for more than a century, with dramatic increases in vessel traffic since the 1980s. Seals on ice are known to flush into the water when approached by tour ships, but estimating the exposure to disturbance across populations is difficult. Using aerial transect sampling while simultaneously tracking vessel movements, we estimated the spatial overlap between seals on ice and cruise ships in Disenchantment Bay, Alaska, USA. By integrating previously estimated rates of disturbance as a function of distance with an ‘intensity surface’ modeled spatially from seal locations in the surveys, we calculated probabilities of seals flushing during three separate ship visits. By combining our estimate of seals flushed with a modeled estimate of the total fjord population, we predict that up to 14% of the seals (up to 11% of pups) hauled out would have flushed into the water, depending on the route taken by ships relative to seal aggregations. Such high potential for broad-scale disturbance by single vessels (when up to 4 ships visit per day) was unexpected and underscores the need to 1) better understand long-term effects of disturbance; 2) regularly monitor populations exposed to high vessel traffic; and 3) develop conservation measures to reduce seal-ship overlap. PMID:26132083
A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry
NASA Astrophysics Data System (ADS)
Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik; Savstrup Kristensen, Steen; Mayer, Christoph; Morlighem, Mathieu; Steinhage, Daniel
2016-10-01
The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies, and global surface height on a spherical grid with now 30 arcsec grid spacing. For this new data set, called RTopo-2, we used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We modified data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ, and Sermilik Fjord, assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centres of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF), and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot, and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database at doi:10.1594/PANGAEA.856844.
Effect of fjord geometry on Greenland mass loss in a warming climate (Invited)
NASA Astrophysics Data System (ADS)
Nick, F. M.; Vieli, A.; Andersen, M. L.; Joughin, I. R.
2013-12-01
Over the past decade, ice loss from the Greenland Ice Sheet increased as a result of both increased surface melting and ice discharge through the narrow outlet glaciers. The complicated behaviour of narrow outlet glaciers has not yet been fully captured by the ice-sheet models used to predict Greenland's contribution to future sea level. Here we try to quantify the future dynamic contribution of four major marine terminating outlet glaciers to sea-level rise. We use a glacier flow line model that includes a fully dynamic treatment of marine termini to simulate behavior of Helheim, Kangerdlugssuaq, Petermann and Jakobshavn Isbræ. The contribution from these glaciers to sea-level rise is largely (80%) dynamic in origin and is caused by several episodic retreats past overdeepenings in outlet glacier troughs. Model results show that the shape of the glacier and its fjord can alter how the glacier will respond to a changing climate. Dynamic losses are mainly related to channel geometry and occur when an ice front retreats from a basal high through an overdeepening. Subsequent decelerations in retreat and mass loss mostly coincide with a decrease in water depth as the glacier retreats or re-advances to a new or previous bathymetric high. In some cases, channel narrowing may temporarily slowdown the terminus retreat even when the terminus is located on an upward bed slope.
Sildever, Sirje; Sefbom, Josefin; Lips, Inga; Godhe, Anna
2016-12-01
It has been shown that the planktonic diatom Skeletonema from neighbouring areas are genetically differentiated despite absence of physical dispersal barriers. We revisited two sites, Mariager Fjord and Kattegat, NE Atlantic, and isolated new strains. Microsatellite genotyping and F-statistics revealed that the populations were genetically differentiated. An experiment was designed to investigate if populations are locally adapted and have a native competitive advantage. Ten strains from each location were grown individually in native and foreign water to investigate differences in produced biomass. Additionally, we mixed six pairs, one strain from each site, and let them grow together in native and foreign water. Strains from Mariager Fjord and Kattegat produced higher biomass in native water. In the competition experiment, strains from both sites displayed higher relative abundance and demonstrated competitive advantage in their native water. The cause of the differentiated growth is unknown, but could possibly be attributed to differences in silica concentration or viruses in the two water types. Our data show that dispersal potential does not influence the genetic structure of the populations. We conclude that genetic adaptation has not been overruled by gene flow, but instead the responses to different selection conditions are enforcing the observed genetic structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
St-Onge, Guillaume; Chapron, Emmanuel; Mulsow, Sandor; Salas, Marcos; Debret, Maxime; Foucher, Anthony; Mulder, Thierry; Desmet, Marc; Costa, Pedro; Ghaleb, Bassam; Locat, Jacques
2013-04-01
Fjords are unique archives of climatic and environmental changes, but also of natural hazards. They can preserve thick sedimentary sequences deposited under very high sediment accumulation rates, making them ideally suited to record historical and pre-historical sedimentological events such as major landslides, floods or earthquakes. In fact, by carefully characterizing and dating the sediments and by comparing the basin fill seismic stratigraphy and sedimentary records with historical events, it is possible to "calibrate" recent rapidly deposited layers such as turbidites with a trigger mechanism and extend these observations further back in time by using seismic reflection profiles and longer sediment cores. Here, we will compare earthquake-triggered turbidites in fjords from the Southern and Northern Hemispheres: the Saguenay (Eastern Canada) and Reloncavi fjords (southern Chilean margin). In both settings, we will first look at basin fill geometries and at the sedimentological properties of historical events before extending the records further back in time. In both fjords, several turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M>7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M~8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with sea urchin fragments and the exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, new radiocarbon results will be presented and indicate that at least 19 earthquake-triggered turbidites were recorded in the Reloncavi Fjord during the last 7500 cal BP.
Observations of The Dense Storfjord Plume Using A Ctd-mounted Adp
NASA Astrophysics Data System (ADS)
Fer, I.; Skogseth, R.; Haugan, P. M.
Observations were made of the outflow of the dense bottom water plume from Stor- fjord (110 km long and 190 m deep at maximum depth) in the Svalbard Archipelago, using a CTD mounted ADP at densely spaced hydrographic stations during May 28 - June 2, 2001. Due to heavy ice inside the fjord, measurements were made from about 70 km downstream of a 115 m deep sill (7645 N) and onward. The dense bottom water generated by strong winter cooling, enhanced ice formation, and the consequent brine rejection drains into and fills the depressions of the fjord and cascades following the bathymetry. Data acquired by ADP allow for examination of the velocity structure associated with the plume as close as 1 m to the bottom with 1 m resolution in the vertical. The plume water was observed to have salinities within 34.9 - 35.1 psu with temperatures close to the freezing point temperature. The plume has a thickness of 51 +/- 20 m, and a density difference of 0.14 +/- 0.03 kg m-3 from the ambient wa- ters. The velocity profiles yield the most well-defined two-layered structure near the sloping sides with a mean plume speed of 0.15 +/- 0.04 m s-1, relative to the ambient waters. Mean overall Richardson number, estimated using these profiles, are within the range of 2 to 4. The plume is less distinct with respect to the velocity profile when it reaches the plane, Storfjordrenna, after cascading about 50 m in vertical. The width of the plume increases from about 8 km to 25 km along its path of 105 km leading to an entrainment rate of 5x10-4, when the plume thickness and speed are assumed constant. The values compare well with those obtained from moorings in the same region in the past, as well as those obtained from laboratory experiments of turbulent gravity currents flowing down a slope.
Nielsen, J.K.; Taggart, S. James; Shirley, Thomas C.; Mondragon, Jennifer
2007-01-01
A systematic pot survey in Glacier Bay, Alaska, was conducted to characterize the spatial distribution of juvenile and adult female Tanner crabs, and their association with depth and temperature. The information was used to infer important recruitment processes for Tanner crabs in glaciated ecosystems. High-catch areas for juvenile and adult female Tanner crabs were identified using local autocorrelation statistics. Spatial segregation by size class corresponded to features in the glacial landscape: high-catch areas for juveniles were located at the distal ends of two narrow glacial fjords, and high-catch areas for adults were located in the open waters of the central Bay. Juvenile female Tanner crabs were found at nearly all sampled depths (15–439 m) and temperatures (4–8°C), but the biggest catches were at depths <150 m where adults were scarce. Because adults may prey on or compete with juveniles, the distribution of juveniles could be influenced by the distribution of adults. Areas where adults or predators are scarce, such as glacially influenced fjords, could serve as refuges for juvenile Tanner crabs.
NASA Astrophysics Data System (ADS)
Pendleton, S.; Anderson, R. S.; Miller, G. H.; Refsnider, K. A.
2015-12-01
Increasing Arctic summer temperatures in recent decades and shrinking cold-based ice caps on Cumberland Peninsula, Baffin Island, are exposing ancient landscapes complete with uneroded bedrock surfaces. Previous work has indicated that these upland surfaces covered with cold-based ice experience negligible erosion compared with the valleys and fjords systems that contain fast-flowing ice. Given the appearance of highly weathered bedrock, it is argued that these landscapes have remained largely unchanged since at least the last interglaciation (~120 ka), and have likely experienced multiple cycles of ice expansion and retraction with little erosion throughout the Quaternary. To explore this hypothesis, we use multiple cosmogenic radionuclides (26Al and 10Be) to investigate and provide insight into longer-term cryosphere activity and landscape evolution. 26Al/10Be in surfaces recently exposed exhibit a wide range of exposure-burial histories. Total exposure-burial times range from ~0.3 - 1.5 My and estimated erosion rates from 0.5 - 6.2 m Ma-1. The upland surfaces of the Penny Ice cap generally experienced higher erosion rates (~0.45 cm ka-1) than those covered by smaller ice caps (~0.2 cm ka-1). The cumulative burial/exposure histories in high, fjord-edge locations indicate that significant erosion north of the Penny Ice Cap ceased between ~600 and 800 ka, suggesting that Laurentide Ice Sheet (LIS) organization and fjord inception was underway by at least this time. Additionally, 26Al/10Be ratios near production values despite high inventories from a coastal summit 50 km east of the Penny Ice Cape suggest that that area has not experienced appreciable burial by ice, suggesting that it was never inundated by the LIS. Moreover, these initial data suggest a variable and dynamic cryosphere in the region and provide insight into how large ice sheets evolved and organized themselves during the Quaternary.
The origin of modern agglutinated foraminiferal assemblages: evidence from a stratified fjord
NASA Astrophysics Data System (ADS)
Murray, John W.; Alve, Elisabeth; Cundy, Andrew
2003-11-01
Loch Etive, a silled 145 m deep fjord on the Scottish west coast, provides an example of modern benthic foraminiferal assemblages at intermediate depths (i.e., below the intertidal zone and above the CCD) consisting almost exclusively of organic-cemented agglutinated forms. Since such faunas from intermediate depths are rare in modern oceans but relatively common in the fossil record, the present study allows new insights into one kind of ancient environment for which there are few modern analogues. The strong dominance of agglutinated forms (both living and in some dead assemblages of foraminifera to the exclusion of calcareous taxa) is attributed to the unusual oceanographic conditions. These include a combination of restricted deep-water renewals and strong influence of freshwater which drains through large areas (relative to the size of the loch) of vegetated land. The result is calm bottom water conditions with commonly occurring oxygen depletion (although not anoxic), brackish water throughout the water column (salinity 28 in the deeper parts), and organic-rich (mostly terrestrially derived) sediments with geochemical properties, which, to a much larger degree than open marine ones, are controlled by local input. This environment supports low abundance and low diversity live assemblages, mainly restricted to the surface 1 cm of sediment. The dead assemblages show similar faunal characteristics, but the calcareous components are, due to carbonate dissolution, even more reduced. One of the calcareous species in Loch Etive is Elphidium albiumbilicatum. Its occurrence is the first record in British waters and it matches the previously suggested southern limit of its distribution. Analysis of a 90 cm long core representing sediments deposited over the past two centuries shows the presence of a calcareous dominated assemblage, including more marine species, with a higher diversity, in the lower part. This suggests that Loch Etive is in the process of going from a marine, to a more terrestrial dominated environment. The relatively high sedimentation rate (0.5 cm per yr), the apparent lack of smearing through bioturbation, and the presence of faunal changes in response to reduced marine influence over the past centuries, shows that Loch Etive has a good potential for performing high-resolution climatic studies.
Distribution of an Acoustic Scattering Layer, Petermann Fjord, Northwest Greenland
NASA Astrophysics Data System (ADS)
Heffron, E.; Mayer, L. A.; Jakobsson, M.; Hogan, K.; Jerram, K.
2017-12-01
The Petermann 2015 Expedition was a comprehensive paleoceanographic and paleoclimatological study of the marine-terminating Petermann Glacier and its outlet system in Northwest Greenland carried out July-August 2015. The purpose was the reconstruction of glacial history and current glacial processes in Petermann Fjord to better understand the fate of the Petermann Glacier and its floating ice tongue that acts as a critical buttressing force to the outlet glacier draining about 4% of the Greenland Ice Sheet. Seafloor mapping was a critical component of the study and an EM122 multibeam sonar was utilized for this purpose; additionally, water column data were acquired with this sonar and an EK80 split-beam echosounder. During the expedition, the mapping team noted an acoustic scattering layer in the EK80 and EM122 water column data which was observed to change depth in a spatially consistent manner that appeared to be related to location. Initial onboard processing revealed what appears to be a strong spatial coherence in the layer distribution that corresponds to our understanding of the complex circulation pattern in the study area, including inflow of warmer Atlantic waters and outflow of subglacial waters. This initial processing was limited to observations at 46 discrete locations that corresponded to CTD stations, a very small subset of the 4800 line kilometers of data collected by each sonar. Both sonars were run 24 hours per day over the 30-day expedition, providing continuous time-varying acoustic coverage of the study area. Post-cruise additional data has been processed to extract the acoustic returns from the scattering layer using a combination of commercial sonar processing software and specialized MATLAB and Python routines. 3-D surfaces have been generated from the extracted points in order to visualize the continuous spatial and temporal distribution of the scattering layer across the entire study area. Multiple crossings of the same location at different times of day address the question of the temporal stability of the scattering layer while the detailed map of the spatial distribution demonstrates the relationship of the scattering layer to the water masses and implies that continuous acoustic coverage may be a powerful proxy for oceanography.
The Ocean's Role in Outlet Glacier Variability: A Case Study from Uummannaq, Greenland
NASA Astrophysics Data System (ADS)
Sutherland, D.; Catania, G. A.; Bartholomaus, T. C.; Nash, J. D.; Shroyer, E.; Walker, R. T.; Stearns, L. A.
2014-12-01
The dynamics controlling the coupling between fjord circulation and outlet glacier movement are poorly understood. Here, we use oceanographic data collected from 2013-2014 from two west Greenland fjords, Rink Isbrae and Kangerdlugssup Sermerssua, to constrain the spatial and temporal variability observed in fjord circulation. We aim to quantify the ocean's role, if any, in explaining the marked differences in glacier behavior from two systems that are in close proximity to one another. Combining time series data from a set of subsurface moorings with repeat transects in each fjord allows an unprecedented look at the temporal and spatial variability in circulation. We find significant differences in the variability in each fjord and discuss the implications for the glaciers.
Fjord dynamics and glacio-marine interactions on Northern Ellesmere Island, Canada
NASA Astrophysics Data System (ADS)
Hamilton, A.; Mueller, D.; Laval, B.
2012-12-01
Despite the existence of ice shelves and glacier tongues along the northern coast of Ellesmere Island, Canada, for the majority of the past 4000 years (Evans and England, 1992; Antoniades et al., 2011) recent atmospheric warming has contributed to collapse of the remaining ice shelves and the loss of rare ice-shelf dammed lakes (epishelf lakes) (Mueller et al., 2003, 2008; Copland et al., 2007). These studies have primarily addressed surface processes as the causal factors for ice shelf breakup, but changes in ocean stratification and heat flux, meltwater input, and subglacial thermodynamics may strongly influence the integrity and fate of these systems. Despite the growing evidence of the importance of oceanic processes on tidewater glacier mass balance in Greenlandic fjords (Holland et al., 2008; Johnson et al., 2011; Straneo et al., 2011) these processes remain poorly studied on related systems in the Canadian Arctic Archipelago (CAA). In addition, the recent sharp increase in mass loss from the glaciers and ice caps of the CAA, primarily in the form of meltwater runoff (Gardner et al., 2011) suggest understanding the aquatic and oceanic factors contributing to ice shelf and glacier tongue integrity and epishelf lake formation is critical. We will present observations from the Milne Fjord ice shelf, epishelf lake, and glacier tongue system on the northern coast of Ellesmere Island, Canada (Fig. 1). Two years of field observations include a 15-month under-ice ocean mooring deployment, through-ice oceanographic CTD and current velocity profiles, and ice mass balance estimates from ablation stake and GPR surveys. We will present the first ever observations of the seasonal and episodic oceanographic variations of Milne Fjord, with particular focus on ocean-epishelf lake-ice shelf dynamics. We aim to understand how all ice and ocean components interact to determine the evolution and stability of the system, with the goal of understanding and perhaps predicting large ice calving events and epishelf lake drainage. Figure 1. Elevation schematic of Milne Fjord, Ellesmere Island showing the ice shelf-dammed freshwater lake overlying deeper saltwater between the floating ice shelf and glacier tongue. Processes shown include a hypothesized estuarine-like fjord circulation, supra- and sub-glacial runoff, basal ice melting, tides, and sub-ice shelf freshwater outflow.
Antarctic Peninsula Tidewater Glacier Dynamics
NASA Astrophysics Data System (ADS)
Pettit, E. C.; Scambos, T. A.; Haran, T. M.; Wellner, J. S.; Domack, E. W.; Vernet, M.
2015-12-01
The northern Antarctic Peninsula (nAP, north of 66°S) is a north-south trending mountain range extending transverse across the prevailing westerly winds of the Southern Ocean resulting in an extreme west-to-east precipitation gradient. Snowfall on the west side of the AP is one to two orders of magnitude higher than the east side. This gradient drives short, steep, fast-flowing glaciers into narrow fjords on the west side, while longer lower-sloping glaciers flow down the east side into broader fjord valleys. This pattern in ice dynamics affects ice-ocean interaction on timescales of decades to centuries, and shapes the subglacial topography and submarine bathymetry on timescales of glacial cycles. In our study, we calculate ice flux for the western and eastern nAP using a drainage model that incorporates the modern ice surface topography, the RACMO-2 precipitation estimate, and recent estimates of ice thinning. Our results, coupled with observed rates of ice velocity from InSAR (I. Joughin, personal communication) and Landsat 8 -derived flow rates (this study), provide an estimate of ice thickness and fjord depth in grounded-ice areas for the largest outlet glaciers. East-side glaciers either still terminate in or have recently terminated in ice shelves. Sedimentary evidence from the inner fjords of the western glaciers indicates they had ice shelves during LIA time, and may still have transient floating ice tongues (tabular berg calvings are observed). Although direct oceanographic evidence is limited, the high accumulation rate and rapid ice flux implies cold basal ice for the western nAP glaciers and therefore weak subglacial discharge relative to eastern nAP glaciers and or other tidewater fjord systems such as in Alaska. Finally, despite lower accumulation rates on the east side, the large elongate drainage basins result in a greater ice flux funneled through fewer deeper glaciers. Due to the relation between ice flux and erosion, these east-side glaciers have longer and deeper fjords than the west-side glaciers. These distinct differences between the glaciers of the west and east side of the AP exert a primary control on the differing ice-ocean interactions, grounding-line retreat, and subglacial erosion rates, and provide context to understand rates of nAP ice mass loss.
NASA Astrophysics Data System (ADS)
Langley, K.; Caduff, R.; Wiesmann, A.; Mätzler, E.
2017-12-01
A massive rock slope failure that led to a rock avalanche in the Karrat Fjord, Western Greenland, caused a tsunami on 17 June 2017. The tsunami reached local villages and resulted in loss of life and damage to infrastructure. The length of the rock avalanche detachment zone is on the order of 800 m. It is located at an elevation of 1'000 m above the fjord with a slant distance of 2'000 m to the shore line. Since very little information was available on the state of the originating mountain slope, satellite based information was gathered immediately after the event in order to assess the processes on the slope. Thanks to the quick data distribution through Copernicus, we could process the entire available datasets of the Synthetic Aperture Radar (SAR) sensors Sentinel-1A/B and the optical sensor Sentinel-2. The pre-, syn, and post-event history could be reconstructed using ascending orbit Sentinel-1 data, available from October 2014 in 12 and from early 2017 on in 6d interval. We looked at the differential interferograms to detect coherent surface displacements in line-of-sight (LOS). Coherent interferograms after the snow-melt in May 2017 revealed surface displacements of 10-15 cm/year with accelerating trend in the later detachment zone. The known limitation for interferometry in wet-snow condition hinders the determination of areas undergoing surface deformation. However, a detailed coherence analysis showed that during the previous winter, a large avalanche type process must have happened in the later detachment zone. A radar backscatter analysis showed, that significant changes in the corridor of 500 m of the area affected by the rock avalanche can be dated between 5 and 11 November 2016. The traces of the event could be verified with optical imagery from Sentinel-2 dating from 23 May 2017. An overall analysis on the mountain side revealed the presence of a number of active zones. An inventory of the outlines of the moving areas containing information on the LOS surface velocities was created, helping to assess possible accelerated or new slope instability appearances in the ongoing analysis of Sentinel-1 acquisitions. We present the methodology, the results and conclude with a discussion on the future impact of the analysis and the experience of the Karrat Fjord event for future hazard monitoring using Sentinel-1/2 data.
Simultaneous profiling of the Arctic Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Mayer, S.; Jonassen, M.; Reuder, J.
2009-09-01
The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system (e.g. Andreas and Cash, 1999). So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models (e.g. Tjernström et al., 2005). Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV, called Small Unmanned Meteorological Observer (SUMO), has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO has been used under Arctic conditions at Longyear airport, Spitsbergen in March/April 2009. Besides vertical profiles up to 1500 m and horizontal surveys at flight levels of 100 and 200 m, SUMO could measure vertical profiles for the first time simultaneously in a horizontal distance of 1 km; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This has been the first step of future multiple UAV operations in so called "swarms” or "flocks”. With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs. In addition, the Advanced Research Weather Forecasting model (AR-WRF version 3.1) has been run in high resolution (grid size: 1 km). First results of a sensitivity study where ABL schemes have been tested and compared with respect to the measured SUMO profiles are presented.
Back-analysis of the 1756 Tjellefonna rockslide (western Norway)
NASA Astrophysics Data System (ADS)
Sandøy, Gro; Oppikofer, Thierry; Nilsen, Bjørn
2014-05-01
The 22nd of February 1756 the largest historically recorded rockslide in Norway took place at Tjelle in Lang Fjord (western Norway). Three displacement waves of up to 50 meters were created by the impact of the failed rock mass constituting the Tjellefonna rockslide. A total of 32 people were killed and several houses and boats around the fjord were destroyed. This study presents a back-analysis of the Tjellefonna rockslide by (1) reconstructing the topography before the rockslide, (2) assessing the volumes of the initial rockslide mass, the onshore deposits and offshore deposits, (3) assessing the major discontinuities involved in the rockslide, and (4) by 2D numerical slope stability modelling for a detailed study of the parameters and trigger factors that affected the slope stability. The topography before the rockslide is reconstructed using (1) the Sloping Local Base Level technique and (2) a manual ART reconstruction in the PolyWorks software. Both topographic reconstructions yield an initial rockslide volume between 9.2 and 10.4 million m3, which is lower than previous estimates (12-15 million m3). The onshore deposits are estimated to 7.6 million m3 and only 3.9 million m3 deposited in the fjord. Finally, the volume impacting the fjord (3.9 million m3) is important for the generation of rockslide-triggered displacement waves, which highlights the necessity of precise volume estimations prior to back-analyses of landslide-triggered displacement waves. The granitic to granodioritic gneissic rock mass at Tjellefonna have high to very high mechanical strength. However, field mapping reveals that the intact rock strength is compromised by a combination of a variably developed foliation, extensive faulting and four persistent joint sets. The foliation is often folded into open folds with sub-horizontal axial planes. The foliation, faults and two joint sets are sub-parallel to Langfjorden and to regional structural lineaments. The back walls of the Tjellefonna crown are made up of a combination of these structures, while two joint sets that strike perpendicular to the fjord define the flanks of the scar. The numerical slope stability model Phase2 analyses include shear strength reduction (SSR) investigations and parameter sensitive tests. These tests demonstrate that the failure of the Tjellefonna slope must have required strain softening in combination with triggering factors, where high groundwater level is an essential feature. An earthquake has previously been assumed as trigger, but sensitivity tests rule out seismic acceleration as a factor alone. Additionally, the analyses show that a sub-horizontal discontinuity set is critical in order to induce slope instability. The shallow fjord-dipping joint set and sub-horizontal fault might form this necessary discontinuity, although they were only mapped locally and their persistence was limited. The sliding surface has been evaluated using the Phase2 model and the topographic reconstructions. It is concluded that the Tjellefonna rockslide was not composed of a uniform plane, but of a complex surface consisting of joints, faults, foliation surfaces and intact rock bridges. Finally, the failure was thus likely a consequence of progressive accumulation of rock weakening (strain softening), acting to degrade the equilibrium state of the slope. This could have generated a hillside creep explaining the opening tension cracks observed at the present head scarp prior to the rockslide.
Oceanic response to buoyancy, wind and tidal forcing in a Greenlandic glacial fjord
NASA Astrophysics Data System (ADS)
Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.
2013-12-01
The Greenland Ice Sheet is losing mass at an accelerating rate. This acceleration may in part be due to changes in oceanic heat transport to marine-terminating outlet glaciers. Ocean heat transport to glaciers depends upon fjord dynamics, which include buoyancy-driven estuarine exchange flow, tides, internal waves, turbulent mixing, and connections to the continental shelf. A 3D model of Rink Isbrae fjord in West Greenland is used to investigate the role of ocean forcing on heat transport to the glacier face. Initial conditions are prescribed from oceanographic field data collected in Summer 2013; wind and tidal forcing, along with meltwater flux, are varied in individual model runs. Subglacial meltwater flux values range from 25-500 m3 s-1. For low discharge values, a subsurface plume drives circulation in the fjord. Our simulations indicate that offshore wind forcing is the dominant mechanism for exchange flow between the fjord and the continental shelf. These results show that glacial fjord circulation is a complex, 3D process with multi-cell estuarine circulation and large velocity shears due to coastal winds. Our results are a first step towards a realistic 3D representation of a high-latitude glacial fjord in a numerical model, and will provide insight to future observational studies.
Microbial Diversity in a Permanently Cold and Alkaline Environment in Greenland
Glaring, Mikkel A.; Vester, Jan K.; Lylloff, Jeanette E.; Abu Al-Soud, Waleed; Sørensen, Søren J.; Stougaard, Peter
2015-01-01
The submarine ikaite columns located in the Ikka Fjord in Southern Greenland represent a unique, permanently cold (less than 6°C) and alkaline (above pH 10) environment and are home to a microbial community adapted to these extreme conditions. The bacterial and archaeal community inhabiting the ikaite columns and surrounding fjord was characterised by high-throughput pyrosequencing of 16S rRNA genes. Analysis of the ikaite community structure revealed the presence of a diverse bacterial community, both in the column interior and at the surface, and very few archaea. A clear difference in overall taxonomic composition was observed between column interior and surface. Whereas the surface, and in particular newly formed ikaite material, was primarily dominated by Cyanobacteria and phototrophic Proteobacteria, the column interior was dominated by Proteobacteria and putative anaerobic representatives of the Firmicutes and Bacteroidetes. The results suggest a stratification of the ikaite columns similar to that of classical soda lakes, with a light-exposed surface inhabited by primary producers and an anoxic subsurface. This was further supported by identification of major taxonomic groups with close relatives in soda lake environments, including members of the genera Rhodobaca, Dethiobacter, Thioalkalivibrio and Tindallia, as well as very abundant groups related to uncharacterised environmental sequences originally isolated from Mono Lake in California. PMID:25915866
Microbial diversity in a permanently cold and alkaline environment in Greenland.
Glaring, Mikkel A; Vester, Jan K; Lylloff, Jeanette E; Al-Soud, Waleed Abu; Sørensen, Søren J; Stougaard, Peter
2015-01-01
The submarine ikaite columns located in the Ikka Fjord in Southern Greenland represent a unique, permanently cold (less than 6°C) and alkaline (above pH 10) environment and are home to a microbial community adapted to these extreme conditions. The bacterial and archaeal community inhabiting the ikaite columns and surrounding fjord was characterised by high-throughput pyrosequencing of 16S rRNA genes. Analysis of the ikaite community structure revealed the presence of a diverse bacterial community, both in the column interior and at the surface, and very few archaea. A clear difference in overall taxonomic composition was observed between column interior and surface. Whereas the surface, and in particular newly formed ikaite material, was primarily dominated by Cyanobacteria and phototrophic Proteobacteria, the column interior was dominated by Proteobacteria and putative anaerobic representatives of the Firmicutes and Bacteroidetes. The results suggest a stratification of the ikaite columns similar to that of classical soda lakes, with a light-exposed surface inhabited by primary producers and an anoxic subsurface. This was further supported by identification of major taxonomic groups with close relatives in soda lake environments, including members of the genera Rhodobaca, Dethiobacter, Thioalkalivibrio and Tindallia, as well as very abundant groups related to uncharacterised environmental sequences originally isolated from Mono Lake in California.
Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks
NASA Astrophysics Data System (ADS)
Smeaton, Craig; Austin, William E. N.; Davies, Althea L.; Baltzer, Agnes; Howe, John A.; Baxter, John M.
2017-12-01
Fjords are recognised as hotspots for the burial and long-term storage of carbon (C) and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.
NASA Astrophysics Data System (ADS)
Stockmann, G. J.; Tollefsen, E.; Ranta, E.; Skelton, A.; Sturkell, E.; Lundqvist, L.
2015-12-01
The 1300 Ma Grønnedal-Íka igneous complex in southwest Greenland comprises nepheline syenites and carbonatites. It belongs to a suite of intrusions formed 1300-1100 Ma ago referred to as the Gardar period. In modern time (the last ca. 8000 years), fluid-rock interactions involving the nepheline syenites and carbonatites gives rise to about one thousand submarine columns made of the rare low-T mineral ikaite (CaCO3x6H2O). The columns are found in a shallow, narrow fjord named Ikka Fjord and their distribution clearly follows the outcrop of the Grønnedal-Íka complex. When meteoric water percolates through the highly fractured complex, a sodium carbonate solution of pH 10 is formed through hitherto unknown fluid-rock reactions. This basic solution seeps up through fractures at the bottom of Ikka Fjord and when mixed with seawater, the mineral ikaite is formed. As the seepage water has a lower density than seawater, there is an upwards flow that creates columns. What is peculiar about ikaite is its limited stability making it unstable above +6 °C. Isotopic studies of ikaite reveal a seawater origin for the Ca2+ ions, and the carbonatite being the most likely source for the CO32- ions. The carbonatite is mainly of søvite composition (CaCO3) with high contents of siderite and ankerite in certain areas. The nepheline syenites contain Na,K-rich minerals like nepheline, alkali-feldspar, aegirine-augite, katophorite and biotite. Nepheline is mainly replaced by muscovite, and aegirine-augite partly by chlorite, which could release sodium into solution. A dolerite dyke of unknown age prompted extensive mineralization of magnetite by activating hydrothermal fluid convection. The fluid interacted with the carbonatite, replacing siderite and ankerite by magnetite and later hematite. In a newly launched project at Stockholm University, we are trying to unravel the chemical reactions taking place inside the Grønnedal-Íka igneous complex leading to the formation of the sodium carbonate solution issuing in Ikka Fjord.
NASA Astrophysics Data System (ADS)
Forwick, M.; Vorren, T. O.; Hass, H.; Vogt, C. M.
2012-12-01
North and west Spitsbergen fjords acted as pathways for fast-flowing ice streams during the last glacial (e.g. Ottesen et al., 2005). The deglaciation of west Spitsbergen fjords occurred stepwise and the ice retreat terminated around 11,200 cal. years BP (calendar years before the present; e.g. Forwick & Vorren, 2009, 2011, and references therein; Baeten et al., 2010). However, the deglaciation dynamics and chronology of north Spitsbergen fjords still remain poorly understood. We present swath-bathymetry, high-resolution seismic data and two sediment cores from the approx. 110 km long, N-S oriented Wijdefjorden-Austfjorden fjord system, the largest fjord system on northern Spitsbergen. The data indicate that - as in the fjords on west Spitsbergen - multiple halts and/or readvances interrupted the retreat of the ice front during the final phase of the last glacial. However, even though the study area and several west Spitsbergen fjords are fed by the same glacier source (the ice field Lomonosovfonna), the final deglaciation of Wijdefjorden-Austfjorden took place after 9300 cal. years BP, i.e. at least approx. 2000 years later than in the west. We assume that the retarded deglaciation in the north is mainly related to the fjord bathymetry, i.e. a more than 35 km wide and up to 60 m high area in the central parts of the study area (approx. 45 km beyond the present fjord head) that acted as pinning point for the grounded glacier. Multiple, relatively large and partly stacked moraine ridges and sediment wedges are suggested to reflected that the ice front retreated slowly across this shallow area and that repeated readvances interrupted this retreat. The absence of larger sediment wedges in the deeper parts between the shallow area and the fjord head may indicate that the final retreat occurred relatively rapid. References: Baeten, N.J., Forwick, M., Vogt, C. & Vorren, T.O., 2010. Late Weichselian and Holocene sedimentary environments and glacial activity in Billefjorden, Svalbard. In: Howe, J.A., Austin, W.E.N, Forwick, M. & Paetzel, M. (eds.): Fjord Systems and Archives. Geological Society, London, Special Publication, 344, 207-223. Forwick, M. & Vorren, T.O., 2009. Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 258-274. Forwick, M. & Vorren, T.O., 2011. Stratigraphy and deglaciation of the Isfjorden area, Spitsbergen. Norwegian Journal of Geology 90, 163-179. Ottesen, D., Dowdeswell, J.A., Rise, L., 2005. Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: The 2500-km-long Norwegian-Svalbard margin (57°-80°N). Geological Society of America Bulletin 117, 1033-1050.
NASA Astrophysics Data System (ADS)
Niehoff, B.; Schmithüsen, T.; Knüppel, N.; Daase, M.; Czerny, J.; Boxhammer, T.
2013-03-01
The increasing CO2 concentration in the atmosphere caused by burning fossil fuels leads to increasing pCO2 and decreasing pH in the world ocean. These changes may have severe consequences for marine biota, especially in cold-water ecosystems due to higher solubility of CO2. However, studies on the response of mesozooplankton communities to elevated CO2 are still lacking. In order to test whether abundance and taxonomic composition change with pCO2, we have sampled nine mesocosms, which were deployed in Kongsfjorden, an Arctic fjord at Svalbard, and were adjusted to eight CO2 concentrations, initially ranging from 185 μatm to 1420 μatm. Vertical net hauls were taken weekly over about one month with an Apstein net (55 μm mesh size) in all mesocosms and the surrounding fjord. In addition, sediment trap samples, taken every second day in the mesocosms, were analysed to account for losses due to vertical migration and mortality. The taxonomic analysis revealed that meroplanktonic larvae (Cirripedia, Polychaeta, Bivalvia, Gastropoda, and Decapoda) dominated in the mesocosms while copepods (Calanus spp., Oithona similis, Acartia longiremis and Microsetella norvegica) were found in lower abundances. In the fjord copepods prevailed for most of our study. With time, abundance and taxonomic composition developed similarly in all mesocosms and the pCO2 had no significant effect on the overall community structure. Also, we did not find significant relationships between the pCO2 level and the abundance of single taxa. Changes in heterogeneous communities are, however, difficult to detect, and the exposure to elevated pCO2 was relatively short. We therefore suggest that future mesocosm experiments should be run for longer periods.
NASA Astrophysics Data System (ADS)
Limoges, Audrey; Ribeiro, Sofia; Weckström, Kaarina; Heikkilä, Maija; Zamelczyk, Katarzyna; Andersen, Thorbjørn J.; Tallberg, Petra; Massé, Guillaume; Rysgaard, Søren; Nørgaard-Pedersen, Niels; Seidenkrantz, Marit-Solveig
2018-03-01
The eastern north coast of Greenland is considered to be highly sensitive to the ongoing Arctic warming, but there is a general lack of data on modern conditions and in particular on the modern distribution of climate and environmental proxies to provide a baseline and context for studies on past variability. Here we present a detailed investigation of 11 biogenic proxies preserved in surface sediments from the remote High Arctic Wandel Sea shelf, the entrance to the Independence, Hagen, and Danmark fjords. The composition of organic matter (organic carbon, C:N ratios, δ13C, δ15N, biogenic silica, and IP25) and microfossil assemblages revealed an overall low primary production dominated by benthic diatoms, especially at the shallow sites. While the benthic and planktic foraminiferal assemblages underline the intrusion of chilled Atlantic waters into the deeper parts of the study area, the distribution of organic-walled dinoflagellate cysts is controlled by the local bathymetry and sea ice conditions. The distribution of the dinoflagellate cyst Polarella glacialis matches that of seasonal sea ice and the specific biomarker IP25, highlighting the potential of this species for paleo sea ice studies. The information inferred from our multiproxy study has important implications for the interpretation of the biogenic-proxy signal preserved in sediments from circum-Arctic fjords and shelf regions and can serve as a baseline for future studies. This is the first study of its kind in this area.
NASA Astrophysics Data System (ADS)
De Batist, M. A.; Van Daele, M. E.; Cnudde, V.; Duyck, P.; Tjallingii, R. H.; Pino, M.; Urrutia, R.
2012-12-01
In 2007, a seismic swarm with more than 7000 recorded earthquakes affected the region around Aysén fjord, Chile (45°25'S). The series of seismic events reached a maximum on 21 April 2007, with an Mw 6.2 earthquake. Intensities as high as VIII to IX on the Modified Mercalli scale were reported around the epicenter. Multiple debris flows, rock slides and rock avalanches were triggered along the fjord's coastline, and several of these caused impact waves or tsunamis with wave heights of up to 6 m, which inundated the fjord shorelines and caused heavy damage and 10 casualties. In order to characterize in detail the imprint left by this series of catastrophic events in the sedimentary record of the fjord, we conducted a multi-disciplinary survey of the inner fjord region in December 2009. Multibeam bathymetry and high-resolution reflection seismic data reveal that large parts of the fjord basin floor, mostly at the foot of the fjord's steep underwater slopes, are covered by recent mass-wasting deposits or consist of mass-wasting-induced deformed basin-plain sediments. A series of short sediment cores collected throughout the inner fjord contain also the more distal deposits of this significant basin-wide mass-wasting event. By combining classical sedimentological techniques (i.e. grain-size analysis, LOI and magnetic susceptibility measurements, all at high resolution) with X-ray CT scanning and XRF scanning we were able to demonstrate that the event deposits encountered in the cores have a very complex signature and actually consist of a succession of several sub-deposits, comprising distal mass-flow deposits from different source areas (as evidenced by XRF-derived geochemical provenance indications) and with a different flow direction (as evidenced by CT-derived 3D flow-direction indications, such as imbricated rip-up mud clasts, cross and convolute laminations) and tsunami- or seiche-generated deposits. This allowed us to reconstruct the succession of sedimentary events that affected the inner fjord region and got imprinted in the fjord's sedimentary record. The improved characterization of such a complex event deposit may help to reconstruct the exact nature and basin-wide effects of past similar events (i.e. the seismic data show clear evidence of 3-4 similar prehistoric events) and to establish a reliable hazard assessment for the region.
Andrews, J.T.; Milliman, John D.; Jennings, A.E.; Rynes, N.; Dwyer, J.
1994-01-01
We compared measured and estimated sediment budgets in heavily glaciated fjords in East Greenland. Mass balance calculations and regional glacio-climatic conditions suggest that the sediment flux to the seafloor in Kangerdlugssuaq and Nansen fjords should be dominated by iceberg rafting and not by the rain-out of suspended particulates in meltwater, as the glacier calving flux is estimated at 15 and $2 km^{3}/yr$, compared to meltwater volumes of 4.4 and $1.7 km^{3}/yr$, respectively. Gravity cores in the three fjords indicate that the uppermost 1-2.5 m of sediment consists of diamictons or fine-grained laminated muds. AMS radiocarbon dates on calcareous foramininfera or shells (16 total) indicate sedimentation rates of 110 to 340 cm/ka within the fjords over the last 1 ka, and 10-20 cm/ka during the Holecene on the inner and middle shelf. Annual sediment discharge is around $0.67 \\times 10^{6}$ tonnes/yr within the Kangerdlugssuaq Fjord and Trough system, which translates into an average basin-wide rate of denudation of 0.01 mm/yr (0.01 m/ka). Air gun and deep-towed (Huntec) seismic profiling was carried out in Kangerdlugssuaq and Nansen fjords, East Greenland, and showed that sediment fills averaged 500 and 350 m respectively; they consist primarily of acoustically stratified sediments. If the sediment fills are entirely Holocene in age then the required average sediment accumulation rates of 35-50 m/ka are an order of magnitude larger than the $^{14}C $controlled rates of the last 1-2 ka. This raises the possibility that fjord sediments may be by-passed and not always recycled during glacial advances; this will affect sedimentation rates on adjacent shelves and deep-sea areas during successive glaciations
IceBridge Survey Flight Over Saunders Island and Wolstenholme Fjord
2017-12-08
This image of Saunders Island and Wolstenholme Fjord with Kap Atholl in the background was taken during an Operation IceBridge survey flight in April, 2013. Sea ice coverage in the fjord ranges from thicker, white ice seen in the background, to thinner grease ice and leads showing open ocean water in the foreground. In March 2013, NASA's Operation IceBridge scientists began another season of research activity over Arctic ice sheets and sea ice. IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Image Credit: NASA / Michael Studinger Read more about the mission here: www.nasa.gov/mission_pages/icebridge/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A laboratory scale model of abrupt ice-shelf disintegration
NASA Astrophysics Data System (ADS)
Macayeal, D. R.; Boghosian, A.; Styron, D. D.; Burton, J. C.; Amundson, J. M.; Cathles, L. M.; Abbot, D. S.
2010-12-01
An important mode of Earth’s disappearing cryosphere is the abrupt disintegration of ice shelves along the Peninsula of Antarctica. This disintegration process may be triggered by climate change, however the work needed to produce the spectacular, explosive results witnessed with the Larsen B and Wilkins ice-shelf events of the last decade comes from the large potential energy release associated with iceberg capsize and fragmentation. To gain further insight into the underlying exchanges of energy involved in massed iceberg movements, we have constructed a laboratory-scale model designed to explore the physical and hydrodynamic interactions between icebergs in a confined channel of water. The experimental apparatus consists of a 2-meter water tank that is 30 cm wide. Within the tank, we introduce fresh water and approximately 20-100 rectangular plastic ‘icebergs’ having the appropriate density contrast with water to mimic ice. The blocks are initially deployed in a tight pack, with all blocks arranged in a manner to represent the initial state of an integrated ice shelf or ice tongue. The system is allowed to evolve through time under the driving forces associated with iceberg hydrodynamics. Digitized videography is used to quantify how the system of plastic icebergs evolves between states of quiescence to states of mobilization. Initial experiments show that, after a single ‘agitator’ iceberg begins to capsize, an ‘avalanche’ of capsizing icebergs ensues which drives horizontal expansion of the massed icebergs across the water surface, and which stimulates other icebergs to capsize. A surprise initially evident in the experiments is the fact that the kinetic energy of the expanding mass of icebergs is only a small fraction of the net potential energy released by the rearrangement of mass via capsize. Approximately 85 - 90 % of the energy released by the system goes into water motion modes, including a pervasive, easily observed seich mode of the tank. This experimental result confirms observational experience with the full-scale system in Greenlandic fjords, where fjord-bound seiches are commonly generated in the wake of calving and ice-mélange movement. We explore parameter ranges and aspects of initial iceberg stability as a means of understanding what thresholds that may exist in the stability of real ice shelves.
NASA Astrophysics Data System (ADS)
Iriarte, J. L.; González, H. E.; Liu, K. K.; Rivas, C.; Valenzuela, C.
2007-09-01
The southern fjord region of Chile is a unique ecosystem characterized by complex marine-terrestrial-atmospheric interactions that result in high biological production. Since organic nitrogen from terrestrial and atmospheric compartments is highly significant in this region (>40%), as is the low NO 3:PO 4 ratio in surface waters, it is suggested that fertilization from inorganic and organic nitrogen sources has a strong influence on both phytoplankton biomass/primary production and harmful algae bloom dynamics. The data presented in this paper provide an opportunity to improve our knowledge of phytoplankton dynamics on temporal and spatial mesoscales. Ocean color data from NASA (SeaWiFS) for chlorophyll and primary production estimates and in situ surface measurement of inorganic nutrients, phytoplankton biomass, and primary productivity revealed that the coastal waters of southern Chile have a classical spring and autumn chlorophyll bloom cycle in which primary production is co-limited by strong seasonal changes in light and nitrate. During spring blooms, autotrophic biomass (such as chlorophyll a, Chl- a) and primary production estimates reached 25 mg Chl- a m -3 and 23 mg C m -3 h -1, respectively, and micro-phytoplankton accounted for a significant portion of the biomass (60%) in spring. The contribution of phytoplankton size classes to total chlorophyll a revealed the dominance of nanoplankton (>50%) in winter and post-bloom periods (<1.0 mg Chl- a m -3).
Biogeography of dinoflagellate cysts in northwest Atlantic ...
