Sanchez-Bragado, Rut; Molero, Gemma; Reynolds, Matthew P.; Araus, Jose Luis
2014-01-01
During grain filling in C3 cereals, the shoot (particularly the flag leaf) and the ear are believed to play major roles as sources of assimilates. However, both the cost and the intrusive nature of most of the methodologies available to investigate this have prevented conclusive results being obtained. This study compared the carbon isotope composition (δ13C) in its natural abundance in mature kernels with the δ13C of the water-soluble fraction of the peduncle, glumes, and awns to assess the relative contribution of the shoot (understood as the whole set of photosynthetic organs below the peduncle) and ear to grain filling in a set of highly productive wheat lines from the International Maize and Wheat Improvement Center, Mexico, under good agronomic conditions. In overall terms, the contribution of the ear was greater in comparison with that of the shoot. The specific contribution of the flag leaf blade to grain filling was also assessed by comparing the δ13C of grains with the δ13C of the water-soluble fraction of the flag leaf and the awns. The contribution of the flag leaf was minor, ranging between 3 and 18%. Complementary analyses performed such as gas-exchange rates and the accumulated water-soluble carbohydrates in both organs and light intercepted by the canopy at different strata suggested that the ear has a photosynthetic capacity at least comparable to that of the flag leaf. In this sense, selection for a higher contribution of ear photosynthesis to grain yield in breeding programmes could be addressed with the use of stable isotopes. PMID:25053645
QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).
Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun
2018-04-01
QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.
Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.).
Tang, Xinxin; Gong, Rong; Sun, Wenqiang; Zhang, Chaopu; Yu, Sibin
2018-04-01
Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice. Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.
New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch.
Francki, M G; Shankar, M; Walker, E; Loughman, R; Golzar, H; Ohm, H
2011-11-01
Stagonospora nodorum blotch (SNB) is a significant disease in some wheat-growing regions of the world. Resistance in wheat to Stagonospora nodorum is complex, whereby genes for seedling, flag leaf, and glume resistance are independent. The aims of this study were to identify alternative genes for flag leaf resistance, to compare and contrast with known quantitative trait loci (QTL) for SNB resistance, and to determine the potential role of host-specific toxins for SNB QTL. Novel QTL for flag leaf resistance were identified on chromosome 2AS inherited from winter wheat parent 'P92201D5' and chromosome 1BS from spring wheat parent 'EGA Blanco'. The chromosomal map position of markers associated with QTL on 1BS and 2AS indicated that they were unlikely to be associated with known host-toxin insensitivity loci. A QTL on chromosome 5BL inherited from EGA Blanco had highly significant association with markers fcp001 and fcp620 based on disease evaluation in 2007 and, therefore, is likely to be associated with Tsn1-ToxA insensitivity for flag leaf resistance. However, fcp001 and fcp620 were not associated with a QTL detected based on disease evaluation in 2008, indicating two linked QTL for flag leaf resistance with multiple genes residing on 5BL. This study identified novel QTL and their effects in controlling flag leaf SNB resistance.
Lehoczki-Krsjak, Szabolcs; Varga, Mónika; Szabó-Hevér, Ágnes; Mesterházy, Ákos
2013-11-01
Prothioconazole and tebuconazole are among the most effective fungicides against Fusarium head blight (FHB) of wheat (Triticum aestivum L.). The translocation between the ears and the flag leaves and the kinetics of degradation may influence field efficacy of these active ingredients (AIs). In greenhouse experiments, only traces (<1%) of the total AI content translocated from the flag leaves to the ears, and a maximum of 3.55% from the ears to the flag leaves. From the treated to the non-treated side of the ears, 3.2-15.9% of the AI translocated, depending on cultivar, AI and time. In field experiments, the degradation kinetics in the first 8 days after treatment revealed a higher velocity in the flag leaf blades than in the ears, although both were dependent on the type of cultivar. The fungicide treatment resulted in 42.6-100% decreases in FHB traits. There is no effective translocation of these AIs, only moderate redistribution in the ears, which can be decisive from the aspect of FHB management. The degradation of prothioconazole was faster than that of tebuconazole. Cultivar and environmental effects influenced the degradation kinetics of these AIs, but a high level of protection against FHB was maintained. © 2013 Society of Chemical Industry.
The role of gravity in leaf blade curvatures
NASA Technical Reports Server (NTRS)
Hayes, A. B.
1984-01-01
In the past year we have gained useful information on several aspects of leaf blade growth. The most important observations are as follows: The C(14)-1AA moves preferentially in a gravipositive dorsiventral direction through the blade. This movement is inhibited by inversion of the blade. The responding cells in leaf blade hyponasty are in the lower epidermis and bundle sheath cells. Two additional responses in the leaf were characterized. In addition to blade curvature, the leaf shows petiole curvature and changes in the liminal angle subtended by the pulvinus. Ethylene production was studied under a number of conditions. The blade, rather than the petiole or pulvinus, is the principal site of auxin-promoted ethylene synthesis. The effects of a variety of agents on the blade, including gibberellic acid, abscisic acid, vanadate, low pH buffers, and blue light were reviewed.
Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan
2014-09-01
Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in Qinghai-Tibetan Plateau area.
The WRKY transcription factor family and senescence in switchgrass.
Rinerson, Charles I; Scully, Erin D; Palmer, Nathan A; Donze-Reiner, Teresa; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Sattler, Scott E; Rohila, Jai S; Sarath, Gautam; Rushton, Paul J
2015-11-09
Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.
Muhammad, Izhar; Jing, Xiu-Qing; Shalmani, Abdullah; Ali, Muhammad; Yi, Shi; Gan, Peng-Fei; Li, Wen-Qiang; Liu, Wen-Ting; Chen, Kun-Ming
2018-05-12
The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.
Murchie; Chen; Hubbart; Peng; Horton
1999-02-01
Photosynthesis and photoinhibition in field-grown rice (Oryza sativa L.) were examined in relation to leaf age and orientation. Two varieties (IR72 and IR65598-112-2 [BSI206]) were grown in the field in the Philippines during the dry season under highly irrigated, well-fertilized conditions. Flag leaves were examined 60 and 100 d after transplanting. Because of the upright nature of 60-d-old rice leaves, patterns of photosynthesis were determined by solar movements: light falling on the exposed surface in the morning, a low incident angle of irradiance at midday, and light striking the opposite side of the leaf blade in the afternoon. There was an early morning burst of CO2 assimilation and high levels of saturation of photosystem II electron transfer as incident irradiance reached a maximum level. However, by midday the photochemical efficiency increased again almost to maximum. Leaves that were 100 d old possessed a more horizontal orientation and were found to suffer greater levels of photoinhibition than younger leaves, and this was accompanied by increases in the de-epoxidation state of the xanthophyll cycle. Older leaves had significantly lower chlorophyll content but only slightly diminished photosynthesis capacity.
Ishikawa, Masaya; Oda, Asuka; Fukami, Reiko; Kuriyama, Akira
2014-01-01
Wintering Sasa senanensis, dwarf bamboo, is known to employ deep supercooling as the mechanism of cold hardiness in most of its tissues from leaves to rhizomes. The breakdown of supercooling in leaf blades has been shown to proceed in a random and scattered manner with a small piece of tissue surrounded by longitudinal and transverse veins serving as the unit of freezing. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels (LT20: the lethal temperature at which 20% of the leaf blades are injured) seasonally increased from August (-11°C) to December (-20°C). This coincided with the increases in supercooling capability of the leaf blades as expressed by the initiation temperature of low temperature exotherms (LTE) detected in differential thermal analyses (DTA). When leaf blades were stored at -5°C for 1-14 days, there was no nucleation of the supercooled tissue units either in summer or winter. However, only summer leaf blades suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20°C), a longer storage period (1-7 days) increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units. LTE were shifted to higher temperatures (2-5°C) after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as development of sclerenchyma and biochemical mechanisms to increase the stability of supercooling are considered important. These mechanisms are discussed in regard to ecological and physiological significance in winter survival.
Kong, Lingan; Wang, Fahong; Feng, Bo; Li, Shengdong; Si, Jisheng; Zhang, Bin
2010-07-11
In wheat (Triticum aestivum L), the flag leaf has been thought of as the main source of assimilates for grain growth, whereas the peduncle has commonly been thought of as a transporting organ. The photosynthetic characteristics of the exposed peduncle have therefore been neglected. In this study, we investigated the anatomical traits of the exposed peduncle during wheat grain ontogenesis, and we compared the exposed peduncle to the flag leaf with respect to chloroplast ultrastructure, photosystem II (PSII) quantum yield, and phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) activity. Transmission electron microscope observations showed well-developed chloroplasts with numerous granum stacks at grain-filling stages 1, 2 and 3 in both the flag leaf and the exposed peduncle. In the exposed peduncle, the membranes constituting the thylakoids were very distinct and plentiful, but in the flag leaf, there was a sharp breakdown at stage 4 and complete disintegration of the thylakoid membranes at stage 5. PSII quantum yield assays revealed that the photosynthetic efficiency remained constant at stages 1, 2 and 3 and then declined in both organs. However, the decline occurred more dramatically in the flag leaf than in the exposed peduncle. An enzyme assay showed that at stages 1 and 2 the PEPCase activity was lower in the exposed peduncle than in the flag leaf; but at stages 3, 4 and 5 the value was higher in the exposed peduncle, with a particularly significant difference observed at stage 5. Subjecting the exposed part of the peduncle to darkness following anthesis reduced the rate of grain growth. Our results suggest that the exposed peduncle is a photosynthetically active organ that produces photosynthates and thereby makes a crucial contribution to grain growth, particularly during the late stages of grain-filling.
USDA-ARS?s Scientific Manuscript database
Stagonospora nodorum blotch (SNB) is a serious disease of wheat worldwide, and it is prevalent on winter wheat in many eastern states. Management relies mainly on fungicide application after flag leaf emergence. The disease can occur prior to flag leaf emergence, however, the impact of the time of ...
Contribution of morphoagronomic traits to grain yield and earliness in grain sorghum.
da Silva, K J; Teodoro, P E; de Menezes, C B; Júlio, M P M; de Souza, V F; da Silva, M J; Pimentel, L D; Borém, A
2017-05-04
Given the importance of selecting lines to obtain hybrids, we aimed to verify the relationship between morphological traits that can be used as the criteria for the selection of sorghum lines with high grain yield and earliness. A total of 18 traits were evaluated in 160 sorghum elite lines, in an incomplete block design with two replicates. A correlation network was used to graphically express the estimates of phenotypic and genotypic correlations between the traits. Two path analyses were processed, the first considering grain yield and the second considering flowering as the principle dependent variable. In general, most of the variation in the grain yield and flowering of sorghum lines was explained by the traits evaluated. Selecting sorghum lines with greater width of the third leaf blade from flag leaf, panicle weight, and panicle harvest index might lead to increased grain yield, and selecting sorghum genotypes with higher plant height might lead to reduced earliness and increased grain yield. Thus, the results suggest the establishment of selection indices aiming at simultaneously increasing the grain yield and earliness in sorghum genotypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, P.C.; Evans, J.J.; Bacon, C.W.
Infection by the fungal endophyte Acremonium coenophialum affected the accumulation of inorganic and organic N in leaf blades and leaf sheaths of KY31 tall fescue (Festuca arundinacea Schreb.) grown under greenhouse conditions. Total soluble amino acid concentrations were increased in either the blade or sheath of the leaf from infected plants. A number of amino acids were significantly increased in the sheath, but only asparagine increased in the blade. Infection resulted in higher sheath NH{sub 4}{sup +} concentrations, whereas NO{sub 3}{sup {minus}} concentrations decreased in both leaf parts. The effects on amino acid, NO{sub 3}{sup {minus}}, and NH{sub 4}{sup +}more » concentrations were dependent upon the level of N fertilization and were usually apparent only at the high rate (10 millimolar) of application. Administration of {sup 14}CO{sub 2} to the leaf blades increased the accumulation of {sup 14}C in their amino acid fraction but not in the sheaths of infected plants. This may indicate that infection increased amino acid synthesis in the blade but that translocation to the sheath, which is the site of fungal colonization, was not affected. Glutamine synthetase activity was greater in leaf blades of infected plants at high and low N rates of fertilization, but nitrate reductase activity was not affected in either part of the leaf. Increased activities of glutamine synthetase together with the other observed changes in N accumulation and metabolism in endophyte-infected tall fescue suggest that NH{sub 4}{sup +} reassimilation could also be affected in the leaf blade.« less
Plant traits and environment: floating leaf blade production and turnover of waterlilies.
Klok, Peter F; van der Velde, Gerard
2017-01-01
Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba , Nuphar lutea , Nymphaea candida . The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/B max ) of the three species ranged from 1.35-2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94-4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53-0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba , may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.
Plant traits and environment: floating leaf blade production and turnover of waterlilies
2017-01-01
Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba, Nuphar lutea, Nymphaea candida. The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/Bmax) of the three species ranged from 1.35–2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94–4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53–0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba, may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions. PMID:28462025
Blade life span, structural investment, and nutrient allocation in giant kelp.
Rodriguez, Gabriel E; Reed, Daniel C; Holbrook, Sally J
2016-10-01
The turnover of plant biomass largely determines the amount of energy flowing through an ecosystem and understanding the processes that regulate turnover has been of interest to ecologists for decades. Leaf life span theory has proven useful in explaining patterns of leaf turnover in relation to resource availability, but the predictions of this theory have not been tested for macroalgae. We measured blade life span, size, thickness, nitrogen content, pigment content, and maximum photosynthetic rate (P max) in the giant kelp (Macrocystis pyrifera) along a strong resource (light) gradient to test whether the predictions of leaf life span theory applied to this alga. We found that shorter blade life spans and larger blade areas were associated with increased light availability. In addition, nitrogen and P max decreased with blade age, and their decrease was greater in shorter lived blades. These observations are generally consistent with patterns observed for higher plants and the prevailing theory of leaf life span. By contrast, variation observed in pigments of giant kelp was inconsistent with that predicted by leaf life span theory, as blades growing in the most heavily shaded portion of the forest had the lowest chlorophyll content. This result may reflect the dual role of macroalgal blades in carbon fixation and nutrient absorption and the ability of giant kelp to modify blade physiology to optimize the acquisition of light and nutrients. Thus, the marine environment may place demands on resource acquisition and allocation that have not been previously considered with respect to leaf life span optimization.
Chai, Guaiqiang; Li, Chunlian; Xu, Feng; Li, Yang; Shi, Xue; Wang, Yong; Wang, Zhonghua
2018-03-05
The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between the plant and the environment. The cuticle is composed of cutin and wax. Cuticular wax plays an important role in the survival of plants by serving as the interface between plants and their biotic and abiotic environments, especially restricting nonstomatal water loss. Leaf cuticular waxes of hexaploid wheat at the seedling stage mainly consist of primary alcohols, aldehydes, fatty acids, alkane and esters. Primary alcohols account for more than 80% of the total wax load. Therefore, we cloned several genes encoding fatty acyl-coenzyme A reductases from wheat and analyzed their function in yeast and plants. We propose the potential use of these genes in wheat genetic breeding. We reported the cloning and characterization of three TaFARs, namely TaFAR6, TaFAR7 and TaFAR8, encoding fatty acyl-coenzyme A reductases (FAR) in wheat leaf cuticle. Expression analysis revealed that TaFAR6, TaFAR7 and TaFAR8 were expressed at the higher levels in the seedling leaf blades, and were expressed moderately or weakly in stamen, glumes, peduncle, flag leaf blade, sheath, spike, and pistil. The heterologous expression of three TaFARs in yeast (Saccharomyces cerevisiae) led to the production of C24:0 and C26:0 primary alcohols. Transgenic expression of the three TaFARs in tomato (Solanum lycopersicum) and rice (Oryza sativa) led to increased accumulation of C24:0-C30:0 primary alcohols. Transient expression of GFP protein-tagged TaFARs revealed that the three TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The three TaFAR genes were transcriptionally induced by drought, cold, heat, powdery mildew (Blumeria graminis) infection, abscisic acid (ABA) and methyl jasmonate (MeJa) treatments. These results indicated that wheat TaFAR6, TaFAR7 and TaFAR8 are involved in biosynthesis of very-long-chain primary alcohols in hexaploid wheat and in response to multiple environmental stresses.
Chitwood, Daniel H; Otoni, Wagner C
2017-10-01
Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology-vasculature and blade-provides different insights into leaf patterning. Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. © The Authors 2017. Published by Oxford University Press.
Chitwood, Daniel H; Otoni, Wagner C
2017-01-01
Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology-vasculature and blade-provides different insights into leaf patterning. Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. © The Author 2017. Published by Oxford University Press.
Taguchi-Shiobara, Fumio; Ota, Tatsuya; Ebana, Kaworu; Ookawa, Taiichiro; Yamasaki, Masanori; Tanabata, Takanari; Yamanouchi, Utako; Wu, Jianzhong; Ono, Nozomi; Nonoue, Yasunori; Nagata, Kazufumi; Fukuoka, Shuichi; Hirabayashi, Hideyuki; Yamamoto, Toshio; Yano, Masahiro
2015-10-01
We investigated the natural variations in the flag leaf morphology of rice. We conducted a principal component analysis based on nine flag leaf morphology traits using 103 accessions from the National Institute of Agrobiological Sciences Core Collection. The first component explained 39% of total variance, and the variable with highest loading was the width of the flag leaf (WFL). A genome-wide association analysis of 102 diverse Japanese accessions revealed that marker RM6992 on chromosome 4 was highly associated with WFL. In analyses of progenies derived from a cross between Takanari and Akenohoshi, the most significant quantitative trait locus (QTL) for WFL was in a 10.3-kb region containing the NARROW LEAF 1 (NAL1) gene, located 0.4 Mb downstream of RM6992. Analyses of chromosomal segment substitution lines indicated that a mutation (G1509A single-nucleotide mutation, causing an R233H amino acid substitution in NAL1) was present at the QTL. This explained 13 and 20% of total variability in WFL and the distance between small vascular bundles, respectively. The mutation apparently occurred during rice domestication and spread into japonica, tropical japonica, and indica subgroups. Notably, one accession, Phulba, had a NAL1 allele encoding only the N-terminal, or one-fourth, of the wild-type peptide. Given that the Phulba allele and the histidine-type allele showed essentially the same phenotype, the histidine-type allele was regarded as malfunctional. The phenotypes of transgenic plants varied depending on the ratio of histidine-type alleles to arginine-type alleles, raising the possibility that H(233)-type products function differently from and compete with R(233)-type products. Copyright © 2015 by the Genetics Society of America.
USDA-ARS?s Scientific Manuscript database
Grape growers rely on tissues tests of leaf blades or petioles for routine monitoring of vine nutritional health and for diagnosing potential nutrient deficiency or toxicity. There has been a long standing debate as to which tissue better reflects the nutrient status of vines. A comparison of leaf b...
2017-01-01
Abstract Background: Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology—vasculature and blade—provides different insights into leaf patterning. Results: Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Conclusions: Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. PMID:28369351
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... 2005, p. 227). The leaves are simple, alternate, entire, and coriaceous (leathery). The leaf blade is... green and shiny. The petiole (the stalk attaching the leaf blade to the stem) is approximately 0.07 to 0...
Phloem Transport Of Arsenic Species From Flag Leaf To Grain During Grain Filling
Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was ...
Huang, Ming; Wu, Jin-Zhi; Li, You-Jun; Yao, Yu-Qing; Zhang, Can-Jun; Cai, Dian-Xiong; Jin, Ke
2009-06-01
A field experiment was conducted to study the effects of different tillage patterns, i.e., deep plowing once, no-tillage, subsoiling, and conventional tillage, on the flag leaf senescence and grain yield of winter wheat, as well as the soil moisture and nutrient status under dry farming. No-tillage and subsoiling increased the SOD and POD activities and the chlorophyll and soluble protein contents, decreased the MDA and O2(-.) contents, and postponed the senescence of flag leaf. Under non-tillage and subsoiling, the moisture content in 0-40 cm soil layer at anthesis and grain-filling stages was decreased by 4.13% and 6.23% and by 5.50% and 9.27%, respectively, and the contents of alkali-hydrolysable N, available P, and available K in this soil layer also increased significantly, compared with those under conventional tillage. Deep plowing once decreased the moisture content and increased the nutrients contents in 0-40 cm soil layer, but the decrement and increment were not significant. The post-anthesis biomass, post-anthesis dry matter translocation rate, and grain yield under no-tillage and subsoiling were 4.34% and 4.76%, 15.56% and 13.51%, and 10.22% and 9.26% higher than those under conventional tillage, respectively. It could be concluded that no-tillage and subsoiling provided better soil conditions for the post-anthesis growth of winter wheat, under which, the flag leaf senescence postponed, post-anthesis dry matter accumulation and translocation accelerated, and grain yield increased significantly, being the feasible tillage practices in dry farming winter wheat areas.
Structure and enzyme expression in photosynthetic organs of the atypical C4 grass Arundinella hirta.
Wakayama, Masataka; Ohnishi, Jun-ichi; Ueno, Osamu
2006-05-01
In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades--namely, the leaf sheath, stem, scale leaf, and constituents of the spike--also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.
Yang, Delong; Liu, Yuan; Cheng, Hongbo; Chang, Lei; Chen, Jingjing; Chai, Shouxi; Li, Mengfei
2016-06-28
Morphological traits related to flag leaves are determinant traits influencing plant architecture and yield potential in wheat (Triticum aestivum L.). However, little is known regarding their genetic controls under drought stress. One hundred and twenty F8-derived recombinant inbred lines from a cross between two common wheat cultivars Longjian 19 and Q9086 were developed to identify quantitative trait loci (QTLs) and to dissect the genetic bases underlying flag leaf width, length, area, length to width ratio and basal angle under drought stress and well-watered conditions consistent over four environments. A total of 55 additive and 51 pairs of epistatic QTLs were identified on all 21 chromosomes except 6D, among which additive loci were highly concentrated in a few of same or adjacent marker intervals in individual chromosomes. Two specific marker intervals of Xwmc694-Xwmc156 on chromosome 1B and Xbarc1072-Xwmc272 on chromosome 2B were co-located by additive QTLs for four tested traits. Twenty additive loci were repeatedly detected in more than two environments, suggestive of stable A-QTLs. A majority of QTLs involved significant additive and epistatic effects, as well as QTL × environment interactions (QEIs). Of these, 72.7 % of additive QEIs and 80 % of epistatic QEIs were related to drought stress with significant genetic effects decreasing phenotypic values. By contrast, additive and QEIs effects contributed more phenotypic variation than epistatic effects. Flag leaf morphology in wheat was predominantly controlled by additive and QEIs effects, where more QEIs effects occurred in drought stress and depressed phenotypic performances. Several QTL clusters indicated tight linkage or pleiotropy in the inheritance of these traits. Twenty stable QTLs for flag leaf morphology are potentially useful for the genetic improvement of drought tolerance in wheat through QTL pyramiding.
Bolduc, N; O'Connor, D; Moon, J; Lewis, M; Hake, S
2012-01-01
Leaf development presents a tremendous resource for tackling the question of patterning in biology. Leaves can be simple or highly dissected. They may have elaborated parts such as the tendrils of a pea leaf or the rolled blade of a carnivorous pitcher plant. Despite the variation in size, shape, and function, all leaves initiate in the same manner: from the flanks of a meristem. The maize leaf is useful for analysis of patterning due to the wealth of mutants and the distinct tissues along the proximal distal axis. The blade is distal, the sheath is proximal, and the ligule forms at the blade/sheath boundary. Establishment of this boundary involves the transcription factors LIGULELESS1 and LIGULELESS2 and the kinase LIGULELESS NARROW. The meristem-specific protein KNOTTED1 (KN1) binds and modulates the lg2 gene. Given the localization of KN1 at the proximal end of the leaf from the time of inception, we hypothesize that KN1 has a role in establishing the very proximal end of the leaf, whereas an auxin maximum guides the growing distal tip.
Photosynthate partitioning in basal zones of tall fescue leaf blades. [Festuca arundinacea Schreb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allard, G.; Nelson, C.J.
Elongating grass leaves have successive zones of cell division, cell elongation, and cell maturation in the basal portion of the blade and are a strong sink for photosynthate. Our objective was to determine dry matter (DM) deposition and partitioning in basal zones of elongating tall fescue (Festuca arundinacea Schreb.) leaf blades. Vegetative tall fescue plants were grown in continuous light (350 micromoles per square meter per second photosynthetic photon flux density) to obtain a constant spatial distribution of elongation growth with time. Content and net deposition rates of water-soluble carbohydrates (WSC) and DM along elongating leaf blades were determined. Thesemore » data were compared with accumulation of {sup 14}C in the basal zones following leaf-labeling with {sup 14}CO{sub 2}. Net deposition of DM was highest in the active cell elongation zone, due mainly to deposition of WSC. The maturation zone, just distal to the elongation zone, accounted for 22% of total net deposition of DM in elongating leaves. However, the spatial profile of {sup 14}C accumulation suggested that the elongation zone and the maturation zone were sinks of equal strength. WSC-free DM accounted for 55% of the total net DM deposition in elongating leaf blades, but only 10% of incoming {sup 14}C-photosynthate accumulated in the water-insoluble fraction (WIF {approximately} WSC-free DM) after 2 hours. In the maturation zone, more WSC was used for synthesis of WSC-free DM than was imported as recent photosynthate.« less
Yang, Ming-da; Ma, Shou-chen; Yang, Shen-jiao; Zhang, Su-yu; Guan, Xiao-kang; Li, Xue-mei; Wang, Tong-chao; Li, Chun-xi
2015-11-01
A pot culture experiment was conducted to study the effects of postponing nitrogen (N) application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Equal in the total N rate in winter wheat growth season, N application was split before sowing, and/or at jointing and /or at anthesis at the ratio of 10:0:0 (N1), 6:4:0 (N2) and 4:3:3 (N3), combined with unfavorable water condition (either waterlogged or drought) with the sufficient water condition as control. The results showed that, under each of the water condition, both N2 and N3 treatments significantly improved the leaf photosynthetic rate and the SPAD value of flag leaf compared with N1 treatment during grain filling stage, and also the crop ear number, grain number per spike and above-ground biomass were increased. Although postponing nitrogen application increased water consumption, both grain yield and water use efficiency were increased. Compared with sufficient water supply, drought stress and waterlogging stress significantly reduced the photosynthetic rate of flag leaves at anthesis and grain filling stages, ear number, 1000-grain mass and yield under all of the N application patterns. The decline of photosynthetic rate under either drought stress or waterlogging stress was much less in N2 and N3 than in N1 treatments, just the same as the grain yield. The results indicated that postponing nitrogen application could regulate winter wheat yield as well as its components to alleviate the damages, caused by unfavorable water stress by increasing flag leaf SPAD and maintaining flag leaf photosynthetic rate after anthesis, and promoting above-ground dry matter accumulation.
Betaine accumulation and (/sup 14/C)formate metabolism in water-stressed barley leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A.D.; Nelsen, C.E.
1978-01-01
Barley (Hordeum vulgare L.) plants at the three-leaf stage were water-stressed by flooding the rooting medium with polyethylene glycol 6000 with an osmotic potential of -19 bars, or by withholding water. While leaf water potential fell and leaf kill progressed, the betaine (trimethylglycine) content of the second leaf blade rose from about 0.4 micromole to about 1.5 micromoles in 4 days. The time course of betaine accumulation resembled that of proline. Choline levels in unstressed second leaf blades were low (<0.1 micromole per blade) and remained low during water stress. Upon relief of stress, betaine-like proline-remained at a high concentrationmore » in drought-killed leaf zones, but betaine did not disappear as rapidly as proline during recovery. When (methyl-/sup 14/C)choline was applied to second leaf blades of intact plants in the growth chamber, water-stressed plants metabolized 5 to 10 times more /sup 14/C label to betaine than control plants during 22 hours. When infiltrated with tracer quantities of (/sup 14/C)formate and incubated for various times in darkness or light, segments cut from water-stressed leaf blades incorporated about 2- to 10-fold more /sup 14/C into betaine than did segments from unstressed leaves. In segments from stressed leaves incubated with (/sup 14/C)formate for about 18 hours in darkness, betaine was always the principal /sup 14/C-labeled soluble metabolite. This /sup 14/C label was located exclusively in the N-methyl groups of betaine; thus, reducing equivalents were available in stressed leaves for the reductive steps of methyl group biosynthesis from formate. Incorporation of /sup 14/C from formate into choline was also increased in stressed leaf tissue, but choline was not a major product formed from (/sup 14/C)formate. These results are consistent with a net de novo synthesis of betaine from 1- and 2-carbon precursors during water stress and indicate that the betaine so accumulated may be a metabolically inert end product.« less
Flow separation on wind turbines blades
NASA Astrophysics Data System (ADS)
Corten, G. P.
2001-01-01
In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine blades could be controlled fully, the generation efficiency and thus the energy production would increase by 9%. Power Control To avoid damage to wind turbines, they are cut out above 10 Beaufort (25 m/s) on the wind speed scale. A turbine could be designed in such a way that it converts as much power as possible in all wind speeds, but then it would have to be to heavy. The high costs of such a design would not be compensated by the extra production in high winds, since such winds are rare. Therefore turbines usually reach maximum power at a much lower wind speed: the rated wind speed, which occurs at about 6 Beaufort (12.5 m/s). Above this rated speed, the power intake is kept constant by a control mechanism. Two different mechanisms are commonly used. Active pitch control, where the blades pitch to vane if the turbine maximum is exceeded or, passive stall control, where the power control is an implicit property of the rotor. Stall Control The flow over airfoils is called "attached" when it flows over the surface from the leading edge to the trailing edge. However, when the angle of attack of the flow exceeds a certain critical angle, the flow does not reach the trailing edge, but leaves the surface at the separation line. Beyond this line the flow direction is reversed, i.e. it flows from the trailing edge backward to the separation line. A blade section extracts much less energy from the flow when it separates. This property is used for stall control. Stall controlled rotors always operate at a constant rotation speed. The angle of attack of the flow incident to the blades is determined by the blade speed and the wind speed. Since the latter is variable, it determines the angle of attack. The art of designing stall rotors is to make the separated area on the blades extend in such a way, that the extracted power remains precisely constant, independent of the wind speed, while the power in the wind at cut-out exceeds the maximum power of the turbine by a factor of 8. Since the stall behaviour is influenced by many parameters, this demand cannot be easily met. However, if it can be met, the advantage of stall control is its passive operation, which is reliable and cheap. Problem Definition In practical application, stall control is not very accurate and many stall-controlled turbines do not meet their specifications. Deviations of the design-power in the order of tens of percent are regular. In the nineties, the aerodynamic research on these deviations focussed on: profile aerodynamics, computational fluid dynamics, rotational effects on separation and pressure measurements on test turbines. However, this did not adequately solve the actual problems with stall turbines. In this thesis, we therefore formulated the following as the essential question: "Does the separated blade area really extend with the wind speed, as we predict?" To find the answer a measurement technique was required, which 1) was applicable on large commercial wind turbines, 2) could follow the dynamic changes of the stall pattern, 3) was not influenced by the centrifugal force and 4) did not disturb the flow. Such a technique was not available, therefore we decided to develop it. Stall Flag Method For this method, a few hundred indicators are fixed to the rotor blades in a special pattern. These indicators, called "stall flags" are patented by the Netherlands Energy Research Foundation (ECN). They have a retro-reflective area which, depending on the flow direction, is or is not covered. A powerful light source in the field up to 500m behind the turbine illuminates the swept rotor area. The uncovered reflectors reflect the light to the source, where a digital video camera records the dynamic stall patterns. The images are analysed by image processing software that we developed. The program extracts the stall pattern, the blade azimuth angles and the rotor speed from the stall flags. It also measures the yaw error and the wind speed from the optical signals of other sensors, which are recorded simultaneously. We subsequently characterise the statistical stall behaviour from the sequences of thousands of analysed images. For example, the delay in the stall angle by vortex generators can be measured within 1° of accuracy from the stall flag signals. Properties of the Stall Flag The new indicators are compared to the classic tufts. Stall flags are pressure driven while tufts are driven by frictional drag, which means that they have more drag. The self-excited motion of tufts, due to the Kelvin-Helmholtz instability, complicates the interpretation and gives more drag. We designed stall flags in such a way that this instability is avoided. An experiment with a 65cm diameter propeller confirms the independence of stall flags from the centrifugal force and that stall flags respond quickly to changes in the flow. We developed an optical model of the method to find an optimum set-up. With the present system, we can take measurements on turbines of all actual diameters. The stall flag responds to separated flow with an optical signal. The contrast of this signal exceeds that of tuft-signals by a factor of at least 1000. To detect the stall flag signal we need a factor of 25 fewer pixels of the CCD chip than is necessary for tufts. Stall flags applied on fast moving objects may show light tracks due to motion blur, which in fact yields even more information. In the case of tuft visualisations, even a slight motion blur is fatal. Principal Results In dealing with the fundamental theory of wind turbines, we found a new aspect of the conversion efficiency of a wind turbine, which also concerns the stall behaviour. Another new aspect concerns the effects of rotation on stall. By using the stall flag method, we were able to clear up two practical problems that seriously threatened the performance of stall turbines. These topics will be described briefly. 1. Inherent Heat Generation The classic result for an actuator disk representing a wind turbine is that the power extracted equals the kinetic power transferred. This is a consequence of disregarding the flow around the disk. When this flow is included, we need to introduce a heat generation term in the energy balance. This has the practical consequence that an actuator disk at the Lanchester-Betz limit transfers 50% more kinetic energy than it extracts. This surplus is dissipated in heat. Using this new argument, together with a classic argument on induction, we see no reason to introduce the concept of edge-forces on the tips of the rotor blades (Van Kuik, 1991). We rather recommend following the ideas of Lanchester (1915) on the edge of the actuator disk and on the wind speed at the disc. We analyse the concept induction, and show that correcting for the aspect ratio, for induced drag and application of Blade Element Momentum Theory all have the same significance for a wind turbine. Such corrections are sometimes made twice (Viterna & Corrigan, 1981). 2. Rotational Effects on Flow Separation In designing wind turbine rotors, one uses the aerodynamic characteristics measured in the wind tunnel on fixed aerodynamic profiles. These characteristics are corrected for the effects of rotation and subsequently used for wind turbine rotors. Such a correction was developed by Snel (1990-1999). This correction is based on boundary layer theory, the validity of which we question in regard to separated flow. We estimated the effects of rotation on flow separation by arguing that the separation layer is thick so the velocity gradients are small and viscosity can be neglected. We add the argument that the chord-wise speed and its derivative normal to the wall is zero at the separation line, which causes the terms with the chord-wise speed or accelerations to disappear. The conclusion is that the chord-wise pressure gradient balances the Coriolis force. By doing so we obtain a simple set of equations that can be solved analytically. Subsequently, our model predicts that the convective term with the radial velocity (vrvr/r) is dominant in the equation for the r-direction, precisely the term that was neglected in Snel's analysis. 3. Multiple Power Levels Several large commercial wind turbines demonstrate drops in maximum power levels up to 45%, under apparently equal conditions. Earlier studies attempting to explain this effect by technical malfunctioning, aerodynamic instabilities and blade contamination effects estimated with computational fluid dynamics, have not yet yielded a plausible result. We formulated many hypotheses, three of which were useful. By taking stall flag measurements and making two other crucial experiments, we could confirm one of those three hypotheses: the insect hypothesis. Insects only fly in low wind, impacting upon the blades at specific locations. In these conditions, the insectual remains are located at positions where roughness has little influence on the profile performance, so that the power is not affected. In high winds however, the flow around the blades has changed. As a result, the positions at which the insects have impacted at low winds are very sensitive to contamination. So the contamination level changes at low wind when insects fly and this level determines the power in high winds when insects do not fly. As a consequence we get discrete power levels in high winds. The other two hypotheses, which did not cause the multiple power levels for the case we studied, gave rise to two new insights. First, we expect the power to depend on the wind direction at sites where the shape of the terrain concentrates the wind. In this case the power level of all turbine types, including pitch regulated ones, will be affected. Second, we infer heuristically that the stalled area on wind turbine blades will adapt continuously to wind variations. Therefore, the occurrence of strong bi-stable stall-hysteresis, which most blade sections demonstrate in the wind tunnel, is lost. This has been confirmed by taking special stall flag measurements. 4. Deviation of Specifications The maximum power of stall controlled wind turbines often shows large systematic deviations from the design. We took stall flag measurements on a rotor, the maximum power of which was 30% too high, so that the turbine had to be cut out far below the designed cut-out wind speed. We immediately observed the blade areas with deviating stall behaviour. Some areas that should have stalled did not and caused the excessive power. We adapted those areas by shifting the vortex generators. In this way we obtained a power curve that met the design much more closely and we realised a production increase of 8%.
USDA-ARS?s Scientific Manuscript database
Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... portion of the leaf blade beyond the middle) in shape, with a smooth or slightly wavy margin, and gray... distinguished it from the related H. giganteus by its smooth and hairless stems; narrow, entire leaf blades; and...-meter-wide transect run through the largest patch of whorled sunflower in that area. These 100 stalks...
Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.
Kataria, Sunita; Guruprasad, K N
2015-12-01
Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315 nm), UV-A/B (<400 nm) or transmitted ambient UV or lacked filters. The results indicated that solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
L. R. Auchmoody
1974-01-01
Nitrogen (N) and phosphorus (P) concentrations in leaf blades and petioles obtained from three fertilized and three unfertilized yellow-poplar sample trees were determined annually during a 4-year period. Concentrations were substantially higher in blades than in petioles. Fertilization increased N and P concentrations in blades, but petioles showed only a slight...
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
Barunawati, Nunun; Giehl, Ricardo F Hettwer; Bauer, Bernhard; von Wirén, Nicolaus
2013-01-01
The fortification of cereal grains with metal micronutrients is a major target to combat human malnutrition of Fe and Zn. Based on recent studies showing that N fertilization can promote Fe and Zn accumulation in cereal grains, we investigated here the influence of nitrate- or ammonium-based N fertilization on the accumulation of Fe, Zn, and Cu as well as metal chelator pools in flag leaves and grains of winter wheat. Fertilization with either N form increased the concentrations of N and of the metal chelator nicotianamine (NA) in green leaves, while 2'-deoxymugineic acid (DMA) remained unaffected. Despite the differential response to N fertilization of NA and DMA levels in flag leaves, N fertilization remained without any significant effect on the net export of these metals during flag leaf senescence, which accounted for approximately one third of the total Fe, Zn, or Cu content in leaves. The significant increase in the accumulation of Fe, Zn, and Cu found in the grains of primarily ammonium-fertilized plants was unrelated to the extent of metal retranslocation from flag leaves. These results indicate that an increased N nutritional status of flag leaves promotes the accumulation of Fe, Zn, and Cu in flag leaves, which is accompanied by an increased pool of NA but not of DMA. With regard to the far higher concentrations of DMA relative to NA in leaves and leaf exudates, DMA may be more relevant for the mobilization and retranslocation of these metals in high-yielding wheat production.
LAM-1 and FAT Genes Control Development of the Leaf Blade in Nicotiana sylvestris.
McHale, NA
1993-01-01
Leaf primordia of the lam-1 mutant of Nicotiana sylvestris grow normally in length but remain bladeless throughout development. The blade initiation site is established at the normal time and position in lam-1 primordia. Anticlinal divisions proceed normally in the outer L1 and L2 layers, but the inner L3 cells fail to establish the periclinal divisions that normally generate the middle mesophyll core. The lam-1 mutation also blocks formation of blade mesophyll from distal L2 cells. This suggests that LAM-1 controls a common step in initiation of blade tissue from the L2 and L3 lineage of the primordium. Another recessive mutation (fat) was isolated in N. sylvestris that induces abnormal periclinal divisions in the mesophyll during blade initiation and expansion. This generates a blade approximately twice its normal thickness by doubling the number of mesophyll cell layers from four to approximately eight. Presumably, the fat mutation defines a negative regulator involved in repression of periclinal divisions in the blade. The lam-1 fat double mutant shows radial proliferation of mesophyll cells at the blade initiation site. This produces a highly disorganized, club-shaped blade that appears to represent an additive effect of the lam-1 and fat mutations on blade founder cells. PMID:12271096
USDA-ARS?s Scientific Manuscript database
Data on physiological parameters of A, gs, Em, Ci, and IWUE in grain sorghum (Sorghum bicolor L. Moench) is limited. Flag leaves from three plants of two hybrids, grown using added N fertilizer rates of 0.0, 112, and 224 kg ha-1 near Elizabeth, MS were field sampled for these parameters at growth s...
Suzuki, Kei; Yamaji, Naoki; Costa, Alex; Okuma, Eiji; Kobayashi, Natsuko I; Kashiwagi, Tatsuhiko; Katsuhara, Maki; Wang, Cun; Tanoi, Keitaro; Murata, Yoshiyuki; Schroeder, Julian I; Ma, Jian Feng; Horie, Tomoaki
2016-01-19
Na(+) exclusion from leaf blades is one of the key mechanisms for glycophytes to cope with salinity stress. Certain class I transporters of the high-affinity K(+) transporter (HKT) family have been demonstrated to mediate leaf blade-Na(+) exclusion upon salinity stress via Na(+)-selective transport. Multiple HKT1 transporters are known to function in rice (Oryza sativa). However, the ion transport function of OsHKT1;4 and its contribution to the Na(+) exclusion mechanism in rice remain to be elucidated. Here, we report results of the functional characterization of the OsHKT1;4 transporter in rice. OsHKT1;4 mediated robust Na(+) transport in Saccharomyces cerevisiae and Xenopus laevis oocytes. Electrophysiological experiments demonstrated that OsHKT1;4 shows strong Na(+) selectivity among cations tested, including Li(+), Na(+), K(+), Rb(+), Cs(+), and NH4 (+), in oocytes. A chimeric protein, EGFP-OsHKT1;4, was found to be functional in oocytes and targeted to the plasma membrane of rice protoplasts. The level of OsHKT1;4 transcripts was prominent in leaf sheaths throughout the growth stages. Unexpectedly however, we demonstrate here accumulation of OsHKT1;4 transcripts in the stem including internode II and peduncle in the reproductive growth stage. Moreover, phenotypic analysis of OsHKT1;4 RNAi plants in the vegetative growth stage revealed no profound influence on the growth and ion accumulation in comparison with WT plants upon salinity stress. However, imposition of salinity stress on the RNAi plants in the reproductive growth stage caused significant Na(+) overaccumulation in aerial organs, in particular, leaf blades and sheaths. In addition, (22)Na(+) tracer experiments using peduncles of RNAi and WT plants suggested xylem Na(+) unloading by OsHKT1;4. Taken together, our results indicate a newly recognized function of OsHKT1;4 in Na(+) exclusion in stems together with leaf sheaths, thus excluding Na(+) from leaf blades of a japonica rice cultivar in the reproductive growth stage, but the contribution is low when the plants are in the vegetative growth stage.
A functional cutin matrix is required for plant protection against water loss
Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar
2011-01-01
The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution. PMID:22019635
A functional cutin matrix is required for plant protection against water loss.
Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar
2011-09-01
The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution.
Moeller, Carina; Evers, Jochem B; Rebetzke, Greg
2014-01-01
Tillering is a core constituent of plant architecture, and influences light interception to affect plant and crop performance. Near-isogenic lines (NILs) varying for a tiller inhibition (tin) gene and representing two genetic backgrounds were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red: far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers compared to the free-tillering NILs, and demonstrated the genetically lower tillering plasticity of tin-containing lines. The distribution of organ sizes along shoots varied between NILs contrasting for tin. Internode elongation commenced at a lower phytomer, and the peduncle was shorter in the tin lines. The flag leaves of tin lines were larger, and the longest leaf blades were observed at higher phytomers in the tin than in free-tillering lines. Total leaf area was reduced in tin lines, and non-tin lines invested more leaf area at mid-canopy height. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced) was 10% greater in the tin lines (0.73-0.76) compared to the free-tillering sisters (0.62-0.63). At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering) at the plant-base was 0.18-0.22 in tin lines and 0.09-0.11 in free-tillering lines at levels of photosynthetic active radiation of 49-53% and 30-33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k) in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs contrasting in tin cannot be explained by leaf area alone but that geometric and optical canopy properties contributed. The careful characterization of specifically-developed NILs is refining the development of a physiology-based model for tillering to improve understanding of the value of architectural traits for use in cereal improvement.
Camargo, Anyela V; Mott, Richard; Gardner, Keith A; Mackay, Ian J; Corke, Fiona; Doonan, John H; Kim, Jan T; Bentley, Alison R
2016-01-01
The appropriate timing of developmental transitions is critical for adapting many crops to their local climatic conditions. Therefore, understanding the genetic basis of different aspects of phenology could be useful in highlighting mechanisms underpinning adaptation, with implications in breeding for climate change. For bread wheat ( Triticum aestivum ), the transition from vegetative to reproductive growth, the start and rate of leaf senescence and the relative timing of different stages of flowering and grain filling all contribute to plant performance. In this study we screened under Smart house conditions a large, multi-founder "NIAB elite MAGIC" wheat population, to evaluate the genetic elements that influence the timing of developmental stages in European elite varieties. This panel of recombinant inbred lines was derived from eight parents that are or recently have been grown commercially in the UK and Northern Europe. We undertook a detailed temporal phenotypic analysis under Smart house conditions of the population and its parents, to try to identify known or novel Quantitative Trait Loci associated with variation in the timing of key phenological stages in senescence. This analysis resulted in the detection of QTL interactions with novel traits such the time between "half of ear emergence above flag leaf ligule" and the onset of senescence at the flag leaf as well as traits associated with plant morphology such as stem height. In addition, strong correlations between several traits and the onset of senescence of the flag leaf were identified. This work establishes the value of systematically phenotyping genetically unstructured populations to reveal the genetic architecture underlying morphological variation in commercial wheat.
Wang, Fubiao; Liu, Jianchao; Chen, Minxue; Zhou, Lujian; Li, Zhaowei; Zhao, Qian; Pan, Gang; Zaidi, Syed-Hassan-Raza; Cheng, Fangmin
2016-01-01
D1 protein in the PSII reaction center is the major target of photodamage, and it exhibits the highest turnover rate among all the thylakoid proteins. In this paper, rice psf (premature senescence of flag leaves) mutant and its wild type were used to investigate the genotype-dependent alteration in PSII photo-damage and D1 protein turnover during leaf senescence and its relation to ABA accumulation in senescent leaves. The symptom and extent of leaf senescence of the psf mutant appeared to be sunlight-dependent under natural field condition. The psf also displayed significantly higher levels of ABA accumulation in senescent leaves than the wild type. However, the premature senescence lesion of psf leaves could be alleviated by shaded treatment, concomitantly with the strikingly suppressed ABA level in the shaded areas of flag leaves. The change in ABA concentration contributed to the regulation of shade-delayed leaf senescence. The participation of ABA in the timing of senescence initiation and in the subsequent rate of leaf senescence was closely associated with PSII photodamage and D1 protein turnover during leaf senescence, in which the transcriptional expression of several key genes (psbA, psbB, psbC and OsFtsH2) involved in D1 protein biosynthesis and PSII repair cycle was seriously suppressed by the significantly increased ABA level. This response resulted in the low rate of D1 protein synthesis and impaired repair recovery in the presence of ABA. The psf showed evidently decreased D1 protein amount in the senescent leaves. Both the inhibition of de novo synthesized D1 protein and the slow rate of proteolytic removal for the photodamaged D1 protein was among the most crucial steps for the linkage between light-dependent leaf senescence and the varying ABA concentration in psf mutant leaves. OsFtsH2 transcriptional expression possibly played an important role in the regulation of D1 protein turnover and PSII repair cycle in relation to ABA mediated leaf senescence. PMID:27532299
Tsutsumi, Koichi; Konno, Masae; Miyazawa, Shin-Ichi; Miyao, Mitsue
2014-02-01
Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer of the plant to eCO2. To discriminate between the effects of eCO2 and those of nitrogen deficiency, we used three different levels of N application. We found that a decline in the leaf soluble protein content (on a leaf area basis) at eCO2 was only observed under N deficiency. The length and width of the leaf blade were reduced by both eCO2 and N deficiency, whereas the blade thickness was increased by eCO2 but was not affected by N deficiency. The change in length by eCO2 became detectable in the secondly fully expanded leaf, and those in width and thickness in the thirdly fully expanded leaf, which were at the leaf developmental stages P4 and P3, respectively, at the onset of the eCO2 treatment. The decreased blade length at eCO2 was associated with a decrease in the epidermal cell number on the adaxial side and a reduction in cell length on the abaxial side. The decreased width resulted from decreased numbers of small vascular bundles and epidermal cell files. The increased thickness was ascribed mainly to enhanced development of bundle sheath extensions at the ridges of vascular bundles. These observations enable us to identify the sites of action of eCO2 on rice leaf development.