Few biogeographic studies of dinoflagellate cysts include the near-shore estuarine environment. We determine the effect of estuary type, biogeography, and water quality on the spatial distribution of organic-walled dinoflagellate cysts from the Northeast USA (Maine to Delaware) and Canada (Prince Edward Island). A total of 69 surface sediment samples were collected from 27 estuaries, from sites with surface salinities >20. Dinoflagellate cysts were examined microscopically and compared to environmental parameters using multivariate ordination techniques. The spatial distribution of cyst taxa reflects biogeographic provinces established by other marine organisms, with Cape Cod separating the northern Acadian Province from the southern Virginian Province. Species such as Lingulodinium machaerophorum and Polysphaeridinium zoharyi were found almost exclusively in the Virginian Province, while others such as Dubridinium spp. and Islandinium? cezare were more abundant in the Acadian Province. Tidal range, sea surface temperature (SST), and sea surface salinity (SSS) are statistically significant parameters influencing cyst assemblages. Samples from the same type of estuary cluster together in canonical correspondence analysis when the estuaries are within the same biogeographic province. The large geographic extent of this study, encompassing four main estuary types (riverine, lagoon, coastal embayment, and fjord), allowed us to determine that the type of estuary has
Monitoring runoff and nutrient transport in the coastal zone of a Danish lowland river
NASA Astrophysics Data System (ADS)
Ovesen, N. B.; Windolf, J.; Kronvang, B.
2012-04-01
Denmark has a very long coastline compared to its total area, and therefore large parts of the lower river reaches are influenced by tidal and coastal backwater effects. In general the gradients of these lowland rivers are very low, and furthermore thousands of small watercourses are flowing directly to the sea along the coastline. This situation makes it impossible to gauge the runoff to many fjords and marine inland waters utilizing traditional monitoring techniques, and consequently, even though Denmark is covered with several hundreds of gauging stations, only 50 percent of the country is gauged. Models are today used to estimate the total runoff and loads of nutrients to coastal waters. One of the major problems in the calibration of the models is however, the lacking of data from the lower part of rivers influenced by tidal and coastal backwater. In order to investigate the possibilities of improving the Danish gauging network and to test the models used for runoff estimation in the ungauged areas, a new monitoring station was established in the summer of 2011 in the River Skjern very close to the outlet in Ringkobing Fjord at the west coast of Jutland. The hydraulic conditions are here affected by tidal and backwater effects and the nutrient transport may be influenced by stratified flow conditions. The catchment area to the new station is 2455 km2, and the width of the channel is 70-80meters. The velocity distribution is measured in the profile by both horizontal and vertical multi cell Doppler sensors. Conductivity (salinity), turbidity and water temperature are measured by sensors in 2 levels, near bottom and in the upper part of the depth profile. Time integrated water samples are collected also in 2 levels with a 2 hour interval and analyzed for total nitrogen, nitrate, ammonium, total phosphorous, and phosphate. The wind speed and direction is registered at the station. The preliminary results show a strong correlation between the water velocities and the wind especially during the winter storms coming mainly from the vest and northwest. Also the nutrient concentrations and the suspended sediments are changing heavily during and following the storm events, and stratification and intrusion of brackish water from the fjord is registered. Data from the new monitoring station and the model outputs will be compared and evaluated.
Rosenberry, Donald O.; Sheibley, Rich W.; Cox, Stephen E.; Simonds, Frederic W.; Naftz, David L.
2013-01-01
Seepage at the sediment-water interface in several lakes, a large river, and an estuary exhibits substantial temporal variability when measured with temporal resolution of 1 min or less. Already substantial seepage rates changed by 7% and 16% in response to relatively small rain events at two lakes in the northeastern USA, but did not change in response to two larger rain events at a lake in Minnesota. However, seepage at that same Minnesota lake changed by 10% each day in response to withdrawals from evapotranspiration. Seepage increased by more than an order of magnitude when a seiche occurred in the Great Salt Lake, Utah. Near the head of a fjord in Puget Sound, Washington, seepage in the intertidal zone varied greatly from −115 to +217 cm d−1 in response to advancing and retreating tides when the time-averaged seepage was upward at +43 cm d−1. At all locations, seepage variability increased by one to several orders of magnitude in response to wind and associated waves. Net seepage remained unchanged by wind unless wind also induced a lake seiche. These examples from sites distributed across a broad geographic region indicate that temporal variability in seepage in response to common hydrological events is much larger than previously realized. At most locations, seepage responded within minutes to changes in surface-water stage and within minutes to hours to groundwater recharge associated with rainfall. Likely implications of this dynamism include effects on water residence time, geochemical transformations, and ecological conditions at and near the sediment-water interface.
High export of dissolved silica from the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Meire, L.; Meire, P.; Struyf, E.; Krawczyk, D. W.; Arendt, K. E.; Yde, J. C.; Juul Pedersen, T.; Hopwood, M. J.; Rysgaard, S.; Meysman, F. J. R.
2016-09-01
Silica is an essential element for marine life and plays a key role in the biogeochemistry of the ocean. Glacial activity stimulates rock weathering, generating dissolved silica that is exported to coastal areas along with meltwater. The magnitude of the dissolved silica export from large glacial areas such as the Greenland Ice Sheet is presently poorly quantified and not accounted for in global budgets. Here we present data from two fjord systems adjacent to the Greenland Ice Sheet which reveal a large export of dissolved silica by glacial meltwater relative to other macronutrients. Upscaled to the entire Greenland Ice Sheet, the export of dissolved silica equals 22 ± 10 Gmol Si yr-1. When the silicate-rich meltwater mixes with upwelled deep water, either inside or outside Greenland's fjords, primary production takes place at increased silicate to nitrate ratios. This likely stimulates the growth of diatoms relative to other phytoplankton groups.
Greenland as seen by the STS-66 shuttle Atlantis
NASA Technical Reports Server (NTRS)
1994-01-01
This north-looking view of southwestern Greenland was taken in November, 1994, and shows numerous indentations, many of which contain small settlements. These fjords were carved by the glaciers of the last ice age 10,000 years ago. Even today, the ice in the center of Greenland is nearly 3,500 meters (11,000 feet) thick and great rivers of ice continuously flow down toward the sea, where they melt or break off as icebergs. Some Icebergs exceed the size of small islands, weigh several million tons, and rise several hundred feet above the sea surface. Cape Farewell is visible toward the bottom right of the view. Julianehab Bay and the Bredev fjord can be seen toward the center of the photograph. Godthab, the main settlement on Greenland, is barely visible to the north of the Frederikeshabs Icefield near the left center of the view.
Greenland as seen by the STS-66 shuttle Atlantis
1994-11-14
This north-looking view of southwestern Greenland was taken in November, 1994, and shows numerous indentations, many of which contain small settlements. These fjords were carved by the glaciers of the last ice age 10,000 years ago. Even today, the ice in the center of Greenland is nearly 3,500 meters (11,000 feet) thick and great rivers of ice continuously flow down toward the sea, where they melt or break off as icebergs. Some Icebergs exceed the size of small islands, weigh several million tons, and rise several hundred feet above the sea surface. Cape Farewell is visible toward the bottom right of the view. Julianehab Bay and the Bredev fjord can be seen toward the center of the photograph. Godthab, the main settlement on Greenland, is barely visible to the north of the Frederikeshabs Icefield near the left center of the view.
Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords
NASA Astrophysics Data System (ADS)
Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.
2017-11-01
Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.
Calving seismicity from iceberg-sea surface interactions
Bartholomaus, T.C.; Larsen, C.F.; O'Neel, S.; West, M.E.
2012-01-01
Iceberg calving is known to release substantial seismic energy, but little is known about the specific mechanisms that produce calving icequakes. At Yahtse Glacier, a tidewater glacier on the Gulf of Alaska, we draw upon a local network of seismometers and focus on 80 hours of concurrent, direct observation of the terminus to show that calving is the dominant source of seismicity. To elucidate seismogenic mechanisms, we synchronized video and seismograms to reveal that the majority of seismic energy is produced during iceberg interactions with the sea surface. Icequake peak amplitudes coincide with the emergence of high velocity jets of water and ice from the fjord after the complete submergence of falling icebergs below sea level. These icequakes have dominant frequencies between 1 and 3 Hz. Detachment of an iceberg from the terminus produces comparatively weak seismic waves at frequencies between 5 and 20 Hz. Our observations allow us to suggest that the most powerful sources of calving icequakes at Yahtse Glacier include iceberg-sea surface impact, deceleration under the influence of drag and buoyancy, and cavitation. Numerical simulations of seismogenesis during iceberg-sea surface interactions support our observational evidence. Our new understanding of iceberg-sea surface interactions allows us to reattribute the sources of calving seismicity identified in earlier studies and offer guidance for the future use of seismology in monitoring iceberg calving.
Carbon Processing in Aquatic Critical Zones: A Source-to-Sink Perspective
NASA Astrophysics Data System (ADS)
Bianchi, T. S.
2017-12-01
The majority of organic carbon (OC) in the global ocean is buried in the coastal margin. In particular, river delta and non-deltaic shelf regions bury an estimated 114 Tg C year-1 and 70 Tg C year-1, respectively, with only ca. 6 Tg C year-1 buried in the open ocean. While there has long standing general agreement that continental selves represent the largest sink of both terrestrial (OCterr) and marine (OCmari) OC in the global ocean, our understanding of the spatial and temporal complexity of this region continues to evolve. For example, fjords are now more recognized as "hotspots"of carbon burial with recent estimates suggesting fjord surface area-normalized OC burial rates are at least five times greater than other marine systems and one hundred times greater than the entire ocean average. Here, I will compare and contrast some of the key molecular biomarkers that have been used to date to track OC across different depositional environments (e.g., large river deltas and fjords) and explore how margin-type, residence time of transport, reservoir dams, redox, priming effects, and molecular stability, impact the utility of using different biomarkers in coastal OC cycling. Finally, I will focus on important critical zones within the aquatic continuum from land-to-sea and examine how more attention is needed better understand OC cycling in these new dynamic interfaces in the Anthropocene.
NASA Astrophysics Data System (ADS)
Elizondo-Patrone, Claudia; Hernández, Klaudia; Yannicelli, Beatriz; Olsen, Lasse Mork; Molina, Verónica
2015-12-01
The consequences of aquaculture include alterations in nitrogen cycling in aquatic environments that may lead to ecosystem degradation. Herein salmon aquaculture release of ammonium (NH4+) to the water column and its effects on natural archaea and bacteria ammonia-oxidizers (AOA and AOB) and nitrite-oxidizing bacteria (NOB) community structure were studied in the Comau fjord using molecular approaches, such as: cloning (AOA and AOB richness), qPCR for C. Nitrosopumilus maritimus (AOA) and Nitrospina sp. (NOB) abundance (DNA) and RT-qPCR only for Nitrospina sp activity (RNA). Sampling was carried out in brackish (0.7-25 salinity, <5 m depth) and marine (>30 salinity, 25 m depth) waters during contrasting salmon production periods: rest (winter 2012), growth and harvest (summer and winter 2013). During the rest period, the highest NH4+ concentration was observed at Vodudahue River, whereas during productive periods NH4+ accumulated in the brackish layer inside salmon cages and in the vicinty (up to 700 m distance from the cages). The nitrifier community from the fjord reference station (Stn-C) was characterized by C. N. maritimus (AOA) and Nitrosomonas sp. (AOB) sequences affiliated with cosmopolitan ecotypes (e.g., marine, freshwater, hydrothermal), maxima abundances of C. N. maritimus (AOA) and Nitrospina sp. and extreme ranges of Nitrospina sp. activity occurred in the brackish layer. During productive periods, abundances of C. N. maritimus were co-varied with NH4+ concentrations inside salmon cages (summer) and the adjacent areas (winter). Productive periods were characterized by lower abundances but more homogeneity between brackish and marine areas than for the Stn-C nitrifiers. The physiological state of Nitrospina sp. estimated from cDNA:DNA ratios indicated higher growth during winter 2013 associated with NH4+ enrichment derived from production and river input. Our results suggest that in Comau Fjord, NH4+ enrichment events occur during salmon production and also naturally by river inputs, supporting an abundant and active nitrifying community potentially processing only part of the extra NH4+ that occurs, predominantly outside the salmon cages. Our work highlights the abundance and activities of nitrifying communities and identifies these communities as being sensitive to increased loads of NH4+ .
Statham, P J; Connelly, D P; German, C R; Brand, T; Overnell, J O; Bulukin, E; Millard, N; McPhail, S; Pebody, M; Perrett, J; Squire, M; Stevenson, P; Webb, A
2005-12-15
Loch Etive is a fjordic system on the west coast of Scotland. The deep waters of the upper basin are periodically isolated, and during these periods oxygen is lost through benthic respiration and concentrations of dissolved manganese increase. In April 2000 the autonomous underwater vehicle (AUV) Autosub was fitted with an in situ dissolved manganese analyzer and was used to study the spatial variability of this element together with oxygen, salinity, and temperature throughout the basin. Six along-loch transects were completed at either constant height above the seafloor or at constant depth below the surface. The ca. 4000 in situ 10-s-average dissolved Mn (Mnd) data points obtained provide a new quasi-synoptic and highly detailed view of the distribution of manganese in this fjordic environment not possible using conventional (water bottle) sampling. There is substantial variability in concentrations (<25 to >600 nM) and distributions of Mnd. Surface waters are characteristically low in Mnd reflecting mixing of riverine and marine end-member waters, both of which are low in Mnd. The deeper waters are enriched in Mnd, and as the water column always contains some oxygen, this must reflect primarily benthic inputs of reduced dissolved Mn. However, this enrichment of Mnd is spatially very variable, presumably as a result of variability in release of Mn coupled with mixing of water in the loch and removal processes. This work demonstrates how AUVs coupled with chemical sensors can reveal substantial small-scale variability of distributions of chemical species in coastal environments that would not be resolved by conventional sampling approaches. Such information is essential if we are to improve our understanding of the nature and significance of the underlying processes leading to this variability.
Biodiversity patterns of rock encrusting fauna from the shallow sublittoral of the Admiralty Bay.
Krzeminska, Malgorzata; Kuklinski, Piotr
2018-08-01
The Antarctic sublittoral is one of the most demanding habitat for polar bottom-dwelling organisms, as the disturbance of this zone is highly intense. Rapid changes in the marine environment, such as increases in atmosphere and surface water temperatures, can cause dramatic changes in biodiversity, especially in glacial fjords affected by heavy melt water inputs from the retreating glaciers. In such areas, rocks are often an important support for local diversity, providing habitats for a number of encrusting organisms. Thus, understanding the patterns of diversity of shallow rock encrusting fauna and factors controlling it are particularly important. The structure and diversity patterns of rock encrusting fauna were examined from four ecologically contrasting sites in the shallow sublittoral (6-20 m) of Admiralty Bay (King George Island). The results revealed a rich and abundant encrusting community with bryozoans and polychaetes outcompeting representatives of other fauna such as foraminifera and porifera. Spatial variability in species composition, as well as biological parameters, revealed the trend of encrusting assemblages declining towards the inner fjord areas - strongly affected by high sediment input (species richness: 13.3 ± 1.2, and abundance: 68,932.99 ± 11,915.98 individuals m -2 ± standard error). In contrast, at sites more open to the central basin, a peak of biological parameters was observed (24.8 ± 1.4 and 297,360.9 ± 30,314.72, respectively). We suggest that increased sedimentation was the major factor structuring the encrusting assemblages in Ezcurra Inlet, masking the influence of other parameters, such as food and light availability, which are important for the distribution of epifauna. Thus, if the increasing intensity of glacial processes will continue in the upcoming years, the diversity of the encrusting fauna in the shallow sublittoral could dramatically decrease. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hubbard, Stephen; Kostic, Svetlana; Englert, Rebecca; Coutts, Daniel; Covault, Jacob
2017-04-01
Recent bathymetric observations of fjord prodeltas in British Columbia, Canada, reveal evidence for multi-phase channel erosion and deposition. These processes are interpreted to be related to the upstream migration of upper-flow-regime bedforms, namely cyclic steps. We integrate data from high-resolution bathymetric surveys and monitoring to inform morphodynamic numerical models of turbidity currents and associated bedforms in the Squamish prodelta. These models are applied to the interpretation of upper-flow-regime bedforms, including cyclic steps, antidunes, and/or transitional bedforms, in Late Cretaceous submarine conduit strata of the Nanaimo Group at Gabriola Island, British Columbia. In the Squamish prodelta, as bedforms migrate, >90% of the deposits are reworked, making morphology- and facies-based recognition challenging. Sedimentary bodies are 5-30 m long, 0.5-2 m thick and <30 m wide. The Nanaimo Group comprises scour fills of similar scale composed of structureless sandstone, with laminated siltstone locally overlying basal erosion surfaces. Backset stratification is locally observed; packages of 2-4 backset beds, each of which are up to 60 cm thick and up to 15 m long (along dip), commonly share composite basal erosion surfaces. Numerous scour fills are recognized over thin sections (<4 m), indicating limited aggradation and preservation of the bedforms. Preliminary morphodynamic numerical modeling indicates that Squamish and Nanaimo bedforms could be transitional upper-flow-regime bedforms between cyclic steps and antidunes. It is likely that cyclic steps and related upper-flow-regime bedforms are common in strata deposited on high gradient submarine slopes. Evidence for updip-migrating cyclic step and related deposits inform a revised interpretation of a high gradient setting dominated by supercritical flow, or alternating supercritical and subcritical flow in the Nanaimo Group. Integrating direct observations, morphodynamic numerical modeling, and outcrop characterization better constrains fundamental processes that operate in deep-water depositional systems; our analyses aims to further deduce the stratigraphy and preservation potential of upper flow-regime bedforms.
Effect of oxygen minimum zone formation on communities of marine protists.
Orsi, William; Song, Young C; Hallam, Steven; Edgcomb, Virginia
2012-08-01
Changes in ocean temperature and circulation patterns compounded by human activities are leading to oxygen minimum zone (OMZ) expansion with concomitant alteration in nutrient and climate active trace gas cycling. Here, we report the response of microbial eukaryote populations to seasonal changes in water column oxygen-deficiency using Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island British Columbia, as a model ecosystem. We combine small subunit ribosomal RNA gene sequencing approaches with multivariate statistical methods to reveal shifts in operational taxonomic units during successive stages of seasonal stratification and renewal. A meta-analysis is used to identify common and unique patterns of community composition between Saanich Inlet and the anoxic/sulfidic Cariaco Basin (Venezuela) and Framvaren Fjord (Norway) to show shared and unique responses of microbial eukaryotes to oxygen and sulfide in these three environments. Our analyses also reveal temporal fluctuations in rare populations of microbial eukaryotes, particularly anaerobic ciliates, that may be of significant importance to the biogeochemical cycling of methane in OMZs. Eukaryotic 18S rRNA gene sequences recovered from the Saanich Inlet water column on were deposited in Genbank under accession numbers HQ864863–HQ871151.
Carbon Burial at the Land Ocean Interface: Climate vs Human Drivers
NASA Astrophysics Data System (ADS)
Bianchi, T. S.; Smeaton, C.; Cui, X.; Howe, J. A.; Austin, W.
2017-12-01
Fjords are connectors between the terrestrial and marine systems and are known as globally significant hotspots for the burial (Smith et al., 2014) and long-term storage (Smeaton et al., 2016) of carbon (C). The glacial geomorphology of fjords and their catchment results in the terrestrial and marine environments being strongly coupled more so than other estuary types. The clearest example of this is the terrestrial C subsidy to these sediment, it is estimated that globally 55-62% of C held in fjord sediments are terrestrially derived (Cui et al., 2016). Yet it is largely unknown how climatic and human forcing drives the transfer of terrestrial C to marine sediments. Here we, examine the role of late Holocene climate and human activity on the transfer of C from the terrestrial to marine environment along the North Atlantic Margin. Loch Sunart a Scottish fjord sits at the land ocean interface of the North Atlantic. The catchment of the fjord has been shown to be sensitive to local and regional climatic change (Gillibrand et al., 2005) and the fjord sediments have been able to record these changes in Climate (Cage and Austin, 2010). Using a long (22 m) sedimentary record we discuss our understanding of mid to late Holocene regional climate and its impact on terrestrial C transfer to the coastal ocean. Alongside this we examine the role of humans on the landscape and their impact on the transfer of terrestrial C on the coastal ocean. The results from this study will further our understanding of the long-term drivers of terrestrial C transfer to the coastal ocean. Potentially this research provides insights on future C transfers under a changing future climate allowing the importance of fjords as a climate regulation service to be reassessed.
NASA Astrophysics Data System (ADS)
Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.
2016-02-01
The arctic Adventfjorden (78°N, 15°E, Svalbard) used to be seasonally ice-covered but has mostly been ice-free since 2007. We used this ice-free arctic fjord as a model area to investigate (1) how the vertical flux of biomass (chlorophyll a and particulate organic carbon, POC) follows the seasonality of suspended material, (2) how sinking particle characteristics change seasonally and affect the vertical flux, and (3) if the vertical flux in the ice-free arctic fjord with glacial runoff resembles the flux in subarctic ice-free fjords. During seven field investigations (December 2011-September 2012), suspended biomass was determined (5, 15, 25, and 60 m), and short-term sediment traps were deployed (20, 30, 40, and 60 m), partly modified with gel-filled jars to study the size and frequency distribution of sinking particles. During winter, resuspension from the seafloor resulted in large, detrital sinking particles. Intense sedimentation of fresh biomass occurred during the spring bloom. The highest POC flux was found during autumn (770-1530 mg POC m- 2 d- 1), associated with sediment-loaded glacial runoff and high pteropod abundances. The vertical biomass flux in the ice-free arctic Adventfjorden thus resembled that in subarctic fjords during winter and spring, but a higher POC sedimentation was observed during autumn.
An ikaite record of late Holocene climate at the Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Lu, Z.; Rickaby, R. E.; Kennedy, H.; Pancost, R. D.; Shaw, S.; Lennie, A. R.; Wellner, J. S.; Anderson, J. B.
2011-12-01
Ikaite is a low temperature polymorph of calcium carbonate which is hydrated with water molecules contained in its crystal lattice (CaCO3:6H2O). Ikaite is thought to rapidly decompose into calcite and water at temperatures above 4°C. The hydration water in ikaite grown in laboratory experiments records the δ18O of ambient water, a feature potentially useful for reconstructing δ18O of local seawater. The most recent melting of the Caley Glacier on the Antarctic Peninsula (AP) during last few decades released meltwater into nearby fjords and left a strong signal of light δ18O values in shallow porewater profiles. If ikaite crystals incorporate ambient porewaters into crystal structure as the hydration water, then crystals grown at different times will record the changes in bottom water δ18O due to waxing and waning of (global or local) ice-sheets. U.S. Antarctic Program cruise NBP0703 collected piston cores around the AP and found ikaite crystals in multiple horizons at the Firth of Tay, suitable for reconstructing a low resolution ikaite record of the last 2000 years. We report the first downcore δ18O record of natural ikaite hydration waters and crystals collected from the AP, a region sensitive to climate fluctuations. We are able to establish the zone of ikaite formation within shallow sediments and derive a climatic signal, related to local changes in fjord δ18O, versus time encoded in this late Holocene ikaite record. Our interpretation, based on ikaite isotopes, provides additional qualitative evidence that both the Medieval Warm Period and Little Ice Age were extended to the Southern Ocean and the Antarctic Peninsula.
New constraints on the deglaciation chronology of the southeastern margin of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.; Zimmerman, S. R. H.
2015-12-01
The Greenland Ice Sheet (GrIS) is responding rapidly to climate change. Marine terminating outlet glaciers that drain the GrIS have responded especially sensitively to present-day climate change by accelerating, thinning and retreating. In southeastern Greenland several outlet glaciers are undergoing rapid changes in mass balance and ice dynamics. To improve our understanding of the future, long-term response of these marine-terminating outlet glaciers to climate change, we focus on the response of three outlet glaciers to climate change since the Last Glacial Maximum. The timing and rates of late-glacial and early Holocene deglaciation of the southeastern sector of the GrIS are relatively unconstrained due to the inaccessibility of the region. Using a helicopter and a sailboat, we collected samples for 10Be surface exposure dating from three fjords in southeastern Greenland: Skjoldungen (63.4N), Uvtorsiutit (62.7N), and Lindenow (60.6N). These fjords drain marine terminating glaciers of the GrIS. Here we present 18 new 10Be ages from ~50 km long transects along these fjords that mark the timing of deglaciation from the outer coast inland to the present-day GrIS margin. Together with previously constrained deglaciation chronologies from Bernstorffs, Sermilik, and Kangerdlussuaq fjords in southeastern Greenland, these new chronologies offer insight into the late-glacial and early Holocene dynamics of the southeastern GrIS outlet glaciers. We compare the timing and rate of deglaciation in southeastern Greenland to climate records from the region to examine the mechanisms that drove deglaciation during late-glacial and early Holocene time. These new 10Be ages provide a longer-term perspective of marine terminating outlet glacier fluctuations in southeastern Greenland and can be used to model the ice sheet's response to late-glacial and early Holocene climate changes.
Tsunami Generation and Propagation by 3D deformable Landslides and Application to Scenarios
NASA Astrophysics Data System (ADS)
McFall, Brian C.; Fritz, Hermann M.
2014-05-01
Tsunamis generated by landslides and volcano flank collapse account for some of the most catastrophic natural disasters recorded and can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1
NASA Astrophysics Data System (ADS)
Bourgeois, Solveig; Kerhervé, Philippe; Calleja, Maria Ll.; Many, Gaël; Morata, Nathalie
2016-12-01
With climate change, the strong seasonality and tight pelagic-benthic coupling in the Arctic is expected to change in the next few decades. It is currently unclear how the benthos will be affected by changes of environmental conditions such as supplies of organic matter (OM) from the water column. In the last decade, Kongsfjorden (79°N), a high Arctic fjord in Svalbard influenced by several glaciers and Atlantic water inflow, has been a site of great interest owing to its high sensitivity to climate change, evidenced by a reduction in ice cover and an increase in melting freshwater. To investigate how spatial and seasonal changes in vertical fluxes can impact the benthic compartment of Kongsfjorden, we studied the organic matter characteristics (in terms of quantity and quality) and prokaryotic distribution in sediments from 3 stations along a transect extending from the glacier into the outer fjord in 4 different seasons (spring, summer, autumn and winter) in 2012-2013. The biochemical parameters used to describe the sedimentary organic matter were organic carbon (OC), total nitrogen, bulk stable isotope ratios, pigments (chorophyll-a and phaeopigments) and biopolymeric carbon (BPC), which is the sum of the main macromolecules, i.e. lipids, proteins and carbohydrates. Prokaryotic abundance and distribution were estimated by 4‧,6-diamidino-2-phenylindole (DAPI) staining. This study identifies a well-marked quantitative gradient of biogenic compounds throughout all seasons and also highlights a discrepancy between the quantity and quality of sedimentary organic matter within the fjord. The sediments near the glacier were organic-poor (< 0.3%OC), however the high primary productivity in the water column displayed during spring was reflected in summer sediments, and exhibited higher freshness of material at the inner station compared to the outer basin (means C-chlorophyll-a/OC 5 and 1.5%, respectively). However, sediments at the glacier front were depleted in BPC ( 0.2-0.3 mg C g- 1 DW) by 4.5 and 9 times compared to sediments from the inner and outer stations. δ13C values in sedimentary organic matter of Kongsfjorden varied between - 23.8 and - 19.3‰ and reflected distinct sources of organic matter between basins. Bacterial total cell numbers in sediments of Kongsfjorden were < 2 × 108 cells ml- 1 and the prokaryotic community structure was strongly influenced by the marked environmental biogenic gradients. Overall, the spatial variability prevailed over the seasonal variability in sediments of Kongsfjorden suggesting that glacier inputs prominently control the functioning of this benthic ecosystem and its communities. Regional index terms: Norway, Svalbard, Kongsfjorden.
NASA Astrophysics Data System (ADS)
Lane, Timothy; Roberts, David; Rea, Brice; Cofaigh, Colm Ó.; Vieli, Andreas
2013-04-01
At the Last Glacial Maximum (LGM), the Uummannaq Ice Stream System comprised a series coalescent outlet glaciers which extended along the trough to the shelf edge, draining a large proportion of the West Greenland Ice Sheet. Geomorphological mapping, terrestrial cosmogenic nuclide (TCN) exposure dating, and radiocarbon dating constrain warm-based ice stream activity in the north of the system to 1400 m a.s.l. during the LGM. Intervening plateaux areas (~ 2000 m a.s.l.) either remained ice free, or were covered by cold-based icefields, preventing diffluent or confluent flow throughout the inner to outer fjord region. Beyond the fjords, a topographic sill north of Ubekendt Ejland prevented the majority of westward ice flow, forcing it south through Igdlorssuit Sund, and into the Uummannaq Trough. Here it coalesced with ice from the south, forming the trunk zone of the UISS. Deglaciation of the UISS began at 14.9 cal. ka BP, rapidly retreating through the overdeepened Uummannaq Trough. Once beyond Ubekendt Ejland, the northern UISS retreated northwards, separating from the south. Retreat continued, and ice reached the present fjord confines in northern Uummannaq by 11.6 kyr. Both geomorphological (termino-lateral moraines) and geochronological (14C and TCN) data provide evidence for an ice marginal stabilisation at within Karrat-Rink Fjord, at Karrat Island, from 11.6-6.9 kyr. The Karrat moraines appear similar in both fjord position and form to 'Fjord Stade' moraines identified throughout West Greenland. Though chronologies constraining moraine formation are overlapping (Fjord Stade moraines - 9.3-8.2 kyr, Karrat moraines - 11.6-6.9 kyr), these moraines have not been correlated. This ice margin stabilisation was able to persist during the Holocene Thermal Maximum (~7.2 - 5 kyr). It overrode climatic and oceanic forcings, remaining on Karrat Island throughout peaks of air temperature and relative sea-level, and during the influx of the warm West Greenland Current into the Uummannaq region. Based upon analysis of fjord bathymetry and width, this ice marginal stabilisation has been shown to have been caused by increases in topographic constriction at Karrat Island. The location of the marginal stillstand is coincident with a dramatic narrowing of fjord width and bed shallowing. These increases in local lateral resistance reduces the ice flux necessary to maintain a stable grounding line, leading to ice margin stabilisation. This acted to negate the effects of the Holocene Thermal Maximum. Following this stabilisation, retreat within Rink-Karrat Fjord continued, driven by calving into the overdeepened Rink Fjord. Rink Isbræ reached its present ice margin or beyond after 5 kyr, during the Neoglacial. In contrast, the southern UISS reached its present margin at 8.7 kyr and Jakobshavn Isbræ reached its margin by 7 kyr. This work therefore provides compelling evidence for topographically forced asynchronous, non-linear ice stream retreat between outlet glaciers in West Greenland. In addition, it has major implications for our understanding and reconstruction of mid-Holocene ice sheet extent, and ice sheet dynamics during the Holocene Thermal Maximum to Neoglacial switch.
NASA Astrophysics Data System (ADS)
Moossen, H. M.; Seki, O.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.
2012-12-01
Holocene climate change has affected human cultures throughout at least the last 4000 years (D'Andrea et al., 2011). Today, studying Holocene climate variability is important, both to constrain the influence of climate change on ancient cultures and to place contemporary climate change in a historic context. Organic geochemical biomarkers are an ideal tool to study how climatic changes have affected terrestrial and marine ecosystems, as a host of different biomarker based climate proxies have emerged over recent years. Applying the available biomarker proxies on sediment cores from fjordic environments facilitates the study of how climate has affected terrestrial and marine ecosystems, and how these ecosystems have interacted. Ìsafjardardjúp fjord in Northwest Iceland is an ideal location to study North Atlantic Holocene climate change because the area is very sensitive to changes in the oceanic and atmospheric current systems (Hurrell, 1995; Quillmann et al., 2010). In this study we present high resolution (1 sample/30 calibrated years) terrestrial and marine biomarker records from a 38 m sediment core from Ìsafjardardjúp fjord covering the Holocene. We reconstruct sea surface temperature variations using the alkenone derived UK'37 proxy. Air temperature changes are reconstructed using the GDGT derived MBT/CBT palaeothermometer. We use the average chain length (ACL) variability of n-alkanes derived from terrestrial higher plant leaf waxes to reconstruct changing precipitation regimes. The relationship between ACL and precipitation is confirmed by comparing it with the δD signature of the C29 n-alkane and soil pH changes inferred by the CBT proxy. The combined sea surface and air temperature and precipitation records indicate that different climate changing drivers were dominant at different stages of the Holocene. Sea surface temperatures were strongly influenced by the melting of the remaining glaciers from the last glacial maximum throughout the early Holocene, while air temperatures were influenced by high solar insolation. The central Holocene climate is mainly driven by decreasing northern hemisphere insolation, while the lateral transport of energy from the equator into the North Atlantic region drives climate change in the late Holocene. D'Andrea, W.J., Huang, Y., Fritz, S.C., Anderson, N.J., (2011) Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9765-9769. Hurrell, J.W., (1995) Decadal trends in the North Atlantic Oscillation - Regional temperatures and precipitation. Science, 269(5224), 676-679. Quillmann, U., Jennings, A., Andrews, J., (2010) Reconstructing Holocene palaeoclimate and palaeoceanography in Isafjaroardjup, northwest Iceland, from two fjord records overprinted by relative sea-level and local hydrographic changes. Journal of Quaternary Science, 25(7), 1144-1159.
NASA Astrophysics Data System (ADS)
Browne, Imogen M.; Moy, Christopher M.; Riesselman, Christina R.; Neil, Helen L.; Curtin, Lorelei G.; Gorman, Andrew R.; Wilson, Gary S.
2017-10-01
The Southern Hemisphere westerly winds (SHWWs) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean, on interannual to glacial-interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial- and centennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of palaeoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene SHWW variability using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Changes in drainage basin response to variability in the strength of the SHWW at this latitude are interpreted from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C / N, which monitor influxes of lithogenous and terrestrial vs. marine organic matter, respectively. The fjord water column response to SHWW variability is evaluated using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from ˜ 1600 to 900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of climate-driven vegetation change at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand during the first half of the last millennium. Comparison with palaeoclimate and palaeoceanographic records from southern South America and West Antarctica indicates a late Holocene strengthening of the SHWW after ˜ 1600 yr BP that appears to be broadly symmetrical across the Pacific Basin. Contemporaneous increases in SHWW at localities on either side of the Pacific in the late Holocene are likely controlled atmospheric teleconnections between the low and high latitudes, and by variability in the Southern Annular Mode and El Niño-Southern Oscillation.
Evidence of Anomalously Low δ13C of Marine Organic Matter in an Arctic Fjord.
Kumar, Vikash; Tiwari, Manish; Nagoji, Siddhesh; Tripathi, Shubham
2016-11-09
Accurate estimation of relative carbon deposition (marine vs. terrestrial) is required for understanding the global carbon budget, particularly in the Arctic region, which holds disproportionate importance with respect to global carbon cycling. Although the sedimentary organic matter (SOM) concentration and its isotopic composition are important tools for such calculations, uncertainties loom over estimates provided by organic-geochemical bulk parameters. We report carbon and nitrogen concentrations and isotopes (δ 13 C and δ 15 N) of SOM at an Arctic fjord namely Kongsfjorden. We find that the bound inorganic nitrogen (ammonium attached to the clay minerals) forms a significant proportion of total nitrogen concentration (~77% in the inner fjord to ~24% in the outer part). On removing the bound nitrogen, the C/N ratio shows that the SOM in the inner fjord is made up of terrestrial carbon while the outer fjord shows mixed marine-terrestrial signal. We further show that the marine organic matter is unusually more depleted in 13 C (~-24‰) than the terrestrial organic matter (~-22.5‰). This particular finding also helps explain high δ 13 C values of SOM as noted by earlier studies in central Arctic sediments despite a high terrestrial contribution.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 13.1302 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13... shall not apply to, Kenai Fjords National Park. ...
NASA Astrophysics Data System (ADS)
Jørgensen, E. T.; Sørensen, L. L.; Jensen, B.; Sejr, M. K.
2012-04-01
The air-sea exchange of CO2 or CO2 flux is driven by the difference in the partial pressure of CO2 in the water and the atmosphere (ΔpCO2), the solubility of CO2 (K0) and the gas transfer velocity (k) (Wanninkhof et al., 2009;Weiss, 1974) . ΔpCO2 and K0 are determined with relatively high precision and it is estimated that the biggest uncertainty when modelling the air-sea flux is the parameterization of k. As an example; the estimated global air-sea flux increases by 70 % when using the parameterization by Wanninkhof and McGillis (1999) instead of Wanninkhof (1992) (Rutgersson et al., 2008). In coastal areas the uncertainty is even higher and only few studies have focused on determining transfer velocity for the coastal waters and even fewer on estuaries (Borges et al., 2004;Rutgersson et al., 2008). The transfer velocity (k600) of CO2 in the inner estuary of Roskilde Fjord, Denmark was investigated using eddy covariance CO2 fluxes (ECM) and directly measured ΔpCO2 during May and June 2010. The data was strictly sorted to heighten the certainty of the results and the outcome was; DS1; using only ECM, and DS2; including the inertial dissipation method (IDM). The inner part of Roskilde Fjord showed to be a very biological active CO2 sink and preliminary results showed that the average k600 was more than 10 times higher than transfer velocities from similar studies of other coastal areas. The much higher transfer velocities were estimated to be caused by the greater fetch and shallower water in Roskilde Fjord, which indicated that turbulence in both air and water influence k600. The wind speed parameterization of k600 using DS1 showed some scatter but when including IDM the r2 of DS2 reached 0.93 with an exponential parameterization, where U10 was based on the Businger-Dyer relationships using friction velocity and atmospheric stability. This indicates that some of the uncertainties coupled with CO2 fluxes calculated by the ECM are removed when including the IDM.
The impact of glacier meltwater on the underwater noise field in a glacial bay
NASA Astrophysics Data System (ADS)
Glowacki, Oskar; Moskalik, Mateusz; Deane, Grant B.
2016-12-01
Ambient noise oceanography is proving to be an efficient and effective tool for the study of ice-ocean interactions in the bays of marine-terminating glaciers. However, obtaining quantitative estimates of ice melting or calving processes from ambient noise requires an understanding of how sound propagation through the bay attenuates and filters the noise spectrum. Measurements of the vertical structure in sound speed in the vicinity of the Hans Glacier in Hornsund Fjord, Spitsbergen, made with O(130) CTD casts between May and November 2015, reveal high-gradient, upward-refracting sound speed profiles created by cold, fresh meltwater during summer months. Simultaneous recordings of underwater ambient noise made at depths of 1, 10, and 20 m in combination with propagation model calculations using the model Bellhop illustrate the dominant role these surface ducts play in shaping the underwater soundscape. The surface ducts lead to a higher intensity and greater variability of acoustic energy in the near-surface layer covered by glacially modified waters relative to deeper waters, indicating deeper zones as most appropriate for interseasonal acoustic monitoring of the glacial melt. Surface waveguides in Hornsund are relatively shallow and trap sound above O(1 kHz). Deeper waveguides observed elsewhere will also trap low-frequency sounds, such as those generated by calving events for example. Finally, the ambient noise field in Hornsund is shown to be strongly dependent on the distribution of ice throughout the bay, stressing the importance of performing complementary environmental measurements when interpreting the results of acoustic surveys.
Vegetative Succession in Recently Deglaciated Land in Kenai Fjords National Park
NASA Astrophysics Data System (ADS)
Green, C.; Klein, A. G.; Cairns, D. M.
2017-12-01
Poleward vegetation expansion has affected Alaska for decades and due to recently increased rates of warming, the expansion will accelerate. Glacial recession in Kenai Fjords National Park has exposed previously ice-covered land with vegetation succession occurring just a few years following glacial retreat. Land cover changes in recently deglaciated areas are affected by surface-air interactions, temperature gradients, and ecosystem development. Using satellite images from Landsat 5, 7, and 8 and the previous extents of four retreating glaciers from 1985 to 2015 within Kenai Fjords National Park, this study examines the relationship between deglaciation rates and vegetation greening. The glaciers, Exit (-15.04 m/yr), Petrof (-31.12 m/yr), Lowell (-33.14 m/yr), and Yalik (-51.32 m/yr) were selected based on their location, whether they were land or lake terminating, and their average retreat rate measured between 1985 and 2015. These glaciers have also been extensively studied. Combining historic glacier extents with 371 summer (JJA) Landsat images gathered from Google's Earth Engine platform we identified annual summer changes in NDVI of locations that were deglaciated between 1985, 1995, 2005, and 2015. Summer temperature maximums were determined to be more correlated with deglaciation, as measured using NDSI, than mean summer temperatures. Using NDVI, heightened deglaciation rates were found to be reasonably correlated with vegetation succession. The faster retreating glaciers, Lowell and Yalik, exhibited higher mean and maximum rates of increase of NDVI in their terminus areas than Exit and Petrof, the two slower retreating glaciers.
Effect of oxygen minimum zone formation on communities of marine protists
Orsi, William; Song, Young C; Hallam, Steven; Edgcomb, Virginia
2012-01-01
Changes in ocean temperature and circulation patterns compounded by human activities are leading to oxygen minimum zone (OMZ) expansion with concomitant alteration in nutrient and climate active trace gas cycling. Here, we report the response of microbial eukaryote populations to seasonal changes in water column oxygen-deficiency using Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island British Columbia, as a model ecosystem. We combine small subunit ribosomal RNA gene sequencing approaches with multivariate statistical methods to reveal shifts in operational taxonomic units during successive stages of seasonal stratification and renewal. A meta-analysis is used to identify common and unique patterns of community composition between Saanich Inlet and the anoxic/sulfidic Cariaco Basin (Venezuela) and Framvaren Fjord (Norway) to show shared and unique responses of microbial eukaryotes to oxygen and sulfide in these three environments. Our analyses also reveal temporal fluctuations in rare populations of microbial eukaryotes, particularly anaerobic ciliates, that may be of significant importance to the biogeochemical cycling of methane in OMZs. PMID:22402396
NASA Astrophysics Data System (ADS)
Rodrigo, C.; Vilches, L.; Vallejos, C.; Fernandez, R.; Molares, R.
2015-12-01
The fjords of the South Shetland Islands (Antarctica) and Danco Coast (Antarctic Peninsula) represent climatic transitional areas (subpolar to polar). The analysis of the distribution of sub-bottom facies helps to understand the prevailing sedimentary and climatic processes. This work seeks to characterize and compare the fjord seismic facies, of the indicated areas, to determine the main sedimentary processes in these regions. Compressed High-Intensity Radiated Pulse (CHIRP) records from 3.5 kHz sub-bottom profiler were obtained from the cruise: NBP0703 (2007); and pinger 3.5 kHz sub-bottom profiler records from the cruises: ECA-50 INACH (2014), and First Colombian Expedition (2015). Several seismic facies were recognized in all studied areas with some variability on their thickness and extent, and indicate the occurrence of similar sedimentary processes. These are: SSD facies (strong to weak intensity, stratified, draped sheet external shape), is interpreted as sedimentary deposits originated from suspended sediments from glaciar plumes and/or ice-rafting. This facies, in general, is thicker in the fjords of King George Island than in the larger fjords of the Danco Coast; on the other hand, within the Danco Coast area, this facies is thinner and more scarce in the smaller fjords and bays. MCM facies (moderate intensity, chaotic and with mounds) is associated with moraine deposits and/or basement. This is present in all areas, being most abundant in the Danco Coast area. WIC facies (weak intensity and chaotic) is interpreted as debris flows, which are present in both regions, but is most common in small fjords or bays in the Danco Coast, perhaps due to higher slopes of the seabed. In this work we discuss the influence of local climate, sediment plumes from the glaciers and other sedimentary processes on the distribution and geometry of the identified seismic facies.
Biological effects of long term fine limestone tailings discharge in a fjord ecosystem.
Brooks, Lucy; Melsom, Fredrik; Glette, Tormod
2015-07-15
Benthic infaunal data collected from 1993 to 2010 were analysed to examine the effect of long term discharge of fine limestone tailings on macrofaunal species assemblages in a fjord. Relative distance from the outfall and proportion of fine tailings in the sediment were correlated with benthic community structure. Diversity decreased with increasing proportion of fine tailings. Biological Traits Analysis (BTA) was used to explore the temporal and spatial effects of the tailings gradient on macrofaunal functional attributes. BTA revealed that all stations along a pressure gradient of fine limestone tailings were dominated by free-living species. As the proportion of fine tailings in the sediment increased, there was an increase in fauna that were smaller, highly mobile, living on or nearer the surface sediment, with shorter lifespans. There was a decrease in permanent tube dwellers, those fauna with low or no mobility, that live deeper in the sediment and have longer lifespans (>5 yrs). Copyright © 2015 Elsevier Ltd. All rights reserved.
Citterio, Michele; Sejr, Mikael K; Langen, Peter L; Mottram, Ruth H; Abermann, Jakob; Hillerup Larsen, Signe; Skov, Kirstine; Lund, Magnus
2017-02-01
Terrestrial freshwater runoff strongly influences physical and biogeochemical processes at the fjord scale and can have global impacts when considered at the Greenland scale. We investigate the performance of the HIRHAM5 regional climate model over the catchments delivering freshwater to Tyrolerfjord and Young Sound by comparing to the unique Greenland Ecological Monitoring database of in situ observations from this region. Based on these findings, we estimate and discuss the fraction of runoff originating from glacierized and non-glacierized land delivered at the daily scale between 1996 and 2008. We find that glaciers contributed on average 50-80% of annual terrestrial runoff when considering different sections of Tyrolerfjord-Young Sound, but snowpack depletion on land and consequently runoff happens about one month earlier in the model than observed in the field. The temporal shift in the model is a likely explanation why summer surface salinity in the inner fjord did not correlate to modelled runoff.
NASA Astrophysics Data System (ADS)
Moy, C. M.; Gilmer, G.; Nichols, J. E.; Browne, I. M.; Curtin, L.; Vandergoes, M.; Aebig, C.; Wilson, G. S.
2017-12-01
The strength and latitudinal position of the Southern Hemisphere westerly winds (SHWW) play a fundamental role in influencing mid-latitude climate and CO2 exchange between the Southern Ocean and the atmosphere along seasonal to glaicial-interglacial timescales. Despite their importance, our understanding of past SHWW change is limited by the small number of paleoclimate records from the modern wind maximum, which are often not in agreement. The New Zealand subantarctic Auckland Islands are located within the core of the modern wind belt (50°S), a key latitude where ocean-atmospheric linkages between the Antarctic and mid-latitudes are strong. In contrast to other subantarctic islands on the Campbell Plateau, the Auckland Islands have multiple protected fjord sub-basins, deep lakes, and peatlands that are advantageous for the development of high-resolution paleoclimate records. We will present ongoing work towards the establishment of multi-proxy and multi-site reconstructions of past SHWW variability from the Auckland Islands. Modern process and paleoclimate studies suggest that in lacustrine and fjord settings, the degree of water column mixing, the stable isotopic composition of n-alkanes and benthic foraminifera, and the influx of terrestrial organic matter are good indicators of wind-induced mixing of the water column or precipitation-driven erosion within catchments. During the Late Glacial and early Holocene (15 to 9 ka), elevated long-chain n-alkane δD values from ombrotrophic peatlands and an increase in the concentration of redox-sensitive elements in fjord sediment cores, signal weakening of the SHWW that appears to be coincident with periods of rapid deglacial warming of West Antarctica. Since 5.5 ka, we interpret declining n-alkane δD values to indicate enhanced westerly flow. These interpretations are in broad agreement with terrestrial paleoclimate records developed from southern South America and argue for a symmetrical response of the SHWW during the last 15,000 years along multi-millennial timescales.
Trampe, Erik C L; Larsen, Jens E N; Glaring, Mikkel A; Stougaard, Peter; Kühl, Michael
2016-01-01
The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1-2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.
Trampe, Erik C. L.; Larsen, Jens E. N.; Glaring, Mikkel A.; Stougaard, Peter; Kühl, Michael
2016-01-01
The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1–2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals. PMID:27242741
Probability based hydrologic catchments of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Hudson, B. D.
2015-12-01
Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.
Evidence of Anomalously Low δ13C of Marine Organic Matter in an Arctic Fjord
Kumar, Vikash; Tiwari, Manish; Nagoji, Siddhesh; Tripathi, Shubham
2016-01-01
Accurate estimation of relative carbon deposition (marine vs. terrestrial) is required for understanding the global carbon budget, particularly in the Arctic region, which holds disproportionate importance with respect to global carbon cycling. Although the sedimentary organic matter (SOM) concentration and its isotopic composition are important tools for such calculations, uncertainties loom over estimates provided by organic-geochemical bulk parameters. We report carbon and nitrogen concentrations and isotopes (δ13C and δ15N) of SOM at an Arctic fjord namely Kongsfjorden. We find that the bound inorganic nitrogen (ammonium attached to the clay minerals) forms a significant proportion of total nitrogen concentration (~77% in the inner fjord to ~24% in the outer part). On removing the bound nitrogen, the C/N ratio shows that the SOM in the inner fjord is made up of terrestrial carbon while the outer fjord shows mixed marine-terrestrial signal. We further show that the marine organic matter is unusually more depleted in 13C (~−24‰) than the terrestrial organic matter (~−22.5‰). This particular finding also helps explain high δ13C values of SOM as noted by earlier studies in central Arctic sediments despite a high terrestrial contribution. PMID:27827457
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Xu, Y.; An, L.
2013-12-01
Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.
Molina-Navarro, Eugenio; Andersen, Hans E; Nielsen, Anders; Thodsen, Hans; Trolle, Dennis
2018-04-15
Water pollution and water scarcity are among the main environmental challenges faced by the European Union, and multiple stressors compromise the integrity of water resources and ecosystems. Particularly in lowland areas of northern Europe, high population density, flood protection and, especially, intensive agriculture, are important drivers of water quality degradation. In addition, future climate and land use changes may interact, with uncertain consequences for water resources. Modelling approaches have become essential to address water issues and to evaluate ecosystem management. In this work, three multi-stressor future storylines combining climatic and socio-economic changes, defined at European level, have been downscaled for the Odense Fjord catchment (Denmark), giving three scenarios: High-Tech agriculture (HT), Agriculture for Nature (AN) and Market-Driven agriculture (MD). The impacts of these scenarios on water discharge and inorganic and organic nutrient loads to the streams have been simulated using the Soil and Water Assessment Tool (SWAT). The results revealed that the scenario-specific climate inputs were most important when simulating hydrology, increasing river discharge in the HT and MD scenarios (which followed the high emission 8.5 representative concentration pathway, RCP), while remaining stable in the AN scenario (RCP 4.5). Moreover, discharge was the main driver of changes in organic nutrients and inorganic phosphorus loads that consequently increased in a high emission scenario. Nevertheless, both land use (via inputs of fertilizer) and climate changes affected the nitrate transport. Different levels of fertilization yielded a decrease in the nitrate load in AN and an increase in MD. In HT, however, nitrate losses remained stable because the fertilization decrease was counteracted by a flow increase. Thus, our results suggest that N loads will ultimately depend on future land use and management in an interaction with climate changes, and this knowledge is of utmost importance for the achievement of European environmental policy goals. Copyright © 2017 Elsevier B.V. All rights reserved.
Kenai Fjords National Park Over-the-Snow Transportation Feasibility Study.
DOT National Transportation Integrated Search
2012-01-31
Kenai Fjords National Park seeks to expand winter access to the Exit Glacier Area. Year-round access would better enable the park to accomplish its mission related to visitor experience, education, and research. The road to the area is inaccessible t...
Energy balance and runoff modelling of glaciers in the Kongsfjord basin in northwestern Svalbard
NASA Astrophysics Data System (ADS)
Kohler, J.; Pramanik, A.; van Pelt, W.
2016-12-01
Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744. Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744.
Movement of pulsed resource subsidies from kelp forests to deep fjords.
Filbee-Dexter, Karen; Wernberg, Thomas; Norderhaug, Kjell Magnus; Ramirez-Llodra, Eva; Pedersen, Morten Foldager
2018-05-01
Resource subsidies in the form of allochthonous primary production drive secondary production in many ecosystems, often sustaining diversity and overall productivity. Despite their importance in structuring marine communities, there is little understanding of how subsidies move through juxtaposed habitats and into recipient communities. We investigated the transport of detritus from kelp forests to a deep Arctic fjord (northern Norway). We quantified the seasonal abundance and size structure of kelp detritus in shallow subtidal (0‒12 m), deep subtidal (12‒85 m), and deep fjord (400‒450 m) habitats using a combination of camera surveys, dive observations, and detritus collections over 1 year. Detritus formed dense accumulations in habitats adjacent to kelp forests, and the timing of depositions coincided with the discrete loss of whole kelp blades during spring. We tracked these blades through the deep subtidal and into the deep fjord, and showed they act as a short-term resource pulse transported over several weeks. In deep subtidal regions, detritus consisted mostly of fragments and its depth distribution was similar across seasons (50% of total observations). Tagged pieces of detritus moved slowly out of kelp forests (displaced 4‒50 m (mean 11.8 m ± 8.5 SD) in 11‒17 days, based on minimum estimates from recovered pieces), and most (75%) variability in the rate of export was related to wave exposure and substrate. Tight resource coupling between kelp forests and deep fjords indicate that changes in kelp abundance would propagate through to deep fjord ecosystems, with likely consequences for the ecosystem functioning and services they provide.
NASA Astrophysics Data System (ADS)
García, Marga; Dowdeswell, J. A.; Noormets, R.; Hogan, K. A.; Evans, J.; Ó Cofaigh, C.; Larter, R. D.
2016-12-01
Detailed bathymetric and sub-bottom acoustic observations in Bourgeois Fjord (Marguerite Bay, Antarctic Peninsula) provide evidence on sedimentary processes and glacier dynamics during the last glacial cycle. Submarine landforms observed in the 50 km-long fjord, from the margins of modern tidewater glaciers to the now ice-distal Marguerite Bay, are described and interpreted. The landforms are grouped into four morpho-sedimentary systems: (i) glacial advance and full-glacial; (ii) subglacial and ice-marginal meltwater; (iii) glacial retreat and neoglaciation; and (iv) Holocene mass-wasting. These morpho-sedimentary systems have been integrated with morphological studies of the Marguerite Bay continental shelf and analysed in terms of the specific sedimentary processes and/or stages of the glacial cycle. They demonstrate the action of an ice-sheet outlet glacier that produced drumlins and crag-and-tail features in the main and outer fjord. Meltwater processes eroded bedrock channels and ponds infilled by fine-grained sediments. Following the last deglaciation of the fjord at about 9000 yr BP, subsequent Holocene neoglacial activity involved minor readvances of a tidewater glacier terminus in Blind Bay. Recent stillstands and/or minor readvances are inferred from the presence of a major transverse moraine that indicates grounded ice stabilization, probably during the Little Ice Age, and a series of smaller landforms that reveal intermittent minor readvances. Mass-wasting processes also affected the walls of the fjord and produced scars and fan-shaped deposits during the Holocene. Glacier-terminus changes during the last six decades, derived from satellite images and aerial photographs, reveal variable behaviour of adjacent tidewater glaciers. The smaller glaciers show the most marked recent retreat, influenced by regional physiography and catchment-area size.
Haeussler, Peter J.; Parsons, Thomas E.; Finlayson, David P.; Hart, Patrick J.; Chaytor, Jason D.; Ryan, Holly F; Lee, Homa J.; Labay, Keith A.; Peterson, Andrew; Liberty, Lee
2014-01-01
The 1964 Alaska M w 9.2 earthquake triggered numerous submarine slope failures in fjords of southern Alaska. These failures generated local tsunamis, such as at Whittier, where they inundated the town within 4 min of the beginning of shaking. Run-up was up to 32 m, with 13 casualties. We collected new multibeam bathymetry and high-resolution sparker seismic data in Passage Canal, and we examined bathymetry changes before and after the earthquake. The data reveal the debris flow deposit from the 1964 landslides, which covers the western 5 km of the fjord bottom. Individual blocks in the flow are up to 145-m wide and 25-m tall. Bathymetry changes show the mass transfer deposits originated from the fjord head and Whittier Creek deltas and had a volume of about 42 million m3. The 1964 deposit has an average thickness of ∼5.4 m. Beyond the debris flow, the failures likely deposited a ∼4.6-m thick megaturbidite in a distal basin. We have studied the 1964 submarine landslides in three fjords. All involved failure of the fjord-head delta. All failures eroded basin-floor sediments and incorporated them as they travelled. All the failures deposited blocks, but their size and travel distances varied greatly. We find a correlation between maximum block size and maximum tsunami run-up regardless of the volume of the slides. Lastly, the fjord’s margins were influenced by increased supply of glacial sediments during the little ice age, which along with a long interseismic interval (∼900 years) may have caused the 1964 earthquake to produce particularly numerous and large submarine landslides.
Contamination of arctic Fjord sediments by Pb-Zn mining at Maarmorilik in central West Greenland.
Perner, K; Leipe, Th; Dellwig, O; Kuijpers, A; Mikkelsen, N; Andersen, T J; Harff, J
2010-07-01
This study focuses on heavy metal contamination of arctic sediments from a small Fjord system adjacent to the Pb-Zn "Black Angel" mine (West Greenland) to investigate the temporal and spatial development of contamination and to provide baseline levels before the mines re-opening in January 2009. For this purpose we collected multi-cores along a transect from Affarlikassaa Fjord, which received high amounts of tailings from 1973 to 1990, to the mouth of Qaumarujuk Fjord. Along with radiochemical dating by (210)Pb and (137)Cs, geochemical analyses of heavy metals (e.g. As, Cd, Hg, Pb, and Zn) were carried out. Maximum contents were found at 12 cm depth in Affarlikassaa. After 17 years the mine last closed, specific local hydrographic conditions continue to disperse heavy metal enriched material derived from the Affarlikassaa into Qaumarujuk. Total Hg profiles from multi-cores along the transect clearly illustrate this transport and spatial distribution pattern of the contaminated material. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Nielsen, T.; Kamla, E.; Stranne, C.; Eriksson, B.; Jerram, K.
2016-12-01
During the Petermann 2015 Expedition of the Swedish icebreaker Oden more than 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) were acquired in Petermann Fjord and Nares Strait in the area immediately outside of the fjord. The sub-bottom profiles reveal a highly-variable distribution of post-glacial sediment that appears to be largely controlled by the rugged relief of the underlying bedrock. Sediment thicknesses are between 0-60 m above bedrock and comprise predominantly acoustically-stratified, homogeneous to transparent acoustic facies. In Petermann Fjord itself unlithified sediment cover typically comprises two units: an underlying acoustically-transparent unit overlain by an acoustically-stratified unit. Both of these units are conformable over scoured and fairly flat bedrock terrain; small basins are present only locally. Outside of the fjord are a few local sedimentary basins containing up to 40 m of stratified basin-fill deposits, and several areas of stacked mass-flow deposits. Glacial lineations both in the fjord and Nares Strait are formed in an acoustically-homogenous unit that underlies stratified and transparent units. In addition to the sub-bottom profiles, approximately 780 line-km of 2D seismic reflection profiles were acquired using an airgun (210 cu in.) and a 300-m long streamer. These profiles have allowed us to map full unlithified sediment thicknesses down to basement in the area. Here we present the results of this mapping and we calculate the volumes of a prominent grounding-zone wedge at the mouth of Petermann Fjord, and smaller GZWs in Kennedy Channel. These features demarcate former still-stand positions of grounded ice retreating through this system, both towards the present-day grounding line of Petermann Glacier and southwards through Nares Strait. Post-glacial sediment volumes are also calculated and the sedimentary processes responsible for their distribution examined. These data, when combined with chronological information, will provide sediment fluxes through the Petermann system and help us to identify how the system has responded to a past global warming event, namely the last deglaciation. This is particularly important in light of the recent thinning and acceleration of NW Greenland's marine-terminating outlet glaciers at present.
NASA Astrophysics Data System (ADS)
Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.
2016-12-01
The marine-terminating glaciers of the Greenland Ice Sheet (GrIS) are responding rapidly to present-day climate change. More than one-third of the GrIS's discharge flows to the ocean through the marine-terminating outlet glaciers of southeastern Greenland, making it a potentially important region of the ice sheet. Documenting how these outlet glaciers have responded to longer-term past climate change (i.e. the Holocene) allows for more accurate predictions of their response to future climate changes. Here, we present 36 new 10Be ages on boulders perched on bedrock and on bedrock that record the timing of ice marginal fluctuations in several fjords in southeast and south Greenland, a region where little is known about past ice fluctuations due to its relative inaccessibility. We show that at Skjoldungen Sund (63.4N), deglaciation was rapid, beginning by 10.1 ± 0.4 ka. Deglaciation occurred concurrently at Timmiarmiut Fjord (62.7N), 100 km to the south, at 10.3 ± 0.4 ka. We suggest that this was in response to the warming ocean and air temperatures of the early Holocene. Additionally, 10Be ages on boulders perched on bedrock just distal to the historic moraines in Timmiarmiut Fjord date to 1.7 ± 0.1 ka, indicating the presence of a late Holocene advance prior to the Little Ice Age. In southern Greenland, deglaciation at Lindenow Fjord (60.6N), which drains the Julienhåb ice cap, occurred at 11.2 ± 0.4 ka. The ice then retreated up-fjord at a rate of 70-100 m yr-1, comparable with modern retreat rates of 30-100 m yr-1. We hypothesize that the earlier deglaciation at Lindenow Fjord by 1 ka may indicate that the Julienhåb ice cap was more sensitive to early Holocene warming than the GrIS. Additional 10Be ages from Prins Christen Fjord and near Qaqortoq are forthcoming. These new 10Be ages provide a longer-term perspective of marine-terminating outlet glacier fluctuations in Greenland and show that the ice sheet responded sensitively to Holocene climate change.
NASA Astrophysics Data System (ADS)
Womble, J. N.; McNabb, R. W.; Gens, R.; Prakash, A.
2015-12-01
Some of the largest aggregations of harbor seals (Phoca vitulina richardii) in Alaska occur in tidewater glacier fjords where seals rest upon icebergs that are calved from tidewater glaciers into the marine environment. The distribution, amount, and size of floating ice in fjords are likely important factors influencing the spatial distribution and abundance of harbor seals; however, fine-scale characteristics of ice habitat that are used by seals have not been quantified using automated methods. We quantified the seasonal changes in ice habitat for harbor seals in Johns Hopkins Inlet, a tidewater glacier fjord in Glacier Bay National Park, Alaska, using aerial photography, object-based image analysis, and spatial models. Aerial photographic surveys (n = 53) were conducted of seals and ice during the whelping (June) and molting (August) seasons from 2007-2014. Surveys were flown along a grid of 12 transects and high-resolution digital photos were taken directly under the plane using a vertically aimed camera. Seal abundance and spatial distribution was consistently higher during June (range: 1,672-4,340) than August (range: 1,075-2,582) and corresponded to the spatial distribution and amount of ice. Preliminary analyses from 2007 suggest that the average percent of icebergs (ice ≥ than 1.6m2) and brash ice (ice < 1.6m2) per scene were greater in June (icebergs: 1.8% ± 1.6%; brash ice: 43.8% ± 38.9%) than August (icebergs: 0.2% ± 0.7%; brash ice; 15.8% ± 26.4%). Iceberg angularity (an index of iceberg shape) was also greater in June (1.7 ± 0.9) than August (0.9 ± 0.9). Potential factors that may influence the spatio-temporal variation in ice habitat for harbor seals in tidewater glacier fjords include frontal ablation rates of glaciers, fjord circulation, and local winds. Harbor seals exhibit high seasonal fidelity to tidewater glacier fjords, thus understanding the relationships between glacier dynamics and harbor seal distribution will be critical for understanding how future changes in tidewater glaciers may impact harbor seals.
2017-12-08
Phytoplankton bloom in the Barents Sea captured August 14, 2011. At times nature exceeds the ability of the artist’s brush to blend brilliant colors, interweave textures and combine patterns to create stunning panoramas, while using only the palette of land, water, cloud and vegetation. This stunning and artistic image of a phytoplankton bloom in the Barents Sea was by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite was captured on August 14, 2011. The peacock-hued swirls of blues and green that paint the navy-blue sea water are created by light reflecting off of millions of phytoplankton, microscopic plants that grow in the sunlit surface water of the world’s oceans. Different types of phytoplankton reflect different colored light, so a multi-color bloom such as this typically contains multiple species. The depth of the bloom also affects coloration – the deeper the organism, the less light is reflected and the duller the color. Coccolithophores, a type of phytoplankton which flourish in nutrient-poor, sub-polar waters, have unique limestone (calcite) scales. This white coating makes the plant highly reflective, and thus a bloom can appear to be a bright, almost iridescent blue. The chalky coating can also cause whitish swirls in the water, making the blues washed out with a milky hue. August is a highly active month for phytoplankton blooms in the Barents Sea, but the timing, development, abundance and species composition is variable in this area. The distribution of phytoplankton is largely controlled by the polar front, ice cover, freshwater runoff and ice melting. Each water source – the Artic, the Atlantic and the coastal water – all bring their own characteristic species into the Barents Sea, creating a multi-specie and multi-color spectacle. Because phytoplankton are the base of the marine food chain, places were blooms are large and frequent often support a thriving marine population. This is certainly the case in the Barents Sea where the fisheries, particularly the cod fisheries, are of great importance for both Norway and Russia. The coastlines of both of these countries can be seen in the bottom of the image. Russia forms the south-eastern most coast, while the remaining three-quarters of the coastline belongs to Norway. Two fjords in the west, Porsangerfjorden and Laksefjord are tinted bright blue with phytoplankton. Just to the east of these fjords, freshwater from the Tana River flows through Tanafjord, turning the waters here are a duller blue. As fresh water flows into the Barents Sea, phytoplankton bloom is affected by the flowing water, creating paisley-like patterns in the coastal eddies. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Towards the Complete Characterization of Marine-Terminating Glacier Outlet Systems
NASA Astrophysics Data System (ADS)
Mayer, L. A.; Jakobsson, M.; Mix, A. C.; Jerram, K.; Hogan, K.; Heffron, E.; Muenchow, A.
2016-12-01
The Petermann Glacier Experiment was aimed at understanding past variations in Petermann Glacier and their relationship to changes in climatic and oceanographic conditions. A critical component of the experiment was a comprehensive program conducted on the icebreaker Oden to map submarine glacial landforms, offering insight into past ice dynamics and establishing the overall geomorphological context of the region. Concurrent water-column mapping provided remarkable insight into modern glacial, oceanographic, and biological processes suggesting that a carefully designed experiment could provide a near-complete characterization of marine-terminating glacier outlet systems. Water-column mapping revealed seeps emanating from several seafloor regions. These features appeared along common depth zones and may represent fresh water emanating from a submerged aquifer; initial pore water analyses of cores also imply a fresh water flux into the fjord system. Water-column data also show a spatially consistent but variable distribution of a strong mid-water scattering layer, a biological response possibly tracing the inflow of Atlantic water into the fjord and enhanced by input from local outlet glaciers. The continuous nature of these acoustic records over 30 days offers a complete 4-D picture of the distribution of the scattering layer (and perhaps internal circulation patterns and water-mass interactions) with a spatial and temporal distribution far beyond that achievable by traditional oceanographic stations. Additional, higher-resolution water-column imaging around local outlet glaciers presents a clear picture of subglacial sediment-laden meltwater plumes. Thus in addition to the paleoceanographic information they provided, the acoustic systems deployed captured a 4D-view of many of the modern geological, oceanographic and ecological processes within and adjacent to the Petermann Glacier marine system. With the addition of seafloor and water-column sampling, long-term oceanographic moorings, a much more robust biological program (to understand what we are mapping in the water-column) and, the ability to extend our measurements under the ice sheet, we stand poised to truly characterize and hopefully understand the processes at work in front of marine-terminating outlet glaciers.
NASA Astrophysics Data System (ADS)
de Vernal, Anne; Fréchette, Bianca; Hillaire-Marcel, Claude
2017-04-01
Anne de Vernal, Bianca Fréchette, Claude Hillaire-Marcel Important progresses have been made to reconstruct climate and ocean changes through time. However, there is often a hiatus between the land-based climate reconstructions and paleoceanographical data. The reconstructed parameters are not the same (e.g. surface air temperature vs. sea-surface temperature). Moreover, the spatial (local to regional) and temporal dimensions (seasonal, annual to multi-decadal) of proxy-data are often inconsistent, thus preventing direct correlation of time series and often leading to uncertainties in multi-site, multi-proxy compilations. Here, we address the issue of land-sea relationships in the eastern Canadian Arctic-Baffin Bay-Labrador Sea-western Greenland based on the examination of different climate-related information from marine cores (dinocysts) collected nearshore vs. offshore, ice cores (isotopes), fjord and lake data (pollen). The combined information tends to indicate that "climate" changes are not easily neither adequately captured by temperature and temperature shifts. However, the seasonal contrast of temperatures seems to be a key parameter. Whereas it is often attenuated offshore, it is generally easy to reconstruct nearshore, where water stratification is usually stronger. The confrontation of data also shows a relationship between ice core data and sea-ice cover and/or sea-surface salinity, suggesting that air-sea exchanges in basins surrounding ice sheets play a significant role with respect to their isotopic composition. On the whole, combined onshore-offshore data consistently suggest a two-step shift towards optimal summer and winter conditions the circum Baffin Bay and northern Labrador Sea at 7.5 and 6 ka BP. These delayed optimal conditions seem to result from ice-meltwater discharges maintaining low salinity conditions in marine surface waters and thus a strong seasonality.
High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream.
Rysgaard, Søren; Bendtsen, Jørgen; Mortensen, John; Sejr, Mikael K
2018-01-22
The Greenland ice sheet (GIS) is losing mass at an increasing rate due to surface melt and flow acceleration in outlet glaciers. Currently, there is a large disagreement between observed and simulated ice flow, which may arise from inaccurate parameterization of basal motion, subglacial hydrology or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth's interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 ± 21 mW m -2 which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain high glacial ice speed areas such as the Northeast Greenland ice stream.
Freshwater discharges drive high levels of methylmercury in Arctic marine biota.
Schartup, Amina T; Balcom, Prentiss H; Soerensen, Anne L; Gosnell, Kathleen J; Calder, Ryan S D; Mason, Robert P; Sunderland, Elsie M
2015-09-22
Elevated levels of neurotoxic methylmercury in Arctic food-webs pose health risks for indigenous populations that consume large quantities of marine mammals and fish. Estuaries provide critical hunting and fishing territory for these populations, and, until recently, benthic sediment was thought to be the main methylmercury source for coastal fish. New hydroelectric developments are being proposed in many northern ecosystems, and the ecological impacts of this industry relative to accelerating climate changes are poorly characterized. Here we evaluate the competing impacts of climate-driven changes in northern ecosystems and reservoir flooding on methylmercury production and bioaccumulation through a case study of a stratified sub-Arctic estuarine fjord in Labrador, Canada. Methylmercury bioaccumulation in zooplankton is higher than in midlatitude ecosystems. Direct measurements and modeling show that currently the largest methylmercury source is production in oxic surface seawater. Water-column methylation is highest in stratified surface waters near the river mouth because of the stimulating effects of terrestrial organic matter on methylating microbes. We attribute enhanced biomagnification in plankton to a thin layer of marine snow widely observed in stratified systems that concentrates microbial methylation and multiple trophic levels of zooplankton in a vertically restricted zone. Large freshwater inputs and the extensive Arctic Ocean continental shelf mean these processes are likely widespread and will be enhanced by future increases in water-column stratification, exacerbating high biological methylmercury concentrations. Soil flooding experiments indicate that near-term changes expected from reservoir creation will increase methylmercury inputs to the estuary by 25-200%, overwhelming climate-driven changes over the next decade.
NASA Astrophysics Data System (ADS)
Duque, C.; Müller, S.; Sebok, E.; Engesgaard, P. K.
2015-12-01
Using temperature probes is a common exploratory method for studying groundwater-surface water interaction due to the ease for collecting measurements and the simplicity of the different analytical solutions. This approach requires to define the surface water temperature, the groundwater temperature and a set of parameters (density and specific capacity of water, and thermal conductivity of sediments) that can be easily extracted from tabulated values under the assumption that they are homogeneous in the study area. In the case of the thermal conductivity, it is common to apply a standard value of 1.84 Wm-1 C-1 corresponding to sand. Nevertheless the environments where this method is applied, like streambeds or lake/lagoons shores, are sedimentary depositional systems with high energy and biological activity that often lead to sediments dominated by organic matter or sharp changes in grain size modifying greatly the thermal conductivity values. In this study, the thermal conductivity was measured in situ along transects where vertical temperature profiles were collected in a coastal lagoon bed receiving groundwater discharge (Ringkøbing Fjord, Denmark). A set of 4 transects with 10-20 temperature profiles during 3 different seasons was analyzed together with more than 150 thermal conductivity measurements along the working transects and in experimental parcels of 1 m2 where the cm scale spatial variability of the thermal conductivity was assessed. The application of a literature-based bulk thermal conductivity of 1.84 Wm-1 C-1 instead of field data that ranged from 0.62 to 2.19 Wm-1 C-1, produced a mean flux overestimation of 2.33 cm d-1 that, considering the low fluxes of the study area, represents an increase of 89 % and up to a factor of 3 in the most extreme cases. The changes in thermal conductivity can alter the estimated fluxes hindering the detection of patterns in groundwater discharge and modifying the interpretation of the results.
Water temperatures influence the marine area use of Salvelinus alpinus and Salmo trutta.
Jensen, J L A; Rikardsen, A H; Thorstad, E B; Suhr, A H; Davidsen, J G; Primicerio, R
2014-06-01
The migratory behaviour and spatial area use of sympatric Arctic charr Salvelinus alpinus and brown trout Salmo trutta were investigated during their marine feeding migration. The likelihood of finding individuals of both species in the inner or outer fjord areas was dependent on water temperature in the inner area (especially for S. alpinus), the temperature difference between the inner and outer areas (especially for S. trutta) and fish fork length (both species). The strongest predictor was the water temperature in the inner area, and particularly S. alpinus left this area and moved to the outer areas with increasing temperatures in the inner area. At 8° C in the inner area, the likelihood of finding S. alpinus in the outer areas was >50%. This predictor had a smaller effect on S. trutta, and the likelihood of finding S. trutta in the outer areas only started to increase at around 14° C. The relationships between temperature and area use did not correspond to the species' optimal growth temperatures, but to their previously documented temperature preferences. Individuals of both species used mainly the littoral fjord areas, and to a lesser extent the pelagic areas. In conclusion, temperature differences between the inner and outer marine areas probably resulted in the segregated area use between the species, because water temperatures or factors influenced by temperature affected their migratory behaviour and habitat use differently. The results indicate that increased marine temperatures with global warming may lead to increased spatial overlap between S. trutta and S. alpinus, which again may lead to increased interspecific competition during their marine phase, and with S. alpinus probably being the more negatively affected. © 2014 The Fisheries Society of the British Isles.
Mcdonald, P. Sean; Essington, Timothy E.; Davis, Jonathan P.; Galloway, Aaron W.E.; Stevick, Bethany C.; Jensen, Gregory C.; VanBlaricom, Glenn R.; Armstrong, David A.
2015-01-01
Marine bivalves are important ecosystem constituents and frequently support valuable fisheries. In many nearshore areas, human disturbance—including declining habitat and water quality—can affect the distribution and abundance of bivalve populations, and complicate ecosystem and fishery management assessments. Infaunal bivalves, in particular, are frequently cryptic and difficult to detect; thus, assessing potential impacts on their populations requires suitable, scalable methods for estimating abundance and distribution. In this study, population size of a common benthic bivalve (the geoduck Panopea generosa) is estimated with a Bayesian habitat-based model fit to scuba and tethered camera data in Hood Canal, a fjord basin in Washington state. Densities declined more than two orders of magnitude along a north—south gradient, concomitant with patterns of deepwater dissolved oxygen, and intensity and duration of seasonal hypoxia. Across the basin, geoducks were most abundant in loose, unconsolidated, sand substrate. The current study demonstrates the utility of using scuba, tethered video, and habitat models to estimate the abundance and distribution of a large infaunal bivalve at a regional (385-km2) scale.
Effects of tributyltin (TBT) on the seagrass Ruppia maritima.
Jensen, H F; Holmer, M; Dahllöf, I
2004-10-01
The effects of tributyltin (TBT) on the seagrass Ruppia maritima were studied in two growth experiments. Plants were sampled at stations in Odense Fjord and Lunkebugten, Denmark, and replanted in reference sediment without TBT, reference sediment spiked with TBT, and in impacted sediment sampled in the highly TBT contaminated (7-57 microg kg (-1) dw) Odense Fjord. Plant performance was studied at weekly intervals for 3-4 weeks, by measuring net photosynthetic activity, respiration, relative growth rate (RGR) and number of leaves. Net photosynthetic activity in plants from spiked and impacted sediment was reduced by up to 60% relative to reference plants. Respiration both increased and decreased in response to TBT exposure, while RGR was generally lower in plants from contaminated sediments (reduced by 8-25%). The effects of spiked and impacted sediment differed between the experiments, which could be partly explained by the bioavailability of TBT in the two treatments, but also by adaptation of the plants from Odense Fjord to TBT. Measurements of enhanced TBT concentrations in the sediments in Odense Fjord suggest an impact of TBT on R. maritima is possible under in situ conditions.
Earth Observation taken by the Expedition 20 crew
2009-09-06
ISS020-E-039083 (6 Sept. 2009) --- Glacier outlet in the Southern Patagonian Ice Field of Chile is featured in this image photographed by an Expedition 20 crew member on the International Space Station. The Southern Patagonian Ice Field of Chile and Argentina hosts a spectacular array of glaciers and associated glacial features within the southern Andes Mountains. Glaciers flowing downhill on the eastern side of the mountains have outlets into several large freshwater lakes. On the western side of the mountains, glaciers release ice into the Pacific Ocean via an intricate network of fjords. Fjords are steep valleys originally cut by glaciers during periods of lower sea level that are now inundated. As glaciers flow into the fjord, ice at the front of the glacier begins to break off and form icebergs that can float out to sea ? a process known as calving. This detailed photograph shows the merged outlet of Penguin Glacier and HPS 19 into a fjord carved into the snow-covered mountains of the southern Andes. The designation HPS stands for Hielo Patagonico Sur (e.g. Southern Patagonian Ice field) and is used to identify glaciers that have no other geographic name. Ice flowing into the fjord begins to break up at center, forming numerous icebergs ? the largest visible in this image is approximately 2 kilometers in width. The large ice masses visible at center have a coarse granular appearance due to variable snow cover, and mixing and refreezing of ice fragments prior to floating free.
NASA Astrophysics Data System (ADS)
Solberg, Ingrid; Kaartvedt, Stein
2017-02-01
We addressed the behavioral patterns and DVM dynamics of sprat overwintering in a Norwegian fjord (150 m) with increasing hypoxia by depth. An upward-facing echosounder deployed at the bottom and cabled to shore provided 4 months of continuous acoustic data. This enabled detailed studies of individual behavior, specifically allowing assessment of individual vertical migrations at dusk and dawn in relation to light, analysis of so-called rise-and-sink swimming, and investigation of the sprat' swimming activity and behavior in severely hypoxic waters. Field campaigns supplemented the acoustic studies. The acoustic records showed that the main habitat for sprat was the upper ∼65 m where oxygen concentrations were ⩾0.7 mL O2 L-1. The sprat schooled at ∼50 m during daytime and initiated an upward migration about 1 h prior to sunset. While some sprat migrated to surface waters, other individuals interrupted the ascent when at ∼20-30 m, and returned to deeper waters ∼20-50 min after sunset. Sprat at depth was on average larger, yet individuals made excursions to- and from upper layers. Sprat were swimming in a "rise and sink" pattern at depth, likely related to negative buoyancy. Short-term dives into waters with less than 0.45 mL O2 L-1 were interpreted as feeding forays for abundant overwintering Calanus spp. The deep group of sprat initiated a dawn ascent less than 1 h before sunrise, ending at 20-30 m where they formed schools. They subsequently returned to deeper waters about ∼20 min prior to sunrise. Measurements of surface light intensities indicated that the sprat experienced lower light levels in upper waters at dawn than at dusk. The vertical swimming speed varied significantly between the behavioral tasks. The mixed DVM patterns and dynamic nocturnal behavior of sprat persisted throughout winter, likely shaped by individual strategies involving optimized feeding and predator avoidance, as well as relating to temperature, hypoxia and negative buoyancy.
Measurement of spectral sea ice albedo at Qaanaaq fjord in northwest Greenland
NASA Astrophysics Data System (ADS)
Tanikawa, T.
2017-12-01
The spectral albedos of sea ice were measured at Qaanaaq fjord in northwest Greenland. Spectral measurements were conducted for sea ice covered with snow and sea ice without snow where snow was artificially removed around measurement point. Thickness of the sea ice was approximately 1.3 m with 5 cm of snow over the sea ice. The measurements show that the spectral albedos of the sea ice with snow were lower than those of natural pure snow especially in the visible regions though the spectral shapes were similar to each other. This is because the spectral albedos in the visible region have information of not only the snow but also the sea ice under the snow. The spectral albedos of the sea ice without the snow were approximately 0.4 - 0.5 in the visible region, 0.05-0.25 in the near-infrared region and almost constant of approximately 0.05 in the region of 1500 - 2500 nm. In the visible region, it would be due to multiple scattering by an air bubble within the sea ice. In contrast, in the near-infrared and shortwave infrared wavelengths, surface reflection at the sea ice surface would be dominant. Since a light absorption by the ice in these regions is relatively strong comparing to the visible region, the light could not be penetrated deeply within the sea ice, resulting that surface reflection based on Fresnel reflection would be dominant. In this presentation we also show the results of comparison between the radiative transfer calculation and spectral measurement data.
Glacimarine sedimentation in Petermann Fjord and Nares Strait, NW Greenland
NASA Astrophysics Data System (ADS)
Hogan, Kelly; Jakobsson, Martin; Mayer, Larry; Mix, Alan; Nielsen, Tove; Kamla, Elina; Reilly, Brendan; Heirman, Katrina An; Stranne, Christian; Mohammed, Rezwan; Eriksson, Bjorn; Jerram, Kevin
2017-04-01
Here we build on preliminary results from 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) acquired in Petermann Fjord and Nares Strait during the Petermann 2015 Expedition of the Swedish icebreaker Oden. We map the unlithified sediment cover in Peterman Fjord, which consists of up to 3 conformable "drape" units and calculate volumes of this assumed "post-glacial" fill. In Nares Strait we have mapped sediment volumes in local basins just beyond the sill at the Petermann Fjord-mouth: do these sediments represent material flushed out from the grounding zone of Petermann Glacier when it was grounded at the sill? In this vein, and interestingly, some of the thickest sediments that we observe are found close to a grounding-zone wedge (GZW) in Nares Strait that represents a former grounding zone of ice retreating southwards through the strait. We also map conformable units across Nares Strait and consider the similarities between these and the sediment units in the fjord. Do the strong reflections between the units represent the same climatic, oceanographic or process-shift both inside and outside the fjord? We also aim to tie our new acoustic stratigraphy to sediment-core data (lithofacies, dates) and, therefore, to comment on the age of the mapped sediment units and present ideas on the glacimarine flux of material to the Petermann-Nares system. Primary sediment delivery to the seafloor in this environment is thought to be predominantly through sedimentation from meltwater plumes but also of iceberg-rafted debris (IRD). However, sediment redeposition by slope failures on a variety of scales also occurs and has focussed sediments into discrete basins where the seafloor is rugged. This work - which aims to relate past sediment, meltwater and iceberg fluxes to changes in climate - will help us to identify how the system has responded to a past global warming event, namely the last deglaciation. This is particularly relevant in light of the recent thinning and acceleration of NW Greenland's marine-terminating outlet glaciers.
NASA Astrophysics Data System (ADS)
Hubbard, S. M.; Coutts, D. S.; Covault, J. A.
2016-12-01
Repeated bathymetric surveys of fjord prodeltas in Western Canada track channel erosion and deposition, which is interpreted to result from upstream migrating cyclic steps. Cyclic steps are long-wave (the ratio of wavelength to height is >>1), upstream-migrating bedforms that develop as a result of repeated internal hydraulic jumps in an overriding turbidity current at lee-to-stoss slope breaks. An internal hydraulic jump is the result of a transition from subaqueous densimetric Froude supercritical to subcritical flow. As the supercritical bedforms migrate greater than 90% of the deposits are reworked, making morphology- and facies- based recognition challenging in the depositional record. The objectives of this work are to use predictions of remnant bedform geometry from repeat bathymetric surveys to recognize cyclic step deposits in the stratigraphic record. We compare fjord deposits to Late Cretaceous submarine channel strata of the Nanaimo Group at Gabriola Island, British Columbia. In the Squamish prodelta, sediment accumulation on the stoss side of cyclic steps and erosion on the lee side promotes their up-slope migration. Deposits are modified by overriding turbidity currents, resulting in sedimentary bodies 5-30 m long, 0.5-2 m thick and < 30 m wide. The Nanaimo Group comprises scour fills of similar scale composed of stratified sandstone, with laminated siltstone locally overlying basal erosion surfaces. Up-slope dipping backset stratification is widely observed; packages of 2-4 backset beds, each of which are up to 60 cm thick and up to 15 m long (along dip), commonly share composite basal erosion surfaces. Numerous scour fills are recognized over thin intervals (< 4m) along 100-200 m depositional dip, indicating limited aggradation and preservation potential for the bedforms. It is likely that cyclic steps are common in strata deposited on high gradient submarine slopes. Evidence for updip-migrating cyclic step deposits inform a revised interpretation of a high gradient channel setting dominated by supercritical flow in the Nanaimo Group. The outcrop perspective, tied to data from seafloor surveys, offers insights into the stratigraphy and preservation potential of these bedforms.
Stefansson, S.O.; Bjornsson, B. Th; Sundell, K.; Nyhammer, G.; McCormick, S.D.
2003-01-01
Changes were measured in some of the major physiological variables associated with seawater adaptability, growth and energetics in wild Atlantic salmon Salmo salar smolts and post-smolts migrating from the river and through the estuary, fjord and coastal areas in the River Orkla and the Trondheimsfjord, Norway during late May to early June. Gill Na+,K+-ATPase activity increased to levels of 12-16 ??mol ADP mg protein-1 h -1 in post-smolts caught in higher salinity zones, probably representing long-term levels of Atlantic salmon post-smolts in oceanic conditions. Muscle moisture was regulated within narrow limits (77.7-78.7%) in fish from all zones during both years, suggesting that post-smolts adapt to marine conditions without any long-term disturbance of hydro-mineral balance. Lipid and glycogen content showed a general trend towards depletion from the river, through the fjord and into the ocean. There was, however, no significant change in protein content. The present results confirm that smolts are naturally 'energy deficient' during downstream migration, and suggest that post-smolts also mobilize energy reserves during their early marine phase, while protein is allocated for somatic growth. Plasma growth hormone (GH) levels increased transiently during passage through the estuary and fjord, with lower levels observed in post-smolts caught off-shore, i.e. in fish which were feeding on marine prey and had adapted to the marine environment. These physiological changes may confer substantial selective advantages during the critical early marine phase of anadromous salmonids, and hence are adaptive for long-term survival in sea water. ?? 2003 The Fisheries Society of the British Isles.
A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes.
Young, Duncan A; Wright, Andrew P; Roberts, Jason L; Warner, Roland C; Young, Neal W; Greenbaum, Jamin S; Schroeder, Dustin M; Holt, John W; Sugden, David E; Blankenship, Donald D; van Ommen, Tas D; Siegert, Martin J
2011-06-02
The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ∼34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.
Earthshots: Satellite images of environmental change – Hubbard Glacier, Alaska, USA
Adamson, Thomas
2015-01-01
These Landsat images illustrate an unusual event that was observed twice at the terminus of Hubbard Glacier. Hubbard temporarily blocked Russell Fjord (a long, narrow inlet of the sea) from the rest of Disenchantment Bay and the Gulf of Alaska. It’s even possible that the glacier could one day permanently block the fjord.
1982-10-01
such as copepods, euphausids and pteropods in the water column (Sameoto, 1976; Hansen and Dunbar, 1971 ). When such organisms are concentrated in large...responsible for the acoustic volume reverberation he observed at 330 KHZ in the Western Pacific. Bary and Pieper ( 1971 ) working in Saanich Inlet, B.C...and chitin account for 8.5% of the total dry weight (Ikeda, 1972), the lipid analyses of Lee ( 1971 and 1974) would indicate that the total protein
NASA Astrophysics Data System (ADS)
Koutitonsky, V. G.; Wilson, R. E.; El-Sabh, M. I.
1990-10-01
The seasonal current fluctuations recorded from May to September 1979 in the Lower St Lawrence Estuary (LSLE) were re-examined using complex empirical orthogonal functions analysis. The first mode explained 88% of the seasonal variability, and revealed the presence of an estuary-wide anticyclonic eddy near the mouth, which lasted for 40 days in June and July. Careful inspection of the (regulated) 1979 freshwater runoff and salinity time series indicated that light surface water pulses from the St Lawrence River and the Saguenay fjord arrived in the LSLE during that time. Their duration was about 40 days. The contention is that the anticyclonic eddy results from buoyancy forcing by these light water pulses, isolated in the LSLE by denser waters upwelled upstream and by the buoyancy front at the mouth. A reduced gravity model is used to show that when the width of the LSLE becomes greater than two internal Rossby radii, an initial dynamic height elevation will adjust through geostrophy to an anticyclonic eddy. This seems to occur downstream of Rimouski. The eddy will form within a time scale 0 (f -1), and in the absence of instabilities in the current field, it will conserve potential energy for extended periods of time. During August, the advected river runoff decreased, unstable wave activity developed, and denser Gulf waters entered the LSLE from the north shore producing a cyclonic eddy near the mouth. Concurrent satellite thermal imagery tends to support these findings.
Ice-ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers
NASA Astrophysics Data System (ADS)
Chauché, N.; Hubbard, A.; Gascard, J.-C.; Box, J. E.; Bates, R.; Koppes, M.; Sole, A.; Christoffersen, P.; Patton, H.
2014-08-01
Warm, subtropical-originating Atlantic water (AW) has been identified as a primary driver of mass loss across the marine sectors of the Greenland Ice Sheet (GrIS), yet the specific processes by which this water mass interacts with and erodes the calving front of tidewater glaciers is frequently modelled and much speculated upon but remains largely unobserved. We present a suite of fjord salinity, temperature, turbidity versus depth casts along with glacial runoff estimation from Rink and Store glaciers, two major marine outlets draining the western sector of the GrIS during 2009 and 2010. We characterise the main water bodies present and interpret their interaction with their respective calving fronts. We identify two distinct processes of ice-ocean interaction which have distinct spatial and temporal footprints: (1) homogenous free convective melting which occurs across the calving front where AW is in direct contact with the ice mass, and (2) localised upwelling-driven melt by turbulent subglacial runoff mixing with fjord water which occurs at distinct injection points across the calving front. Throughout the study, AW at 2.8 ± 0.2 °C was consistently observed in contact with both glaciers below 450 m depth, yielding homogenous, free convective submarine melting up to ~200 m depth. Above this bottom layer, multiple interactions are identified, primarily controlled by the rate of subglacial fresh-water discharge which results in localised and discrete upwelling plumes. In the record melt year of 2010, the Store Glacier calving face was dominated by these runoff-driven plumes which led to a highly crenulated frontal geometry characterised by large embayments at the subglacial portals separated by headlands which are dominated by calving. Rink Glacier, which is significantly deeper than Store has a larger proportion of its submerged calving face exposed to AW, which results in a uniform, relatively flat overall frontal geometry.