Dong, Hao; Bi, Jun; Xia, Guang-Li; Zhou, Xun-Bo; Chen, Yu-Hai
2014-08-01
High-yield winter wheat cultivar Jimai 22 was used to study effects of irrigation and planting patterns on water consumption characteristics and photosynthetic characteristics of winter wheat in field from 2009 to 2011. Three different planting patterns (uniform row, wide-narrow row and furrow) and four irrigation schedules (W0, no irrigation; W1, irrigation at jointing stage; W2, irrigations at jointing and anthesis stages; W3, irrigation at jointing, anthesis and milking stages. Each irrigation rate was 60 mm) were designed in the experiment. Results showed that, with the increasing of irrigation amount, flag leaf area, net photosynthesis rate, maximum photochemical efficiency and actual light transformation efficiency at late growth stages of winter wheat increased. Compared with W0 treatment, the other irrigation treatments had higher grain yields, but lower water use efficiencies. Under the same irrigation condition, the flag leaf net photosynthesis, maximum photochemical efficiency and actual light transformation efficiency were much higher in furrow pattern. Grain yields of winter wheat under furrow pattern and W2 treatment were significantly higher than that of the other treatments. Taking grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages might be the optimal water-saving and planting mode for the winter wheat production in North China Plain.
Bhatta, Madhav; Regassa, Teshome; Rose, Devin J; Baenziger, P Stephen; Eskridge, Kent M; Santra, Dipak K; Poudel, Rachana
2017-12-01
Fine-tuning production inputs such as seeding rate, nitrogen (N), and genotype may improve end-use quality of hard red winter wheat (Triticum aestivium L.) when growing conditions are unpredictable. Studies were conducted at the Agronomy Research Farm (ARF; Lincoln, NE, USA) and the High Plains Agricultural Laboratory (HPAL; Sidney, NE, USA) in 2014 and 2015 in Nebraska, USA, to determine the effects of genotype (6), environment (4), seeding rate (3), and flag leaf top-dressed N (0 and 34 kg N ha -1 ) on the end-use quality of winter wheat. End-use quality traits were influenced by environment, genotype, seeding rate, top-dressed N, and their interactions. Mixograph parameters had a strong correlation with grain volume weight and flour yield. Doubling the recommended seeding rate and N at the flag leaf stage increased grain protein content by 8.1% in 2014 and 1.5% in 2015 at ARF and 4.2% in 2014 and 8.4% in 2015 at HPAL. The key finding of this research is that increasing seeding rates up to double the current recommendations with N at the flag leaf stage improved most of the end-use quality traits. This will have a significant effect on the premium for protein a farmer could receive when marketing wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
... heart damage. Herbs that contain cardiac glycosides include black hellebore, Canadian hemp roots, digitalis leaf, hedge mustard, ... Other stimulant laxative herbs are aloe, alder buckthorn, black root, blue flag, butternut bark, colocynth, European buckthorn, ...
Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua
2015-01-01
A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS–PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade. PMID:25468933
Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua
2015-03-01
A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS-PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Chang, Cheng; Lu, Jie; Zhang, Hai-Ping; Ma, Chuan-Xi; Sun, Genlou
2015-01-01
As the main pigment in photosynthesis, chlorophyll significantly affects grain filling and grain weight of crop. Cytokinin (CTK) can effectively increase chlorophyll content and chloroplast stability, but it is irreversibly inactivated by cytokinin oxidase (CKX). In this study, therefore, twenty-four pairs of primers were designed to identify variations of wheat CKX (Tackx) genes associated with flag leaf chlorophyll content after anthesis, as well as grain weight in 169 recombinant inbred lines (RIL) derived from Triticum aestivum Jing 411 × Hongmangchun 21. Results indicated variation of Tackx4, identified by primer pair T19-20, was proven to significantly associate with chlorophyll content and grain weight in the RIL population. Here, two Tackx4 patterns were identified: one with two co-segregated fragments (Tackx4-1/Tackx4-2) containing 618 bp and 620 bp in size (as in Jing 411), and another with no PCR product. The two genotypes were designated as genotype-A and genotype-B, respectively. Grain weight and leaf chlorophyll content at 5~15 days after anthesis (DAA) were significantly higher in genotype-A lines than those in genotype-B lines. Mapping analysis indicated Tackx4 was closely linked to Xwmc169 on chromosome 3AL, as well as co-segregated with a major quantitative trait locus (QTL) for both grain weight and chlorophyll content of flag leaf at 5~15 DAA. This QTL explained 8.9~22.3% phenotypic variations of the two traits across four cropping seasons. Among 102 wheat varieties, a third genotype of Tackx4 was found and designated as genotype-C, also having two co-segregated fragments, Tackx4-2 and Tackx4-3 (615bp). The sequences of three fragments, Tackx4-1, Tackx4-2, and Tackx4-3, showed high identity (>98%). Therefore, these fragments could be considered as different copies at Tackx4 locus on chromosome 3AL. The effect of copy number variation (CNV) of Tackx4 was further validated. In general, genotype-A contains both significantly higher grain weight and flag leaf chlorophyll content at 5~15 DAA than those in genotype-B and genotype-C, among 102 varieties under various environments. PMID:26714276
Chang, Cheng; Lu, Jie; Zhang, Hai-Ping; Ma, Chuan-Xi; Sun, Genlou
2015-01-01
As the main pigment in photosynthesis, chlorophyll significantly affects grain filling and grain weight of crop. Cytokinin (CTK) can effectively increase chlorophyll content and chloroplast stability, but it is irreversibly inactivated by cytokinin oxidase (CKX). In this study, therefore, twenty-four pairs of primers were designed to identify variations of wheat CKX (Tackx) genes associated with flag leaf chlorophyll content after anthesis, as well as grain weight in 169 recombinant inbred lines (RIL) derived from Triticum aestivum Jing 411 × Hongmangchun 21. Results indicated variation of Tackx4, identified by primer pair T19-20, was proven to significantly associate with chlorophyll content and grain weight in the RIL population. Here, two Tackx4 patterns were identified: one with two co-segregated fragments (Tackx4-1/Tackx4-2) containing 618 bp and 620 bp in size (as in Jing 411), and another with no PCR product. The two genotypes were designated as genotype-A and genotype-B, respectively. Grain weight and leaf chlorophyll content at 5~15 days after anthesis (DAA) were significantly higher in genotype-A lines than those in genotype-B lines. Mapping analysis indicated Tackx4 was closely linked to Xwmc169 on chromosome 3AL, as well as co-segregated with a major quantitative trait locus (QTL) for both grain weight and chlorophyll content of flag leaf at 5~15 DAA. This QTL explained 8.9~22.3% phenotypic variations of the two traits across four cropping seasons. Among 102 wheat varieties, a third genotype of Tackx4 was found and designated as genotype-C, also having two co-segregated fragments, Tackx4-2 and Tackx4-3 (615bp). The sequences of three fragments, Tackx4-1, Tackx4-2, and Tackx4-3, showed high identity (>98%). Therefore, these fragments could be considered as different copies at Tackx4 locus on chromosome 3AL. The effect of copy number variation (CNV) of Tackx4 was further validated. In general, genotype-A contains both significantly higher grain weight and flag leaf chlorophyll content at 5~15 DAA than those in genotype-B and genotype-C, among 102 varieties under various environments.
Yang, Wen Xiong; Liu, Na; Liu, Xiao Hua; Zhang, Xue Ting; Wang, Shi Hong; Yuan, Jun Xiu; Zhang, Xu Cheng
2016-07-01
Based on the field experiment which was conducted in Dingxi County of Gansu Province, and involved in the three treatments: (1) plastic mulching on entire land with soil coverage and bunching (PMS), (2) plastic mulching on entire land and bunching (PM), and (3) direct bunching without mulching (CK). The parameters of SPAD values, chlorophyll fluorescence parameters, photosynthetic gas exchange parameters, as well as leaf area index (LAI), yield, evapotranspiration, and water use efficiency in flag leaves of spring wheat were recorded and analyzed from 2012 to 2013 continuously. The results showed that SPAD values of wheat flag leaves increased in PMS by 10.0%-21.5% and 3.2%-21.6% compared to PM and CK in post-flowering stage, respectively. The maximum photochemical efficiency (F v /F m ) , actual photochemical efficiency (Φ PS 2 ) of photosystem 2 (PS2), and photochemical quenching coefficient (q P ) of PMS were higher than those of PM and CK, the maximum increment values were 6.1%, 9.6% and 30.9% as compared with PM, and significant differences were observed in filling stage (P<0.05). The values of q N in PMS were lowest among the three treatments, and it decreased significantly by 23.8% and 15.4% in heading stage in 2012 and 2013 respectively, as compared with PM. The stoma conductance (g s ) of wheat flag leaves in PMS was higher than that of PM and CK, with significant difference being observed in filling stage, and it increased by 17.1% and 21.1% in 2012 and 2013 respectively, as compared with PM. The transpiration rate (T r ), net photosynthetic rate (P n ), and leaf instantaneous water use efficiency (WUE i ) except heading stage in 2013 of PMS increased by 5.4%-16.7%, 11.2%-23.7%, and 5.6%-7.2%, respectively, as compared with PM, and significant difference of WUE i was observed in flowering stage in 2012. The leaf area index (LAI) of PMS was higher than that of PM and CK, especially, it differed significantly in seasonal drought of 2013. Consequently, the PMS increased the SPAD values in flag leaves of spring wheat, and the capacity of flag leaves for photo energy assimilation and photosynthetic gas exchange were enhanced, caused more photosynthetic energy flowing into photochemical process, as well as decreased the heat dissipation, resulted in the increment of P n and WUE i . Based on the higher P n and LAI, the yield and WUE of PMS increased.
USDA-ARS?s Scientific Manuscript database
Leaf development presents a tremendous resource for tackling the question of patterning in biology. Leaves can be simple or highly dissected. They may have elaborated parts such as the tendrils of a pea leaf or the rolled blade of a carnivorous pitcher plant. Despite the variation in size, shape, an...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.578 Branch. Branch means the leaf of a stalk and consists of the edible stem-like portion and the tops or leaf blades. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.578 Branch. Branch means the leaf of a stalk and consists of the edible stem-like portion and the tops or leaf blades. ...
USDA-ARS?s Scientific Manuscript database
Leaf architecture determines plant structural integrity, light harvesting, and economic considerations such as plant density. Ligules, junctions at the leaf sheath and blade in grasses, protect stalks from environmental stresses and, in conjunction with auricles, controls leaf angle. The liguleless ...
Bahmaniar, M A; Ranjbar, G A
2007-05-01
Nitrogen and potassium are the yield-limiting nutrients in rice production regions of Iran. Use of N and K efficient cultivars is an important complementary strategy in improving rice yield, increasing the quality properties of rice grains and reducing cost of production. In order to consider the effects of different amounts of N and K application on rice (Oryza sativa L.) yield and yield components in pot and field conditions these experiments were undertaken in 2004 at Sari Agricultural Station, Iran. Four levels of N (0, 50, 100 and 150 Kg N ha(-1) in field and 0, 0.6, 1.2 and 1.8 g N pot(-1) in pot) corresponding with four levels of K (0, 75, 150 and 225 kg K2O ha(-1) in field and 0, 0.5, 1 and 1.5 g K2O pot(-1) in pot) were applied in a split-factorial plot design with three replications in both pot and field experiments, variously. Grain yield, number of grain per panicle, number of tiller, plant height, length of flag leaf, total and shoot dry matter, 1000 grain weight and harvest index have been increased by N application in field conditions. However, in pot conditions grain yield, number of grain per panicle, number of tiller, plant height, width of flag leaf, total and shoot dry matter, leaf nitrogen contents and harvest index have significantly been increased (p < or = 0.05). Potassium application in field conditions has significantly affected on all characteristics but 1000 grain weight and leaf N and K contents. Simultaneous application of N and K have increasingly affected on grain yield, plant height, shoot dry matter and harvest index in field conditions and on plant height, length of flag leaf and shoot dry matter in pot conditions (p < or = 0.05).
Does citrus leaf miner impair hydraulics and fitness of citrus host plants?
Raimondo, Fabio; Trifilò, Patrizia; Gullo, Maria A Lo
2013-12-01
Gas exchange and hydraulic features were measured in leaves of three different Citrus species (Citrus aurantium L., Citrus limon L., Citrus × paradisii Macfad) infested by Phyllocnistis citrella Staiton, with the aim to quantify the impact of this pest on leaf hydraulics and, ultimately, on plant fitness. Infested leaves were characterized by the presence on the leaf blade of typical snake-shaped mines and, in some cases, of a crumpled leaf blade. Light microscopy showed that leaf crumpling was induced by damage to the cuticular layer. In all three Citrus species examined: (a) the degree of infestation did not exceed 10% of the total surface area of infested plants; (b) control and infested leaves showed similar values of minimum diurnal leaf water potential, leaf hydraulic conductance and functional vein density; and (c) maximum diurnal values of stomatal conductance to water vapour, transpiration rate and photosynthetic rate (An) were similar in both control leaves and the green areas of infested leaves. A strong reduction of An was recorded only in mined leaf areas. Our data suggest that infestation with P. citrella does not cause conspicuous plant productivity reductions in young Citrus plants, at least not in the three Citrus species studied here.
Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J
2017-06-15
Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Jeong, Kwanho; Julia, Cecile C; Waters, Daniel L E; Pantoja, Omar; Wissuwa, Matthias; Heuer, Sigrid; Liu, Lei; Rose, Terry J
2017-01-01
Phosphorus (P) is translocated from vegetative tissues to developing seeds during senescence in annual crop plants, but the impact of this P mobilisation on photosynthesis and plant performance is poorly understood. This study investigated rice (Oryza sativa L.) flag leaf photosynthesis and P remobilisation in a hydroponic study where P was either supplied until maturity or withdrawn permanently from the nutrient solution at anthesis, 8 days after anthesis (DAA) or 16 DAA. Prior to anthesis, plants received either the minimum level of P in nutrient solution required to achieve maximum grain yield ('adequate P treatment'), or received luxury levels of P in the nutrient solution ('luxury P treatment'). Flag leaf photosynthesis was impaired at 16 DAA when P was withdrawn at anthesis or 8 DAA under adequate P supply but only when P was withdrawn at anthesis under luxury P supply. Ultimately, reduced photosynthesis did not translate into grain yield reductions. There was some evidence plants remobilised less essential P pools (e.g. Pi) or replaceable P pools (e.g. phospholipid-P) prior to remobilisation of P in pools critical to leaf function such as nucleic acid-P and cytosolic Pi. Competition for P between vegetative tissues and developing grains can impair photosynthesis when P supply is withdrawn during early grain filling. A reduction in the P sink strength of grains by genetic manipulation may enable leaves to sustain high rates of photosynthesis until the later stages of grain filling.
Hossain, Md Kamal; Jena, Kshirod Kumar; Bhuiyan, Md Atiqur Rahman; Wickneswari, Ratnam
2016-01-01
Sheath blight is considered the most significant disease of rice and causes enormous yield losses over the world. Breeding for resistant varieties is the only viable option to combat the disease efficiently. Seventeen diverged rice genotypes along with 17 QTL-linked SSR markers were evaluated under greenhouse conditions. Pearson’s correlation showed only the flag leaf angle had a significant correlation with sheath blight resistance under greenhouse screening. Multivariate analysis based on UPGMA clustering and principal component analysis (PCA) indicated that the flag leaf angle, flag leaf length, and plant compactness were significantly associated with the following SSR marker alleles: RM209 (116,130), RM202 (176), RM224 (126), RM257 (156), RM426 (175), and RM6971 (196), which are linked to the SB QTLs: QRlh11, qSBR11-3, qSBR11-1, qSBR9-1, qShB3-2, and qSB-9. A Mantel test suggested a weak relationship between the observed phenotypes and allelic variation patterns, implying the independent nature of morphological and molecular variations. Teqing and Tetep were found to be the most resistant cultivars. IR65482-4-136-2-2, MR219-4, and MR264 showed improved resistance potentials. These results suggest that the morphological traits and QTLs which have been found to associate with sheath blight resistance are a good choice to enhance resistance through pyramiding either 2 QTLs or QTLs and traits in susceptible rice cultivars. PMID:27795687
Zheng, Chunfang; Jiang, Dong; Liu, Fulai; Dai, Tingbo; Jing, Qi; Cao, Weixing
2009-04-01
The objective of this study was to investigate the effects of salt (ST) and waterlogging (WL) stresses and their combination (SW) on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat (Triticum aestivum L.). Two winter wheat cultivars, Huaimai 17 and Yangmai 12, differing in their tolerance to ST and WL stresses were used. The plants were grown in pots and were subjected to ST, WL, and SW from 7 days after anthesis (DAA). The WL and SW treatments lasted for 5 days, while the ST treatment was continuously imposed during the grain filling stage. Significant decrease in net photosynthetic rate (PN) of the flag leaf was observed under the ST and SW treatments from 10 DAA in Yangmai 12 and at 18 DAA in both cultivars, which could be stomatal closure related. At 18 DAA, clear reduction in PN under the ST and SW treatments was observed, which was associated with chlorosis, damages to the photosystem II (PSII), enhanced lipid peroxidation, and depressed ATP synthesis in the chloroplasts of the flag leaf. Whereas, WL treatment alone had slightly negative effect on PN, which was mainly attributed to leaf chlorosis and waste in harvested energy by the PSII reaction center dispersed via non-photochemical approaches. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes.
Monneveux, Philippe; Pastenes, Claudio; Reynolds, Matthew P
2003-06-01
Three high-yielding wheat genotypes (T. aestivum L., c.v. Siete Cerros, Seri and Bacanora, released in 1966, 1982 and 1988, respectively) were grown under irrigation in two high radiation, low relative humidity environments (Tlaltizapan and Ciudad Obregon CIMMYT experimental stations, Mexico). Gas exchange and fluorescence parameters were assessed on the flag leaf during the day. Carbon isotope discrimination (delta) was analysed in flag leaf at anthesis and in grain at maturity. In both environments, gas exchange and fluorescence parameters varied markedly with irradiance and temperature. Analysis of their respective variation indicated the occurrence of photo-respiration and photo-inhibition, particularly in Tlaltizapan, the warmest environment, and in Siete Cerros. In Ciudad Obregon (high-yielding environment) lower Ci (internal CO2 concentration) and delta La (carbon isotope discrimination of the leaf) suggested a higher intrinsic photosynthetic capacity in the variety Bacanora. Higher yield of this genotype was also associated with higher Fv'/Fo' (ratio of photochemical and non photochemical rate constants in the light) and Fm'/Fm (ratio of the non photochemical rate constants in the dark and light adapted state).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Baolong.
Absorption, translocation, distribution, exudation, and guttation of {sup 14}C-glyphosate in water hyacinth (Eichhornia crassipes) were studied. Glyphosphate entered the plant by foliage and solution treatment. Plants were harvested and separated into the following parts: treated leaf blade, treated leaf petiole, young leaf blade, young leaf petiole, old leak blade, old leaf petiole, and root. Each part was extracted with methanol. Treated leaves, which exist only in foliage treatment, were washed with water and chloroform to remove the glyphosate residues. All {sup 14}C counting was made by liquid scintillation spectrometry. Autoradiography was used to locate {sup 14}C-glyphosate after foliage treatment. Resultsmore » indicated that glyphosate can be absorbed from the leaf surface and translocated rapidly through phloem tissues into the whole plant body. The roots of water hyacinth absorbed glyphosate without vertical transport. Guttation of glyphosate occurred in treated leaf tips. Exudation of glyphosate from roots of water hyacinth occurred within 8 hr after foliage treatment. Chlorella vulgaris, Chlamydomonas reihardii, Anabaena cylindrica, and Chroococcus turgidus were used to explore the physiological and biochemical effects of glyphosate on algae. Spectrophotometric assays were performed for algal growth, chlorophyll, carotenoids, phycobiliprotein, carbohydrate, and protein. TLC procedures and an image analyzer were used to detect the metabolites of glyphosate inside algal cells. The common visible symptom of glyphosate toxicity in all algal cells were bleaching effect and reduction of contents of carbohydrate, protein, and pigments. The results highly suggested that glyphosate injured the algal cells by destruction of photosynthetic pigments and resulted in lowering the contents of carbohydrate and protein in algal cells.« less
Hang, Tran Thi Minh; Shigyo, Masayoshi; Yaguchi, Shigenori; Yamauchi, Naoki; Tashiro, Yosuke
2004-12-01
We used a complete set of Allium fistulosum - shallot (A. cepa Aggregatum group) monosomic addition lines (FF+1A - FF+8A) to identify shallot chromosomes affecting the production of sugars. In the alien addition lines grown over two years in an experimental field at Yamaguchi University (34 degrees N, 131 degrees E), shallot chromosomes 2A and 8A altered sugar contents in leaf-bunching onion (A. fistulosum). Except for FF+2A, every monosomic addition accumulated non-reducing sugars in winter leaf blades. FF+8A caused an increase in the amounts of non-reducing sugars in the winter. FF+2A hardly produced non-reducing sugar throughout the two-year study. These results indicated that genes related to non-reducing sugar metabolism are located on the 2A and 8A chromosomes. The results of regression analyses using 2002 data on A. fistulosum and the monosomic addition set revealed a correlation (r = 0.63 +/- 0.07; mean +/- SE., n = 9) between reducing sugar and monosaccharide (Glc+Fru) contents but no correlation between non-reducing sugar and sucrose contents. This result indicates the existence of other polysaccharides (e.g., scorodose) as non-reducing sugars in the leaf blade.
Estimating Defoliation of Hardwoods Using Blade-petiole Relations
Harry T. Valentine
1978-01-01
Prediction equations for estimating leaf blade area and dry weight from measurements of petiole thickness were used to estimate defoliation of Populus tremuloides, Acer rubrum, Quercus rubra, and Q. alba. On one tree of each species, a sample of leaves was artifically browsed in May and...
Performance of a steel spar wind turbine blade on the Mod-0 100 kW experimental wind turbine
NASA Technical Reports Server (NTRS)
Keith, T. G., Jr.; Sullivan, T. L.; Viterna, L. A.
1980-01-01
The performance and loading of a large wind rotor, 38.4 m in diameter and composed of two low-cost steel spar blades were examined. Two blades were fabricated at Lewis Research Center and successfully operated on the Mod-0 wind turbine at Plum Brook. The blades were operated on a tower on which the natural bending frequency were altered by placing the tower on a leaf-spring apparatus. It was found that neither blade performance nor loading were affected significantly by this tower softening technique. Rotor performance exceeded prediction while blade loads were found to be in reasonable agreement with those predicted. Seventy-five hours of operation over a five month period resulted in no deterioration in the blade.
Macarisin, Dumitru; Patel, Jitendra; Bauchan, Gary; Giron, Jorge A; Ravishankar, Sadhana
2013-11-01
Similar to phytopathogens, human bacterial pathogens have been shown to colonize the plant phylloplane. In addition to environmental factors, such as temperature, UV, relative humidity, etc., the plant cultivar and, specifically, the leaf blade morphological characteristics may affect the persistence of enteropathogens on leafy greens. This study was conducted to evaluate the effect of cultivar-dependent leaf topography and the role of strain phenotypic characteristics on Escherichia coli O157:H7 persistence on organic spinach. Spinach cultivars Emilia, Lazio, Space, and Waitiki were experimentally inoculated with the foodborne E. coli O157:H7 isolate EDL933 and its isogenic mutants deficient in cellulose, curli, or both curli and cellulose production. Leaves of 6-week-old plants were inoculated with 6.5 log CFU per leaf in a biosafety level 2 growth chamber. At 0, 1, 7, and 14 days, E. coli O157:H7 populations were determined by plating on selective medium and verified by laser scanning confocal microscopy. Leaf morphology (blade roughness and stoma density) was evaluated by low-temperature and variable-pressure scanning electron microscopy. E. coli O157:H7 persistence on spinach was significantly affected by cultivar and strain phenotypic characteristics, specifically, the expression of curli. Leaf blade roughness and stoma density influenced the persistence of E. coli O157:H7 on spinach. Cultivar Waitiki, which had the greatest leaf roughness, supported significantly higher E. coli O157:H7 populations than the other cultivars. These two morphological characteristics of spinach cultivars should be taken into consideration in developing intervention strategies to enhance the microbial safety of leafy greens.
Haque, Md Moinul; Pramanik, Habibur Rahman; Biswas, Jiban Krishna; Iftekharuddaula, K M; Hasanuzzaman, Mirza
2015-01-01
Hybrid rice varieties have higher yield potential over inbred varieties. This improvement is not always translated to the grain yield and its physiological causes are still unclear. In order to clarify it, two field experiments were conducted including two popular indica hybrids (BRRI hybrid dhan2 and Heera2) and one elite inbred (BRRI dhan45) rice varieties. Leaf area index, chlorophyll status, and photosynthetic rate of flag leaf, postheading crop growth rate, shoot reserve translocation, source-sink relation and yield, and its attributes of each variety were comprehensively analyzed. Both hybrid varieties outyielded the inbred. However, the hybrids and inbred varieties exhibited statistically identical yield in late planting. Both hybrids accumulated higher amount of biomass before heading and exhibited greater remobilization of assimilates to the grain in early plantings compared to the inbred variety. Filled grain (%) declined significantly at delayed planting in the hybrids compared to elite inbred due to increased temperature impaired-inefficient transport of assimilates. Flag leaf photosynthesis parameters were higher in the hybrid varieties than those of the inbred variety. Results suggest that greater remobilization of shoot reserves to the grain rendered higher yield of hybrid rice varieties.
Low frequency acoustic properties of Posidonia oceanica seagrass leaf blades
Johnson, Jay R.; Venegas, Gabriel R.; Wilson, Preston S.; Hermand, Jean-Pierre
2017-01-01
The acoustics of seagrass meadows impacts naval and oceanographic sonar applications. To study this environment, a one-dimensional resonator was used to assess the low-frequency (1–5 kHz) acoustic response of the leaf blades of the Mediterranean seagrass Posidonia oceanica in water. Three separate collections of plants from Crete, Greece, and Sicily, Italy were investigated. A high consistency in effective sound speed was observed within each collection while a strong variability was observed between different collections. Average size, mass, and epiphytic coverage within each collection were quantified, and discoloration and stiffness are discussed qualitatively with respect to the observed acoustic variability. PMID:28618796
Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S
2014-12-01
Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
On the Behavior of Pliable Plate Dynamics in Wind: Application to Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Cosse, Julia Theresa
Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream. The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind. In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.
Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun
2016-01-01
With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency.
2010-01-01
As the primary site for photosynthetic carbon fixation and the interface between plants and the environment, plant leaves play a key role in plant growth, biomass production and survival, and global carbon and oxygen cycles. Leaves can be simple with a single blade or compound with multiple units of blades known as leaflets. In a palmate-type compound leaf, leaflets are clustered at the tip of the leaf. In a pinnate-type compound leaf, on the other hand, leaflets are placed on a rachis in distance from each other. Higher orders of complexities such as bipinnate compound leaves of the “sensitive” plant, Mimosa pudica, also occur in nature. However, how different leaf morphologies are determined is still poorly understood. Medicago truncatula is a model legume closely related to alfalfa and soybean with trifoliate compound leaves. Recently, we have shown that Palmate-like Pentafoliata1 (PALM1) encodes a putative Cys(2) His(2) zinc finger transcription factor essential for compound leaf morphogenesis in M. truncatula. Here, we present our phylogenetic relationship analysis of PALM1 homologs from different species and demonstrate that PALM1 has transcriptional activity in the transactivation assay in yeast. PMID:20724826
Identification of Maize Silicon Influx Transporters
Mitani, Namiki; Yamaji, Naoki; Ma, Jian Feng
2009-01-01
Maize (Zea mays L.) shows a high accumulation of silicon (Si), but transporters involved in the uptake and distribution have not been identified. In the present study, we isolated two genes (ZmLsi1 and ZmLsi6), which are homologous to rice influx Si transporter OsLsi1. Heterologous expression in Xenopus laevis oocytes showed that both ZmLsi1 and ZmLsi6 are permeable to silicic acid. ZmLsi1 was mainly expressed in the roots. By contrast, ZmLsi6 was expressed more in the leaf sheaths and blades. Different from OsLsi1, the expression level of both ZmLsi1 and ZmLsi6 was unaffected by Si supply. Immunostaining showed that ZmLsi1 was localized on the plasma membrane of the distal side of root epidermal and hypodermal cells in the seminal and crown roots, and also in cortex cells in lateral roots. In the shoots, ZmLsi6 was found in the xylem parenchyma cells that are adjacent to the vessels in both leaf sheaths and leaf blades. ZmLsi6 in the leaf sheaths and blades also exhibited polar localization on the side facing towards the vessel. Taken together, it can be concluded that ZmLsi1 is an influx transporter of Si, which is responsible for the transport of Si from the external solution to the root cells and that ZmLsi6 mainly functions as a Si transporter for xylem unloading. PMID:18676379
Long-Term Inhibition by Auxin of Leaf Blade Expansion in Bean and Arabidopsis1
Keller, Christopher P.; Stahlberg, Rainer; Barkawi, Lana S.; Cohen, Jerry D.
2004-01-01
The role of auxin in controlling leaf expansion remains unclear. Experimental increases to normal auxin levels in expanding leaves have shown conflicting results, with both increases and decreases in leaf growth having been measured. Therefore, the effects of both auxin application and adjustment of endogenous leaf auxin levels on midrib elongation and final leaf size (fresh weight and area) were examined in attached primary monofoliate leaves of the common bean (Phaseolus vulgaris) and in early Arabidopsis rosette leaves. Aqueous auxin application inhibited long-term leaf blade elongation. Bean leaves, initially 40 to 50 mm in length, treated once with α-naphthalene acetic acid (1.0 mm), were, after 6 d, approximately 80% the length and weight of controls. When applied at 1.0 and 0.1 mm, α-naphthalene acetic acid significantly inhibited long-term leaf growth. The weak auxin, β-naphthalene acetic acid, was effective at 1.0 mm; and a weak acid control, benzoic acid, was ineffective. Indole-3-acetic acid (1 μm, 10 μm, 0.1 mm, and 1 mm) required daily application to be effective at any concentration. Application of the auxin transport inhibitor, 1-N-naphthylphthalamic acid (1% [w/w] in lanolin), to petioles also inhibited long-term leaf growth. This treatment also was found to lead to a sustained elevation of leaf free indole-3-acetic acid content relative to untreated control leaves. Auxin-induced inhibition of leaf growth appeared not to be mediated by auxin-induced ethylene synthesis because growth inhibition was not rescued by inhibition of ethylene synthesis. Also, petiole treatment of Arabidopsis with 1-N-naphthylphthalamic acid similarly inhibited leaf growth of both wild-type plants and ethylene-insensitive ein4 mutants. PMID:14988474
Partitioning of photosynthate within and distal to the growth zone of tall fescue leaf blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allard, G.; Nelson, C.J.
The growth zone of developing tall fescue leaf blades, consisting of zones of cell division, cell elongation and cell maturation, are a strong sink for photosynthate. Distribution of {sup 14}C along the growth zone and partitioning between water-soluble carbohydrates (WSC) and WSC-free dry matter (SDM) were observed for up to 64 h after labelling the youngest fully expanded leaf or the exposed tip of the elongating leaf with {sup 14}CO{sub 2}. Deposition rates of {sup 14}C were estimated using the continuity equation. The cell elongation zone, especially the WSC fraction, was the strongest sink for {sup 14}C. In the proximalmore » end of the maturation zone, partitioning of {sup 14}C shifted from being allocated mainly to the WSC fraction after 2 h to an equal distribution between WSC and SDM at the distal end of the zone after 64 h. A significant proportion of {sup 14}C in the SDM fraction of the maturation zone could be attributed to redistribution from WSC.« less
Templer, Sven Eduard; Ammon, Alexandra; Pscheidt, David; Ciobotea, Otilia; Schuy, Christian; McCollum, Christopher; Sonnewald, Uwe; Hanemann, Anja; Förster, Jutta; Ordon, Frank; von Korff, Maria
2017-01-01
Abstract Barley (Hordeum vulgare L.) is among the most stress-tolerant crops; however, not much is known about the genetic and environmental control of metabolic adaptation of barley to abiotic stresses. We have subjected a genetically diverse set of 81 barley accessions, consisting of Mediterranean landrace genotypes and German elite breeding lines, to drought and combined heat and drought stress at anthesis. Our aim was to (i) investigate potential differences in morphological, physiological, and metabolic adaptation to the two stress scenarios between the Mediterranean and German barley genotypes and (ii) identify metabolic quantitative trait loci (mQTLs). To this end, we have genotyped the investigated barley lines with an Illumina iSelect 9K array and analyzed a set of 57 metabolites from the primary C and N as well as antioxidant metabolism in flag leaves under control and stress conditions. We found that drought-adapted genotypes attenuate leaf carbon metabolism much more strongly than elite lines during drought stress adaptation. Furthermore, we identified mQTLs for flag leaf γ-tocopherol, glutathione, and succinate content by association genetics that co-localize with genes encoding enzymes of the pathways producing these antioxidant metabolites. Our results provide the molecular basis for breeding barley cultivars with improved abiotic stress tolerance. PMID:28338908
Uauy, Cristobal; Brevis, Juan Carlos; Dubcovsky, Jorge
2006-01-01
High grain protein content (GPC) is a frequent target of wheat breeding programmes because of its positive effect on bread and pasta quality. A wild wheat allele at the Gpc-B1 locus with a significant impact on this trait was identified previously. The precise mapping of several senescence-related traits in a set of tetraploid recombinant substitution lines (RSLs) segregating for Gpc-B1 is reported here. Flag leaf chlorophyll degradation, change in peduncle colour, and spike water content were completely linked to the Gpc-B1 locus and to the differences in GPC within a 0.3 cM interval corresponding to a physical distance of only 250 kb. The effect of Gpc-B1 was also examined in different environments and genetic backgrounds using a set of tetraploid and hexaploid pairs of isogenic lines. The results were consistent with those observed in the RSLs. The high GPC allele conferred a shorter duration of grain fill due to earlier flag leaf senescence and increased GPC in all four genetic backgrounds. The effect on grain size was more variable, depending on the genotype-environment combinations. These results are consistent with a model in which the wild-type allele of Gpc-B1 accelerates senescence in flag leaves producing pleiotropic effects on nitrogen remobilization, total GPC, and grain size.
Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number.
Kubo, Fumika Clara; Yasui, Yukiko; Kumamaru, Toshihiro; Sato, Yutaka; Hirano, Hiro-Yuki
2017-03-17
Leaves are a major site for photosynthesis and a key determinant of plant architecture. Rice produces thin and slender leaves, which consist of the leaf blade and leaf sheath separated by the lamina joint. Two types of vasculature, the large and small vascular bundles, run in parallel, together with a strong structure, the midrib. In this paper, we examined the function of four genes that regulate the width of the leaf blade and the vein number: NARROW LEAF1 (NAL1), NAL2, NAL3 and NAL7. We backcrossed original mutants of these genes with the standard wild-type rice, Taichung 65. We then compared the effect of each mutation on similar genetic backgrounds and examined genetic interactions of these genes. The nal1 single mutation and the nal2 nal3 double mutation showed a severe effect on leaf width, resulting in very narrow leaves. Although vein number was also reduced in the nal1 and nal2 nal3 mutants, the small vein number was more strongly reduced than the large vein number. In contrast, the nal7 mutation showed a milder effect on leaf width and vein number, and both the large and small veins were similarly affected. Thus, the genes responsible for narrow leaf phenotype seem to play distinct roles. The nal7 mutation showed additive effects on both leaf width and vein number, when combined with the nal1 single or the nal2 nal3 double mutation. In addition, observations of inner tissues revealed that cell differentiation was partially compromised in the nal2 nal3 nal7 mutant, consistent with the severe reduction in leaf width in this triple mutant.
Sokoloff, Dmitry D; Remizowa, Margarita V; Beer, Anton S; Yadav, Shrirang R; Macfarlane, Terry D; Ramsay, Margaret M; Rudall, Paula J
2013-05-01
A bipolar embryo with cotyledons is a characteristic feature that appeared early in the evolution of seed plants. Cotyledon number is an important character in angiosperm classification. We explore the links between functional aspects of seed germination and the number and location of the cotyledons, using as a model the early-divergent angiosperm family Hydatellaceae, in which seedlings are superficially monocot-like. • Seedlings of two species of tropical Hydatellaceae were studied using light and scanning electron microscopy. • Seedlings of Trithuria cowieana bear two free cotyledons. Each cotyledon possesses a green, filiform, vascularized blade that resembles subsequent leaves, and a basal, nonvascularized, haustorial outgrowth that remains in close contact with the endosperm. Seedlings of Trithuria konkanensis have two free cotyledonary haustoria inserted close to each other and a leaf blade probably belonging to one of the cotyledons. The cotyledonary node elongates between the haustoria and the leaf blade to form a mesocotyl. • To date, the absence or presence of a cotyledonary tube represents the only known qualitative morphological difference between the two major clades of Hydatellaceae. Cotyledons with a haustorium and leaf blade are unusual at the scale of seed plants and probably evolved due to homeosis. The mesocotyl of T. konkanensis resembles that of grasses and sedges. Seedling diversity in Hydatellaceae and other seed plants is linked with the principal physical and spatial constraint of their embryo structure, with the primary root and shoot apical meristems located at opposite poles, and haustorial cotyledon tips.
Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael
2017-07-01
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
ELIGULUM-A Regulates Lateral Branch and Leaf Development in Barley1[OPEN
Haaning, Allison; Bilgic, Hatice
2018-01-01
The shoot apical and axillary meristems control shoot development, effectively influencing lateral branch and leaf formation. The barley (Hordeum vulgare) uniculm2 (cul2) mutation blocks axillary meristem development, and mutant plants lack lateral branches (tillers) that normally develop from the crown. A genetic screen for cul2 suppressors recovered two recessive alleles of ELIGULUM-A (ELI-A) that partially rescued the cul2 tillering phenotype. Mutations in ELI-A produce shorter plants with fewer tillers and disrupt the leaf blade-sheath boundary, producing liguleless leaves and reduced secondary cell wall development in stems and leaves. ELI-A is predicted to encode an unannotated protein containing an RNaseH-like domain that is conserved in land plants. ELI-A transcripts accumulate at the preligule boundary, the developing ligule, leaf margins, cells destined to develop secondary cell walls, and cells surrounding leaf vascular bundles. Recent studies have identified regulatory similarities between boundary development in leaves and lateral organs. Interestingly, we observed ELI-A transcripts at the preligule boundary, suggesting that ELI-A contributes to boundary formation between the blade and sheath. However, we did not observe ELI-A transcripts at the axillary meristem boundary in leaf axils, suggesting that ELI-A is not involved in boundary development for axillary meristem development. Our results show that ELI-A contributes to leaf and lateral branch development by acting as a boundary gene during ligule development but not during lateral branch development. PMID:29440592
Abe, K; Takahashi, H; Suge, H
1998-12-01
We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2-15 of both elongated and non-elongated internodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11-15 only elongated internodes but not at nodes 2-10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants of serpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.
Early competition shapes maize whole-plant development in mixed stands
Evers, Jochem B.
2014-01-01
Mixed cropping is practised widely in developing countries and is gaining increasing interest for sustainable agriculture in developed countries. Plants in intercrops grow differently from plants in single crops, due to interspecific plant interactions, but adaptive plant morphological responses to competition in mixed stands have not been studied in detail. Here the maize (Zea mays) response to mixed cultivation with wheat (Triticum aestivum) is described. Evidence is provided that early responses of maize to the modified light environment in mixed stands propagate throughout maize development, resulting in different phenotypes compared with pure stands. Photosynthetically active radiation (PAR), red:far-red ratio (R:FR), leaf development, and final organ sizes of maize grown in three cultivation systems were compared: pure maize, an intercrop with a small distance (25cm) between maize and wheat plants, and an intercop with a large distance (44cm) between the maize and the wheat. Compared with maize in pure stands, maize in the mixed stands had lower leaf and collar appearance rates, increased blade and sheath lengths at low ranks and smaller sizes at high ranks, increased blade elongation duration, and decreased R:FR and PAR at the plant base during early development. Effects were strongest in the treatment with a short distance between wheat and maize strips. The data suggest a feedback between leaf initiation and leaf emergence at the plant level and coordination between blade and sheath growth at the phytomer level. A conceptual model, based on coordination rules, is proposed to explain the development of the maize plant in pure and mixed stands. PMID:24307719
USDA-ARS?s Scientific Manuscript database
This study was carried out to verify the practical use of the portable chlorophyll meter-PCM502 (PCM) in two papaya cultivars with contrasting green coloring of the leaf blade (‘Golden’: yellowish-green; ‘Solo’: dark green). The relationship was studied between the photosynthetic process and leaf n...
Kimak, Adam; Kern, Zoltan; Leuenberger, Markus
2015-01-01
Foliar samples were harvested from two oaks, a beech, and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (δ13C, δ18O, and δD) were analyzed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the δ13C-values are in agreement with the transition from remobilized carbohydrates (juvenile period), to current photosynthates (mature phase). While the opponent seasonal trends of δ18O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for δD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins) to 57 permil (oak blades) in δD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on δD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level. PMID:26635835
Kimak, Adam; Kern, Zoltan; Leuenberger, Markus
2015-01-01
Foliar samples were harvested from two oaks, a beech, and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (δ(13)C, δ(18)O, and δD) were analyzed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the δ(13)C-values are in agreement with the transition from remobilized carbohydrates (juvenile period), to current photosynthates (mature phase). While the opponent seasonal trends of δ(18)O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for δD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins) to 57 permil (oak blades) in δD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on δD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level.
Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension.
Rodríguez, Andrés A; Grunberg, Karina A; Taleisnik, Edith L
2002-08-01
The production and role of reactive oxygen species (ROS) in the expanding zone of maize (Zea mays) leaf blades were investigated. ROS release along the leaf blade was evaluated by embedding intact seedlings in 2',7'-dichlorofluorescein-containing agar and examining the distribution of 2',7'-dichlorofluorescein fluorescence along leaf 4, which was exposed by removing the outer leaves before embedding the seedling. Fluorescence was high in the expanding region, becoming practically non-detectable beyond 65 mm from the ligule, indicating high ROS production in the expansion zone. Segments obtained from the elongation zone of leaf 4 were used to assess the role of ROS in leaf elongation. The distribution of cerium perhydroxide deposits in electron micrographs indicated hydrogen peroxide (H(2)O(2)) presence in the apoplast. 2',7'-Dichlorofluorescein fluorescence and apoplastic H(2)O(2) accumulation were inhibited with diphenyleneiodonium (DPI), which also inhibited O*(2)(-) generation, suggesting a flavin-containing enzyme activity such as NADPH oxidase was involved in ROS production. Segments from the elongation zone incubated in water grew 8% in 2 h. KI treatments, which scavenged H(2)O(2) but did not inhibit O*(2)(-) production, did not modify growth. DPI significantly inhibited segment elongation, and the addition of H(2)O(2) (50 or 500 microM) to the incubation medium partially reverted the inhibition caused by DPI. These results indicate that a certain concentration of H(2)O(2) is necessary for leaf elongation, but it could not be distinguished whether H(2)O(2), or other ROS, are the actual active agents.
Miyata, Rie; Kubo, Takuya; Nabeshima, Eri; Kohyama, Takashi S.
2011-01-01
Background and Aims Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns. Methods Focus is given to relationships between tree height and top-shoot traits, which include the shoot's leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot's stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan. Key Results Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height. Conclusions In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain. PMID:21914698
Natural variation and genetic make-up of leaf blade area in spring barley.
Alqudah, Ahmad M; Youssef, Helmy M; Graner, Andreas; Schnurbusch, Thorsten
2018-04-01
GWAS analysis for leaf blade area (LA) revealed intriguing genomic regions associated with putatively novel QTL and known plant stature-related phytohormone and sugar-related genes. Despite long-standing studies in the morpho-physiological characters of leaf blade area (LA) in cereal crops, advanced genetic studies to explore its natural variation are lacking. The importance of modifying LA in improving cereal grain yield and the genes controlling leaf traits have been well studied in rice but not in temperate cereals. To better understand the natural genetic variation of LA at four developmental stages, main culm LA was measured from 215 worldwide spring barleys including 92 photoperiod-sensitive accessions [PHOTOPERIOD RESPONSE LOCUS 1 (Ppd-H1)] and 123 accessions with reduced photoperiod sensitivity (ppd-H1) locus under controlled greenhouse conditions (long-day; 16/8 h; ~ 20/~ 16 °C day/night). The LA of Ppd-H1-carrying accessions was always smaller than in ppd-H1-carrying accessions. We found that nine SNPs from the Ppd-H1 gene were present in the collection of which marker 9 (M9; G/T in the CCT-domain) showed the most significant and consistent effect on LA at all studied developmental stages. Genome-wide association scans (GWAS) showed that the accessions carrying the ppd-H1 allele T/M9 (late heading) possessed more genetic variation in LA than the Ppd-H1 group carrying G/M9 (early heading). Several QTL with major effects on LA variation were found close to plant stature-related heading time, phytohormone- and sugar-related genes. The results provide evidence that natural variation of LA is an important source for improving grain yield, adaptation and canopy architecture of temperate cereals.
USDA-ARS?s Scientific Manuscript database
Hard red winter wheat parents ‘Harry’ (drought tolerant) and ‘Wesley’ (drought susceptible) was used to develop a recombinant inbred population to identify genomic regions associated with drought and adaptation. To precisely map genomic regions high-density linkage maps are a prerequisite. In this s...
NASA Technical Reports Server (NTRS)
Bishop, D. L.; Bugbee, B. G.
1998-01-01
Efficient use of space and high yields are critical for long-term food production aboard the International Space Station. The selection of a full dwarf wheat (less than 30 cm tall) with high photosynthetic and yield potential is a necessary prerequisite for growing wheat in the controlled, volume-limited environments available aboard long-term spaceflight missions. This study evaluated the photosynthetic capacity and carbon partitioning of a full-dwarf wheat cultivar, Super Dwarf, which is routinely used in spaceflight studies aboard U.S. space shuttle and NASA/Mir missions and made comparisons with other dwarf and semi-dwarf wheat cultivars utilized in other ground-based studies in plant space biology. Photosynthetic capacity of the flag leaf in two dwarf (Super Dwarf, BB-19), and three semi-dwarf (Veery-10, Yecora Rojo, IBWSN 199) wheat cultivars (Triticum aestivum L.) was assessed by measuring: net maximum photosynthetic rate, RuBP carboxylation efficiency, chlorophyll concentration and flag leaf area. Dry mass partitioning of carbohydrates to the leaves, sheaths, stems and ear was also assessed. Plants were grown under controlled environmental conditions in three replicate studies: slightly enriched CO2 (370 micromoles mol-1), high photosynthetic photon flux (1000 micromoles m-2 s-1; 58 mol m-2 d-1) for a 16 h photoperiod, 22/15 degrees C day/night temperatures, ample nutrients and water provided by one-half strength Hoagland's nutrient solution (Hoagland and Arnon, 1950). Photosynthetic capacity of the flag leaf was determined at anthesis using net CO2 exchange rate versus internal CO2 concentration curves measured under saturating light (2000 micromoles m-2 s-1) and CO2 (1000 micromoles mol-1). Dwarf wheat cultivars had greater photosynthetic capacities than the taller semi-dwarfs, they averaged 20% higher maximum net photosynthetic rates compared to the taller semi-dwarfs, but these higher rates occurred only at anthesis, had slightly greater carboxylation efficiencies and significantly increased chlorophyll concentrations per unit leaf area. The reduced-height wheat had significantly less dry mass fraction in the stem but greater dry mass partitioned to the ear than the taller semi-dwarfs (Yecora rojo, IBWSN-199). Studies with detached heads confirm that the head is a significant sink in the shorter wheat cultivars.
Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin
2018-01-01
In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the senescing leaves of the esl mutant. Conversely, OsNox1, OsNox3, and OsFR07 were not associated with ABA-induced O2- generation during leaf senescence. PMID:29309410
Li, Zhaowei; Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin
2018-01-01
In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the senescing leaves of the esl mutant. Conversely, OsNox1, OsNox3, and OsFR07 were not associated with ABA-induced O2- generation during leaf senescence.
Zhang, Lei; Shao, Yu Hang; Gu, Shi Lu; Hu, Hang; Zhang, Wei Wei; Tian, Zhong Wei; Jiang, Dong; Dai, Ting Bo
2016-12-01
Excessive nitrogen (N) fertilizer application has led to a reduction of nitrogen use efficiency and environmental problems. It was of great significance for high-yield and high-efficiency cultivation to reduce N fertilizer application with modified application strategies. A two-year field experiment was conducted to study effects of different N application rates at basal and seedling application stages on grain yield and nitrogen use efficiency. Taking the conventional nitrogen application practice (240 kg N·hm -2 with application at basal, jointing, and booting stages at ratios of 5:3:2, respectively) as control, a field trial was conducted at different N application rates (240, 180 and 150 kg N·hm -2 , N 240 , N 180 and N 150 , respectively) and different application times [basal (L 0 ), fourth (L 4 ) and sixth leaf stage (L 6 )] to investigate the effects on grain yield and nitrogen use efficiency. The results indicated that grain yield decreased along with reducing the N application rate, but it had no significant difference between N 240 and N 180 while decreased significantly under N 150 . Nitrogen agronomy and recovery efficiency were all highest under N 180 . Among different N application stages, grain yield and nitrogen use efficiency were highest under L 4 . N 180 L 4 had no signifi-cant difference with control in grain yield, but its nitrogen use efficiency was significantly higher. The leaf area index, flag leaf photosynthesis rate, leaf nitrogen content, activity of nitrogen reductase and glutamine synthase in flag leaf, dry matter and N accumulation after jointing of N 180 L 4 had no significant difference with control. In an overall view, postponing basal N fertilizer application at reduced nitrogen rate could maintain high yield and improve nitrogen use efficiency through improving photosynthetic production capacity and promoting nitrogen uptake and assimilation.