NASA Astrophysics Data System (ADS)
Mulsow, S.; Krieger, Y.; Kennedy, R.
2006-10-01
Two state-of-the-art techniques were used to assess the impact of organic loading from fish farming in two fjords of Southern Chile, Pillan and Reñihue Fjords. A sediment profile imaging (SPI) camera was deployed and sediment microprofiles (oxygen, H 2S, redox and pH) were measured in undisturbed sediment cores collected using a HAPS corer. Four out of seven stations in Pillan Fjord were found to be severely disturbed: SPI images showed azoic conditions (no apparent Redox Potential Discontinuity layer, no evidence of aerobic life form, presence of an uneaten fish food layer, negative OSI scores). These findings were corroborated by very high oxygen consumption rates (700-1200 mmol m - 2 day - 1 ), H 2S concentrations increasing quickly within the sediment column and redox potential decreasing towards negative values within a few mm down core. Results for Reñihue Fjord were not so straightforward. SPI images indicated that most of the stations (R3 to R7) presented well-mixed conditions (high apparent RPD layers, presence of infauna, burrows, etc.), but oxygen profiles yielded consumption rates of 230 to 490 mmol m - 2 day - 1 and organic carbon mineralization of 2.16 to 4.53 g C m - 2 day - 1 . These latter values were close to the limit of aerobic degradation of organic matter although no visible changes were recorded within the sediment column. In view of our findings, the importance of integrating multidisciplinary methodologies in impact assessment studies was discussed.
Geographical trends of PFAS in cod livers along the Norwegian coast
Valdersnes, Stig; Nilsen, Bente M.; Breivik, Joar F.; Borge, Asbjørn; Maage, Amund
2017-01-01
The level of perfluorinated alkyl substances (PFAS) was determined in North East Arctic cod (Gadus morhua) liver samples from 15 Norwegian fjords and harbors. Five harbors in the eastern part of Norway, six harbors in the western part and four harbours in the northern part. A total of 200 samples were analyzed for 16 PFAS. Determination of PFAS were carried out by LC-MS/MS following sample clean up by solid phase extraction and ultracentrifugation. The predominating PFAS was PFOS, which was found to be higher than the level of quantification (1.5 μg kg-1 wet weight) in 72% of the samples. The highest level of PFOS found was 21.8 μg kg-1 wet weight in a sample from Kragerø in the eastern part of Norway. A significantly higher level of PFOS was found in the eastern fjords and harbors compared to fjords and harbors in the western and northern part of Norway. Within the northern fjords and harbors elevated PFOS levels were found in Narvik, which may indicate a local source there. Variations in PFOS of the cod livers thus reflect differences in levels of pollution between the areas. PMID:28531177
Geographical trends of PFAS in cod livers along the Norwegian coast.
Valdersnes, Stig; Nilsen, Bente M; Breivik, Joar F; Borge, Asbjørn; Maage, Amund
2017-01-01
The level of perfluorinated alkyl substances (PFAS) was determined in North East Arctic cod (Gadus morhua) liver samples from 15 Norwegian fjords and harbors. Five harbors in the eastern part of Norway, six harbors in the western part and four harbours in the northern part. A total of 200 samples were analyzed for 16 PFAS. Determination of PFAS were carried out by LC-MS/MS following sample clean up by solid phase extraction and ultracentrifugation. The predominating PFAS was PFOS, which was found to be higher than the level of quantification (1.5 μg kg-1 wet weight) in 72% of the samples. The highest level of PFOS found was 21.8 μg kg-1 wet weight in a sample from Kragerø in the eastern part of Norway. A significantly higher level of PFOS was found in the eastern fjords and harbors compared to fjords and harbors in the western and northern part of Norway. Within the northern fjords and harbors elevated PFOS levels were found in Narvik, which may indicate a local source there. Variations in PFOS of the cod livers thus reflect differences in levels of pollution between the areas.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.
2014-12-01
Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.
New approaches to observation and modeling of fast-moving glaciers and ice streams
NASA Astrophysics Data System (ADS)
Herzfeld, U. C.; Trantow, T.; Markle, M. J.; Medley, G.; Markus, T.; Neumann, T.
2016-12-01
In this paper, we will give an overview of several new approaches to remote-sensing observations and analysis and to modeling of fast glacier flow. The approaches will be applied in case studies of different types of fast-moving glaciers: (1) The Bering-Bagley Glacier System, Alaska (a surge-type glacier system), (2) Jakobshavn Isbræ, Greenland (a tide-water terminating fjord glacier and outlet of the Greenland Inland Ice), and (3) Icelandic Ice Caps (manifestations of the interaction of volcanic and glaciologic processes). On the observational side, we will compare the capabilities of lidar and radar altimeters, including ICESat's Geoscience Laser Altimeter System (GLAS), CryoSat-2's Synthetic Aperture Interferometric Radar Altimeter (SIRAL) and the future ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS), especially regarding retrieval of surface heights over crevassed regions as typical of spatial and temporal acceleration. Properties that can be expected from ICESat-2 ATLAS data will be illustrated based on analyses of data from ICESat-2 simulator instruments: the Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) and the Multiple Altimeter Beam Experimental Lidar (MABEL). Information from altimeter data will be augmented by an automated surface classification based on image data, which includes satellite imagery such as LANDSAT and WorldView as well as airborne video imagery of ice surfaces. Numerical experiments using Elmer/Ice will be employed to link parameters derived in observations to physical processes during the surge of the Bering Bagley Glacier System. This allows identification of processes that can be explained in an existing framework and processes that may require new concepts for glacier evolution. Topics include zonation of surge progression in a complex glacier system and crevassing as an indication, storage of glacial water, influence of basal topography and the role of friction laws.
NASA Astrophysics Data System (ADS)
Zasso, A.; Argentini, T.; Bayati, I.; Belloli, M.; Rocchi, D.
2017-12-01
The super long fjord crossings in E39 Norwegian project pose new challenges to long span bridge design and construction technology. Proposed solutions should consider the adoption of bridge deck with super long spans or floating solutions for at least one of the towers, due to the relevant fjord depth. At the same time, the exposed fjord environment, possibly facing the open ocean, calls for higher aerodynamic stability performances. In relation to this scenario, the present paper addresses two topics: 1) the aerodynamic advantages of multi-box deck sections in terms of aeroelastic stability, and 2) an experimental setup in a wind tunnel able to simulate the aeroelastic bridge response including the wave forcing on the floating.
Sedimentary Carbon Stocks: A National Assessment of Scotland's Fjords.
NASA Astrophysics Data System (ADS)
Smeaton, Craig; Austin, William; Davies, Althea; Howe, John
2017-04-01
Coastal sediments have been shown to be globally significant repositories for carbon (C) with an estimated 126.2 Tg of C being buried annually (Duarte et al. 2005). Though it is clear these areas are important for the long-term storage of C the actual quantity of C held within coastal sediment remains largely unaccounted for. The first step to understanding the role the coastal ocean plays in the global C cycle is to quantify the C held within these coastal sediments. Of the different coastal environment fjords have been shown to be hotspots for C burial with approximately 11 % of the annual global marine carbon sequestration occurring within fjordic environments (Smith et al. 2015). Through the development of a joint geophysical and geochemical methodology we estimated that the sediment in a mid-latitude fjord holds 26.9 ± 0.5 Mt of C (Smeaton et al., 2016), with these results suggesting that Scottish mid-latitude fjords could be a significant unaccounted store of C equivalent to their terrestrial counterparts (i.e. peatlands). Through the application of the joint geophysical and geochemical methodology developed by Smeaton et al (2016) to a number of other mid-latitude fjords, we will create detailed estimations of the sedimentary C stored at these individual sites. Using these detailed C stock estimations in conjunction with upscaling techniques we will establish the first national estimation of fjordic sedimentary C stocks. The data produced will allow for the sedimentary C stocks to be compared to other national C stocks, such as the Scottish peatlands (Chapman et al. 2009) and forestry (Forestry Commission, 2016). Alongside quantifying this large unaccounted for store of C in the coastal ocean this work also lays foundations for future work to understand the role of the coastal ocean in the global C cycle. Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1-8, doi:10.5194/bg-2-1-2005, 2005. Smeaton, C., Austin, W. E. N., Davies, A. L., Baltzer, A., Abell, R. E., and Howe, J. A.: Substantial stores of sedimentary carbon held in mid-latitude fjords, Biogeosciences, 13, 5771-5787, doi:10.5194/bg-13-5771-2016, 2016. Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., and Galy, V.: High rates of organic carbon burial in fjord sediments globally, Nat. Geosci., 8, 450-453, doi:10.1038/NGEO2421, 2015.
NASA Astrophysics Data System (ADS)
Oug, Eivind; Sundet, Jan H.; Cochrane, Sabine K. J.
2018-04-01
The red king crab invaded Norwegian coastal waters in the early 1990s after having been introduced from the northern Pacific to the Russian Barents Sea coast. The crab stock increased rapidly in NE northern Norway in the latter half of the 1990s, and since 2002 there has been a commercial fishery in the eastern invaded areas. The crab is an active predator on benthic fauna especially feeding in deep soft-bottom environments. The present study is a follow-up of previous studies (2007-09) to assess the effects of the king crab predation on soft bottom species composition, ecological functioning and sediment quality. Macroinfauna (> 1 mm) was investigated in three fjord areas in the Varanger region with low, moderate and very high crab abundances, respectively. Compared with data from 1994, most benthic species were markedly reduced in abundance, in particular non-moving burrowing and tube-dwelling polychaetes, bivalves and echinoderms. However, a few species appeared to recover from 2007-09 to 2012. Changes in ecological functioning were assessed using 'biological traits analysis (BTA)'. Following the crab invasion there was a relative reduction of suspension and surface deposit feeding species, an increase in mobile and predatory organisms and an increase in those with planktotrophic larval development. From low to high crab abundances functioning changed from tube-building, deep deposit feeding and fairly large size to free-living, shallow burrowing and rather small size. With regard to sediment reworking, downward and upward conveyors were reduced whereas surficial modifiers increased. The changes imply that sediment biomixing and bioirrigation were reduced leading to a degraded sedimentary environment. It is suggested that establishing relationships between ecosystem functioning and crab abundances may form the basis for estimating ecological costs of the crab invasion. Such knowledge is important for managing the crab in the Barents Sea area being both a non-indigenous species affecting native ecosystems as well as a valuable resource for commercial fishery.
Filgueira, Ramon; Grant, Jon; Strand, Øivind
2014-06-01
Shellfish carrying capacity is determined by the interaction of a cultured species with its ecosystem, which is strongly influenced by hydrodynamics. Water circulation controls the exchange of matter between farms and the adjacent areas, which in turn establishes the nutrient supply that supports phytoplankton populations. The complexity of water circulation makes necessary the use of hydrodynamic models with detailed spatial resolution in carrying capacity estimations. This detailed spatial resolution also allows for the study of processes that depend on specific spatial arrangements, e.g., the most suitable location to place farms, which is crucial for marine spatial planning, and consequently for decision support systems. In the present study, a fully spatial physical-biogeochemical model has been combined with scenario building and optimization techniques as a proof of concept of the use of ecosystem modeling as an objective tool to inform marine spatial planning. The object of this exercise was to generate objective knowledge based on an ecosystem approach to establish new mussel aquaculture areas in a Norwegian fjord. Scenario building was used to determine the best location of a pump that can be used to bring nutrient-rich deep waters to the euphotic layer, increasing primary production, and consequently, carrying capacity for mussel cultivation. In addition, an optimization tool, parameter estimation (PEST), was applied to the optimal location and mussel standing stock biomass that maximize production, according to a preestablished carrying capacity criterion. Optimization tools allow us to make rational and transparent decisions to solve a well-defined question, decisions that are essential for policy makers. The outcomes of combining ecosystem models with scenario building and optimization facilitate planning based on an ecosystem approach, highlighting the capabilities of ecosystem modeling as a tool for marine spatial planning.
The silica cycle in a Northeast Pacific fjord; the role of biological resuspension
NASA Astrophysics Data System (ADS)
Katz, Timor; Yahel, Gitai; Tunnicliffe, Verena; Herut, Barak; Whitney, Frank; Snelgrove, Paul V. R.; Lazar, Boaz
2016-09-01
This study is a quantitative assessment of the role fish-induced bio-resuspension plays in the silica cycle of coastal waters. We used new, published and archived oceanographic data to construct a comprehensive silica budget for Saanich Inlet (Vancouver Island, Canada), a highly productive Northeast Pacific fjord, where siliceous diatoms dominate primary productivity. Anoxia in the deep water of the inlet persists during most of the year, precluding animal life, whereas abundant groundfish continuously rework and resuspend bottom sediments in the shallower, oxygenated margins. This resuspension transfers settled biogenic silica fragments from the sediment, where they are immersed in porewater that is rich with dissolved silica, to the overlying water, where the much lower concentrations accelerate their dissolution rate. The budget shows that Saanich Inlet sediments constitute a sink for approximately 250 × 106 mol Si y-1. Most of this Si enters the inlet in advected, siliceous phytoplankton. Sediment resuspension by groundfish in the oxygenated margins of Saanich Inlet generates about 50% of the total flux of dissolved silica from the inlet seafloor. This resuspension also facilitates a massive transport of biogenic silica from the margins to the anoxic basin, where approximately 90% of all the biogenic silica is buried. The excess dissolution caused by fish activity reduces the burial efficiency of biogenic silica in the entire inlet sediments by about 20%. This case study emphasizes the link between the silica cycle and groundfish activity. Based on this study and because biological resuspension occurs in most regions of the ocean, we recommend that it will be taken into account when budgeting the silica cycle, and potentially other geochemical cycles, in marine environments.
Seasonal dynamics of meroplankton in a high-latitude fjord
NASA Astrophysics Data System (ADS)
Michelsen, Helena Kling; Svensen, Camilla; Reigstad, Marit; Nilssen, Einar Magnus; Pedersen, Torstein
2017-04-01
Knowledge on the seasonal timing and composition of pelagic larvae of many benthic invertebrates, referred to as meroplankton, is limited for high-latitude fjords and coastal areas. We investigated the seasonal dynamics of meroplankton in the sub-Arctic Porsangerfjord (70°N), Norway, by examining their seasonal changes in relation to temperature, chlorophyll a and salinity. Samples were collected at two stations between February 2013 and August 2014. We identified 41 meroplanktonic taxa belonging to eight phyla. Multivariate analysis indicated different meroplankton compositions in winter, spring, early summer and late summer. More larvae appeared during spring and summer, forming two peaks in meroplankton abundance. The spring peak was dominated by cirripede nauplii, and late summer peak was dominated by bivalve veligers. Moreover, spring meroplankton were the dominant component in the zooplankton community this season. In winter, low abundances and few meroplanktonic taxa were observed. Timing for a majority of meroplankton correlated with primary production and temperature. The presence of meroplankton in the water column through the whole year and at times dominant in the zooplankton community, suggests that they, in addition to being important for benthic recruitment, may play a role in the pelagic ecosystem as grazers on phytoplankton and as prey for other organisms.
Reconstruction of an aquatic food web: Viking Haithabu vs. Medieval Schleswig.
von Steinsdorff, Katja; Grupe, Gisela
2006-09-01
In the last two decades, the analysis of stable isotopes of carbonate and collagen from archaeological bone finds became a useful tool in the reconstruction of ancient food webs. Nevertheless there is still only little information available about aquatic food webs, in particular concerning brackish water ecosystems. The Schlei Fjord in Schleswig-Holstein, Germany, is such an ecosystem and was investigated to determine stable isotopic values for nitrogen, carbon and oxygen from bone collagen and carbonate in archaeological bone finds. Wild birds, mammals and fish bones from the Viking settlement Haithabu and the medieval town of Schleswig have been analyzed in this study to determine stable isotope values for marine and limnic species and to investigate possible isotopic gradients for mixing fresh water and salt water ecosystems.
Glacimarine Sedimentary Processes and Deposits at Fjord-Terminating Tidewater Glacier Margins
NASA Astrophysics Data System (ADS)
Streuff, K.; O'Cofaigh, C.; Lloyd, J. M.; Noormets, R.; Nielsen, T.; Kuijpers, A.
2016-12-01
Many fjords along Arctic coasts are influenced by tidewater glaciers, some of them fast-flowing ice sheet outlets. Such glaciers provide important links between terrestrial and marine environments, and, due to their susceptibility to climatic and oceanographic changes, have undergone a complex history of advance and retreat since the last glacial maximum (LGM). Although a growing body of evidence has led to a better understanding of the deglacial dynamics of individual glaciers since the LGM, their overall Holocene glacimarine processes and associated sedimentary and geomorphological products often remain poorly understood. This study addresses this through a detailed analysis of sediment cores, swath bathymetric and sub-bottom profiler data collected from seven fjords in Spitsbergen and west Greenland. The sediment cores preserve a complex set of lithofacies, which include laminated and massive muds in ice-proximal, and bioturbated mud in more ice-distal settings, diamicton in iceberg-dominated areas and massive sand occurring as lenses, laminae and thick beds. These facies record the interplay of three main glacimarine processes, suspension settling, iceberg rafting and sediment gravity flows, and collectively emphasise the dominance of glacial meltwater delivery to sedimentation in high Arctic fjords. The seafloor geomorphology in the fjords shows a range of landforms that include glacial lineations associated with fast ice-flow, terminal moraines and debris lobes marking former maximum glacier extents, and small transverse moraines formed during deglaciation by glaciotectonic deformation at the grounding line and crevasse-squeezing. Additional landforms such as iceberg ploughmarks, submarine channels, pockmarks, and debris lobes formed during or after deglaciation by iceberg calving, erosion by meltwater, and sediment reworking. We present here a new model for sedimentary and geomorphological processes in front of contemporary tidewater glaciers, which integrates our findings with those from Alaska, Canada, and east Greenland.
Diet of Norwegian coastal cod (Gadus morhua) studied by using citizen science
NASA Astrophysics Data System (ADS)
Enoksen, Siri Elise; Reiss, Henning
2018-04-01
The Norwegian coastal cod (Gadus morhua) is a keystone species in the food web of northern Norwegian fjords. Their relatively stationary populations might specifically depend on local food resources, but the diet of cod has rarely been studied in fjord systems. Using a citizen science approach, where recreational anglers and tourists participated in the sampling, we studied small-scale differences in the diet composition of cod in a fjord system in northern Norway. We compared the cod diet from the MPA Saltstraumen, characterised by strong tidal currents and a highly diverse and abundant fauna, with the inner fjord area of Skjerstadfjord. The diet composition of cod significantly differed between both areas within the fjord. Although fish was the dominant prey in both areas, cod consumed > 40% invertebrates in terms of weight, even in the cod size class of 70-99 cm. The invertebrate prey also caused the observed spatial differences. In Saltstraumen, brittle stars (Ophiuroidea), crabs (Brachyura) and sea cucumbers (Holothuroidea) were important food sources for cod, while sea urchins (Echinoidea), clams (Bivalvia), shrimps (Caridea) and krill (Euphausiacea) dominated the diet in the inner Skjerstadfjord. The high densities of sessile fauna in the dynamic environment of Saltstraumen, was only partly reflected in the diet of cod, with only Holothuroidea found in 17% of the stomachs. High rates of empty stomachs (24%), cannibalism as well as a higher proportion of low-energy prey in the diet of large cod, may indicate a shortage of high quality food in Skjerstadfjord. The samples for this study were collected through a citizen science campaign. This approach might provide opportunities to be used for coastal ecological monitoring with potential applications in local ecosystem management strategies through public involvement.
Palanisamy, Satheesh Kumar; Thomas, Olivier P; P McCormack, Grace
2018-01-01
In October 2016, a rapid assessment survey of ascidian species was conducted in shellfish farms at Killary Fjord, in the west of Ireland. Two non-indigenous solitary ascidians Ascidiella aspersa and Corella eumoyta were recorded for the first time in shellfish farms at this location. Both invasive ascidians have the potential to greatly reduce mussel production in Killary Fjord by competing with shellfish for food and habitat. Their high abundance also causes an increase in maintenance costs leading to economic losses for aquaculture farmers. Prompted by our finding of two invasive ascidians in Killary Fjord, we provide a brief review of the ecological role of ascidians and the potential of harnessing biomass from such invasive species for the production of high added value marine natural products.
Cai, J.; Powell, R.D.; Cowan, E.A.; Carlson, P.R.
1997-01-01
High-resolution seismic-reflection profiles of sediment fill within Tart Inlet of Glacier Bay, Alaska, show seismic facies changes with increasing distance from the glacial termini. Five types of seismic facies are recognized from analysis of Huntec and minisparker records, and seven lithofacies are determined from detailed sedimentologic study of gravity-, vibro- and box-cores, and bottom grab samples. Lithofacies and seismic facies associations, and fjord-floor morphology allow us to divide the fjord into three sedimentary environments: ice-proximal, iceberg-zone and ice-distal. The ice-proximal environment, characterized by a morainal-bank depositional system, can be subdivided into bank-back, bank-core and bank-front subenvironments, each of which is characterized by a different depositional subsystem. A bank-back subsystem shows chaotic seismic facies with a mounded surface, which we infer consists mainly of unsorted diamicton and poorly sorted coarse-grained sediments. A bank-core depositional subsystem is a mixture of diamicton, rubble, gravel, sand and mud. Seismic-reflection records of this subsystem are characterized by chaotic seismic facies with abundant hyperbolic diffractions and a hummocky surface. A bank-front depositional subsystem consists of mainly stratified and massive sand, and is characterized by internal hummocky facies on seismic-reflection records with significant surface relief and sediment gravity flow channels. The depositional system formed in the iceberg-zone environment consists of rhythmically laminated mud interbedded with thin beds of weakly stratified diamicton and stratified or massive sand and silt. On seismic-reflection profiles, this depositional system is characterized by discontinuously stratified facies with multiple channels on the surface in the proximal zone and a single channel on the largely flat sediment surface in the distal zone. The depositional system formed in the ice-distal environment consists of interbedded homogeneous or laminated mud and massive or stratified sand and coarse silt. This depositional system shows continuously stratified seismic facies with smooth and flat surfaces on minisparker records, and continuously stratified seismic facies which are interlayered with thin weakly stratified facies on Huntec records.
An ikaite record of late Holocene climate at the Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Lu, Zunli; Rickaby, Rosalind E. M.; Kennedy, Hilary; Kennedy, Paul; Pancost, Richard D.; Shaw, Samuel; Lennie, Alistair; Wellner, Julia; Anderson, John B.
2012-04-01
Calcium carbonate can crystallize in a hydrated form as ikaite at low temperatures. The hydration water in ikaite grown in laboratory experiments records the δ18O of ambient water, a feature potentially useful for reconstructing δ18O of local seawater. We report the first downcore δ18O record of natural ikaite hydration waters and crystals collected from the Antarctic Peninsula (AP), a region sensitive to climate fluctuations. We are able to establish the zone of ikaite formation within shallow sediments, based on porewater chemical and isotopic data. Having constrained the depth of ikaite formation and δ18O of ikaite crystals and hydration waters, we are able to infer local changes in fjord δ18O versus time during the late Holocene. This ikaite record qualitatively supports that both the Medieval Warm Period and Little Ice Age extended to the Antarctic Peninsula.
A compendium of geochemical information from the Saanich Inlet water column
NASA Astrophysics Data System (ADS)
Torres-Beltrán, Mónica; Hawley, Alyse K.; Capelle, David; Zaikova, Elena; Walsh, David A.; Mueller, Andreas; Scofield, Melanie; Payne, Chris; Pakhomova, Larysa; Kheirandish, Sam; Finke, Jan; Bhatia, Maya; Shevchuk, Olena; Gies, Esther A.; Fairley, Diane; Michiels, Céline; Suttle, Curtis A.; Whitney, Frank; Crowe, Sean A.; Tortell, Philippe D.; Hallam, Steven J.
2017-10-01
Extensive and expanding oxygen minimum zones (OMZs) exist at variable depths in coastal and open ocean waters. As oxygen levels decline, nutrients and energy are increasingly diverted away from higher trophic levels into microbial community metabolism, resulting in fixed nitrogen loss and production of climate active trace gases including nitrous oxide and methane. While ocean deoxygenation has been reported on a global scale, our understanding of OMZ biology and geochemistry is limited by a lack of time-resolved data sets. Here, we present a historical dataset of oxygen concentrations spanning fifty years and nine years of monthly geochemical time series observations in Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia, Canada that undergoes recurring changes in water column oxygenation status. This compendium provides a unique geochemical framework for evaluating long-term trends in biogeochemical cycling in OMZ waters.
Importance of mixotrophic nanoplankton in Aysén Fjord (Southern Chile) during austral winter
NASA Astrophysics Data System (ADS)
Czypionka, Till; Vargas, Cristian A.; Silva, Nelson; Daneri, Giovanni; González, Humberto E.; Iriarte, José Luis
2011-03-01
Mixotrophy, the combination of autotrophic and heterotrophic nutrition in the same organism, is widespread in planktonic algae. Several reports from temperate and high-latitude fjords in Scandinavia suggest the occurrence of a niche in late summer and autumn during post-bloom conditions in which mixotrophic algae can become important grazers in pelagic ecosystems, accessing the nutrients bound in their prey to overcome nutrient limitation. Here, we experimentally determined the trophic modes and bacterivory rates for the nanoplankton community (2-20 μm) in Aysén Fjord located in the Chilean Northern Patagonia during two contrasting seasons: winter and spring. While mixotrophic nanoplankton was virtually absent from the system in spring, in winter at occasions it even constituted the dominant trophic group of the nanoplankton with abundances of >900 cells mL -1. This indicates a second niche for mixotrophs in winter, when mixotrophy allows overcoming light limitation.
NASA Astrophysics Data System (ADS)
Beaird, N.; Straneo, F.; Jenkins, W. J.
2017-12-01
Jakobshavn Isbrae has undergone rapid retreat in recent decades and is now among the largest sources of anomalous ice discharge from Greenland's shrinking ice sheet. The characteristics, distribution, and pathways of meltwater sourced from Jakobshavn can have important impacts on ecosystems and regional, perhaps global, ocean circulation. Here we report on novel geochemical (noble gas) observations that enable a quantitative description of the meltwaters exiting Ilulissat Icefjord into Disko Bay, including the partition into Submarine Meltwater sources and Subglacial Discharge sources. We identify a coastally-trapped plume outside of the fjord mouth consistent with a coastal current flowing north. The plume extends to 100 m depth, and 10 km offshore. Temperature and salinity profiles inside the fjord suggest a deep-reaching buoyancy-forced overturning feeding this outflow. Relatively high Submarine Meltwater concentration (2.5%) imply a substantial contribution of iceberg meltwater to the fjord. Subglacial Discharge concentrations in the plume reach 6%.
Temporal variability of air-sea CO2 exchange in a low-emission estuary
NASA Astrophysics Data System (ADS)
Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte
2016-07-01
There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.
Late Weichselian ice-sheet dynamics and deglaciation history of the northern Svalbard margin
NASA Astrophysics Data System (ADS)
Fransner, O.; Noormets, R. R. N. N.; Flink, A.; Hogan, K.; Dowdeswell, J. A.; O'Regan, M.; Jakobsson, M.
2016-12-01
The glacial evolution of the northern Svalbard margin is poorly known compared with the western margin. Gravity cores, swath bathymetric, sub-bottom acoustic and 2D airgun data are used to investigate the Late Weichselian Svalbard-Barents Ice Sheet history on the northern Svalbard margin. Prograding sequences in Kvitøya and Albertini trough mouths (TMs) indicate ice streaming to the shelf edge multiple times during the Quaternary. While Kvitøya Trough has an associated trough-mouth fan (TMF), Albertini TM is cut back into the shelf edge. Down-faulted bedrock below Albertini TM suggests larger sediment accommodation space there, explaining the absence of a TMF. The bathymetry indicates that ice flow in Albertini Trough was sourced from Duvefjorden and Albertinibukta. Exposed crystalline bedrock likely kept the two ice flows separated before merging north of Karl XII-Øya. Subglacial landforms in Rijpfjorden and Duvefjorden indicate that both fjords accommodated northward-flowing ice streams during the LGM. The deeper fjord basin and higher elongation ratios of landforms in Duvefjorden suggest a more focused and/or larger ice flow there. Easily erodible sedimentary rocks are common in Duvefjorden, which may explain different ice flow dynamics in these fjords. Kvitøya TMF is flanked by gullies, probably formed through erosive downslope gravity flows triggered by sediment-laden meltwater during early deglaciation. Glacial landforms in Albertini Trough comprise retreat-related landforms indicating slow deglaciation. Iceberg scours in Albertini Trough suggest the importance of calving for mass-loss. Sets of De Geer moraines in Rijpfjorden imply that slow, grounded retreat continued in <210 m water depth. Lack of retreat-related landforms in deeper areas of Rijpfjorden and in Duvefjorden indicates floating glacier fronts influenced by calving. 14C ages suggest that deglaciation of inner Rijpfjorden and central Duvefjorden were complete before 10,434 cal a BP and 10,779 cal a BP respectively.
Role of resting cysts in Chilean Alexandrium catenella dinoflagellate blooms revisited.
Mardones, Jorge I; Bolch, Chris; Guzmán, Leonardo; Paredes, Javier; Varela, Daniel; Hallegraeff, Gustaaf M
2016-05-01
The detection of sparse Alexandrium catenella-resting cysts in sediments of southern Chilean fjords has cast doubts on their importance in the recurrence of massive toxic dinoflagellate blooms in the region. The role of resting cysts and the existence of different regional Chilean populations was studied by culturing and genetic approaches to define: (1) cyst production; (2) dormancy period; (3) excystment success; (4) offspring viability and (5) strain mating compatibility. This study newly revealed a short cyst dormancy (minimum 69 days), the role of key abiotic factors (in decreasing order salinity, irradiance, temperature and nutrients) controlling cyst germination (max. 60%) and germling growth rates (up to 0.36-0.52div.day -1 ). Amplified fragment length polymorphism (AFLP) characterization showed significant differences in genetic distances (GD) among A. catenella populations that were primarily determined by the geographical origin of isolates and most likely driven by oceanographic dispersal barriers. A complex heterothallic mating system pointed to variable reproductive compatibility (RCs) among Chilean strains that was high among northern (Los Lagos/North Aysén) and southern populations (Magallanes), but limited among the genetically differentiated central (South Aysén) populations. Field cyst surveys after a massive 2009 bloom event revealed the existence of exceptional high cyst densities in particular areas of the fjords (max. 14.627cystscm -3 ), which contrast with low cyst concentrations (<221.3cystscm -3 ) detected by previous oceanographic campaigns. In conclusion, the present study suggests that A. catenella resting cysts play a more important role in the success of this species in Chilean fjords than previously thought. Results from in vitro experiments suggest that pelagic-benthic processes can maintain year-round low vegetative cell concentrations in the water column, but also can explain the detection of high cysts aggregations after the 2009-bloom event. Regional drivers that lead to massive outbreaks, however, are still unknown but potential scenarios are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydroacoustic habitat mapping in Potter Cove (King George Island, Antarctica)
NASA Astrophysics Data System (ADS)
Hass, H. Christian; Wölfl, Anne-Cathrin; Kuhn, Gerhard; Jerosch, Kerstin; Scharf, Frauke; Abele, Doris
2016-04-01
Climate change increasingly affects the coastal areas off Antarctica. Strongest environmental response occurs in the transition zones that mediate between the polar and subpolar latitudes. Potter Cove, a minor fjord at the northern tip of the Antarctic Peninsula is significantly affected by rising temperatures and retreating ice sheets. Large amounts of turbid meltwaters affect both, the seafloor and the water column and cause stress for many biota. There is an increasing demand to monitor the ongoing change and to work out means for comparison with similar coastal ecosystems under pressure. Marine habitat maps provide information on the seafloor characteristics that allow to describe and evaluate the status of the recent coastal ecosystem and to predict its future development. We used a RoxAnn acoustic ground discrimination system, a sidescan sonar, grab samples (grain size and TOC) and underwater video footage to gain habitat information. Supervised and unsupervised classification routines (including fuzzy k-means clustering and LDA) were employed to calculate models ranging from two classes (soft bottom habitat, stone habitat) to 7 classes (including classes of rocks with and without macroalgae as well as classes of gravels, sands and silts). Including organic carbon in the database allowed to identify a carbon-depleted class proximal to the glacier front. Potter Cove reveals features that are related to the climate-controlled environmental change: very rough seafloor topography in a small basin close to the fjord head which was cleared by the retreating tidewater glacier through the past two decades. The increasing distance to the glacier down-fjord causes existing habitats to smooth and mature and new habitats to form. This process will change the terrestrial and marine face of Potter Cove until the ongoing climatic change stops or even reverses. It becomes apparent that the final interpretation of the results benefits significantly from the different discrimination and classification approaches.
Marín, Víctor H; Delgado, Luisa E; Bachmann, Pamela
2008-09-01
The use of brainstorming techniques for the generation of conceptual models, as the basis for the integrated management of physical-ecological-social systems (PHES-systems) is tested and discussed. The methodology is applied in the analysis of the Aysén fjord and watershed (Southern Chilean Coast). Results show that the proposed methods can be adequately used in management scenarios characterized by highly hierarchical, experts/non-experts membership.
NASA Astrophysics Data System (ADS)
Gilbert, Graham L.; Cable, Stefanie; Thiel, Christine; Christiansen, Hanne H.; Elberling, Bo
2017-05-01
The Zackenberg River delta is located in northeast Greenland (74°30' N, 20°30' E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated the deposits using sedimentological and cryostratigraphic techniques together with optically stimulated luminescence (OSL) dating. We identify four facies associations in sections (4 to 22 m in height) exposed along the modern Zackenberg River and coast. Facies associations relate to (I) overriding glaciers, (II) retreating glaciers and quiescent glaciomarine conditions, (III) delta progradation in a fjord valley, and (IV) fluvial activity and niveo-aeolian processes. Pore, layered, and suspended cryofacies are identified in two 20 m deep ice-bonded sediment cores. The cryofacies distribution, together with low overall ground-ice content, indicates that permafrost is predominately epigenetic in these deposits. Fourteen OSL ages constrain the deposition of the cored deposits to between approximately 13 and 11 ka, immediately following deglaciation. The timing of permafrost aggradation was closely related to delta progradation and began following the subaerial exposure of the delta plain (ca. 11 ka). Our results reveal information concerning the interplay between deglaciation, RSL change, sedimentation, permafrost aggradation, and the timing of these events. These findings have implications for the timing and mode of permafrost aggradation in other fjord valleys in northeast Greenland.
Ice Island Calves off Petermann Glacier
2017-12-08
NASA image acquired August 11, 2010. After breaking off the Petermann Glacier on August 5, 2010, a massive ice island floated slowly down the fjord toward the Nares Strait. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA’s Terra satellite captured this false-color image of the ice island on August 11, 2010. In this image, ice is light blue, water is nearly black, and clouds are nearly white. Although a bank of thin clouds hovers over the fjord, the southernmost margin of the ice island is still visible. Toward the north, the leading edge of the ice island retains the same shape it had days earlier, at the time of the initial calving. NASA Earth Observatory image created by Jesse Allen, using data provided courtesy of NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Michon Scott. Instrument: Terra - ASTER To see more images from of the glacier go to: earthobservatory.nasa.gov/NaturalHazards/event.php?id=45116 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
Samuelsson, Göran S; Raymond, Caroline; Agrenius, Stefan; Schaanning, Morten; Cornelissen, Gerard; Gunnarsson, Jonas S
2017-06-01
A field experiment with thin-layer capping was conducted in the Grenland fjords, Norway, for remediation in situ of mercury and dioxin-contaminated sediments. Experimental fields at 30 and 95 m depth were capped with (i) powdered activated carbon (AC) mixed with clay (AC+cla`y), (ii) clay, and (iii) crushed limestone. Ecological effects on the benthic community and species-feeding guilds were studied 1 and 14 months after capping, and a total of 158 species were included in the analyses. The results show that clay and limestone had only minor effects on the benthic community, while AC+clay caused severe perturbations. AC+clay reduced the abundance, biomass, and number of species by up to 90% at both 30 and 95 m depth, and few indications of recovery were found during the period of this investigation. The negative effects of AC+clay were observed on a wide range of species with different feeding strategies, although the suspension feeding brittle star Amphiura filiformis was particularly affected. Even though activated carbon is effective in reducing sediment-to-water fluxes of dioxins and other organic pollutants, this study shows that capping with powdered AC can lead to substantial disturbances to the benthic community.
Accessing the inaccessible: making (successful) field observations at tidewater glacier termini
NASA Astrophysics Data System (ADS)
Kienholz, C.; Amundson, J. M.; Jackson, R. H.; Motyka, R. J.; Nash, J. D.; Sutherland, D.
2017-12-01
Glaciers terminating in ocean water (tidewater glaciers) show complex dynamic behavior driven predominantly by processes at the ice-ocean interface (sedimentation, erosion, iceberg calving, submarine melting). A quantitative understanding of these processes is required, for example, to better assess tidewater glaciers' fate in our rapidly warming environment. Lacking observations close to glacier termini, due to unpredictable risks from calving, hamper this understanding. In an effort to remedy this lack of knowledge, we initiated a large field-based effort at LeConte Glacier, southeast Alaska, in 2016. LeConte Glacier is a regional analog for many tidewater glaciers, but better accessible and observable and thus an ideal target for our multi-disciplinary effort. Our ongoing campaigns comprise measurements from novel autonomous vessels (temperature, salinity and current) in the immediate proximity of the glacier terminus and additional surveys (including multibeam bathymetry) from boats and moorings in the proglacial fjord. These measurements are complemented by iceberg and glacier velocity measurements from time lapse cameras and a portable radar interferometer situated above LeConte Bay. GPS-based velocity observations and melt measurements are conducted on the glacier. These measurements provide necessary input for process-based understanding and numerical modeling of the glacier and fjord systems. In the presentation, we discuss promising initial results and lessons learned from the campaign.
Subsurface iceberg melt key to Greenland fjord freshwater budget
NASA Astrophysics Data System (ADS)
Moon, T.; Sutherland, D. A.; Carroll, D.; Felikson, D.; Kehrl, L.; Straneo, F.
2018-01-01
Liquid freshwater fluxes from the Greenland ice sheet affect ocean water properties and circulation on local, regional and basin-wide scales, with associated biosphere effects. The exact impact, however, depends on the volume, timing and location of freshwater releases, which are poorly known. In particular, the transformation of icebergs, which make up roughly 30-50% of the loss of the ice-sheet mass to liquid freshwater, is not well understood. Here we estimate the spatial and temporal distribution of the freshwater flux for the Helheim-Sermilik glacier-fjord system in southeast Greenland using an iceberg-melt model that resolves the subsurface iceberg melt. By estimating seasonal variations in all the freshwater sources, we confirm quantitatively that iceberg melt is the largest annual freshwater source in this system type. We also show that 68-78% of the iceberg melt is released below a depth of 20 m and, seasonally, about 40-100% of that melt is likely to remain at depth, in contrast with the usual model assumptions. Iceberg melt also peaks two months after all the other freshwater sources peak. Our methods provide a framework to assess individual freshwater sources in any tidewater system, and our results are particularly applicable to coastal regions with a high solid-ice discharge in Greenland.
On the impact of fjord geometry on grounding line stability
NASA Astrophysics Data System (ADS)
Åkesson, H.; Nick, F. M.; Morlighem, M.; Nisancioglu, K. H.
2016-12-01
Observations and reconstructions of Antarctic and Greenland marine-terminating glaciers and their grounding lines show that their response to external forcings is highly dependent on the geometry of individual glaciers, such as fjord geometry. While recent retreat of these glaciers is broadly consistent with warmer atmospheric and oceanic conditions, we observe considerable spatial and temporal variability, with diverse glacier behavior within the same regions. The relatively short observational record of marine-terminating glaciers also needs to be placed in a long-term context. Reconstructions of marine-terminating glaciers, however, indicate highly asynchronous retreat histories despite being subject to similar climatic forcings. These lines of evidence suggest that regional climate forcing alone cannot explain marine-terminating glacier behavior, and that these glaciers cannot be used uncritically as indicators of past climates because of their heterogeneous response to climate change. Here we use a dynamic flowline model with a physical treatment of iceberg calving to assess the effect of fjord geometry on grounding line stability on decadal and longer time scales. The model includes driving and resistive stresses of ice flow and is applied to idealized fjord geometries representing different real-world glaciers. We find that the geometry can override the signal from the ambient forcing over multiple centuries, resulting in non-linear, rapid grounding line migration. In particular we highlight the importance of fjord width, which has received relatively little attention in terms of marine ice sheet instability. Our findings provide new insights into grounding line behavior and may explain some of the documented heterogeneous, asynchronous patterns of marine-terminating glaciers in Greenland, Antarctica, Alaska and elsewhere. Further, we investigate the geometric influence on the reversibility and hysteresis of grounding line migration, relevant for oscillatory glacier behavior, marine-terminating glacier retreat-advance cycles and Heinrich events. Finally, we present comparative, preliminary results using the 3-dimensional ice sheet model ISSM and discuss our findings in terms of ice shelf stability and buttressing.
NASA Astrophysics Data System (ADS)
Lamy, F.; Arz, H. W.; Kilian, R.; Baeza Urrea, O.; Caniupan, M.; Kissel, C.; Lange, C.
2012-04-01
The Antarctic Circumpolar Current (ACC) plays an essential role in the thermohaline circulation and global climate. Today a large volume of ACC water passes through the Drake Passage, a major geographic constrain for the circumpolar flow. Satellite tracked surface drifters have shown that Subantarctic Surface water of the ACC is transported northeastward across the Southeast Pacific from ~53°S/100°W towards the Chilean coast at ~40°S/75°W where surface waters bifurcate and flow northward into the Peru Chile Current (PCC) finally reaching the Eastern Tropical Pacific, and southwards into the Cape Horn Current (CHC). The CHC thus transports a significant amount of northern ACC water towards the Drake Passage and reaches surface current velocities of up to 35 cm/s within a narrow belt of ~100-150 km width off the coast. Also at deeper water levels, an accelerated southward flow occurs along the continental slope off southernmost South America that likewise substantially contributes to the Drake Passage throughflow. Here we report on high resolution geochemical and grain-size records from core MD07-3128 (53°S; 1032 m water depth) which has been retrieved from the upper continental slope off the Pacific entrance of the Magellan Strait beneath the CHC. Magnetic grain-sizes and grain-size distributions of the terrigenous fraction reveal large amplitude changes between the Holocene and the last glacial, as well as millennial-scale variability (most pronounced during Marine Isotope Stage). Magnetic grain-sizes, silt/clay ratios, fine sand contents, sortable silt contents, and sortable silt mean grain-sizes are substantially higher during the Holocene suggesting strongly enhanced current activity. The high absolute values imply flow speeds larger than 25 cm/s as currently observed in the CHC surface current. Furthermore, winnowing processes through bottom current activity and changes in the availability of terrigenous material (ice-sheet extension and related supply of silt/clay, efficiency of the fjords in trapping sediment) might have contributed to the observed grain-size variations. Assuming that surface and bottom current strength changes are the major controlling factors, our data suggest a strongly enhanced CHC and deeper flow during the Holocene compared to the mean of the last glacial. During MIS 3, several phases of stronger current flow mostly correlate with warm sea surface temperatures at the site and, within age uncertainties, with millennial-scale warm phases in Antarctic ice cores. Taken together our data can be interpreted in terms of strongly reduced contributions of northern ACC water to the Drake Passage throughflow during the glacial in general and during millennial-scale cold phases in particular. At the same time, advection of northern ACC water into the PCC was probably enhanced. These results are consistent with model runs showing largely reduced volume transport through the Drake Passage during the last glacial maximum and an increasing throughflow during the last deglaciation that might have affected the strengthening of the Atlantic Meridional Overturning Circulation.
Seasonal variability and degradation investigation of iodocarbons in a coastal fjord
NASA Astrophysics Data System (ADS)
Shi, Qiang; Wallace, Douglas
2016-04-01
Methyl iodide (CH3I) is considered an important carrier of iodine atoms from sea to air. The importance of other volatile iodinated compounds, such as very short-lived iodocarbons (e.g. CH2ClI, CH2I2), has also been demonstrated [McFiggans, 2005; O'Dowd and Hoffmann, 2005; Carpenter et al., 2013]. The production pathways of iodocarbons, and controls on their sea-to-air flux can be investigated by in-situ studies (e.g. surface layer mass balance from time-series studies) and by incubation experiments. Shi et al., [2014] reported previously unrecognised large, night-time losses of CH3I observed during incubation experiments with coastal waters. These losses were significant for controlling the sea-to-air flux but are not yet understood. As part of a study to further investigate sources and sinks of CH3I and other iodocarbons in coastal waters, samples have been analysed weekly since April 2015 at 4 depths (5 to 60 m) in the Bedford Basin, Halifax, Canada. The time-series study was part of a broader study that included measurement of other, potentially related parameters (temperature, salinity, Chlorophyll a etc.). A set of repeated degradation experiments was conducted, in the context of this time-series, including incubations within a solar simulator using 13C labelled CH3I. Results of the time-series sampling and incubation experiments will be presented.
The Role of Silicon Limitation in Phytoplankton Phenology in a Sub-Arctic Fjord System
NASA Astrophysics Data System (ADS)
Dobbins, W.; Krause, J. W.; Agustí, S.; Duarte, C. M.; Schulz, I. K.; Winding, M.; Rowe, K. A.; Sejr, M.