Monneveux, Philippe
2017-01-01
In wheat, flag leaf, stem, chaff and awns contribute to grain filling through photosynthesis and/or re-mobilization. Environmental and genetic effects on the relative contribution of each organ were examined by analyzing the consequences of sink-source manipulations (shading and excision) and by comparing carbon isotope discrimination (Δ) values in dry matter (at maturity) and sap (two weeks after anthesis) in six durum wheat genotypes grown in two contrasting seasons. The contribution of flag leaf, stem, chaff and awns to grain filling, estimated by sink-source manipulations, highly varied with the season. The contribution of ear photosynthesis and re-mobilization from the stem increased with post-anthesis water stress. They showed a large genetic variation that was, however, not clearly associated to morphological characteristics of ear and stem. Isotopic imprints of chaff on grain Δ were identified as a possible surrogate of the destructive and cumbersome sink-source manipulations to evaluate the contribution of carbon assimilated in ears or re-mobilized from stem. This might facilitate screening of genetic resources and allow the combining of favourable drought tolerance mechanisms in wheat. PMID:29295600
Lu, Hai-Lin; Guo, Min; Liao, Yue-Kui; Huang, Ding-Ying; Huang, Chun-Ni; Wu, Xiao-Chen; He, Bao-Zuo
2012-11-01
To study the identification characters of Houttuynia cordata and its confused herb Gymnotheca chinensis and establish an identification method. LMVP (leaf morphological-venation pattern for identification Chinese herbs), and QAERM (quantitatively analyze and evaluate reliability for the method of identification Chinese herbs) were applied for the study. Both venations were brochidodromous-acrodromous and arising from the mid-petiole or the upper section of petiole. The main characteristic of the leaf of Houttuynia cordata: surface with small gray-white stoma protuberances; Ligulate process of stipule-petiole sheath were clear; Primary veins 7 or 5; The innermost pair of primary vein closed up the top of the sinus at blade base or above sinus, and the section of closed vein was straight; Emitted a smell of fish when fresh leaf was kneaded into pieces. The main feature of the leaf of Gymnotheca chinensis: no small gray-white stoma protuberances; Ligulate process of stipule-petiole sheath were not clear; Primary veins 5; The innermost pair of primary vein closed into the sinus at blade base, and the section of closed vein was slightly curve; No smell of fish. With the mentioned key differences, the both plants could be successfully identified from each other. The accuracy of identification results (AC) was 100%, the repeatability of identification results: agreement rate for observation (ARO) was 100% and Kappa value was 1.00. The established method is simple, rapid, economic and reliable.
Satter, R L; Wetherell, D F
1968-06-01
The morphological development of Sinningia speciosa plants that were exposed to supplementary far red light was very different from that of plants receiving dark nights. After several nights of such irradiation, stems and petioles were elongated, petioles were angulated, leaf blade expansion was inhibited, plants were chlorotic and the accumulation of shoot dry weight was retarded.Red reversibility of the morphological changes potentiated by far red light indicated control by the phytochrome system. A high P(FR) level during the last half of the night inhibited stem elongation and promoted leaf blade expansion, but both of these processes were hardly affected by the P(FR) level during the first half of the night. Thus sensitivity to P(FR) was cyclic.The interpretation of our experiments was complicated by quantitative morphological differences resulting from long, as compared to short, far red irradiations.
Stress optimization of leaf-spring crossed flexure pivots for an active Gurney flap mechanism
NASA Astrophysics Data System (ADS)
Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.
2015-04-01
The EU's Green Rotorcraft programme is pursuing the development of a functional and airworthy Active Gurney Flap (AGF) for a full-scale helicopter rotor blade. Interest in the development of this `smart adaptive rotor blade' technology lies in its potential to provide a number of aerodynamic benefits, which would in turn translate into a reduction in fuel consumption and noise levels. The AGF mechanism selected employs leaf-spring crossed flexure pivots. These provide important advantages over bearings as they are not susceptible to seizing and do not require maintenance (i.e. lubrication or cleaning). A baseline design of this mechanism was successfully tested both in a fatigue rig and in a 2D wind tunnel environment at flight-representative deployment schedules. For full validation, a flight test would also be required. However, the severity of the in-flight loading conditions would likely compromise the mechanical integrity of the pivots' leaf-springs in their current form. This paper investigates the scope for stress reduction through three-dimensional shape optimization of the leaf-springs of a generic crossed flexure pivot. To this end, a procedure combining a linear strain energy formulation, a parametric leaf-spring profile definition and a series of optimization algorithms is employed. The resulting optimized leaf-springs are proven to be not only independent of the angular rotation at which the pivot operates, but also linearly scalable to leaf-springs of any length, minimum thickness and width. Validated using non-linear finite element analysis, the results show very significant stress reductions relative to pivots with constant cross section leaf-springs, of up to as much as 30% for the specific pivot configuration employed in the AGF mechanism. It is concluded that shape optimization offers great potential for reducing stress in crossed flexure pivots and, consequently, for extending their fatigue life and/or rotational range.
Wang, Meiling; Wu, Hongqi; Xu, Jing; Li, Chunlian; Wang, Yong; Wang, Zhonghua
2017-01-01
The diploid Aegilops tauschii is the D-genome donor to hexaploid wheat (Triticum aestivum) and represents a potential source for genetic study in common wheat. The ubiquitous wax covering the aerial parts of plants plays an important role in protecting plants against non-stomatal water loss. Cuticular waxes are complex mixtures of very-long-chain fatty acids, alkanes, primary and/or secondary alcohols, aldehydes, ketones, esters, triterpenes, sterols, and flavonoids. In the present work, primary alcohols were identified as the major components of leaf cuticular wax in Ae. tauschii, with C26:0-OH being the dominant primary alcohol. Analysis by scanning electron microscope revealed that dense platelet-shaped wax crystals were deposited on leaf surfaces of Ae. tauschii. Ten putative wax biosynthetic genes encoding fatty acyl-coenzyme A reductase (FAR) were identified in the genome of Ae. tauschii. Five of these genes, Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6, were found expressed in the leaf blades. Heterologous expression of the five Ae.tFARs in yeast (Saccharomyces cerevisiae) showed that Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6 were predominantly responsible for the accumulation of C16:0, C18:0, C26:0, C24:0, and C28:0 primary alcohols, respectively. In addition, nine Ae.tFAR paralogous genes were located on D chromosome of wheat and the wheat nullisomic–tetrasomic lines with the loss of Ae.tFAR3 and Ae.tFAR4 paralogous genes had significantly reduced levels of primary alcohols in the leaf blades. Collectively, these data suggest that Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6 encode alcohol-forming FARs involved in the biosynthesis of primary alcohols in the leaf blades of Ae. tauschii. The information obtained in Ae. tauschii enables us to better understand wax biosynthesis in common wheat. PMID:28659955
Zhang, Yang; Ma, Xin-Ming; Wang, Xiao-Chun; Liu, Ji-Hong; Huang, Bing-Yan; Guo, Xiao-Yang; Xiong, Shu-Ping; La, Gui-Xiao
2017-02-01
Wheat is one of the most important grain crop plants worldwide. Nitrogen (N) is an essential macronutrient for the growth and development of wheat and exerts a marked influence on its metabolites. To investigate the influence of low nitrogen stress on various metabolites of the flag leaf of wheat (Triticum aestivum L.), a metabolomic analysis of two wheat cultivars under different induced nitrogen levels was conducted during two important growth periods based on large-scale untargeted metabolomic analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF). Multivariate analyses-such as principle components analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA)-were used for data analysis. PCA yielded distinctive clustering information among the samples, classifying the wheat flag samples into two categories: those under normal N treatment and low N treatment. By processing OPLS-DA, eleven secondary metabolites were shown to be responsible for classifying the two groups. The secondary metabolites may be considered potential biomarkers of low nitrogen stress. Chemical analyses showed that most of the identified secondary metabolites were flavonoids and their related derivatives, such as iso-vitexin, iso-orientin and methylisoorientin-2″-O-rhamnoside, etc. This study confirmed the effect of low nitrogen stress on the metabolism of wheat, and revealed that the accumulation of secondary metabolites is a response to abiotic stresses. Meanwhile, we aimed to identify markers which could be used to monitor the nitrogen status of wheat crops, presumably to guide appropriate fertilization regimens. Furthermore, the UPLC-QTOF metabolic platform technology can be used to study metabolomic variations of wheat under abiotic stresses. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Pinheiro, Carla; António, Carla; Ortuño, Maria Fernanda; Dobrev, Petre I; Hartung, Wolfram; Thomas-Oates, Jane; Ricardo, Cândido Pinto; Vanková, Radomira; Chaves, M Manuela; Wilson, Julie C
2011-10-01
The early (2-4 d) effects of slowly imposed soil water deficit on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance in different organs (leaf blade, stem stele, stem cortex, and root) were evaluated on 23-d-old plants (growth chamber assay). Our work shows that several metabolic adjustments occurred prior to alteration of the plant water status, implying that water deficit is perceived before the change in plant water status. The slow, progressive decline in soil water content started to be visible 3 d after withholding water (3 DAW). The earliest plant changes were associated with organ-specific metabolic responses (particularly in the leaves) and with leaf conductance and only later with plant water status and photosynthetic rate (4 DAW) or photosynthetic capacity (according to the Farquhar model; 6 DAW). Principal component analysis (PCA) of the physiological parameters, the carbohydrate and the hormone levels and their relative values, as well as leaf water-soluble metabolites full scan data (LC-MS/MS), showed separation of the different sampling dates. At 6 DAW classically described stress responses are observed, with plant water status, ABA level, and root hormonal balance contributing to the separation of these samples. Discrimination of earlier stress stages (3 and 4 DAW) is only achieved when the relative levels of indole-3-acetic acid (IAA), cytokinins (Cks), and carbon metabolism (glucose, sucrose, raffinose, and starch levels) are taken into account. Our working hypothesis is that, in addition to single responses (e.g. ABA increase), the combined alterations in hormone and carbohydrate levels play an important role in the stress response mechanism. Response to more advanced stress appears to be associated with a combination of cumulative changes, occurring in several plant organs. The carbohydrate and hormonal balance in the leaf (IAA to bioactive-Cks; soluble sugars to IAA and starch to IAA; relative abundances of the different soluble sugars) flag the initial responses to the slight decrease in soil water availability (10-15% decrease). Further alterations in sucrose to ABA and in raffinose to ABA relative values (in all organs) indicate that soil water availability continues to decrease. Such alterations when associated with changes in the root hormone balance indicate that the stress response is initiated. It is concluded that metabolic balance (e.g. IAA/bioactive Cks, carbohydrates/IAA, sucrose/ABA, raffinose/ABA, ABA/IAA) is relevant in triggering adjustment mechanisms.
Analysis of dynamic parameters of mine fans
NASA Astrophysics Data System (ADS)
Russky, E. Yu
2018-03-01
The design of the rotor of an axial fan and its main units, namely double leaf blades impeller and the main shaft are discussed. The parameters of a disturbed mine air flow under sudden outbursts are determined and the influence of disturbances on frequencies of axial fan units is assessed. The scope of the assessment embraces the disturbance effect on the blades and on the torsional vibrations of the main shafts. The dependences of the stresses in the elements of the rotor versus the disturbed air flow parameters are derived.
NASA Astrophysics Data System (ADS)
Li, Lianjie; Cheng, Long
2017-10-01
There are many areas in the world have terraced fields, Yuanyang Rani's terraced fields are examples in the world, and their unique ecological diversity is beyond other terraced fields, rice landraces are very rich. In order to provide useful information for protection and utilization of red-grained rice landraces from Rani's terraced fields, 61 red-grained rice landraces were assessed based 20 quantitative traits. Principal component analysis (PCA) suggested that 20 quantitative characters could be simplified to seven principal components, and their accumulative contribution ration amounted to 78.699%. The first principal component (PC1) explained 18.375% of the total variance, which was contributed by filled grain number, 1000-grain weight, spikelets per panicle, secondary branch number, grain length, and grain thickness. PC2 accounted for 16.548% of the variance and featured flag leaf width, flag leaf area, panicle neck length and primary branch number. These traits were the most effective parameters to discriminate individuals. At the request of the proceedings editor and with the approval of all authors, article 040111 titled, "Phenotype diversity analysis of red-grained rice landraces from Yuanyang Hani's terraced fields, China," is being retracted from the public record due to the fact that it is a duplication of article 040110 published in the same volume.
Xu, Ji Kun; Yu, Zhen Wen; Shi, Yu; Zhao, Jun Ye; Wang, Xi Zhi; Wang, Yu Qiu
2017-11-01
A two-year field experiment was conducted in 2014-2015 and 2015-2016 wheat growing seasons to study the effects of micro-sprinkling hose length and width on field water condition, and flag leaf chlorophyll fluorescence characteristics in different sampling districts (D 1 to D 6 along with the hose laying direction). Six micro-sprinkling hose treatments were set: 60 m (T 1 ), 80 m (T 2 ) and 100 m (T 3 ) lengths under 65 mm width; 60 m (T 4 ), 80 m (T 5 ) and 100 m (T 6 ) lengths under 80 mm width. The results showed that after irrigation at jointing, the Christiansen uniformity coefficient (C u ) of T 1 was significantly higher than T 2 and T 3 under 65 mm hose width. Under 80 mm hose width, T 4 and T 5 had the highest C u compared to T 6 . After irrigation at anthesis, the C u showed T 1 >T 2 >T 3 under 65 mm hose width, and T 4 >T 5 >T 6 under 80 mm hose width. Under 65 mm hose width, the average relative soil water content of 0-40 cm soil layers after irrigation at anthesis, flag leaf Φ PSII , NPQ and ETR at 20 and 30 d after anthesis and the grain yield of different sampling district did not differ in T 1 ; T 2 showed the order of D 1 , D 2 >D 3 >D 4 >D 5 ; T 3 showed D 1 , D 2 >D 3 >D 4 >D 5 , D 6 . The average Φ PSII , NPQ and ETR at 20 and 30 d after anthesis, and the average dry matter at maturity of different sampling districts were presented as T 1 >T 2 , T 3 . Under 85 mm hose width, no significant differences were observed in the average relative soil water content of 0-40 cm soil layers after irrigation at ahthesis, flag leaf Φ PSII , NPQ and ETR at 20 and 30 d after anthesis and the grain yield of different sampling districts in T 4 ; in T 5 , the indexes mentioned above in D 1 , D 2 and D 3 sampling districts were significantly higher than those in D 4 and D 5 ; in T 6 , the decreasing order was D 1 , D 2 , D 3 >D 4 >D 5 >T 6 . The average Φ PSII , NPQ and ETR at 20 and 30 d after anthesis, and the average dry matter at maturity of different districts showed the order of T 4 , T 5 >T 6 . The ave-rage grain yield and water use efficiency of T 1 , T 4 and T 5 were significantly higher than those in T 2 , T 3 and T 6 , T 1 and T 4 had a better irrigation benefit than T 5 . Under this experimental condition, T 1 treatment under 65 mm hose width, T 4 treatment under 80 mm hose width were the most recommendable treatments considering high yield and water saving, and T 5 treatment was also recommendable under 80 mm hose width.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
... Sipes 2006, p. 76). The leaf blades are succulent (fleshy) and oval or diamond-shaped with smooth edges... of climate model runs performed at modeling centers worldwide using 22 global climate models (Ray et...
Effects of Aluminum Stress on Protective Enzyme Activity in Tie Guanyin leaves
NASA Astrophysics Data System (ADS)
Sun, JingWei; Du, NaiChen; Zhang, YunFeng
2018-01-01
The experiment was adopted to study the change of SOD, CAT and POD activity of Tie guanyin (new leaf and old leaf blade of different concentrations of aluminum stress; in this paper, 0 (CK), 40, 200, four gradients of 400mg/L concentration of Al3+ in acidic conditions, Tieguanyin tea leaf SOD, cat and POD activity changes. The results showed that high concentrations of aluminum stress on antioxidant enzyme system activity cannot continue to increase; at the same time showed that SOD is sensitive to aluminum toxicity concentration change, its sensitivity is higher than CAT and POD, SOD and CAT activity and the aging and decline of plant There was a positive correlation.
Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging
Tanoi, Keitaro
2013-01-01
Participation of the intervascular transport system within the rice stem during cadmium (Cd) partitioning was investigated by characterizing 109Cd behaviour in the shoot. In addition, 45Ca, 32P, and 35S partitioning patterns were analysed for comparison with that of 109Cd. Each tracer was applied to the seedling roots for 15min, and the shoots were harvested either at 15min (i.e. immediately after tracer application) or at 48h. Distribution patterns of each element at 15min were studied to identify the primary transport pathway before remobilization was initiated. 32P was preferentially transported to completely expanded leaf blades having the highest transpiration rate. The newest leaf received minimal amounts of 32P. In contrast, the amount of 35S transported to the newest leaf was similar to that transported to the other mature leaf blades. Preferential movement towards the newest leaf was evident for 109Cd and 45Ca. These results directly indicate that elemental transport is differentially regulated in the vegetative stem as early as 15min before the elements are transported to leaves. Cd behaviour in the stem was investigated in detail by obtaining serial section images from the bottom part of shoots after 109Cd was applied to a single crown root. At 30min, the maximum amount of 109Cd was distributed in the peripheral cylinder of the longitudinal vascular bundles (PV) and, interestingly, some amount of 109Cd was transported downwards along the PV. This transport manner of 109Cd provides evidence that Cd can be loaded on the phloem at the stem immediately after Cd is transported from the root. PMID:23202130
NASA Technical Reports Server (NTRS)
Polley, H. W.; Norman, J. M.; Arkebauer, T. J.; Walter-Shea, E. A.; Greegor, D. H., Jr.; Bramer, B.
1992-01-01
Net CO2 assimilation as a function of internal CO2 and stomatal conductance to water vapor were measured on blades of the C4 grasses Andropogon gerardii Vitman, Panicum virgatrum L., and Sorghastrum nutans (L.) Nash in northeast Kansas over two growing seasons to determine the comparative physiological responses of these dominant grasses of the tallgrass prairie to environmental variables. The response of dark respiration to temperature and of net assimilation to CO2 concentration and absorbed quantum flux differed little among species. A. gerardii had lower potential photosynthetic rates at internal CO2 concentrations below saturation than P. virgatum and S. nutans, but net assimilation under ambient conditions was similar in the three species. Net assimilation and both the initial slope of assimilation versus internal CO2 curves and the maximum potential assimilation rate decreased as leaf water potential declined in blades of A. gerardii and S. nutans. Changes in assimilation capacity were paralleled by changes in stomatal conductance that were similar in all three species. The strong correlations among processes regulating leaf CO2 assimilation and transpiration in A. gerardii, P. virgatum, and S. nutans suggest that the processes are tightly and similarly coupled in these grasses over a wide range of environmental conditions encountered in the tallgrass prairie.
Exogenous ethylene inhibits sprout growth in onion bulbs
Bufler, Gebhard
2009-01-01
Background and Aims Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. Methods A cultivar (Allium cepa ‘Copra’) with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 °C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO2 and ethylene production of onion bulbs during storage were recorded. Key results Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO2 production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Conclusions Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy. PMID:18940850
Exogenous ethylene inhibits sprout growth in onion bulbs.
Bufler, Gebhard
2009-01-01
Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. A cultivar (Allium cepa 'Copra') with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 degrees C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO(2) and ethylene production of onion bulbs during storage were recorded. Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO(2) production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy.
The amount and integrity of mtDNA in maize decline with development.
Oldenburg, Delene J; Kumar, Rachana A; Bendich, Arnold J
2013-02-01
In maize and other grasses there is a developmental gradient from the meristematic cells at the base of the stalk to the differentiated cells at the leaf tip. This gradient presents an opportunity to investigate changes in mitochondrial DNA (mtDNA) that accompany growth under light and dark conditions, as done previously for plastid DNA. Maize mtDNA was analyzed by DAPI-DNA staining of individual mitochondria, gel electrophoresis/blot hybridization, and real-time qPCR. Both the amount and integrity of the mtDNA were found to decline with development. There was a 20-fold decline in mtDNA copy number per cell from the embryo to the light-grown leaf blade. The amount of DNA per mitochondrial particle was greater in dark-grown leaf blade (24 copies, on average) than in the light (2 copies), with some mitochondria lacking any detectable DNA. Three factors that influence the demise of mtDNA during development are considered: (1) the decision to either repair or degrade mtDNA molecules that are damaged by the reactive oxygen species produced as byproducts of respiration; (2) the generation of ATP by photophosphorylation in chloroplasts, reducing the need for respiratory-competent mitochondria; and (3) the shift in mitochondrial function from energy-generating respiration to photorespiration during the transition from non-green to green tissue.
Keep on growing: building and patterning leaves in the grasses
USDA-ARS?s Scientific Manuscript database
Monocot leaves have unique features that arise early in their development. Maturing leaves protectively enclose younger leaves and the meristem, the pool of founder cells from which a leaf emerges. Through the maturation process, proximal sheath and distal blade tissues differentiate and are separat...
[Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].
Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin
2011-06-01
Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.
Krzemińska, Anetta; Górny, Andrzej G
2003-01-01
In the study, spring barley genotypes of various origin and breeding history were found to show a broad genetic variation in the vegetative and generative measures of the whole-plant transpiration efficiency (TE), photosynthesis (A) and transpiration (E) rates of flag leaves, leaf efficiency of gas exchange (A/E) and stress tolerance (T) when grown till maturity in soil-pots under high and reduced NPK supplies. Broad-sense heritabilities for the characteristics ranged from 0.61 to 0.87. Significant genotype-nutrition interactions were noticed, constituting 19-23% of the total variance in TE measures. The results suggest that at least some 'exotic' accessions from Ethiopia, Syria, Morocco and/or Tibet may serve as attractive genetic sources of novel variations in TE, T and A for the breeding of barleys of improved adaptation to less favourable fertilisation.
Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure.
Witztum, Allan; Wayne, Randy
2014-04-01
Cables composed of long, non-lignified fibre cells enclosed in a cover of much shorter thin-walled, crystal-containing cells traverse the air chambers (lacunae) in leaves of the taller species of Typha. The non-lignified fibre cables are anchored in diaphragms composed of stellate cells of aerenchyma tissue that segment the long air chambers into smaller compartments. Although the fibre cables are easily observed and can be pulled free from the porous-to-air diaphragms, their structure and function have been ignored or misinterpreted. Leaves of various species of Typha were dissected and fibre cables were pulled free and observed with a microscope using bright-field and polarizing optics. Maximal tensile strength of freshly removed cables was measured by hanging weights from fibre cables, and Instron analysis was used to produce curves of load versus extension until cables broke. Polarized light microscopy revealed that the cellulose microfibrils that make up the walls of the cable fibres are oriented parallel to the long axis of the fibres. This orientation ensures that the fibre cables are mechanically stiff and strong under tension. Accordingly, the measured stiffness and tensile strength of the fibre cables were in the gigapascal range. In combination with the dorsal and ventral leaf surfaces and partitions that contain lignified fibre bundles and vascular strands that are strong in compression, the very fine fibre cables that are strong under tension form a tensegrity structure. The tensegrity structure creates multiple load paths through which stresses are redistributed throughout the 1-3 m tall upright leaves of Typha angustifolia, T. latifolia, T. × glauca, T. domingensis and T. shuttleworthii. The length of the fibre cables relative to the length of the leaf blades is reduced in the last-formed leaves of flowering individuals. Fibre cables are absent in the shorter leaves of Typha minima and, if present, only extend for a few centimetres from the sheath into the leaf blade of Typha laxmannii. The advantage of the structure of the Typha leaf blade, which enables stiffness to give way to flexibility under windy conditions, is discussed for both vegetative and flowering plants.
Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure
Witztum, Allan; Wayne, Randy
2014-01-01
Background and Aims Cables composed of long, non-lignified fibre cells enclosed in a cover of much shorter thin-walled, crystal-containing cells traverse the air chambers (lacunae) in leaves of the taller species of Typha. The non-lignified fibre cables are anchored in diaphragms composed of stellate cells of aerenchyma tissue that segment the long air chambers into smaller compartments. Although the fibre cables are easily observed and can be pulled free from the porous-to-air diaphragms, their structure and function have been ignored or misinterpreted. Methods Leaves of various species of Typha were dissected and fibre cables were pulled free and observed with a microscope using bright-field and polarizing optics. Maximal tensile strength of freshly removed cables was measured by hanging weights from fibre cables, and Instron analysis was used to produce curves of load versus extension until cables broke. Key Results and Conclusions Polarized light microscopy revealed that the cellulose microfibrils that make up the walls of the cable fibres are oriented parallel to the long axis of the fibres. This orientation ensures that the fibre cables are mechanically stiff and strong under tension. Accordingly, the measured stiffness and tensile strength of the fibre cables were in the gigapascal range. In combination with the dorsal and ventral leaf surfaces and partitions that contain lignified fibre bundles and vascular strands that are strong in compression, the very fine fibre cables that are strong under tension form a tensegrity structure. The tensegrity structure creates multiple load paths through which stresses are redistributed throughout the 1–3 m tall upright leaves of Typha angustifolia, T. latifolia, T. × glauca, T. domingensis and T. shuttleworthii. The length of the fibre cables relative to the length of the leaf blades is reduced in the last-formed leaves of flowering individuals. Fibre cables are absent in the shorter leaves of Typha minima and, if present, only extend for a few centimetres from the sheath into the leaf blade of Typha laxmannii. The advantage of the structure of the Typha leaf blade, which enables stiffness to give way to flexibility under windy conditions, is discussed for both vegetative and flowering plants. PMID:24532647
Maize development: Cell wall changes in leaves and sheaths
USDA-ARS?s Scientific Manuscript database
Developmental changes occur in maize (Zea mays L.) as it transitions from juvenile stages to the mature plant. Changes also occur as newly formed cells mature into adult cells. Maize leaf blades, including the midribs and sheaths, undergo cell wall changes as cells transition to fully mature cell ty...
Light controls phospholipase A2α and β gene expression in Citrus sinensis
Liao, Hui-Ling; Burns, Jacqueline K.
2010-01-01
The low-molecular weight secretory phospholipase A2α (CssPLA2α) and β (CsPLA2β) cloned in this study exhibited diurnal rhythmicity in leaf tissue of Citrus sinensis. Only CssPLA2α displayed distinct diurnal patterns in fruit tissues. CssPLA2α and CsPLA2β diurnal expression exhibited periods of approximately 24 h; CssPLA2α amplitude averaged 990-fold in the leaf blades from field-grown trees, whereas CsPLA2β amplitude averaged 6.4-fold. Diurnal oscillation of CssPLA2α and CsPLA2β gene expression in the growth chamber experiments was markedly dampened 24 h after transfer to continuous light or dark conditions. CssPLA2α and CsPLA2β expressions were redundantly mediated by blue, green, red and red/far-red light, but blue light was a major factor affecting CssPLA2α and CsPLA2β expression. Total and low molecular weight CsPLA2 enzyme activity closely followed diurnal changes in CssPLA2α transcript expression in leaf blades of seedlings treated with low intensity blue light (24 μmol m−2 s−1). Compared with CssPLA2α basal expression, CsPLA2β expression was at least 10-fold higher. Diurnal fluctuation and light regulation of PLA2 gene expression and enzyme activity in citrus leaf and fruit tissues suggests that accompanying diurnal changes in lipophilic second messengers participate in the regulation of physiological processes associated with phospholipase A2 action. PMID:20388744
Yang, Chunhua; Li, Dayong; Mao, Donghai; Liu, Xue; Ji, Chengjun; Li, Xiaobing; Zhao, Xianfeng; Cheng, Zhukuan; Chen, Caiyan; Zhu, Lihuang
2013-12-01
MicroRNA319 (miR319) family is one of the conserved microRNA (miRNA) families among diverse plant species. It has been reported that miR319 regulates plant development in dicotyledons, but little is known at present about its functions in monocotyledons. In rice (Oryza sativa L.), the MIR319 gene family comprises two members, Osa-MIR319a and Osa-MIR319b. Here, we report an expression pattern analysis and a functional characterization of the two Osa-MIR319 genes in rice. We found that overexpressing Osa-MIR319a and Osa-MIR319b in rice both resulted in wider leaf blades. Leaves of osa-miR319 overexpression transgenic plants showed an increased number of longitudinal small veins, which probably accounted for the increased leaf blade width. In addition, we observed that overexpressing osa-miR319 led to enhanced cold tolerance (4 °C) after chilling acclimation (12 °C) in transgenic rice seedlings. Notably, under both 4 and 12 °C low temperatures, Osa-MIR319a and Osa-MIR319b were down-regulated while the expression of miR319-targeted genes was induced. Furthermore, genetically down-regulating the expression of either of the two miR319-targeted genes, OsPCF5 and OsPCF8, in RNA interference (RNAi) plants also resulted in enhanced cold tolerance after chilling acclimation. Our findings in this study demonstrate that miR319 plays important roles in leaf morphogenesis and cold tolerance in rice. © 2013 John Wiley & Sons Ltd.
Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis
Michaud, Olivier
2017-01-01
Competition for light triggers numerous developmental adaptations known as the “shade-avoidance syndrome” (SAS). Important molecular events underlying specific SAS responses have been identified. However, in natural environments light is often heterogeneous, and it is currently unknown how shading affecting part of a plant leads to local responses. To study this question, we analyzed upwards leaf movement (hyponasty), a rapid adaptation to neighbor proximity, in Arabidopsis. We show that manipulation of the light environment at the leaf tip triggers a hyponastic response that is restricted to the treated leaf. This response is mediated by auxin synthesized in the blade and transported to the petiole. Our results suggest that a strong auxin response in the vasculature of the treated leaf and auxin signaling in the epidermis mediate leaf elevation. Moreover, the analysis of an auxin-signaling mutant reveals signaling bifurcation in the control of petiole elongation versus hyponasty. Our work identifies a mechanism for a local shade response that may pertain to other plant adaptations to heterogeneous environments. PMID:28652343
A spring window for geobotanical anomaly detection
NASA Technical Reports Server (NTRS)
Bell, R.; Labovitz, M. L.; Masuoka, E. J.
1985-01-01
The observation of senescence of deciduous vegetation to detect soil heavy metal mineralization is discussed. A gridded sampling of two sites of Quercus alba L. in south-central Virginia in 1982 is studied. The data reveal that smaller leaf blade lengths are observed in the soil site with copper, lead, and zinc concentrations. A random study in 1983 of red and white Q. rubra L., Q. prinus L., and Acer rubrum L., to confirm previous results is described. The observations of blade length and bud breaks show a 7-10 day lag in growth in the mineral site for the oak trees; however, the maple trees are not influenced by the minerals.
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Wei; Liu, Heping; Zhang, Zhi-jie; Liang, Cunzhu; Wang, Li xin; Bu Ren, Tuo Ya
2007-09-01
The micrograph and the geographical information system(GIS) technology are combined, and applied into histiocytic anatomy. Through studying histiocytic changes of Cleistogenes squarrosa's vegetation organs, namely leaf and stem, the steppe plants' inherent mechanism of miniaturization is revealed. In the course of restoring succession, Cleistogenes squarrosa's anatomy of leaf and stem demonstrate the same variation trend in the three different sample plots: the longer the resume time is, the more, its cells which make up the organ are. According to opposite course, miniaturization has all taken place in the leaf and stem. However, there is difference in the miniaturization mechanism of the leaf and stem. (1) According to dissection structure of the blade, the reduction of organizing the figure of the mesophyll has caused miniaturization. (2) The miniaturization mechanism of the stem is the reduction of different organization's cell's figure of the stem.
Leal-Costa, Marcos Vinicius; Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Reinert, Fernanda; Costa, Sônia Soares; Lage, Celso Luiz Salgueiro; Tavares, Eliana Schwartz
2010-10-01
Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) (air plant, miracle leaf) is popularly used to treat gastrointestinal disorders and wounds. Recently, the species was tested to treat cutaneous leishmaniasis with successful results. This medicinal activity was associated with the phenolic fraction of the plant. Blue light induces biosynthesis of phenolic compounds and many changes in anatomical characteristics. We studied the effects of supplementary blue light on the leaf morphology of in vitro K. pinnata. Plants cultured under white light (W plants) only and white light plus blue light (WB plants) show petioles with plain-convex section, amphistomatic leaf blades with simple epidermis, homogeneous mesophyll with densely packed cells, and a single collateral vascular bundle in the midrib. W plants have longer branches, a larger number of nodes per branch, and smaller leaves, whereas WB plant leaves have a thicker upper epidermis and mesophyll. Leaf fresh weight and leaf dry weight were similar in both treatments. Phenolic idioblasts were observed in the plants supplemented with blue light, suggesting that blue light plays an important role in the biosynthesis of phenolic compounds in K. pinnata.
Dornbusch, Tino; Michaud, Olivier; Xenarios, Ioannis; Fankhauser, Christian
2014-10-01
In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits. © 2014 American Society of Plant Biologists. All rights reserved.
Traiperm, Paweena; Chow, Janene; Nopun, Possathorn; Staples, G; Swangpol, Sasivimon C
2017-12-01
The genus Argyreia Lour. is one of the species-rich Asian genera in the family Convolvulaceae. Several species complexes were recognized in which taxon delimitation was imprecise, especially when examining herbarium materials without fully developed open flowers. The main goal of this study is to investigate and describe leaf anatomy for some morphologically similar Argyreia using epidermal peeling, leaf and petiole transverse sections, and scanning electron microscopy. Phenetic analyses including cluster analysis and principal component analysis were used to investigate the similarity of these morpho-types. Anatomical differences observed between the morpho-types include epidermal cell walls and the trichome types on the leaf epidermis. Additional differences in the leaf and petiole transverse sections include the epidermal cell shape of the adaxial leaf blade, the leaf margins, and the petiole transverse sectional outline. The phenogram from cluster analysis using the UPGMA method represented four groups with an R value of 0.87. Moreover, the important quantitative and qualitative leaf anatomical traits of the four groups were confirmed by the principal component analysis of the first two components. The results from phenetic analyses confirmed the anatomical differentiation between the morpho-types. Leaf anatomical features regarded as particularly informative for morpho-type differentiation can be used to supplement macro morphological identification.
Zhao, Xiuqin; Zhang, Guilian; Wang, Yun; Zhang, Fan; Wang, Wensheng; Zhang, Wenhao; Fu, Binying; Xu, Jianlong; Li, Zhikang
2015-01-01
A rice introgression line, NIL-SS1, and its recurrent parent, Teqing, were used to investigate the influence of the introgression segment on plant growth. The current research showed NIL-SS1 had an increased flag leaf width, total leaf area, spikelet number per panicle and grain yield, but a decreased photosynthetic rate. The metabolite differences in NIL-SS1 and Teqing at different developmental stages were assessed using gas chromatography—mass spectrometry technology. Significant metabolite differences were observed across the different stages. NIL-SS1 increased the plant leaf nitrogen content, and the greatest differences between NIL-SS1 and Teqing occurred at the booting stage. Compared to Teqing, the metabolic phenotype of NIL-SS1 at the booting stage has closer association with those at the flowering stage. The introgression segment induced more active competition for sugars and organic acids (OAs) from leaves to the growing young spikes, which resulted in more spikelet number per plant (SNP). The results indicated the introgression segment could improve rice grain yield by increasing the SNP and total leaf area per plant, which resulted from the higher plant nitrogen content across growth stages and stronger competition for sugars and OAs of young spikes at the booting stage. PMID:26713754
Lake Aquilla - Habitat Survey Hill County, Texas
2017-08-01
the year, when the ground is covered with herbage; when the trees are in their green leaf, and the glens are enlivened by running streams. I shall not...Mutel 1997). Shallow disking, with the blades oriented to the direction being pulled can be used to reduce the vigor of native plants (e.g. switchgrass
Zhu, Xiaoyan; Guo, Shuang; Wang, Zhongwei; Du, Qing; Xing, Yadi; Zhang, Tianquan; Shen, Wenqiang; Sang, Xianchun; Ling, Yinghua; He, Guanghua
2016-06-13
As the indispensable part of plant, leaf blade mainly functions as the production workshops where organic substance is produced by photosynthesis. Leaf colour mutation is a genetic phenomenon that has a high frequency and is easily identified. The mutations always exhibit negative impact on the development of plants in any of the different stages of growth. Up to now, numerous genes involved in leaf colour mutations have been cloned. In this study, a yellow-green leaf mutant, yellow-green leaf 8 (ygl8), with stable genetic phenotype, has been screened out in the progeny of an excellent indica restorer line Jinhui 10 with seeds treated by EMS. The levels of Chl a, Chl b and total chlorophyll were significantly lower in ygl8 than those in the WT throughout the whole growth period, while no clear change was noted in the Chl a/b ratio. Transmission electron microscopy demonstrated that the lamellae were clearly intumescent and intricately stacked in ygl8. Furthermore, compared with those of the WT, the stomatal conductance, intercellular CO2 concentration, photosynthetic rate and transpiration rate of ylg8 were all significantly lower. Map-based cloning results showed that Loc_Os01g73450, encoding a chloroplast-targeted UMP kinase, corresponded to Ygl8 and played an important role in regulating leaf colour in rice (Oryza sativa). Complementation of ygl8 with the WT DNA sequence of Loc_Os01g73450 led to restoration of the normal phenotype, and transgenic RNA interference plants showed a yellow-green colour. Analysis of the spatial and temporal expression of Ygl8 indicated that it was highly expressed in leaf blades and weakly expressed in other tissues. qRT-PCR also showed that the expression levels of the major Photosystem I core subunits plastome-encoded PsaA, PsaB and PsbC were significantly reduced in ygl8. The expression levels of nuclear-encoded gene involved in Chl biosynthesis HEMC, HEME, and PORA were also decreased when compared with the wild-type. Independent of Chl biosynthesis and photosystem, YGL8 may affect the structure and function of chloroplasts grana lamellae by regulating plastid genome encoded thylakoid membrane constitutive gene expression and indirectly influences Chl biosynthesis.
Leaf shape: genetic controls and environmental factors.
Tsukaya, Hirokazu
2005-01-01
In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.
Kebrom, Tesfamichael H.; Mullet, John E.
2014-12-12
Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Budmore » outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h postdefoliation of the second leaf.At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.« less
Wang, Ning; Cao, Di; Gong, Fangping; Ku, Lixia; Chen, Yanhui; Wang, Wei
2015-10-14
The midrib of maize leaves provides the primary support for the blade and is largely associated with leaf angle size. To elucidate the role of the midrib in leaf angle formation, the maize line Shen137 (larger leaf angle) and a near isogenic line (NIL, smaller leaf angle) were used in the present study. The results of the analysis showed that both the puncture forces and proximal collenchyma number of the midribs of the first and second leaves above the ear were higher in NIL than in Shen137. Comparative proteomic analysis was performed to reveal protein profile differences in the midribs of the 5th, 10th and 19th newly expanded leaves between Shen137 and NIL. Quantitative analysis of 24 identified midrib proteins indicated that the maximum changes in abundance of 22 proteins between Shen137 and NIL appeared at the 10th leaf stage, of which phosphoglycerate kinase, adenosine kinase, fructose-bisphosphate aldolase and adenylate kinase were implicated in glycometabolism. Thus, glycometabolism might be associated with leaf angle formation and the physical and mechanical properties of the midribs. These results provide insight into the mechanism underlying maize leaf angle formation. Copyright © 2015 Elsevier B.V. All rights reserved.
Variegation in Arum italicum leaves. A structural-functional study.
La Rocca, Nicoletta; Rascio, Nicoletta; Pupillo, Paolo
2011-12-01
The presence of pale-green flecks on leaves (speckling) is a frequent character among herbaceous species from shady places and is usually due to local loosening of palisade tissue (air space type of variegation). In the winter-green Arum italicum L. (Araceae), dark-green areas of variegated leaf blades are ca. 400 μm thick with a chlorophyll content of 1080 mg m⁻² and a palisade parenchyma consisting of a double layer of oblong cells. Pale-green areas are 25% thinner, have 26% less chlorophyll and contain a single, loose layer of short palisade cells. Full-green leaves generally present only one compact layer of cylindrical palisade cells and the same pigment content as dark-green sectors, but the leaf blade is 13% thinner. A spongy parenchyma with extensive air space is present in all leaf types. Green cells of all tissues have normal chloroplasts. Assays of photosynthetic activities by chlorophyll fluorescence imaging and O₂ exchange measurements showed that variegated pale-green and dark-green sectors as well as full-green leaves have comparable photosynthetic activities on a leaf area basis at saturating illumination. However, full-green leaves require a higher saturating light with respect to variegated sectors, and pale-green sectors support relatively higher photosynthesis rates on a chlorophyll basis. We conclude that i) variegation in this species depends on number and organization of palisade cell layers and can be defined as a "variable palisade" type, and ii) the variegated habit has no limiting effects on the photosynthetic energy budget of A. italicum, consistent with the presence of variegated plants side by side to full-green ones in natural populations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Xin, Hangshu; Ding, Xue; Zhang, Liyang; Sun, Fang; Wang, Xiaofan; Zhang, Yonggen
2017-05-24
The objectives of this study were to investigate (1) nutritive values and biodegradation characteristics and (2) mid-IR spectroscopic features within the regions associated with carbohydrate functional groups (including cellulosic component (CELC), structural carbohydrate (STCHO), and total carbohydrate (CHO)) in different morphological fractions of corn stover. Furthermore, correlation and regression analyses were also applied to determine the relationship between nutritional values and spectroscopic parameters. The results showed that different morphological sections of corn stover had different nutrient supplies, in situ biodegradation characteristics, and spectral structural features within carbohydrate regions. The stem rind and ear husk were both high in fibrous content, which led to the lowest effective degradabilities (ED) among these stalk fractions. The ED values of NDF were ranked ear husk > stem pith > leaf blade > leaf sheath > whole plant > stem rind. Intensities of peak height and area within carbohydrate regions were relatively more stable compared with spectral ratio profiles. Significant difference was found only in peak area intensity of CELC, which was at the highest level for stem rind, followed by stem pith, leaf sheath, whole plant, leaf blade, and ear husk. Correlation results showed that changes in some carbohydrate spectral ratios were highly associated with carbohydrate chemical profiles and in situ rumen degradation kinetics. Among the various carbohydrate molecular spectral parameters that were tested in multiple regression analysis, CHO height ratios, and area ratios of CELC:CHO and CELC:STCHO as well as CELC area were mostly sensitive to nutrient supply and biodegradation characteristics in different morphological fractions of corn stover.
Biology and management of sugarcane yellow leaf virus: an historical overview.
ElSayed, Abdelaleim Ismail; Komor, Ewald; Boulila, Moncef; Viswanathan, Rasappa; Odero, Dennis C
2015-12-01
Sugarcane yellow leaf virus (SCYLV) is one of the most widespread viruses causing disease in sugarcane worldwide. The virus has been responsible for drastic economic losses in most sugarcane-growing regions and remains a major concern for sugarcane breeders. Infection with SCYLV results in intense yellowing of the midrib, which extends to the leaf blade, followed by tissue necrosis from the leaf tip towards the leaf base. Such symptomatic leaves are usually characterized by increased respiration, reduced photosynthesis, a change in the ratio of hexose to sucrose, and an increase in starch content. SCYLV infection affects carbon assimilation and metabolism in sugarcane, resulting in stunted plants in severe cases. SCYLV is mainly propagated by planting cuttings from infected stalks. Phylogenetic analysis has confirmed the worldwide distribution of at least eight SCYLV genotypes (BRA, CHN1, CHN3, CUB, HAW, IND, PER, and REU). Evidence of recombination has been found in the SCYLV genome, which contains potential recombination signals in ORF1/2 and ORF5. This shows that recombination plays an important role in the evolution of SCYLV.
Ratajczak, Dominika; Górny, Andrzej G
2012-11-01
The effects of contrasting water and nitrogen (N) supply on the observed inheritance mode of transpiration efficiency (TE) at the flag-leaf and whole-season levels were examined in winter wheat. Major components of the photosynthetic capacity of leaves and the season-integrated efficiency of water use in vegetative and grain mass formation were evaluated in parental lines of various origins and their diallel F(2)-hybrids grown in a factorial experiment under different moisture and N status of the soil. A broad genetic variation was mainly found for the season-long TE measures. The variation range in the leaf photosynthetic indices was usually narrow, but tended to slightly enhance under water and N shortage. Genotype-treatment interaction effects were significant for most characters. No consistency between the leaf- and season-long TE measures was observed. Preponderance of additivity-dependent variance was mainly identified for the season-integrated TE and leaf CO(2) assimilation rate. Soil treatments exhibited considerable influence on the phenotypic expression of gene action for the residual leaf measures. The contribution of non-additive gene effects and degree of dominance tended to increase in water- and N-limited plants, especially for the leaf transpiration rate and stomatal conductance. The results indicate that promise exists to improve the season-integrated TE. However, selection for TE components should be prolonged for later hybrid generations to eliminate the masking of non-additive causes. Such evaluation among families grown under sub-optimal water and nitrogen supply seems to be the most promising strategy in winter wheat.
Gabotti, Damiano; Caporali, Elisabetta; Manzotti, Priscilla; Persico, Martina; Vigani, Gianpiero; Consonni, Gabriella
2014-06-01
The empty pericarp4 (emp4) gene encodes a mitochondrion-targeted pentatricopeptide repeat (ppr) protein that is involved in the regulation of mitochondrial gene expression and is required for seed development. In homozygous mutant emp4-1 kernels the endosperm is drastically reduced and the embryo is retarded in its development and unable to germinate. With the aim of investigating the role of emp4 during post-germinative development, homozygous mutant seedlings were obtained by cultivation of excised immature embryos on a synthetic medium. In the mutants both germination frequency as well as the proportion of seedlings reaching the first and second leaf stages were reduced. The anatomy of the leaf blades and the root cortex was not affected by the mutation, however severe alterations such as the presence of empty cells or cells containing poorly organized organelles, were observed. Moreover both mitochondria and chloroplast functionality was impaired in the mutants. Our hypothesis is that mitochondrial impairment, the primary effect of the mutation, causes secondary effects on the development of other cellular organelles. Ultra-structural features of mutant leaf blade mesophyll cells are reminiscent of cells undergoing senescence. Interestingly, both structural and functional damage was less severe in seedlings grown in total darkness compared with those exposed to light, thus suggesting that the effects of the mutation are enhanced by the presence of light. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wakayama, Masataka; Ohnishi, Jun-ichi; Ueno, Osamu
2013-03-01
The C(4) grass Arundinella hirta exhibits a unique C(4) anatomy, with isolated Kranz cells (distinctive cells) and C(4)-type expression of photosynthetic enzymes in the leaf sheath and stem as well as in the leaf blade. The border zones between these organs are pale green. Those between the leaf blade and sheath and between the sheath and stem are called the lamina joint and sheath pulvinus, respectively, and are involved in gravity sensing. We investigated the structure and localization of C(3) and C(4) photosynthetic enzymes in these tissues. In both zones the epidermis lacked stomata. The inner tissue was composed of parenchyma cells and vascular bundles. The parenchyma cells were densely packed with small intercellular spaces and contained granal chloroplasts with large starch grains. No C(4)-type cellular differentiation was recognized. Western blot analysis showed that the lamina joint and pulvinus accumulated substantial amounts of phosphoenolpyruvate carboxylase (PEPC), pyruvate,Pi dikinase (PPDK), and ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco). Immunogold electron microscopy revealed PEPC in the cytosol and both PPDK and rubisco in the chloroplasts of parenchyma cells, suggesting the occurrence of C(3) and C(4) enzymes within a single type of chlorenchyma cell. These data indicate that the lamina joint and pulvinus have unique expression patterns of C(3) and C(4) enzymes, unlike those in C(4)-type anatomy.
Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model
Bridge, L. J.; Franklin, K. A.; Homer, M. E.
2013-01-01
Plants display a range of striking architectural adaptations when grown at elevated temperatures. In the model plant Arabidopsis thaliana, these include elongation of petioles, and increased petiole and leaf angles from the soil surface. The potential physiological significance of these architectural changes remains speculative. We address this issue computationally by formulating a mathematical model and performing numerical simulations, testing the hypothesis that elongated and elevated plant configurations may reflect a leaf-cooling strategy. This sets in place a new basic model of plant water use and interaction with the surrounding air, which couples heat and mass transfer within a plant to water vapour diffusion in the air, using a transpiration term that depends on saturation, temperature and vapour concentration. A two-dimensional, multi-petiole shoot geometry is considered, with added leaf-blade shape detail. Our simulations show that increased petiole length and angle generally result in enhanced transpiration rates and reduced leaf temperatures in well-watered conditions. Furthermore, our computations also reveal plant configurations for which elongation may result in decreased transpiration rate owing to decreased leaf liquid saturation. We offer further qualitative and quantitative insights into the role of architectural parameters as key determinants of leaf-cooling capacity. PMID:23720538
Lang, Andreas; Otto, Mathias
2015-08-31
Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles.
Shoot growth and leaf dimorphism in Boston ivy (Parthenocissus tricuspidata)
William B. Critchfield
1970-01-01
Boston ivy, a common ornamental vine in the grape family, successively produces two kinds of leaves during the growing season. The two "early leaves" at the base of each shoot are preformed in the winter bud, and their expansion in the spring is accompanied by little stem elongation. At maturity they have large three-lobed blades and long petioles. Most short...
Leaf primordium size specifies leaf width and vein number among row-type classes in barley.
Thirulogachandar, Venkatasubbu; Alqudah, Ahmad M; Koppolu, Ravi; Rutten, Twan; Graner, Andreas; Hensel, Goetz; Kumlehn, Jochen; Bräutigam, Andrea; Sreenivasulu, Nese; Schnurbusch, Thorsten; Kuhlmann, Markus
2017-08-01
Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.
Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka
2017-07-01
Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll cells enhance their CO 2 absorption with increased cell surface and sheet-shaped chloroplasts. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Satoh, N.; Fukuda, H.; Miyairi, Y.; Yokoyama, Y.; Nagata, T.
2015-12-01
Radiocarbon in dissolved inorganic carbon (DIC) in seawater varies greatly, both geographically and with depth. This "reservoir effect" is thought to be reflected in the radiocarbon content (Δ14C) of marine organisms, via DIC fixation by primary producers and subsequent trophic transfer. The Δ14C of marine organismal soft tissues might thus provide unique information about their habitats, diets, migration and other environmental histories. However, the effectiveness of this approach has yet to be extensively explored, with data on Δ14C variability in soft tissues of marine organisms being markedly limited. Here we examined whether Δ14C values of individual pinnate blades (leaf-like structures) of brown seaweed (Undaria pinnatifida) reflect the Δ14C of DIC in the water current prevailing at the time of blade formation. The study was conducted in Otsuchi Bay located in the Sanriku coastal region, northeastern Japan, where 14C-depleted cold Oyashio current and warm Tsugaru current (high Δ14C) converge, affecting the physiology and growth of marine organisms growing there. U. pinnatifida individuals cultured in the bay (length of saprophytes, 140-215 cm) were harvested in April 2014 and Δ14C of blades were determined by accelerator mass spectrometry. Younger blades formed after the Oyashio water intrusion had significantly lower Δ14C values compared to older blades formed before the event. The Δ14C values of younger and older blades were generally consistent with the Δ14C of DIC in Oyashio (-60.5 ‰) and Tsugaru (24.9 ‰) waters, respectively. Thus, despite possible turnover of organic carbon in seaweed soft tissues, blade-order-dependent Δ14C variability appeared to strongly reflect the Oyashio intrusion event (radiocarbon shift) in the bay.
Meng, Yingying; Sang, Dajun; Yin, Pengcheng; Wu, Jinxia; Tang, Yuhong; Lu, Tiegang; Wang, Zeng-Yu; Tadege, Million
2017-01-01
Lignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF), a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release. We found that STF overexpressing switchgrass plants produced approximately 2-fold more dry biomass and release approximately 1.8-fold more solubilized sugars without pretreatment compared to controls. The biomass increase was attributed mainly to increased leaf width and stem thickness, which was also consistent in STF transgenic rice and Brachypodium, and appeared to be caused by enhanced cell proliferation. STF directly binds to multiple regions in the promoters of some cytokinin oxidase/dehydrogenase (CKX) genes and represses their expression in all three transgenic grasses. This repression was accompanied by a significant increase in active cytokinin content in transgenic rice leaves, suggesting that the increase in biomass productivity and sugar release could at least in part be associated with improved cytokinin levels caused by repression of cytokinin degrading enzymes. Our study provides a new tool for improving biomass feedstock yield in bioenergy crops, and uncovers a novel mechanistic insight in the function of STF, which may also apply to other repressive WOX genes that are master regulators of several key plant developmental programs. PMID:28264034
Becker, Matthias; Becker, Yvonne; Green, Kimberly; Scott, Barry
2016-07-01
Epichloë festucae forms a mutualistic symbiotic association with Lolium perenne. This biotrophic fungus systemically colonizes the intercellular spaces of aerial tissues to form an endophytic hyphal network. E. festucae also grows as an epiphyte, but the mechanism for leaf surface colonization is not known. Here we identify an appressorium-like structure, which we call an expressorium that allows endophytic hyphae to penetrate the cuticle from the inside of the leaf to establish an epiphytic hyphal net on the surface of the leaf. We used a combination of scanning electron, transmission electron and confocal laser scanning microscopy to characterize this novel fungal structure and determine the composition of the hyphal cell wall using aniline blue and wheat germ agglutinin labelled with Alexafluor-488. Expressoria differentiate immediately below the cuticle in the leaf blade and leaf sheath intercalary cell division zones where the hyphae grow by tip growth. Differentiation of this structure requires components of both the NoxA and NoxB NADPH oxidase complexes. Major remodelling of the hyphal cell wall occurs following exit from the leaf. These results establish that the symbiotic association of E. festucae with L. perenne involves an interconnected hyphal network of both endophytic and epiphytic hyphae. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Yang, Yongil; Karlson, Dale
2012-08-01
The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.
Morita, Koichi; Hatanaka, Tomoko; Misoo, Shuji; Fukayama, Hiroshi
2014-01-01
Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity.
Morita, Koichi; Hatanaka, Tomoko; Misoo, Shuji; Fukayama, Hiroshi
2014-01-01
Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity. PMID:24254313
Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat
NASA Astrophysics Data System (ADS)
Singh, Bhupinder; Datta, P. S.
2010-02-01
Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.
Lang, Andreas; Otto, Mathias
2015-01-01
Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles. PMID:26463415
Yokoyama, Jun; Fukuda, Tatsuya; Tsukaya, Hirokazu
2003-08-01
Morphological and molecular variation in Mitchella undulata Siebold et Zucc. was examined to evaluate the genetic basis for recognizing the dwarf variety, M. undulata var. minor Masamune. Considerable variation in leaf size in M. undulata, but no obvious morphological discontinuities, were found between the normal and dwarf varieties. Instead, a weak cline running from the Pacific Ocean to the Sea of Japan was found. Anatomical observations of leaf blades revealed that the large variation in leaf size can be attributed to variation in the number of leaf cells and not to differences in cell size. A molecular analysis based on sequences of rDNA internal transcribed spacer regions indicated that there were two major genotypes in M. undulata with minor variation in haplotypes resulting from additional substitutions or putative recombination. The dwarf form from Yakushima was neither genetically uniform nor apparently differentiated from other populations. From these results, we conclude that the dwarf form of M. undulata should be treated at the rank of forma.
Vermerris, W; Boon, J J
2001-02-01
Despite recent progress, several aspects of lignin biosynthesis, including variation in lignin composition between species and between tissues within a given species, are still poorly understood. The analysis of mutants affected in cell wall biosynthesis may help increase the understanding of these processes. We have analyzed the maize brown midrib2 (bm2) mutant, one of the four bm mutants of maize, using pyrolysis-mass spectrometry (Py-MS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). Vascular tissues from the leaf blade and leaf sheath from different parts of the plant were investigated and compared to the corresponding samples from a wild-type plant of the same genetic background (inbred line A619). Multivariate analysis revealed that the bm2 mutant had reduced amounts of di- and trimeric lignin derivatives, notably species with m/z 272 and m/z 330, and that the ratio of guaiacyl residues to polysaccharides was reduced in the bm2 mutant. In addition, differences in cell wall composition between different parts of the plant (blade versus sheath, young versus old tissue) were much less pronounced in the bm2 mutant. These changes suggest that the functional Bm2 gene is important for the establishment of tissue-specific cell wall composition.
Biscarini, Filippo; Cozzi, Paolo; Casella, Laura; Riccardi, Paolo; Vattari, Alessandra; Orasen, Gabriele; Perrini, Rosaria; Tacconi, Gianni; Tondelli, Alessandro; Biselli, Chiara; Cattivelli, Luigi; Spindel, Jennifer; McCouch, Susan; Abbruscato, Pamela; Valé, Giampiero; Piffanelli, Pietro; Greco, Raffaella
2016-01-01
In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding-after data editing-57000 polymorphic and informative SNPS, among which 54% were in genic regions. In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10-7 to 0.92 (median: 0.25). In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10-7) and for plant height on chromosome 6 (FDR = 0.011). We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.
Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C.; Cao, Xiaofeng
2014-01-01
Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078
Yadav, S K; Pandey, P; Kumar, B; Suresh, B G
2011-05-01
This study has been conducted to determine the extent of genetic association between yield of Rice (Oryza sativa L.) and its components. The present experiment was carried out with 40 Rice (Oryza sativa L.) genotypes which were evaluated in a randomized block design with 3 replications during wet season of 2007 and 2008. Results showed that sufficient amount of variability was found in the entire gene pool for all traits studied. Higher magnitude of genotypic and phenotypic coefficients of variation was recorded for seed yield, harvest index, biological yield, number of spikelets per panicle, flag leaf length, plant height and number of tillers indicates that these characters are least influence by environment. High heritability coupled with high genetic advance as percent of mean was registered for seed yield, harvest index, number of spikelets per panicle, biological yield and flag leaf length, suggesting preponderance of additive gene action in the expression of these characters. Grain yield was significantly and positively associated with harvest index, number of tillers per hill, number of panicle per plant, panicle length, number of spikelet's per panicle and test weight at both genotypic and phenotypic levels. Path coefficient analysis revealed that harvest index, biological yield, number of tillers per hill, panicle length, number of spikelets per panicle, plant height and test weight had direct positive effect on seed yield, indicating these are the main contributors to yield. From this study it may be concluded that harvest index, number of tillers per hill, panicle length and number of spikelet per panicle and test weight are the most important characters that contributed directly to yield. Thus, these characters may serve selection criteria for improving genetic potential of rice.
Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J
2010-11-01
C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.
Martorell, Carlos; Ezcurra, Exequiel
2007-04-01
Plants that use fog as an important water-source frequently have a rosette growth habit. The performance of this morphology in relation to fog interception has not been studied. Some first-principles from physics predict that narrow leaves, together with other ancillary traits (large number and high flexibility of leaves, caudices, and/or epiphytism) which constitute the "narrow-leaf syndrome" should increase fog-interception efficiency. This was tested using aluminum models of rosettes that differed in leaf length, width and number and were exposed to artificial fog. The results were validated using seven species of Tillandsia and four species of xerophytic rosettes. The total amount of fog intercepted in rosette plants increased with total leaf area, while narrow leaves maximized interception efficiency (measured as interception per unit area). The number of leaves in the rosettes is physically constrained because wide-leafed plants can only have a few blades. At the limits of this constraint, net fog interception was independent of leaf form, but interception efficiency was maximized by large numbers of narrow leaves. Atmospheric Tillandsia species show the narrow-leaf syndrome. Their fog interception efficiencies were correlated to the ones predicted from aluminum-model data. In the larger xerophytic rosette species, the interception efficiency was greatest in plants showing the narrow-leaf syndrome. The adaptation to fog-harvesting in several narrow-leaved rosettes was tested for evolutionary convergence in 30 xerophytic rosette species using a comparative method. There was a significant evolutionary tendency towards the development of the narrow-leaf syndrome the closer the species grew to areas where fog is frequently available. This study establishes convergence in a very wide group of plants encompassing genera as contrasting as Tillandsia and Agave as a result of their dependence on fog.
Zeng, Dong-Dong; Yang, Cheng-Cong; Qin, Ran; Alamin, Md; Yue, Er-Kui; Jin, Xiao-Li; Shi, Chun-Hai
2018-06-01
A rice receptor-like kinase gene OSBBS1/OsRLCK109 was identified; this gene played vital roles in leaf senescence and the salt stress response. Early leaf senescence can cause negative effects on rice yield, but the underlying molecular regulation is not fully understood. bilateral blade senescence 1 (bbs1), an early leaf senescence mutant with a premature senescence phenotype that occurs mainly performing at the leaf margins, was isolated from a rice mutant population generated by ethylmethane sulfonate (EMS) treatment. The mutant showed premature leaf senescence beginning at the tillering stage and exhibited severe symptoms at the late grain-filling stage. bbs1 showed accelerated dark-induced leaf senescence. The OsBBS1 gene was cloned by a map-based cloning strategy, and a guanine (G) insertion was found in the first exon of LOC_Os03g24930. This gene encodes a receptor-like cytoplasmic kinase and was named OsRLCK109 in a previous study. Transgenic LOC_Os03g24930 knockout plants generated by a CRISPR/Cas9 strategy exhibited similar early leaf senescence phenotypes as did the bbs1 mutant, which confirmed that LOC_Os03g24930 was the OsBBS1 gene. OsBBS1/OsRLCK109 was expressed in all detected tissues and was predominantly expressed in the main vein region of mature leaves. The expression of OsBBS1 could be greatly induced by salt stress, and the bbs1 mutant exhibited hypersensitivity to salt stress. In conclusion, this is the first identification of OsRLCKs participating in leaf senescence and playing critical roles in the salt stress response in rice (Oryza sativa L.).
NASA Astrophysics Data System (ADS)
Al Farishy, D. D.; Nisyawati, Metusala, D.
2017-07-01
Nepenthes is one of carnivorous plant genera which have key characters on leaf and pitcher as the modification. However, wide varieties of morphological features on pitcher intraspecies and between species could be tough for identification process. The objective was to provide alternative characters for identification process by anatomical features. Kerinci Seblat National Park was chosen because lack of update data on wild type of species there. Whole five species were collected at Lingkat Lake and Gunung Tujuh Lake as representative lowland and highland species. Leaves collected fresh, flawless, and has grown pitcher. Each leaf was separated into the paradermal and transversal section, dehydrated by series alcohol, and stained by safranin and fast green. Sections observed by light microscope. Result show there were specific differences between species that could be potential to be key characters. That features are stomatal density, stomatal length, sessile glands surface shaped, sessile glands density, trichome distribution, adaxial cuticle thickness, adaxial hypodermic thickness, and the number of layers of adaxial hypodermis
Cantu, Dario; Pearce, Stephen P; Distelfeld, Assaf; Christiansen, Michael W; Uauy, Cristobal; Akhunov, Eduard; Fahima, Tzion; Dubcovsky, Jorge
2011-10-07
Increasing the nutrient concentration of wheat grains is important to ameliorate nutritional deficiencies in many parts of the world. Proteins and nutrients in the wheat grain are largely derived from the remobilization of degraded leaf molecules during monocarpic senescence. The down-regulation of the NAC transcription factor Grain Protein Content (GPC) in transgenic wheat plants delays senescence (>3 weeks) and reduces the concentration of protein, Zn and Fe in the grain (>30%), linking senescence and nutrient remobilization.Based on the early and rapid up-regulation of GPC in wheat flag leaves after anthesis, we hypothesized that this transcription factor is an early regulator of monocarpic senescence. To test this hypothesis, we used high-throughput mRNA-seq technologies to characterize the effect of the GPC down-regulation on the wheat flag-leaf transcriptome 12 days after anthesis. At this early stage of senescence GPC transcript levels are significantly lower in transgenic GPC-RNAi plants than in the wild type, but there are still no visible phenotypic differences between genotypes. We generated 1.4 million 454 reads from early senescing flag leaves (average ~350 nt) and assembled 1.2 million into 30,497 contigs that were used as a reference to map 145 million Illumina reads from three wild type and four GPC-RNAi plants. Following normalization and statistical testing, we identified a set of 691 genes differentially regulated by GPC (431 ≥ 2-fold change). Transcript level ratios between transgenic and wild type plants showed a high correlation (R = 0.83) between qRT-PCR and Illumina results, providing independent validation of the mRNA-seq approach. A set of differentially expressed genes were analyzed across an early senescence time-course. Monocarpic senescence is an active process characterized by large-scale changes in gene expression which begins considerably before the appearance of visual symptoms of senescence. The mRNA-seq approach used here was able to detect small differences in transcript levels during the early stages of senescence. This resulted in an extensive list of GPC-regulated genes, which includes transporters, hormone regulated genes, and transcription factors. These GPC-regulated genes, particularly those up-regulated during senescence, provide valuable entry points to dissect the early stages of monocarpic senescence and nutrient remobilization in wheat.
TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat
Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J.; Carmo-Silva, Elizabete; Parry, Martin A. J.; Hu, Yin-Gang
2015-01-01
ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement. PMID:26047019
TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.
Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang
2015-01-01
ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement.
Department of Defense: Electronic Biometric Transmission Specification. Version 2.0
2009-03-27
Abstractions = ABSTRACT Insignias & Symbols = SYMBOL Other Images = OTHER Information Item Number: 3 Tattoo Subclass Description: This information item...Tattoo Subclasses: American Flag = USA State Flag = STATE Nazi Flag = NAZI Confederate Flag = CONFED British Flag = BRIT Miscellaneous Flags = MFLAG...Vegetables = MPLANT Flag Tattoo Subclasses: American Flag = USA State Flag = STATE Nazi Flag = NAZI Confederate Flag = CONFED British Flag = BRIT
Rakocevic, Miroslava; Matsunaga, Fabio Takeshi
2018-04-05
Dynamics in branch and leaf growth parameters, such as the phyllochron, duration of leaf expansion, leaf life span and bud mortality, determine tree architecture and canopy foliage distribution. We aimed to estimate leaf growth parameters in adult Arabica coffee plants based on leaf supporter axis order and position along the vertical profile, considering their modifications related to seasonal growth, air [CO2] and water availability. Growth and mortality of leaves and terminal buds of adult Arabica coffee trees were followed in two independent field experiments in two sub-tropical climate regions of Brazil, Londrina-PR (Cfa) and Jaguariúna-SP (Cwa). In the Cwa climate, coffee trees were grown under a FACE (free air CO2 enrichment) facility, where half of those had been irrigated. Plants were observed at a 15-30 d frequency for 1 year. Leaf growth parameters were estimated on five axes orders and expressed as functions of accumulated thermal time (°Cd per leaf). The phyllochron and duration of leaf expansion increased with axis order, from the seond to the fourth. The phyllochron and life span during the reduced vegetative seasonal growth were greater than during active growth. It took more thermal time for leaves from the first- to fourth-order axes to expand their blades under irrigation compared with rainfed conditions. The compensation effects of high [CO2] for low water availability were observed on leaf retention on the second and third axes orders, and duration of leaf expansion on the first- and fourth-order axes. The second-degree polynomials modelled leaf growth parameter distribution in the vertical tree profile, and linear regressions modelled the proportion of terminal bud mortality. Leaf growth parameters in coffee plants were determined by axis order. The duration of leaf expansion contributed to phyllochron determination. Leaf growth parameters varied according the position of the axis supporter along the vertical profile, suggesting an effect of axes age and micro-environmental light modulations.
Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants 1
Nouchi, Isamu; Mariko, Shigeru; Aoki, Kazuyuki
1990-01-01
To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots could absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths. Images Figure 7 PMID:16667719
Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism
Hazzouri, Khaled M.; Khraiwesh, Basel; Amiri, Khaled M. A.; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K.; Nelson, David; Mansour, Alain L.; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled
2018-01-01
Sodium (Na+) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5-like gene was a major gene in the QTL for salt tolerance, named Nax2. In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley (Hordeum vulgare). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na+) and potassium (K+) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na+ and K+ were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results provide stronger evidence that HKT1;5 gene in barley play a key role in withdrawing Na+ from the xylem and therefore reducing its transport to leaves. Given all that, these data support the hypothesis that HKT1;5 gene is responsible for Na+ unloading to the xylem and controlling its distribution in the shoots, which provide new insight into the understanding of this QTL for salinity tolerance in barley. PMID:29515598
Hazzouri, Khaled M; Khraiwesh, Basel; Amiri, Khaled M A; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K; Nelson, David; Mansour, Alain L; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled
2018-01-01
Sodium (Na + ) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5 -like gene was a major gene in the QTL for salt tolerance, named Nax2 . In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley ( Hordeum vulgare ). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na + ) and potassium (K + ) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na + and K + were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results provide stronger evidence that HKT1;5 gene in barley play a key role in withdrawing Na + from the xylem and therefore reducing its transport to leaves. Given all that, these data support the hypothesis that HKT1;5 gene is responsible for Na + unloading to the xylem and controlling its distribution in the shoots, which provide new insight into the understanding of this QTL for salinity tolerance in barley.
Zhao, Jun; Dong, Shu-ting; Liu, Peng; Zhang, Ji-wang; Zhao, Bin
2015-08-01
A field experiment was conducted using the winter wheat (Triticum aestivum) variety Shimai 15. The source of organic nitrogen was cow manure, and four fertilization treatments were included, i.e., no N fertilizer application, single application of urea, single application of cow manure, and mixed application of urea and cow manure. The effects of different applications of inorganic and organic nitrogen on canopy apparent photosynthesis (CAP), photosynthetic rate of flag leaves (Pn), leaf area index (LAI), florescence parameters and grain yield of winter wheat were determined. The results showed that urea had the largest effect on the early growth period, as at this stage the CAP, Pn and LAI of the single application of urea were the highest, which was followed by the mixed application and the single application of cow manure. However, 10 days after anthesis, the single application of cow manure and the mixed application delayed the leaf senescence process when compared with the single application of urea. This could be due to the two treatments having higher anti-oxidant enzyme activity and promoting a longer green leaf duration, which could maintain a higher photosynthetic capability. What' s more, the mixed application had a better performance and got the highest grain yield. Consequently, the mixed application of organic and inorganic fertilizers could delay leaf senescence and maintain a better canopy structure and higher photosynthesis capability at the late grain filling stage, which resulted in a higher grain yield.
Frankowski, Kamil; Wilmowicz, Emilia; Kućko, Agata; Zienkiewicz, Agnieszka; Zienkiewicz, Krzysztof; Kopcewicz, Jan
2015-05-01
The BLADE-ON-PETIOLE (BOP) genes have been recently shown to play an essential role in many physiological processes, including embryogenesis, meristem determinacy, leaf patterning and nodule development. In our research we used Lupinus luteus, a plant with great agronomic potential due to its high protein content and nitrogen fixation ability. In this work, LlBOP in L. luteus was identified for the first time and its expression during nodule development was analyzed. The high expression levels of LlBOP and LlLbI (LEGHEMOGLOBIN), essential to nitrogen-fixing symbiosis, were noted in the developing root nodules and were correlated with the occurrence of leghemoglobin. All of these data indicate that LlBOP is an important regulator of root nodule formation and functioning in L. luteus. Copyright © 2015 Elsevier GmbH. All rights reserved.
Tian, Tian; Wu, Lingtong; Henke, Michael; Ali, Basharat; Zhou, Weijun; Buck-Sorlin, Gerhard
2017-01-01
Functional–structural plant modeling (FSPM) is a fast and dynamic method to predict plant growth under varying environmental conditions. Temperature is a primary factor affecting the rate of plant development. In the present study, we used three different temperature treatments (10/14°C, 18/22°C, and 26/30°C) to test the effect of temperature on growth and development of rapeseed (Brassica napus L.) seedlings. Plants were sampled at regular intervals (every 3 days) to obtain growth data during the length of the experiment (1 month in total). Total leaf dry mass, leaf area, leaf mass per area (LMA), width-length ratio, and the ratio of petiole length to leaf blade length (PBR), were determined and statistically analyzed, and contributed to a morphometric database. LMA under high temperature was significantly smaller than LMA under medium and low temperature, while leaves at high temperature were significantly broader. An FSPM of rapeseed seedlings featuring a growth function used for leaf extension and biomass accumulation was implemented by combining measurement with literature data. The model delivered new insights into growth and development dynamics of winter oilseed rape seedlings. The present version of the model mainly focuses on the growth of plant leaves. However, future extensions of the model could be used in practice to better predict plant growth in spring and potential cold damage of the crop. PMID:28377775
Colonization and Movement of Xanthomonas fragariae in Strawberry Tissues.
Wang, Hehe; McTavish, Christine; Turechek, William W
2018-06-01
Xanthomonas fragariae causes angular leaf spot of strawberry, an important disease in strawberry growing regions worldwide. To better understand how X. fragariae multiplies and moves in strawberry plants, a green fluorescent protein (GFP)-labeled strain was constructed and used to monitor the pathogen's presence in leaf, petiole, and crown tissue with fluorescence microscopy following natural and wound inoculation in three strawberry cultivars. Taqman PCR was used to quantify bacterial densities in these same tissues regardless of the presence of GFP signal. Results showed X. fragariae colonized leaf mesophyll, the top 1 cm portion of the petiole adjacent to the leaf blade, and was occasionally found colonizing xylem vessels down to the middle of the petioles. The colonization of vascular bundles and the limited systemic movement that was observed appeared to be a passive process, of which the frequency increased with wounding and direct infiltration of bacteria into leaf veins. X. fragariae was able to directly enter petioles and colonize the space under the epidermis. Systemic movement of the bacteria into crown and other uninoculated tissues was not detected visually by GFP. However, X. fragariae was occasionally detected in these tissues by qPCR, but at quantities very near the qPCR detection limit. Petiole tissue harboring bacteria introduced either by direct entry through natural openings or wounds, or by systemic movement from infected foliar tissue, likely serves as a main source of initial inoculum in field plantings.
Liang, Haiyi; Mahadevan, L.
2009-01-01
Long leaves in terrestrial plants and their submarine counterparts, algal blades, have a typical, saddle-like midsurface and rippled edges. To understand the origin of these morphologies, we dissect leaves and differentially stretch foam ribbons to show that these shapes arise from a simple cause, the elastic relaxation via bending that follows either differential growth (in leaves) or differential stretching past the yield point (in ribbons). We quantify these different modalities in terms of a mathematical model for the shape of an initially flat elastic sheet with lateral gradients in longitudinal growth. By using a combination of scaling concepts, stability analysis, and numerical simulations, we map out the shape space for these growing ribbons and find that as the relative growth strain is increased, a long flat lamina deforms to a saddle shape and/or develops undulations that may lead to strongly localized ripples as the growth strain is localized to the edge of the leaf. Our theory delineates the geometric and growth control parameters that determine the shape space of finite laminae and thus allows for a comparative study of elongated leaf morphology. PMID:19966215
Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin.
Ribeiro, Aurislaine S; Ribeiro, Mariana S; Bertolucci, Suzan K V; Bittencourt, Wanderley J M; Carvalho, Alexandre A DE; Tostes, Wesley N; Alves, Eduardo; Pinto, José E B P
2018-04-16
The purpose of this investigation was to determine the influence of colored shade nets on the growth, anatomy and essential oil content, yield and chemical composition of Pogostemon cablin. The plants were cultivated under full sunlight, black, blue and red nets. The harvesting was performed 5 months after planting and it was followed by the analysis of plant growth parameters, leaf anatomy, essential oil content, yield and chemical composition. The plants grown under red net have produced more leaf, shoot, total dry weight and leaf area. Plants cultivated under colored nets showed differences in morphological features. Plants maintained under red net had a higher leaf blade thickness and polar and equatorial diameter of the stomata ratio. Additionally, higher yield of essential oil in the leaves was observed under red and blue colored shade net. The essential oil of the plants grown under red net showed the highest relative percentage of patchoulol (66.84%). Therefore, it is possible using colored shade nets to manipulate P. cablin growth, as well as its essential oil production with several chemical compositions. The analyses of principal components allowed observing that pogostol has negative correlation with α-guaiene and α-bulnesene. There was difference in total dry weight and patchoulol content when the patchouli is cultured under the red colored shade nets.
Taylor, Samuel H; Long, Stephen P
2017-09-26
Wheat is the second most important direct source of food calories in the world. After considerable improvement during the Green Revolution, increase in genetic yield potential appears to have stalled. Improvement of photosynthetic efficiency now appears a major opportunity in addressing the sustainable yield increases needed to meet future food demand. Effort, however, has focused on increasing efficiency under steady-state conditions. In the field, the light environment at the level of individual leaves is constantly changing. The speed of adjustment of photosynthetic efficiency can have a profound effect on crop carbon gain and yield. Flag leaves of wheat are the major photosynthetic organs supplying the grain of wheat, and will be intermittently shaded throughout a typical day. Here, the speed of adjustment to a shade to sun transition in these leaves was analysed. On transfer to sun conditions, the leaf required about 15 min to regain maximum photosynthetic efficiency. In vivo analysis based on the responses of leaf CO 2 assimilation ( A ) to intercellular CO 2 concentration ( c i ) implied that the major limitation throughout this induction was activation of the primary carboxylase of C3 photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This was followed in importance by stomata, which accounted for about 20% of the limitation. Except during the first few seconds, photosynthetic electron transport and regeneration of the CO 2 acceptor molecule, ribulose-1,5-bisphosphate (RubP), did not affect the speed of induction. The measured kinetics of Rubisco activation in the sun and de-activation in the shade were predicted from the measurements. These were combined with a canopy ray tracing model that predicted intermittent shading of flag leaves over the course of a June day. This indicated that the slow adjustment in shade to sun transitions could cost 21% of potential assimilation.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.
Ma, Shang-Yu; Yu, Zhen-Wen; Shi, Yu; Zhao, Jun-Ye; Zhang, Yong-Li
2014-04-01
With the high-yielding winter wheat cultivar Jimai 22 as test material, a three-year field experiment was conducted to examine the effects of border length for irrigation on flag leaf water potential, photosynthetic characteristics, dry matter accumulation and distribution of wheat. In the 2010-2011 growing season, six treatments were installed, i. e., the field border length was designed as 10 m (L10), 20 m (L20), 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). In the 2011-2012 and 2012-2013 growing seasons, the field border length was designed as 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). The results showed that the average relative soil water content of the 0-200 cm soil layer was presented as L80, L60>L100>L40>L20>L10 at anthesis in the 2010-2011 growing season and as L80, L60>L100>L40 in the 2011-2012 and 2012-2013 growing seasons. At 11 d and 21 d after anthesis, the water potential, net photosynthetic rate and transpiration rate of flag leaf were presented as L80, L100>L60>L40>L20, L10, and as L80>L60, L100>L40, L20, L10 at 31 d after anthesis. The coefficients of variability both of the dry matter accumulation at anthesis and maturity and of grain yield in different regions of L80 field were lower than those of L100. The average dry matter accumulation, dry matter accumulation after anthesis and the contribution to grain of L80 were dramatically higher than those of L100, L40, L20 and L10. L80 had the highest average grain yield and water use efficiency, being the best treatment for irrigation in our study.
2013-01-01
Background Cultivated rice species (Oryza sativa L. and O. glaberrima Steud.) are generally considered among the crop species most sensitive to salt stress. A handful of lines are known to be tolerant, and a small number of these have been used extensively as donors in breeding programs. However, these donors use many of the same genes and physiological mechanisms to confer tolerance. Little information is available on the diversity of mechanisms used by these species to cope with salt stress, and there is a strong need to identify varieties displaying additional physiological and/or genetic mechanisms to confer higher tolerance. Results Here we present data on 103 accessions from O. sativa and 12 accessions from O. glaberrima, many of which are identified as salt tolerant for the first time, showing moderate to high tolerance of high salinity. The correlation of salinity-induced senescence (as judged by the Standard Evaluation System for Rice, or SES, score) with whole-plant and leaf blade Na+ concentrations was high across nearly all accessions, and was almost identical in both O. sativa and O. glaberrima. The association of leaf Na+ concentrations with cultivar-groups was very weak, but association with the OsHKT1;5 allele was generally strong. Seven major and three minor alleles of OsHKT1;5 were identified, and their comparisons with the leaf Na+ concentration showed that the Aromatic allele conferred the highest exclusion and the Japonica allele the least. A number of exceptions to this association with the Oryza HKT1;5 allele were identified; these probably indicate the existence of additional highly effective exclusion mechanisms. In addition, two landraces were identified, one from Thailand and the other from Senegal, that show high tissue tolerance. Conclusions Significant variation in salinity tolerance exists within both cultivated Oryza species, and this is the first report of significant tolerance in O. glaberrima. The majority of accessions display a strong quantitative relationship between tolerance and leaf blade Na+ concentration, and thus the major tolerance mechanisms found in these species are those contributing to limiting sodium uptake and accumulation in active leaves. However, there appears to be genetic variation for several mechanisms that affect leaf Na+ concentration, and rare cases of accessions displaying different mechanisms also occur. These mechanisms show great promise for improving salt tolerance in rice over that available from current donors. PMID:23445750
Photosynthetic Rates of Citronella and Lemongrass 1
Herath, H. M. Walter; Ormrod, Douglas P.
1979-01-01
Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod. PMID:16660737
10 CFR 1002.21 - Description of distinguishing flag.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Description of distinguishing flag. 1002.21 Section 1002.21 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) OFFICIAL SEAL AND DISTINGUISHING FLAG Distinguishing Flag § 1002.21 Description of distinguishing flag. (a) The base or field of the flag shall be...
Effects of vertical rotation on Arabidopsis development
NASA Technical Reports Server (NTRS)
Brown, A. H.; Chapman, D. K.; Dahl, A. O.
1975-01-01
Various gross morphological end points of Arabidopsis development are examined in an attempt to separate the effects of growth on the horizontal clinostat into a component caused by rotation alone and another component caused by the altered position with respect to the direction of the g-vector. In a series of tests which involved comparisons between vertical stationary plants, vertical rotated plants, and plants rotated on clinostats, certain characters were consistently influenced by vertical rotation alone. The characters for which this effect was statistically significant were petiole length and leaf blade width.
NASA Astrophysics Data System (ADS)
Velázquez-Rosas, Noé; Barradas, Víctor L.; Vázquez-Santana, Sonia; Cruz-Ortega, Rocio; García-Jiménez, Federico; Toledo-Alvarado, Edith; Orozco-Segovia, Alma
2010-11-01
The physiological, anatomical and optical leaf properties relative to photosynthetically active (PAR) and ultraviolet (UV-B) radiation were assessed in Ticodendron incognitum, Drimys granadensis, Podocarpus matudae var. macrocarpus and Vaccinium consanguineum, growing along an elevation gradient (1520-2550 m asl) in a montane cloud forest in México. PAR and UV-B absorptance, transmittance and reflectance, UV-B absorptance by foliar compounds, chlorophylls, carotenoids, leaf nitrogen, leaf mass per area, leaf blades, cuticles, epidermis and parenchymas thickness were measured. PAR absorptance efficiencies were calculated. Among the evaluated morpho-functional traits, the studied species displayed different patterns of variation with elevation. Leaf traits could be explained in part by changes in elevation or the distribution of PAR and UV-B in the elevation gradient. Ticodendron and Drimys leaf traits were likely determined by two cloud banks located at 1940 and 2380 m. In Vaccinium, eight traits were related to elevation and PAR or UV-B. Contrary to this, in Podocarpus, most of the nine leaf traits could be explained by only one of these factors. The morphological traits of the studied species were similar to those of species growing in other oligotrophic ecosystems. Significant differences between sun exposed and shade leaves were limited to particular elevations or to particular traits of each species. Vaccinium showed more significant differences between sun and shade leaves than did the other species growing along the gradient. The morpho-functional traits measured in Podocarpus and Vaccinium showed that, some leaf traits did not change linearly with elevation or PAR. At elevation levels where species co-occur, the species ranking with respect to evaluated traits varied from trait to trait. This indicate that each species copes with light and other environmental factors, that vary with elevation, according to its morpho-functional plasticity and susceptibility to these factors; which may determine the distribution of these species along the gradient.
10 CFR 1002.22 - Use of distinguishing flag.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Use of distinguishing flag. 1002.22 Section 1002.22 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) OFFICIAL SEAL AND DISTINGUISHING FLAG Distinguishing Flag § 1002.22 Use of distinguishing flag. (a) DOE distinguishing flags may be used only: (1) In the offices of the...
Pietrini, F; Zacchini, M; Iori, V; Pietrosanti, L; Ferretti, M; Massacci, A
2010-03-01
The interaction of cadmium (Cd) with photosynthesis was investigated in poplar (Populus x canadensis Mönch., clone A4A, Populus nigra L., clone Poli) and willow (Salix alba L., clone SS5) clones that had different leaf metal concentrations in preliminary experiments. Plants grown in the presence of 50 microm CdSO(4) for 3 weeks under hydroponic conditions were used to examine leaf gas exchange, chlorophyll fluorescence parameters and images, and for Cd detection using energy dispersive X-ray fluorescence (ED-XRF). Leaves were finally analysed for Cd and phytochelatin concentrations. Results showed that SS5 had the highest leaf Cd concentration and high gas exchange activity similar to that of Poli, which had the lowest Cd concentration. Leaf fluorescence images evidenced in large undamaged areas of SS5 corresponded to high values of F(v)/F(m), F(o), PhiPSII, qP and NPQ, while patches of dark colour (visible necrosis) close to the main vein corresponded to low values of these parameters. In A4A, these necrotic patches were more diffuse on the leaf blade and associated with a range of fluorescence parameter values. ED-XRF analysis indicated that Cd was only detectable in necroses of SS5 leaves, while in A4A it was relatively more diffuse. Phytochelatins (PCs) were not detected in SS5, while their concentration was high in both Poli and A4A. The absence of these molecules in SS5 is thought to favour confinement of high accumulations of Cd to necrotic areas and gives SS5 the ability to maintain high photosynthesis and transpiration in remaining parts of the leaf.
Fernández Honaine, M; Osterrieth, M L
2012-07-01
Many studies relate silica content in plants with internal or external factors; however, few works analyse the effect of these factors on the silicification of different cell types. In this study, we examined the effect of leaf section and leaf position, and environmental conditions on the percentages of silicified epidermal cells of a native Pampean panicoid grass, Bothriochloa laguroides D. C. Pilger. Two different environmental situations were selected for the collection of plants: a natural wetland and a quartzite quarry, located in the southeast Buenos Aires province, Argentina. Clarification and staining methodologies were applied so as to study the distribution of silicified cells in different sections of leaves of the plants collected. Two and three-factor anovas were applied to the data. Between 13% and 19% of total cells of the adaxial epidermis of leaf blades were silicified. Typical silica short cells were the largest contributor to total silicified cells (53-98%), while the second largest contributor was bulliform cells (0-30%). Percentages of total silicified cells were higher in superior than in inferior leaves, while values from leaf sections varied. When collection sites were compared, plants growing in Los Padres pond, where the silica content in soils is higher, had the higher percentage of silicified cells. Among all types of cell, bulliform cells showed differences in the proportion of silicified cells between leaf position and section and collection site. These results show that silica availability in soils is an important factor that conditions silica accumulation and overlaps with the transpiration effect. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Santos, Leonardo D T; Da Cruz, Leandro R; Dos Santos, Samuel A; Sant'anna-Santos, Bruno F; Dos Santos, Izabela T; De Oliveira, Ariane M; Barros, Rodrigo E; Santos, Márcia V; Faria, Rodrigo M
2015-03-01
Plants have the ability to undergo morphophysiological changes based on availability of light. The present study evaluated biomass accumulation, leaf morphoanatomy and physiology of Neonotonia wightii and Pueraria phaseoloides grown in full sunlight, as well as in 30% and 50% shade. Two assays were performed, one for each species, using a randomized block design with 10 replicates. A higher accumulation of fresh mass in the shoot of the plants was observed for both species under cultivation in 50% shade, while no differences were detected between the full sunlight and 30% shade. N. wightii and P. phaseoloides showed increase in area and reduction in thickness leaf when cultivated in 50% shade. There were no changes in photosynthetic rate, stomatal conductance, water use efficiency and evapotranspiration of P. phaseoloides plants because growth environment. However, the shade treatments caused alterations in physiological parameters of N. wightii. In both species, structural changes in the mesophyll occurred depending on the availability of light; however, the amount of leaf blade tissue remained unaltered. Despite the influence of light intensity variation on the morphophysiological plasticity of N. wightii and P. phaseoloides, no effects on biomass accumulation were observed in response to light.
Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; Cabrita, Maria João; García-Escudero, Enrique; Peregrina, Fernando
2017-11-01
Vineyard soil management can modify the nitrogen soil availability and, therefore, grape amino acid content. These compounds are precursors of biogenic amines, which have negative effects on wine quality and human health. The objective was to study whether the effect of conventional tillage and two cover crops (barley and clover) on grapevine nitrogen status could be related to wine biogenic amines. Over 4 years, soil NO 3 - -N, nitrogen content in leaf and wine biogenic amine concentration were determined. Barley reduced soil NO 3 - -N availability and clover increased it. In 2011, at bloom, nitrogen content decreased with barley treatment in both blade and petiole. In 2012, nitrogen content in both leaf tissues at bloom was greater with clover than with tillage and barley treatments. Also, total biogenic amines decreased in barley with respect to tillage and clover treatments. There were correlations between some individual and total biogenic amine concentrations with respect to nitrogen content in leaf tissues. Wine biogenic amine concentration can be affected by the grapevine nitrogen status, provoked by changes in the soil NO 3 - -N availability with both cover crop treatments. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Zinc allocation and re-allocation in rice.
Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E L; Struik, Paul C
2014-01-01
Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Two solution culture experiments using (70)Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg(-1) dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement.
Bezerra, L D A; Mangabeira, P A O; de Oliveira, R A; Costa, L C D B; Da Cunha, M
2018-05-01
Secretory structures are common in Asteraceae, where they exhibit a high degree of morphological diversity. The species Verbesina macrophylla, popularly known as assa-peixe, is native to Brazil where it is widely used for medicinal purposes. Despite its potential medical importance, there have been no studies of the anatomy of this species, especially its secretory structures and secreted compounds. This study examined leaves of V. macrophylla with emphasis on secretory structures and secreted secondary metabolites. Development of secretory ducts and the mechanism of secretion production are described for V. macrophylla using ultrastructure, yield and chemical composition of its essential oils. Verbesina macrophylla has a hypostomatic leaf blade with dorsiventral mesophyll and secretory ducts associated with vascular bundles of schizogenous origin. Histochemistry identified the presence of lipids, terpenes, alkaloids and mucopolysaccharides. Ultrastructure suggests that the secretion released into the duct lumen is produced in plastids of transfer cells, parenchymal sheath cells and stored in vacuoles in these cells and duct epithelial cells. The essential oil content was 0.8%, and its major components were germacrene D, germacrene D-4-ol, β-caryophyllene, bicyclogermacrene and α-cadinol. Secretory ducts of V. macrophylla are squizogenous. Substances identified in tissues suggest that both secretions stored in the ducts and in adjacent parenchyma cells are involved in chemical defence. The essential oil is rich in sesquiterpenes, with germacrene D and its derivatives being notable components. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Zinc allocation and re-allocation in rice
Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E. L.; Struik, Paul C.
2014-01-01
Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Methods: Two solution culture experiments using 70Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. Results: A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg−1 dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. Conclusions: In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement. PMID:24478788
De Paula, A C C F F; Sousa, R V; Figueiredo-Ribeiro, R C L; Buckeridge, M S
2005-06-01
Beta-glucans are soluble fibers with physiological functions, such as interference with absorption of sugars and reduction of serum lipid levels. The objective of the present study was to analyze the distribution of beta-glucans in different tissues of the African grass species Rhynchelytrum repens and also to evaluate their hypoglycemic activity. Leaf blades, sheaths, stems, and young leaves of R. repens were submitted to extraction with 4 M KOH. Analysis of the fractions revealed the presence of arabinose, glucose, xylose, and traces of rhamnose and galactose. The presence of beta-glucan in these fractions was confirmed by hydrolyzing the polymers with endo-beta-glucanase from Bacillus subtilis, followed by HPLC analysis of the characteristic oligosaccharides produced. The 4 M KOH fractions from different tissues were subjected to gel permeation chromatography on Sepharose 4B, with separation of polysaccharides with different degrees of polymerization, the highest molecular mass (above 2000 kDa) being found in young leaves. The molecular mass of the leaf blade polymers was similar (250 kDa) to that of maize coleoptile beta-glucan used for comparison. The 4 M KOH fraction injected into rats with streptozotocin-induced diabetes showed hypoglycemic activity, reducing blood sugar to normal levels for approximately 24 h. This performance was better than that obtained with pure beta-glucan from barley, which decreased blood sugar levels for about 4 h. These results suggest that the activity of beta-glucans from R. repens is responsible for the use of this plant extract as a hypoglycemic drug in folk medicine.
Romero, Pascual; Botía, Pablo; Keller, Markus
2017-09-01
Modifications of plant hydraulics and shoot resistances (R shoot ) induced by water withholding followed by rewatering, and their relationships with plant water status, leaf gas exchange and water use efficiency at the leaf level, were investigated in pot-grown and field-grown, own-rooted Syrah grapevines in an arid climate. Water stress induced anisohydric behavior, gradually reducing stomatal conductance (g s ) and leaf photosynthesis (A) in response to decreasing midday stem water potential (Ψ s ). Water stress also rapidly increased intrinsic water-use efficiency (A/g s ); this effect persisted for many days after rewatering. Whole-plant (K plant ), canopy (K canopy ), shoot (K shoot ) and leaf (K leaf ) hydraulic conductances decreased during water stress, in tune with the gradual decrease in Ψ s , leaf gas exchange and whole plant water use. Water-stressed vines also had a lower Ψ gradient between stem and leaf (ΔΨ l ), which was correlated with lower leaf transpiration rate (E). E and ΔΨ l increased with increasing vapour pressure deficit (VPD) in non-stressed control vines but not in stressed vines. Perfusion of xylem-mobile dye showed that water flow to petioles and leaves was substantially reduced or even stopped under moderate and severe drought stress. Leaf blade hydraulic resistance accounted for most of the total shoot resistance. However, hydraulic conductance of the whole root system (K root ) was not significantly reduced until water stress became very severe in pot-grown vines. Significant correlations between K plant , K canopy and Ψ s , K canopy and leaf gas exchange, K leaf and Ψ s , and K leaf and A support a link between water supply, leaf water status and gas exchange. Upon re-watering, Ψ s recovered faster than gas exchange and leaf-shoot hydraulics. A gradual recovery of hydraulic functionality of plant organs was also observed, the leaves being the last to recover after rewatering. In pot-grown vines, K canopy recovered rather quickly following restoration of Ψ s , although gas exchange recovery did not directly depend on recovery of K canopy . In field-grown vines, recovery of water status, gas exchange and hydraulic functionality was slower than in pot-grown plants, and low g s after rewatering was related to sustained decreased K plant , K canopy and K shoot and lower water transport to leaves. These results suggest that caution should be exercised when scaling up conclusions from experiments with small pot-grown plants to field conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.
High-speed electromechanical chutter for imaging spectrographs
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet (Inventor)
2005-01-01
The present invention presents a high-speed electromechanical shutter which has at least two rotary beam choppers that are synchronized using a phase-locked loop electronic control to reduce the duty cycle. These choppers have blade means that can comprise discs or drums, each having about 60 (+/- 15) slots which are from about 0.3 to about 0.8 mm wide and about 5 to about 20 nun long (radially) which are evenly distributed through out 360 deg, and a third rotary chopper which is optically aligned has a small number of slots, such as for example, 1 to 10 slots which are about 1 to about 2 mm wide and about 5 to about 20 mm long (radially). Further the blade means include phase slots that allow the blade means to be phase locked using a closed loop control circuit. In addition, in a preferred embodiment, the system also has a leaf shutter. Thus the invention preferably achieves a gate width of less than about 100 microseconds, using motors that operate at 3000 to 10,OOO rpm, and with a phase jitter of less than about 1.5 microseconds, and further using an aperture with more than about 75% optical transmission with a clear aperture of about 0.8 -10 nun. The system can be synchronized to external sources at 0 6 kHz lasers, data acquisition systems, and cameras.
High-speed electromechanical shutter for imaging spectrographs
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet (Inventor)
2005-01-01
The present invention presents a high-speed electromechanical shutter which has at least two rotary beam choppers that are synchronized using a phase-locked loop electronic control to reduce the duty cycle. These choppers have blade means that can comprise discs or drums, each having about 60 (+/-15) slots which are from about 0.3 to about 0.8 mm wide and about 5 to about 20 mm long (radially) which are evenly distributed through out 360?, and a third rotary chopper which is optically aligned has a small number of slots, such as for example, 1 to 10 slots which are about 1 to about 2 mm wide and about 5 to about 20 mm long (radially). Further the blade means include phase slots that allow the blade means to be phase locked using a closed loop control circuit. In addition, in a preferred embodiment, the system also has a leaf shutter. Thus the invention preferably achieves a gate width of less than about 100 microseconds, using motors that operate at 3000 to 10,000 rpm, and with a phase jitter of less than about 1.5 microseconds, and further using an aperture with more than about 75% optical transmission with a clear aperture of about 0.8 mm?10 mm. The system can be synchronized to external sources at 0 6 kHz lasers, data acquisition systems, and cameras.
Research of performance prediction to energy on hydraulic turbine
NASA Astrophysics Data System (ADS)
Quan, H.; Li, R. N.; Li, Q. F.; Han, W.; Su, Q. M.
2012-11-01
Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.
Characterization of functional trait diversity among Indian cultivated and weedy rice populations
Rathore, M.; Singh, Raghwendra; Kumar, B.; Chauhan, B. S.