2017-12-01
Bacillariophyceae (diatoms) are a significant driver of the biological pump and thus various chemical cycles in high latitude ecosystems. Diatoms have an obligate silicon requirement that has been established as a growth-limiting factor in a variety of ecosystems, and silicon availability likely plays an important role in the temporal evolution of high latitude phytoplankton blooms. However, no previous work has been done to assess the progression of this limitation across a full bloom cycle in the West Greenlandic Nuup Kangerlua fjord or equivalent systems with rapidly evolving land-sea-ice interfaces. Here we provide experimental evidence that the Nuup Kangerlua spring bloom is both diatom driven and strongly silicon constrained. Chlorophyll concentration and growth rates derived from biogenic silica measurements peaked contemporaneously; indicating diatoms were primary members of the phytoplankton assemblage. Moreover, incubation experiments revealed strong biomass increases in response to silicon additions during the bloom period. This work shows silicon availability may play a significant role in bloom phenology in the Nuup Kangerlua fjord.
Options to Improve Rain Snow Parameterization in Surface Based Models
NASA Astrophysics Data System (ADS)
Feiccabrino, J. M.
2017-12-01
Precipitation phase determination is of upmost importance in a number of surface based hydrological, ecological, and safety models. However, precipitation phase at Earth's surface is a result of cloud and atmospheric properties not measured by surface weather stations. Nonetheless, they can be inferred from the available surface datum. This study uses 681,620 weather observations with air temperatures between -3 and 5°C and identified precipitation occurring at the time of the observation to determine simple, yet accurate, thresholds for precipitation phase determination schemes (PPDS). This dataset represents 38% and 42% of precipitation observations over a 16 year period for 85 Swedish, and 84 Norwegian weather stations. The misclassified precipitation (error) from PPDS using AT, dew-point temperature (DT) and wet-bulb temperature (WB) thresholds were compared using a single threshold PPDS. The Norwegian observations between -3 and 5°C resulted in 11.64%, 11.21%, and 8.42% error for DT (-0.2°C), AT (1.2°C), and WB (0.3°C) thresholds respectively. Individual station thresholds had a range of -0.7 to 1.2°C, -1.2 to 0.9°C, and -0.1 to 2.5°C for WB, DP, and AT respectively. To address threshold variance while decreasing error, weather stations were grouped into nine landscape categories; windward (WW) ocean, WW coast, WW fjord, WW hill, WW mountain, leeward (LW) mountain, LW hill, LW rolling hills, and LW coast. Landscape classification was based on location relative to the Scandinavian Mountains, and the % water or range of elevation within 15KM. Within landscapes, stations share similar land atmosphere exchanges which differ from other landscapes. These differences change optimal thresholds for PPDS between landscapes. Also tested were threshold temperature affects based on assumed atmospheric differences for the following observation groups; 1.) occurring before and after an air mass boundary, 2.) with different water temperatures and/or NAO phases, 3.) with snow cover, 4.) coupled with higher elevation stations and 5.) with different cloud heights. For example, in Norway, as the unsaturated layer depth beneath clouds increased, AT thresholds warmed. Cloud height adjusted AT thresholds reduced error by 5% before threshold adjustments for landscapes.
Sediment delivery to the Gulf of Alaska: source mechanisms along a glaciated transform margin
Dobson, M.R.; O'Leary, D.; Veart, M.
1998-01-01
Sediment delivery to the Gulf of Alaska occurs via four areally extensive deep-water fans, sourced from grounded tidewater glaciers. During periods of climatic cooling, glaciers cross a narrow shelf and discharge sediment down the continental slope. Because the coastal terrain is dominated by fjords and a narrow, high-relief Pacific watershed, deposition is dominated by channellized point-source fan accumulations, the volumes of which are primarily a function of climate. The sediment distribution is modified by a long-term tectonic translation of the Pacific plate to the north along the transform margin. As a result, the deep-water fans are gradually moved away from the climatically controlled point sources. Sets of abandoned channels record the effect of translation during the Plio-Pleistocene.
NASA Astrophysics Data System (ADS)
Timmermann, Ralph; Schaffer, Janin
2016-04-01
The RTopo-1 data set of Antarctic ice sheet/shelf geometry and global ocean bathymetry has proven useful not only for modelling studies of ice-ocean interaction in the southern hemisphere. Following the spirit of this data set, we introduce a new product (RTopo-2) that contains consistent maps of global ocean bathymetry, upper and lower ice surface topographies for Greenland and Antarctica, and global surface height on a spherical grid with now 30 arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. To achieve a good representation of the fjord and shelf bathymetry around the Greenland continent, we corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Helheim Glacier assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79°N, we incorporated a high-resolution digital bathymetry model including all available multibeam survey data for the region. Radar data for ice surface and ice base topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database.
Eutrophication signals in the sedimentary record of dinoflagellate cysts in coastal waters
NASA Astrophysics Data System (ADS)
Dale, Barrie
2009-01-01
A brief review is presented of the current status of eutrophication signals from the sedimentary records of dinoflagellate cysts in coastal waters, particularly of NW Europe. There is a dearth of the multi-decadal time series data from plankton needed to document eutrophication, and the cysts may provide an alternative source of information. Two different eutrophication signals have been described so far from cyst records: 1) from the Oslofjord, comprising a marked increase in total cyst concentrations (interpreted as probably reflecting increased phytoplankton productivity), with Lingulodinium polyedrum cysts accounting for most of the increase (interpreted as a species particularly benefiting from added nutrients from cultural eutrophication in late summer when nutrients otherwise may be limiting); and 2) the heterotroph signal, from several other Norwegian fjords and Tokyo Bay, Japan, involving both cases of increased cyst concentrations and others with no particular increase, but with a marked proportional increase in cysts of heterotrophic species (interpreted as reflecting increased diatoms and possibly other prey for the heterotrophic dinoflagellates and/or more unfavourable conditions for autotrophs, e.g. from shading). These signals should be used critically, and there is a particular need to distinguish between eutrophication signals and climate signals that may be co-occurring at a given time. Work by various authors has generally supported the concept of these cyst-based signals since they were first published, including both further records from cored sediments from other parts of the world and studies relating cyst distributions in surface sediments to gradients of pollution and nutrients from sewage discharge. Recent, unpublished work by Dale and Sætre, linked cyst signals in cored sediments to the timing of collapse of local fisheries at different times within the past fifty years in four fjord systems along the Norwegian Skagerrak coast (supporting earlier postulations by fisheries biologists that eutrophication was a possible cause). They also link these local eutrophication events to regional variation in the NAO, thought to have caused pulses of nutrient loading within the Skagerrak from increased transport of relatively nutrient rich North Sea water into the system. This may represent a major breakthrough in understanding the relationship between climatic variation and coastal eutrophication. Some concluding remarks are added in an attempt to show how these cyst signals: 1) suggest interesting comparisons with the ecological classification of bloom dinoflagellates by Smayda and Reynolds [Smayda, T.J., Reynolds, C.S., 2003. Strategies of marine dinoflagellate survival and some rules of assembly. J. Sea Res. 49, 95-106.]; and 2) have helped to identify important questions regarding the extent to which climate variation influences coastal eutrophication. Addressing these questions represents an urgent challenge to marine science.
The Swiss Seismological Service in Greenland: Network Building and Research Initiatives
NASA Astrophysics Data System (ADS)
Husen, S.; Clinton, J. F.; Olivieri, M.; Giardini, D.
2010-12-01
In recent years the Swiss Seismological Service (SED) at the ETH Zürich has begun active work in NW Greenland. As part of the GreenLand Ice Sheet monitoring Network (GLISN), a new international, broadband seismic capability for Greenland, the SED has installed 3 observation quality stations, recording in realtime, with data freely open to the community. Each site is located at a village - two are within 60km of productive calving glacier fronts (Rink and Jakobshavn); the other station is 30km from inland ice calving directly into the ocean. This paper presents the stations and discusses the data quality. The capability of broadband seismic sensors at local distances to record a wide spectrum of ground motion induced by large calving events is becoming clear. Associated with a major calving event, we observe energy at 1. high frequencies (1-5Hz) due to ice fracture; 2. at mid periods (40-60s - visible at teleseismic distances) likely due to large, rapid displacement of the calved ice across the fjord floor; and 3. at longer periods (100-1000s) measuring fjord seiche generated by the calved iceberg. We are developing an automated detector for events using the GLISN dataset, with focus on the Swiss stations. Additionally, the SED, with the ETH Glaciology unit, intend to operate a broadband / short period seismic network on the ice near SwissCamp in summer 2011. The goal is to improve understanding of how sub-glacial water affects glacial bed coupling. We aim to generate an icequake catalogue with characterized sources, and to model transient changes in ice structure than may be indicative of water flow. We present a summary of the proposed work and installation plans.
NASA Astrophysics Data System (ADS)
Petticrew, Ellen; Owens, Philip; Albers, Sam
2016-04-01
On 4th August 2014, the tailings impoundment of the Mount Polley copper and gold mine in British Columbia failed. Material from the impoundment (surface area = 2.7 km2) flowed into nearby Polley Lake and Hazeltine Creek, before discharging into Quesnel Lake, a large (ca. 100 km long, >500 m deep), relatively pristine lake. Initial estimates suggest that approximately 25 Mm3 of tailings (water and solids) and eroded soils and surficial materials from Hazeltine Creek were delivered to Quesnel Lake, raising the lake by 7.7 cm. Much of this material was deposited at the bottom of Quesnel Lake but a plume of fine-grained sediment (D50 of ca. 1 μm) remained suspended in the water column. The impact of the distribution of this sediment was monitored over the next 15 months using water column profiling for temperature, conductivity, fluorescence and turbidity with depth. The plume movement was regulated by natural processes associated with the physical limnology of this large fjord lake, specifically, seiche events which transferred suspended particles both up-lake, against the flow regime, and down-lake into the Quesnel River. Samples of lake water and bottom sediment taken from the impacted area show elevated levels of total metals and other elements, which may have important ecosystem implications in this watershed. Indeed, the breach occurred at a time when a peak run of sockeye salmon were returning to their natal streams in the Quesnel basin. Zooplankton sampling for metals was initiated in fall 2014 to determine up take of metals into the food web. This poster describes the failure of the impoundment dam and presents results of sampling the aquatic environment over the first fifteen months of impact.
Szymcek, Phillip; Ishman, Scott E.; Domack, Eugene W.; Leventer, Amy
2007-01-01
fusiformis assemblages. Most agglutinated forms tend to decrease downcore, and comparisons to modern analogues imply post-depositional disintegration, while calcareous taxa indicate non-corrosive bottom waters. The lower to middle Holocene Vega Drift sediments are characterized by the calcareous S. fusiformis assemblage and glacial plume sediments. This assemblage is characterized by calcareous forms including Globocassidulina biora, G. subglobosa, and Nonionella iridea. The planktic species Neogloboquadrina pachyderma is associated with the S. fusiformis assemblage. The S. fusiformis assemblage is faunally similar to assemblages described in fjords of the western Antarctic Peninsula and indicates non-corrosive bottom water. Sediments of the mid to upper Holocene interval are characterized by the T. wiesneri and M. arenacea assemblages and indicate the presence of Hyper Saline Shelf Water. These assemblages are similar to modern assemblages directly to the south in the Prince Gustav Channel. The upper Holocene is marked by several small intervals with taxonomic characteristics similar to the S. fusiformis assemblage, indicating periodic introduction of non-corrosive bottom water to the Vega Drift
Geoengineering Marine Ice Sheets
NASA Astrophysics Data System (ADS)
Wolovick, M.
2017-12-01
Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting at the grounding line. Rapid melting near the grounding line causes ice shelf thinning, loss of buttressing, flow acceleration, grounding line retreat, and ultimately mass loss and sea-level rise. If the grounding line enters a section of overdeepened bed the ice sheet may even enter a runaway collapse via the marine ice sheet instability. The warm water that triggers this process resides offshore at depth and accesses the grounding line through deep troughs in the continental shelf. In Greenland, warm water transport is further constricted through narrow fjords. Here, I propose blocking warm water transport through these choke points with an artificial sill. Using a simple width- and depth-averaged model of ice stream flow coupled to a buoyant-plume model of ocean melting, I find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing the grounding line at depth. Blocking of warm water from the sub-ice cavity causes ice shelf thickening, increased buttressing, and grounding line readvance. The increase in buttressing is greatly magnified if the thickened ice shelf regrounds on a bathymetric high or on the artificial sill itself. In some experiments for Thwaites Glacier the grounding line is able to recover from a severely retreated state over 100 km behind its present-day position. Such a dramatic recovery demonstrates that it is possible, at least in principle, to stop and reverse an ongoing marine ice sheet collapse. If the ice shelf regrounds on the artificial sill itself, erosion of the sill beneath the grounded ice could reduce the effectiveness of the intervention. However, experiments including sill erosion suggest that even a very weak sill (1 kPa) could delay a collapse for centuries. The scale of the artificial sills in Greenlandic fjords is comparable to existing large public works, while in Antarctica they are one to two orders of magnitude larger. However, this is still small in comparison to the global disruption that would be caused by a collapse of West Antarctica. Marine-terminating ice streams are high-leverage points in the climate system, where global impacts can be achieved through local intervention.
The Subglacial Access and Fast Ice Research Experiment - SAFIRE - on Store Glacier, West Greenland
NASA Astrophysics Data System (ADS)
Christoffersen, P.; Hubbard, B. P.; Doyle, S. H.; Young, T. J.; Hofstede, C. M.; Bougamont, M. H.; Todd, J.; Toberg, N.; Nicholls, K. W.; Box, J.; Walter, J. I.; Hubbard, A.
2015-12-01
Marine-terminating outlet glaciers drain 90 percent of the Greenland Ice Sheet and are responsible for about half of the ice sheet's net annual mass loss, which currently raises global sea level by 1 mm per year. The basal controls on these fast-flowing glaciers are, however, poorly understood, with the implication that numerical ice sheet models needed to predict future dynamic ice loss from Greenland relies on uncertain and often untested basal parameterizations. The Subglacial Access and Fast Ice Research Experiment - SAFIRE - is addressing this paucity of observational constraints by drilling to the bed of Store Glacier, a fast-flowing outlet glacier terminating in Uummannaq Fjord, West Greenland. In 2014, we gained access to the bed in four boreholes drilled to depths of 603-616 m near the center of the glacier, 30 km inland from the calving terminus where ice flows at a rate of 700 m/year. A seismic survey showed the glacier bed to consist of water-saturated, soft sediment. The water level in all four boreholes nevertheless dropped rapidly to 80 m below the ice surface when the drill connected with a basal water system, indicating effective drainage over a sedimentary bed. We were able to install wired sensor strings at the bed (water pressure, temperature, electrical conductivity and turbidity) and within the glacier (temperature and tilt) in three boreholes. The sensors operated for up to 80+ days before cables stretched and ultimately snapped due to high internal strain. The data collected during this sensor deployment show ice as cold as -21 degrees Celcius; yet, temperature of water in the basal water system was persistently above the local freezing point. With diurnal variations detected in several sensor records, we hypothesise that surface water lubricates the ice flow while also warming basal ice. The fast basal motion of Store Glacier not only occurs by basal sliding, but from high rates of concentrated strain in the bottom third of the glacier. Deployment of an autonomous phase-sensitive radar near the drill site complements the data collected by sensors installed in boreholes, as internal reflectors measured at hourly timescale show very high, and highly variable internal strain within the glacier. In 2016, we plan to install new sensors while also sampling cores from the bed.
Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems
Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván
2016-01-01
Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39–44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2–11 m for UV-B (313 nm), 4–27 m for UV-A (395 nm), and 7–30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be further exacerbated by cold temperatures in this location, together with episodes of ozone depletion. Overall, the results emphasize the marked spatial (horizontal and vertical) and temporal heterogeneity of optical characteristics, and challenges that these imply for estimations of underwater optics. PMID:27144454
NASA Astrophysics Data System (ADS)
Ghaleb, Bassam; Hillaire-Marcel, Claude; Ruiz Fernandez, Ana-Carolina; Sanchez Cabeza, Joan-Albert
2016-04-01
Climatic events (e.g. floods, storminess) and management activities (e.g. dredging) may result in the burial or removal and re-suspension of sediments in estuaries and coastal areas. When such sediments are contaminated, such processes may either help restoring better chemical environments or lead to their long-term contamination. Geochemical signatures in surface sediments may help identifying such sedimentological events. However, short-lived isotope data are generally required to set time-constraints on their occurrence. Whereas 210Pb and radioactive fallout isotope contents can help setting time constraints at ~50 to ~100 yr-time scales, natural disequilibria in the 232Th-228Ra-228Th sequence do provide information on processes which occurred within the last 30 yrs, as illustrated in the present study. Box-cored sediments from the Saguenay Fjord and lower estuary of the St. Lawrence (Canada) as well as from estuaries and lagoons from the Sinaloa Coast (Mexico) are used to document the behavior of these isotopes either under relatively steady conditions (St. Lawrence estuary) or under high-frequency extreme climate events (storms and floods; Saguenay Fjord, Coastal Sinaloa). 228Th/232Th activity ratios were determined by chemical extraction of Th and alpha counting of unspiked samples, rapidly after sampling (228Th/232Th). The activity of the intermediate isotope 228Ra was then estimated based on replicate measurements on aliquot samples made a few years later. Under steady conditions, core-top sediment shows an excess in 228Th vs 232Th (AR ~ 1.6), whereas the intermediate 228Ra depicts a deficit vs its parent 232Th (AR ~0.6). Downcore, radioactive decay carries rapidly 228Th-activities to those of the parent 228Ra within about 10 yrs (i.e., ~ 5 half-lives of 228Th), then both move during the next ~20 yrs (~ i.e., ~ 5 half-lives of 228Ra, when added to the 10 yrs of 228Th-excess) towards secular equilibrium with the parent long-lived 232Th. A few algorithms provide simple models governing these processes under relatively high sedimentation rates, i.e., when Ra-diffusion from the sediment towards the water column may be neglected. In sites characterized by extreme sedimentologival events, 228Th/232Th profiles depict departures from this model, thus bearing information on the timing and processes involved. Examples from the Saguenay Fjord (Canada) illustrate the case of fast-deposited layers due to floods, whereas examples from estuaries and coastal areas of Sinaloa show evidence for re-suspension and/or erosion events linked notably to storminess and/or land use changes. In the first case, the fast accumulation of flood layers has sealed most of the early 20th-century contamination, whereas in the second case, erosion and re-suspension events led to either some removal of sediments contaminated by heavy metals, or their secondary release into the environment.
NASA Astrophysics Data System (ADS)
Poiré, Antoine G.; Lajeunesse, Patrick; Normandeau, Alexandre; Francus, Pierre; St-Onge, Guillaume; Nzekwe, Obinna P.
2018-04-01
High-resolution swath bathymetry imagery allowed mapping in great detail the sublacustrine geomorphology of lakes Pentecôte, Walker and Pasteur, three deep adjacent fjord-lakes of the Québec North Shore (eastern Canada). These sedimentary basins have been glacio-isostatically uplifted to form deep steep-sided elongated lakes. Their key geographical position and limnogeological characteristics typical of fjords suggest exceptional potential for long-term high-resolution paleoenvironmental reconstitutions. Acoustic subbottom profiles acquired using a bi-frequency Chirp echosounder (3.5 & 12 kHz), together with cm- and m-long sediment core data, reveal the presence of four acoustic stratigraphic units. The acoustic basement (Unit 1) represents the structural bedrock and/or the ice-contact sediments of the Laurentide Ice Sheet and reveals V-shaped bedrock valleys at the bottom of the lakes occupied by ice-loaded sediments in a basin-fill geometry (Unit 2). Moraines observed at the bottom of lakes and in their structural valleys indicate a deglaciation punctuated by short-term ice margin stabilizations. Following ice retreat and their isolation, the fjord-lakes were filled by a thick draping sequence of rhythmically laminated silts and clays (Unit 3) deposited during glaciomarine and/or glaciolacustrine settings. These sediments were episodically disturbed by mass-movements during deglaciation due to glacial-isostatic rebound. AMS 14C dating reveal that the transition between deglaciation of the lakes Pentecôte and Walker watersheds and the development of para- and post-glacial conditions occurred around 8000 cal BP. The development of the lake-head river delta plain during the Holocene provided a constant source of fluvial sediment supply to the lakes and the formation of turbidity current bedforms on the sublacustrine delta slopes. The upper sediment succession (i.e., ∼4-∼6.5 m) consists of a continuous para-to post-glacial sediment drape (Unit 4) that contains laminated and massive sediment and series of Rapidly Deposited Layers. These results allow establishing a conceptual model of how a glaciated coastal fjord evolves during and after deglaciation in a context of rapid glacio-isostatically induced forced regression.
Dahl, Martin; Deyanova, Diana; Gütschow, Silvia; Asplund, Maria E.; Lyimo, Liberatus D.; Karamfilov, Ventzislav; Santos, Rui; Björk, Mats; Gullström, Martin
2016-01-01
Seagrass ecosystems are important natural carbon sinks but their efficiency varies greatly depending on species composition and environmental conditions. What causes this variation is not fully known and could have important implications for management and protection of the seagrass habitat to continue to act as a natural carbon sink. Here, we assessed sedimentary organic carbon in Zostera marina meadows (and adjacent unvegetated sediment) in four distinct areas of Europe (Gullmar Fjord on the Swedish Skagerrak coast, Askö in the Baltic Sea, Sozopol in the Black Sea and Ria Formosa in southern Portugal) down to ~35 cm depth. We also tested how sedimentary organic carbon in Z. marina meadows relates to different sediment characteristics, a range of seagrass-associated variables and water depth. The seagrass carbon storage varied greatly among areas, with an average organic carbon content ranging from 2.79 ± 0.50% in the Gullmar Fjord to 0.17 ± 0.02% in the area of Sozopol. We found that a high proportion of fine grain size, high porosity and low density of the sediment is strongly related to high carbon content in Z. marina sediment. We suggest that sediment properties should be included as an important factor when evaluating high priority areas in management of Z. marina generated carbon sinks. PMID:27936111
NASA Astrophysics Data System (ADS)
Volent, Zsolt; Johnsen, Geir; Hovland, Erlend K.; Folkestad, Are; Olsen, Lasse M.; Tangen, Karl; Sørensen, Kai
2011-01-01
Monitoring of the coastal environment is vitally important as these areas are of economic value and at the same time highly exposed to anthropogenic influence, in addition to variation of environmental variables. In this paper we show how the combination of bio-optical data from satellites, analysis of water samples, and a ship-mounted automatic flow-through sensor system (Ferrybox) can be used to detect and monitor phytoplankton blooms both spatially and temporally. Chlorophyll a (Chl a) data and turbidity from Ferrybox are combined with remotely sensed Chl a and total suspended matter from the MERIS instrument aboard the satellite ENVISAT (ENVIronmental SATellite) European Space Agency. Data from phytoplankton speciation and enumeration obtained by a national coastal observation network consisting of fish farms and the Norwegian Food Safety Authority are supplemented with data on phytoplankton pigments. All the data sets are then integrated in order to describe phytoplankton bloom dynamics in a Norwegian fjord over a growth season, with particular focus on Emiliania huxleyi. The approach represents a case example of how coastal environmental monitoring can be improved with existing instrument platforms. The objectives of the paper is to present the operative phytoplankton monitoring scheme in Norway, and to present an improved model of how such a scheme can be designed for a large part of the world's coastal areas.
Kullmann, B; Adamek, M; Steinhagen, D; Thiel, R
2017-11-01
The Schlei fjord in northern Germany is the recipient water of a comprehensive eel, Anguilla anguilla (L.), stocking programme. Since 2015, stocked eels become alizarin red S marked, but to date no control mechanism is implemented in this stock enhancement measure to prevent anthropogenic spreading of diseases. Consequentially, it was possible that farmed stocking cohorts of 2015 and 2016 (in total ca. 1040 kg) were subsequently tested positive for anguillid herpesvirus 1 (AngHV 1). For this study, 100 eels [total length (TL) 24.3-72.9 cm, age ca. 1-6 years] were caught in 2016 and investigated with regard to AngHV 1 infection, parasite load (Anguillicoloides crassus) and body conditions. 68% of the eels were found to be virus positive while larger specimens were more often infected. In addition, a fitted generalized linear model (area under the curve = 0.741) demonstrated that an increase in individual TL is accompanied with an increased risk of clinically relevant virus loads. Anguillicoloides crassus turned out to be an important stressor for eels, because parasite and virus load revealed a significant positive correlation. The results of this study evidently show the urgent need of a disease containment strategy for eel stocking programmes. © 2017 John Wiley & Sons Ltd.
Pawłowska, J; Łącka, M; Kucharska, M; Szymańska, N; Koziorowska, K; Kuliński, K; Zajączkowski, M
2017-09-01
The aim of this study was to determine the amount of organic and inorganic carbon in foraminifera specimens and to provide quantitative data on the contribution of foraminifera to the sedimentary carbon pool in Adventfjorden. The investigation was based on three calcareous species that occur commonly in Svalbard fjords: Cassidulina reniforme, Elphidium excavatum and Nonionellina labradorica. Our results show that the species investigated did not contribute substantially to the organic carbon pool in Adventfjorden, because they represented only 0.37% of the organic carbon in the sediment. However, foraminiferal biomass could have been underestimated as it did not include arenaceous or monothalamous taxa. Foraminiferal carbonate constituted up to 38% of the inorganic carbon in the sediment, which supports the assumption that in fjords where non-calcifying organisms dominate the benthic fauna foraminifera are among the major producers of calcium carbonate and that they play crucial roles in the carbon burial process. The results presented in this study contribute to estimations of changes in foraminiferal carbon levels in contemporary environments and could be an important reference for palaeoceanographic studies. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Conway, Kim W.; Vaughn Barrie, J.
2018-01-01
Very large (>60×106 m3) sackungen or deep-seated gravitational slope deformations occur below sea level along a steep fjord wall in central Douglas Channel, British Columbia. The massive bedrock blocks were mobile between 13 and 11.5 thousand radiocarbon years BP (15,800 and 13,400 BP) immediately following deglaciation. Deformation of fjord sediments is apparent in sedimentary units overlying and adjacent to the blocks. Faults bound the edges of each block, cutting the glacial section but not the Holocene sediments. Retrogressive slides, small inset landslides as well as incipient and older slides are found on and around the large failure blocks. Lineations, fractures and faults parallel the coastline of Douglas Channel along the shoreline of the study area. Topographic data onshore indicate that faults and joints demarcate discrete rhomboid-shaped blocks which controlled the form, size and location of the sackungen. The described submarine sackungen share characteristic geomorphic features with many montane occurrences, such as uphill-facing scarps, foliated bedrock composition, largely vertical dislocation and a deglacial timing of development.
NASA Astrophysics Data System (ADS)
Conway, Kim W.; Vaughn Barrie, J.
2018-06-01
Very large (>60×106 m3) sackungen or deep-seated gravitational slope deformations occur below sea level along a steep fjord wall in central Douglas Channel, British Columbia. The massive bedrock blocks were mobile between 13 and 11.5 thousand radiocarbon years BP (15,800 and 13,400 BP) immediately following deglaciation. Deformation of fjord sediments is apparent in sedimentary units overlying and adjacent to the blocks. Faults bound the edges of each block, cutting the glacial section but not the Holocene sediments. Retrogressive slides, small inset landslides as well as incipient and older slides are found on and around the large failure blocks. Lineations, fractures and faults parallel the coastline of Douglas Channel along the shoreline of the study area. Topographic data onshore indicate that faults and joints demarcate discrete rhomboid-shaped blocks which controlled the form, size and location of the sackungen. The described submarine sackungen share characteristic geomorphic features with many montane occurrences, such as uphill-facing scarps, foliated bedrock composition, largely vertical dislocation and a deglacial timing of development.
NASA Astrophysics Data System (ADS)
Silyakova, A.; Jansson, P.; Serov, P.; Graves, C. A.; Niemann, H.; Grundger, F.; Ferre, B.; Mienert, J.
2016-02-01
The area west of Prins Karls Forland (PKF, West Spitsbergen) in the Arctic Ocean, restricted to 90 m water depth, is known for a large amount of shallow active gas flares. Gas flares are streams of bubbles that contain mostly methane, which is a potent greenhouse gas. The important questions for many areas with discovered gas flares are: Does this gas reach the atmosphere? What controls the vertical and horizontal distribution of dissolved methane away from the source on the seafloor? Is all dissolved methane detected above gas flares released from those flares or does it partially originate from other areas (eg. Storfjorden, or area of deeper flares on the PKF slope)? The present study is based on two repeated oceanographic surveys conducted in the summers of 2014 and 2015. During the surveys, we sampled 64 CTD stations in a grid above a 30 x 15 km area with active methane flares. Vertical profiles of temperature (T) and salinity (S), as well as TS diagrams indicate very different oceanographic settings during the two surveys. Warm and saline Atlantic waters originating from the West Spitsbergen Current prevailed during the 2014 campaign. In 2015, in contrast, waters were distinctly less saline and cooler. These waters originate from the East-Spitsbergen current that flows northwards over the shelf from the Barents Sea around the southern tip of Spitsbergen. The water mass was furthermore influenced by local sources from the fjords. In both years, we observed strong vertical gradients in the distribution of dissolved methane in the water column above gas flares, with only 4% methane concentrations at the sea surface when compared to bottom waters. However, the circulation of the dominant water masses mainly controlled the horizontal distribution of methane in the water column in the specific year. We discuss oceanographic processes and mechanisms responsible for methane transport and transformation in the study area. This study is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259.
Regulation of internal pH by the coldwater coral Desmophyllum dianthus
NASA Astrophysics Data System (ADS)
Wall, M.; Schmidt, G. M.; Richter, C.; de Beer, D.
2016-02-01
In the Patagonian fjords of Chile, large aggregations of the coldwater coral Desmophyllum dianthus build the structural and functional basis for a highly diverse benthic ecosystem. Interestingly, D. dianthus growths in both, high-pH (aragonite-supersaturated) and low-pH (aragonite-undersaturated) waters in near-surface and deep waters, respectively. This indicates a high adaptability of these corals to regulate and control calcification. Measurements of the skeletal boron isotopic composition (d11B) in D. dianthus indicate an upregulation of the internal calcifying pH (pHcf) in response to external pH (pHsw) in culturing experiments simulating ocean acidification. A physiological underpinning of pHcf upregulation in corals under different pHsw is, however, so far lacking. Direct measurements at the site of calcification in corals are limited to a few studies on tropical corals. Comparable studies for coldwater corals are wanting. We used microsensors for pH, calcium and oxygen to assess pHcf in D. dianthus in relation to calcium dynamics and respiration along the coral polyp under different pHsw. We found pHcf to be linked to pHsw but no upregulation of pHcf compared to pHsw as well as a strong spatial heterogeneity in pHcf. This suggests a highly complex pH regulation inconsistent with the hitherto upregulation models and suggests that rather the internal carbon pool and not pH is upregulated to enable calcification in D. dianthus.
Lipid Content in Arctic Calanus: a Matter of Season and Size
NASA Astrophysics Data System (ADS)
Daase, M.; Søreide, J.; Freese, D.; Hatlebakk, M. K.; Jørgen, B.; Renaud, P.; Gabrielsen, T. M.; Vogedes, D.
2016-02-01
Copepods of the genus Calanus are considered key elements of the marine food chain of the Arctic and North Atlantic. They convert low-energy carbohydrates and proteins of their algae diet into high-energy wax ester lipids. These lipids are accumulated over the productive season and stored in a lipid sac which sustains the organism over long periods without algal food supply, and which makes Calanus spp. an important prey item. Here we investigated what determines the variability in lipid content of overwintering stages and adults of Arctic and North Atlantic Calanus species. Using image analysis of lipid sac area, we have estimated individual lipid content of Calanus species in the waters and fjords of Svalbard (78-81oN). Data were collected all year round, at surface and deep waters and in locations under the influence of either Atlantic or Arctic hydrographic conditions. Lipid content showed stage specific seasonal variability which can be related to life history strategies and the phenology of algae blooms. Depth specific differences in lipid content were only observed at the start of the overwintering period. Our data also demonstrate that species specific differences in lipid content were not as fundamentally different as previously assumed. Rather, based on molecular identification of the species, we show that the lipid content of the Arctic C. glacialis and the Atlantic C. finmarchicus is dependent on size alone, challenging the classical understanding of these two species yielding two distinctly different ecosystem services based upon a difference in lipid content.
Icebergs Melting in Uniform and Vertically Sheared Flows
NASA Astrophysics Data System (ADS)
Cenedese, Claudia; Fitzmaurice, Anna; Straneo, Fiammetta
2017-11-01
Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg on the melt plumes generated along the iceberg sides is not fully captured by existing melt parameterizations. A series of novel laboratory experiments showed that side melting of icebergs subject to relative velocities is controlled by two distinct regimes, which depend on the melt plume behavior (side-attached or side-detached). These two regimes produce a nonlinear dependence of melt rate on velocity, and different distributions of meltwater in the water column. Iceberg meltwater may either be confined to a thin surface layer, when the melt plumes are side-attached, or mixed down to the iceberg draft, when the melt plumes are side-detached. In a two-layer vertically sheared flow, the average flow speed in existing melt parameterizations gives an underestimate of the submarine melt rate, in part due to the nonlinearity of the dependence of melt rate on flow speed, but also because vertical shear in the velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. Including this nonlinear velocity dependence in melting parameterizations applied to observed icebergs increases iceberg side melt in the side-attached regime, improving agreement with observations of iceberg submarine melt rates. AF was supported by NA14OAR4320106, CC by NSF OCE-1434041 and OCE-1658079, and FS by NSF PLR-1332911 and OCE-1434041.
NASA Astrophysics Data System (ADS)
Tironi, Antonio; Marin, Víctor H.; Campuzano, Francisco J.
2010-05-01
This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.
Greenland iceberg melt variability from high-resolution satellite observations
NASA Astrophysics Data System (ADS)
Enderlin, Ellyn M.; Carrigan, Caroline J.; Kochtitzky, William H.; Cuadros, Alexandra; Moon, Twila; Hamilton, Gordon S.
2018-02-01
Iceberg discharge from the Greenland Ice Sheet accounts for up to half of the freshwater flux to surrounding fjords and ocean basins, yet the spatial distribution of iceberg meltwater fluxes is poorly understood. One of the primary limitations for mapping iceberg meltwater fluxes, and changes over time, is the dearth of iceberg submarine melt rate estimates. Here we use a remote sensing approach to estimate submarine melt rates during 2011-2016 for 637 icebergs discharged from seven marine-terminating glaciers fringing the Greenland Ice Sheet. We find that spatial variations in iceberg melt rates generally follow expected patterns based on hydrographic observations, including a decrease in melt rate with latitude and an increase in melt rate with iceberg draft. However, we find no longitudinal variations in melt rates within individual fjords. We do not resolve coherent seasonal to interannual patterns in melt rates across all study sites, though we attribute a 4-fold melt rate increase from March to April 2011 near Jakobshavn Isbræ to fjord circulation changes induced by the seasonal onset of iceberg calving. Overall, our results suggest that remotely sensed iceberg melt rates can be used to characterize spatial and temporal variations in oceanic forcing near often inaccessible marine-terminating glaciers.
The history of retreat dynamics of Petermann Glacier inferred from submarine glacial landforms
NASA Astrophysics Data System (ADS)
Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Jerram, K.; Mohammad, R.; Stranne, C.; Eriksson, B.
2016-12-01
Preserved submarine glacial landforms produced at the base and margin of ice sheets and outlet glaciers comprise records of past ice dynamics complementary to modern glaciological process studies. The Petermann 2015 Expedition on the Swedish icebreaker Oden systematically mapped approximately 3100 km2 of the seafloor in Petermann Fjord and the adjacent Hall Basin of Nares Strait, northwest Greenland, with an EM122 (12 kHz) multibeam and SBP120 (2-7 kHz) chirp sub-bottom profiler. Complete, overlapping mapping coverage permitted compilation of a high-quality (15x15m) digital terrain model (DTM). In addition, the seafloor at the margin of one of the smaller outlet glaciers draining into the Petermann Fjord and selected shallow areas along the coast were mapped using a small survey boat (RV Skidbladner), equipped with an EM2040 (200-300 kHz) multibeam. High-resolution (2 x 2 m) DTMs were compiled from the RV Skidbladner surveys. The seafloor morphology of Petermann Fjord and adjacent Hall Basin is dominated by a stunning glacial landform record comprising the imprints of Petermann Glacier's retreat dynamics since the Last Glacial Maximum (LGM). The entrance to Petermann Fjord consists of a prominent bathymetric sill formed by a large well-develop grounding zone wedge that undoubtedly represents a stability point during the glacier's retreat history. The deepest entrance to the fjord is 443 m and located on the southern side of this grounding zone wedge. Outside of this grounding zone wedge in Hall Basin, less well developed grounding zones appears to be present. The landform assemblage in between the grounding zones, in particular the lack of retreat ridges, may signify a leap-frog behavior of the glacier's retreat; rapid break-up and disintegration of the outlet glacier causing retreat back to the next stability point dictated by the local bedrock geology. While numerous classical glacial landforms characteristic for fast flowing ice streams are identified, the multibeam bathymetry also reveals an enigmatic, toilet bowl-shaped features whose origin is still unclear. The collected data during the Petermann 2015 Expedition will among other things provide new insights into ice shelf-ocean interactions, essential to projecting future climate impacts on Greenland and global sea level changes.
Park, Soo-Je; Park, Byoung-Joon; Jung, Man-Young; Kim, So-Jeong; Chae, Jong-Chan; Roh, Yul; Forwick, Matthias; Yoon, Ho-Il; Rhee, Sung-Keun
2011-10-01
Increases in global temperatures have been shown to enhance glacier melting in the Arctic region. Here, we have evaluated the effects of meltwater runoff on the microbial communities of coastal marine sediment located along a transect of Temelfjorden, in Svalbard. As close to the glacier front, the sediment properties were clearly influenced by deglaciation. Denaturing gradient gel electrophoresis profiles showed that the sediment microbial communities of the stations of glacier front (stations 188-178) were distinguishable from that of outer fjord region (station 176). Canonical correspondence analysis indicated that total carbon and calcium carbonate in sediment and chlorophyll a in bottom water were key factors driving the change of microbial communities. Analysis of 16S rRNA gene clone libraries suggested that microbial diversity was higher within the glacier-proximal zone (station 188) directly affected by the runoffs than in the outer fjord region. While the crenarchaeotal group I.1a dominated at station 176 (62%), Marine Benthic Group-B and other Crenarchaeota groups were proportionally abundant. With regard to the bacterial community, alpha-Proteobacteria and Flavobacteria lineages prevailed (60%) at station 188, whereas delta-Proteobacteria (largely sulfate-reducers) predominated (32%) at station 176. Considering no clone sequences related to sulfate-reducers, station 188 may be more oxic compared to station 176. The distance-wise compositional variation in the microbial communities is attributable to their adaptations to the sediment environments which are differentially affected by melting glaciers.
Generation of internal solitary waves by frontally forced intrusions in geophysical flows.
Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric
2016-12-06
Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.
Green mosses date the Storegga tsunami to the chilliest decades of the 8.2 ka cold event
NASA Astrophysics Data System (ADS)
Bondevik, Stein; Stormo, Svein Kristian; Skjerdal, Gudrun
2012-06-01
Chlorophyll in dead plants ordinarily decomposes completely before permanent burial through exposure to light, water and oxygen. Here we describe 8000-year-old terrestrial mosses that retain several percent of its original chlorophyll. The mosses were ripped of the land surface, carried 50-100 m off the Norwegian coast of the time, and deposited in depressions on the sea floor by the Storegga tsunami. A little of the chlorophyll survived because, within hours after entraining it, the tsunami buried the mosses in shell-rich sediments. These sediments preserved the chlorophyll by keeping out light and oxygen, and by keeping the pH above 7—three factors known to favour chlorophyll's stability. Because the green mosses were buried alive, their radiocarbon clock started ticking within hours after the Storegga Slide had set off the tsunami. Radiocarbon measurement of the mosses therefore give slide ages of uncommon geological precision, and these, together with a sequence of ages above and below the boundary, date the Storegga Slide to the chilliest decades of the 8.2 ka cold event at 8120-8175 years before AD 1950. North Atlantic coastal- and fjord- climatic records claimed to show evidence of the 8.2 cold event should be carefully examined for possible contamination and disturbance from the Storegga tsunami.
Age Estimates of Holocene Glacial Retreat in Lapeyrère Bay, Anvers Island, Antarctica
NASA Astrophysics Data System (ADS)
Mead, K. A.; Wellner, J. S.; Rosenheim, B. E.
2011-12-01
Lapeyrère Bay is a fjord on the eastern side of Anvers Island, located off the Western Antarctic Peninsula. Anvers island has a maximum elevation of 2400m (comprised of ice overlaying bedrock), and experiences colder temperatures and more precipitation than the South Shetlands, which are ~230km to the north. Two glaciers enter Lapeyrère Bay, one large and vulnerable to avalanching, the Iliad Glacier, and one smaller glacier confined to a northern unnamed cove. Though several research cruises have visited Lapeyrère Bay, very little has been published on the fjord's glacial retreat history or sediment flux. The primary purpose of this study is to reconstruct the glacial retreat and sediment flux histories of Lapeyrère Bay using a SHALDRIL core and standard piston cores for chronology and sedimentary facies analysis, and multibeam swath bathymetry data for identifying seafloor morphological features. Preliminary core data from the proximal northern flank of Lapeyrère Bay show greenish grey sandy mud with scattered pebble and sand lens lithology. A core taken in the distal-most part of the fjord is largely diatomaceous sediment grading into grey silty mud with thin sandy turbidites. Multibeam data has exposed seafloor features including a grounding zone wedge at the entrance of the unnamed cove of northern Lapeyrère Bay, drumlins, glacial lineations, and a glacial outwash fan near the ocean-termination of the Iliad glacier. Additionally, this study seeks to assess the effectiveness of a novel 14C method of dating sediment lacking sufficient calcareous material for carbonate 14C dating. The method being tested is ramped pyrolysis radiocarbon analysis, which dates individual fractions of organic material. It is hypothesized that ramped pyrolysis will improve upon bulk acid insoluble organic material (AIOM) dating, as AIOM can include both autochthonous syndepositionally aged carbon and allochthonous pre-aged carbon, resulting in 14C ages inherently older than the age of deposition. Performing ramped pyrolysis 14C dating and carbonate 14C dating on the same cores and comparing the resulting ages will address this hypothesis. Carbonate radiocarbon dating has been completed for cores taken in the proximal fjord, from the glacial outwash fan. Four dates from a 20.3m drill core yield an average sedimentation rate of 2.2mm/yr. Four dates from the nearby 293cm gravity core yield a sedimentation rate of 1.4mm/yr. Ramped pyrolysis has been performed on a total of nine samples, six taken from the proximal drill core and three taken from the distal-most gravity core of the fjord. The average proximal sample TOC is 0.22%, and the average distal sample TOC is 0.55%. These values show a trend of increasing TOC values with increasing oceanic influence in the distal fjord.
NASA Astrophysics Data System (ADS)
Bogorodsky, Petr; Marchenko, Aleksey; Pnyushkov, Andrey; Filchuk, Kirill; Morozov, Yevgenii; Ryzhov, Ivan
2017-04-01
The results of oceanographic and sea ice studies in the shallow Braganzavågen Gulf (Van Mijenfjorden, Svalbard) in March 2016 are presented. These studies are a continuation of observational efforts initiated by UNIS (Svalbard, Norway) in 2014. 2016 field campaign includes instrumental measurements of snow and ice properties in the fjord (e.g., ice thicknesses, temperatures, and salinities), as well as high-resolution CTD measurements within the under-ice water column. Collected observations were accompanied by freezing simulations of adjacent water and bottom ground layers performed with a one-dimensional thermodynamic model (Bogorodskii and Pnyushkov, 2015). The model uses two methods to reproduce phase transition areas - a "classic" (frontal) method for the fast ice, and transition in the continuous media (mushy zone) for the bottom sediments. Meteorological observations during the winter 2015-16 at Sveagruva (northwest coast) were used in these simulations as the atmospheric forcing. Numerical experiments were carried out for the initial salinity of 35 psu and 2 m water depth. The simulations start with the beginning of water freezing determined by a steady air temperature transition through the freezing point. The start of freezing was also verified by comparison with sea ice charts available for the Van Mijenfjorden for the period of simulations. Model simulations showed that the growth of sea ice in shallow (<1 m) areas of the basin significantly increases water salinity in the under-ice layer. For instance, at a 0.5 m depth the salinity in the under ice water layer exceeds 160 psu, which corresponds to the freezing temperature below -9C. In fact, the water salinity does not reach high values because of the horizontal mixing. However, available hydrological observations showed relatively small (0.2-0.5 m) amplitudes of tides - the major contributor to the horizontal exchange in this area. These small amplitudes likely suggest small advective salt fluxes induced by tides, and thus their little effect on the rate of ice formation at seasonal time scales. As expected, substantial water cooling in the under-ice layer leads to freezing of the bottom ground, mostly evident in areas with small depths. For example, during the cold season this freezing may be as large as 1 m at a fjord part with typical depths of 0.5 m. In general, the model shows a relativity good agreement with direct observations of fast ice properties. However, due to uncertainty in the thermodynamic properties of the ground, the quantitative description of the heat transfer processes in this layer is still incomplete and required additional clarification in the specially targeted field experiments.
NASA Astrophysics Data System (ADS)
Misund, Ole Arve; Heggland, Kristin; Skogseth, Ragnheid; Falck, Eva; Gjøsæter, Harald; Sundet, Jan; Watne, Jens; Lønne, Ole Jørgen
2016-09-01
The Svalbard archipelago in the High Arctic is influenced by cold Arctic water masses from the north-east and the warm West Spitsbergen Current flowing northwards along its western coast. The eastern waters and the fjords are normally frozen during the winter months, while the coastal waters west of the archipelago remain open. Norwegian fishers have been harvesting from Svalbard waters for decades and detailed records of catches exists from 1980 onwards. We analyze the catch records from the Svalbard zone (approximately ICES area IIb). The large fishery for capelin in summer yielding annual catches up to 737 000 tons was closed by a Norwegian fishery regulation in the mid nineteen nineties. Demersal fisheries have been continuous, and the results clearly indicate a northward trend in landings of Northeast Arctic cod, haddock, ling and Atlantic halibut. Fisheries of Northern shrimp have been more variable and shown no clear geographic trends. A "gold rush" fishery for scallops north of Svalbard lasted for about 10 years (1986-1995) only, and ended due to low profitably. These results are discussed in relation to the possibility of further northward extension of fisheries subjected to climate change.
Application of a three-dimensional hydrodynamic model to the Himmerfjärden, Baltic Sea
NASA Astrophysics Data System (ADS)
Sokolov, Alexander
2014-05-01
Himmerfjärden is a coastal fjord-like bay situated in the north-western part of the Baltic Sea. The fjord has a mean depth of 17 m and a maximum depth of 52 m. The water is brackish (6 psu) with small salinity fluctuation (±2 psu). A sewage treatment plant, which serves about 300 000 people, discharges into the inner part of Himmerfjärden. This area is the subject of a long-term monitoring program. We are planning to develop a publicly available modelling system for this area, which will perform short-term forecast predictions of pertinent parameters (e.g., water-levels, currents, salinity, temperature) and disseminate them to users. A key component of the system is a three-dimensional hydrodynamic model. The open source Delft3D Flow system (http://www.deltaressystems.com/hydro) has been applied to model the Himmerfjärden area. Two different curvilinear grids were used to approximate the modelling domain (25 km × 50 km × 60 m). One grid has low horizontal resolution (cell size varies from 250 to 450 m) to perform long-term numerical experiments (modelling period of several months), while another grid has higher resolution (cell size varies from 120 to 250 m) to model short-term situations. In vertical direction both z-level (50 layers) and sigma coordinate (20 layers) were used. Modelling results obtained with different horizontal resolution and vertical discretisation will be presented. This model will be a part of the operational system which provides automated integration of data streams from several information sources: meteorological forecast based on the HIRLAM model from the Finnish Meteorological Institute (https://en.ilmatieteenlaitos.fi/open-data), oceanographic forecast based on the HIROMB-BOOS Model developed within the Baltic community and provided by the MyOcean Project (http://www.myocean.eu), riverine discharge from the HYPE model provided by the Swedish Meteorological Hydrological Institute (http://vattenwebb.smhi.se/modelarea/).
NASA Astrophysics Data System (ADS)
Moy, C. M.; Vandergoes, M.; Gilmer, G. J.; Nichols, J. E.; Dagg, B. J.; Wilson, G. S.; Browne, I. M.; Curtin, L. G.; Aebig, C.; McGlone, M.
2015-12-01
The strength and latitudinal position of the Southern Hemisphere westerly winds (SHWW) play a fundamental role in influencing mid latitude climate and carbon dioxide exchange between the Southern Ocean and the atmosphere. Despite their importance, our understanding of past changes in the SHWW is limited by few paleoclimate records from the modern wind maximum that are often not in agreement. The New Zealand subantarctic Auckland Islands are located within the core of the modern wind belt (50°S) where the ocean-atmospheric linkages between the Antarctic and middle latitudes are strong. In contrast to other subantarctic islands on the Campbell Plateau, the Auckland Islands have protected fjord sub-basins, deep lakes, and peatlands that are advantageous for the development of high-resolution paleoclimate records. We will present ongoing work towards the establishment of multi-proxy and multi-site reconstructions of past SHWW variability from the Auckland Islands. Modern process and paleoclimate results from two research cruises in 2014 and 2015 suggest that in lacustrine and fjord settings, the degree of water column mixing, the stable isotopic composition of n-alkanes and benthic foraminifera, the influx of terrestrial organic matter are good indicators of wind-induced mixing of the water column or precipitation-driven erosion within catchments. In ombrotrophic peatlands, hydrogen isotope ratios of specific organic molecules allow reconstructions of the hydrogen isotope ratios of precipitation, which is related to precipitation source area and the latitudinal position of the SHWW. Using macrofossil counts paired with abundances of leaf wax biomarkers, we are able to estimate the moisture balance at peatland coring sites. Early results indicate an overall strengthening of the SHWW at the Auckland Islands through the Holocene. We will discuss these results within the context of complimentary records developed from New Zealand and southern South America to ultimately obtain a Pacific basin view of Holocene SHWW.
Swarzenski, P.W.; Simonds, F.W.; Paulson, A.J.; Kruse, S.; Reich, C.
2007-01-01
Geochemical tracer data (i.e., 222Rn and four naturally occurring Ra isotopes), electromagnetic (EM) seepage meter results, and high-resolution, stationary electrical resistivity images were used to examine the bi-directional (i.e., submarine groundwater discharge and recharge) exchange of a coastal aquifer with seawater. Our study site for these experiments was Lynch Cove, the terminus of Hood Canal, WA, where fjord-like conditions dramatically limit water column circulation that can lead to recurring summer-time hypoxic events. In such a system a precise nutrient budget may be particularly sensitive to groundwater-derived nutrient loading. Shore-perpendicular time-series subsurface resistivity profiles show clear, decimeter-scale tidal modulation of the coastal aquifer in response to large, regional hydraulic gradients, hydrologically transmissive glacial terrain, and large (4-5 m) tidal amplitudes. A 5-day 222Rn time-series shows a strong inverse covariance between 222Rn activities (0.5−29 dpm L-1) and water level fluctuations, and provides compelling evidence for tidally modulated exchange of groundwater across the sediment/water interface. Mean Rn-derived submarine groundwater discharge (SGD) rates of 85 ± 84 cm d-1 agree closely in the timing and magnitude with EM seepage meter results that showed discharge during low tide and recharge during high tide events. To evaluate the importance of fresh versus saline SGD, Rn-derived SGD rates (as a proxy of total SGD) were compared to excess 226Ra-derived SGD rates (as a proxy for the saline contribution of SGD). The calculated SGD rates, which include a significant (>80%) component of recycled seawater, are used to estimate associated nutrient (NH4+, Si, PO43-, NO3 + NO2, TDN) loads to Lynch Cove. The dissolved inorganic nitrogen (DIN = NH4 + NO2 + NO3) SGD loading estimate of 5.9 × 104 mol d-1 is 1−2 orders of magnitude larger than similar estimates derived from atmospheric deposition and surface water runoff, respectively.
NASA Astrophysics Data System (ADS)
Bellwald, B.; Hjelstuen, B. O.; Sejrup, H. P.; Kuvås, J.; Stokowy, T.
2016-12-01
The sensitivity of fjord sediments to seismic shaking makes fjord systems appropriate study sites when extending regional earthquake catalogs back in time and when estimating recurrence rates of prehistoric earthquakes in intraplate settings. In this study we compiled evidence of 140 postglacial mass movement events and their associated mass transport deposits (MTDs) from previously analyzed and new sediment cores and high-resolution seismic profiles from 22 fjord systems and six lakes in Western Norway. Evaluation of trigger mechanisms make us infer that most of these mass movement events were initiated by regional earthquakes, and that both climate-related processes and tsunamis most likely can be excluded as trigger mechanism for most of the events. A total of 33 individual earthquakes has been identified, which most likely outbalance the historically recorded events in magnitude, thus indicating magnitudes >6. Frequency plots of MTDs suggest high seismic activity in the early Holocene (11000-9700 cal. yrs BP), followed by seismic quiescence in the mid-Holocene before a seismic reactivation took place at 4000 cal. yrs BP. Coevally-triggered MTDs at 8100 cal. yrs BP are identified in all the archives, and are correlating with the age of the offshore Storegga slide. We estimate earthquake recurrence rates of 1/80 years directly after the last deglaciation of Western Norway (12800-11600 ca. yrs BP), 1/200 years for the early Holocene and 1/300 years for the last 4000 years. Our compilation suggests that the mid-Holocene is characterized by low seismic activity, suggesting recurrence rates of 1/1300 years. Comparisons of the Western Norwegian dataset with paleoseimologic studies of other previously glaciated intraplate settings indicate that both Scandinavia and the Alps show similar trends as Western Norway, whereas Eastern Canada is not correlating with the paleoseismologic trend of this study, which could be explained by different deglaciation histories.
Marine biodiversity at the end of the world: Cape Horn and Diego Ramírez islands.
Friedlander, Alan M; Ballesteros, Enric; Bell, Tom W; Giddens, Jonatha; Henning, Brad; Hüne, Mathias; Muñoz, Alex; Salinas-de-León, Pelayo; Sala, Enric
2018-01-01
The vast and complex coast of the Magellan Region of extreme southern Chile possesses a diversity of habitats including fjords, deep channels, and extensive kelp forests, with a unique mix of temperate and sub-Antarctic species. The Cape Horn and Diego Ramírez archipelagos are the most southerly locations in the Americas, with the southernmost kelp forests, and some of the least explored places on earth. The giant kelp Macrocystis pyrifera plays a key role in structuring the ecological communities of the entire region, with the large brown seaweed Lessonia spp. forming dense understories. Kelp densities were highest around Cape Horn, followed by Diego Ramírez, and lowest within the fjord region of Francisco Coloane Marine Park (mean canopy densities of 2.51 kg m-2, 2.29 kg m-2, and 2.14 kg m-2, respectively). There were clear differences in marine communities among these sub-regions, with the lowest diversity in the fjords. We observed 18 species of nearshore fishes, with average species richness nearly 50% higher at Diego Ramírez compared with Cape Horn and Francisco Coloane. The number of individual fishes was nearly 10 times higher at Diego Ramírez and 4 times higher at Cape Horn compared with the fjords. Dropcam surveys of mesophotic depths (53-105 m) identified 30 taxa from 25 families, 15 classes, and 7 phyla. While much of these deeper habitats consisted of soft sediment and cobble, in rocky habitats, echinoderms, mollusks, bryozoans, and sponges were common. The southern hagfish (Myxine australis) was the most frequently encountered of the deep-sea fishes (50% of deployments), and while the Fueguian sprat (Sprattus fuegensis) was the most abundant fish species, its distribution was patchy. The Cape Horn and Diego Ramírez archipelagos represent some of the last intact sub-Antarctic ecosystems remaining and a recently declared large protected area will help ensure the health of this unique region.
Powell, R.D.; Molnia, B.F.
1989-01-01
High precipitation from Gulf of Alaska air masses can locally reach up to 800 cm a-1. This precipitation on tectonically active mountains creates cool-temperate glaciation with extremely active erosion and continuously renewed resources. High basal debris loads up to 1.5 m thick of pure debris and rapid glacial flow, which can be more than 3000 m a-1, combine to produce large volumes of siliciclastic glacimarine sediment at some of the highest sediment accumulation rates on record. At tidewater fronts of valley glaciers, sediment accumulation rates can be over 13 m a-1 and deltas commonly grow at about 106 m3 a-1. Major processes influencing glacimarine sedimentation are glacial transport and glacier-contact deposition, meltwater (subaerial and submarine) and runoff transport and deposition, iceberg rafting and gouging, sea-ice transport, wave action and storm reworking, tidal transport and deposition, alongshelf transport, sliding and slumping and gravity flows, eolian transport, and biogenic production and reworking. Processes are similar in both shelf and fjord settings; however, different intensities of some processes create different facies associations and geometries. The tectonoclimatic regime also controls morphology because bedrock structure is modified by glacial action. Major glacimarine depositional systems are all siliciclastic. They are subglacial, marginal-morainal bank and submarine outwash, and proglacial/paraglacial-fluvial/deltaic, beach, tidal flat/estuary, glacial fjord, marine outwash fjord and continental shelf. Future research should include study of long cores with extensive dating and more seismic surveys to evaluate areal and temporal extent of glacial facies and glaciation; time-series oceanographic data, sidescan sonar surveys and submersible dives to evaluate modern processes; biogenic diversity and production to evaluate paleoecological, paleobiogeographic and biofacies analysis; and detailed comparisons of exposed older rock of the Yakataga Formation to evaluate how glacial style has evolved over 6.3 Ma. ?? 1989.
Marine biodiversity at the end of the world: Cape Horn and Diego Ramírez islands
Ballesteros, Enric; Bell, Tom W.; Giddens, Jonatha; Henning, Brad; Hüne, Mathias; Muñoz, Alex; Salinas-de-León, Pelayo; Sala, Enric
2018-01-01
The vast and complex coast of the Magellan Region of extreme southern Chile possesses a diversity of habitats including fjords, deep channels, and extensive kelp forests, with a unique mix of temperate and sub-Antarctic species. The Cape Horn and Diego Ramírez archipelagos are the most southerly locations in the Americas, with the southernmost kelp forests, and some of the least explored places on earth. The giant kelp Macrocystis pyrifera plays a key role in structuring the ecological communities of the entire region, with the large brown seaweed Lessonia spp. forming dense understories. Kelp densities were highest around Cape Horn, followed by Diego Ramírez, and lowest within the fjord region of Francisco Coloane Marine Park (mean canopy densities of 2.51 kg m-2, 2.29 kg m-2, and 2.14 kg m-2, respectively). There were clear differences in marine communities among these sub-regions, with the lowest diversity in the fjords. We observed 18 species of nearshore fishes, with average species richness nearly 50% higher at Diego Ramírez compared with Cape Horn and Francisco Coloane. The number of individual fishes was nearly 10 times higher at Diego Ramírez and 4 times higher at Cape Horn compared with the fjords. Dropcam surveys of mesophotic depths (53–105 m) identified 30 taxa from 25 families, 15 classes, and 7 phyla. While much of these deeper habitats consisted of soft sediment and cobble, in rocky habitats, echinoderms, mollusks, bryozoans, and sponges were common. The southern hagfish (Myxine australis) was the most frequently encountered of the deep-sea fishes (50% of deployments), and while the Fueguian sprat (Sprattus fuegensis) was the most abundant fish species, its distribution was patchy. The Cape Horn and Diego Ramírez archipelagos represent some of the last intact sub-Antarctic ecosystems remaining and a recently declared large protected area will help ensure the health of this unique region. PMID:29364902
NASA Astrophysics Data System (ADS)
Rignot, Eric
2017-04-01
With unabated climate warming, massive sea level rise from the melting of ice sheets in Greenland and Antarctica looms at the horizon. This is unfortunately an experiment that we can afford to run only once. Satellite and airborne sensors have significantly helped reveal the magnitude of the mass balance of the ice sheets, where the changes take place, when they started, how they change with time and the nature of the physical processes controlling them. These observations have constrained the maturation of numerical modeling techniques for projecting changes in these ice sheets, including the coupling of ocean and ice sheet models, yet significant uncertainties remain to make these projections directly policy relevant and many challenges remain. I will review the state of balance of the ice sheets as we know it today and the fundamental processes that will drive fast ice sheet retreat and sea level change: ice-ocean interaction and iceberg calving. Ice-ocean interaction are dominated by the wind-forced intrusion of warm, salty, subsurface waters toward the ice sheet periphery to melt ice from below at rates orders of magnitude greater than at the surface. In Greenland, these rates are difficult to observe, but model simulations indicate rates of ice melt along vertical calving faces of meters per day, along with undercutting of the ice faces. Constraining the temperature of the ocean waters from high resolution models and observations, however, remains a significant challenge. I will describe the progress we have made in addressing one major issue which is the mapping of fjord bathymetry around Greenland to define the pathways for warm waters. In Antarctica, the rates of melt are measured from remote sensing data but averaged over long periods, so that we are dependent on in-situ observations to understand the interaction of ocean waters with ice within the sub-ice-shelf cavities. I will describe progress made in mapping the bathymetry of the ice shelves and how the results have impacted our understanding of these interactions. In terms of calving, there is a range of processes acting upon the glacier and ice shelf faces, proceeding from the surface and mostly from below, that are still not sufficiently well explored. I will discuss processes elucidated in Greenland (undercutting and rotation of ice blocks near floatation) and those that are not well known in Antarctica.
Suleimani, E.; Hansen, R.; Haeussler, Peter J.
2009-01-01
We use a viscous slide model of Jiang and LeBlond (1994) coupled with nonlinear shallow water equations to study tsunami waves in Resurrection Bay, in south-central Alaska. The town of Seward, located at the head of Resurrection Bay, was hit hard by both tectonic and local landslide-generated tsunami waves during the MW 9.2 1964 earthquake with an epicenter located about 150 km northeast of Seward. Recent studies have estimated the total volume of underwater slide material that moved in Resurrection Bay during the earthquake to be about 211 million m3. Resurrection Bay is a glacial fjord with large tidal ranges and sediments accumulating on steep underwater slopes at a high rate. Also, it is located in a seismically active region above the Aleutian megathrust. All these factors make the town vulnerable to locally generated waves produced by underwater slope failures. Therefore it is crucial to assess the tsunami hazard related to local landslide-generated tsunamis in Resurrection Bay in order to conduct comprehensive tsunami inundation mapping at Seward. We use numerical modeling to recreate the landslides and tsunami waves of the 1964 earthquake to test the hypothesis that the local tsunami in Resurrection Bay has been produced by a number of different slope failures. We find that numerical results are in good agreement with the observational data, and the model could be employed to evaluate landslide tsunami hazard in Alaska fjords for the purposes of tsunami hazard mitigation. ?? Birkh??user Verlag, Basel 2009.
NASA Astrophysics Data System (ADS)
Ronowicz, Marta; Kukliński, Piotr; Włodarska-Kowalczuk, Maria
2018-05-01
Kelp forests are complex underwater habitats that support diverse assemblages of animals ranging from sessile filter feeding invertebrates to fishes and marine mammals. In this study, the diversity of invertebrate fauna associated with kelp holdfasts was surveyed in a high Arctic glacial fjord (76 N, Hornsund, Svalbard). The effects of algal host identity (three kelp species: Laminaria digitata, Saccharina latissima and Alaria esculenta), depth (5 and 10 m) and glacier-derived disturbance (three sites with varying levels of mineral sedimentation) on faunal species richness and composition were studied based on 239 collected algal holdfasts. The species pool was mostly made up by three taxa: colonial Bryozoa and Hydrozoa, and Polychaeta. While the all-taxa species richness did not differ between depths, algal hosts and sites, the patterns varied when the two colonial sessile filter-feeding taxa were analysed alone (Hydrozoa and Bryozoa). The Hydrozoa sample species richness and average taxonomic distinctness were the highest at undisturbed sites, whereas Bryozoa species richness was higher in sediment-impacted localities, indicating relative insensitivity of this phylum to the increased level of mineral suspension in the water column. The average taxonomic distinctness of Bryozoa did not vary between sites. The species composition of kelp-associated fauna varied between sites and depths for the whole community and the most dominant taxa (Bryozoa, Hydrozoa). The high load of inorganic suspension and sedimentation did not cause pauperization of kelp holdfast-associated fauna but instead triggered the changes in species composition and shifts between dominant taxonomic groups.
The slow advance of a calving glacier: Hubbard Glacier, Alaska, U.S.A
Trabant, D.C.; Krimmel, R.M.; Echelmeyer, K.A.; Zirnheld, S.L.; Elsberg, D.H.
2003-01-01
Hubbard Glacier is the largest tidewater glacier in North America. In contrast to most glaciers in Alaska and northwestern Canada, Hubbard Glacier thickened and advanced during the 20th century. This atypical behavior is an important example of how insensitive to climate a glacier can become during parts of the calving glacier cycle. As this glacier continues to advance, it will close the seaward entrance to 50 km long Russell Fjord and create a glacier-dammed, brackish-water lake. This paper describes measured changes in ice thickness, ice speed, terminus advance and fjord bathymetry of Hubbard Glacier, as determined from airborne laser altimetry, aerial photogrammetry, satellite imagery and bathymetric measurements. The data show that the lower regions of the glacier have thickened by as much as 83 m in the last 41 years, while the entire glacier increased in volume by 14.1 km3. Ice speeds are generally decreasing near the calving face from a high of 16.5 m d-1 in 1948 to 11.5 m d-1 in 2001. The calving terminus advanced at an average rate of about 16 m a-1 between 1895 and 1948 and accelerated to 32 m a-1 since 1948. However, since 1986, the advance of the part of the terminus in Disenchantment Bay has slowed to 28 m a-1. Bathymetric data from the lee slope of the submarine terminal moraine show that between 1978 and 1999 the moraine advanced at an average rate of 32 m a-1, which is the same as that of the calving face.
NASA Astrophysics Data System (ADS)
Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.
2018-02-01
In our original publication the particle volume flux was by mistake standardized to area A = sediment trap diameter2 ∗ pi instead of A = sediment trap radius2 ∗ pi (A being the opening of the sediment trap). In addition, the particle flux data from Spring II (30 m and 60 m) and Spring III (20 m) were standardized twice to deployment time, instead of to the deployment time and the sediment trap opening. These mistakes do not affect our conclusions, but we would like to present here the correct numbers for the result section 3.4, discussion section 4.3 and a revised Fig. 5.
Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo
2012-01-01
Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 106 acetate-utilizing manganese-reducing cells cm−3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639
Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo
2012-11-01
Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.
Alaska: Glaciers of Kenai Fjords National Park and Katmai National Park and Preserve (Chapter 12)
NASA Technical Reports Server (NTRS)
Giffen, Bruce A.; Hall, Dorothy K.; Chien, Janet Y.L.
2007-01-01
Much recent research points to the shrinkage of the Earth's small glaciers, however, few studies have been performed to quantify the amount of change over time. We measured glacier-extent changes in two national parks in southeastern Alaska. There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2373 sq km of parkland. There are two primary areas of glaciation in KEFJ - the Harding Icefield and the Grewingk-Yalik Glacier Complex, and three primary areas of glaciation in KATM - the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area and the Mt. Martin area. We performed glacier mapping using satellite imagery, from the 1970s, 1980s, and from 2000. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period, of approximately 22 sq km of ice, approximately - 1.6% from 1986 to 2000 (for KEFJ), and of approximately 76 sq km of glacier ice, or about -7.7% from 1986187 to 2000 (for KATM). In the future, measurements of surface elevation changes of these ice masses should be acquired; together with our extent-change measurements, the volume change of the ice masses can then be determined to estimate their contribution to sea-level rise. The work is a continuation of work done in KEFJ, but in KATM, our measurements represent the first comprehensive study of the glaciers in this remote, little-studied area.
Modular AUV System with Integrated Real-Time Water Quality Analysis.
Eichhorn, Mike; Ament, Christoph; Jacobi, Marco; Pfuetzenreuter, Torsten; Karimanzira, Divas; Bley, Kornelia; Boer, Michael; Wehde, Henning
2018-06-05
This paper describes the concept, the technical implementation and the practical application of a miniaturized sensor system integrated into an autonomous underwater vehicle (AUV) for real-time acquisition of water quality parameters. The main application field of the presented system is the analysis of the discharge of nitrates into Norwegian fjords near aqua farms. The presented system was developed within the research project SALMON (Sea Water Quality Monitoring and Management) over a three-year period. The development of the sensor system for water quality parameters represented a significant challenge for the research group, as it was to be integrated in the payload unit of the autonomous underwater vehicle in compliance with the underwater environmental conditions. The German company -4H- JENA engineering GmbH (4HJE), with experience in optical in situ-detection of nutrients, designed and built the measurement system. As a carrier platform, the remotely operated vehicle (ROV) "CWolf" from Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung - Institutsteil Angewandte Systemtechnik (IOSB-AST) modified to an AUV was deployed. The concept presented illustrates how the measurement system can be integrated easily into the vehicle with a minimum of hard- and software technical interfaces.
Does calving matter? Evidence for significant submarine melt
Bartholomaus, Timothy C.; Larsen, Christopher F.; O’Neel, Shad
2013-01-01
During the summer in the northeast Pacific Ocean, the Alaska Coastal Current sweeps water with temperatures in excess of 12 °C past the mouths of glacierized fjords and bays. The extent to which these warm waters affect the mass balance of Alaskan tidewater glaciers is uncertain. Here we report hydrographic measurements made within Icy Bay, Alaska, and calculate rates of submarine melt at Yahtse Glacier, a tidewater glacier terminating in Icy Bay. We find strongly stratified water properties consistent with estuarine circulation and evidence that warm Gulf of Alaska water reaches the head of 40 km-long Icy Bay, largely unaltered. A 10–20 m layer of cold, fresh, glacially-modified water overlies warm, saline water. The saline water is observed to reach up to 10.4 °C within 1.5 km of the terminus of Yahtse Glacier. By quantifying the heat and salt deficit within the glacially-modified water, we place bounds on the rate of submarine melt. The submarine melt rate is estimated at >9 m d−1, at least half the rate at which ice flows into the terminus region, and can plausibly account for all of the submarine terminus mass loss. Our measurements suggest that summer and fall subaerial calving is a direct response to thermal undercutting of the terminus, further demonstrating the critical role of the ocean in modulating tidewater glacier dynamics.
A Sedimentary Carbon Inventory for a Scottish Sea Loch
NASA Astrophysics Data System (ADS)
Smeaton, Craig; Austin, William; Davies, Althea; Baltzer, Agnes
2015-04-01
Coastal oceans are sites of biogeochemical cycling, as terrestrial, atmospheric, and marine carbon cycles interact. Important processes that affect the carbon cycle in the coastal ocean include upwelling, river input, air-sea gas exchange, primary production, respiration, sediment burial, export, and sea-ice dynamics. The magnitude and variability of many carbon fluxes are accordingly much higher in coastal oceans than in open ocean environments. Having high-quality observations of carbon stocks and fluxes in the coastal environment is important both for understanding coastal ocean carbon balance and for reconciling continent-scale carbon budgets. Despite the ecological, biological, and economic importance of coastal oceans, the magnitude and variability of many of the coastal carbon stocks are poorly quantified in most regions in comparison to terrestrial and deep ocean carbon stocks. The first stage in understanding the carbon dynamics in coastal waters is to quantify the existing carbon stocks. The coastal sediment potentially holds a significant volume of carbon; yet there has been no comprehensive attempt to quantitatively determine the volume of carbon held in those coastal sediments as echoed by Bauer et al., (2013) "the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood". We set out to create the first sedimentary carbon inventory for a sea loch (fjord); through a combination of geophysics and biogeochemistry. Two key questions must be answered to achieve this goal; how much sediment is held within the loch and what percentage of that sediment carbon? The restrictive geomorphology of sea lochs (fjords) provides the perfect area to develop this methodology and answer these fundamental questions. Loch Sunart the longest of the Scottish sea lochs is our initial test site due to existing geophysical data being available for analysis. Here we discuss the development of the joint geophysics and biogeochemical methodology and how it was applied to Loch Sunart. The methodology was applied to seismic geophysics data collected in 2009 (Baltzer et al. 2010,) and data compiled through biogeochemical analysis of sediment cores collected from Loch Sunart. Through the combination of these datasets we have undertaken calculations to quantify the total sediment mass and the percentage of carbon contained in that sediment. Through this work we have created the first holistic sedimentary carbon inventory for a sea loch; which is the first step to tackling the larger questions around coastal carbon. Baltzer, A, Bates, R, Mokeddem, Z, Clet-Pellerin, M, Walter-Simonnet, A-V, Bonnot-Courtois, C and Austin, WEN 2010, Using seismic facies and pollen analyses to evaluate climatically driven change in a Scottish sea loch (fjord) over the last 20 ka, Geological Society, London, Special Publications, 344, (1), pp. 355-369. Bauer, JE, Cai, W-J, Raymond, P a, Bianchi, TS, Hopkinson, CS and Regnier, P a G 2013, The changing carbon cycle of the coastal ocean., Nature, 504, (7478), pp. 61-70.
Summer inventory of landbirds in Kenai Fjords National Park
2006-01-01
As part of the National Park Service Inventory and Monitoring Program, we conducted a summer inventory of landbirds within Kenai Fjords National Park. Using a stratified random sampling design of areas accessible by boat or on foot, we selected sites that encompassed the breadth of habitat types within the Park. We detected 101 species across 52 transects, including 62 species of landbirds, which confirmed presence of 87% of landbird species expected to occur in the Park during the summer breeding season. We found evidence of breeding for three Partners in Flight Watch List species, Rufous Hummingbird (Selasphorus rufus), Olive-sided Flycatcher (Contopus cooperi), and Rusty Blackbird (Euphagus carolinus), which are of particular conservation concern due to recent population declines. Kenai Fjords National Park supports extremely high densities of Hermit Thrush, Orange-crowned Warbler, and Wilson’s Warbler (Wilsonia pusilla) compared with other regions of Alaska. Other commonly observed species included Fox Sparrow (Passerella iliaca), Varied Thrush (Ixoreus naevius), Rubycrowned Kinglet (Regulus calendula), and Yellow Warbler (Dendroica petechia). More than half of the landbird species we observed occurred in needleleaf forests, and several of these species were strongly associated with the coastforest interface. Tall shrub habitats, which occurred across all elevations and in recently deglaciated areas, supported high densities and a diverse array of passerines. Two major riparian corridors, with their broadleaf forests, wetlands, and connectivity to interior Alaska, provided unique and important landbird habitats within the region.
NASA Astrophysics Data System (ADS)
McCall, N.; Walton, M. A. L.; Gulick, S. P. S.; Haeussler, P. J.; Reece, R.; Saustrup, S.
2016-12-01
In southeast Alaska, the plate boundary where the Yakutat microplate collides with North America has produced large historical earthquakes (i.e., the Mw 8+ 1899 sequence). Despite the seismic potential, the possible source fault systems for these earthquakes have not been imaged with modern methods in Icy Bay. The offshore Pamplona Zone and its eastward onshore extension, the Malaspina Fault, may have played a role in the September 1899 earthquakes. Onshore and offshore mapping indicates that these structures likely connect offshore in Icy Bay. In August 2016 we collected high-resolution (300-1200 Hz) seismic reflection and multibeam bathymetry data to search for evidence of such faults beneath Icy Bay and Taan Fiord. If the Malaspina Fault is found to link with the Pamplona Zone, a rupture could trigger a tsunami impacting the populated regions in southeast Alaska. More recently, on October 17th 2015, nearby Taan Fjord experienced one of the largest non-volcanic landslides recorded in North America. Approximately 200 million metric tons spilled into Taan Fjord creating a tsunami with waves reaching 150m onshore. Using the new data, we are capable of imaging landslide and tsunami deposits in high-resolution. These data give new constraints for onshore-offshore fault systems, giving us new insights into the earthquake and tsunami hazard in southeast Alaska.
NASA Astrophysics Data System (ADS)
Faust, Johan C.; Fabian, Karl; Milzer, Gesa; Giraudeau, Jacques; Knies, Jochen
2016-02-01
The North Atlantic Oscillation (NAO) is the leading mode of atmospheric circulation variability in the North Atlantic region. Associated shifts of storm tracks, precipitation and temperature patterns affect energy supply and demand, fisheries and agricultural, as well as marine and terrestrial ecological dynamics. Long-term NAO records are crucial to better understand its response to climate forcing factors, and assess predictability and shifts associated with ongoing climate change. A recent study of instrumental time series revealed NAO as main factor for a strong relation between winter temperature, precipitation and river discharge in central Norway over the past 50 years. Here we compare geochemical measurements with instrumental data and show that primary productivity recorded in central Norwegian fjord sediments is sensitive to NAO variability. This observation is used to calibrate paleoproductivity changes to a 500-year reconstruction of winter NAO (Luterbacher et al., 2001). Conditioned on a stationary relation between our climate proxy and the NAO we establish a first high resolution NAO proxy record (NAOTFJ) from marine sediments covering the past 2800 years. The NAOTFJ shows distinct co-variability with climate changes over Greenland, solar activity and Northern Hemisphere glacier dynamics as well as climatically associated paleo-demographic trends. The here presented climate record shows that fjord sediments provide crucial information for an improved understanding of the linkages between atmospheric circulation, solar and oceanic forcing factors.
IGLOO: an Intermediate Complexity Framework to Simulate Greenland Ice-Ocean Interactions
NASA Astrophysics Data System (ADS)
Perrette, M.; Calov, R.; Beckmann, J.; Alexander, D.; Beyer, S.; Ganopolski, A.
2017-12-01
The Greenland ice-sheet is a major contributor to current and future sea level rise associated to climate warming. It is widely believed that over a century time scale, surface melting is the main driver of Greenland ice volume change, in contrast to melting by the ocean. It is due to relatively warmer air and less ice area exposed to melting by ocean water compared to Antarctica, its southern, larger twin. Yet most modeling studies do not have adequate grid resolution to represent fine-scale outlet glaciers and fjords at the margin of the ice sheet, where ice-ocean interaction occurs, and must use rather crude parameterizations to represent this process. Additionally, the ice-sheet area grounded below sea level has been reassessed upwards in the most recent estimates of bedrock elevation under the Greenland ice sheet, revealing a larger potential for marine-mediated melting than previously thought. In this work, we develop an original approach to estimate potential Greenland ice sheet contribution to sea level rise from ocean melting, in an intermediate complexity framework, IGLOO. We use a medium-resolution (5km) ice-sheet model coupled interactively to a number of 1-D flowline models for the individual outlet glaciers. We propose a semi-objective methodology to derive 1-D glacier geometries from 2-D Greenland datasets, as well as preliminary results of coupled ice-sheet-glaciers simulations with IGLOO.
Buoyancy-driven mean flow in a long channel with a hydraulically constrained exit condition
NASA Astrophysics Data System (ADS)
Grimm, Th.; Maxworthy, T.
1999-11-01
Convection plays a major role in a variety of natural hydrodynamic systems. Those in which convection drives exchange flows through a lateral contraction and/or over a sill form a special class with typical examples being the Red and Mediterranean Seas, the Persian Gulf, and the fjords that indent many coastlines. The present work focuses on the spatial distribution and scaling of the density difference between the inflowing and outflowing fluid layers. Using a long water-filled channel, fitted with buoyancy sources at its upper surface, experiments were conducted to investigate the influence of the geometry of the strait and the channel as well as the magnitude of the buoyancy flux. Two different scaling laws, one by Phillips (1966), and one by Maxworthy (1994, 1997) were compared with the experimental results. It has been shown that a scaling law for which g[prime prime or minute] = kB02/3x/h4/3 best describes the distribution of the observed density difference along the channel, where B0 is the buoyancy flux, x the distance from the closed end of the channel, h its height at the open end (sill) and k a constant that depends on the details of the channel geometry and flow conditions. This result holds for the experimental results and appears to be valid for a number of natural systems as well.
Die Schlei, ein Modell für die Verbreitung der Strandkrabbe Carcinus maenas
NASA Astrophysics Data System (ADS)
Dries, M.; Adelung, D.
1982-03-01
A Carcinus maenas population inhabiting the Schlei, a glacial fjord of the Baltic Sea, was studied during a three-year period of at least monthly sampling. Due to slightly higher water temperatures in the Schlei (c. 1 °C higher than in the neighbouring waters of the western Baltic Sea) annual larval development starts there one month earlier. When in some years salinities are unfavourable (<13‰), larval development may be almost completely prevented. Juveniles and adults tolerate changing salinities, even though females prefer staying in deep waters and juveniles in shallow waters of high salinities. During winter all crabs move to deeper waters and stay huddled together in crevices and holes until March or April. Females usually moult after being fertilized, which takes place after the breeding season in August. Males moult between May and June; juveniles continue to moult during the warm season. Moulting for growth lasts until puberty is reached in the second year. From then on intermoult periods are more extended, but males moult more frequently than females, attaining ultimately a larger size. Under favourable environmental conditions, the maximum lifespan of C. maenas in the Schlei amounts to five years. During this period, five larval moults and about fifteen moults for growth occur.
Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Paša-Tolić, Ljiljana; Hallam, Steven J.
2014-01-01
Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand. PMID:25053816
Hawley, Alyse K; Brewer, Heather M; Norbeck, Angela D; Paša-Tolić, Ljiljana; Hallam, Steven J
2014-08-05
Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand.
Effects of natural and human-induced hypoxia on coastal benthos
NASA Astrophysics Data System (ADS)
Levin, L. A.; Ekau, W.; Gooday, A. J.; Jorissen, F.; Middelburg, J. J.; Naqvi, W.; Neira, C.; Rabalais, N. N.; Zhang, J.
2009-04-01
Coastal hypoxia (<1.42 ml L-1; 62.5 μM; 2 mg L-1, approx. 30% oxygen saturation) occurs seasonally in many estuaries, fjords, and along open coasts subject to upwelling or excessive riverine nutrient input, and permanently in some isolated seas and marine basins. Underlying causes of hypoxia include enhanced nutrient input from natural causes (upwelling) or anthropogenic origin (eutrophication) and reduction of mixing by limited circulation or enhanced stratification; combined these lead to higher surface water production, microbial respiration and eventual oxygen depletion. Advective inputs of low-oxygen waters may initiate or expand hypoxic conditions. Responses of estuarine, enclosed sea, and open shelf benthos to hypoxia depend on the duration, predictability, and intensity of oxygen depletion and on whether H2S is formed. Under suboxic conditions, large mats of filamentous sulfide oxidizing bacteria cover the seabed and consume sulfide, thereby providing a detoxified microhabitat for eukaryotic benthic communities. Calcareous foraminiferans and nematodes are particularly tolerant of low oxygen concentrations and may attain high densities and dominance, often in association with microbial mats. When oxygen is sufficient to support metazoans, small, soft-bodied invertebrates (typically annelids), often with short generation times and elaborate branchial structures, predominate. Large taxa are more sensitive than small taxa to hypoxia. Crustaceans and echinoderms are typically more sensitive to hypoxia, with lower oxygen thresholds, than annelids, sipunculans, molluscs and cnidarians. Mobile fish and shellfish will migrate away from low-oxygen areas. Within a species, early life stages may be more subject to oxygen stress than older life stages. Hypoxia alters both the structure and function of benthic communities, but effects may differ with regional hypoxia history. Human-caused hypoxia is generally linked to eutrophication, and occurs adjacent to watersheds with large populations or agricultural activities. Many occurrences are seasonal, within estuaries, fjords or enclosed seas of the North Atlantic and the NW Pacific Oceans. Benthic faunal responses, elicited at oxygen levels below 2 ml L-1, typically involve avoidance or mortality of large species and elevated abundances of enrichment opportunists, sometimes prior to population crashes. Areas of low oxygen persist seasonally or continuously beneath upwelling regions, associated with the upper parts of oxygen minimum zones (SE Pacific, W Africa, N Indian Ocean). These have a distribution largely distinct from eutrophic areas and support a resident fauna that is adapted to survive and reproduce at oxygen concentrations <0.5 ml L-1. Under both natural and eutrophication-caused hypoxia there is loss of diversity, through attrition of intolerant species and elevated dominance, as well as reductions in body size. These shifts in species composition and diversity yield altered trophic structure, energy flow pathways, and corresponding ecosystem services such as production, organic matter cycling and organic C burial. Increasingly the influences of nature and humans interact to generate or exacerbate hypoxia. A warmer ocean is more stratified, holds less oxygen, and may experience greater advection of oxygen-poor source waters, making new regions subject to hypoxia. Future understanding of benthic responses to hypoxia must be established in the context of global climate change and other human influences such as overfishing, pollution, disease, habitat loss, and species invasions.
NASA Astrophysics Data System (ADS)
Ziemniak, Grzegorz; Kośmińska, Karolina; Majka, Jarosław; Janák, Marian; Manecki, Maciej
2016-04-01
The Kåfjord Nappe is the part of the Skibotn Nappe Complex traditionally ascribed to the Upper Allochthon of the North Norwegian Caledonides. Pressure-temperature (P-T) conditions and metamorphic age of the Kåfjord Nappe are not well constrained, geochronological data are limited to a single Rb-Sr age of c. 440 Ma (Dangla et al. 1978). Metamorphic evolution of kyanite-garnet gneisses of the Kåfjord Nappe is presented here. The kyanite-garnet gneisses are associated with a few meters thick amphibolite lenses. The gneisses mainly consist of quartz, plagioclase, biotite, muscovite, garnet, kyanite, and rutile. Retrograde minerals are represented by sillimanite and chlorite. Garnet occurs as two textural types. Garnet-I forms euhedral porphyroblasts with multiple small inclusions. Profiles through garnet-I show chemical zonation in all components. The composition varies from Alm64-68Prp11-16Grs13-18Sps2-8 in the core to Alm68-70Prp17-18Grs10-13Sps1-3 in the rim. Garnet-II is subhedral to anhedral, its core is inclusion-rich, whereas rim contains only single inclusions. Chemical composition of garnet-II is similar to that of the garnet-I rim. P-T conditions have been estimated using the garnet-biotite-muscovite-plagioclase (GBPM) geothermobarometer (Holdaway, 2001; Wu, 2014). Calculated peak P-T metamorphic conditions are 610-625 °C and 7.6-8.2 kbar corresponding to the amphibolite facies conditions. Phase equilibrium modelling in the NCKFMMnASH system yields peak metamorphic conditions of c. 620 °C at 8 kbar. Growth conditions of garnet-I core modelled in the NCKFMMnASH system are c. 570 °C at 9.7 kbar. Chemical Th-U-total Pb monazite dating has been performed. Preliminary dating results from the kyanite-garnet gneiss of the Kåfjord Nappe yield an array of dates from 468 Ma to 404 Ma. There is a correlation between an increase of yttrium content and decrease of monazite single dates. Compositional maps confirm an increase of yttrium towards the rim of the monazite. This work is partially funded by AGH research grant no 11.11.140.319. References: Dangla, P., Damange, J. C., Ploquin, A., Quarnadel, J. M., Sonet, J., 1978. Donn'es geochronlogiques sur les Caledonides Scandinaves septentrionates (Troms, Norway du Nord). C. r. Acad. Sci. Paris, 286 D, 1653-1656. Holdaway, M. J., 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86(10), 1117-1129. Wu, C. M., 2015. Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. Journal of Metamorphic Geology, 33(2), 167-176.
36 CFR 13.1326 - Snowmachines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...
36 CFR 13.1326 - Snowmachines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...
36 CFR 13.1326 - Snowmachines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...
36 CFR 13.1326 - Snowmachines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...
NASA Astrophysics Data System (ADS)
Leising, Andrew W.; Horner, Rita; Pierson, James J.; Postel, James; Halsband-Lenk, Claudia
2005-11-01
During 24, three-day cruises to Dabob Bay, Washington State, USA, from February 4 to April 26, 2002, and February 4 to May 1 2003, we examined the relative growth and grazing rates of phytoplankton and microzooplankton using dilution experiments. Experiments were conducted over two time intervals: 8-10 h during the nighttime only, or 24 h from noon to noon. We used water from two depths during each cruise: from the surface mixed layer, and from a deep layer below the seasonal thermocline. During 2002, there was one mid-sized bloom consisting mainly of Thalassiosira spp. in early February, and a larger bloom in April comprised of two Chaetoceros spp. and Phaeocystis sp. During 2003, there were also two blooms, one in early February, which was again dominated by Thalassiosira spp., and a second larger bloom in mid-April, comprised mainly of Thalassiosira spp. and Chaetoceros spp. During all four of these blooms, and for both water source depths, specific grazing rates of microzooplankton were most often as high or higher than the calculated phytoplankton specific growth rates. The major microzooplankton categories that could have accounted for this were (1) a large Gyrodinium spp., (2) a group of fusiform-shaped mid-sized Protoperidinium species, and (3) three loosely defined taxonomic groups consisting of naked ciliates, tintinnids, and unidentified heterotrophic dinoflagellates. Based on our measurements, it appears that the microzooplankton community grazing pressure can often exert significant control on phytoplankton biomass, even during the extremely productive spring bloom periods and under several different diatom-dominated bloom types. These results suggest that even in highly productive estuarine ecosystems, which are often nurseries to economically important fisheries species, microzooplankton play a critical role and may significantly alter the availability and efficiency of transfer of energy to higher trophic levels.
Tidewater dynamics at Store Glacier, West Greenland from daily repeat UAV surveys
NASA Astrophysics Data System (ADS)
Ryan, Jonathan; Hubbard, Alun; Toberg, Nick; Box, Jason; Todd, Joe; Christoffersen, Poul; Neal, Snooke
2017-04-01
A significant component of the Greenland ice sheet's mass wasteage to sea level rise is attributed to the acceleration and dynamic thinning at its tidewater margins. To improve understanding of the rapid mass loss processes occurring at large tidewater glaciers, we conducted a suite of daily repeat aerial surveys across the terminus of Store Glacier, a large outlet draining the western Greenland Ice Sheet, from May to July 2014 (https://www.youtube.com/watch?v=-y8kauAVAfE). The unmanned aerial vehicles (UAVs) were equipped with digital cameras, which, in combination with onboard GPS, enabled production of high spatial resolution orthophotos and digital elevation models (DEMs) using standard structure-from-motion techniques. These data provide insight into the short-term dynamics of Store Glacier surrounding the break-up of the sea-ice mélange that occurred between 4 and 7 June. Feature tracking of the orthophotos reveals that mean speed of the terminus is 16 - 18 m per day, which was independently verified against a high temporal resolution time-series derived from an expendable/telemetric GPS deployed at the terminus. Differencing the surface area of successive orthophotos enable quantification of daily calving rates, which significantly increase just after melange break-up. Likewise, by differencing bulk freeboard volume of icebergs through time we could also constrain the magnitude and variation of submarine melt. We calculate a mean submarine melt rate of 0.18 m per day throughout the spring period with relatively little supraglacial runoff and no active meltwater plumes to stimulate fjord circulation and upwelling of deeper, warmer water masses. Finally, we relate calving rates to the zonation and depth of water-filled crevasses, which were prominent across parts of the terminus from June onwards.