2016-01-01
Weedy rice, a menace in rice growing areas globally, is biosimilar having attributes similar to cultivated and wild rice, and therefore is difficult to manage. A study was initiated to characterize the functional traits of 76 weedy rice populations and commonly grown rice cultivars from different agro-climatic zones for nine morphological, five physiological, and three phenological parameters in a field experiment under an augmented block design. Comparison between weedy and cultivated rice revealed a difference in duration (days) from panicle emergence to heading as the most variable trait and awn length as the least variable one, as evidenced from their coefficients of variation. The results of principal component analysis revealed the first three principal components to represent 47.3% of the total variation, which indicates an important role of transpiration, conductance, leaf-air temperature difference, days to panicle emergence, days to heading, flag leaf length, SPAD (soil-plant analysis development), grain weight, plant height, and panicle length to the diversity in weedy rice populations. The variations existing in weedy rice population are a major reason for its wider adaptability to varied environmental conditions and also a problem while trying to manage it. PMID:27072282
Wang, Ning; Wu, Xiaolin; Ku, Lixia; Chen, Yanhui; Wang, Wei
2016-01-01
Leaf morphology is closely related to the growth and development of maize (Zea mays L.) plants and final kernel production. As an important part of the maize leaf, the midrib holds leaf blades in the aerial position for maximum sunlight capture. Leaf midribs of adult plants contain substantial sclerenchyma cells with heavily thickened and lignified secondary walls and have a high amount of phenolics, making protein extraction and proteome analysis difficult in leaf midrib tissue. In the present study, three protein-extraction methods that are commonly used in plant proteomics, i.e., phenol extraction, TCA/acetone extraction, and TCA/acetone/phenol extraction, were qualitatively and quantitatively evaluated based on 2DE maps and MS/MS analysis using the midribs of the 10th newly expanded leaves of maize plants. Microscopy revealed the existence of substantial amounts of sclerenchyma underneath maize midrib epidermises (particularly abaxial epidermises). The spot-number order obtained via 2DE mapping was as follows: phenol extraction (655) > TCA/acetone extraction (589) > TCA/acetone/phenol extraction (545). MS/MS analysis identified a total of 17 spots that exhibited 2-fold changes in abundance among the three methods (using phenol extraction as a control). Sixteen of the proteins identified were hydrophilic, with GRAVY values ranging from -0.026 to -0.487. For all three methods, we were able to obtain high-quality protein samples and good 2DE maps for the maize leaf midrib. However, phenol extraction produced a better 2DE map with greater resolution between spots, and TCA/acetone extraction produced higher protein yields. Thus, this paper includes a discussion regarding the possible reasons for differential protein extraction among the three methods. This study provides useful information that can be used to select suitable protein extraction methods for the proteome analysis of recalcitrant plant tissues that are rich in sclerenchyma cells.
A 3,000 year plant leaf wax D/H record of paleohydrology from Southern California
NASA Astrophysics Data System (ADS)
Cheetham, M. I.; Feakins, S. J.
2011-12-01
We report a high resolution record of hydrological variability based on plant leaf wax D/H measurements in a sediment core from Zaca Lake, Southern California spanning 3,000 years. Compound specific analysis of the n-alkanoic acid fraction yields a powerful suite of relative abundance and isotope data. Comparison to modern vegetation and sediments offers insights into the source of sedimentary waxes and their D/H signatures. We identify three potential sources of waxes at Zaca: 1) mid to long chains from emergent aquatic plants (C28 max), 2) mid chains from Pinus coulteri (C20-C24 only) and 3) mid to long chains from Quercus agrifolia (C28 and C30 max). We establish that long chains are dominated by Quercus and other terrestrial vegetation, whereas mid chains could have mixed sources. At Zaca, 80% shared variance between mid chain and long chain records suggests both derive from terrestrial plants influenced by a common driver, presumably the isotopic composition of precipitation or relative humidity influences on leaf water enrichment. Dendrogram analysis of molecular abundance variations allows us to flag where vegetation change cannot be ruled out. We therefore infer that regional atmospheric circulation changes drove the sustained negative isotope excursion of > 20% from about 2,700 to 2,000 years BP and superimposed higher frequency 20% variability throughout the record, including a number of large, rapid excursion (>20%, <20 years). The results of ongoing analyses will be presented at the meeting.
10 CFR 1002.31 - Unauthorized uses of the seal and flag.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Unauthorized uses of the seal and flag. 1002.31 Section 1002.31 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) OFFICIAL SEAL AND DISTINGUISHING FLAG Unauthorized Uses § 1002.31 Unauthorized uses of the seal and flag. The official seal and distinguishing flag...
10 CFR 1002.31 - Unauthorized uses of the seal and flag.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Unauthorized uses of the seal and flag. 1002.31 Section 1002.31 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) OFFICIAL SEAL AND DISTINGUISHING FLAG Unauthorized Uses § 1002.31 Unauthorized uses of the seal and flag. The official seal and distinguishing flag...
49 CFR 393.87 - Warning flags on projecting loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 5 2012-10-01 2012-10-01 false Warning flags on projecting loads. 393.87 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.87 Warning flags on... load marked with red or orange fluorescent warning flags. Each warning flag must be at least 457 mm (18...
49 CFR 393.87 - Warning flags on projecting loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Warning flags on projecting loads. 393.87 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.87 Warning flags on... load marked with red or orange fluorescent warning flags. Each warning flag must be at least 457 mm (18...
49 CFR 393.87 - Warning flags on projecting loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false Warning flags on projecting loads. 393.87 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.87 Warning flags on... load marked with red or orange fluorescent warning flags. Each warning flag must be at least 457 mm (18...
49 CFR 393.87 - Warning flags on projecting loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Warning flags on projecting loads. 393.87 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.87 Warning flags on... load marked with red or orange fluorescent warning flags. Each warning flag must be at least 457 mm (18...
49 CFR 393.87 - Warning flags on projecting loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 5 2014-10-01 2014-10-01 false Warning flags on projecting loads. 393.87 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.87 Warning flags on... load marked with red or orange fluorescent warning flags. Each warning flag must be at least 457 mm (18...
46 CFR 282.11 - Ranking of flags.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Ranking of flags. 282.11 Section 282.11 Shipping... COMMERCE OF THE UNITED STATES Foreign-Flag Competition § 282.11 Ranking of flags. The operators under each... priority of costs which are representative of the flag. For liner cargo vessels, the ranking of operators...
Premkumar, Ajay; Godfrey, William; Gottschalk, Michael B; Boden, Scott D
2018-03-07
Low back pain has a high prevalence and morbidity, and is a source of substantial health-care spending. Numerous published guidelines support the use of so-called red flag questions to screen for serious pathology in patients with low back pain. This paper examines the effectiveness of red flag questions as a screening tool for patients presenting with low back pain to a multidisciplinary academic spine center. We conducted a retrospective review of the cases of 9,940 patients with a chief complaint of low back pain. The patients completed a questionnaire that included several red flag questions during their first physician visit. Diagnostic data for the same clinical episode were collected from medical records and were corroborated with imaging reports. Patients who were diagnosed as having a vertebral fracture, malignancy, infection, or cauda equina syndrome were classified as having a red flag diagnosis. Specific individual red flags and combinations of red flags were associated with an increased probability of underlying serious spinal pathology, e.g., recent trauma and an age of >50 years were associated with vertebral fracture. The presence or absence of other red flags, such as night pain, was unrelated to any particular diagnosis. For instance, for patients with no recent history of infection and no fever, chills, or sweating, the presence of night pain was a false-positive finding for infection >96% of the time. In general, the absence of red flag responses did not meaningfully decrease the likelihood of a red flag diagnosis; 64% of patients with spinal malignancy had no associated red flags. While a positive response to a red flag question may indicate the presence of serious disease, a negative response to 1 or 2 red flag questions does not meaningfully decrease the likelihood of a red flag diagnosis. Clinicians should use caution when utilizing red flag questions as screening tools.
Hasanuzzaman, Md; Davies, Noel W; Shabala, Lana; Zhou, Meixue; Brodribb, Tim J; Shabala, Sergey
2017-06-19
While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well irrigated conditions. A significant and negative relationship between the amount of primary alcohols and a residual transpiration implies that some cuticular wax constituents act as a water barrier on plant leaf surface and thus contribute to salinity stress tolerance. It is suggested that residual transpiration could be a fundamental mechanism by which plants optimize water use efficiency under stress conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-14
... the relevant flags, as described below, for orders that add liquidity to the EDGA book. Specifically... the following flags: Flag B for orders that add liquidity to the EDGA book in Tape B securities; Flag V for orders that add liquidity to the EDGA book in Tape A securities; Flag Y for orders that add...
FLIP for FLAG model visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooten, Hasani Omar
A graphical user interface has been developed for FLAG users. FLIP (FLAG Input deck Parser) provides users with an organized view of FLAG models and a means for efficiently and easily navigating and editing nodes, parameters, and variables.
Sward structure and nutritive value of Alexandergrass fertilized with nitrogen.
Salvador, Paulo R; Pötter, Luciana; Rocha, Marta G; Hundertmarck, Anelise P; Sichonany, Maria José O; Amaral Neto, Luiz G; Negrini, Mateus; Moterle, Paulo H
2016-03-01
This experiment evaluated forage production, sward structure, stocking rate, weight gain per area and nutritive value of forage as grazed by beef heifers on Alexandergrass (Urochloa plantaginea (Link) Hitch) pasture fertilized with nitrogen (N): 0; 100; 200 or 300 kg of N/ha. The experiment was a completely randomized design following a repeated measurement arrangement. The experimental animals were Angus heifers with initial age and weight of 15 months and 241.5±5 kg, respectively. The grazing method was continuous, with put-and-take stocking. N utilization, regardless of the level, increase by 25% the daily forage accumulation rate and the weight gain per area by 23%. The level of 97.2 kg N/ha leads to a higher leaf blade mass and increases by 20% the leaf:stem ratio. Alterations in sward structure changes the nutritive value of forage as grazed. The utilization of 112.7 kg of N/ha allows the highest stocking rate (2049.8 kg of BW/ha), equivalent to 7.5 heifers per hectare.
Gold leaf: From gilding to the fabrication of disposable, wearable and low-cost electrodes.
Santos, Mauro Sérgio Ferreira; Ameku, Wilson Akira; Gutz, Ivano Gebhardt Rolf; Paixão, Thiago Regis Longo Cesar
2018-03-01
Gold is among the most used materials in electrocatalysis. Despite this, this noble metal is still too expensive to be used in the fabrication of low cost and disposable devices. In the present work, gold-leaf sheets, usually employed in decorative crafts and wedding candies, is introduced as an inexpensive source of gold. Planar-disc and nanoband gold electrodes were simply and easily manufactured by combining gold leaf and polyimide tape. The planar disc electrode exhibited electrochemical behavior similar to that of a commercial gold electrode in 0.2molL -1 H 2 SO 4 ; cyclic voltammetry of a 1mmolL -1 solution of potassium ferricyanide (K 3 [Fe(CN) 6 ]) in 0.2molL -1 KNO 3 , using this novel electrode, displayed an 80mV difference between the oxidation and reduction peak potentials. The electrode also delivers promising prospects for the development of wearable devices. When submitted to severe mechanical deformation, this electrode exhibited neither loss of electrical contact nor significant variation in electrode response, even after fifteen bending and/or folding cycles. The thickness of the gold-leaf sheet facilitates the production of nanoband electrodes with behavior similar to that of ultramicroelectrodes. The electrode surface is easily renewed by cutting a thin slice off its end with a razor blade; this process led to limiting currents that were reproducible, presenting a relative standard deviation (RSD) of 3.8% (n = 5). Copyright © 2017 Elsevier B.V. All rights reserved.
Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu
2014-01-01
Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ. PMID:24845465
Where no flag has gone before: Political and technical aspects of placing a flag on the Moon
NASA Technical Reports Server (NTRS)
Platoff, Anne M.
1993-01-01
The flag on the Moon represents an important event in vexillological history. The political and technical aspects of placing a flag on the Moon, focusing on the first Moon landing, is examined. During their historic extravehicular activity, the Apollo 11 crew planted the flag of the United States on the lunar surface. This flag-raising was strictly a symbolic activity, as the United Nations Treaty on Outer Space precluded any territorial claim. Nevertheless, there were domestic and international debates over the appropriateness of the event. Congress amended the agency's appropriations bill to prevent the National Aeronautics and Space Administration (NASA) from placing flags of other nations, or those of international associations, on the Moon during missions funded solely by the United States. Like any activity in space exploration, the Apollo flag-raising also provided NASA engineers with an interesting technical challenge. They designed a flagpole with a horizontal bar allowing the flag to 'fly' without the benefit of wind to overcome the effects of the Moon's lack of an atmosphere. Other factors considered in the design were weight, heat resistance, and ease of assembly by astronauts whose space suits restricted their range of movement and ability to grasp items. As NASA plans a return to the Moon and an expedition to Mars, we will likely see flags continue to go 'where no flag has gone before'.
Experimental investigation of flow field around the elastic flag flapping in periodic state
NASA Astrophysics Data System (ADS)
Jia, Yongxia; Jia, Lichao; Su, Zhuang; Yuan, Huijing
2018-05-01
The flapping of a flag in the wind is a classical fluid-structure problem that concerns the interaction of elastic bodies with ambient fluid. We focus on the desirable experimental results of the flow around the flapping flag. By immersing the elastic yet self-supporting heavy flag into water flow, we use particle image velocimetry (PIV) techniques to obtain the whole flow field around the midspan of the flag interacting with a fluid in periodic state. A unique PIV image processing method is used to measure near-wall flow velocities around a moving elastic flag. There exists a thin flow circulation region on the suction side of the flag in periodic state. This observation suggests that viscous flow models may be needed to improve the theoretical predictions of the flapping flag in periodic state, especially in a large amplitude.
Code of Federal Regulations, 2012 CFR
2012-01-01
... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing these...
Code of Federal Regulations, 2014 CFR
2014-01-01
... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing these...
Code of Federal Regulations, 2010 CFR
2010-01-01
... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing these...
Code of Federal Regulations, 2013 CFR
2013-01-01
... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing these...
Code of Federal Regulations, 2011 CFR
2011-01-01
... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing these...
Grainger, Jonathan; Declerck, Mathieu; Marzouki, Yousri
2017-07-01
French-English bilinguals performed a generalized lexical decision experiment with mixed lists of French and English words and pseudo-words. In Experiment 1, each word/pseudo-word was superimposed on the picture of the French or UK flag, and flag-word congruency was manipulated. The flag was not informative with respect to either the lexical decision response or the language of the word. Nevertheless, lexical decisions to word stimuli were faster following the congruent flag compared with the incongruent flag, but only for French (L1) words. Experiment 2 replicated this flag-language congruency effect in a priming paradigm, where the word and pseudo-word targets followed the brief presentation of the flag prime, and this time effects were seen in both languages. We take these findings as evidence for a mechanism that automatically processes linguistic and non-linguistic information concerning the presence or not of a given language. Language membership information can then modulate lexical processing, in line with the architecture of the BIA model, but not the BIA+ model. Copyright © 2017 Elsevier B.V. All rights reserved.
Malladi, Anish; Burns, Jacqueline K
2008-01-01
Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. 'Valencia'. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDalpha1 and CsPLDgamma1, were isolated and their role was examined. CsPLDalpha1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDgamma1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDalpha1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDgamma1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDalpha1 expression appeared to be light-entrained in leaves, CsPLDgamma1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDgamma1. The results indicate differential regulation of CsPLDalpha1 and CsPLDgamma1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus.
Rodrigues, Maria Aurineide; Hamachi, Leonardo; Mioto, Paulo Tamaso; Purgatto, Eduardo; Mercier, Helenice
2016-11-01
Guzmania monostachia is an epiphytic heteroblastic bromeliad that exhibits rosette leaves forming water-holding tanks at maturity. Different portions along its leaf blades can display variable degrees of crassulacean acid metabolism (CAM) up-regulation under drought. Since abscisic acid (ABA) can act as an important long-distance signal, we conducted a joint investigation of ontogenetic and drought impacts on CAM intensity and ABA levels in different leaf groups within the G. monostachia rosette. For this, three groups of leaves were analysed according to their position within the mature-tank rosette (i.e., younger, intermediate, and older leaves) to characterize the general growth patterns and magnitude of drought-modulated CAM expression. CAM activity was evaluated by analysing key molecules in the biochemical machinery of this photosynthetic pathway, while endogenous ABA content was comparatively measured in different portions of each leaf group after seven days under well-watered (control) or drought treatment. The results revealed that G. monostachia shows more uniform morphological characteristics along the leaves when in the atmospheric stage. The drought treatment of mature-tank rosettes generally induced in older leaves a more severe water loss, followed by the lowest CAM activity and a higher increase in ABA levels, while younger leaves showed an opposite response. Therefore, leaf groups at distinct ontogenetic stages within the tank rosette of G. monostachia responded to drought with variable degrees of water loss and CAM expression. ABA seems to participate in this tissue-compartmented response as a long-distance signalling molecule, transmitting the drought-induced signals originated in older leaves towards the younger ones. Copyright © 2016. Published by Elsevier Masson SAS.
Roscher, C; Kutsch, W L; Schulze, E-D
2011-01-01
Positive species richness effects on aboveground community productivity in experimental grasslands have been reported to correlate with variable responses of individual species. So far, it is largely unknown whether more complete use of resources at the community level correlates with resource limitation of particular species and may explain their decreasing performance with increasing plant diversity. Using the subordinate grass species Lolium perenne L. as a model, we monitored populations in 82 experimental grasslands of different plant diversity (Jena Experiment) from year 2 to 6 after establishment, and measured ecophysiological leaf traits related to light and nutrient acquisition and use. Population and plant individual sizes of L. perenne decreased with increasing species richness. A decrease in transmitted light with increasing species richness and legume proportion correlated with increasing specific leaf area (SLA). Despite this morphological adaptation to lower light availability, decreasing foliar δ(13) C signatures with increasing species richness and low variation in leaf gas exchange and chlorophyll concentrations suggested a low capacity of L. perenne for adjustment to canopy shade. Leaf nitrogen concentrations and foliar δ(15) N signatures indicated a better N supply in communities with legumes and a shift in the uptake of different N forms with increasing species richness. Leaf blade nitrate and carbohydrate concentrations as indicators of plants nutritional status supported that light limitation with increasing species richness and legume proportions, combined with a N limitation in communities with increasing proportions of non-legumes, correlated with the decreasing performance of L. perenne in communities of increasing plant diversity. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
Buescher, Elizabeth M.; Moon, Jihyun; Runkel, Anne; Hake, Sarah; Dilkes, Brian P.
2014-01-01
Leaf architecture determines plant structural integrity, light harvesting, and economic considerations such as plant density. Ligules, junctions at the leaf sheath and blade in grasses, protect stalks from environmental stresses and, in conjunction with auricles, controls leaf angle. Previous studies in mutants have recessive liguleless mutants (lg1 and lg2) and dominant mutations in knotted1-like homeobox genes (Lg3-O, Lg4, and Kn1) involved in ligule development. Recently, a new semidominant liguleless mutant, Liguleless narrow (Lgn-R), has been characterized in maize that affects ligule and auricle development and results in a narrow leaf phenotype. We show that quantitative genetic variation affects penetrance of Lgn-R. To examine the genetic architecture underlying Lgn-R expressivity, crosses between Lgn-R/+ mutants in a B73 background and intermated B73 x Mo17 recombinant inbred lines were evaluated in multiple years and locations. A single main-effect quantitative trait locus (QTL) on chromosome 1 (sympathy for the ligule; sol) was discovered with a Mo17-contributed allele that suppressed Lgn-R mutant phenotypes. This QTL has a genetic-interaction with a locus on chromosome 7 (lucifer; lcf) for which the B73-contributed allele increases the ability of the solMo17 allele to suppress Lgn-R. Neither of the genetic intervals likely to contain sol or lcf overlap with any current liguleless genes nor with previously identified genome-wide association QTL connected to leaf architecture. Analysis of phenotypes across environments further identified a genotype by enviroment interaction determining the strength of the sol x lcf interaction. PMID:25344411
Malladi, Anish; Burns, Jacqueline K.
2008-01-01
Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. ‘Valencia’. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDα1 and CsPLDγ1, were isolated and their role was examined. CsPLDα1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDγ1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDα1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDγ1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDα1 expression appeared to be light-entrained in leaves, CsPLDγ1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDγ1. The results indicate differential regulation of CsPLDα1 and CsPLDγ1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus. PMID:18799715
Terakura, Shinji; Kitakura, Saeko; Ishikawa, Masaki; Ueno, Yoshihisa; Fujita, Tomomichi; Machida, Chiyoko; Wabiko, Hiroetsu; Machida, Yasunori
2006-05-01
The 6b gene in the T-DNA region of the Ti plasmids of Agrobacterium tumefaciens and A. vitis is able to generate shooty calli in phytohormone-free culture of leaf sections of tobacco transformed with 6b. In the present study, we report characteristic morphological abnormalities of the leaves of transgenic tobacco and Arabidopsis that express 6b from pTiAKE10 (AK-6b), and altered expression of genes related to cell division and meristem formation in the transgenic plants. Cotyledons and leaves of both transgenic tobacco and Arabidopsis exhibited various abnormalities including upward curling of leaf blades, and transgenic tobacco leaves produced leaf-like outgrowths from the abaxial side. Transcripts of some class 1 KNOX homeobox genes, which are thought to be related to meristem functions, and cell cycle regulating genes were ectopically accumulated in mature leaves. M phase-specific genes were also ectopically expressed at the abaxial sides of mature leaves. These results suggest that the AK-6b gene stimulates the cellular potential for division and meristematic functions preferentially in the abaxial side of leaves and that the leaf phenotypes generated by AK-6b are at least in part due to such biased cell division during polar development of leaves. The results of the present experiments with a fusion gene between the AK-6b gene and the glucocorticoid receptor gene showed that nuclear import of the AK-6b protein was essential for upward curling of leaves and hormone-free callus formation, suggesting a role for AK-6b in nuclear events.
Zeevaart, Jan A. D.
1980-01-01
The time course of abscisic acid (ABA) accumulation during water stress and of degradation following rehydration was investigated by analyzing the levels of ABA and its metabolites phaseic acid (PA) and alkalihydrolyzable conjugated ABA in excised leaf blades of Xanthium strumarium. Initial purification was by reverse-phase, preparative, high performance liquid chromatography (HPLC) which did not require prior partitioning. ABA and PA were purified further by analytical HPLC with a μBondapak-NH2 column, and quantified by GLC with an electron capture detector. The ABA content of stressed leaves increased for 4 to 5 hours and then leveled off due to a balance between synthesis and degradation. Since PA accumulated at a constant rate throughout the wilting period, it was concluded that the rate of ABA synthesis decreased after the first 4 to 5 hours stress. Conjugated ABA increased at a low rate during stress. This is interpreted to indicate that free ABA was converted to the conjugated form, rather than the reverse. Following rehydration of wilted leaves, the ABA level immediately ceased increasing; it remained constant for 1 hour and then declined rapidly to the prestress level over a 2- to 3-hour period with a concomitant rise in the PA level. In contrast to the rapid disappearance of ABA after relief of stress, the high PA content of rehydrated leaves declined only slowly. The level of conjugated ABA did not change following rehydration, indicating that conjugation of ABA was irreversible. Detached Xanthium leaves that were subjected to a wilting-recovery-rewilting cycle in darkness, responded to the second wilting period by formation of the same amount of ABA as accumulated after the first stress period. PMID:16661500
Zeevaart, J A
1980-10-01
The time course of abscisic acid (ABA) accumulation during water stress and of degradation following rehydration was investigated by analyzing the levels of ABA and its metabolites phaseic acid (PA) and alkalihydrolyzable conjugated ABA in excised leaf blades of Xanthium strumarium. Initial purification was by reverse-phase, preparative, high performance liquid chromatography (HPLC) which did not require prior partitioning. ABA and PA were purified further by analytical HPLC with a muBondapak-NH(2) column, and quantified by GLC with an electron capture detector.The ABA content of stressed leaves increased for 4 to 5 hours and then leveled off due to a balance between synthesis and degradation. Since PA accumulated at a constant rate throughout the wilting period, it was concluded that the rate of ABA synthesis decreased after the first 4 to 5 hours stress. Conjugated ABA increased at a low rate during stress. This is interpreted to indicate that free ABA was converted to the conjugated form, rather than the reverse.Following rehydration of wilted leaves, the ABA level immediately ceased increasing; it remained constant for 1 hour and then declined rapidly to the prestress level over a 2- to 3-hour period with a concomitant rise in the PA level. In contrast to the rapid disappearance of ABA after relief of stress, the high PA content of rehydrated leaves declined only slowly. The level of conjugated ABA did not change following rehydration, indicating that conjugation of ABA was irreversible.Detached Xanthium leaves that were subjected to a wilting-recovery-rewilting cycle in darkness, responded to the second wilting period by formation of the same amount of ABA as accumulated after the first stress period.
Kalyana Babu, B; Agrawal, P K; Pandey, Dinesh; Jaiswal, J P; Kumar, Anil
2014-08-01
Identification of alleles responsible for various agro-morphological characters is a major concern to further improve the finger millet germplasm. Forty-six genomic SSRs were used for genetic analysis and population structure analysis of a global collection of 190 finger millet genotypes and fifteen agro-morphological characters were evaluated. The overall results showed that Asian genotypes were smaller in height, smaller flag leaf length, less basal tiller number, early flowering and early maturity nature, small ear head length, and smaller in length of longest finger. The 46 SSRs yielded 90 scorable alleles and the polymorphism information content values varied from 0.292 to 0.703 at an average of 0.442. The gene diversity was in the range of 0.355 to 0.750 with an average value of 0.528. The 46 genomic SSR loci grouped the 190 finger millet genotypes into two major clusters based on their geographical origin by the both phylogenetic clustering and population structure analysis by STRUCTURE software. Association mapping of QTLs for 15 agro-morphological characters with 46 genomic SSRs resulted in identification of five markers were linked to QTLs of four traits at a significant threshold (P) level of ≤ 0.01 and ≤ 0.001. The QTL for basal tiller number was strongly associated with the locus UGEP81 at a P value of 0.001 by explaining the phenotypic variance (R (2)) of 10.8%. The QTL for days to 50% flowering was linked by two SSR loci UGEP77 and UGEP90, explained 10 and 8.7% of R (2) respectively at a P value of 0.01. The SSR marker, FM9 found to have strong association to two agro-morphological traits, flag leaf width (P-0.001, R(2)-14.1 %) and plant height (P-0.001, R(2)-11.2%). The markers linked to the QTLs for above agro-morphological characters found in the present study can be further used for cloning of the full length gene, fine mapping and their further use in the marker assisted breeding programmes for introgression of alleles into locally well adapted germplasm.
Observations on a set of Greco-Roman eye, ear, nose, and throat surgical instruments.
Dedo, Herbert H
2017-02-01
The tools described in this article are verified to be Greco-Roman medical and surgical instruments for the eye, ear, nose, and throat. They include three myrtle leaf-shaped scalpels, three ear spoons, a "Q-tip," a forceps, a needle, and two arrow-pointed scalpels. One of the arrow-pointed scalpels is nearly identical to a Juerger keratome, suggesting that in Roman times, cataracts were extracted, not just "couched" into the posterior chamber. The description presented here goes beyond traditional archeological claims, because as a head and neck surgeon, I evaluated these instruments from a surgeon's point of view. For example, nonsurgeon medical historians have claimed the myrtle leaf-shaped items were used as handles or for blunt dissection, which I feel is mistaken. Review of the literature reveals the Greco-Roman surgeons were doing tonsillectomies, tracheotomies, and cataract extractions, and recognized that swimming in dirty water could cause ear infection. However, it is clear that with poor or no anesthesia, the pain from blunt dissection would have been intolerable, and unnecessary tissue planes would have been opened increasing wound infection risks. Therefore, there would have been no need for the myrtle leaf-shaped blade if it were just a handle. Laryngoscope, 2016 127:354-358, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Diagnosis of ambient air pollution injury to red maple leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, C.R.
1981-01-01
Ramets of red maple, Acer rubrum L. (cv 'Scarlet Sentinel') were grown under ambient field conditions for 5 months (May-Sept) in either clean air (i.e. minimum background of ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/)) or were grown in polluted air containing phytotoxic combinations of O/sub 3/ and SO/sub 2/. At the end of the growing season leaf samples from each site were fixed in glutaraldehyde, washed in buffer (3X) post-fixed in O/sub s/O/sub 4/, dehydrated in ethanol and critically-point-dried. Samples were fractured with a razor blade, mounted either abaxially or adaxially or in cross-section, and sputter-coated with Au.more » While plants from either site failed to exhibit macroscopic air pollutant-induced symptoms, SEM examination revealed significant microscopic differences between prepared samples from different sites. Epidermal cells of leaves grown in clean air were uniformly turgid with fluffy epicuticular wax. Leaf samples from ramets that were grown in polluted air exhibited collapsed epidermal cells and lacked fluffy epicuticular wax. Cross-sections revealed increased vesicular activity in leaf mesophyll cells of plants exposed to high ambient pollution while cells of plants grown in clean air appeared normal. 10 references, 6 figures.« less
Shengxin, Chang; Chunxia, Li; Xuyang, Yao; Song, Chen; Xuelei, Jiao; Xiaoying, Liu; Zhigang, Xu; Rongzhan, Guan
2016-01-01
Rapeseed (Brassica napus L.) is sensitive to light quality. The factory production of rapeseed seedlings for vegetable use and for transplanting in the field requires an investigation of the responses of rapeseed to light quality. This study evaluated the responses of the leaf of rapeseed (cv. “Zhongshuang 11”) to different ratios of red-photonflux (RPF) and blue-photonflux (BPF) from light emitting diodes (LEDs). The treatments were set as monochromatic lights, including 100R:0B% and 0R:100B%, and compound lights (CLs), including 75R:25B%, 50R:50B%, and 25R:75B%. The total photonflux in all of the treatments was set as 550 μmolm−2s−1. With an increase of BPF, the rapeseed leaves changed from wrinkled blades and down-rolled margins to flat blades and slightly up-rolled margins, and the compact degree of palisade tissue increased. One layer of the cells of palisade tissue was present under 100R:0B%, whereas two layers were present under the other treatments. Compared to 100R:0B%, 0R:100B% enhanced the indexes of leaf thickness, leaf mass per area (LMA), stomatal density, chlorophyll (Chl) content per weight and photosynthetic capacity (Pmax), and the CLs with high BPF ratios enhanced these indexes. However, the 100R:0B% and CLs with high RPF ratios enhanced the net photosynthetic rate (Pn). The leaves under the CLs showed growth vigor, whereas the leaves under 100R:0B% or 0R:100B% were stressed with a low Fv/Fm (photosynthetic maximum quantum yield) and a high content of O2.- and H2O2. The top second leaves under 100R:0B% or 0R:100B% showed stress resistance responses with a high activity of antioxidase, but the top third leaves showed irreversible damage and inactivity of antioxidase. Our results showed that the rapeseed leaves grown under 0R:100B% or CLs with a high BPF ratio showed higher ability to utilize high photonflux, while the leaves grown under 100R:0B% or CLs with a low BPF ratio showed higher efficiency in utilizing low photonflux. Under different R:B photonflux ratios, red and blue lights may play mutual roles in Pn. When the blue light dominated, the Pn showed a B-preference. When the red light dominated, the Pn showed an R-preference. Furthermore, CLs were suitable for the Pn of rapeseed seedlings. PMID:27536307
Code of Federal Regulations, 2010 CFR
2010-10-01
... devices for daytime flagging include “ STOP/SLOW” paddles or red flags. For nighttime flagging, a... Administration's Manual on Uniform Traffic Control Devices addresses standards and guides for flaggers and... follow them to the greatest extent possible. Copies of the latest MUTCD provisions regarding flagging...
NASA Astrophysics Data System (ADS)
Blackmore, William Henry
Capillary flows continue to be important in numerous spacecraft systems where the effective magnitude of the gravity vector is approximately one millionth that of normal Earth gravity. Due to the free fall state of orbiting spacecraft, the effects of capillarity on the fluid systems onboard can dominate the fluid behavior over large length scales. In this research three investigations are pursued where the unique interplay between surface tension forces, wetting characteristics, and system geometry control the fluid behavior, whether in large systems aboard spacecraft, or micro-scale systems on Earth. First, efforts in support of two International Space Station (ISS) experiments are reported. A description of the development of a new NASA ground station at Portland State University is provided along with descriptions of astronaut training activities for the proper operation of four handheld experiments currently in orbit as part of the second iteration of the Capillary Flow Experiments (CFE-2). Concerning the latter, seven more vessels are expected to be launched to the ISS shortly. Analysis of the data alongside numerical simulations shows excellent agreement with theory, and a new intuitive method of viewing critical wetting angles and fluid bulk shift phenomena is offered. Secondly, during the CFE-2 space experiments, unplanned peripheral observations revealed that, on occasion, rapidly compressed air bubbles migrate along paths with vector components common to the residual acceleration onboard the ISS. Unexpectedly however, the migration velocities could be shown to be up to three orders of magnitude greater than the appropriate Stokes flow limit! Likely mechanisms are explored analytically and experimentally while citing prior theoretical works that may have anticipated such phenomena. Once properly understood, compressed bubble migration may be used as an elegant method for phase separation in spacecraft systems or microgravity-based materials manufacturing. Lastly, the stability of drops on surfaces is important in a variety of natural and industrial processes. So called 'wall-edge-vertex bound drops' (a.k.a. drops on blade tips or drops on leaf tips which they resemble) are explored using a numerical approach which applies the
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-25
...] Information Collection; Open Government Citizen Engagement Ratings, Rankings, and Flagging AGENCY: Office of... regarding open government citizen engagement ratings, rankings, and flagging. DATES: Comments must be...- 0288, Open Government Citizen Engagement Ratings, Rankings, and Flagging, by any of the following...
Adachi, Shunsuke; Yoshikawa, Kazuaki; Yamanouchi, Utako; Tanabata, Takanari; Sun, Jian; Ookawa, Taiichiro; Yamamoto, Toshio; Sage, Rowan F.; Hirasawa, Tadashi; Yonemaru, Junichi
2017-01-01
Increasing the rate of leaf photosynthesis is one important approach for increasing grain yield in rice (Oryza sativa). Exploiting the natural variation in CO2 assimilation rate (A) between rice cultivars using quantitative genetics is one promising means to identify genes contributing to higher photosynthesis. In this study, we determined precise location of Carbon Assimilation Rate 8 (CAR8) by crossing a high-yielding indica cultivar with a Japanese commercial cultivar. Fine mapping suggested that CAR8 encodes a putative Heme Activator Protein 3 (OsHAP3) subunit of a CCAAT-box-binding transcription factor called OsHAP3H. Sequencing analysis revealed that the indica allele of CAR8 has a 1-bp deletion at 322 bp from the start codon, resulting in a truncated protein of 125 amino acids. In addition, CAR8 is identical to DTH8/Ghd8/LHD1, which was reported to control rice flowering date. The increase of A is largely due to an increase of RuBP regeneration rate via increased leaf nitrogen content, and partially explained by reduced stomatal limitation via increased stomatal conductance relative to A. This allele also increases hydraulic conductivity, which would promote higher stomatal conductance. This indicates that CAR8 affects multiple physiological aspects relating to photosynthesis. The detailed analysis of molecular functions of CAR8 would help to understand the association between photosynthesis and flowering and demonstrate specific genetic mechanisms that can be exploited to improve photosynthesis in rice and potentially other crops. PMID:28197156
Vicente, Rubén; Pérez, Pilar; Martínez-Carrasco, Rafael; Feil, Regina; Lunn, John E; Watanabe, Mutsumi; Arrivault, Stephanie; Stitt, Mark; Hoefgen, Rainer; Morcuende, Rosa
2016-10-01
Elevated [CO 2 ] (eCO 2 ) can lead to photosynthetic acclimation and this is often intensified by low nitrogen (N). Despite intensive studies of plant responses to eCO 2 , the regulation mechanism of primary metabolism at the whole-plant level in interaction with [Formula: see text] supply remains unclear. We examined the metabolic and transcriptional responses triggered by eCO 2 in association with physiological-biochemical traits in flag leaves and roots of durum wheat grown hydroponically in ambient and elevated [CO 2 ] with low (LN) and high (HN) [Formula: see text] supply. Multivariate analysis revealed a strong interaction between eCO 2 and [Formula: see text] supply. Photosynthetic acclimation induced by eCO 2 in LN plants was accompanied by an increase in biomass and carbohydrates, and decreases of leaf organic N per unit area, organic acids, inorganic ions, Calvin-Benson cycle intermediates, Rubisco, nitrate reductase activity, amino acids and transcripts for N metabolism, particularly in leaves, whereas [Formula: see text] uptake was unaffected. In HN plants, eCO 2 did not decrease photosynthetic capacity or leaf organic N per unit area, but induced transcripts for N metabolism, especially in roots. In conclusion, the photosynthetic acclimation in LN plants was associated with an inhibition of leaf [Formula: see text] assimilation, whereas up-regulation of N metabolism in roots could have mitigated the acclimatory effect of eCO 2 in HN plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Burnham, Bruce R; Copley, G Bruce; Shim, Matthew J; Kemp, Philip A; Jones, Bruce H
2010-01-01
Flag (touch or intramural) football is a popular sport among the U.S. Air Force (USAF) active duty population and causes a substantial number of lost-workday injuries. The purpose of this study is to describe the mechanisms of flag-football injuries to better identify effective countermeasures. The data were derived from safety reports obtained from the USAF Ground Safety Automated System. Flag-football injuries for the years 1993-2002 that resulted in at least one lost workday were included in the study conducted in 2003. Narrative data were systematically reviewed for 32,812 USAF mishap reports; these were then coded in order to categorize and summarize mechanisms associated with flag football and other sports and occupational injuries. Nine hundred and forty-four mishap reports involving active duty USAF members playing flag football met the criteria for inclusion into this study. Eight mechanisms of injury were identified. The eight mechanisms accounted for 90% of all flag-football injuries. One scenario (contact with another player) accounted for 42% of all flag-football injuries. The most common mechanisms of injury caused by playing flag football can be identified using the detailed information found in safety reports. These scenarios are essential to developing evidence-based countermeasures. Results for flag football suggest that interventions that prevent player contact injuries deserve further research and evaluation. The broader implications of this study are that military safety data can be used to identify potentially modifiable mechanisms of injury for specific activities such as flag football. Published by Elsevier Inc.
76 FR 39885 - Risk-Based Targeting of Foreign Flagged Mobile Offshore Drilling Units (MODUs)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Foreign Flagged Mobile Offshore Drilling Units (MODUs) AGENCY: Coast Guard, DHS. ACTION: Notice of... 11-06, Risk-Based Targeting of Foreign Flagged Mobile Offshore Drilling Units (MODUs). This policy... applicable regulations, every foreign-flagged mobile offshore drilling unit (MODU) must undergo a Coast Guard...
78 FR 36311 - Flag Recognition Benefit for Fallen Federal Civilian Employees
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... Recognition Benefit for Fallen Federal Civilian Employees; Submission for Review: Application for U.S. Flag... PERSONNEL MANAGEMENT 5 CFR Part 550 RIN 3206-AM58 Flag Recognition Benefit for Fallen Federal Civilian... United States flag recognition benefit for fallen Federal civilian employees, and describe the...
Three RNases in Senescent and Nonsenescent Wheat Leaves 1
Blank, A.; McKeon, Thomas A.
1991-01-01
We have described three RNases in wheat leaves (Triticum aestivum L. cv Chinese Spring) and developed assays for measuring each RNase individually in crude leaf extracts. We initially used activity staining in sodium dodecyl sulfate-polyacrylamide gels to characterize RNases in extracts of primary and flag leaves. We thus identified acid RNase (EC 3.1.27.1, here designated RNase WLA), and two apparently novel enzymes, designated RNases WLB and WLC. RNase WLB activity displays a distinctive isozyme pattern, a molecular mass of 26 kilodaltons (major species), a broad pH range with an optimum near neutrality, insensitivity to EDTA, and stimulation by moderate concentrations of KCl and by MgCl2. RNase WLC activity exhibits a molecular mass of 27 kilodaltons, a neutral pH optimum, insensitivity to EDTA, and inhibition by KCl, MgCl2, and tri-(hydroxymethyl)aminomethane. Based on distinctive catalytic properties established in gels, we designed conventional solution assays for selective quantitation of each RNase activity. We used the assays to monitor the individual RNases after gel filtration chromatography and native gel electrophoresis of extracts. In accompanying work, we used the assays to monitor RNases WLA, WLB, and WLC, which are present in senescent and nonsenescent leaves, during the course of leaf senescence. ImagesFigure 1Figure 3Figure 4 PMID:16668563
NASA Technical Reports Server (NTRS)
Yang, Wenze; Huang, Dong; Tan, Bin; Stroeve, Julienne C.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.
2006-01-01
The analysis of two years of Collection 3 and five years of Collection 4 Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) data sets is presented in this article with the goal of understanding product quality with respect to version (Collection 3 versus 4), algorithm (main versus backup), snow (snow-free versus snow on the ground), and cloud (cloud-free versus cloudy) conditions. Retrievals from the main radiative transfer algorithm increased from 55% in Collection 3 to 67% in Collection 4 due to algorithm refinements and improved inputs. Anomalously high LAI/FPAR values observed in Collection 3 product in some vegetation types were corrected in Collection 4. The problem of reflectance saturation and too few main algorithm retrievals in broadleaf forests persisted in Collection 4. The spurious seasonality in needleleaf LAI/FPAR fields was traced to fewer reliable input data and retrievals during the boreal winter period. About 97% of the snow covered pixels were processed by the backup Normalized Difference Vegetation Index-based algorithm. Similarly, a majority of retrievals under cloudy conditions were obtained from the backup algorithm. For these reasons, the users are advised to consult the quality flags accompanying the LAI and FPAR product.
10 CFR 1002.3 - Custody of official seal and distinguishing flags.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Custody of official seal and distinguishing flags. 1002.3 Section 1002.3 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) OFFICIAL SEAL AND DISTINGUISHING FLAG General § 1002.3 Custody of official seal and distinguishing flags. The Secretary or his designee shall...
10 CFR 1002.3 - Custody of official seal and distinguishing flags.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Custody of official seal and distinguishing flags. 1002.3 Section 1002.3 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) OFFICIAL SEAL AND DISTINGUISHING FLAG General § 1002.3 Custody of official seal and distinguishing flags. The Secretary or his designee shall...
Shade-Induced Action Potentials in Helianthus annuus L. Originate Primarily from the Epicotyl
Stephens, Nicholas R; Cleland, Robert E; Van Volkenburgh, Elizabeth
2006-01-01
Repeated observations that shading (a drastic reduction in illumination rate) increased the generation of spikes (rapidly reversed depolarizations) in leaves and stems of many cucumber and sunflower plants suggests a phenomenon widespread among plant organs and species. Although shaded leaves occasionally generate spikes and have been suggested to trigger systemic action potentials (APs) in sunflower stems, we never found leaf-generated spikes to propagate out of the leaf and into the stem. On the contrary, our data consistently implicate the epicotyl as the location where most spikes and APs (propagating spikes) originate. Microelectrode studies of light and shading responses in mesophyll cells of leaf strips and in epidermis/cortex cells of epicotyl segments confirm this conclusion and show that spike induction is not confined to intact plants. 90% of the epicotyl-generated APs undergo basipetal propagation to the lower epicotyl, hypocotyl and root. They propagate with an average rate of 2 ± 0.3 mm s−1 and always undergo a large decrement from the hypocotyl to the root. The few epicotyl-derived APs that can be tracked to leaf blades (< 10%) undergo either a large decrement or fail to be transmitted at all. Occasionally (5% of the observations) spikes were be generated in hypocotyl and lower epicotyl that moved towards the upper epicotyl unaltered, decremented, or amplified. This study confirms that plant APs arise to natural, nontraumatic changes. In simultaneous recordings with epicotyl growth, AP generation was found to parallel the acceleration of stem growth under shade. The possible relatedness of both processes must be further investigated. PMID:19521471
Arrivault, Stéphanie; Lohse, Marc A.; Feil, Regina; Krohn, Nicole; Encke, Beatrice; Nunes-Nesi, Adriano; Fernie, Alisdair R.; Stitt, Mark
2016-01-01
Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night and in nonphotosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades, a defined developmental gradient facilitates analyses in the cell division, elongation, and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn, and 6, 14, and 24 h into an extended night, and tracked whole-leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose (Suc) recovers partially between 14 and 24 h into the extended night in the growth zones, but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in Suc. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night, and then partially recover, indicating that growth processes are determined by local carbon status. The level of Suc-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:Suc ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones. PMID:27582314
Validation of Leaf Area Index measurements based on the Wireless Sensor Network platform
NASA Astrophysics Data System (ADS)
Song, Q.; Li, X.; Liu, Q.
2017-12-01
The leaf area index (LAI) is one of the important parameters for estimating plant canopy function, which has significance for agricultural analysis such as crop yield estimation and disease evaluation. The quick and accurate access to acquire crop LAI is particularly vital. In the study, LAI measurement of corn crops is mainly through three kinds of methods: the leaf length and width method (LAILLW), the instruments indirect measurement method (LAII) and the leaf area index sensor method(LAIS). Among them, LAI value obtained from LAILLW can be regarded as approximate true value. LAI-2200,the current widespread LAI canopy analyzer,is used in LAII. LAIS based on wireless sensor network can realize the automatic acquisition of crop images,simplifying the data collection work,while the other two methods need person to carry out field measurements.Through the comparison of LAIS and other two methods, the validity and reliability of LAIS observation system is verified. It is found that LAI trend changes are similar in three methods, and the rate of change of LAI has an increase with time in the first two months of corn growth when LAIS costs less manpower, energy and time. LAI derived from LAIS is more accurate than LAII in the early growth stage,due to the small blade especially under the strong light. Besides, LAI processed from a false color image with near infrared information is much closer to the true value than true color picture after the corn growth period up to one and half months.
75 FR 34309 - Flag Day and National Flag Week, 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... Nation to confront tyranny and oppression still flies today as an unequivocal emblem of freedom and... gatherings to private memorials, we gathered to salute our flag, and in doing so, renewed the eternal promise... recognize the American flag as a symbol of hope and inspiration to people at home and around the world--as a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
...) Increase the fee for orders yielding Flag K, which routes to NASDAQ OMX PSX (``PSX'') using ROUC or ROUE... for orders yielding Flag K, which routes to PSX using ROUC or ROUE routing strategies; and (ii) decrease the fee for orders yielding Flag RW, which routes to CBSX and adds liquidity. Flag K In securities...
3 CFR 8391 - Proclamation 8391 of June 11, 2009. Flag Day and National Flag Week, 2009
Code of Federal Regulations, 2010 CFR
2010-01-01
... America A Proclamation In the midst of a war for our Nation's independence, on June 14, 1777, the Second... America's promise and guides us toward a brighter tomorrow. To commemorate the adoption of our flag, the... toward equality and justice for all. Our flag's journey has been long. It has seen our Nation through war...
3 CFR 8689 - Proclamation 8689 of June 10, 2011. Flag Day and National Flag Week, 2011
Code of Federal Regulations, 2012 CFR
2012-01-01
... America A Proclamation On June 14, 1777, the Second Constitutional Congress adopted a flag with thirteen... were set upon a blue field, in the words of the Congress’s resolution, “representing a new... American flag has been ever present. It has flown on our ships and military bases around the world as we...
Red flag screening for low back pain: nothing to see here, move along: a narrative review.
Cook, Chad E; George, Steven Z; Reiman, Michael P
2018-04-01
Screening for red flags in individuals with low back pain (LBP) has been a historical hallmark of musculoskeletal management. Red flag screening is endorsed by most LBP clinical practice guidelines, despite a lack of support for their diagnostic capacity. We share four major reasons why red flag screening is not consistent with best practice in LBP management: (1) clinicians do not actually screen for red flags, they manage the findings; (2) red flag symptomology negates the utility of clinical findings; (3) the tests lack the negative likelihood ratio to serve as a screen; and (4) clinical practice guidelines do not include specific processes that aid decision-making. Based on these findings, we propose that clinicians consider: (1) the importance of watchful waiting; (2) the value-based care does not support clinical examination driven by red flag symptoms; and (3) the recognition that red flag symptoms may have a stronger relationship with prognosis than diagnosis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Zhao, Zhenfu; Pu, Xiong; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin
2016-02-23
Wind energy at a high altitude is far more stable and stronger than that near the ground, but it is out of reach of the wind turbine. Herein, we develop an innovative freestanding woven triboelectric nanogenerator flag (WTENG-flag) that can harvest high-altitude wind energy from arbitrary directions. The wind-driven fluttering of the woven unit leads to the current generation by a coupled effect of contact electrification and electrostatic induction. Systematic study is conducted to optimize the structure/material parameters of the WTENG-flag to improve the power output. This 2D WTENG-flag can also be stacked in parallel connections in many layers for a linearly increased output. Finally, a self-powered high-altitude platform with temperature/humidity sensing/telecommunicating capability is demonstrated with the WTENG-flag as a power source. Due to the light weight, low cost, and easy scale-up, this WTENG-flag has great potential for applications in weather/environmental sensing/monitoring systems.
Grimes, Carolyn N; Fry, Michael M
2014-12-01
This study sought to develop customized morphology flagging thresholds for canine erythrocyte volume and hemoglobin concentration [Hgb] on the ADVIA 120 hematology analyzer; compare automated morphology flagging with results of microscopic blood smear evaluation; and examine effects of customized thresholds on morphology flagging results. Customized thresholds were determined using data from 52 clinically healthy dogs. Blood smear evaluation and automated morphology flagging results were correlated with mean cell volume (MCV) and cellular hemoglobin concentration mean (CHCM) in 26 dogs. Customized thresholds were applied retroactively to complete blood (cell) count (CBC) data from 5 groups of dogs, including a reference sample group, clinical cases, and animals with experimentally induced iron deficiency anemia. Automated morphology flagging correlated more highly with MCV or CHCM than did blood smear evaluation; correlation with MCV was highest using customized thresholds. Customized morphology flagging thresholds resulted in more sensitive detection of microcytosis, macrocytosis, and hypochromasia than default thresholds.
Method for compression of binary data
Berlin, Gary J.
1996-01-01
The disclosed method for compression of a series of data bytes, based on LZSS-based compression methods, provides faster decompression of the stored data. The method involves the creation of a flag bit buffer in a random access memory device for temporary storage of flag bits generated during normal LZSS-based compression. The flag bit buffer stores the flag bits separately from their corresponding pointers and uncompressed data bytes until all input data has been read. Then, the flag bits are appended to the compressed output stream of data. Decompression can be performed much faster because bit manipulation is only required when reading the flag bits and not when reading uncompressed data bytes and pointers. Uncompressed data is read using byte length instructions and pointers are read using word instructions, thus reducing the time required for decompression.
Two new species of Primulina (Gesneriaceae) from limestone karsts of China.
Hong, Xin; Li, Zhong-Lin; Liu, Jia-Zhi; Zhou, Shou-Biao; Qin, Wei-Hua; Wen, Fang
2018-01-01
The limestone karst area of South China is a major biodiversity hotspot of global terrestrial biomes. During extensive field work on the Guangxi limestone formations, two unknown species of Gesneriaceae were collected. After conducting a comprehensive study of the literature and herbarium specimens, Primulina davidioides and P. hiemalis are recognized as two species new to science, and described and illustrated here. P. davidioides is morphologically close to P. lunglinensis based on the shape of the leaf and flower, but it can be easily distinguished by the shape of the bracts, corolla and stigma, indumentum of peduncles, pedicels and pistil and number of staminodes. P. hiemalis is closely relate to P. luzhaiensis in vegetative appearance, but differs in the shape of the calyx and stigma, number of bracts and staminodes, indumentum of the leaf blade and peduncle, and position of stamens in the corolla tube. Considering that not enough is known about their populations, it is proposed that their conservation statuses should currently be classed as data deficient (DD) according to the IUCN Red List Category and Criteria.
Expression of Ascorbic Acid Oxidase in Zucchini Squash (Cucurbita pepo L.).
Lin, L S; Varner, J E
1991-05-01
The expression of ascorbic acid oxidase was studied in zucchini squash (Cucurbita pepo L.), one of the most abundant natural sources of the enzyme. In the developing fruit, specific activity of ascorbic acid oxidase was highest between 4 and 6 days after anthesis. Protein and mRNA levels followed the same trend as enzyme activity. Highest growth rate of the fruit occurred before 6 days after anthesis. Within a given fruit, ascorbic acid oxidase activity and mRNA level were highest in the epidermis, and lowest in the central placental region. In leaf tissue, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the slow-growing region (near leaf apex). High expression of ascorbic acid oxidase at a stage when rapid growth is occurring (in both fruits and leaves), and localization of the enzyme in the fruit epidermis, where cells are under greatest tension during rapid growth in girth, suggest that ascorbic acid oxidase might be involved in reorganization of the cell wall to allow for expansion. Based on the known chemistry of dehydroascorbic acid, the end product of the ascorbic acid oxidase-catalyzed reaction, we have proposed several hypotheses to explain how dehydroascorbic acid might cause cell wall "loosening."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, P.W.; Flint, S.D.; Caldwell, M.M.
Recent evidence of a general, global decline of stratospheric ozone has heightened concern about possible ecological consequences of increases in solar ultraviolet-B (UV-B, 280-320 nm) radiation resulting from ozone depletion. The influence of UV-B radiation (280-320 nanometers) on the morphology of 12 common dicot and monocot crop or weed species was examined to determine whether any common responses could be found that might, in turn, be useful in predicting possible changes in competitive balance under solar UV-B enhancement. Under glasshouse conditions, UV-B exposure (simulating a 20% reduction in stratospheric ozone at Logan, Utah) was found to reduce leaf blade andmore » internode lengths and increase leaf and axillary shoot production in several species. Overall, the directions of these trends were similar in the majority of species that exhibited a significant response. These morphological changes occurred without any significant reduction in total shoot dry matter production. There was no clear distinction in the response of crops and weeds, though monocots were found to be generally more responsive than dicots. Previous work in dense canopies has shown that the photomorphogenetic effects of UV-B alter leaf placement and thereby influence competition for light. Our results suggest that, under these conditions, changes in competitive balance resulting from increased UV-B might be expected more frequently when monocots are involved in mixtures, rather than mixtures of only dicots.« less
Commercial Sealift and U.S. National Security
2010-03-01
and maintaining a U.S. flag merchant marine fleet in today’s globalized shipping environment, where lower cost foreign flag registries of convenience ...in today’s globalized shipping environment, where lower cost foreign flag registries of convenience dominate the industry and which policy tools are...shipping environment, where lower cost foreign flag registries of convenience dominate the industry and which policy tools are best suited to meet our
American Colleges Raise the Flag in Vietnam
ERIC Educational Resources Information Center
Overland, Martha Ann
2009-01-01
More than 30 years after the U.S. ambassador was airlifted from the embassy rooftop in Saigon with the flag tucked under his arm, a new American flag is going up in the city. This one won't be flying over the embassy. The Stars and Stripes, as well as the Texas state flag, are going up at the Saigon Institute of Technology, the only Vietnamese…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-14
... PI, where Flag PI removes liquidity from the EDGX book against the Midpoint Match. This charge would signal a rate change for Flag PI if the conditions for achieving the Mega Tier \\4\\ are not satisfied. The Exchange also proposes to amend the text of Footnote 1 to add Flags BB and PI to the list of removal flags...
Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhou, Zhigao; Zhang, Taolin; Wang, Xingxiang
2017-11-29
For selection or breeding of rice (Oryza sativa L.) cultivars with low Cd affinity, the role of node Cd restriction on Cd accumulation in brown rice was studied. A pot experiment was conducted to investigate the concentration of Cd in different sections of 12 Chinese rice cultivars. The results indicated that the Cd accumulation in the brown rice was mainly dependent on the root or shoot Cd concentration. Among the cultivars with nearly equal shoot Cd concentrations, Cd accumulation in brown rice was mainly dependent on the transport of Cd in the shoot. However, the Cd transport in the shoot was significantly restricted by the nodes, especially by the first node. Furthermore, the area of the diffuse vascular bundle in the junctional region of the flag leaf and the first node was a key contributor to the variations in Cd restriction by the nodes.
Method for compression of binary data
Berlin, G.J.
1996-03-26
The disclosed method for compression of a series of data bytes, based on LZSS-based compression methods, provides faster decompression of the stored data. The method involves the creation of a flag bit buffer in a random access memory device for temporary storage of flag bits generated during normal LZSS-based compression. The flag bit buffer stores the flag bits separately from their corresponding pointers and uncompressed data bytes until all input data has been read. Then, the flag bits are appended to the compressed output stream of data. Decompression can be performed much faster because bit manipulation is only required when reading the flag bits and not when reading uncompressed data bytes and pointers. Uncompressed data is read using byte length instructions and pointers are read using word instructions, thus reducing the time required for decompression. 5 figs.
Design of portable diagnostic system of cucumber leaf mildew
NASA Astrophysics Data System (ADS)
Wang, Y.; Chang, R. K.; Wang, Y. H.; Liu, H.; Tang, G. C.
2015-12-01
Powdery mildew is one of the major diseases of facilities vegetables. In order to achieve early, fast, and accurate diagnosis of powdery mildew, with TCS3200 color sensor and infrared sensor as detecting port and 12864 dot matrix LCD as display, the system explores the external change such as the color change of the blade in health and disease stage and change of reflection spectra. Through tracking experiment of different stages of cucumber leaves infected, the results show that the system can identify change of optical frequency values and the RGB values in the health cucumber leaves and infected cucumber leaves and thus provides effective warning alarm for controlling early disease occurrence.
Vertical Feature Mask Feature Classification Flag Extraction
Atmospheric Science Data Center
2013-03-28
Vertical Feature Mask Feature Classification Flag Extraction This routine demonstrates extraction of the ... in a CALIPSO Lidar Level 2 Vertical Feature Mask feature classification flag value. It is written in Interactive Data Language (IDL) ...
Heritage or Hate? A Pedagogical Guide to the Confederate Flag in Post-Race America
ERIC Educational Resources Information Center
Lippard, Cameron D.
2017-01-01
The Confederate flag has been a hotly debated symbol of heritage or hate in the United States. In 2015, 54 per cent of Americans polled saw the flag as a symbol of 'Southern pride' whereas 34 per cent saw it as racist. However, 27 per cent of Whites compared to 69 per cent of Blacks saw the flag as racist. In this article, I suggest how…
Flag-based detection of weak gas signatures in long-wave infrared hyperspectral image sequences
NASA Astrophysics Data System (ADS)
Marrinan, Timothy; Beveridge, J. Ross; Draper, Bruce; Kirby, Michael; Peterson, Chris
2016-05-01
We present a flag manifold based method for detecting chemical plumes in long-wave infrared hyperspectral movies. The method encodes temporal and spatial information related to a hyperspectral pixel into a flag, or nested sequence of linear subspaces. The technique used to create the flags pushes information about the background clutter, ambient conditions, and potential chemical agents into the leading elements of the flags. Exploiting this temporal information allows for a detection algorithm that is sensitive to the presence of weak signals. This method is compared to existing techniques qualitatively on real data and quantitatively on synthetic data to show that the flag-based algorithm consistently performs better on data when the SINRdB is low, and beats the ACE and MF algorithms in probability of detection for low probabilities of false alarm even when the SINRdB is high.
Rios, Juan J.; Carrasco-Gil, Sandra; Abadía, Anunciación; Abadía, Javier
2016-01-01
The aim of this study was to trace the Fe uptake pathway in leaves of Prunus rootstock (GF 677; Prunus dulcis × Prunus persica) plants treated with foliar Fe compounds using the Perls blue method, which detects labile Fe pools. Young expanded leaves of Fe-deficient plants grown in nutrient solution were treated with Fe-compounds using a brush. Iron compounds used were the ferrous salt FeSO4, the ferric salts Fe2(SO4)3 and FeCl3, and the chelate Fe(III)-EDTA, all of them at concentrations of 9 mM Fe. Leaf Fe concentration increases were measured at 30, 60, 90 min, and 24 h, and 70 μm-thick leaf transversal sections were obtained with a vibrating microtome and stained with Perls blue. In vitro results show that the Perls blue method is a good tool to trace the Fe uptake pathway in leaves when using Fe salts, but is not sensitive enough when using synthetic Fe(III)-chelates such as Fe(III)-EDTA and Fe(III)-IDHA. Foliar Fe fertilization increased leaf Fe concentrations with all Fe compounds used, with inorganic Fe salts causing larger leaf Fe concentration increases than Fe(III)-EDTA. Results show that Perls blue stain appeared within 30 min in the stomatal areas, indicating that Fe applied as inorganic salts was taken up rapidly via stomata. In the case of using FeSO4 a progression of the stain was seen with time toward vascular areas in the leaf blade and the central vein, whereas in the case of Fe(III) salts the stain mainly remained in the stomatal areas. Perls stain was never observed in the mesophyll areas, possibly due to the low concentration of labile Fe pools. PMID:27446123
Jiang, Lide; Wang, Menghua
2013-09-20
A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.
Betaine synthesis from radioactive precursors in attached, water-stressed barley leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A.D.; Scott, N.A.
1980-08-01
In wilted barley leaves, betaine accumulates at about 200 nanomoles per 10 centimeters leaf per day. Results with /sup 14/C-labeled precursors were qualitatively and quantitatively consistent with de novo synthesis of this betaine from serine via ethanolamine, choline, and betaine aldehyde and indicated that water stress may increase the activities of all steps in this pathway except the last. Doses (I micromole) of each /sup 14/C-labeled precursor were supplied as droplets to the tips of attached, 10-centimeter, second-leaf blades of turgid and wilted plants, and the incorporation of /sup 14/C into betaine was followed. From the rates of betaine labeling,more » estimates were made of the potential capacities (nanomoles per 10 centimeters leaf per day) for the methylation and oxidation steps. Labeling of betaine from absolute value /sup 14/C choline, absolute value /sup 14/C ethanolamine, and absolute value /sup 14/C serine was about 7- to 10-fold greater in leaves wilted for 2 days than in turgid leaves, whereas label from absolute value /sup 14/C betaine aldehyde appeared in betaine at about the same rate in both turgid and wilted leaves. In leaves wilted for 2 days, the potential capacities for converting absolute value /sup 14/C ethanolamine, absolute value /sup 14/C choline, and absolute value /sup 14/C betaine aldehyde to betaine all approached or exceeded the rate of betain accumulation (about 200 nanomoles per 10 centimeters leaf per day); in turgid leaves, only the potential for converting betaine aldehyde to betaine exceeded this rate. The rate of conversion of absolute value /sup 14/C ethanolamine to betaine increased 4-fold after 6 to 10 hours of wilting, which was soon enough to account for the onset of betaine accumulation.« less
Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.
Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal
2015-09-05
The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. Copyright © 2015 Elsevier B.V. All rights reserved.
Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye
NASA Astrophysics Data System (ADS)
Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal
2015-09-01
The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.
The Interplay between Carbon Availability and Growth in Different Zones of the Growing Maize Leaf.
Czedik-Eysenberg, Angelika; Arrivault, Stéphanie; Lohse, Marc A; Feil, Regina; Krohn, Nicole; Encke, Beatrice; Nunes-Nesi, Adriano; Fernie, Alisdair R; Lunn, John E; Sulpice, Ronan; Stitt, Mark
2016-10-01
Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night and in nonphotosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades, a defined developmental gradient facilitates analyses in the cell division, elongation, and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn, and 6, 14, and 24 h into an extended night, and tracked whole-leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose (Suc) recovers partially between 14 and 24 h into the extended night in the growth zones, but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in Suc. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night, and then partially recover, indicating that growth processes are determined by local carbon status. The level of Suc-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:Suc ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones. © 2016 American Society of Plant Biologists. All Rights Reserved.
Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz
2015-01-01
Background and Aims UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Methods Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d–1). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Key Results Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. Conclusions This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. PMID:26346722
Defense.gov Special Report: Travels with Hagel
Afghanistan Flag of Pakistan Flag of Saudi Arabia Flag of Qatar December 2013 News Stories Hagel Concludes Six -day Troop, Partner Nation Visits Defense Secretary Chuck Hagel wrapped up a six-day trip to the Middle
Code of Federal Regulations, 2010 CFR
2010-10-01
... bulk cargo shall display a red flag by day or a red light by night, which signal shall be so placed... display a red flag by day, placed so that it will be visible on all sides. This flag may be metallic. ...
Guidelines for the specification of blue safety flags in railroad operations
DOT National Transportation Integrated Search
2010-12-01
Blue flag protection in the railroad industry provides safety to workers from the inadvertent movement of equipment on which they : are working. Current Federal regulations provide minimum specifications for the devices that can be used as blue flags...
Reddy, Srirama Krishna; Liu, Shuyu; Rudd, Jackie C; Xue, Qingwu; Payton, Paxton; Finlayson, Scott A; Mahan, James; Akhunova, Alina; Holalu, Srinidhi V; Lu, Nanyan
2014-09-01
Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112. Copyright © 2014 Elsevier GmbH. All rights reserved.
Neghliz, Hayet; Cochard, Hervé; Brunel, Nicole; Martre, Pierre
2016-01-01
Seed dehydration is the normal terminal event in the development of orthodox seeds and is physiologically related to the cessation of grain dry mass accumulation and crop grain yield. For a better understanding of grain dehydration, we evaluated the hypothesis that hydraulic conductance of the ear decreases during the latter stages of development and that this decrease results from disruption or occlusion of xylem conduits. Whole ear, rachis, and stem nodes hydraulic conductance and percentage loss of xylem conductivity were measured from flowering to harvest-ripeness on bread wheat (Triticum aestivum L.) cv. Récital grown under controlled environments. Flag leaf transpiration, stomatal conductance, chlorophyll content and grain and ear water potentials were also measured during grain development. We show that grain dehydration was not related with whole plant physiology and leaf senescence, but closely correlated with the hydraulic properties of the xylem conduits irrigating the grains. Indeed, there was a substantial decrease in rachis hydraulic conductance at the onset of the grain dehydration phase. This hydraulic impairment was not caused by the presence of air embolism in xylem conduits of the stem internodes or rachis but by the occlusion of the xylem lumens by polysaccharides (pectins and callose). Our results demonstrate that xylem hydraulics plays a key role during grain maturation. PMID:27446150
Gilliam, Mary E; Rechkemmer, Will T; McCravy, Kenneth W; Jenkins, Seán E
2018-03-22
The distribution of Amblyomma americanum (L.) is changing and reports of tick-borne disease transmitted by A. americanum are increasing in the USA. We used flagging to collect ticks, surveyed vegetation and collected weather data in 2015 and 2016. A. americanum dominated collections in both years (97%). Ticks did not differ among burn treatments; however, tick abundance differed between years among total, adult, and larval ticks. Habitat variables showed a weak negative correlation to total ticks in respect to: Shannon diversity index, percent bare ground, perennial cover, and coarse woody debris. Nymphal ticks showed a weak negative correlation to percent bare ground and fewer adults were collected in areas with more leaf litter and coarse woody debris. Conversely, we found larvae more often in areas with more total cover, biennials, vines, shrubs, and leaf litter, suggesting habitat is important for this life stage. We compared weather variables to tick presence and found, in 2015, temperature, precipitation, humidity, and sample period influenced tick collection and were life stage specific. In 2016, temperature, precipitation, humidity, wind, and sample period influenced tick collection and were also life stage specific. These results indicate that spring burns in an oak woodland do not reduce ticks; other variables such as habitat and weather are more influential on tick abundance or presence at different life stages.
Kaspers, Gertjan J L; Zimmermann, Martin; Reinhardt, Dirk; Gibson, Brenda E S; Tamminga, Rienk Y J; Aleinikova, Olga; Armendariz, Hortensia; Dworzak, Michael; Ha, Shau-Yin; Hasle, Henrik; Hovi, Liisa; Maschan, Alexei; Bertrand, Yves; Leverger, Guy G; Razzouk, Bassem I; Rizzari, Carmelo; Smisek, Petr; Smith, Owen; Stark, Batia; Creutzig, Ursula
2013-02-10
In pediatric relapsed acute myeloid leukemia (AML), optimal reinduction therapy is unknown. Studies suggest that liposomal daunorubicin (DNX; DaunoXome; Galen, Craigavon, United Kingdom) is effective and less cardiotoxic, which is important in this setting. These considerations led to a randomized phase III study by the International Berlin-Frankfurt-Münster Study Group. Patients with relapsed or primary refractory non-French-American-British type M3 AML who were younger than 21 years of age were eligible. Patients were randomly assigned to fludarabine, cytarabine, and granulocyte colony-stimulating factor (FLAG) or to FLAG plus DNX in the first reinduction course. The primary end point was status of the bone marrow (BM) sampled shortly before the second course of chemotherapy (the day 28 BM). Data are presented according to intention-to-treat for all 394 randomly assigned patients (median follow-up, 4.0 years). The complete remission (CR) rate was 64%, and the 4-year probability of survival (pOS) was 38% (SE, 3%). The day 28 BM status (available in 359 patients) was good (≤ 20% leukemic blasts) in 80% of patients randomly assigned to FLAG/DNX and 70% for patients randomly assigned to FLAG (P = .04). Concerning secondary end points, the CR rate was 69% with FLAG/DNX and 59% with FLAG (P = .07), but overall survival was similar. However, core-binding factor (CBF) AML treated with FLAG/DNX resulted in pOS of 82% versus 58% with FLAG (P = .04). Grade 3 to 4 toxicity was essentially similar in both groups. DNX added to FLAG improves early treatment response in pediatric relapsed AML. Overall long-term survival was similar, but CBF-AML showed an improved survival with FLAG/DNX. International collaboration proved feasible and resulted in the best outcome for pediatric relapsed AML reported thus far.
Parravano, Antonio; Noguera, José A.; Hermida, Paula; Tena-Sánchez, Jordi
2015-01-01
Models of social influence have explored the dynamics of social contagion, imitation, and diffusion of different types of traits, opinions, and conducts. However, few behavioral data indicating social influence dynamics have been obtained from direct observation in “natural” social contexts. The present research provides that kind of evidence in the case of the public expression of political preferences in the city of Barcelona, where thousands of citizens supporting the secession of Catalonia from Spain have placed a Catalan flag in their balconies and windows. Here we present two different studies. 1) During July 2013 we registered the number of flags in 26% of the electoral districts in the city of Barcelona. We find that there is a large dispersion in the density of flags in districts with similar density of pro-independence voters. However, by comparing the moving average to the global mean we find that the density of flags tends to be fostered in electoral districts where there is a clear majority of pro-independence vote, while it is inhibited in the opposite cases. We also show that the distribution of flags in the observed districts deviates significantly from that of an equivalent random distribution. 2) During 17 days around Catalonia’s 2013 national holiday we observed the position at balcony resolution of the flags displayed in the facades of a sub-sample of 82 blocks. We compare the ‘clustering index’ of flags on the facades observed each day to thousands of equivalent random distributions. Again we provide evidence that successive hangings of flags are not independent events but that a local influence mechanism is favoring their clustering. We also find that except for the national holiday day the density of flags tends to be fostered in facades located in electoral districts where there is a clear majority of pro-independence vote. PMID:25961562
10 CFR 1.55 - Establishment of official NRC flag.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Establishment of official NRC flag. 1.55 Section 1.55 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag... dark blue field with a gold fringe. ...
3 CFR 8993 - Proclamation 8993 of June 7, 2013. Flag Day and National Flag Week, 2013
Code of Federal Regulations, 2014 CFR
2014-01-01
... States to display the flag during that week. NOW, THEREFORE, I, BARACK OBAMA, President of the United... of the Independence of the United States of America the two hundred and thirty-seventh.BARACK OBAMA ...
Predictive value of the present-on-admission indicator for hospital-acquired venous thromboembolism.
Khanna, Raman R; Kim, Sharon B; Jenkins, Ian; El-Kareh, Robert; Afsarmanesh, Nasim; Amin, Alpesh; Sand, Heather; Auerbach, Andrew; Chia, Catherine Y; Maynard, Gregory; Romano, Patrick S; White, Richard H
2015-04-01
Hospital-acquired venous thromboembolic (HA-VTE) events are an important, preventable cause of morbidity and death, but accurately identifying HA-VTE events requires labor-intensive chart review. Administrative diagnosis codes and their associated "present-on-admission" (POA) indicator might allow automated identification of HA-VTE events, but only if VTE codes are accurately flagged "not present-on-admission" (POA=N). New codes were introduced in 2009 to improve accuracy. We identified all medical patients with at least 1 VTE "other" discharge diagnosis code from 5 academic medical centers over a 24-month period. We then sampled, within each center, patients with VTE codes flagged POA=N or POA=U (insufficient documentation) and POA=Y or POA=W (timing clinically uncertain) and abstracted each chart to clarify VTE timing. All events that were not clearly POA were classified as HA-VTE. We then calculated predictive values of the POA=N/U flags for HA-VTE and the POA=Y/W flags for non-HA-VTE. Among 2070 cases with at least 1 "other" VTE code, we found 339 codes flagged POA=N/U and 1941 flagged POA=Y/W. Among 275 POA=N/U abstracted codes, 75.6% (95% CI, 70.1%-80.6%) were HA-VTE; among 291 POA=Y/W abstracted events, 73.5% (95% CI, 68.0%-78.5%) were non-HA-VTE. Extrapolating from this sample, we estimated that 59% of actual HA-VTE codes were incorrectly flagged POA=Y/W. POA indicator predictive values did not improve after new codes were introduced in 2009. The predictive value of VTE events flagged POA=N/U for HA-VTE was 75%. However, sole reliance on this flag may substantially underestimate the incidence of HA-VTE.
The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-10
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document.more » Analytical results from second quarter 1991 are listed in this report.« less
The Savannah River Site's Groundwater Monitoring Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-10
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document.more » Analytical results from second quarter 1991 are listed in this report.« less
2011-02-18
CAPE CANAVERAL, Fla. -- "The National 9/11 Flag" is folded in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- "The National 9/11 Flag" is on display in the Debus Conference Facility at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- "The National 9/11 Flag" is raised in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
77 FR 20098 - Inventory of U.S.-Flag Launch Barges
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket No. MARAD-2012 0034] Inventory of U.S.-Flag Launch Barges AGENCY: Maritime Administration, Department of Transportation. ACTION: Inventory of U.S.-Flag Launch Barges. SUMMARY: The Maritime Administration is updating its inventory of U.S...
75 FR 13645 - Inventory of U.S.-Flag Launch Barges
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket No. MARAD-2010 0023] Inventory of U.S.-Flag Launch Barges AGENCY: Maritime Administration, Department of Transportation. ACTION: Inventory of U.S.-Flag Launch Barges. SUMMARY: The Maritime Administration is updating its inventory of U.S...
Visual reproduction subtest of the Wechsler Memory Scale-Revised: analysis of construct validity.
Williams, M A; Rich, M A; Reed, L K; Jackson, W T; LaMarche, J A; Boll, T J
1998-11-01
This study assessed the construct validity of Visual Reproduction (VR) Cards A (Flags) and B (Boxes) from the original Wechsler Memory Scale (WMS) compared to Flags and Boxes from the revised edition of the WMS (WMS-R). Independent raters scored Flags and Boxes using both the original and revised scoring criteria and correlations were obtained with age, education, IQ, and four separate criterion memory measures. Results show that for Flags, there is a tendency for the revised scoring criteria to produce improved construct validity. For Boxes, however, there was a trend in the opposite direction, with the revised scoring criteria demonstrating worse construct validity. Factor analysis suggests that Flags are a more distinct measure of visual memory, whereas Boxes are more complex and significantly associated with conceptual reasoning abilities. Using the revised scoring criteria, Boxes were found to be more strongly related to IQ than Flags. This difference was not found using the original scoring criteria.
FLAG - APOLLO XI - ASTRONAUTS - MOON
1969-07-14
S69-39333 (July 1969) --- This is a photographic illustration of how the flag of the United States will be implanted on the moon by the Apollo 11 astronauts. The flag is three by five feet, and is made of nylon. It will be erected on an eight-foot aluminum staff, and tubing along its top edge will unfurl it in the airless environment of the moon. The implanting of the flag is symbolic of the first time man has landed on another celestial body, and does not constitute a territorial claim by the United States. The photograph on the right shows the flag in a furled condition. Apollo 11 astronauts Neil A. Armstrong, commander; and Edwin E. Aldrin Jr., lunar module pilot, will implant the flag after their Lunar Module (LM) sets down on the moon. Astronaut Michael Collins, command module pilot, will remain with the Command and Service Modules (CSM) in lunar orbit while Armstrong and Aldrin explore the lunar surface.
Méndez-Hernández, Lucía E; Robledo-Rivera, Angelica Y; Macías-Silva, Marina; Calera, Mónica R; Sánchez-Olea, Roberto
2017-11-01
Gpn1 associates with Gpn3, and both are required for RNA polymerase II nuclear targeting. Global studies have identified by mass spectrometry that human Gpn3 is ubiquitinated on lysines 189 and 216. Our goals here were to determine the type, physiological importance, and regulation of Gpn3 ubiquitination. After inhibiting the proteasome with MG132, Gpn3-Flag was polyubiquitinated on K216, but not K189, in HEK293T cells. Gpn3-Flag exhibited nucleo-cytoplasmic shuttling, but polyubiquitination and proteasomal degradation of Gpn3-Flag occurred only in the cell nucleus. Polyubiquitination-deficient Gpn3-Flag K216R displayed a longer half-life than Gpn3-Flag in two cell lines. Interestingly, Gpn1-EYFP inhibited Gpn3-Flag polyubiquitination in a dose-dependent manner. In conclusion, Gpn1-inhibitable, nuclear polyubiquitination on lysine 216 regulates the half-life of Gpn3 by tagging it for proteasomal degradation. © 2017 Federation of European Biochemical Societies.
RFI flagging implications for short-duration transients
NASA Astrophysics Data System (ADS)
Cendes, Y.; Prasad, P.; Rowlinson, A.; Wijers, R. A. M. J.; Swinbank, J. D.; Law, C. J.; van der Horst, A. J.; Carbone, D.; Broderick, J. W.; Staley, T. D.; Stewart, A. J.; Huizinga, F.; Molenaar, G.; Alexov, A.; Bell, M. E.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Grießmeier, J.-M.; Jonker, P.; Kramer, M.; Kuniyoshi, M.; Pietka, M.; Stappers, B.; Wise, M.; Zarka, P.
2018-04-01
With their wide fields of view and often relatively long coverage of any position in the sky in imaging survey mode, modern radio telescopes provide a data stream that is naturally suited to searching for rare transients. However, Radio Frequency Interference (RFI) can show up in the data stream in similar ways to such transients, and thus the normal pre-treatment of filtering RFI (flagging) may also remove astrophysical transients from the data stream before imaging. In this paper we investigate how standard flagging affects the detectability of such transients by examining the case of transient detection in an observing mode used for Low Frequency Array (LOFAR; van Haarlem et al., 2013) surveys. We quantify the fluence range of transients that would be detected, and the reduction of their SNR due to partial flagging. We find that transients with a duration close to the integration sampling time, as well as bright transients with durations on the order of tens of seconds, are completely flagged. For longer transients on the order of several tens of seconds to minutes, the flagging effects are not as severe, although part of the signal is lost. For these transients, we present a modified flagging strategy which mitigates the effect of flagging on transient signals. We also present a script which uses the differences between the two strategies, and known differences between transient RFI and astrophysical transients, to notify the observer when a potential transient is in the data stream.
46 CFR 154.22 - Foreign flag vessel: Certificate of Compliance endorsement application.
Code of Federal Regulations, 2010 CFR
2010-10-01
... requesting an endorsement for the carriage of ethylene oxide, a classification society certification that the... Commanding Officer, Marine Safety Center the plans, calculations, and information under § 154.15(b). [CGD 77... foreign flag vessel, whose flag administration issues IMO Certificates, must submit to the Commanding...
Code of Federal Regulations, 2010 CFR
2010-01-01
... and rest requirements: Domestic, flag, and supplemental operations. 121.467 Section 121.467..., Flag, and Supplemental Operations § 121.467 Flight attendant duty period limitations and rest... attendant's home station, is not considered part of a rest period. (13) Each certificate holder conducting...
36 CFR 504.9 - Placards, signs, banners and flags.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Placards, signs, banners and flags. 504.9 Section 504.9 Parks, Forests, and Public Property SMITHSONIAN INSTITUTION RULES AND REGULATIONS GOVERNING SMITHSONIAN INSTITUTION BUILDINGS AND GROUNDS § 504.9 Placards, signs, banners and flags...
48 CFR 47.403-3 - Disallowance of expenditures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CONTRACT MANAGEMENT TRANSPORTATION Air Transportation by U.S.-Flag Carriers 47.403-3 Disallowance of... air transportation on foreign-flag air carriers unless there is attached to the appropriate voucher a memorandum adequately explaining why service by U.S.-flag air carriers was not available, or why it was...
49 CFR 218.37 - Flag protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Flag protection. 218.37 Section 218.37..., DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Protection of Trains and Locomotives § 218.37 Flag protection. (a) After August 1, 1977, each railroad must have in effect an operating rule which complies with...
36 CFR 520.10 - Placards, signs, banners, and flags.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Placards, signs, banners, and flags. 520.10 Section 520.10 Parks, Forests, and Public Property SMITHSONIAN INSTITUTION RULES AND... § 520.10 Placards, signs, banners, and flags. The displaying or carrying of placards, signs, banners, or...
Notch as a Diagnostic Marker and Therapeutic Target in Human Breast Cancer
2008-05-01
JAG1. The soluble JAG1-ECD-FLAG was expressed in Chinese Hamster ovary K1 (CHO-K1) cells and then CHO clones were screened for their ability to... medium was collected from CHO-K1- hJAG1-ECD-Flag (clone14) grown in culture. The purification strategy to obtain hJAG1-ECD-Flag is as follows: 1) pre...expressed in Chinese hampster ovary K1 (CHO-K1) cells and then CHO clones were screened for their ability to express high levels of secreted JAG1-Flag
2002-01-01
On platforms suspended from the top of the 525-foot-high VAB, workers use rollers and brushes to repaint the U.S. flag on the southwest side of the Vehicle Assembly Building. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo is also being painted. Known as the "meatball," the logo measures 110 feet by 132 feet, or about 12,300 square feet. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary.
2011-02-18
CAPE CANAVERAL, Fla. -- "The National 9/11 Flag" is transported from the Debus Conference Facility to the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- "The National 9/11 Flag" is transported from the Debus Conference Facility to the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- More than a dozen 9/11 first responders take part in "The National 9/11 Flag" stitching ceremony at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
Starko, Samuel; Martone, Patrick T
2016-11-01
Biomass allocation patterns have received substantial consideration, leading to the recognition of several 'universal' interspecific trends. Despite efforts to understand biomass partitioning among embryophytes, few studies have examined macroalgae that evolved independently, yet function ecologically in much the same ways as plants. Kelps allocate photosynthate among three organs (the blade(s), stipe(s) and holdfast) that are superficially convergent with organs of land plants, providing a unique opportunity to test the limits of 'universal' trends. In this study, we used an allometric approach to quantify interspecific biomass partitioning patterns in kelps and assess whether embryophyte-based predictions of biomass scaling can be applied to marine macrophytes that lack root-to-leaf hydraulic transport. Photosynthetic area and dry mass were found to scale to approximately the ¾ power and kelp biomass allocation patterns were shown to match closely to empirical measures of allometric scaling among woody plants. Larger kelp species were found to have increased relative stipe and holdfast mass than smaller species, highlighting important consequences of size for marine macroalgae. Our study provides insights into the evolution of size in the largest marine macrophytes and corroborates previous work suggesting that the morphology of divergent lineages of photoautotrophs may reflect similar selective pressures. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
14 CFR 121.601 - Aircraft dispatcher information to pilot in command: Domestic and flag operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... command: Domestic and flag operations. 121.601 Section 121.601 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.601 Aircraft dispatcher information to pilot in command: Domestic and flag operations. (a) The aircraft dispatcher shall provide the pilot in command all available current reports or...
14 CFR 121.601 - Aircraft dispatcher information to pilot in command: Domestic and flag operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... command: Domestic and flag operations. 121.601 Section 121.601 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.601 Aircraft dispatcher information to pilot in command: Domestic and flag operations. (a) The aircraft dispatcher shall provide the pilot in command all available current reports or...
14 CFR 121.601 - Aircraft dispatcher information to pilot in command: Domestic and flag operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... command: Domestic and flag operations. 121.601 Section 121.601 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.601 Aircraft dispatcher information to pilot in command: Domestic and flag operations. (a) The aircraft dispatcher shall provide the pilot in command all available current reports or...
14 CFR 121.601 - Aircraft dispatcher information to pilot in command: Domestic and flag operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... command: Domestic and flag operations. 121.601 Section 121.601 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.601 Aircraft dispatcher information to pilot in command: Domestic and flag operations. (a) The aircraft dispatcher shall provide the pilot in command all available current reports or...
14 CFR 121.601 - Aircraft dispatcher information to pilot in command: Domestic and flag operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... command: Domestic and flag operations. 121.601 Section 121.601 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.601 Aircraft dispatcher information to pilot in command: Domestic and flag operations. (a) The aircraft dispatcher shall provide the pilot in command all available current reports or...
14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. (a) No person may dispatch or take off a nonturbine or turbo-propeller-powered airplane unless...
14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
...-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. (a) No person may dispatch or take off a nonturbine or turbo-propeller-powered airplane unless...
14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. (a) No person may dispatch or take off a nonturbine or turbo-propeller-powered airplane unless...
14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag...
14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag...
77 FR 35807 - Flag Day and National Flag Week, 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
.... Generations of service members have raised our country's colors over military bases and at sea, and... Day and National Flag Week, 2012 By the President of the United States of America A Proclamation... Woodrow Wilson asked us to ``stand with united hearts for an America which no man can corrupt, no...
76 FR 35087 - Flag Day and National Flag Week, 2011
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... United States of America A Proclamation On June 14, 1777, the Second Constitutional Congress adopted a... founding colonies. The stars were set upon a blue field, in the words of the Congress's resolution... faced, the American flag has been ever present. It has flown on our ships and military bases around the...
14 CFR 121.621 - Alternate airport for destination: Flag operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Alternate airport for destination: Flag... § 121.621 Alternate airport for destination: Flag operations. (a) No person may dispatch an airplane under IFR or over-the-top unless he lists at least one alternate airport for each destination airport in...
14 CFR 121.621 - Alternate airport for destination: Flag operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Alternate airport for destination: Flag... § 121.621 Alternate airport for destination: Flag operations. (a) No person may dispatch an airplane under IFR or over-the-top unless he lists at least one alternate airport for each destination airport in...
14 CFR 121.621 - Alternate airport for destination: Flag operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Alternate airport for destination: Flag... § 121.621 Alternate airport for destination: Flag operations. (a) No person may dispatch an airplane under IFR or over-the-top unless he lists at least one alternate airport for each destination airport in...
14 CFR 121.621 - Alternate airport for destination: Flag operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Alternate airport for destination: Flag... § 121.621 Alternate airport for destination: Flag operations. (a) No person may dispatch an airplane under IFR or over-the-top unless he lists at least one alternate airport for each destination airport in...
14 CFR 121.621 - Alternate airport for destination: Flag operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Alternate airport for destination: Flag... § 121.621 Alternate airport for destination: Flag operations. (a) No person may dispatch an airplane under IFR or over-the-top unless he lists at least one alternate airport for each destination airport in...
Fraction Flags: Learning from Children to Help Children Learn.
ERIC Educational Resources Information Center
Kieren, Tom; And Others
1996-01-01
Describes "fraction flags", an activity through which fraction concepts can be explored. The activity was invented by 2 12-year-old students and this article is presented with emphasis on the students' viewpoint. It begins with an overview of the fractions unit and presents vignettes of students exploring the fraction flags. (AIM)
2011-02-18
CAPE CANAVERAL, Fla. -- Members of the Brevard Police and Fire Pipes and Drums kick off the "The National 9/11 Flag" stitching ceremony in the Debus Conference Facility at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- Chief of Fire Training George Hoggard with NASA Kennedy Space Center Protective Services contributes stitches to the "National 9/11 Flag" during a ceremony in the Debus Conference Facility at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- Kelvin Manning, associate director for Business Operations at NASA's Kennedy Space Center, contributes stitches to the "National 9/11 Flag" during a ceremony in the Debus Conference Facility at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- Joe Dowdy, special operations manager at NASA's Kennedy Space Center, contributes stitches to the "National 9/11 Flag" during a ceremony in the Debus Conference Facility at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- Members of the Brevard Police and Fire Pipes and Drums kick off the "The National 9/11 Flag" stitching ceremony in the Debus Conference Facility at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
Utilising flags to reduce drag around a short finite circular cylinder
NASA Astrophysics Data System (ADS)
Javadi, Kh.; Kiani, F.; Tahaye Abadi, M.
2018-03-01
This paper utilises flags to decrease the drag around a short finite circular cylinder. Wall-adapted large eddy simulation and two-way fluid-structure interaction methods were applied to resolve unsteady turbulent flow structure. The far-field Reynolds number of the current configuration based on the cylinder diameter was chosen to be 20,000. In addition, the length-to-diameter ratio of the cylinder was assumed to be L/D = 2 whereas the flexible flag had a width-to-diameter ratio of W/D = 1.5. The results were compared with the regular short finite circular cylinder and the rigid flagged cylinder in our previous work. The results indicate that utilising flags inside the near-wake region of the cylinder reduces the pressure drag. The physical mechanism of this drag reduction is presented.
Tsze, Daniel S; Ochs, Julie B; Gonzalez, Ariana E; Dayan, Peter S
2018-01-01
Background Clinicians appear to obtain emergent neuroimaging for children with headaches based on the presence of red flag findings. However, little data exists regarding the prevalence of these findings in emergency department populations, and whether the identification of red flag findings is associated with potentially unnecessary emergency department neuroimaging. Objectives We aimed to determine the prevalence of red flag findings and their association with neuroimaging in otherwise healthy children presenting with headaches to the emergency department. Our secondary aim was to determine the prevalence of emergent intracranial abnormalities in this population. Methods A prospective cohort study of otherwise healthy children 2-17 years of age presenting to an urban pediatric emergency department with non-traumatic headaches was undertaken. Emergency department physicians completed a standardized form to document headache descriptors and characteristics, associated symptoms, and physical and neurological exam findings. Children who did not receive emergency department neuroimaging received 4-month telephone follow-up. Outcomes included emergency department neuroimaging and the presence of emergent intracranial abnormalities. Results We enrolled 224 patients; 197 (87.9%) had at least one red flag finding on history. Several red flag findings were reported by more than a third of children, including: Headache waking from sleep (34.8%); headache present with or soon after waking (39.7%); or headaches increasing in frequency, duration and severity (40%, 33.1%, and 46.3%). Thirty-three percent of children received emergency department neuroimaging. The prevalence of emergent intracranial abnormalities was 1% (95% CI 0.1, 3.6). Abnormal neurological exam, extreme pain intensity of presenting headache, vomiting, and positional symptoms were independently associated with emergency department neuroimaging. Conclusions Red flag findings are common in children presenting with headaches to the emergency department. The presence of red flag findings is associated with emergency department neuroimaging, although the risk of emergent intracranial abnormalities is low. Many children with headaches may be receiving unnecessary neuroimaging due to the high prevalence of non-specific red flag findings.
2002-01-01
On platforms suspended from the top of the 525-foot-high VAB, workers use rollers and brushes to repaint the NASA logo on the southeast side of the Vehicle Assembly Building. Known as the "meatball," the logo measures 110 feet by 132 feet, or about 12,300 square feet. The U.S. flag is also being repainted. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary.
Ikeda, Koki; Koga, Tomoaki; Sasaki, Fumiyuki; Ueno, Ayumi; Saeki, Kazuko; Okuno, Toshiaki; Yokomizo, Takehiko
2017-05-13
DYKDDDDK peptide (FLAG) is a useful tool for investigating the function and localization of proteins whose antibodies (Abs) are not available. We recently established a high-affinity monoclonal antibody (mAb) for FLAG (clone 2H8). The 2H8 Ab is highly sensitive for detecting FLAG-tagged proteins by flowcytometry and immunoprecipitation, but it can yield nonspecific signals in immunohistochemistry of mouse tissues because it is of mouse origin. In this study, we reduced nonspecific signals by generating a chimeric 2H8 Ab with Fc fragments derived from human immunoglobulin. We fused a 5' terminal cDNA fragments for the Fab region of 2H8 mAb with 3' terminal cDNA fragments for Fc region of human IgG1. We transfected both chimeric plasmids and purified the resulting human-mouse chimeric 2H8. The chimeric 2H8 Ab successfully detected FLAG-tagged proteins in flowcytometry with anti-human IgG secondary Ab with comparable sensitivity to 2H8 mAb. Importantly, chimeric 2H8 detected specific FLAG peptide signals without nonspecific signals in immunohistochemical analysis with mouse tissues. This human-mouse chimeric high-affinity anti-FLAG Ab will prove useful for future immunohistochemical analysis of mouse tissues. Copyright © 2017 Elsevier Inc. All rights reserved.
Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika
2018-01-01
Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene), and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase), and DMAS (2'-deoxymugineic acid synthase) in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement. At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.
Defense.gov - Special Report: Travels with Panetta
Flag of Japan Japan Flag of China China Flag of New Zealand New Zealand Top Stories Secretary Honors Past, Present New Zealand Troops Defense Secretary Leon E. Panetta placed a wreath in memory of New Memorial Museum. Story Panetta Eases Restrictions on New Zealand Ship Visits Defense Secretary Leon E
3 CFR 8535 - Proclamation 8535 of June 11, 2010. Flag Day and National Flag Week, 2010
Code of Federal Regulations, 2011 CFR
2011-01-01
..., the thirteen stripes alternating red and white, and thirteen white stars in a blue field, represented... luminosity, and the enduring American story that it represents. Although the configuration of stars and... first embraced by our Founders, the Stars and Stripes remain the symbol of our Nation’s pride. On Flag...
FlagHouse Forum: You Say "Tomato"... and I Use a Communicator
ERIC Educational Resources Information Center
Exceptional Parent, 2011
2011-01-01
This month's "FlagHouse Forum" focuses on how to choose the communicator best-suited to a child's special need. FlagHouse--a premier global supplier of resources for special needs, education, physical activity and recreation--is pleased to partner with "Exceptional Parent" to bring its readers this informational forum. Humans communicate with each…
22 CFR 201.15 - U.S. flag vessel shipping requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and tankers shall be achieved for each quantitative unit of cargo. A quantitative unit of cargo is the... determined that at least 50% of the quantitative unit will move on U.S. flag vessels, to the extent that such... used for achieving compliance for the quantitative unit. (c) Nonavailability of U.S. flag vessels. Upon...
22 CFR 201.15 - U.S. flag vessel shipping requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... and tankers shall be achieved for each quantitative unit of cargo. A quantitative unit of cargo is the... determined that at least 50% of the quantitative unit will move on U.S. flag vessels, to the extent that such... used for achieving compliance for the quantitative unit. (c) Nonavailability of U.S. flag vessels. Upon...
22 CFR 201.15 - U.S. flag vessel shipping requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and tankers shall be achieved for each quantitative unit of cargo. A quantitative unit of cargo is the... determined that at least 50% of the quantitative unit will move on U.S. flag vessels, to the extent that such... used for achieving compliance for the quantitative unit. (c) Nonavailability of U.S. flag vessels. Upon...
22 CFR 201.15 - U.S. flag vessel shipping requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and tankers shall be achieved for each quantitative unit of cargo. A quantitative unit of cargo is the... determined that at least 50% of the quantitative unit will move on U.S. flag vessels, to the extent that such... used for achieving compliance for the quantitative unit. (c) Nonavailability of U.S. flag vessels. Upon...
22 CFR 201.15 - U.S. flag vessel shipping requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... and tankers shall be achieved for each quantitative unit of cargo. A quantitative unit of cargo is the... determined that at least 50% of the quantitative unit will move on U.S. flag vessels, to the extent that such... used for achieving compliance for the quantitative unit. (c) Nonavailability of U.S. flag vessels. Upon...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... yield Flag K would increase intermarket competition because it offers customers an alternative means to...) Increase the fee for orders yielding Flag K, which routes to NASDAQ OMX PSX (``PSX'') using ROUC or ROUE... for orders yielding Flag K, which routes to PSX using ROUC or ROUE routing strategies; and (ii...
FIRE! A Red Flag Tap in Reclaiming Intervention
ERIC Educational Resources Information Center
Bodnar, Brian
2007-01-01
"Red Flag Interventions" address problems which are imported from elsewhere and acted out towards persons who are in effect innocent bystanders. This is commonly seen as students "carry in" problems from the home or street to school, or they "carry over" conflicts from one class to the next. A third variation of Red Flag intervention is when a…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... Exchange introduced new Flags ZA (Retail Order, adds liquidity) and ZR (Retail Order, removes liquidity... will enable Members, and in turn, their retail customers, to benefit from the enhanced rebate (Flag ZA... able to benefit from the rebate (Flag ZA) for utilizing Retail Orders without regards to whether the...
Red flags: a case series of clinician-family communication challenges in the context of CHD.
Sekar, Priya; Marcus, Katie L; Williams, Erin P; Boss, Renee D
2017-07-01
We describe three cases of newborns with complex CHD characterised by communication challenges. These communication challenges were categorised as patient, family, or system-related red flags. Strategies for addressing these red flags were proposed, for the goal of optimising care and improving quality of life in this vulnerable population.
75 FR 61836 - Additional Designation of Individuals and Entities Pursuant to Executive Order 13382
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
.... ABTIN 1 Container Ship 13,760DWT 9,957GRT IRAN flag (IRISL); Vessel Registration Identification IMO... IMO 9405954 (Malta) (vessel) [NPWMD]. 8. EIGHTH OCEAN General Cargo 22,882DWT 15,670GRT GERMANY flag... Container Ship 85,896DWT 74,175GRT MALTA flag (IRISL); Vessel Registration Identification IMO 9349576 (Malta...
3 CFR 8837 - Proclamation 8837 of June 11, 2012. Flag Day and National Flag Week, 2012
Code of Federal Regulations, 2013 CFR
2013-01-01
... homes and storefronts. Generations of service members have raised our country's colors over military... America A Proclamation Ninety-six years ago, our Nation first came together to celebrate Flag Day—an occasion when President Woodrow Wilson asked us to “stand with united hearts for an America which no man...