Convectively Induced Meanflow in a Long Channel.
NASA Astrophysics Data System (ADS)
Grimm, Th.; Maxworthy, T.
1997-11-01
The similarity theory of Phillips (Deep Sea Res. 13, 1966) for the convectively induced motion in the Red Sea, predicts that the outflow buoyancy difference should scale as (B _0L) ^2/3/h :: , where B 0 is the surface buoyancy flux and L and h are the length and height of the channel above the sill crest, respectively. A friction-buoyancy balance leads to a modified expression [(B _0L) ^2/3/h][fracLh]^1/3 :: (2). The results can be applied also to a number of other natural flows including freezing-induced convection in fjords and polar seas. A series of Experiments have been conducted to check the predictions. A channel 300 cm long and 21 cm wide has been constructed. Within it segmented salt-water sources have been placed over a length of 250 cm. Their depth varied from 2 to 12 cm. A sill was placed in the exit region and its height was at least half the total depth of water in the channel. Density data were taken by withdrawing samples while velocity profiles were found by a DPIV technique. The meanflow consists of a two-layer stratification over a large fraction of the length of the channel. Our results suggest that the scaling (2) above is most closely realized with a constant of value 1.1. Analysis of the Red Sea data suggests a constant between 1.1 and 1.4 depending on the data set used. The exit Fr-number is unity. The amount of mixing within the channel is less than that predicted for the 'overmixed' state. Supported by the German Acad. Exchge. Serv. and the NSF Polar Programs.
NASA Astrophysics Data System (ADS)
Zapata-Hernández, Germán; Sellanes, Javier; Thiel, Martin; Henríquez, Camila; Hernández, Sebastián; Fernández, Julio C. C.; Hajdu, Eduardo
2016-11-01
Estuarine environments are complex ecological systems, which depend on multiple inputs of organic sources that could support their benthic communities. The deep-water megabenthic communities of the Interior Sea of Chiloé (ISCh, northern part of the fjord region of Chile) were studied to characterize their taxonomic composition and to trace the energy pathways supporting them by using stable isotope analysis (SIA). Megabenthic and demersal organisms as well as sunken macroalgal debris and terrestrial organic matter (TOM: wood, leaves, branches) were obtained by bottom trawling along an estuarine gradient covering 100-460 m water depth. Additionally, particulate organic matter (POM) and the sedimentary organic matter (SOM) were sampled and carbon (δ13C) and nitrogen (δ15N) isotope ratios were determined for all these organisms and potential food sources. A total of 140 taxa were obtained, including invertebrates (e.g. polychaetes, mollusks, crustaceans and echinoderms) bony fishes, rays and sharks. Based on the stable isotope values it was possible to infer a strong dependence on primary production derived from phytoplankton which is exported to the benthos. A potentially important contribution from sunken macroalgae to megabenthic consumers was established only for some invertebrates, such as the irregular echinoid Tripylaster philippii and the decapod Eurypodius latreillii. The trophic structure metrics suggest a similar isotopic niche width, trophic diversity and species packaging in the food webs among the major basins in the ISCh. It is thus concluded that the benthic food webs are supported principally by surface primary production, but macroalgal subsidies could be exploited by selected invertebrate taxa (e.g. detritivores) and terrestrial carbon pathways are important for certain specialized taxa (e.g. Xylophaga dorsalis).
Eggers, Florian; Slotte, Aril; Libungan, Lísa Anne; Johannessen, Arne; Kvamme, Cecilie; Moland, Even; Olsen, Esben M; Nash, Richard D M
2014-01-01
Gillnet sampling and analyses of otolith shape, vertebral count and growth indicated the presence of three putative Atlantic herring (Clupea harengus L.) populations mixing together over the spawning season February-June inside and outside an inland brackish water lake (Landvikvannet) in southern Norway. Peak spawning of oceanic Norwegian spring spawners and coastal Skagerrak spring spawners occurred in March-April with small proportions of spawners entering the lake. In comparison, spawning of Landvik herring peaked in May-June with high proportions found inside the lake, which could be explained by local adaptations to the environmental conditions and seasonal changes of this marginal habitat. The 1.85 km(2) lake was characterized by oxygen depletion occurring between 2.5 and 5 m depth between March and June. This was followed by changes in salinity from 1-7‰ in the 0-1 m surface layer to levels of 20-25‰ deeper than 10 m. In comparison, outside the 3 km long narrow channel connecting the lake with the neighboring fjord, no anoxic conditions were found. Here salinity in the surface layer increased over the season from 10 to 25‰, whereas deeper than 5 m it was stable at around 35‰. Temperature at 0-5 m depth increased significantly over the season in both habitats, from 7 to 14 °C outside and 5 to 17 °C inside the lake. Despite differences in peak spawning and utilization of the lake habitat between the three putative populations, there was an apparent temporal and spatial overlap in spawning stages suggesting potential interbreeding in accordance with the metapopulation concept.
Assessing net community production in a glaciated Alaskan fjord
NASA Astrophysics Data System (ADS)
Reisdorph, S. C.; Mathis, J. T.
2015-09-01
The impact of deglaciation in Glacier Bay has been observed to seasonally influence the biogeochemistry of this marine system. The influence from surrounding glaciers, particularly tidewater glaciers, has the potential to affect the efficiency and structure of the marine food web within Glacier Bay. To assess the magnitude and the spatial and temporal variability in net community production in a glaciated fjord, we measured dissolved inorganic carbon, inorganic macronutrients, dissolved oxygen, and particulate organic carbon between July 2011 and July 2012 in Glacier Bay, Alaska. High net community production rates were observed across the bay (~ 54 to ~ 81 mmol C m-2 d-1) between the summer and fall of 2011. However, between the fall and winter, as well as between the winter and spring of 2012, air-sea fluxes of carbon dioxide and organic matter respiration made net community production rates negative across most of the bay as inorganic carbon and macronutrient concentrations returned to pre-bloom levels. The highest organic carbon production occurred within the west arm between the summer and fall of 2011 with ~ 4.5 × 105 kg C d-1. Bay-wide, there was carbon production of ~ 9.2 × 105 g C d-1 between the summer and fall. Respiration and air-sea gas exchange were the dominant drivers of carbon chemistry between the fall and winter of 2012. The substantial spatial and temporal variability in our net community production estimates may reflect glacial influences within the bay, as meltwater is depleted in macronutrients relative to marine waters entering from the Gulf of Alaska in the middle and lower parts of the bay. Further glacial retreat will likely lead to additional modifications in the carbon biogeochemistry of Glacier Bay, with unknown consequences for the local marine food web, which includes many species of marine mammals.
NASA Astrophysics Data System (ADS)
Olsen, Daniel W.; Matkin, Craig O.; Andrews, Russel D.; Atkinson, Shannon
2018-01-01
The resident killer whale is a genetically and behaviorally distinct ecotype of killer whale (Orcinus orca) found in the North Pacific that feeds primarily on Pacific salmon (Oncorhynchus spp .). Details regarding core use areas have been inferred by boat surveys, but are subject to effort bias and weather limitations. To investigate core use areas, 37 satellite tags were deployed from 2006 to 2014 on resident killer whales representing 12 pods in the Northern Gulf of Alaska, and transmissions were received during the months of June to January. Core use areas were identified through utilization distributions using a biased Brownian Bridge movement model. Distinct differences in these core use areas were revealed, and were highly specific to season and pod. In June, July, and August, the waters of Hinchinbrook Entrance and west of Kayak Island were primary areas used, mainly by 3 separate pods. These same pods shifted their focus to Montague Strait in August, September, and October. Port Gravina was a focal area for 2 other pods in June, July, and August, but this was not the case in later months. These pods were responsible for seven of eight documented trips into the deeper fjords of Prince William Sound, yet these fjords were not a focus for most groups of killer whales. The seasonal differences in core use may be a response to the seasonal returns of salmon, though details on specific migration routes and timing for the salmon are limited. We found strong seasonal and pod-specific shifts in patterns between core use areas. Future research should investigate pod differences in diet composition and relationships between core area use and bathymetry.
NASA Astrophysics Data System (ADS)
Kristensen, Erik; Delefosse, Matthieu; Quintana, Cintia O.; Banta, Gary T.; Petersen, Hans Christian; Jørgensen, Bent
2013-03-01
The lack of a common statistical approach describing the distribution and dispersion pattern of marine benthic animals has often hampered the comparability among studies. The purpose of this study is therefore to apply an alternative approach, Taylor's power law, to data on spatial and temporal distribution of 9 dominating benthic invertebrate species from two study areas, the estuaries Odense Fjord and Roskilde Fjord, Denmark. The slope (b) obtained from the power relationship of sample variance (s2) versus mean (μ) appears to be species-specific and independent of location and time. It ranges from a low of ~ 1 for large-bodied (> 1 mg AFDW) species (e.g. Marenzelleria viridis, Nereis diversicolor) to a high of 1.6-1.9 for small-bodied (< 1 mg AFDW) species (e.g. Pygospio elegans and Tubificoides benedii). Accordingly, b is apparently a valuable species-specific dispersion index based on biological factors such as behavior and intraspecific interactions. Thus, at the examined spatial scale, the more intense intraspecific interactions (e.g. territoriality) cause less aggregated distribution patterns among large- than small-bodied invertebrates. The species-specific interactions seem sufficiently strong to override environmental influences (e.g. water depth and sediment type). The strong linear relationship between the slope b and intercept log(a) from the power relationship is remarkably similar for all surveys providing a common slope of - 1.63 with the present sampling approach. We suggest that this relationship is an inherent characteristic of Taylor's power law, and that b as a dispersion index may be biased by e.g. sampling errors when this relationship is weak. The correlation strength between b and log(a) could therefore be envisioned as a data quality check.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Yang, Zhaoqing
Increased eutrophication and degraded water quality in estuarine and coastal waters have been a worldwide environmental concern. While it is commonly accepted that anthropogenic impact plays a major role in many emerging water quality issues, natural conditions such as restricted water circulations controlled by geometry may also substantially contribute to unfavorable water quality in certain ecosystems. To elucidate the contributions from different factors, a hydrodynamic-water quality model that integrates both physical transport and pollutant loadings is particularly warranted. A preliminary modeling study using the Environmental Fluid Dynamic Code (EFDC) is conducted to investigate hydrodynamic circulation and low dissolved oxygen (DO)more » in Hood Canal, a representative fjord in the U.S. Pacific Northwest. Because the water quality modeling work is still ongoing, this paper focuses on the progress in hydrodynamic modeling component. The hydrodynamic model has been set up using the publicly available forcing data and was calibrated against field observations or NOAA predictions for tidal elevation, current, salinity and temperature. The calibrated model was also used to estimate physical transport timescales such as residence time in the estuary. The preliminary model results demonstrate that the EFDC Hood Canal model is capable of capturing the general circulation patterns in Hood Canal, including weak tidal current and strong vertical stratification. The long residence time (i.e., on the order of 100 days for the entire estuary) also indicates that restricted water circulation could contribute to low DO in the estuary and also makes the system especially susceptible to anthropogenic disturbance, such as excess nutrient input.« less
Methane seeps along boundaries of receding glaciers in Alaska and Greenland
NASA Astrophysics Data System (ADS)
Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.
2012-12-01
Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca. 1650-1850 C.E.). Across Alaska, we found a relationship between methane stable isotopes, radiocarbon age, and distance to faults. Faults appear to allow the escape of deeper, more 14C-depleted methane to the atmosphere, whereas seeps away from faults entrained 14C-enriched methane formed in shallower sediments from microbial decomposition of younger organic matter. Additionally, we observed younger subcap methane seeps in lakes of Greenland's Sondrestrom Fjord that were associated with ice-sheet retreat since the LIA. These correlations suggest that in a warming climate, continued disintegration of glaciers, permafrost, and parts of the polar ice sheets will weaken subsurface seals and further open conduits, allowing a transient expulsion of methane currently trapped by the cryosphere cap.
Erga, Svein Rune; Haugen, Stig Bjarte; Bratbak, Gunnar; Egge, Jorun Karin; Heldal, Mikal; Mork, Kjell Arne; Norland, Svein
2017-11-20
The aim of this study was to reveal the relative content of C, N, Ca, Si, P, Mg, K, S and Fe in seston particles in Norwegian coastal water (NCW), and how it relates to biological and hydrographic processes during seasonal cycles from October 2009-March 2012. The following over all stoichiometric relationship for the time series was obtained: C 66 N 11 Si 3.4 Ca 2.3 P 1 Mg 0.73 S 0.37 K 0.35 Fe 0.30 , which is novel for marine waters. A record-breaking (187-year record) negative North Atlantic Oscillation (NAO) index caused extreme physical forcing on the Norwegian Coastal Current Water (NCCW) during the winter 2009-2010, and the inflow and upwelling of saline Atlantic water (AW) in the fjord was thus extraordinary during late spring-early summer in 2010. The element concentrations in fjord seston particles responded strongly to this convection, revealed by maximum values of all elements, except Fe, exceeding average values with 10.8 × for Ca, 9.3 for K, 5.3 for S, 5.1 for Mg, 4.6 for Si, 4.0 for P, 3.8 for C, and 3.3 for N and Fe. This indicates that the signature of the Atlantic inflow was roughly two times stronger for Ca and K than for the others, probably connected with peaks in coccolithophorids and diatoms. There is, however, 1.5 × more of Si than Ca contained in the seston, which could be due to a stronger dominance of diatoms than coccolithophorids, confirming their environmental fitness. In total our data do not indicate any severe nutrient limitation with respect to N, P and Fe, but accumulation of iron by Fe-sequestering bacteria might at times reduce the availability of the dissolved Fe-fraction. There is a high correlation between most of the measured elements, except for Ca, which together with Fe only weakly correlated with the other elements. It is to be expected that environmental alterations in NCW related to climate change will influence the seston elemental composition, but the full effect of this will be strongly dependent on the future dominance of the high pressure versus low pressure systems (i.e. NAO index), since they are key regulators for the direction of wind driven vertical convection (i.e. upwelling or downwelling). Changes in stratification, temperature, light, pH (ocean acidification), CaCO 3 concentrations (carbon pump) and availability of nutrients in the euphotic zone (biogeochemical cycling) are essential for the future dominance of coccolithophorids versus diatoms.
NASA Astrophysics Data System (ADS)
Mao, J.-D.; Tremblay, L.; Gagné, J.-P.; Kohl, S.; Rice, J.; Schmidt-Rohr, K.
2007-11-01
Detailed structural information on two humic acids extracted from two sinking particulate matter samples at a water depth of 20 m in the Saguenay Fjord (F-20-HA) and the St. Lawrence Estuary (E-20-HA) (Canada), was obtained by advanced solid-state NMR. Spectral-editing analyses provided numerous structural details rarely reported in geochemical studies. The NMR data account almost quantitatively for the elemental compositions. The two humic acids were found to be quite similar, consisting of four main structural components: peptides (ca. 39 ± 3% vs. 34 ± 3% of all C for E-20-HA and F-20-HA, respectively); aliphatic chains, 14-20 carbons long (ca. 25 ± 5% vs. 17 ± 5% of all C); aromatic structures (ca. 17 ± 2% vs. 26 ± 2% of all C); and sugar rings (14 ± 2% vs. 15 ± 2% of all C). Peptides were identified by 13C{ 14N} SPIDER NMR, which selects signals of carbons bonded to nitrogen, and by dipolar DEPT, which selects CH-group signals, in particular the NCH band of peptides. The SPIDER spectra also indicate that heterocycles constitute a significant fraction of the aromatic structures. The aliphatic (CH 2) n chains, which are highly mobile, contain at least one double bond per two chains and end in methyl groups. 1H spin diffusion NMR experiments showed that these mobile aliphatic chains are in close (<10 nm) proximity to the other structural components. A major bacterial contribution to these two samples could explain why the samples, which have different dominant organic matter sources (terrestrial vs. marine), are similar to each other as well as to degraded algae and particles from other waters. The NMR data suggest structures containing mobile lipids in close proximity to peptides and carbohydrates (e.g., peptidoglycan) as found in bacterial cell walls. Measured yields of muramic acid and D-amino acids confirmed the presence of bacterial cell wall components in the studied samples.
NASA Astrophysics Data System (ADS)
Powell, R. D.
2001-12-01
The southern Alaska margin has high coastal mountains, which coupled with temperate glaciation, result in extremely high modern erosion rates (e.g. Jaeger et al., 2001), possibly exceeding rates of orogenic uplift (Meigs and Sauber, 2000). Where measured, modern sediment yields are among the highest of any basin worldwide (Hallet et al., 1996; Elverhoi et al., 1998; Jaeger et al., 1998). In Muir Inlet, Glacier Bay, sediment yields from slowly retreating glaciers decrease logarithmically with decreasing drainage basin area (Powell, 1991), a trend also reflected in regional data synthesized in Hallet et al. (1996). Alley (1997) then hypothesized that if erosion increases with basin area then where two tributaries join, deeper erosion would ensue, which is consistent with linear erosional troughs and hanging valleys. The idea is also consistent with the general downglacier increase in water flux at the glacier bed. However over longer periods, data from seismic profiles of the Gulf of Alaska shelf, show sediment yields are nearly the same through a glacial-interglacial cycle; regional data from other glaciated basins appear to confirm that trend (Elverhoi et al., 1998). If yields are continuously high from bedrock erosion, then why are mountains not eroded to base level because erosion rates are higher than isostatic uplift? Why are trends in yields apparently different during recent retreats with decreasing basin sizes than during longer term glacial cycles? Answers to these questions may be numerous and compound; however, one possibility will be evaluated. We know there is significant modern bedrock erosion occurring during glacial retreat and that also appears to have been the case during advance. Native stories describing the last (Little Ice Age) advance in Glacier Bay describe a large amount of sediment being produced (Powell et al., 1995) indicating that significant erosion was occurring. Fjord-wall stratigraphy shows that sediment had infilled much of the Bay up to ca. 200 m above modern sea level (Goldthwait,1986) prior to the LIA. During that advance, all sediments were then eroded down to bedrock, locally up to 400-500 m below sea level (Powell and Molnia, 1989), and then dumped at the Bay entrance, the site of maximum advance Powell et al., 1995). By inference, because most sediment packages on the shelf are deposited during glacially advanced phases, they probably mostly include sediment redistributed from fjords and inner shelf with a minor component from freshly eroded mountain bedrock. The ELA, under which most erosion may occur (Meigs and Sauber, 2000), lies over fjords during glacial maxima where the glacier is probably thickest with pressure melting and melting/freezing occurring at the bed. Erosion of sediment deposited there during a retreat phase may be enhanced, as may fjord over-deepening, whereas, thinner ice over mountains is likely to be cold at the bed, limiting erosion. As the glacier retreats the ELA moves toward the mountains as may the center of erosion, which then occurs mainly on bedrock. Mountain uplift may be enhanced during interglacials when glacio-isostatic rebound occurs and increased erosion adds to the isostatic effect. Therefore, during glacial-interglacial cycles average sediment yields from a glacier may not vary significantly, but the main centers of erosion change through time as does the eroding substrate and locations of depocenters.
Consequence assessment of large rock slope failures in Norway
NASA Astrophysics Data System (ADS)
Oppikofer, Thierry; Hermanns, Reginald L.; Horton, Pascal; Sandøy, Gro; Roberts, Nicholas J.; Jaboyedoff, Michel; Böhme, Martina; Yugsi Molina, Freddy X.
2014-05-01
Steep glacially carved valleys and fjords in Norway are prone to many landslide types, including large rockslides, rockfalls, and debris flows. Large rockslides and their secondary effects (rockslide-triggered displacement waves, inundation behind landslide dams and outburst floods from failure of landslide dams) pose a significant hazard to the population living in the valleys and along the fjords shoreline. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected more than 230 unstable slopes with significant postglacial deformation. This large number necessitates prioritisation of follow-up activities, such as more detailed investigations, periodic displacement measurements, continuous monitoring and early-warning systems. Prioritisation is achieved through a hazard and risk classification system, which has been developed by a panel of international and Norwegian experts (www.ngu.no/en-gb/hm/Publications/Reports/2012/2012-029). The risk classification system combines a qualitative hazard assessment with a consequences assessment focusing on potential life losses. The hazard assessment is based on a series of nine geomorphological, engineering geological and structural criteria, as well as displacement rates, past events and other signs of activity. We present a method for consequence assessment comprising four main steps: 1. computation of the volume of the unstable rock slope; 2. run-out assessment based on the volume-dependent angle of reach (Fahrböschung) or detailed numerical run-out modelling; 3. assessment of possible displacement wave propagation and run-up based on empirical relations or modelling in 2D or 3D; and 4. estimation of the number of persons exposed to rock avalanches or displacement waves. Volume computation of an unstable rock slope is based on the sloping local base level technique, which uses a digital elevation model to create a second-order curved surface between the mapped extent of the unstable rock slope. This surface represents the possible basal sliding surface of an unstable rock slope. The elevation difference between this surface and the topographic surface estimates the volume of the unstable rock slope. A tool has been developed for the present study to adapt the curvature parameters of the computed surface to local geological and structural conditions. The obtained volume is then used to define the angle of reach of a possible rock avalanche from the unstable rock slope by using empirical derived values of angle of reach vs. volume relations. Run-out area is calculated using FlowR; the software is widely used for run-out assessment of debris flows and is adapted here for assessment of rock avalanches, including their potential to ascend opposing slopes. Under certain conditions, more sophisticated and complex numerical run-out models are also used. For rock avalanches with potential to reach a fjord or a lake the propagation and run-up area of triggered displacement waves is assessed. Empirical relations of wave run-up height as a function of rock avalanche volume and distance from impact location are derived from a national and international inventory of landslide-triggered displacement waves. These empirical relations are used in first-level hazard assessment and where necessary, followed by 2D or 3D displacement wave modelling. Finally, the population exposed in the rock avalanche run-out area and in the run-up area of a possible displacement wave is assessed taking into account different population groups: inhabitants, persons in critical infrastructure (hospitals and other emergency services), persons in schools and kindergartens, persons at work or in shops, tourists, persons on ferries and so on. Exposure levels are defined for each population group and vulnerability values are set for the rock avalanche run-out area (100%) and the run-up area of a possible displacement wave (70%). Finally, the total number of persons within the hazard area is calculated taking into account exposure and vulnerability. The method for consequence assessment is currently tested through several case studies in Norway and, thereafter, applied to all unstable rock slopes in the country to assess their risk level. Follow-up activities (detailed investigations, periodic displacement measurements or continuous monitoring and early-warning systems) can then be prioritized based on the risk level and with a standard approach for whole Norway.
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.
2011-12-01
Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.
Recent Ice thickness helicopter borne radar surveys in Patagonia
NASA Astrophysics Data System (ADS)
Rivera, Andres; Zamora, Rodrigo; Andres Uribe, Jose; Oberreuter, Jonathan; Gacitua, Guisella; Rignot, Eric
2014-05-01
The Patagonian icefields are the biggest temperate ice bodies in southern hemisphere, which have experienced important areal shrinkage and thinning in recent decades, significantly contributing to sea level rise. The main driving factor behind this retreating condition is recent decade atmospheric warming explaining higher melting rates and equilibrium line altitude upward migration. Ice dynamic is also playing an important role especially in glaciers calving into deep fjords or lakes, type of glaciers that are predominant in the Patagonian icefields. In order to better understand their ice dynamics, several recent works have measured ice velocities using feature tracking and other techniques, however, ice thickness is still barely known. In spite of several on the ground radar measurements successfully detecting several hundred of m of ice thickness at the higher plateaus, this variable remains the great missing part of the equation especially when the thickness is approximately deeper than 600 m or where the glacier surfaces are very crevassed or nearby the Equilibrium line Altitude, where on the ground measurements are logistically constrained. In order to tackle the lack of thickness data, a helicopter borne radar system was used to survey several Patagonian temperate glaciers calving into fjords (Glaciares San Rafael and Jorge Montt) or lakes (Nef, Colonia and Steffen). The radar system is comprised by a hanging bow-tie dipole antenna working at a central frequency of 20 MHz. The antenna is an aluminum structure of 7 x 5 x 1.2 m weighting near 350 kg that is hanging at 20 m below a helicopter, and is connected to the helicopter cabin by an optical fiber cable. At the antenna are installed a 3,200 Volts peak transmitter, a two channel radar receiver, and an integrated GPS registering each trace. The helicopter flying speed was kept at near 40 knots and the antenna was normally hanging at 40 m above the ice. The surveys took place along predefined tracks including several longitudinal and transversal profiles. The system was capable of measuring ice thickness in many of the surveyed tracks, where a maximum of near 800 m was detected at the higher plateau of the San Rafael glacier. Several transversal profiles showed typical U shape subglacial forms with ice thicknesses of several hundred meters. Longitudinal profiles showed rougher subglacial bottom topographies. In general the best results were obtained at glaciers having less crevassed surfaces, such as Colonia, Nef and Steffen. At tidewater calving glaciers San Rafael and Jorge Montt, where the surface topographies of the lower tongues are much more crevassed, very little bedrock returns were obtained. The scattering produced by heavily crevassed surfaces, together with the presence of meltwater at the surface, precluded radar waves penetration in many places near the calving tongues. The results are promising, but new improvements are needed to increase penetration ranges and reduce surface scattering.
Paulson, Anthony J.; Konrad, Christopher P.; Frans, Lonna M.; Noble, Marlene; Kendall, Carol; Josberger, Edward G.; Huffman, Raegan L.; Olsen, Theresa D.
2006-01-01
Hood Canal is a long (110 kilometers), deep (175 meters) and narrow (2 to 4 kilometers wide) fjord of Puget Sound in western Washington. The stratification of a less dense, fresh upper layer of the water column causes the cold, saltier lower layer of the water column to be isolated from the atmosphere in the late summer and autumn, which limits reaeration of the lower layer. In the upper layer of Hood Canal, the production of organic matter that settles and consumes dissolved oxygen in the lower layer appears to be limited by the load of dissolved inorganic nitrogen (DIN): nitrate, nitrite, and ammonia. Freshwater and saline loads of DIN to Hood Canal were estimated from available historical data. The freshwater load of DIN to the upper layer of Hood Canal, which could be taken up by phytoplankton, came mostly from surface and ground water from subbasins, which accounts for 92 percent of total load of DIN to the upper layer of Hood Canal. Although DIN in rain falling on land surfaces amounts to about one-half of the DIN entering Hood Canal from subbasins, rain falling directly on the surface of marine waters contributed only 4 percent of the load to the upper layer. Point-source discharges and subsurface flow from shallow shoreline septic systems contributed less than 4 percent of the DIN load to the upper layer. DIN in saline water flowing over the sill into Hood Canal from Admiralty Inlet was at least 17 times the total load to the upper layer of Hood Canal. In September and October 2004, field data were collected to estimate DIN loads to Lynch Cove - the most inland marine waters of Hood Canal that routinely contain low dissolved-oxygen waters. Based on measured streamflow and DIN concentrations, surface discharge was estimated to have contributed about one-fourth of DIN loads to the upper layer of Lynch Cove. Ground-water flow from subbasins was estimated to have contributed about one-half of total DIN loads to the upper layer. In autumn 2004, the relative contribution of DIN from shallow shoreline septic systems to the upper layer was higher in Lynch Cove (23 percent) than in the entire Hood Canal. Net transport of DIN into Lynch Cove by marine currents was measured during August and October 2004-a time of high biological productivity. The net transport of lower-layer water into Lynch Cove was significantly diminished relative to the flow entering Hood Canal at its entrance. Even though the net transport of saline water into the lower layer of Lynch Cove was only 119 cubic meters per second, estuarine currents between 33 and 47 m were estimated to have carried more than 35 times the total freshwater load of DIN to the upper layer from surface and ground water, shallow shoreline septic systems, and direct atmospheric rainfall. The subsurface maximums in measured turbidity, chlorophyll a, particulate organic carbon, and particulate organic nitrogen strongly suggest that the upward mixing of nitrate-rich deeper water is a limiting factor in supplying DIN to the upper layer that enhances marine productivity in Lynch Cove. The presence of phosphate in the upper layer in the absence of dissolved inorganic nitrogen also suggests that the biological productivity that leads to low dissolved-oxygen concentrations in the lower layer of Lynch Cove is limited by the supply of nitrogen rather than by phosphate loads. Although the near-shore zones of the shallow parts of Lynch Cove were sampled, a biogeochemical signal from terrestrial nitrogen was not found. Reversals in the normal estuarine circulation suggest that if the relative importance of the DIN load of freshwater terrestrial and atmospheric sources and the DIN load from transport of saline water by the estuarine circulation in controlling dissolved-oxygen concentrations in Lynch Cove is to be better understood, then the physical forces driving Hood Canal circulation must be better defined.
Extension of short-term variation study of Kangilerngata Sermia, Greenland
NASA Astrophysics Data System (ADS)
Kane, E.; Rignot, E. J.; Mouginot, J.
2017-12-01
Iceberg calving is an important but not well-understood aspect of predicting future sea level rise, mostly due to lack of observations. In this study a Gamma Portable Radar Interferometer (GPRI) was deployed for three weeks to observe short-term variations at Kangilerngata Sermia, West Greenland, with the goal of increasing observations of calving events and short-term velocity variations. A diurnal velocity cycle was measured and attributed to melt water production increasing basal lubrication. Many iceberg calving events were observed; one of which was immediately followed by a velocity increase of 35% that lasted 5 hours. We propose that this event was grounded ice and that the removal of basal drag associated with the calving allowed for acceleration of the glacier. Other calving from the region of floating ice had no effect on glacier speed. CTD data from 2008-2016 in the glacier fjord is analyzed to investigate ice-ocean interactions and the role of warm Atlantic water in glacial retreat. This work was funded by a grant from NASA Cryosphere Science and by the UC Irvine Donald Bren fund.
Icebergs and oil tankers soon to mix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartline, B.K.; Rasmussen, A.; Bindschadler, R.
1980-07-18
Independent computer models by A. Rasmussen of the U.S. Geological Survey and R. Bindschadler (N.A.S.A.) indicate that the Columbia Glacier, which fronts a fjord adjoining the Valdez shipping channel, will undergo a rapid retreat in 1982-85, which will result in calving of icebergs at rates up to 8-11 cubic km/year. The snout of the glacier is now on a shoal at 75 meter depth and backing slowly into deeper water; the models, which are based on field studies of the Columbia Glacier since 1977 and of calving glaciers in general, show that the rate of calving is proportional to themore » depth of water at the snout. According to the U.S. Coast Guard, it may be necessary to prohibit tanker traffic into Valdez during periods of maxmium calving. Storage facilities at Valdez can hold eight days worth of oil flow through the trans-Alaska pipeline at the current rate of 1.6 million bbl/day, and the pipeline could be shut down for two days without causing problems on the North Slope.« less
Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska
NASA Astrophysics Data System (ADS)
Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.
2013-12-01
Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011
A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015)
NASA Astrophysics Data System (ADS)
Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; Lhermitte, Stef; Howat, Ian; Fettweis, Xavier; van den Broeke, Michiel R.
2016-10-01
This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958-2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.
NASA Astrophysics Data System (ADS)
Løvholt, F.; Lynett, P.; Pedersen, G.
2013-06-01
Tsunamis induced by rock slides plunging into fjords constitute a severe threat to local coastal communities. The rock slide impact may give rise to highly non-linear waves in the near field, and because the wave lengths are relatively short, frequency dispersion comes into play. Fjord systems are rugged with steep slopes, and modeling non-linear dispersive waves in this environment with simultaneous run-up is demanding. We have run an operational Boussinesq-type TVD (total variation diminishing) model using different run-up formulations. Two different tests are considered, inundation on steep slopes and propagation in a trapezoidal channel. In addition, a set of Lagrangian models serves as reference models. Demanding test cases with solitary waves with amplitudes ranging from 0.1 to 0.5 were applied, and slopes were ranging from 10 to 50°. Different run-up formulations yielded clearly different accuracy and stability, and only some provided similar accuracy as the reference models. The test cases revealed that the model was prone to instabilities for large non-linearity and fine resolution. Some of the instabilities were linked with false breaking during the first positive inundation, which was not observed for the reference models. None of the models were able to handle the bore forming during drawdown, however. The instabilities are linked to short-crested undulations on the grid scale, and appear on fine resolution during inundation. As a consequence, convergence was not always obtained. It is reason to believe that the instability may be a general problem for Boussinesq models in fjords.
Behnke, Anke; Bunge, John; Barger, Kathryn; Breiner, Hans-Werner; Alla, Victoria; Stoeck, Thorsten
2006-01-01
To resolve the fine-scale architecture of anoxic protistan communities, we conducted a cultivation-independent 18S rRNA survey in the superanoxic Framvaren Fjord in Norway. We generated three clone libraries along the steep O2/H2S gradient, using the multiple-primer approach. Of 1,100 clones analyzed, 753 proved to be high-quality protistan target sequences. These sequences were grouped into 92 phylotypes, which displayed high protistan diversity in the fjord (17 major eukaryotic phyla). Only a few were closely related to known taxa. Several sequences were dissimilar to all previously described sequences and occupied a basal position in the inferred phylogenies, suggesting that the sequences recovered were derived from novel, deeply divergent eukaryotes. We detected sequence clades with evolutionary importance (for example, clades in the euglenozoa) and clades that seem to be specifically adapted to anoxic environments, challenging the hypothesis that the global dispersal of protists is uniform. Moreover, with the detection of clones affiliated with jakobid flagellates, we present evidence that primitive descendants of early eukaryotes are present in this anoxic environment. To estimate sample coverage and phylotype richness, we used parametric and nonparametric statistical methods. The results show that although our data set is one of the largest published inventories, our sample missed a substantial proportion of the protistan diversity. Nevertheless, statistical and phylogenetic analyses of the three libraries revealed the fine-scale architecture of anoxic protistan communities, which may exhibit adaptation to different environmental conditions along the O2/H2S gradient. PMID:16672511
NASA Astrophysics Data System (ADS)
Winde, Vera; Mahler, Annika; Voss, Maren; Böttcher, Michael E.
2014-05-01
In the frame of the BMBF project BIOACID II we aim for an understanding of the natural distribution and variation of isotopic composition and C-N-S stoichiometry in Fucus vesiculosus growing around the coast line of the Kiel fjord (part of the Kiel bight). Environmental conditions (aquatic chemistry, temperature, salinity) were monitored, too. Some changes in aquatic chemistry are related to stress factors like human activity (e.g., waste input) and further factors leading to specific changes in the composition of Fucus vesiculosus. Sampling was carried out at different stations at the west and east coast of the Kiel Fjord. For each sampling station the aquatic chemistry (TA, pH, salinity, d13C(DIC), main and trace elements and nutrients) as well as the composition of the Fucus organic tissues (stoichiometry and stable isotope composition of carbon, nitrogen) are analysed. The Fucus tissue was sampled in three size classes (small, medium, large). It is shown, that Fucus vesiculosus indicates clear differences in the N contents and stable isotopes between the west and the east site of the Kiel Fjord. Stable nitrogen isotope signatures in Fucus vesiculosus, are useful proxies to identify the influence factors in the Fucus habitat. From the data it is obtained that the influence of human activity (wastewater treatment plant, harbour), small stream and drainage channels, which flow from the near coastal area into the bight, leads to different Fucus vesiculosus compositions. In future work, it is intended to extend the investigation to trace element signatures to further estimate environmental impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.
2014-08-05
Oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified marine waters. Currently OMZs are expanding due to global climate change. This expansion alters marine ecosystem function and the productivity of fisheries due to habitat compression and changes in biogeochemical cycling leading to fixed nitrogen loss and greenhouse gas production. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally anoxic fjord, Saanich Inlet to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components formore » nitrification, anaerobic ammonium oxidation (anammox), denitrification and inorganic carbon fixation predominantly co-varied with abundance and distribution patterns of Thaumarchaeota, Nitrospira, Planctomycetes and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Within these groups, pathways mediating inorganic carbon fixation and nitrogen and sulfur transformations were differentially expressed across the redoxcline. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters and denitrification, sulfur-oxidation and inorganic carbon fixation pathways affiliated with SUP05 dominated suboxic and anoxic waters. Nitrite-oxidation and anammox pathways affiliated with Nitrospina and Planctomycetes respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The differential expression of these pathways under changing water column redox conditions has quantitative implications for coupled biogeochemical cycling linking different modes of inorganic carbon fixation with distributed nitrogen and sulfur-based energy metabolism extensible to coastal and open ocean OMZs.« less
36 CFR 228.80 - Operations within Misty Fjords and Admiralty Island National Monuments, Alaska.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator of utilizing such measures and the effect of these costs on the long- and short-term economic viability of the operations. (3) The authorized officer shall not require implementation of mitigating...
36 CFR 228.80 - Operations within Misty Fjords and Admiralty Island National Monuments, Alaska.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operator of utilizing such measures and the effect of these costs on the long- and short-term economic viability of the operations. (3) The authorized officer shall not require implementation of mitigating...
36 CFR 228.80 - Operations within Misty Fjords and Admiralty Island National Monuments, Alaska.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operator of utilizing such measures and the effect of these costs on the long- and short-term economic viability of the operations. (3) The authorized officer shall not require implementation of mitigating...
36 CFR 228.80 - Operations within Misty Fjords and Admiralty Island National Monuments, Alaska.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operator of utilizing such measures and the effect of these costs on the long- and short-term economic viability of the operations. (3) The authorized officer shall not require implementation of mitigating...
36 CFR 228.80 - Operations within Misty Fjords and Admiralty Island National Monuments, Alaska.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator of utilizing such measures and the effect of these costs on the long- and short-term economic viability of the operations. (3) The authorized officer shall not require implementation of mitigating...
Where on Earth...? MISR Mystery Image Quiz #3:Lofoten Islands, Norway
2001-09-26
Lofoten Islands, Norway. Norway is deeply indented by fjords, rises precipitously to high plateaus, and is united with the ocean by numerous islands. This image from NASA Terra satellite is MISR Mystery Image Quiz #2.
Workshop on Early Crustal Genesis: The World's Oldest Rocks
NASA Technical Reports Server (NTRS)
Ashwal, L. D. (Editor)
1986-01-01
Topics addressed include: a general review of Precambrain crustal evolution; geology and geochemistry of the Archean Craton in Greenland and Labrador; Precambrian crustal evolution in North and South America; and the field excursion to the Ameralik Fjord.
Bed topography of Jakobshavn Isbræ, Greenland from high-resolution gravity data
NASA Astrophysics Data System (ADS)
An, L.; Rignot, E. J.; Morlighem, M.; Paden, J. D.; Holland, D. M.
2015-12-01
Jakobshavn Isbræ (JKS) is one of the largest marine terminating outlet glaciers in Greenland, feeding a fjord about 800 m deep in the west coast. JKS sped up more than twofold since 2002 and contributed nearly 1 mm of global sea level rise during the period from 2000 to 2011. Holland et al. (2008) posit that these changes coincided with a change in ocean conditions beneath the former ice tongue, yet little is known about the depth of the glacier at its grounding line and upstream of the grounding line and the sea floor depth of the fjord is not well known either. Here, we present a new approach to infer the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line of JKS using high-resolution airborne gravity data from AirGRAV. AirGRAV data were collected in August 2012 from a helicopter platform. The data combined with radio echo sounding data, discrete point soundings in the fjord and the mass conservation approach on land ice. AirGRAV acquired a 500m spacing grid of free-air gravity data at 50 knots with sub-milligal accuracy, i.e. much higher than NASA Operation IceBridge (OIB)'s 5.2km resolution at 290 knots. We use a 3D inversion of the gravity data combining our observations and a forward modeling of the surrounding gravity field, and constrained at the boundary by radar echo soundings and point bathymetry. We reconstruct seamless bed topography at the grounding line that matches interior data and the sea floor bathymetry. The results reveal the true depth at the elbow of the terminal valley and the bed reversal in the proximity of the current grounding line. The analysis provides guidelines for future gravity survey of narrow fjords in terms of spatial resolution and gravity precision. The results also demonstrate the practicality of using high resolution gravity survey to resolve bed topography near glacier snouts, in places where radar sounding has been significantly challenged in the past. The inversion results are critical to re-interpret the recent evolution of JKS and reduce uncertainties in projecting its future contribution to sea level. This work was conducted at UCI and at Caltech's Jet Propulsion Laboratory under a contract with the Gordon and Betty More Foundation and with NASA's Cryospheric Science Program.
NASA Astrophysics Data System (ADS)
Mikkelsen, Nina; Pedersen, Torstein; dos Santos Schmidt, Thassya Christina; Falk-Petersen, Inger-Britt; Slotte, Aril
2018-04-01
Herring from two unexploited fjord populations, Lake Rossfjord (LRH, n = 100) and Balsfjord (BFH, n = 420) in northern Norway, were sampled in 2014 and 2015. Life history characteristics were analysed and compared to the oceanic Norwegian spring-spawning herring (NSSH), and other Atlantic and Pacific herring stocks. Genetic studies have shown that LRH and BFH are ancestors evolved from Pacific herring that hybridized with Atlantic herring. This study shows that both LRH and BFH mature at a relatively early age, at 2-3 years and ca. 4 years respectively, compared to ca. 5 years for NSSH. The spawning stocks of LRH and BFH consist of small fish and contain relatively few age classes. Both fjord populations have slow growth after sexual maturity; LRH has a very low asymptotic length (L∞ = 19.8 cm), while that of BFH is higher (L∞ of 28.5 cm); both these values being lower than that of NSSH (L∞ of ca. 37 cm). The somatic relative fecundity of LRH is 176.6 oocytes g- 1, while the somatic relative fecundity of recruit and repeat BFH spawners is 152.4 and 183.1 oocytes g- 1, respectively. These estimates are lower than those for NSSH and other Atlantic herring fjord populations, but comparable with other Pacific herring. Due to the smaller body sizes of the spawners in the LRH and BFH populations, absolute fecundity is much lower than in NSSH. The gonadosomatic indices of prespawning fish are similar in LRH and BFH, being slightly higher compared to the NSSH, but lower than values reported for Pacific herring. The natural mortality rates of LRH and BFH (M = 0.64 year- 1 and M = 0.76 year- 1, respectively) are much higher than in NSSH (M = 0.15 year- 1) and most other Atlantic herring populations, except the Lusterfjord herring. However, these high mortality rates are similar to those of several Pacific herring populations. It is concluded that LRH and BFH show low somatic growth and high natural mortality rate. These life history characteristics differ from those of NSSH, but are similar to some Pacific herring populations adapted to a coastal high-mortality risk environment.
NASA Astrophysics Data System (ADS)
Alves-de-Souza, Catharina; Varela, Daniel; Contreras, Cristóbal; de La Iglesia, Pablo; Fernández, Pamela; Hipp, Byron; Hernández, Cristina; Riobó, Pilar; Reguera, Beatriz; Franco, José M.; Diogène, Jorge; García, Carlos; Lagos, Néstor
2014-03-01
The fine scale vertical distribution of Dinophysis spp. and Protoceratium reticulatum (potential producers of lipophilic shellfish toxins, LSTs) and its relation with LSTs in shellfish was studied in Reloncaví fjord, a strongly stratified system in Southern Chile. Samples were taken over two years from late spring to early autumn (2007-2008 period) and from early spring to late summer (2008-2009 period). Dinophysis spp., in particular Dinophysis acuminata, were always detected, often forming thin layers in the region of the salinity driven pycnocline, with cell maxima for D. acuminata of 28.5×103 cells L-1 in March 2008 and 17.1×103 cells L-1 in November 2008. During the 2008-2009 sampling period, blooms of D. acuminata co-occurred with high densities of cryptophyceans and the ciliate Mesodinium spp. The highest levels of pectenotoxin-2 (PTX-2; 2.2 ng L-1) were found in the plankton in February 2009, associated with moderate densities of D. acuminata, Dinophysis tripos and Dinophysis subcircularis (0.1-0.6×103 cells L-1). However, only trace levels of PTX-2 were observed in bivalves at that time. Dinophysistoxin (DTX-1 and DTX-3) levels in bivalves and densities of Dinophysis spp. were not well correlated. Low DTX levels in bivalves observed during a major bloom of D. acuminata in March 2008 suggested that there is a large seasonal intraspecific variability in toxin content of Dinophysis spp. driven by changes in population structure associated with distinct LST toxin profiles in Reloncaví fjord during the study period. A heterogeneous vertical distribution was also observed for P. reticulatum, whose presence was restricted to summer months. A bloom of this species of 2.2×103 cells L-1 at 14 m depth in February 2009 was positively correlated with high concentrations of yessotoxins in bivalves (51-496 ng g-1) and plankton samples (3.2 ng L-1). Our results suggest that a review of monitoring strategies for Dinophysis spp. in strongly stratified fjord systems should be carried out. They also indicate that early warning of LST events based on Dinophysis cell numbers are not reliable for seafood control.
Ten Years of Observatory Science from Saanich Inlet on the VENUS Cabled Ocean Observatory
NASA Astrophysics Data System (ADS)
Dewey, R. K.; Tunnicliffe, V.; Macoun, P.; Round, A.