VLA Hosts "Flag Across America"
NASA Astrophysics Data System (ADS)
2001-11-01
The National Radio Astronomy Observatory (NRAO) hosted the runners and support personnel of the "Americans United Flag Across America" run as the transcontinental memorial and fundraising effort came through New Mexico. The flag run arrived at NRAO's Very Large Array (VLA) radio telescope west of Socorro, NM, early in the post-Midnight morning of Monday, November 5, and departed after sunrise that morning en route to the Arizona border. Drivers, runners and support personnel stayed overnight at the VLA. During the night, a "VLA Night Owl Run" kept the flag moving around the VLA area until the westward trek resumed after dawn. The run began Oct. 11, one month after the terrorist attacks on New York and Washington. Organized by employees of American and United Airlines to honor the flight crews lost in those attacks, to show support for U.S. troops and to raise funds to help the victims' families, the run will take an American flag from Boston Logan Airport to Los Angeles International Airport. The Boston-to-Los Angeles trip represents the intended journey of American Flight 11 and United Flight 175, both of which were crashed by terrorists into the World Trade Center. "Our observatory was proud to host this group and honored that they brought this flag through our facility," said Miller Goss, NRAO's director of VLA operations. The runners carried a flag that flew in a U.S. F-16 over Iraq in support of Operation Southern Watch on Oct. 2, and has visited Ground Zero in Manhattan. The flag is scheduled to arrive in Los Angeles on Veterans Day, Nov. 11. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Association between community socioeconomic characteristics and access to youth flag football.
Kroshus, Emily; Sonnen, Aly J; Chrisman, Sara Pd; Rivara, Frederick P
2018-01-12
The American Academy of Pediatrics has recommended that opportunities for non-tackling American football (e.g., flag football) be expanded, given concerns about the risks of brain trauma from tackle football. This study tested the hypothesis that flag football would be more accessible in communities characterised by higher socioeconomic status residents. In July 2017, the locations of community-based organisations offering youth flag and tackle football for youth between the ages of 6 and 13 in two US states (Georgia and Washington) were aggregated (n=440). Organisations were coded in terms of the availability of tackle and/or flag football teams for youth at each year of age between 6 and 13. Multivariate logistic regression analyses were used to assess the odds of a community-based football organisation offering flag football, by community socioeconomic and demographic characteristics. In both states, communities with more educated residents were more likely to offer flag football for youth aged 6-12. For example, among 6 year-olds every 10% increase in the number of adult residents with a college education was associated with 1.51 times the odds of flag football availability (95% CI 1.22 to 1.86, P<0.001). These results suggest that youth living in communities characterised by low educational attainment are less likely than other youth to have the option of a lower contact alternative to tackle football. Relying on voluntary community-level adoption of lower contact alternatives to tackle football may result in inequitable access to such sport options. This may contribute to an inequitable burden of brain trauma from youth sport. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
The American flag on the VAB is being repainted
NASA Technical Reports Server (NTRS)
1998-01-01
Painters are suspended on platforms from the top of the 525-foot- high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag. The flag spans an area 209 feet by 110 feet and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. In addition to the flag, the Bicentennial Emblem on the other side of the VAB doors is being replaced by the NASA logo, honoring NASA's 40th anniversary (in October). The logo covers an area 110 feet by 132 feet. Work is expected to be completed in mid-September.
2011-02-18
CAPE CANAVERAL, Fla. -- Members of the United States Air Force 45th Space Wing Honor Guard and more than a dozen 9/11 first responders take part in "The National 9/11 Flag" stitching ceremony in the Debus Conference Facility at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. – Deputy Fire Chief Rick Anderson, left, Chief of Fire Training George Hoggard, and Assistant Chief of Fire Training David Seymour with NASA Kennedy Space Center Protective Services participated in the "National 9/11 Flag" stitching ceremony in the Debus Conference Facility at the Kennedy Space Center Visitor Complex in Florida. The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- In the Debus Conference Facility at the Kennedy Space Center Visitor Complex in Florida, Jeff Parness, the director, founder and chairman of the "New York Says Thank You Foundation" talks about the work and devotion that has gone into restoring "The National 9/11 Flag." The contributions of NASA, Kennedy Space Center and the state of Florida were stitched into the fabric of the American Flag, which was recovered near ground zero following the World Trade Center attacks on Sept. 11, 2001. The "New York Says Thank You Foundation" is taking the flag on a cross-country journey to be restored to its original 13-stripe design using pieces of fabric from American flags destined for retirement in all 50 states. Once the flag is restored, it will become a permanent collection of the National September 11 Memorial Museum being built at the World Trade Center site. Photo credit: NASA/Kim Shiflett
The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking watermore » standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site's Groundwater Monitoring Program, third quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site's Groundwater Monitoring Program, first quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking watermore » standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
Children's Interpretation of Focus Expressions in English and Mandarin
ERIC Educational Resources Information Center
Notley, Anna; Zhou, Peng; Crain, Stephen; Thornton, Rosalind
2009-01-01
Children often produce nonadult responses to sentences with the focus operator only, such as "Only the cat is holding a flag." For example, children often accept this sentence as a description of a situation in which a cat holds a flag and a duck holds both a flag and a balloon. One proposed analysis, by Paterson, Liversedge, Rowland & Filik…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... ``added liquidity'' to ``removed liquidity'' ratio of at least 70% where added flags are defined as B, HA..., Flag N is yielded when an order removes liquidity from the EDGX book in Tapes B or C securities. In... Members, the Exchange proposes to amend Flag N so that it only applies to orders that remove liquidity...
No Global Citizenship? Re-Envisioning Global Citizenship Education in Times of Growing Nationalism
ERIC Educational Resources Information Center
Barrow, Elizabeth
2017-01-01
This article presents a discussion of the author's concern over a statement President Trump made in his first Thank You Tour speech, given Dec 1, 2016, in Cincinnati Ohio. "There is no global anthem. No global currency. No certificate of global citizenship. We pledge allegiance to one flag and that flag is the American flag." Here…
Know Your America: Suggested Study Course in Americanism. Revised Edition.
ERIC Educational Resources Information Center
American Legion, Indianapolis, IN. Americanism and Children's Youth Div.
The purpose of this booklet is to increase understanding of fundamental U.S. documents, the U.S. flag, patriotic institutions, and of San Francisco (California), March 14-16, 1986 of U.S. residents. Unit 2 describes and interprets the code of displaying the U.S. flag and provides a suggested flag education unit of study. Units 3 and 4 offer…
A Retrospective Estimate of Ear Disease Detection Using the "Red Flags" in a Clinical Sample.
Klyn, Niall A M; Kleindienst Robler, Samantha; Alfakir, Razan; Nielsen, Donald W; Griffith, James W; Carlson, Deborah L; Lundy, Larry; Dhar, Sumitrajit; Zapala, David A
2018-03-01
The purpose of this study was to evaluate the specificity and sensitivity of two red flag protocols in detecting ear diseases associated with changes in hearing. The presence of red-flag symptoms was determined in a chart review of 307 adult patients from the Mayo Clinic Florida Departments of Otorhinolaryngology and Audiology. Participants formed a convenience sample recruited for a separate study. Neurotologist diagnosis was the criterion for comparisons. Of the 251 patient files retained for analysis, 191 had one or more targeted diseases and 60 had age- or noise-related hearing loss. Food and Drug Administration red flags sensitivity was 91% (confidence interval [CI], 86 to 95%) and specificity was 72% (CI, 59 to 83%). American Academy of Otolaryngology-Head and Neck Surgery red flags sensitivity was 98% (CI, 95 to 99%) and specificity was 20% (CI, 11 to 32%). Stakeholders must determine which diseases are meaningful contraindications for hearing aid use and whether these red-flag protocols have acceptable levels of sensitivity and specificity. As direct-to-consumer models of hearing devices increase, a disease detection method that does not require provider intercession would be useful.
Epidemiology of Basil Downy Mildew.
Cohen, Yigal; Ben Naim, Yariv; Falach, Lidan; Rubin, Avia E
2017-10-01
Basil downy mildew (BDM) caused by the oomycete Peronospora belbahrii is a destructive disease of sweet basil (Ocimum basilicum) worldwide. It originated in Uganda in the 1930s and recently spread to Europe, the Middle East, Americas, and the Far East. Seed transmission may be responsible for its quick global spread. The pathogen attacks leaf blades, producing chlorotic lesions with ample dark asexual spores on the lower leaf surface. Oospores may form in the mesophyll of infected leaves. The asexual spores germinate on a wet leaf surface within 2 h and penetrate into the epidermis within 4 h. Spore germination and infection occur at a wide range of temperatures from 5 to 28.5°C. Infection intensity depends on the length of dew period, leaf temperature, and inoculum dose. The duration of latent period (from infection to sporulation) extends from 5 to 10 days, depending on temperature and light regime. The shortest is 5 days at 25°C under continuous light. Sporulation requires high humidity but not free leaf wetness. Sporulation occurs at 10 to 26°C. At the optimum temperature of 18°C, the process of sporulation requires 7.5 h at relative humidity ≥ 85%, with 3 h for sporophores emergence from stomata and 4.5 h for spore formation. Sporophores can emerge under light or darkness, but spore formation occurs in the dark only. Limited data are available on spore dispersal. Spores dispersed from sporulating plants contaminate healthy plants within 2 h of exposure. Settled spores may survive on leaf surface of healthy plants for prolonged periods, depending on temperature. Seed transmission of the disease occurs in Europe, but not in Israel or the United States. P. belbahrii in Israel also attacks species belonging to Rosemarinus, Nepeta, Agastache, Micromeria, and Salvia but not Plectranthus (coleus). A Peronospora species that infects coleus does not infect sweet basil. Control of BDM includes chemical, physical, and genetic means. The fungicide mefenoxam was highly effective in controlling the disease but resistant populations were quickly selected for in Israel and Europe rendering it ineffective. A new compound oxathiapiprolin (OSBP inhibitor) is highly effective. Nocturnal illumination of basil crops controls the disease by preventing sporulation. Daytime solar heating suppressed the disease effectively by reducing spore and mycelium viability. The most effective physical means is fanning. Nocturnal fanning prevents or limits dew deposition on leaf surfaces, and as a result, infection and sporulation diminish and epidemics are prevented. Genetic resistance occurs in wild basil and its transfer to sweet basil is under way.
Miyake, Hiroshi
2016-05-01
C4 plants have evolved >60 times from their C3 ancestors. C4 photosynthesis requires a set of closely co-ordinated anatomical and biochemical characteristics. However, it is now recognized that the evolution of C4 plants requires fewer changes than had ever been considered, because of the genetic, biochemical and anatomical pre-conditions of C3 ancestors that were recruited into C4 photosynthesis. Therefore, the pre-conditions in C3 plants are now being actively investigated to clarify the evolutionary trajectory from C3 to C4 plants and to engineer C4 traits efficiently into C3 crops. In the present mini review, the anatomical characteristics of C3 and C4 plants are briefly reviewed and the importance of the bundle sheath for the evolution of C4 photosynthesis is described. For example, while the bundle sheath of C3 rice plants accumulates large amounts of starch in the developing leaf blade and at the lamina joint of the mature leaf, the starch sheath function is also observed during leaf development in starch accumulator grasses regardless of photosynthetic type. The starch sheath function of C3 plants is therefore also implicated as a possible pre-condition for the evolution of C4 photosynthesis. The phylogenetic relationships between the types of storage carbohydrates and of photosynthesis need to be clarified in the future. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
2009-12-01
other services for early UNIX systems at Bell labs. In many UNIX based systems, the field added to ‘etc/ passwd ’ file to carry GCOS ID information was...charset, and external. struct options_main { /* Option flags */ opt_flags flags; /* Password files */ struct list_main * passwd ; /* Password file...object PASSWD . It is part of several other data structures. struct PASSWD { int id; char *login; char *passwd_hash; int UID
Chen, Liang; Phillips, Andrew L.; Condon, Anthony G.; Parry, Martin A. J.; Hu, Yin-Gang
2013-01-01
Opportunities exist for replacing reduced height (Rht) genes Rht-B1b and Rht-D1b with alternative dwarfing genes, such as the gibberellin-responsive gene Rht12, for bread wheat improvement. However, a comprehensive understanding of the effects and mode of action of Rht12 is lacking. In the present study, the effects of Rht12 were characterized by analyzing its effects on seeding vigour, seedling roots, leaf and stem morphology, spike development and carbohydrate assimilation and distribution. This was carried out in the four genotypes of F2:3 lines derived from a cross between Ningchun45 and Karcagi (12) in two experiments of autumn sowing and spring sowing. Rht12 significantly decreased stem length (43%∼48% for peduncle) and leaf length (25%∼30% for flag leaf) while the thickness of the internode walls and width of the leaves were increased. Though the final plant stature was shortened (40%) by Rht12, the seedling vigour, especially coleoptile length and root traits at the seedling stage, were not affected adversely. Rht12 elongated the duration of the spike development phase, improved the proportion of spike dry weight at anthesis and significantly increased floret fertility (14%) in the autumn sowing experiment. However, Rht12 delayed anthesis date by around 5 days and even the dominant Vrn-B1 allele could not compensate this negative effect. Additionally, grain size was reduced with the ability to support spike development after anthesis decreased in Rht12 lines. Finally, grain yield was similar between the dwarf and tall lines in the autumn sowing experiment. Thus, Rht12 could substantially reduce plant height without altering seeding vigour and significantly increase spikelet fertility in the favourable autumn sowing environment. The successful utilization of Rht12 in breeding programs will require careful selection since it might delay ear emergence. Nonetheless, the potential exists for wheat improvement by using Rht12. PMID:23658622
2007-04-19
KENNEDY SPACE CENTER, FLA. -- The finishing touches are painted on the American flag that embellishes the southwest side of the Vehicle Assembly Building at NASA's Kennedy Space Center. The flag and the NASA logo, which is on the southeast side, have both been refreshed with new paint. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, which is known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. The building stands 525-feet tall. Photo credit: NASA/George Shelton
An Auto-flag Method of Radio Visibility Data Based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Dai, Hui-mei; Mei, Ying; Wang, Wei; Deng, Hui; Wang, Feng
2017-01-01
The Mingantu Ultrawide Spectral Radioheliograph (MUSER) has entered a test observation stage. After the construction of the data acquisition and storage system, it is urgent to automatically flag and eliminate the abnormal visibility data so as to improve the imaging quality. In this paper, according to the observational records, we create a credible visibility set, and further obtain the corresponding flag model of visibility data by using the support vector machine (SVM) technique. The results show that the SVM is a robust approach to flag the MUSER visibility data, and can attain an accuracy of about 86%. Meanwhile, this method will not be affected by solar activities, such as flare eruptions.
Diurnal changes in CN metabolism and response of rice seedlings to UV-B radiation.
Yun, Hyejin; Lim, Sunhyung; Kim, Yangmin X; Lee, Yejin; Lee, Seulbi; Lee, Deogbae; Park, Keewoong; Sung, Jwakyung
2018-03-13
Plants regulate a number of primary metabolites, including carbohydrates, organic acids, and amino acids, in response to UV-B radiation. Therefore, it is essential to understand the time-dependent response of rice plants to UV-B stress. This study focused on the response of plants to UV-B at different leaf developmental phases (emerging, growing, and maturing) in an attempt to fully comprehend the metabolic shift. We analyzed the expression levels of genes related to starch/sucrose metabolism in the leaf blades of rice seedlings (Oryza sativa L. "Saechuchenog") exposed to UV-B irradiation for short (1 day) and long terms (5 days) using quantitative real-time polymerase chain reaction. We also examined the diurnal variations in the contents of primary metabolites using an established GCTOF-MS (gas chromatography time of flight-mass spectrometry) method. The results showed that the levels of primary metabolites were largely dependent upon the diurnal rhythm and leaf developmental phase. The young leaves (sink) produced and accumulated starch rather than sucrose. The short-term (4 h, 1 day) UV-B exposure inhibited sucrose synthesis, which could be the first target of UV-B radiation. Following short- and long-term (5 days) exposure to UV-B radiation, the dynamic response of primary metabolites was evaluated. It was found that the content of carbohydrates decreased throughout the period of exposure to UV-B stress, especially in terms of sucrose concentration. However, the content of the majority of amino acids increased after an early decrease. Our data revealed that the metabolic response, as well as the gene expression, differed with the period (intensity) of exposure to UV-B radiation and with the phase of leaf development. These findings provide new insights for a better understanding of the metabolic response of a variety of plant species exposed to a wide range of UV-B radiation. Copyright © 2018. Published by Elsevier GmbH.
Dutilleul, Pierre; Han, Liwen; Smith, Donald L
2008-01-01
Light interception by the leaf canopy is a key aspect of plant photosynthesis, which helps mitigate the greenhouse effect via atmospheric CO(2) recycling. The relationship between plant light interception and leaf area was traditionally modelled with the Beer-Lambert law, until the spatial distribution of leaves was incorporated through the fractal dimension of leafless plant structure photographed from the side allowing maximum appearance of branches and petioles. However, photographs of leafless plants are two-dimensional projections of three-dimensional structures, and sampled plants were cut at the stem base before leaf blades were detached manually, so canopy development could not be followed for individual plants. Therefore, a new measurement and modelling approach were developed to explain plant light interception more completely and precisely, based on appropriate processing of computed tomography (CT) scanning data collected for developing canopies. Three-dimensional images of canopies were constructed from CT scanning data. Leaf volumes (LV) were evaluated from complete canopy images, and fractal dimensions (FD) were estimated from skeletonized leafless images. The experimental plant species is pyramidal cedar (Thuja occidentalis, Fastigiata). The three-dimensional version of the Beer-Lambert law based on FD alone provided a much better explanation of plant light interception (R(2) = 0.858) than those using the product LV*FD (0.589) or LV alone (0.548). While values of all three regressors were found to increase over time, FD in the Beer-Lambert law followed the increase in light interception the most closely. The delayed increase of LV reflected the appearance of new leaves only after branches had lengthened and ramified. The very strong correlation obtained with FD demonstrates that CT scanning data contain fundamental information about the canopy architecture geometry. The model can be used to identify crops and plantation trees with improved light interception and productivity.
Dutilleul, Pierre; Han, Liwen; Smith, Donald L.
2008-01-01
Background and Aims Light interception by the leaf canopy is a key aspect of plant photosynthesis, which helps mitigate the greenhouse effect via atmospheric CO2 recycling. The relationship between plant light interception and leaf area was traditionally modelled with the Beer–Lambert law, until the spatial distribution of leaves was incorporated through the fractal dimension of leafless plant structure photographed from the side allowing maximum appearance of branches and petioles. However, photographs of leafless plants are two-dimensional projections of three-dimensional structures, and sampled plants were cut at the stem base before leaf blades were detached manually, so canopy development could not be followed for individual plants. Therefore, a new measurement and modelling approach were developed to explain plant light interception more completely and precisely, based on appropriate processing of computed tomography (CT) scanning data collected for developing canopies. Methods Three-dimensional images of canopies were constructed from CT scanning data. Leaf volumes (LV) were evaluated from complete canopy images, and fractal dimensions (FD) were estimated from skeletonized leafless images. The experimental plant species is pyramidal cedar (Thuja occidentalis, Fastigiata). Key Results The three-dimensional version of the Beer–Lambert law based on FD alone provided a much better explanation of plant light interception (R2 = 0·858) than those using the product LV*FD (0·589) or LV alone (0·548). While values of all three regressors were found to increase over time, FD in the Beer–Lambert law followed the increase in light interception the most closely. The delayed increase of LV reflected the appearance of new leaves only after branches had lengthened and ramified. Conclusions The very strong correlation obtained with FD demonstrates that CT scanning data contain fundamental information about the canopy architecture geometry. The model can be used to identify crops and plantation trees with improved light interception and productivity. PMID:17981879
Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz
2015-10-01
UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d(-1)). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Flagging versus dragging as sampling methods for nymphal Ixodes scapularis (Acari: Ixodidae)
Rulison, Eric L.; Kuczaj, Isis; Pang, Genevieve; Hickling, Graham J.; Tsao, Jean I.; Ginsberg, Howard S.
2013-01-01
The nymphal stage of the blacklegged tick, Ixodes scapularis (Acari: Ixodidae), is responsible for most transmission of Borrelia burgdorferi, the etiologic agent of Lyme disease, to humans in North America. From 2010 to fall of 2012, we compared two commonly used techniques, flagging and dragging, as sampling methods for nymphal I. scapularis at three sites, each with multiple sampling arrays (grids), in the eastern and central United States. Flagging and dragging collected comparable numbers of nymphs, with no consistent differences between methods. Dragging collected more nymphs than flagging in some samples, but these differences were not consistent among sites or sampling years. The ratio of nymphs collected by flagging vs dragging was not significantly related to shrub density, so habitat type did not have a strong effect on the relative efficacy of these methods. Therefore, although dragging collected more ticks in a few cases, the numbers collected by each method were so variable that neither technique had a clear advantage for sampling nymphal I. scapularis.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-07
... the HP-API order entry protocol (HP-API) in order to qualify for the rates on Flags ZA and ZR. The... via FIX in order to qualify for the rates on Flags ZA (rebate of $0.0032 per share) and ZR (fee of $0... qualify for the rates on Flags ZA and ZR. The attestation requirement, as described above and in SR-EDGX...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
..., MM, RP, 3, or 4 and removal flags are defined as Flags BB, MT, N, W, PI, PR, or 6. Where a Member..., BB and PI where they satisfy the volume tier requirements for the Mega Tier in Footnote 1. Currently... removing liquidity and the rate for Flags N, W, 6, BB, and PI subject to the volume thresholds in Footnotes...
NASA Astrophysics Data System (ADS)
Pingel, Nickolas; Pisano, D. J.
2018-01-01
Phased Array Feeds (PAFs) represent the next revolution in radio astronomy instrumentation. I will present results from the latest commissioning run from the Focal L-Band Array for the Green Bank telescope (FLAG), which holds the current world record for PAF sensitivity. Since we are able to operate at system temperatures comparable with the traditional GBT single pixel L-Band feed, the increase in the field-of-view provided by the beamforming capabilities of PAFs results in a dramatic (a factor of 5) increase in survey speeds. In particular, FLAG can probe similar neutral hydrogen column density regimes over a 4 sq. deg region in 24.6 minutes as opposed to 4.1 hours in an equivalent single pixel map (excluding observing overhead). In addition to comparisons between data taken with FLAG and the single-pixel L-Band feed, I will also discuss the technical aspects of the observing procedure, data reduction, and the transition path for FLAG from an instrument that is principle-investigator run to one that is general use. These FLAG results provide a very encouraging outlook on how the GBT will continue to compete with current and planned radio telescope facilities.
Red eyes and red-flags: improving ophthalmic assessment and referral in primary care.
Kilduff, Caroline; Lois, Charis
2016-01-01
Up to five percent of primary care consultations are eye-related, yet 96% of General Practitioners (GPs) do not undergo postgraduate ophthalmology training. Most do not feel assured performing eye assessments. Some red eye conditions can become sight threatening, and often exhibit red-flag features. These features include moderate pain, photophobia, reduced visual acuity (VA), eye-trauma, or unilateral marked redness. The aim of this project was to improve primary care assessment and referral of patients presenting with red-flag features based on the NICE 'Red Eye' Clinical Knowledge Summary recommendations. Data was collected retrospectively from 139 red eye consultations. A practice meeting highlighted poor awareness of red-flag features, low confidence levels in eye assessments, and time-constraints during appointments. Interventions were based on feedback from staff. These included a primary care teaching session on red-flag features, a VA measurement tutorial, and provision of a red eye toolkit, including VA equipment, to each consultation room. At baseline, each patient had on average 0.9 red-flag features assessed. Only 36.0% (9/25) of patients with red-flag features were appropriately referred to same-day ophthalmology services. Following two improvement cycles, a significant improvement was seen in almost every parameter. On average, each patient had 2.7 red-flag features assessed (vs 0.9, p<0.001). VA was assessed in 55.6% of consultations (vs 7.9%, p<0.001), pain was quantified in 81.5% (vs 20.9%, p=0.005), eye-trauma or foreign-body (51.8% vs 8.6%, p<0.001), extent of redness was documented in 66.7% (vs 14.4%, p<0.001). Only photophobia remained poorly assessed (18.5% vs 14.4%, p=0.75). Following this, 75.0% (6/8) of patients were appropriately referred. This project reflected the literature regarding low confidence and inexperience amongst GPs when faced with ophthalmic conditions. Improvements in education are required to ensure accurate assessments can be undertaken in a time-constrained environment.
Rome III survey of irritable bowel syndrome among ethnic Malays
Lee, Yeong Yeh; Waid, Anuar; Tan, Huck Joo; Chua, Andrew Seng Boon; Whitehead, William E
2012-01-01
AIM: To survey irritable bowel syndrome (IBS) using Rome III criteria among Malays from the north-eastern region of Peninsular Malaysia. METHODS: A previously validated Malay language Rome III IBS diagnostic questionnaire was used in the current study. A prospective sample of 232 Malay subjects (80% power) was initially screened. Using a stratified random sampling strategy, a total of 221 Malay subjects (112 subjects in a “full time job” and 109 subjects in “no full time job”) were recruited. Subjects were visitors (friends and relatives) within the hospital compound and were representative of the local community. Red flags and psychosocial alarm symptoms were also assessed in the current study using previously translated and validated questionnaires. Subjects with IBS were sub-typed into constipation-predominant, diarrhea-predominant, mixed type and un-subtyped. Univariable and multivariable analyses were used to test for association between socioeconomic factors and presence of red flags and psychosocial alarm features among the Malays with IBS. RESULTS: IBS was present in 10.9% (24/221), red flags in 22.2% (49/221) and psychosocial alarm features in 9.0% (20/221). Red flags were more commonly reported in subjects with IBS (83.3%) than psychosocial alarm features (20.8%, P < 0.001). Subjects with IBS were older (mean age 41.4 years vs 36.9 years, P = 0.08), but no difference in gender was noted (P = 0.4). Using univariable analysis, IBS was significantly associated with a tertiary education, high individual income above RM1000, married status, ex-smoker and the presence of red flags (all P < 0.05). In multiple logistic regression analysis, only the presence of red flags was significantly associated with IBS (odds ratio: 0.02, 95%CI: 0.004-0.1, P < 0.001). The commonest IBS sub-type was mixed type (58.3%), followed by constipation-predominant (20.8%), diarrhea-predominant (16.7%) and un-subtyped (4.2%). Four of 13 Malay females (30.8%) with IBS also had menstrual pain. Most subjects with IBS had at least one red flag (70.8%), 12.5% had two red flags and 16.7% with no red flags. The commonest red flag was a bowel habit change in subjects > 50 years old and this was reported by 16.7% of subjects with IBS. CONCLUSION: Using the Rome III criteria, IBS was common among ethnic Malays from the north-eastern region of Peninsular Malaysia. PMID:23197894
Taketa, Shin; Mascher, Martin; Yuo, Takahisa; Beier, Sebastian; Taudien, Stefan; Morgante, Michele
2016-01-01
Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226
A novel ethylene responsive factor CitERF13 plays a role in photosynthesis regulation.
Xie, Xiu-Lan; Xia, Xiao-Jian; Kuang, Sheng; Zhang, Xi-Li; Yin, Xue-Ren; Yu, Jing-Quan; Chen, Kun-Song
2017-03-01
Ethylene responsive factors (ERFs) act as critical downstream components of the ethylene signalling pathway in regulating plant development and stress responses. However little is known about its role in regulation of photosynthesis. Here, we identified an ethylene-inducible ERF gene in citrus, CitERF13. Transient over-expression of CitERF13 in N. tabacum leaves, resulted in a significant decrease in net photosynthetic rate. Closer examination of photosynthetic activity of PSII and PSI indicated that CitERF13 overexpression led to declines of F v /F m , Y(II) and Y(I). However, change in NPQ was less pronounced. CitERF13 overexpression also significantly reduced V c,max , J max and AQY, indicating inhibition of the Calvin cycle. The expression of photosynthesis-related genes was suppressed to a variable extent in leaf blades transiently over-expressing CitERF13. CitERF13 transient overexpression in tobacco or citrus both resulted in a decline of Chlorophyll content and CitERF13 overexpressing tobacco leaf disc was more susceptible to chlorosis in response to MV-mediated oxidative stress. The results suggest that CitERF13 is potentially involved in suppressing photosynthesis through multiple pathways, for instance, inhibiting photochemical activity of photosynthesis, CO 2 carboxylation capacity and chlorophyll metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Rocha, Ledyane D; da Costa, Gustavo M; Gehlen, Günther; Droste, Annette; Schmitt, Jairo L
2014-09-01
Plants growing in environments with different atmospheric conditions may present changes in the morphometric parameters of their leaves. Microgramma squamulosa (Kaulf.) de la Sota is a neotropical epiphytic fern found in impacted environments. The aims of this study were to quantitatively compare structural characteristics of leaves in areas with different air quality conditions, and to identify morphometric parameters that are potential indicators of the effects of pollution on these plants. Fertile and sterile leaves growing on isolated trees were collected from an urban (Estância Velha) and a rural (Novo Hamburgo) environment, in Rio Grande do Sul, Brazil. For each leaf type, macroscopic and microscopic analyses were performed on 192 samples collected in each environment. The sterile and fertile leaves showed significantly greater thickness of the midrib and greater vascular bundle and leaf blade areas in the rural environment, which is characterized by less air pollution. The thickness of the hypodermis and the stomatal density of the fertile leaves were greater in the urban area, which is characterized by more air pollution. Based on the fact that significant changes were found in the parameters of both types of leaves, which could possibly be related to air pollutants, M. squamulosa may be a potential bioindicator.
Adaptive Adjustment in Taraxacum Officinale Wigg. in the Conditions of Overburden Dump
NASA Astrophysics Data System (ADS)
Legoshchina, Olga; Egorova, Irina; Neverova, Olga
2017-11-01
Morphological and anatomical features of the leaves and roots of Taraxacum officinale Wigg., growing under the conditions of the rocky dump of the Kedrovsky coal mine of the Kemerovo region, were studied. It was revealed that the specific environmental conditions of the dump cause morphological and anatomical changes in the leaves and roots of the dandelion. At the level of morphology, a decrease in the average leaf area, a thickening of leaf blades, a tendency to decrease the number of leaves in the rosette, a significant decrease in the mass and length of the roots. At the level of the anatomical structure of the leaves, there is a significant increase in the thickness of the mesophyll, a tendency to decrease the thickness of the tissues of the upper and lower epidermis, a decrease in the number of cells in 1 mm2 and an increase in the size of stomata in the tissues of the lower and upper epidermis, a decrease in the number of stomata by 1 mm2 and a stomatal index on the upper epidermis. At the level of the anatomical structure of the roots, the radius of the root decreases, the radius of the cortex and phloem, the diameter of the xylem.
The Savannah River Site's Groundwater Monitoring Program: Second quarter 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, C.D.
1992-10-07
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria sectionmore » of this document. Analytical results from second quarter 1992 are listed in this report.« less
Effect of helicopter blade dynamics on blade aerodynamic and structural loads
NASA Technical Reports Server (NTRS)
Heffernan, Ruth M.
1987-01-01
The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main-rotor helicopter using a comprehensive rotorcraft analysis (CAMRAD) and flight-test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from a rigid-blade analysis and an elastic-blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack such as elastic blade twist, blade flap rate, blade slope velocity, and inflow are examined as a function of blade mode. Elastic blade motion changed blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. A correlation study comparing predictions from several elastic-blade analyses with flight-test data revealed that an elastic-blade model consisting of only three elastic bending modes (first and second flap and first lag), and two elastic torsion modes was sufficient for good correlation.
Blade counting tool with a 3D borescope for turbine applications
NASA Astrophysics Data System (ADS)
Harding, Kevin G.; Gu, Jiajun; Tao, Li; Song, Guiju; Han, Jie
2014-07-01
Video borescopes are widely used for turbine and aviation engine inspection to guarantee the health of blades and prevent blade failure during running. When the moving components of a turbine engine are inspected with a video borescope, the operator must view every blade in a given stage. The blade counting tool is video interpretation software that runs simultaneously in the background during inspection. It identifies moving turbine blades in a video stream, tracks and counts the blades as they move across the screen. This approach includes blade detection to identify blades in different inspection scenarios and blade tracking to perceive blade movement even in hand-turning engine inspections. The software is able to label each blade by comparing counting results to a known blade count for the engine type and stage. On-screen indications show the borescope user labels for each blade and how many blades have been viewed as the turbine is rotated.
Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr
2016-08-01
Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.
CD109 is a component of exosome secreted from cultured cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakakura, Hiroki; Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya; Mii, Shinji
Exosomes are 50–100-nm-diameter membrane vesicles released from various types of cells. Exosomes retain proteins, mRNAs and miRNAs, which can be transported to surrounding cells. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein, and is released from the cell surface to the culture medium in vitro. Recently, it was reported that secreted CD109 from the cell surface downregulates transforming growth factor-β signaling in human keratinocytes. In this study, we revealed that CD109 is a component of the exosome in conditioned medium. FLAG-tagged human CD109 (FLAG-CD109) in conditioned medium secreted from HEK293 cells expressing FLAG-CD109 (293/FLAG-CD109) was immunoprecipitated with anti-FLAG affinity gel, and the co-precipitated proteins weremore » analyzed by mass spectrometry and western blotting. Exosomal proteins were associated with CD109. We revealed the presence of CD109 in exosome fractions from conditioned medium of 293/FLAG-CD109. Moreover, the localization of CD109 in the exosome was demonstrated using immuno-electron microscopy. When we used HEK293 cells expressing FLAG-tagged truncated CD109, which does not contain the C-terminal region, the association of truncated CD109 with exosomes was not detected in conditioned medium. These findings indicate that CD109 is an exosomal protein and that the C-terminal region of CD109 is required for its presence in the exosome. - Highlights: • CD109 is an exosomal protein. • The C-terminal region of CD109 is required for its presence in the exosome. • Part of the secreted CD109 is present in the exosome-free fraction in the conditioned medium.« less
Rolling Band Artifact Flagging in the Kepler Data Pipeline
NASA Astrophysics Data System (ADS)
Clarke, Bruce; Kolodziejczak, Jeffery J; Caldwell, Douglas A.
2014-06-01
Instrument-induced artifacts in the raw Kepler pixel data include time-varying crosstalk from the fine guidance sensor (FGS) clock signals, manifestations of drifting moiré pattern as locally correlated nonstationary noise and rolling bands in the images. These systematics find their way into the calibrated pixel time series and ultimately into the target flux time series. The Kepler pipeline module Dynablack models the FGS crosstalk artifacts using a combination of raw science pixel data, full frame images, reverse-clocked pixel data and ancillary temperature data. The calibration module (CAL) uses the fitted Dynablack models to remove FGS crosstalk artifacts in the calibrated pixels by adjusting the black level correction per cadence. Dynablack also detects and flags spatial regions and time intervals of strong time-varying black-level. These rolling band artifact (RBA) flags are produced on a per row per cadence basis by searching for transit signatures in the Dynablack fit residuals. The Photometric Analysis module (PA) generates per target per cadence data quality flags based on the Dynablack RBA flags. Proposed future work includes using the target data quality flags as a basis for de-weighting in the Presearch Data Conditioning (PDC), Transiting Planet Search (TPS) and Data Validation (DV) pipeline modules. We discuss the effectiveness of RBA flagging for downstream users and illustrate with some affected light curves. We also discuss the implementation of Dynablack in the Kepler data pipeline and present results regarding the improvement in calibrated pixels and the expected improvement in cotrending performance as a result of including FGS corrections in the calibration. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.
Consumer preferences for front-of-pack calories labelling.
van Kleef, Ellen; van Trijp, Hans; Paeps, Frederic; Fernández-Celemín, Laura
2008-02-01
In light of the emerging obesity pandemic, front-of-pack calories labels may be an important tool to assist consumers in making informed healthier food choices. However, there is little prior research to guide key decisions on whether caloric content should be expressed in absolute terms or relative to recommended daily intake, whether it should be expressed in per serving or per 100 g and whether the information should be further brought alive for consumers in terms of what the extra calorie intake implies in relation to activity levels. The present study aimed at providing more insight into consumers' appreciation of front-of-pack labelling of caloric content of food products and their specific preferences for alternative execution formats for such information in Europe. For this purpose, eight executions of front-of-pack calorie flags were designed and their appeal and information value were extensively discussed with consumers through qualitative research in four different countries (Germany, The Netherlands, France and the UK). The results show that calories are well-understood and that participants were generally positive about front-of-pack flags, particularly when flags are uniform across products. The most liked flags are the simpler flags depicting only the number of calories per serving or per 100 g, while more complex flags including references to daily needs or exercise and the flag including a phrase referring to balanced lifestyle were least preferred. Some relevant differences between countries were observed. Although participants seem to be familiar with the notion of calories, they do not seem to fully understand how to apply them. From the results, managerial implications for the design and implementation of front-of-pack calorie labelling as well as important directions for future research are discussed.
Zhu, Cansheng; Xiong, Zhaojun; Chen, Xiaohong; Lu, Zhengqi; Zhou, Guoyu; Wang, Dunjing; Bao, Jian; Hu, Xueqiang
2011-08-01
We aimed to investigate the regulation and contribution of vascular endothelial growth factor (VEGF) and sFlt-1(1-3) to human monocytic THP-1 migration. Ad-sFlt-1/FLAG, a recombinant adenovirus carrying the human sFlt-1(1-3) (the first three extracellular domains of FLT-1, the hVEGF receptor-1) gene, was constructed. L929 cells were infected with Ad-sFlt-1/FLAG and the expression of sFlt-1 was detected by immunofluorescent assay and ELISA. Corning(®) Transwell(®) Filter Inserts containing polyethylene terephthalate (PET) membranes with pore sizes of 3 μm were used as an experimental model to simulate THP-1 migration. Five VEGF concentrations (0, 0.1, 1, 10 and 100 ng/ml), four concentrations of sFlt-1(1-3)/FLAG expression supernatants (0.1, 1, 10 and 100 ng/ml), and monocyte chemoattractant protein-1 (MCP-1, 10 ng/ml) were used to test the ability of THP-1 cells to migrate through PET membranes. The sFlt-1(1-3) gene was successfully recombined into Ad-sFlt-1/FLAG. sFlt-1(1-3) was expressed in L929 cells transfected with Ad-sFlt-1/FLAG. THP-1 cell migration increased with increasing concentrations of VEGF, while cell migration decreased with increasing concentrations of sFlt1(1-3)/FLAG. sFlt1(1-3)/FLAG had no effect on MCP-1-induced cell migration. This study demonstrated that VEGF is able to elicit a migratory response in THP-1 cells, and that sFlt-1(1-3) is an effective inhibitor of THP-1 migration towards VEGF.
Consumer preferences for front-of-pack calories labelling
van Kleef, Ellen; van Trijp, Hans; Paeps, Frederic; Fernández-Celemín, Laura
2008-01-01
Objective In light of the emerging obesity pandemic, front-of-pack calories labels may be an important tool to assist consumers in making informed healthier food choices. However, there is little prior research to guide key decisions on whether caloric content should be expressed in absolute terms or relative to recommended daily intake, whether it should be expressed in per serving or per 100 g and whether the information should be further brought alive for consumers in terms of what the extra calorie intake implies in relation to activity levels. The present study aimed at providing more insight into consumers’ appreciation of front-of-pack labelling of caloric content of food products and their specific preferences for alternative execution formats for such information in Europe. Design For this purpose, eight executions of front-of-pack calorie flags were designed and their appeal and information value were extensively discussed with consumers through qualitative research in four different countries (Germany, The Netherlands, France and the UK). Results The results show that calories are well-understood and that participants were generally positive about front-of-pack flags, particularly when flags are uniform across products. The most liked flags are the simpler flags depicting only the number of calories per serving or per 100 g, while more complex flags including references to daily needs or exercise and the flag including a phrase referring to balanced lifestyle were least preferred. Some relevant differences between countries were observed. Although participants seem to be familiar with the notion of calories, they do not seem to fully understand how to apply them. Conclusion From the results, managerial implications for the design and implementation of front-of-pack calorie labelling as well as important directions for future research are discussed. PMID:17601362
Challenges to Public Order and the Seas
2014-03-01
these excessive claims will ever be rolled back. Worse, they could be strengthened in a game of one- upmanship. A laissez faire approach to flag...to the rule of law and a basis for the conduct of af- fairs among nations. What is necessary for an effective system of ocean governance? This...gain an increased market share as reputable national flags decline. Depending on which FOC is involved, there is a fair probability that the flag state
Divergent receiver responses to components of multimodal signals in two foot-flagging frog species.
Preininger, Doris; Boeckle, Markus; Sztatecsny, Marc; Hödl, Walter
2013-01-01
Multimodal communication of acoustic and visual signals serves a vital role in the mating system of anuran amphibians. To understand signal evolution and function in multimodal signal design it is critical to test receiver responses to unimodal signal components versus multimodal composite signals. We investigated two anuran species displaying a conspicuous foot-flagging behavior in addition to or in combination with advertisement calls while announcing their signaling sites to conspecifics. To investigate the conspicuousness of the foot-flagging signals, we measured and compared spectral reflectance of foot webbings of Micrixalus saxicola and Staurois parvus using a spectrophotometer. We performed behavioral field experiments using a model frog including an extendable leg combined with acoustic playbacks to test receiver responses to acoustic, visual and combined audio-visual stimuli. Our results indicated that the foot webbings of S. parvus achieved a 13 times higher contrast against their visual background than feet of M. saxicola. The main response to all experimental stimuli in S. parvus was foot flagging, whereas M. saxicola responded primarily with calls but never foot flagged. Together these across-species differences suggest that in S. parvus foot-flagging behavior is applied as a salient and frequently used communicative signal during agonistic behavior, whereas we propose it constitutes an evolutionary nascent state in ritualization of the current fighting behavior in M. saxicola.
NASA Astrophysics Data System (ADS)
Yu, Yuelong; Liu, Yingzheng; Chen, Yujia
2018-04-01
The influence of an inverted flag's length-to-channel-width ratio (C* = L/W) on its oscillating behavior in a channel flow and the resultant vortex dynamics and heat transfer are determined experimentally. Three systems with C* values of 0.125, 0.250, and 0.375 were chosen for comparison. The interaction of highly unsteady flow with the inverted flag is measured with time-resolved particle image velocimetry. Variations in the underlying flow physics are discussed in terms of the statistical flow quantities, flag displacement, phase-averaged flow field, and vortex dynamics. The results show that the increase in C* shifts the occurrence of the flapping regime at high dimensionless bending stiffness. With the flag in the flapping region, three distinct vortex dynamics—the von Kármán vortex street, the G mode, and the singular mode—are identified at C* values of 0.375, 0.250, and 0.125, respectively. Finally, the heat transfer enhancement from the self-oscillating inverted flag is measured to serve as complementary information to quantify the cause-and-effect relationship between vortex dynamics and wall heat transfer. The increase in C* strongly promotes wall heat removal because disruption of the boundary layer by the energetic vortices is substantially intensified. Among all systems, wall heat transfer removal is most efficient at the intermediate C* value of 0.250.
NASA Astrophysics Data System (ADS)
Shoele, Kourosh; Mittal, Rajat
2015-11-01
Piezoelectric flexible flags can be used to continuously generate energy for small-scale sensor used in a wide variety of applications ranging from measurement/monitoring of environmental conditions (outdoors or indoors) to in-situ tracking of wild animals. Here, we study the energy harvesting performance as well as the flow-structure interaction of an inverted piezoelectric flag. We use a coupled fluid-structure-electric solver to examine the dynamic response of the inverted flag as well as the associated vortical characteristics with different inertia and bending stiffness. Simulations indicate that large amplitude vibrations can be achieved over a large range of parameters over which lock-on between the flag flutter and the intrinsic wake shedding occurs. The effects of initial inclination of the flag to the prevailing flow as well as Reynolds number of the flow are explored, and the effect of piezoelectric material parameters on the energy harvesting performance of this flutter state is examined in detail. The maximum energy efficiency occurs when there is a match between the intrinsic timescales of flutter and the piezoelectric circuit. The simulations are used to formulate a scaling law that could be used to predict the energy harvesting performance of such devices. The support for this study comes from AFSOR, NSF, EPRI and Johns Hopkins E2SHI Seed Grant.
Zilio, Nicola; Boddy, Michael N
2017-03-01
The tandem affinity purification (TAP) method uses an epitope that contains two different affinity purification tags separated by a site-specific protease site to isolate a protein rapidly and easily. Proteins purified via the TAP tag are eluted under mild conditions, allowing them to be used for structural and biochemical analyses. The original TAP tag contains a calmodulin-binding peptide and the IgG-binding domain from protein A separated by a tobacco etch virus (TEV) protease cleavage site. After capturing the Protein A epitope on an IgG resin, bound proteins are released by incubation with the TEV protease and then isolated on a calmodulin matrix in the presence of calcium; elution from this resin is achieved by chelating calcium with EGTA. However, because the robustness of the calmodulin-binding step in this procedure is highly variable, we replaced the calmodulin-binding peptide with three copies of the FLAG epitope, (3× FLAG)-TEV-Protein A, which can be isolated using an anti-FLAG resin. Elution from this matrix is achieved in the presence of an excess of a 3× FLAG peptide. In addition to allowing proteins to be released under mild conditions, elution by the 3× FLAG peptide adds an extra layer of specificity to the TAP procedure, because it liberates only FLAG-tagged proteins. © 2017 Cold Spring Harbor Laboratory Press.
Code of Federal Regulations, 2011 CFR
2011-10-01
... a vest, shirt, or jacket of a color appropriate for daytime flagging such as orange, yellow, strong.... For nighttime flagging, similar outside garments shall be retro reflective. Acceptable hand signal...
Effect of Helicopter Blade Dynamics on Blade Aerodynamic and Structural Loads
NASA Technical Reports Server (NTRS)
Heffernan, Ruth M.
1987-01-01
The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main- rotor helicopter using both a comprehensive rotorcraft analysis (CAMRAD) and night test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from both a rigid blade analysis and an elastic blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack, such as elastic blade twist, blade nap rate, blade slope velocity, and inflow, are examined as a function of blade mode. Elastic blade motion affects the blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. The modal analysis of the predicted blade structural loads suggested that five elastic bending deg of freedom (four flap and one lag) and three elastic torsion deg of freedom contributed to calculations of the blade structural loads. However, when structural bending load predictions from several elastic blade analyses were compared with flight test data, an elastic blade model consisting of only three elastic bending modes (first and second flap, and first lag), and two elastic torsion modes was found to be sufficient for maximum correlation.
NASA Astrophysics Data System (ADS)
Crowe, Jacob Dillon
Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study, alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.
The Savannah River Site's Groundwater Monitoring Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria sectionmore » of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-12-31
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria sectionmore » of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
Flagging threshold optimization for manual blood smear review in primary care laboratory.
Bihl, Pierre-Adrien
2018-04-01
Manual blood smear review is required when an anomaly detected by the automated hematologic analyzer triggers a flag. Our will through this study is to optimize these flagging thresholds for manual slide review in order to limit workload, while insuring clinical care through no extra false-negative. Flagging causes of 4,373 samples were investigated by manual slide review, after having been run on ADVIA 2120i. A set of 6 user-adjustments is proposed. By implementing all recommendations that we made, false-positive rate falls from 81.8% to 58.6%, while PPV increases from 18.2% to 23.7%. Hence, use of such optimized thresholds enables us to maximize efficiency without altering clinical care, but each laboratory should establish its own criteria to take into consideration local distinctive features.
Adaptor assembly for coupling turbine blades to rotor disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Crespo, Andres Jose; Delvaux, John McConnell
2014-09-23
An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor rootmore » of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.« less
Trikha, V; Saini, P; Mathur, P; Agarwal, A; Kumar, S V; Choudhary, B
2016-04-01
To compare blade cultures in surgery for closed fracture using a single or double blade technique to determine whether the current practice of double blade technique is justified. 155 men and 29 women aged 20 to 60 (mean, 35) years who underwent surgery for closed fracture with healthy skin at the incision site were included. Patients were block randomised to the single (n=92) or double (n=92) blade technique. Blades were sent for bacteriological analysis. Outcome measures were early surgical site infection (SSI) within 30 days and cultures from the blades. The 2 groups were comparable in baseline characteristics. In the single blade group, 6 surgical blades and 2 control blades showed positive cultures; 4 patients developed SSI, but only one had a positive culture from the surgical blade (with different organism isolated from the wound culture). In the double blade group, 6 skin blades, 7 deep blades, and 0 control blade showed positive culture; only 2 patients had the same bacteria grown from both skin and deep blade. Five patients developed SSI, but only one patient had a positive culture from the deep blade (with different organism isolated from the wound culture). The difference in incidence of culture-positive blade or SSI between the 2 groups was not significant. The relative risk of SSI in the single blade group was 0.8. Positive blade culture was not associated with SSI in the single or double blade group. The practice of changing blade following skin incision has no effect on reducing early SSI in surgery for closed fracture in healthy patients with healthy skin.