2016-02-01
The Saanich Inlet array of the VENUS cabled ocean observatory, maintained and operated by Ocean Networks Canada, was installed in February 2006, and in 2016 will have supported ten years of comprehensive interactive science. Representing the first in the present generation of cabled observing technologies, this coastal array has provided continuous high power and broadband communications to a variety of instrument platforms, hundreds of sensors, and enabled dozens of short, medium, and long-term studies. Saanich Inlet is a protected fjord with limited tidal action, resulting in an extremely productive environment, with strong seasonal chemical variations driven by episodic deep water renewal events and oxygen reduction processes. The breadth of the research has included microbial and benthic community dynamics, biogeochemical cycles, forensics, quantifying inter-annual variations, benthic-pelagic coupling, sensor testing, plankton dynamics, and bio-turbulence. Observatory measurements include core water properties (CTD & O2) and water-column echo-sounder records, as well as experiment-oriented deployments utilizing cameras, Gliders, Dopplers, hydrophones, and a variety of biogeochemical sensors. With a recently installed Buoy Profiler System for monitoring the entire water column, community plans continue with a dedicated Redox experiment through the 2016-17 seasons. Highlights from the dozens of research papers and theses will be presented to demonstrate the achievements enabled by a comprehensive coastal cabled observing system.
The Intensity, Directionality, and Statistics of Underwater Noise From Melting Icebergs
NASA Astrophysics Data System (ADS)
Glowacki, Oskar; Deane, Grant B.; Moskalik, Mateusz
2018-05-01
Freshwater fluxes from melting icebergs and glaciers are important contributors to both sea level rise and anomalies of seawater salinity in polar regions. However, the hazards encountered close to icebergs and glaciers make it difficult to quantify their melt rates directly, motivating the development of cryoacoustics as a remote sensing technique. Recent studies have shown a qualitative link between ice melting and the accompanying underwater noise, but the properties of this signal remain poorly understood. Here we examine the intensity, directionality, and temporal statistics of the underwater noise radiated by melting icebergs in Hornsund Fjord, Svalbard, using a three-element acoustic array. We present the first estimate of noise energy per unit area associated with iceberg melt and demonstrate its qualitative dependence on exposure to surface current. Finally, we show that the analysis of noise directionality and statistics makes it possible to distinguish iceberg melt from the glacier terminus melt.
Effect of a sheared flow on iceberg motion and melting
NASA Astrophysics Data System (ADS)
FitzMaurice, A.; Straneo, F.; Cenedese, C.; Andres, M.
2016-12-01
Icebergs account for approximately half the freshwater flux into the ocean from the Greenland and Antarctic ice sheets and play a major role in the distribution of meltwater into the ocean. Global climate models distribute this freshwater by parameterizing iceberg motion and melt, but these parameterizations are presently informed by limited observations. Here we present a record of speed and draft for 90 icebergs from Sermilik Fjord, southeastern Greenland, collected in conjunction with wind and ocean velocity data over an 8 month period. It is shown that icebergs subject to strongly sheared flows predominantly move with the vertical average of the ocean currents. If, as typical in iceberg parameterizations, only the surface ocean velocity is taken into account, iceberg speed and basal melt may have errors in excess of 60%. These results emphasize the need for parameterizations to consider ocean properties over the entire iceberg draft.
Seasonal Rates of Methane Oxidation in Anoxic Marine Sediments
Iversen, Niels; Blackburn, T. Henry
1981-01-01
Methane concentrations and rates of methane oxidation were measured in intact sediment cores from an inshore marine sediment at Jutland, Denmark. The rates of methane oxidation, determined by the appearance of 14CO2 from injected 14CH4, varied with sediment depth and season. Most methane oxidation was anoxic, but oxygen may have contributed to methane oxidation at the sediment surface. Cumulative rates (0- to 12-cm depth) for methane oxidation at Kysing Fjord were 3.34, 3.48, 8.60, and 17.04 μmol m−2 day−1 for April (4°C), May (13°C), July (17°C), and August (21°C), respectively. If all of the methane was oxidized by sulfate, it would account for only 0.01 to 0.06% of the sulfate reduction. The data indicate that methane was produced, in addition to being oxidized, in the 0- to 18-cm sediment stratum. PMID:16345784
Koski, Randolph A.; Munk, LeeAnn
2007-01-01
In the early 20th century, approximately 6 million metric tons of copper ore were mined from numerous deposits located along the shorelines of fjords and islands in Prince William Sound, Alaska. At the Beatson, Ellamar, and Threeman mine sites (fig. 1), rocks containing Fe, Cu, Zn, and Pb sulfide minerals are exposed to chemical weathering in abandoned mine workings and remnant waste piles that extend into the littoral zone. Field investigations in 2003 and 2005 as well as analytical data for rock, sediment, precipitate, water, and biological samples reveal that the oxidation of sulfides at these sites is resulting in the generation of acid mine drainage and the transport of metals into the marine environment (Koski and others, 2008; Stillings and others, 2008). At the Ellamar and Threeman sites, plumes of acidic and metal-enriched water are flowing through beach gravels into the shallow offshore environment. Interstitial water samples collected from beach sediment at Ellamar have low pH levels (to ~3) and high concentrations of metals including iron, copper, zinc, cobalt, lead, and mercury. The abundant precipitation of the iron sulfate mineral jarosite in the Ellamar gravels also signifies a low-pH environment. At the Beatson mine site (the largest copper mine in the region) seeps containing iron-rich microbial precipitates drain into the intertidal zone below mine dumps (Foster and others, 2008). A stream flowing down to the shoreline from underground mine workings at Beatson has near-neutral pH, but elevated levels of zinc, copper, and lead (Stillings and others, 2008). Offshore sediment samples at Beatson are enriched in these metals. Preliminary chemical data for tissue from marine mussels collected near the Ellamar, Threeman, and Beatson sites reveal elevated levels of copper, zinc, and lead compared to tissue in mussels from other locations in Prince William Sound (Koski and others, 2008). Three papers presenting results of this ongoing investigation of sulfide oxidation in Prince William Sound are in press. Koski and others (2008) provide an overview of rock alteration, surface water chemistry, and the distribution of metals at the Ellamar, Threeman, and Beatson mine sites. Based on a 60-day, stream-discharge experiment at Beatson in 2005, Stillings and others (2008) analyze changes in water chemistry during storm events and the flux of metals to the shoreline. Foster and others (2008) investigate the biomass and diversity of microbial communities present in surface waters (streams, seeps, pore waters) using fatty acid methyl ester (FAMES) data and principal component analysis. The publications cited above contain a subset of the total chemical data for rock, sediment, biological, precipitate, and water samples collected from the three mine sites in 2003 and 2005. The purpose of this report is the presentation of complete chemical data sets for all samples collected during the two field periods of fieldwork. Data for a small number of samples collected at two other mines (Schlosser and Fidalgo, fig. 1), visited in 2003, are also included in the tables.
Koski, Randolph A.; Munk, LeeAnn
2007-01-01
Introduction In the early 20th century, approximately 6 million metric tons of copper ore were mined from numerous deposits located along the shorelines of fjords and islands in Prince William Sound, Alaska. At the Beatson, Ellamar, and Threeman mine sites (fig. 1), rocks containing Fe, Cu, Zn, and Pb sulfide minerals are exposed to chemical weathering in abandoned mine workings and remnant waste piles that extend into the littoral zone. Field investigations in 2003 and 2005 as well as analytical data for rock, sediment, precipitate, water, and biological samples reveal that the oxidation of sulfides at these sites is resulting in the generation of acid mine drainage and the transport of metals into the marine environment (Koski and others, 2008; Stillings and others, 2008). At the Ellamar and Threeman sites, plumes of acidic and metal-enriched water are flowing through beach gravels into the shallow offshore environment. Interstitial water samples collected from beach sediment at Ellamar have low pH levels (to ~3) and high concentrations of metals including iron, copper, zinc, cobalt, lead, and mercury. The abundant precipitation of the iron sulfate mineral jarosite in the Ellamar gravels also signifies a low-pH environment. At the Beatson mine site (the largest copper mine in the region) seeps containing iron-rich microbial precipitates drain into the intertidal zone below mine dumps (Foster and others, 2008). A stream flowing down to the shoreline from underground mine workings at Beatson has near-neutral pH, but elevated levels of zinc, copper, and lead (Stillings and others, 2008). Offshore sediment samples at Beatson are enriched in these metals. Preliminary chemical data for tissue from marine mussels collected near the Ellamar, Threeman, and Beatson sites reveal elevated levels of copper, zinc, and lead compared to tissue in mussels from other locations in Prince William Sound (Koski and others, 2008). Three papers presenting results of this ongoing investigation of sulfide oxidation in Prince William Sound are in press. Koski and others (2008) provide an overview of rock alteration, surface water chemistry, and the distribution of metals at the Ellamar, Threeman, and Beatson mine sites. Based on a 60-day, stream-discharge experiment at Beatson in 2005, Stillings and others (2008) analyze changes in water chemistry during storm events and the flux of metals to the shoreline. Foster and others (2008) investigate the biomass and diversity of microbial communities present in surface waters (streams, seeps, pore waters) using fatty acid methyl ester (FAMES) data and principal component analysis. The publications cited above contain a subset of the total chemical data for rock, sediment, biological, precipitate, and water samples collected from the three mine sites in 2003 and 2005. The purpose of this report is the presentation of complete chemical data sets for all samples collected during the two field periods of fieldwork. Data for a small number of samples collected at two other mines (Schlosser and Fidalgo, fig. 1), visited in 2003, are also included in the tables.
Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.
2016-01-01
The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.
NASA Astrophysics Data System (ADS)
McFall, Brian C.; Mohammed, Fahad; Fritz, Hermann M.
2013-04-01
The Vajont river is an affluent of the Piave River located in the Dolomite Alps of the Veneto Region, about 100km north of Venice. A 265.5 m high double curved arch dam was built across a V-shaped gorge creating a reservoir with a maximum storage capacity of 0.169 km3. A maximum water depth of 250 m was reached by early September 1963 during the third filling attempt of the reservoir, but as creeping on the southern flank increased the third reservoir draw down was initiated. By October 9, 1963 the water depth was lowered to 240m as the southern flank of Vajont reservoir catastrophically collapsed on a length of more than 2km. Collapse occurred during reservoir drawdown in a final attempt to reduce flank creeping and the reservoir was only about two-thirds full. The partially submerged rockslide with a volume of 0.24 km3 penetrated into the reservoir at velocities up to 30 m/s. The wave runup in direct prolongation of slide axis reached the lowest houses of Casso 270m above reservoir level before impact corresponding to 245m above dam crest (Müller, 1964). The rockslide deposit came within 50m of the left abutment and towers up to 140m above the dam crest. The lateral spreading of the surge overtopped the dam crest by more than 100m. The thin arch dam withstood the overtopping and sustained no damage to the structural shell and the abutments. The flood wave dropped more than 500m down the Vajont gorge and into the Piave Valley causing utter destruction to the villages of Longarone, Pirago, Villanova, Rivalta and Fae. More than 2000 persons perished. The Vajont disaster highlights an extreme landslide tsunami event in the narrowly confined water body of a reservoir. Landslide tsunami hazards exist even in areas not exposed to tectonic tsunamis. Source and runup scenarios based on real world events are physically modeled in the three dimensional NEES tsunami wave basin (TWB) at Oregon State University (OSU). A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The LTG consists of a sliding box filled with up to 1,350 kg of naturally rounded river gravel which is accelerated by means of four pneumatic pistons down the 2H: 1V slope, launching the granular landslide towards the water at velocities of up to 5 m/s. Topographical and bathymetric features can greatly affect wave characteristics and runup heights. Landslide tsunamis are studied in different topographic and bathymetric configurations: far field propagation and runup, a narrow fjord and curved headland configurations, and a conical island setting representing landslides off an island or a volcanic flank collapse. Water surface elevations were measured using an array of resistance wave gauges. The granulate landslide shape and front velocity were measured using above and underwater cameras. Three-dimensional landslide surfaces with surface velocities were reconstruction using a stereo particle image velocimetry (PIV) setup. The speckled pattern on the surface of the granular landslide allows for cross-correlation based PIV analysis. Wave runup was measured with resistance wave gauges along the slope and verified with video image processing. The measured landslide and tsunami data serve to validate and advance 3-dimensional numerical landslide tsunami and prediction models.
Contrasting controls of pH climatology in an open coast versus urban fjord estuary
Interactions of physical, chemical, and biological processes in the coastal zone can result in a highly variable carbonate chemistry regime. This characteristic variability in coastal areas has garnered renewed interest within the context of ocean acidification, yet the relative...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Bicycles. 13.1324 Section 13.1324 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed Area...
36 CFR 13.1326 - Snowmachines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Snowmachines. 13.1326 Section 13.1326 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Camping. 13.1320 Section 13.1320 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed Area...
Catarino, Ana I; Cabral, Henrique N; Peeters, Kris; Pernet, Philippe; Punjabi, Usha; Dubois, Philippe
2008-07-01
The present study evaluated the effects of field metal contamination on sperm motility and the RNA/DNA ratio in echinoderms. Populations of Asterias rubens and Echinus acutus that occur naturally along a contamination gradient of sediments by cadmium, copper, lead, and zinc in a Norwegian fjord (the Sørfjord) were studied. Sperm motility, a measure of sperm quality, was quantified using a computer-assisted sperm analysis system. The RNA/DNA ratio, a measure of protein synthesis, was assessed by a one-dye (ethidium bromide)/one-enzyme (RNase), 96-well microplate fluorometric assay. Although both species accumulate metals at high concentrations, neither sperm motility parameters in A. rubens nor the RNA/DNA ratio in both species were affected. The Sørfjord is still one of the most metal-contaminated marine sites in Europe, but even so, populations of A. rubens and E. acutus are able to endure under these conditions.
Lee, H.J.; Haeussler, P.J.; Kayen, R.E.; Hampton, M.A.; Locat, Jacques; Suleimani, E.; Alexander, C.R.
2007-01-01
The M9.2 Alaska earthquake of 1964 caused major damage to the port facilities and town of Valdez, most of it the result of submarine landslide and the consequent tsunamis. Recent bathymetric multibeam surveys, high-resolution subbottom profiles, and dated sediment cores in Port Valdez supply new information about the morphology and character of the landslide deposits. A comparison of pre- and post-earthquake bathymetry provides an estimate of the net volume of landslide debris deposited in the basin and the volume of sediment removed from the source region. Landslide features include (1) large blocks (up to 40-m high) near the location of the greatest tsunamiwave runup (~50 m), (2) two debris lobes associated with the blocks, (3) a series of gullies, channels and talus, near the fjord-head delta and badly damaged old town of Valdez, and (4) the front of a debris lobe that flowed half-way down the fjord from the east end.
Egg buoyancy variability in local populations of Atlantic cod (Gadus morhua).
Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Agnalt, Ann Lisbeth; Thorsen, Anders; Sundby, Svein
2012-01-01
Previous studies have found strong evidences for Atlantic cod ( Gadus morhua ) egg retention in fjords, which are caused by the combination of vertical salinity structure, estuarine circulation, and egg specific gravity, supporting small-scaled geographical differentiations of local populations. Here, we assess the variability in egg specific gravity for selected local populations of this species, that is, two fjord-spawning populations and one coastal-spawning population from Northern Norway (66-71°N/10-25°E). Eggs were naturally spawned by raised broodstocks (March to April 2009), and egg specific gravity was measured by a density-gradient column. The phenotype of egg specific gravity was similar among the three local populations. However, the associated variability was greater at the individual level than at the population level. The noted gradual decrease in specific gravity from gastrulation to hatching with an increase just before hatching could be a generic pattern in pelagic marine fish eggs. This study provides needed input to adequately understand and model fish egg dispersal.
Multifrequency acoustic observations of zooplankton in Knight Inlet, B.C
NASA Astrophysics Data System (ADS)
Trevorrow, Mark V.; Mackas, David L.; Benfield, Mark C.
2004-05-01
A collaborative investigation of midwater zooplankton aggregations in a coastal fjord was conducted in November 2002. Midwater aggregations of zooplankton in a coastal fjord were sampled and mapped using a calibrated, three-frequency (38, 120, and 200 kHz) vessel-based echo-sounder system, a multinet towed zooplankton net (BIONESS), and a high-resolution in situ camera system (ZOOVIS). Dense daytime layers of euphausiids and amphipods near 70- to 90-m depth were found in the lower reaches of the inlet, especially concentrated by tidal flows around a sill which rises above the layer. Quantitative euphausiid and amphipod backscattering measurements, combined with in situ species, size, and abundance estimates, were found to agree closely with recent size- and orientation-averaged fluid-cylinder scattering models produced by Stanton et al. Also, in situ scattering measurements of physonect siphonophores were found to have a much stronger low-frequency (38 kHz) scattering strength, in agreement with a simple bubble scattering model. [Work supported by Dr. J. Eckman, ONR code 322BC.
Monitoring of a steep rockfall area experiencing fast displacements in Kåfjord, Northern Norway
NASA Astrophysics Data System (ADS)
Dreiås Majala, Gudrun; Harald Blikra, Lars; Skrede, Ingrid; Kristensen, Lene
2016-04-01
An unstable rockfall area in Kåfjord, Northern Norway, was recognized during periodic monitoring campaigns in July and early September 2015. The LiSALab ground based Interferometric Synthethic Aperture Radar (GB InSAR) from Ellegi were used. A relatively sharply defined steep area of 1200 m2 (6.000 - 12.000 m3) was documented to be in movement. Norwegian Water Resources and Energy Directorate (NVE) was at this point performing mitigation work in terms of an embarkment within the rockfall run-out area. The monitoring system was reinstalled and adjusted to perform continuous monitoring with an early-warning aim. The section for rockslide management in NVE was responsible for the monitoring and the warning to the municipality and Police. The displacements increased from about 1 mm/day in July to 3 cm/day in mid September. People were evalcuated due to increased velocities the 16th of September. The displacements continued to increase in several stages, and with a distinct accelleration the 2nd of October. The velocity peaked in a short window to more than 200 cm/day, and it ended with a partly frontal and sideway collapse of the unstable area. However, large parts of the area stabilized again, and the run-out lengths from the small rockfalls were limited. The GB InSAR system operated exceptionally well during the event, and were able to follow continuously the displacements during the accelleration stage until collapse as the processing time window was frequently adjusted to the changes in velocity. We were also able to follow inidividual rockfalls from the images - primarily as the rockfall impact points on the slope below showed up clearly on the radar images. The area continued to stabilize due to falling temperatures, and the mitigation work were finished during the fall. The displacements seem to be correlated to the increasing temperatures in late summer and precipitation events.
Ylitalo, G M; Matkin, C O; Buzitis, J; Krahn, M M; Jones, L L; Rowles, T; Stein, J E
2001-12-17
Certain populations of killer whales (Orcinus orca) have been extensively studied over the past 30 years, including populations that use Puget Sound, WA, the inside waters of British Columbia, Southeastern Alaska and Kenai Fjords/Prince William Sound, Alaska. Two eco-types of killer whales, 'transient' and 'resident', occur in all of these regions. These eco-types are genetically distinct and differ in various aspects of morphology, vocalization patterns, diet and habitat use. Various genetic and photo-identification studies of eastern North Pacific killer whales have provided information on the male-female composition of most of these resident pods and transient groups, as well as the approximate ages, reproductive status and putative recruitment order (birth order) of the individual whales. Biopsy blubber samples of free-ranging resident and transient killer whales from the Kenai Fjords/Prince William Sound, AK region were acquired during the 1994-1999 field seasons and analyzed for selected organochlorines (OCs), including dioxin-like CB congeners and DDTs. Concentrations of OCs in transient killer whales (marine mammal-eating) were much higher than those found in resident animals (fish-eating) apparently due to differences in diets of these two killer whale eco-types. Certain life-history parameters such as sex, age and reproductive status also influenced the concentrations of OCs in the Alaskan killer whales. Reproductive female whales contained much lower levels of OCs than sexually immature whales or mature male animals in the same age class likely due to transfer of OCs from the female to her offspring during gestation and lactation. Recruitment order also influenced the concentrations of OCs in the Alaskan killer whales. In adult male residents, first-recruited whales contained much higher OC concentrations than those measured in non-first-recruited (e.g. second recruited, third recruited) resident animals in the same age group. This study provides baseline OC data for free ranging Alaskan killer whales for which there is little contaminant information.
Camus, L; Birkely, S R; Jones, M B; Børseth, J F; Grøsvik, B E; Gulliksen, B; Lønne, O J; Regoli, F; Depledge, M H
2003-06-01
Expanding industrial activity (notably oil and gas exploration) in the Arctic requires assessment of the potential impact of chemicals on marine organisms living in seawater at low temperature. The bivalve Mya truncata is common in Svalbard fjord (Norway) where it experiences low temperature throughout the year. To measure the impact of polycyclic aromatic hydrocarbons (PAH) on M. truncata, the responses of three biomarkers [total oxyradical scavenging capacity-assay (TOSC), plasma membrane stability of haemocytes and respiration rates] were investigated from bivalves exposed to sediment contaminated with a PAH mixture (crude oil). After two weeks of exposure to the contaminated sediment, TOSC showed no change. The high TOSC value (4010+/-1339 unit mg(-1) protein) of Mya truncata (control group) is thought to protect biomolecules with a low turnover rate efficiently in a low food availability environment. In the exposed bivalves, the haemocyte cellular membranes were significantly destabilised compared with controls (P<0.05). Respiration rate of control and PAH-exposed individuals (0.055+/-0.020 mg O(2) dw(-1) h(-1)) was similar and relatively low as is typical for polar bivalves, reflecting a strategy to minimise energy expenditure to cope with 9 months of starvation. Bioaccumulation of PAH by M. truncata was also low, due probably to a combination of low metabolic rate and reduced solubility of the oil compounds at low temperature. Data indicated an uptake of mainly low molecular weight compounds (two and three ring molecules). A good correlation of logBAF(lipid) (bioaccumulation factor) and logK(ow) (octanol/water partitioning coefficient) was shown (r(2)=0.87). Tissue sensitivity and/or functional differences (digestive gland vs. haemocytes), PAH uptake route (dietary vs. gills), the low metabolic rate of M. truncata and the low environmental temperature (reducing the bioavailability of PAH) are factors that help explain these findings.
Exploration of the Climate Change Frontier in Polar Regions at the Land Ice-Ocean Boundary.
NASA Astrophysics Data System (ADS)
Rignot, E. J.
2014-12-01
Ice sheets are the largest contributors to sea level rise at present, and responsible for the largest uncertainty in sea level projections. Ice sheets raised sea level 5 m per century 13.5 kyr ago during one period of rapid change. Leading regions for future rapid changes include the marine-based, retrograde bed parts of Greenland (north center and east), West Antarctica (Amundsen Sea), and East Antarctica (Filchner basin and Wilkes Land). Fast changes require an increase in ice melt from a warmer ocean and an increase in iceberg calving. Our understanding of both processes remains limited due to a lack of basic observations. Understanding ocean forcing requires observations on the continental shelf, along bays and glacial fjords and at ice-ocean boundaries, beneath kilometers of ice (Antarctica) or at near-vertical calving cliffs (Greenland), of ocean temperature and sea floor bathymetry. Where such observations exist, the sea floor is much deeper than anticipated because of the carving of deep channels by multiple glacier advances. Warm subsurface waters penetrate throughout the Amundsen Sea Embayment of West Antarctica, the southeast and probably the entire west coasts of Greenland. In Greenland, discharge of subglacial water from surface runoff at the glacier grounding line increases ice melting by the ocean even if the ocean temperature remains the same. Near ice-ocean boundaries, satellite observations are challenged, airborne observations and field surveys are limited, so advanced robotic techniques for cold, deep, remote environments are ultimately required in combination with advanced numerical modeling techniques. Until such technological advances take place and advanced networks are put in place, it is critical to conduct boat surveys, install moorings, and conduct extensive airborne campaigns (for instance, gravity-derived bathymetry and air-dropped CTDs), some of which is already taking place. In the meantime, projections of ice sheet evolution in a warmer climate will remain highly conservative and perhaps misleading. Furthermore, as glaciers destabilize, iceberg calving will take over. Calving depends on the height of the calving cliff, the fracturing of ice near the ice front by strain rates or water; but the jury is also out about defining a universal calving law.
36 CFR 13.1308 - Harding Icefield Trail.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Harding Icefield Trail. 13.1308 Section 13.1308 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Pets. 13.1310 Section 13.1310 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets...
NASA Astrophysics Data System (ADS)
Zapata-Hernández, Germán; Sellanes, Javier; Mayr, Christoph; Muñoz, Práxedes
2014-12-01
Using C and N stable isotopes we analyzed different trophic aspects of the benthic fauna at two sites in the Comau fjord: one with presence of venting of chemically reducing fluids and extensive patches of bacterial mats (XH: X-Huinay), and one control site (PG: Punta Gruesa) with a typical fjord benthic habitat. Due to the widespread presence of such microbial patches in the fjord and their recognized trophic role in reducing environments, we hypothesize that these microbial communities could be contributing to the assimilated food of consumers and transferring carbon into high trophic levels in the food web. Food sources in the area included macroalgae with a wide range of δ13C values (-34.7 to -11.9‰), particulate organic matter (POM, δ13C = -20.1‰), terrestrial organic matter (TOM, δ13C = -32.3‰ to -27.9‰) and chemosynthetic filamentous bacteria (δ13C = ∼-33‰). At both sites, fauna depicted typical values indicating photosynthetic production as a main food source (>-20‰). However, at XH selected taxa reported lower δ13C values (e.g. -26.5‰ in Nacella deaurata), suggesting a partial use of chemosynthetic production. Furthermore, enhanced variability at this site in δ13C values of the polyplacophoran Chiton magnificus, the limpet Fissurella picta and the tanaid Zeuxoides sp. may also be responding to the use of a wider scope of primary food sources. Trophic position estimates suggest three trophic levels of consumers at both sites. However, low δ15N values in some grazer and suspension-feeder species suggest that these taxa could be using other sources still to be identified (e.g. bacterial films, microalgae and organic particles of small size-fractions). Furthermore, between-site comparisons of isotopic niche width measurements in some trophic guilds indicate that grazers from XH have more heterogenic trophic niches than at PG (measured as mean distance to centroid and standard deviation of nearest neighbor distance). This last could be ascribed to the utilization of a mixture of photosynthetic and chemosynthetic carbon sources. In addition, corrected standard ellipses area (SEAc) values in suspension-feeders and carnivores at both sites suggest a similar magnitude of exploitation of food sources. However, grazers from XH have a greater expansion of their isotopic niche (SEAc), probably explained by the presence of species with low δ13C and δ15N values, and directly associated to chemosynthetic carbon incorporation.
NASA Astrophysics Data System (ADS)
George, D. L.; Iverson, R. M.; Cannon, C. M.
2016-12-01
Landslide-generated tsunamis pose significant hazards to coastal communities and infrastructure, but developing models to assess these hazards presents challenges beyond those confronted when modeling seismically generated tsunamis. We present a new methodology in which our depth-averaged two-phase model D-Claw (Proc. Roy. Soc. A, 2014, doi: 10.1098/rspa.2013.0819 and doi:10.1098/rspa.2013.0820) is used to simulate all stages of landslide dynamics and subsequent tsunami generation and propagation. D-Claw was developed to simulate landslides and debris-flows, but if granular solids are absent, then the D-Claw equations reduce to the shallow-water equations commonly used to model tsunamis. Because the model describes the evolution of solid and fluid volume fractions, it treats both landslides and tsunamis as special cases of a more general class of phenomena, and the landslide and tsunami can be simulated as a single-layer continuum with spatially and temporally evolving solid-grain concentrations. This seamless approach accommodates wave generation via mass displacement and longitudinal momentum transfer, the dominant mechanisms producing impulse waves when large subaerial landslides impact relatively shallow bodies of water. To test our methodology, we used D-Claw to model a large subaerial landslide and resulting tsunami that occurred on October, 17, 2015, in Taan Fjord near the terminus of Tyndall Glacier, Alaska. The estimated landslide volume derived from radiated long-period seismicity (C. Stark (2015), Abstract EP51D-08, AGU Fall Meeting) was about 70-80 million cubic meters. Guided by satellite imagery and this volume estimate, we inferred an approximate landslide basal slip surface, and we used material property values identical to those used in our previous modeling of the 2014 Oso, Washington, landslide. With these inputs the modeled tsunami inundation patterns on shorelines compare well with observations derived from satellite imagery.
Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter.
Last, Kim S; Hobbs, Laura; Berge, Jørgen; Brierley, Andrew S; Cottier, Finlo
2016-01-25
In extreme high-latitude marine environments that are without solar illumination in winter, light-mediated patterns of biological migration have historically been considered non-existent [1]. However, diel vertical migration (DVM) of zooplankton has been shown to occur even during the darkest part of the polar night, when illumination levels are exceptionally low [2, 3]. This paradox is, as yet, unexplained. Here, we present evidence of an unexpected uniform behavior across the entire Arctic, in fjord, shelf, slope and open sea, where vertical migrations of zooplankton are driven by lunar illumination. A shift from solar-day (24-hr period) to lunar-day (24.8-hr period) vertical migration takes place in winter when the moon rises above the horizon. Further, mass sinking of zooplankton from the surface waters and accumulation at a depth of ∼50 m occurs every 29.5 days in winter, coincident with the periods of full moon. Moonlight may enable predation of zooplankton by carnivorous zooplankters, fish, and birds now known to feed during the polar night [4]. Although primary production is almost nil at this time, lunar vertical migration (LVM) may facilitate monthly pulses of carbon remineralization, as they occur continuously in illuminated mesopelagic systems [5], due to community respiration of carnivorous and detritivorous zooplankton. The extent of LVM during the winter suggests that the behavior is highly conserved and adaptive and therefore needs to be considered as "baseline" zooplankton activity in a changing Arctic ocean [6-9]. VIDEO ABSTRACT. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Coupled Gravity and Elevation Measurements of Ice Sheet Mass Change
NASA Technical Reports Server (NTRS)
Jezek, K. C.
2005-01-01
We measured surface gravity and position at ten locations about two glaciological measurement networks located on the South-central Greenland Ice during June 2004. Six of the individual sites of the first network were occupied the previous year. At the repeat sites we were able to measure annual accumulation rate and surface displacement by referencing measurements to aluminum poles left in the firn the previous year. We occupied 4 additional sites at a second measurement network for the first time since initial observations were last made at the network in 1981. At each individual site, we operated a GPS unit for 90 minutes - the unit was operated simultaneously with a base station unit in Sondrestrom Fjord so as to enable differential, post-processing of the data. We installed an aluminum, accumulation-rate-pole at each site. The base section of the pole also served as the mount for the GPS antenna. A new, Scintrex gravimeter was used at each site and relative gravity measurements were tied to the network of absolute gravity stations in Sondrestrom. We measured snow physical properties in two shallow pits. This report summarizes our observations and data analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Pets. 13.1310 Section 13.1310... SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets. (a) Pets are prohibited— (1) In the Exit Glacier Developed Area except in the parking lot, on the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Pets. 13.1310 Section 13.1310... SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets. (a) Pets are prohibited— (1) In the Exit Glacier Developed Area except in the parking lot, on the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Pets. 13.1310 Section 13.1310... SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets. (a) Pets are prohibited— (1) In the Exit Glacier Developed Area except in the parking lot, on the...
36 CFR 13.1312 - Climbing and walking on Exit Glacier.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Climbing and walking on Exit Glacier. 13.1312 Section 13.1312 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park...
36 CFR 13.1306 - Public use cabins.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13...
36 CFR 13.1318 - Location of the EGDA.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Location of the EGDA. 13.1318 Section 13.1318 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...
36 CFR 13.1316 - Commercial transport of passengers by motor vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... passengers by motor vehicles. 13.1316 Section 13.1316 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1316 Commercial transport of passengers by motor vehicles. Commercial...
36 CFR 13.1328 - EGDA closures and restrictions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false EGDA closures and restrictions. 13.1328 Section 13.1328 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit...
36 CFR 13.1304 - Ice fall hazard zones.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General...
36 CFR 13.1318 - Location of the EGDA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed... boundary to Exit Glacier Campground Entrance Road, all park areas within 350 meters (383 yards) of the centerline of the Exit Glacier Road; (2) From Exit Glacier Campground Entrance Road to the end of the main...
36 CFR 13.1318 - Location of the EGDA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed... boundary to Exit Glacier Campground Entrance Road, all park areas within 350 meters (383 yards) of the centerline of the Exit Glacier Road; (2) From Exit Glacier Campground Entrance Road to the end of the main...
36 CFR 13.1318 - Location of the EGDA.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed... boundary to Exit Glacier Campground Entrance Road, all park areas within 350 meters (383 yards) of the centerline of the Exit Glacier Road; (2) From Exit Glacier Campground Entrance Road to the end of the main...
NASA Astrophysics Data System (ADS)
Eregno, Fasil Ejigu; Tryland, Ingun; Tjomsland, Torulv; Kempa, Magdalena; Heistad, Arve
2018-06-01
Microbial contamination of recreational beaches is often at its worst after heavy rainfall events due to storm floods that carry fecal matter and other pollutants from the watershed. Similarly, overflows of untreated sewage from combined sewerage systems may discharge directly into coastal water or via rivers and streams. In order to understand the effect of rainfall events, wind-directions and tides on the recreational water quality, GEMSS, an integrated 3D hydrodynamic model was applied to assess the spreading of Escherichia coli (E. coli) at the Sandvika beaches, located in the Oslo fjord. The model was also used to theoretically investigate the effect of discharges from septic tanks from boats on the water quality at local beaches. The model make use of microbial decay rate as the main input representing the survival of microbial pathogens in the ocean, which vary widely depending on the type of pathogen and environmental stress. The predicted beach water quality was validated against observed data after a heavy rainfall event using Nash-Sutcliffe coefficient (E) and the overall result indicated that the model performed quite well and the simulation was in - good agreement with the observed E. coli concentrations for all beaches. The result of this study indicated that: 1) the bathing water quality was poor according to the EU bathing water directive up to two days after the heavy rainfall event depending on the location of the beach site. 2) The discharge from a boat at 300-meter distance to the beaches slightly increased the E. coli levels at the beaches. 3) The spreading of microbial pathogens from its source to the different beaches depended on the wind speed and the wind direction.
Geoengineering Outlet Glaciers and Ice Streams
NASA Astrophysics Data System (ADS)
Wolovick, Michael
2017-04-01
Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting of ice shelves and marine terminated glaciers. This warm water resides offshore at depth and accesses the grounding line through deep but narrow troughs and fjords. Here, we investigate the possibility of blocking warm water transport through these choke points with an artificial sill. Using a simple width-averaged model of ice stream flow coupled to a buoyant-plume model of submarine melt, we find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing outlet glaciers and ice-shelf cavities. Glaciers with a floating shelf exhibit a strong response to the presence of the artificial sill regardless of our choice of calving law, while tidewater glaciers require a strong linkage between submarine melt and iceberg calving for the artificial sill to have an effect. As a result of this difference and as a result of differing degrees of overdeepening in the basal topography, Antarctica and Greenland present very different societal cost-benefit analyses. Intervention in Greenland would be low-cost and low-reward: the volume of the artificial sill is comparable to existing large public works projects such as the Dubai Islands or the Suez Canal, but the magnitude of averted sea-level rise is small, the success of the intervention depends on the choice of calving law, and the glaciers return to their non-geoengineered trajectories within one to two centuries. Intervention in Antarctica, on the other hand, would be high-cost and high-reward: the volume of the artificial sill is one to two orders of magnitude greater, but the averted sea level rise is much larger, the intervention is successful regardless of the choice of calving law, and the ice streams remain far from their non-geoengineered trajectories throughout the 1000 year duration of our model runs. In both cases, an artificial sill cannot save the glaciers forever if the climate continues to warm and surface melt continues to increase, but glacial geoengineering may offer society a way to delay irreversible grounding line retreat and thus buy time while emissions reduction and carbon removal efforts are underway.
NASA Astrophysics Data System (ADS)
Frouin, Heloise; Dangerfield, Neil; Macdonald, Robie W.; Galbraith, M.; Crewe, Norman; Shaw, Patrick; Mackas, David; Ross, Peter S.
2013-08-01
The Strait of Georgia is a large, deep, fjord-like estuary on the southern coast of British Columbia which is subject to local and atmospheric inputs of persistent environmental contaminants. We measured 204 polychlorinated biphenyls (PCBs) and 61 polybrominated diphenyl ethers (PBDEs) seasonally in water (two depths; dissolved and particle-bound) and plankton (vertical tow) samples collected at two stations. Principal components analysis clearly distinguished the dissolved and particulate water fractions and plankton samples, with the latter two compartments associated more with heavier congeners. Bioaccumulation factors (log BAFs) for PCBs and PBDEs in plankton were best described by parabolic relationships against octanol-water partitioning coefficients (log Kow), peaking at a log Kow of 5-7, underscoring the important role of physico-chemical properties in driving the uptake of these persistent contaminants by plankton from water. The estimated total quantity of PCBs (annual average of 0.61 ± SEM 0.12 kg) and PBDEs (annual average of 0.64 ± 0.19 kg) in Strait of Georgia plankton biomass were remarkably similar, highlighting the emergence of currently-used PBDEs as a priority concern. The estimated total of 52.1 ± 8.41 kg of PCBs in water (dissolved + particle-bound) was higher than the estimated 26.8 ± 5.20 kg of PBDEs (dissolved + particle-bound), reflecting the dichotomous use histories for these two contaminant classes. Results provide insight into the biological availability of PCBs and PBDEs to the Strait of Georgia food web, and describe an important initial partitioning process by which the region's endangered killer whales have become highly contaminated.
NASA Astrophysics Data System (ADS)
Bown, F.; Moffat, C. F.; Rivera, A.; Cisternas, S.; Kohoutek, T.
2013-12-01
Glaciers in the Southern Patagonia Icefield (SPI) have been retreating, thinning and accelerating in recent decades. Most of the SPI is comprised of temperate ice, therefore melting is the dominant wasting factor, however, calving is also playing a very important role, especially because calving is enhancing ice dynamic responses, mainly when glaciers calve into deep waters. Some of the most exacerbated responses are connected to the well documented and long-term tidewater calving cycle (TCC) overlapped by recent climate-related glacier responses. Glaciar Jorge Montt (48S/73W), is a tidewater glacier (~500 km2) which has experienced the maximum frontal retreat of the whole SPI (near 20 km in 112 years) while retreating up to 400 m water depth. Dead trees found in areas recently open by the glacier's retreat prove a date for the previous advancing cycle which took place during the Little Ice Age (250-400 years BP). This result indicates that the glacier is experiencing the retreating phase of the TCC in centennial time-scales. However, very little is known if this phase will stop or will continue, or how do climate change dynamcis will affect it. In order to understand the present behaviour of the glacier, several surveys have recently been conducted in the area, including airborne lidar and radar surveys, water depth measurements and ice dynamic studies. In order to survey the ice dynamic of the glacier front in connection with tides at the inner fjord, a camera pointing to the glacier terminus and collecting up to 8 photographs per day was installed in April 2012. The camera was continuously working for 60 days, allowing to study in detail the ice velocities, calving fluxes and tides near the ice. Thanks to the geo-location of the oblique photographs, feature tracking techniques were applied to the series in order to determine ice velocities and frontal retreat during the operational period. The resulting average velocities are lower than 10 m d-1, which are certainly smaller than the rates obtained in recent years (23 m d-1), and the frontal changes are also smaller due to the lack of large-magnitude calving events. Indeed, the total area change during the camera operational period yielded 0.03 km^2; this is an order of magnitude lower than the shrinkage taking place during a single calving event observed in previous periods. Part of the glacier frontal retreat during 2012 uncovered the bedrock, and the ice margins are not calving anymore but located few meters above sea level. Diurnal and semi-diurnal tides were recorded in water pressure sensors installed along the fjord. These water level changes at the glacier front were also detected in the photographic records, providing an interesting data source for analyzing possible correlations to daily ice velocities variations. As a result of the slower moving ice and the smaller retreating rates, calving fluxes have diminished, and consequently, the glacier seems to have reached a transitory frontal stability.
NASA Astrophysics Data System (ADS)
Sepulveda, S. A.; Serey, A.; Hermanns, R. L.; Redfield, T. F.; Oppikofer, T.; Duhart, P.
2011-12-01
The fjordland of the Chilean Patagonia is subject to active tectonics, with large magnitude subduction earthquakes, such as the M 9.5 1960 earthquake, and shallow crustal earthquakes along the regional Liquiñe-Ofqui Fault Zone (LOFZ). One of the latter (M 6.2) struck the Aysen Fjord region (45.5 S) on the 21st of April 2007, triggering dozens of landslides in the epicentral area along the fjord coast and surroundings. The largest rock slides and rock avalanches induced a local tsunami that together with debris flows caused ten fatalities and severely damaged several salmon farms, the most important economic activity of the area. Multi-scale studies of the landslides triggered during the Aysen earthquake have been carried out, including landslide mapping and classification, slope stability back-analyses and structural and geomorphological mapping of the largest failures from field surveys and high-resolution digital surface models created from terrestrial laser scanning. The failures included rock slides, rock avalanches, rock-soil slides, soil slides and debris flows. The largest rock avalanche had a volume of over 20 million cubic metres. The landslides affected steep slopes of intrusive rocks of the North Patagonian batholith covered by a thin layer of volcanic soils, which supports a high forest. The results of geotechnical analyses suggest a site effect due to topographic amplification on the generation of the landslides, with peak ground accelerations that may have reached between about 1.0 and 2.0 g for rock avalanches and between 0.6 and 1.0 g for shallow rock-soil slides, depending on the amount of assumed vertical acceleration and the applied method (limit equilibrium and Newmark). Attenuation relationships for shallow crustal seismicity indicate accelerations below 0.5 g for earthquakes of a similar magnitude and epicentral distances. Detailed field structural analyses of the largest rock avalanche in Punta Cola indicate a key role in the failure mechanics of brittle faults and jointing related to the LOFZ. The basal failure plane closely followed an older (epidote chlorite facies) thrust fault. Later fracture patterns suggest the thrust relaxed under gravitational stress following rock column uplift. Failure probably utilized a combination of these structures. Digital geomorphic models allowed establishing a sequence of events during failure which together make up the complex rock avalanche deposit. The volume of each individual slide could be more accurately determined. These and ongoing studies will allow a unique characterization of earthquake-induced slope failures in fjord coastal environments, providing new tools for landslide, seismic and tsunami hazard assessment in Patagonia and similar geomorphological settings around the world. This work was funded by Fondecyt project 11070107, the International Center for Geohazards, the Millenium Nucleus 'International Earthquake Research Center Montessus de Ballore', FNDR-Project 'Geological-Mining Environmental Research in Aysen' of the Chilean Government and the Andean Geothermal Center of Excellence.
Po(l'cyclic Aromatic Compound" 1999, Vol. 16. pp. 141-149 ICJ 1999OPA (Overseas Publishers Associationl NV. Reprints available directly from the publisher Published by license under Photocopying permitted by license only the Gordon and Breach Science Publishers imprint.
Print...
Chapter 15: Inland Habitat Suitability for the Marbled Murrelet in Southcentral Alaska
Katherine J. Kuletz; Dennis K. Marks; Nancy L. Naslund; Nike J. Goodson; Mary B. Cody
1995-01-01
The majority of Marbled Murrelets (Brachyramphus marmoratus) nest in Alaska, where they sometimes nest on the ground, and their nesting habitat requirements are not well understood. The inland activity of murrelets was surveyed, and habitat features measured, between 1991 and 1993, in Prince William Sound, Kenai Fjords National Park and Afognak...
NASA Astrophysics Data System (ADS)
Alonso-Muruaga, Pablo J.; Limarino, Carlos O.; Spalletti, Luis A.; Colombo Piñol, Ferrán
2018-07-01
Fjord systems, represented by glacial diamictites and postglacial transgressive shales, formed in the basins of western Argentina during the late Carboniferous Gondwana glaciation. Well exposed fjord deposits of the Guandacol Formation were studied in the Loma de Los Piojos region (Protoprecordillera), where they fill a 2.9 km wide paleovalley with steep side walls and a relatively flat floor. The valley cross-cuts Lower Devonian sandstones and Mississippian mudstones and sandstones, and provides evidence of glacial abrasion, including striated pavements and glacial microtopography (grooves, ridges, and striae). Based on the analysis of seven sedimentary logs, eight sedimentary facies in the valley fill were recognized: (A) Massive diamictites; (B) Laminated mudstones with dropstones; (C) Stratified diamictites; (D) Clast-supported conglomerates and sandstones; (E) Deformed diamictites, conglomerates and sandstones; (F) Folded diamictites; (G) Mudstones interbedded with sandstones, and (H) Stacked and amalgamated sandstones. These sedimentary facies are grouped into two principal facies assemblages that represent different stages of the paleovalley fill. Assemblage 1 is composed of diamictites (Facies A, C and F), laminated mudstones with dropstones (Facies B), and conglomerates (Facies D and E), which represent glacially influenced sedimentation in the paleovalley. Assemblage 2 represents the paleovalley fill when glacial influence ceased, and comprises laminated mudstones interbedded with sandstones (facies G) and stacked sandstone beds (facies H) that mostly record deltaic sedimentation. Stratigraphic relationships, plant fossils found in the paleovalley walls and palynological assemblages recovered in mudstones of facies D help to establish an early Pennsylvanian age for both the incision and the filling of the paleovalley. The studied paleovalley records an exceptional example of the western Gondwanan glacial to postglacial transition. Due to the continuous stratigraphic succession within the paleovalley as well as palynological, megafloristic and radiometric data, this example provides a complete framework of the late Carboniferous postglacial evolution in western Gondwana.