Targeting Androgen Receptor by Lysosomal Degradation in Prostate Cancer
2015-11-01
transport of TFEB, Autophagy 8 (2012) 903-914. [7] J. Brugarolas, K. Lei , R.L. Hurley, B.D. Manning, J.H. Reiling, E. Hafen, L.A. Witters, L.W. Ellisen...chromatography ~ anti-FLAG immunoprecipitation B D EWS pos~t~on mass pept~ de 416-429 1449 .66 GDATVSYEDPPTAK 571-594 2289.08 GGPGGMRGGRGGLMDRGGPGGMFR...vector 1 2 3 -- FLAG-His EWS-Fii-1 4 5 6 - FLAG tubulin c RNA helicase A pos~t~on mass pept~ de 121-141 2161 .97 AENNSEVGASGYGVPGPTWDR 200-209
Analytic Simulation of the Performance of Mobile Maintenance Contact Teams
1985-05-01
RECTANGULAR THE CUSTOMERS, REQUIRING MAINT SERVICE, ARE ASSUMED DISTRIBUTED WITHIN A RECTANGLE WITH DIMENSIONS ARANGE ’BY BRANGE . THE POPULATION OF...AND SERVE A CUSTOMER. ’INPUTS: ’FLAG.DIST ’FLAG.FIFO I PR I NT ARANGE ’ BRANGE SPEED 4 POP ’NSERVE MTBF MTTR AN INTEGER FLAG TO INDICATE...TEAMlS). 81 READ ARANGE 32 PRINT ’I LINE THUS INPUT THE DEPTH CCROSS-FRONTAL; DIMENSION (KM; OF THE AREA OF THE TEAMiS;. 84 READ BRANGE
The Derivation of Sink Functions of Wheat Organs using the GREENLAB Model
Kang, Mengzhen; Evers, Jochem B.; Vos, Jan; de Reffye, Philippe
2008-01-01
Background and Aims In traditional crop growth models assimilate production and partitioning are described with empirical equations. In the GREENLAB functional–structural model, however, allocation of carbon to different kinds of organs depends on the number and relative sink strengths of growing organs present in the crop architecture. The aim of this study is to generate sink functions of wheat (Triticum aestivum) organs by calibrating the GREENLAB model using a dedicated data set, consisting of time series on the mass of individual organs (the ‘target data’). Methods An experiment was conducted on spring wheat (Triticum aestivum, ‘Minaret’), in a growth chamber from, 2004 to, 2005. Four harvests were made of six plants each to determine the size and mass of individual organs, including the root system, leaf blades, sheaths, internodes and ears of the main stem and different tillers. Leaf status (appearance, expansion, maturity and death) of these 24 plants was recorded. With the structures and mass of organs of four individual sample plants, the GREENLAB model was calibrated using a non-linear least-square-root fitting method, the aim of which was to minimize the difference in mass of the organs between measured data and model output, and to provide the parameter values of the model (the sink strengths of organs of each type, age and tiller order, and two empirical parameters linked to biomass production). Key Results and Conclusions The masses of all measured organs from one plant from each harvest were fitted simultaneously. With estimated parameters for sink and source functions, the model predicted the mass and size of individual organs at each position of the wheat structure in a mechanistic way. In addition, there was close agreement between experimentally observed and simulated values of leaf area index. PMID:18045794
Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity.
Klich
2000-11-01
Elaeagnus angustifolia (Russian olive) is a Eurasian tree that has become naturalized and has invaded zones along watercourses in many arid and semiarid regions of the world. These habitats are characterized by vertical environmental gradients, thus trees must develop some plasticity to adapt to the wide range of site conditions. This study was undertaken to test the hypothesis that variations in leaf anatomy and morphology of E. angustifolia reflect their adaptability to the differences in the microclimate that occur within the canopy of single trees. Foliar architecture, blade and petiole epidermal and internal anatomy were examined in leaves at different canopy positions and related to environmental conditions. Upper sun-leaves are exposed to higher solar irradiance and lower air humidity and are smaller, more slender and thicker than the lower, half-exposed and shade-leaves. Color varies between the leaves at different levels, from silvery grey-green in the upper strata, to dark green in the lower one. Bicolor is more evident in half-exposed and shaded leaves. When compared with the lower half-exposed and shade-leaves, the upper leaves of E. angustifolia have a greater areole density, a higher mesophyll proportion and stomatal density. Trichomes are multicellular, pedestalled, stellate-branched or peltate and their form and density can be associated with leaf color and appearance. The slender petioles of the upper leaves have proportionally more epidermis, collenchyma and phloem and less parenchyma and xylem than those of lower leaves, when observed in transverse sections. Foliar morphological and anatomical variability in E. angustifolia may be considered an adaptive advantage that enables leaves to develop and function in habitats marked by strong variations of solar radiation, air temperature and humidity.
Jiang, Chang-Jie; Shimono, Masaki; Maeda, Satoru; Inoue, Haruhiko; Mori, Masaki; Hasegawa, Morifumi; Sugano, Shoji; Takatsuji, Hiroshi
2009-07-01
Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (>or=2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants.
NASA Technical Reports Server (NTRS)
Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)
1997-01-01
Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.
Red eyes and red-flags: improving ophthalmic assessment and referral in primary care
Kilduff, Caroline; Lois, Charis
2016-01-01
Up to five percent of primary care consultations are eye-related, yet 96% of General Practitioners (GPs) do not undergo postgraduate ophthalmology training. Most do not feel assured performing eye assessments. Some red eye conditions can become sight threatening, and often exhibit red-flag features. These features include moderate pain, photophobia, reduced visual acuity (VA), eye-trauma, or unilateral marked redness. The aim of this project was to improve primary care assessment and referral of patients presenting with red-flag features based on the NICE ‘Red Eye’ Clinical Knowledge Summary recommendations. Data was collected retrospectively from 139 red eye consultations. A practice meeting highlighted poor awareness of red-flag features, low confidence levels in eye assessments, and time-constraints during appointments. Interventions were based on feedback from staff. These included a primary care teaching session on red-flag features, a VA measurement tutorial, and provision of a red eye toolkit, including VA equipment, to each consultation room. At baseline, each patient had on average 0.9 red-flag features assessed. Only 36.0% (9/25) of patients with red-flag features were appropriately referred to same-day ophthalmology services. Following two improvement cycles, a significant improvement was seen in almost every parameter. On average, each patient had 2.7 red-flag features assessed (vs 0.9, p<0.001). VA was assessed in 55.6% of consultations (vs 7.9%, p<0.001), pain was quantified in 81.5% (vs 20.9%, p=0.005), eye-trauma or foreign-body (51.8% vs 8.6%, p<0.001), extent of redness was documented in 66.7% (vs 14.4%, p<0.001). Only photophobia remained poorly assessed (18.5% vs 14.4%, p=0.75). Following this, 75.0% (6/8) of patients were appropriately referred. This project reflected the literature regarding low confidence and inexperience amongst GPs when faced with ophthalmic conditions. Improvements in education are required to ensure accurate assessments can be undertaken in a time-constrained environment. PMID:27493748
Alter, Scott M; Haim, Eithan D; Sullivan, Alex H; Clayton, Lisa M
2018-02-17
Direct laryngoscopy can be performed using curved or straight blades, and providers usually choose the blade they are most comfortable with. However, curved blades are anecdotally thought of as easier to use than straight blades. We seek to compare intubation success rates of paramedics using curved versus straight blades. Design: retrospective chart review. hospital-based suburban ALS service with 20,000 annual calls. prehospital patients with any direct laryngoscopy intubation attempt over almost 9years. First attempt and overall success rates were calculated for attempts with curved and straight blades. Differences between the groups were calculated. 2299 patients were intubated by direct laryngoscopy. 1865 had attempts with a curved blade, 367 had attempts with a straight blade, and 67 had attempts with both. Baseline characteristics were similar between groups. First attempt success was 86% with a curved blade and 73% with a straight blade: a difference of 13% (95% CI: 9-17). Overall success was 96% with a curved blade and 81% with a straight blade: a difference of 15% (95% CI: 12-18). There was an average of 1.11 intubation attempts per patient with a curved blade and 1.13 attempts per patient with a straight blade (2% difference, 95% CI: -3-7). Our study found a significant difference in intubation success rates between laryngoscope blade types. Curved blades had higher first attempt and overall success rates when compared to straight blades. Paramedics should consider selecting a curved blade as their tool of choice to potentially improve intubation success. Copyright © 2018 Elsevier Inc. All rights reserved.
2010-07-04
ISS024-E-007376 (3 July 2010) --- NASA astronauts Shannon Walker and Doug Wheelock, both Expedition 24 flight engineers, pose for a photo with an American flag while aboard the International Space Station.
Reconstruction method for running shape of rotor blade considering nonlinear stiffness and loads
NASA Astrophysics Data System (ADS)
Wang, Yongliang; Kang, Da; Zhong, Jingjun
2017-10-01
The aerodynamic and centrifugal loads acting on the rotating blade make the blade configuration deformed comparing to its shape at rest. Accurate prediction of the running blade configuration plays a significant role in examining and analyzing turbomachinery performance. Considering nonlinear stiffness and loads, a reconstruction method is presented to address transformation of a rotating blade from cold to hot state. When calculating blade deformations, the blade stiffness and load conditions are updated simultaneously as blade shape varies. The reconstruction procedure is iterated till a converged hot blade shape is obtained. This method has been employed to determine the operating blade shapes of a test rotor blade and the Stage 37 rotor blade. The calculated results are compared with the experiments. The results show that the proposed method used for blade operating shape prediction is effective. The studies also show that this method can improve precision of finite element analysis and aerodynamic performance analysis.
Articulated limiter blade for a tokamak fusion reactor
Doll, D.W.
1982-10-21
A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.
Articulated limiter blade for a tokamak fusion reactor
Doll, David W.
1985-01-01
A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.
Structural tailoring of engine blades (STAEBL) user's manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1985-01-01
This User's Manual contains instructions and demonstration case to prepare input data, run, and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.
APOLLO 17 - FLAG DEDICATION - JSC
1974-01-15
S74-15520 --- Left to right Gene Kranz, Gene Cernan, Karla Garnuch, Harrison Schmitt, George Abbey, and Sigurd A. Sjoberg watching the dedication of the Apollo 17 flag to the Mission Control Center. Photo credit: NASA
Interior detail of platform in main hall, with desk, flag, ...
Interior detail of platform in main hall, with desk, flag, and banners, facing south - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA
NASA Technical Reports Server (NTRS)
Katsaros, Kristina B.; Bhatti, Iftekhar; Mcmurdie, Lynn A.; Patty, Grant W.
1989-01-01
This paper describes some basic research techniques and algorithms developed to diagnose fronts in cyclonic storms over the ocean with data from satellite-borne microwave radiometers. Methods are developed for flagging strong gradients in integrated atmospheric water vapor and the presence of rain by using data from the SSMR on board the polar orbiting Seasat and Nimbus-7 satellites. Examination of 65 frontal systems showed that the water vapor gradient flag correctly identified 86 percent of the fronts, while the precipitation flagged 91 percent. The two types of flags emphasize different portions of the cyclone and are therefore complementary. Ultimately, these techniques are intended for operational use with data from the Special Sensor Microwave Imager which was launched in June 1987 on a satellite in the Defense Meteorological Satellite Program (DMSP).
Pavelko, Michael T.
2010-01-01
The water-level database for the Death Valley regional groundwater flow system in Nevada and California was updated. The database includes more than 54,000 water levels collected from 1907 to 2007, from more than 1,800 wells. Water levels were assigned a primary flag and multiple secondary flags that describe hydrologic conditions and trends at the time of the measurement and identify pertinent information about the well or water-level measurement. The flags provide a subjective measure of the relative accuracy of the measurements and are used to identify which water levels are appropriate for calculating head observations in a regional transient groundwater flow model. Included in the report appendix are all water-level data and their flags, selected well data, and an interactive spreadsheet for viewing hydrographs and well locations.
1980-09-01
WFLOR(2,3,4) IWAIT FOR FLAG CALL READEF(3,IUU) ICHECK 010 FLAG IF(IUU.NE.2) GO TO 587 IF(.NOT.LCONT) GO TO 999 K-K-54 IMAKE 7,8,9 LOOK LIKE 1,2,3 IF...K.EQ.-6) GO TO 999 IF(K.EQ.3) GO TO 223 IF(K.LT.1) GO TO 223 GO TO 588 587 CALL READEF(4,ITT) ICHECK 5 SEC FLAG IF(ITT.NE.2) GO TO 546 ISKIP IF NOT SET...ISEC,NESC,NYNESC,NESC 1092 FORMAT(’ ’,2A,"-Q’,’TIME 1,12o’s’,I2,2A,’l1, *-86- 1 A, 111A,AW GO TO 222 546 CALL READEF(2,ITS) ICHECK STOP FLAG IF
Li, Hua; Zhang, Feng-Lan; Shi, Wen-Jie; Bai, Xue-Jia; Jia, Shu-Qin; Zhang, Chen-Guang; Ding, Wei
2015-01-01
The technology of virus-based genetic modification in tissue engineering has provided the opportunity to produce more flexible and versatile biomaterials for transplantation. Localizing the transgene expression with increased efficiency is critical for tissue engineering as well as a challenge for virus-based gene delivery. In this study, we tagged the VP2 protein of type 2 adeno-associated virus (AAV) with a 3×FLAG plasmid at the N-terminus and packaged a FLAG-tagged recombinant AAV2 chimeric mutant. The mutant AAVs were immobilized onto the tissue engineering scaffolds with crosslinked anti-FLAG antibodies by N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP). Cultured cells were seeded to scaffolds to form 3D transplants, and then tested for viral transduction both in vitro and in vivo. The results showed that our FLAG-tagged AAV2 exerted similar transduction efficiency compared with the wild type AAV2 when infected cultured cells. Following immobilization onto the scaffolds of PLGA or gelatin sponge with anti-FLAG antibodies, the viral mediated transgene expression was significantly improved and more localized. Our data demonstrated that the mutation of AAV capsid targeted for antibody-based immobilization could be a practical approach for more efficient and precise transgene delivery. It was also suggested that the immobilization of AAV might have attractive potentials in applications of tissue engineering involving the targeted gene manipulation in 3D tissue cultures.
Inoue, Makoto; Abulon, Dina Joy K; Hirakata, Akito
2014-01-01
To compare the effects of different 23- and 25-gauge microincision vitrectomy trocar cannula entry systems on incision architecture. We tested one ridged microvitreoretinal (MVR), one non-ridged MVR, one pointed beveled, and one round-tipped beveled blade (n=10 per blade design per incision type). Each blade's straight and oblique incision architecture was assessed in a silicone disc simulating the sclera. Wound leakage under pressure and endoscopic observations were conducted on sclerotomy sites of isolated porcine eyes (n=4 per blade design) after simulated vitrectomy. Differences in blade design created distinct incision architecture. Incisions were linear with the ridged MVR blade, flattened "M-shaped" with the non-ridged MVR blade, asymmetrical chevron-shaped with the pointed beveled blade, and curved with the round-tipped beveled blade. With the exception of oblique entry incision thickness, both MVR blade designs created thinner incisions than the beveled blades at entry and exit sites. Only the ridged MVR blade created incisions with no leakage. Vitreous incarceration was observed with all trocar cannula systems. Wound closure in porcine eyes was similar with all blades despite differences in incision architecture. Wound leakage occurred at low to moderate infusion pressures with most blades; no wound leakage was observed with ridged MVR blades.
Flexible Blades for Wind Turbines
NASA Astrophysics Data System (ADS)
Collins, Madeline Carlisle; Macphee, David; Harris, Caleb
2016-11-01
Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.
Estimation of the energy loss at the blades in rowing: common assumptions revisited.
Hofmijster, Mathijs; De Koning, Jos; Van Soest, A J
2010-08-01
In rowing, power is inevitably lost as kinetic energy is imparted to the water during push-off with the blades. Power loss is estimated from reconstructed blade kinetics and kinematics. Traditionally, it is assumed that the oar is completely rigid and that force acts strictly perpendicular to the blade. The aim of the present study was to evaluate how reconstructed blade kinematics, kinetics, and average power loss are affected by these assumptions. A calibration experiment with instrumented oars and oarlocks was performed to establish relations between measured signals and oar deformation and blade force. Next, an on-water experiment was performed with a single female world-class rower rowing at constant racing pace in an instrumented scull. Blade kinematics, kinetics, and power loss under different assumptions (rigid versus deformable oars; absence or presence of a blade force component parallel to the oar) were reconstructed. Estimated power losses at the blades are 18% higher when parallel blade force is incorporated. Incorporating oar deformation affects reconstructed blade kinematics and instantaneous power loss, but has no effect on estimation of power losses at the blades. Assumptions on oar deformation and blade force direction have implications for the reconstructed blade kinetics and kinematics. Neglecting parallel blade forces leads to a substantial underestimation of power losses at the blades.
Exposure to the American flag polarizes democratic-republican ideologies.
Chan, Eugene Y
2017-12-01
Some prior research has suggested that exposure to the American flag tilts Americans towards Republicanism, while others have proffered that it brings outs a common 'together' perspective instead. We explore a third possibility - that it may actually polarize Americans' political ideology. It is generally accepted that exposure to an environmental cue can shift attitudes and behaviours, at least partly or temporarily, in a manner that is consistent with that cue. Yet, the same cue can mean different things to different people. In the same vein, given how national identity and political ideology are intertwined in the United States, we hypothesize that the American flag should heighten different political beliefs depending on individuals' political ideology. To Democrats, being American is to support Democratic values, but to Republicans, being American is to support Republican values. The American flag thus should heighten Democrats of their Democratic identity, and it should heighten Republicans of their Republican one. The results of an experiment with 752 American respondents who were representative of the US population supported this polarizing effect of the American flag. The theoretical and policy implications of the findings are offered. © 2017 The British Psychological Society.
Barbour, Matthew A; Clark, Rulon W
2012-09-22
Many species approach, inspect and signal towards their predators. These behaviours are often interpreted as predator-deterrent signals--honest signals that indicate to a predator that continued hunting is likely to be futile. However, many of these putative predator-deterrent signals are given when no predator is present, and it remains unclear if and why such signals deter predators. We examined the effects of one such signal, the tail-flag display of California ground squirrels, which is frequently given both during and outside direct encounters with northern Pacific rattlesnakes. We video-recorded and quantified the ambush foraging responses of rattlesnakes to tail-flagging displays from ground squirrels. We found that tail-flagging deterred snakes from striking squirrels, most likely by advertising squirrel vigilance (i.e. readiness to dodge a snake strike). We also found that tail-flagging by adult squirrels increased the likelihood that snakes would leave their ambush site, apparently by elevating the vigilance of nearby squirrels which reduces the profitability of the ambush site. Our results provide some of the first empirical evidence of the mechanisms by which a prey display, although frequently given in the absence of a predator, may still deter predators during encounters.
Friman, Patrick C
2010-01-01
At last, the field of applied behavior analysis has a beautifully crafted, true textbook that can proudly stand cover to cover and spine to spine beside any of the expensive, imposing, and ornately designed textbooks used by college instructors who teach courses in conventional areas of education or psychology. In this review, I fully laud this development, credit Cooper, Heron, and Heward for making it happen, argue that it signifies a checkered flag for students and professors, and recommend the book for classes in applied behavior analysis everywhere. Subsequently, I review its chapters, each of which could easily stand alone as publications in their own right. Finally, I supply a cautionary note, a yellow flag to accompany the well-earned checkered flag, by pointing out that, as is true with all general textbooks on applied behavior analysis, a major portion of the references involves research on persons who occupy only a tail of the normal distribution. To attain the mainstream role Skinner envisioned and most (if not all) behavior analysts desire, the field will have to increase its focus on persons who reside under the dome of that distribution.
Cloud based, Open Source Software Application for Mitigating Herbicide Drift
NASA Astrophysics Data System (ADS)
Saraswat, D.; Scott, B.
2014-12-01
The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.
1985-01-01
S85-28989 (March 1985) --- The dominant features of the STS-51D emblem are an orbit formed by a Colonial American flag and a space shuttle. The flag in orbit signifies the U.S. flag to indicate that it comes from this country and the American people. The original 13-star flag is used to symbolize a continuity of technical achievement and progress since colonial times. The name Discovery preceding the flag represents the spirit of Discovery and exploration of new frontiers which have been a hallmark of American people even before they were formed together as a nation. The crew members are Karol J. Bobko, Donald E. Williams, Rhea Seddon, S. David Griggs and Jeffrey A. Hoffman of NASA; and Charles D. Walker, representing McDonnell Douglas Corporation; and U. S. Senator Jake Garn. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
The Sharpness of Blades Used in Dermatologic Surgery.
Awadalla, Farah; Hexsel, Camile; Goldberg, Leonard H
2016-01-01
There are numerous blades available for use in dermatologic procedures. There are different advantages that are inhere.nt to different blades due to their shape and size. One aspect of the blade that is instrumental to its performance, but is not objectively defined, is sharpness. This information could be useful when choosing a blade for a particular procedure. This study aims to objectively define the sharpness of blades used in dermatologic surgery. The Sharpness Tester (Cutlery and Allied Trades Research Association, Sheffield, UK) was used to test the force in Newtons a blade requires to cut through a silicone cylinder. New blades were used to determine a standard for the sharpness of new blades. Blades used for surgery were tested to determine the sharpness after use. The sharpest blade is the double-edged razor blade (0.395 N) followed by the dermablade (0.46 N), plastic handled #15 (0.541 N), #15c (0.575 N), #10 (0.647 N), and the #15 blade (0.664 N). The sharpness of a blade is an important factor in its ability to perform a task and should be taken into account when choosing a particular blade for a particular procedure.
Design and fabrication of forward-swept counterrotation blade configuration for wind tunnel testing
NASA Technical Reports Server (NTRS)
Nichols, G. H.
1994-01-01
Work performed by GE Aircraft on advanced counterrotation blade configuration concepts for high speed turboprop system is described. Primary emphasis was placed on theoretically and experimentally evaluating the aerodynamic, aeromechanical, and acoustic performance of GE-defined counterrotating blade concepts. Several blade design concepts were considered. Feasibility studies were conducted to evaluate a forward-swept versus an aft-swept blade application and how the given blade design would affect interaction between rotors. Two blade designs were initially selected. Both designs involved in-depth aerodynamic, aeromechanical, mechanical, and acoustic analyses followed by the fabrication of forward-swept, forward rotor blade sets to be wind tunnel tested with an aft-swept, aft rotor blade set. A third blade set was later produced from a NASA design that was based on wind tunnel test results from the first two blade sets. This blade set had a stiffer outer ply material added to the original blade design, in order to reach the design point operating line. Detailed analyses, feasibility studies, and fabrication procedures for all blade sets are presented.
Counterrotatable booster compressor assembly for a gas turbine engine
NASA Technical Reports Server (NTRS)
Moniz, Thomas Ory (Inventor); Orlando, Robert Joseph (Inventor)
2004-01-01
A counterrotatable booster compressor assembly for a gas turbine engine having a counterrotatable fan section with a first fan blade row connected to a first drive shaft and a second fan blade row axially spaced from the first fan blade row and connected to a second drive shaft, the counterrotatable booster compressor assembly including a first compressor blade row connected to the first drive shaft and a second compressor blade row interdigitated with the first compressor blade row and connected to the second drive shaft. A portion of each fan blade of the second fan blade row extends through a flowpath of the counterrotatable booster compressor so as to function as a compressor blade in the second compressor blade row. The counterrotatable booster compressor further includes a first platform member integral with each fan blade of the second fan blade row at a first location so as to form an inner flowpath for the counterrotatable booster compressor and a second platform member integral with each fan blade of the second fan blade row at a second location so as to form an outer flowpath for the counterrotatable booster compressor.
Purification of FLAG-tagged Secreted Proteins from Mammalian Cells
Itakura, Eisuke; Chen, Changchun; de Bono, Mario
2017-01-01
This protocol describes a method for purifying glycosylated FLAG-tagged secreted proteins with disulfide bonds from mammalian cells. The purified products can be used for various applications, such as ligand binding assays. PMID:29075655
38. FLAG/ADMIRAL BRIDGE PORT LOOKING TO STARBOARD SHOWING RADAR ...
38. FLAG/ADMIRAL BRIDGE - PORT LOOKING TO STARBOARD SHOWING RADAR SCOPE, ADMIRAL'S CHAIR, GYRO REPEATER AND VARIOUS COMMUNICATION SYSTEMS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA
6. ADMINISTRATION BUILDING WITH FLAG POLE, LOOKING SOUTH. NIKE ...
6. ADMINISTRATION BUILDING WITH FLAG POLE, LOOKING SOUTH. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL
Assessment of advanced warning signs for flagging operations.
DOT National Transportation Integrated Search
1999-05-01
The Virginia Department of Transportation (VDOT) and several other state departments : of transportation have expressed interest in modifying the advanced warning sign for work zone : flagging operations. The advanced warning sign is intended to aler...
NASA Astrophysics Data System (ADS)
Wei, Jun; Zhong, Fangyuan
Based on comparative experiment, this paper deals with using tangentially skewed rotor blades in axial-flow fan. It is seen from the comparison of the overall performance of the fan with skewed bladed rotor and radial bladed rotor that the skewed blades operate more efficiently than the radial blades, especially at low volume flows. Meanwhile, decrease in pressure rise and flow rate of axial-flow fan with skewed rotor blades is found. The rotor-stator interaction noise and broadband noise of axial-flow fan are reduced with skewed rotor blades. Forward skewed blades tend to reduce the accumulation of the blade boundary layer in the tip region resulting from the effect of centrifugal forces. The turning of streamlines from the outer radius region into inner radius region in blade passages due to the radial component of blade forces of skewed blades is the main reason for the decrease in pressure rise and flow rate.
Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations
NASA Astrophysics Data System (ADS)
Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.
2018-05-01
Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.
Importance of ABA homeostasis under terminal drought stress in regulating grain filling events
Govind, Geetha; Seiler, Christiane; Wobus, Ulrich
2011-01-01
Recent studies suggest that abscisic acid (ABA) at its basal level plays an important role during seed set and grain filling events. Under drought stress ABA levels were found to be significantly enhanced in the developing seed. Until now we lacked an understanding of (1) ABA homeostasis in developing seeds under terminal drought and (2) the interactive role of ABA in regulating the starch biosynthesis pathway in developing grains under terminal drought. We have recently reported the possible regulation of ABA homeostasis in source (flag leaf) and sink (developing grains) tissues under post-anthesis drought stress in barley and concluded that significantly enhanced ABA levels in developing grains are due to strong activation of the ABA deconjugation pathway and fine regulation of the ABA biosynthesis-degradation pathway.1 Additionally, we provided evidence for the role of ABA in differential regulation of starch biosynthesis genes and a significant upregulation of starch degradation beta amylase genes under drought, i.e., ABA not only influences the rate of starch accumulation but also starch quality. PMID:21778825
(U) A Gruneisen Equation of State for TPX. Application in FLAG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredenburg, David A.; Aslam, Tariq Dennis; Bennett, Langdon Stanford
2015-11-02
A Gruneisen equation of state (EOS) is developed for the polymer TPX (poly 4-methyl-1-pentene) within the LANL hydrocode FLAG. Experimental shock Hugoniot data for TPX is fit to a form of the Gruneisen EOS, and the necessary parameters for implementing the TPX EOS in FLAG are presented. The TPX EOS is further validated through one-dimensional simulations of recent double-shock experiments, and a comparison is made between the new Gruneisen EOS for TPX and the EOS representation for TPX used in the LANL Common Model.
Novel Function of NIBP in Breast Cancer
2012-05-01
reduced in NIBP knockdown cells (Fig. 8). 7 pRK -Flag-NIBP Isoforms(aa) 960 944 1200 1246 1148 S E A P A c ti v it y ( F o ld...Fig.9. MDA-MB-231 cells were co-transfected by TurboFectin8.0 with empty pRK -Flag vector or various isoforms of NIBP with NF-B-SEAP reporter and...Ser536) pRK -Flag 12060301550 NIBP-mutA 12060301550TNFα (min) Fig.11. MDA-MB-231 cells at 60% confluence in 6-well plates were transfected with empty
2007-04-02
KENNEDY SPACE CENTER, FLA. -- The American flag and the NASA logo shine in the morning sun on the side of the Vehicle Assembly Building after completion of their repainting. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The NASA logo, which is known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. Photo credit: NASA/Jim Grossmann
1979-12-01
BE2 CD66 ALl SGG/110(14) 5/AS2 SGG/79(14) AMI 110(13) 5/AU2 78(16) NI KRIRF/lll(2) ANl PRIRF/lll(l) ARI IPC/lll(ll) 7/BPl IPC/144(4) ASI KRF/106(9...KRS 6034 Read a character from the keyboard/reader buffer. The keyboard/reader flag is set when the operation is completed. KIE 6035 Enable the...keyboard/ reader flag is a 1. KCC 6032 Clear the AC and the keyboard/reader flag. KRS 6034 Read a character from the keyboard/reader buffer. The keyboard
Effects of Rotor Blade Scaling on High-Pressure Turbine Unsteady Loading
NASA Astrophysics Data System (ADS)
Lastiwka, Derek; Chang, Dongil; Tavoularis, Stavros
2013-03-01
The present work is a study of the effects of rotor blade scaling of a single-stage high pressure turbine on the time-averaged turbine performance and on parameters that influence vibratory stresses on the rotor blades and stator vanes. Three configurations have been considered: a reference case with 36 rotor blades and 24 stator vanes, a case with blades upscaled by 12.5%, and a case with blades downscaled by 10%. The present results demonstrate that blade scaling effects were essentially negligible on the time-averaged turbine performance, but measurable on the unsteady surface pressure fluctuations, which were intensified as blade size was increased. In contrast, blade torque fluctuations increased significantly as blade size decreased. Blade scaling effects were also measurable on the vanes.
77 FR 20518 - Airworthiness Directives; Agusta S.p.A. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... intended to prevent loss of the blade tip weight, loss of a blade, and subsequent loss of control of the... airworthy blade. This AD is prompted by incidents where a blade tip weight separated from a blade in flight... a blade tip weight separating from a blade in flight, and the subsequent investigation showed that...
The flagellar protein FLAG1/SMP1 is a candidate for Leishmania-sand fly interaction.
Di-Blasi, Tatiana; Lobo, Amanda R; Nascimento, Luanda M; Córdova-Rojas, Jose L; Pestana, Karen; Marín-Villa, Marcel; Tempone, Antonio J; Telleria, Erich L; Ramalho-Ortigão, Marcelo; McMahon-Pratt, Diane; Traub-Csekö, Yara M
2015-03-01
Leishmaniasis is a serious problem that affects mostly poor countries. Various species of Leishmania are the agents of the disease, which take different clinical manifestations. The parasite is transmitted by sandflies, predominantly from the Phlebotomus genus in the Old World and Lutzomyia in the New World. During development in the gut, Leishmania must survive various challenges, which include avoiding being expelled with blood remnants after digestion. It is believed that attachment to the gut epithelium is a necessary step for vector infection, and molecules from parasites and sand flies have been implicated in this attachment. In previous work, monoclonal antibodies were produced against Leishmania. Among these an antibody was obtained against Leishmania braziliensis flagella, which blocked the attachment of Leishmania panamensis flagella to Phlebotomus papatasi guts. The protein recognized by this antibody was identified and named FLAG1, and the complete FLAG1 gene sequence was obtained. This protein was later independently identified as a small, myristoylated protein and called SMP1, so from now on it will be denominated FLAG1/SMP1. The FLAG1/SMP1 gene is expressed in all developmental stages of the parasite, but has higher expression in promastigotes. The anti-FLAG1/SMP1 antibody recognized the flagellum of all Leishmania species tested and generated the expected band by western blots. This antibody was used in attachment and infection blocking experiments. Using the New World vector Lutzomyia longipalpis and Leishmania infantum chagasi, no inhibition of attachment ex vivo or infection in vivo was seen. On the other hand, when the Old World vectors P. papatasi and Leishmania major were used, a significant decrease of both attachment and infection were seen in the presence of the antibody. We propose that FLAG1/SMP1 is involved in the attachment/infection of Leishmania in the strict vector P. papatasi and not the permissive vector L. longipalpis.
Influence of deer abundance on the abundance of questing adult Ixodes scapularis (Acari: Ixodidae)
Ginsberg, H.S.; Zhioua, E.
1999-01-01
Nymphal and adult Ixodes scapularis Say were sampled by flagging at 2 sites on a barrier island, Fire Island, NY, and at 2 sites on the nearby mainland. Nymphal densities did not differ consistently between island and mainland sites, but adult densities were consistently lower on the island. We tested whether lower adult densities on the island resulted from greater nymphal mortality on the island than the mainland, or whether adult ticks on the island were poorly sampled by flagging because they had attached abundantly to deer, which were common on Fire Island. Differential nymphal mortality on islands vs. mainland did not explain this difference in adult densities because survival of flat and engorged nymphs in enclosures was the same at island and mainland sites. Ticks were infected by parasitic wasps on the island and not the mainland, but the infection rate (4.3%) was too low to explain the difference in adult tick densities. In contrast, exclusion of deer by game fencing on Fire Island resulted in markedly increased numbers of adult ticks in flagging samples inside compared to samples taken outside the exclosures. Therefore, the scarcity of adult ticks in flagging samples on Fire Island resulted, at least in part, from the ticks being unavailable to flagging samples because they were on deer hosts. Differences in the densities of flagged ticks inside and outside the exclosures were used to estimate the percentage of questing adults on Fire Island that found deer hosts, excluding those that attached to other host species. Approximately 56% of these questing adult ticks found deer hosts in 1995 and 50% found deer hosts in 1996. Therefore, in areas where vertebrate hosts are highly abundant, large proportions of the questing tick population can find hosts. Moreover, comparisons of tick densities at different sites by flagging can potentially be biased by differences in host densities among sites.
Gurieva, Tanya; Bootsma, Martin C J; Bonten, Marc J M
2013-01-01
Nosocomial infection rates due to antibiotic-resistant bacteriae, e.g., methicillin-resistant Staphylococcus aureus (MRSA) remain high in most countries. Screening for MRSA carriage followed by barrier precautions for documented carriers (so-called screen and isolate (S&I)) has been successful in some, but not all settings. Moreover, different strategies have been proposed, but comparative studies determining their relative effects and costs are not available. We, therefore, used a mathematical model to evaluate the effect and costs of different S&I strategies and to identify the critical parameters for this outcome. The dynamic stochastic simulation model consists of 3 hospitals with general wards and intensive care units (ICUs) and incorporates readmission of carriers of MRSA. Patient flow between ICUs and wards was based on real observations. Baseline prevalence of MRSA was set at 20% in ICUs and hospital-wide at 5%; ranges of costs and infection rates were based on published data. Four S&I strategies were compared to a do-nothing scenario: S&I of previously documented carriers ("flagged" patients); S&I of flagged patients and ICU admissions; S&I of flagged and group of "frequent" patients; S&I of all hospital admissions (universal screening). Evaluated levels of efficacy of S&I were 10%, 25%, 50% and 100%. Our model predicts that S&I of flagged and S&I of flagged and ICU patients are the most cost-saving strategies with fastest return of investment. For low isolation efficacy universal screening and S&I of flagged and "frequent" patients may never become cost-saving. Universal screening is predicted to prevent hardly more infections than S&I of flagged and "frequent" patients, albeit at higher costs. Whether an intervention becomes cost-saving within 10 years critically depends on costs per infection in ICU, costs of screening and isolation efficacy.
Impact resistant boron/aluminum composites for large fan blades
NASA Technical Reports Server (NTRS)
Oller, T. L.; Salemme, C. T.; Bowden, J. H.; Doble, G. S.; Melnyk, P.
1977-01-01
Blade-like specimens were subjected to static ballistic impact testing to determine their relative FOD impact resistance levels. It was determined that a plus or minus 15 deg layup exhibited good impact resistance. The design of a large solid boron/aluminum fan blade was conducted based on the FOD test results. The CF6 fan blade was used as a baseline for these design studies. The solid boron/aluminum fan blade design was used to fabricate two blades. This effort enabled the assessment of the scale up of existing blade manufacturing details for the fabrication of a large B/Al fan blade. Existing CF6 fan blade tooling was modified for use in fabricating these blades.
Air-Cooled Turbine Blades with Tip Cap For Improved Leading-Edge Cooling
NASA Technical Reports Server (NTRS)
Calvert, Howard F.; Meyer, Andre J., Jr.; Morgan, William C.
1959-01-01
An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.
Seagrass blade motion under waves and its impact on wave decay
NASA Astrophysics Data System (ADS)
Luhar, M.; Infantes, E.; Nepf, H.
2017-05-01
The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).
How kelp produce blade shapes suited to different flow regimes: A new wrinkle.
Koehl, M A R; Silk, W K; Liang, H; Mahadevan, L
2008-12-01
Many species of macroalgae have flat, strap-like blades in habitats exposed to rapidly flowing water, but have wide, ruffled "undulate" blades at protected sites. We used the giant bull kelp, Nereocystis luetkeana, to investigate how these ecomorphological differences are produced. The undulate blades of N. luetkeana from sites with low flow remain spread out and flutter erratically in moving water, thereby not only enhancing interception of light, but also increasing drag. In contrast, strap-like blades of kelp from habitats with rapid flow collapse into streamlined bundles and flutter at low amplitude in flowing water, thus reducing both drag and interception of light. Transplant experiments in the field revealed that shape of the blade in N. luetkeana is a plastic trait. Laboratory experiments in which growing blades from different sites were subjected to tensile forces that mimicked the hydrodynamic drag experienced by blades in different flow regimes showed that change in shape is induced by mechanical stress. During growth experiments in the field and laboratory, we mapped the spatial distribution of growth in both undulate and strap-like blades to determine how these different morphologies were produced. The highest growth rates occur near the proximal ends of N. luetkeana blades of both morphologies, but the rates of transverse growth of narrow, strap-like blades are lower than those of wide, undulate blades. If rates of longitudinal growth at the edges of a blade exceed the rate of longitudinal growth along the midline of the blade, ruffles along the edges of the blade are produced by elastic buckling. In contrast, flat blades are produced when rates of longitudinal growth are similar across the width of a blade. Because ruffles are the result of elastic buckling, a compliant undulate N. luetkeana blade can easily be pushed into different configurations (e.g., the wavelengths of the ruffles along the edges of the blade can change, and the whole blade can twist into left- and right-handed helicoidal shapes), which may enhance movements of the blade in flowing water that reduce self-shading and increase mass exchange along blade surfaces.
TX-100 manufacturing final project report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwill, Thomas D.; Berry, Derek S.
This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. Themore » molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.« less
Pseudo-Kähler Quantization on Flag Manifolds
NASA Astrophysics Data System (ADS)
Karabegov, Alexander V.
A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.
Bernard J. Cigrand, DDS: Father of Flag Day and renaissance man.
Spiegel, Allen D; Kavaler, Florence
2007-06-01
Dr. Bernard J. Cigrand is acknowledged as the "Father of Flag Day." He relentlessly continued his activities for more than sixty years to have June 14 designated for the national observance of the birth of the American flag. That finally occurred in 1948, seventeen years after his death, when President Harry S. Truman signed a Congressional Act into law. However, the law designated a voluntary observance but did not create a legal national holiday. In addition to his fervent passion for Flag Day, Cigrand undertook a variety of other initiatives He was a practicing dentist, the dean of a dental school, an investigative journalist, an expert on heraldry and seals, a lecturer and an author of books. Despite all his achievements, Cigrand is more widely known in the European country from where his parents emigrated to the United States in 1852 - Luxembourg, than in the United States.
Synthesis and materialization of a reaction-diffusion French flag pattern
NASA Astrophysics Data System (ADS)
Zadorin, Anton S.; Rondelez, Yannick; Gines, Guillaume; Dilhas, Vadim; Urtel, Georg; Zambrano, Adrian; Galas, Jean-Christophe; Estevez-Torres, André
2017-10-01
During embryo development, patterns of protein concentration appear in response to morphogen gradients. These patterns provide spatial and chemical information that directs the fate of the underlying cells. Here, we emulate this process within non-living matter and demonstrate the autonomous structuration of a synthetic material. First, we use DNA-based reaction networks to synthesize a French flag, an archetypal pattern composed of three chemically distinct zones with sharp borders whose synthetic analogue has remained elusive. A bistable network within a shallow concentration gradient creates an immobile, sharp and long-lasting concentration front through a reaction-diffusion mechanism. The combination of two bistable circuits generates a French flag pattern whose 'phenotype' can be reprogrammed by network mutation. Second, these concentration patterns control the macroscopic organization of DNA-decorated particles, inducing a French flag pattern of colloidal aggregation. This experimental framework could be used to test reaction-diffusion models and fabricate soft materials following an autonomous developmental programme.
1998-08-11
Painters are suspended on platforms from the top of the 525-foot-high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag. The flag spans an area 209 feet by 110 feet and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. In addition to the flag, the Bicentennial Emblem on the other side of the VAB doors is being replaced by the NASA logo, honoring NASA’s 40th anniversary (in October). The logo covers an area 110 feet by 132 feet. Work is expected to be completed in mid-September
The American flag on the VAB is being repainted
NASA Technical Reports Server (NTRS)
1998-01-01
Painters are suspended on platforms from the top of the 525-foot- high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag and NASA logo. The flag spans an area 209 feet by 110 feet and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The previous Bicentennial Emblem on the other side of the VAB doors is being replaced by the NASA logo, honoring NASA's 40th anniversary (in October). The logo covers an area 110 feet by 132 feet. The painting platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. Work is expected to be completed in mid-September.
Inoue, Makoto; Abulon, Dina Joy K; Hirakata, Akito
2014-01-01
Purpose To compare the effects of different 23- and 25-gauge microincision vitrectomy trocar cannula entry systems on incision architecture. Methods We tested one ridged microvitreoretinal (MVR), one non-ridged MVR, one pointed beveled, and one round-tipped beveled blade (n=10 per blade design per incision type). Each blade’s straight and oblique incision architecture was assessed in a silicone disc simulating the sclera. Wound leakage under pressure and endoscopic observations were conducted on sclerotomy sites of isolated porcine eyes (n=4 per blade design) after simulated vitrectomy. Results Differences in blade design created distinct incision architecture. Incisions were linear with the ridged MVR blade, flattened “M-shaped” with the non-ridged MVR blade, asymmetrical chevron-shaped with the pointed beveled blade, and curved with the round-tipped beveled blade. With the exception of oblique entry incision thickness, both MVR blade designs created thinner incisions than the beveled blades at entry and exit sites. Only the ridged MVR blade created incisions with no leakage. Vitreous incarceration was observed with all trocar cannula systems. Conclusion Wound closure in porcine eyes was similar with all blades despite differences in incision architecture. Wound leakage occurred at low to moderate infusion pressures with most blades; no wound leakage was observed with ridged MVR blades. PMID:25429201
Cooled snubber structure for turbine blades
Mayer, Clinton A.; Campbell, Christian X.; Whalley, Andrew; Marra, John J.
2014-04-01
A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.
NASA Technical Reports Server (NTRS)
Handschuh, Katherine M.; Miller, Sandi G.; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Pereira, J. Michael; Ruggeri, Charles R.
2014-01-01
Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite of is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael
2015-01-01
Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.
Rotor blade assembly having internal loading features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soloway, Daniel David
Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movementmore » of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.« less
Mach number scaling of helicopter rotor blade/vortex interaction noise
NASA Technical Reports Server (NTRS)
Leighton, Kenneth P.; Harris, Wesley L.
1985-01-01
A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.
Impact absorbing blade mounts for variable pitch blades
NASA Technical Reports Server (NTRS)
Ravenhall, R.; Salemme, C. T.; Adamson, A. P. (Inventor)
1977-01-01
A variable pitch blade and blade mount are reported that are suitable for propellers, fans and the like and which have improved impact resistance. Composite fan blades and blade mounting arrangements permit the blades to pivot relative to a turbine hub about an axis generally parallel to the centerline of the engine upon impact of a large foreign object, such as a bird. Centrifugal force recovery becomes the principal energy absorbing mechanism and a blade having improved impact strength is obtained.
Optical and thermal performance of bladed receivers
NASA Astrophysics Data System (ADS)
Pye, John; Coventry, Joe; Ho, Clifford; Yellowhair, Julius; Nock, Ian; Wang, Ye; Abbasi, Ehsan; Christian, Joshua; Ortega, Jesus; Hughes, Graham
2017-06-01
Bladed receivers use conventional receiver tube-banks rearranged into bladed/finned structures, and offer better light trapping, reduced radiative and convective losses, and reduced tube mass, based on the presented optical and thermal analysis. Optimising for optical performance, deep blades emerge. Considering thermal losses leads to shallower blades. Horizontal blades perform better, in both windy and no-wind conditions, than vertical blades, at the scales considered so far. Air curtains offer options to further reduce convective losses; high flux on blade-tips is still a concern.
Blade row interaction effects on flutter and forced response
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.
1993-01-01
In the flutter or forced response analysis of a turbomachine blade row, the blade row in question is commonly treated as if it is isolated from the neigboring blade rows. Disturbances created by vibrating blades are then free to propagate away from this blade row without being disturbed. In reality, neighboring blade rows will reflect some portion of this wave energy back toward the vibrating blades, causing additional unsteady forces on them. It is of fundamental importance to determine whether or not these reflected waves can have a significant effect on the aeroelastic stability or forced response of a blade row. Therefore, a procedure to calculate intra-blade-row unsteady aerodynamic interactions was developed which relies upon results available from isolated blade row unsteady aerodynamic analyses. In addition, an unsteady aerodynamic influence coefficient technique is used to obtain a model for the vibratory response in which the neighboring blade rows are also flexible. The flutter analysis shows that interaction effects can be destabilizing, and the forced response analysis shows that interaction effects can result in a significant increase in the resonant response of a blade row.
Method for maintaining a cutting blade centered in a kerf
Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.
2002-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.
2000-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
NASA Astrophysics Data System (ADS)
Beardsell, Alec; Collier, William; Han, Tao
2016-09-01
There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.
The impact of testing accommodations on MCAT scores: descriptive results.
Julian, Ellen R; Ingersoll, Deborah J; Etienne, Patricia M; Hilger, Anthony E
2004-04-01
Medical College Admission Test (MCAT) examinees with disabilities who receive accommodations receive flagged scores indicating nonstandard administration. This report compares MCAT examinees who received accommodations and their performances with standard examinees. Aggregate history records of all 1994-2000 MCAT examinees were identified as flagged (2,401) or standard (297,880), then further sorted by race/ethnicity (broadly identified as underrepresented minority and non-URM, at the time of testing) and gender. Those with flagged scores were also classified by disability (LD = learning disability, ADHD = attention deficit hyperactivity disorder, LD/ADHD = learning disability and attention deficit hyperactivity disorder, and Other = other disability) and type of accommodation. Mean MCAT scores were calculated for all groups. A group of 866 examinees took the MCAT first as a standard administration and subsequently with accommodations. In a separate analysis, their two sets of scores were compared. Less than 1% of examinees (2,401) had accommodations; of these, 55% were LD, 17% ADHD, 5% LD/ADHD, and 23% Other. Extended time was the most frequently provided accommodation. Mean flagged scores slightly exceeded mean standard scores on all MCAT sections. Examinees who retook the MCAT with accommodations after a standard administration increased their scores by six points, quadrupling the average gain Standard-Standard retest cohort from another study. The small but statistically significant different higher flagged scores may reflect either appropriate compensation or overly generous accommodations. Extended time had a positive impact on the scores of those who retested with this accommodation. The validity the flagged MCAT in predicting success in medical school is not known, and further investigation is underway.
Varghese, Elsa; Kundu, Ratul
2014-08-01
Both Miller and Macintosh blades are widely used for laryngoscopy in small children, though the Miller blade is more commonly recommended in pediatric anesthetic literature. The aim of this study was to compare laryngoscopic views and ease and success of intubation with Macintosh and Miller blades in small children under general anesthesia. One hundred and twenty children aged 1-24 months were randomized for laryngoscopy to be performed in a crossover manner with either the Miller or the Macintosh blade first, following induction of anesthesia and neuromuscular blockade. The tips of both the blades were placed at the vallecula. Intubation was performed following the second laryngoscopy. The glottic views with and without external laryngeal maneuver (ELM) and ease of intubation were observed. Similar glottic views with both blades were observed in 52/120 (43%) children, a better view observed with the Miller blade in 35/120 (29%) children, and with the Macintosh blade in 33/120 (28%). Laryngoscopy was easy in 65/120 (54%) children with both the blades. Restricted laryngoscopy was noted in 55 children: in 27 children with both the blades, 15 with Miller, and 13 with Macintosh blade. Laryngoscopic view improved following ELM with both the blades. In children aged 1-24 months, the Miller and the Macintosh blades provide similar laryngoscopic views and intubating conditions. When a restricted view is obtained, a change of blade may provide a better view. Placing the tip of the Miller blade in the vallecula provides satisfactory intubating conditions in this age group. © 2014 John Wiley & Sons Ltd.
Definition of a 5MW/61.5m wind turbine blade reference model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resor, Brian Ray
2013-04-01
A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigationsmore » such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.« less
USDA Forest Service
1981-01-01
Flagging (dead branch tips) on jack pine and red pine may be caused by insects, diseases, or mechanical damage. In the Lake States, flagging is often the result of mechanical damage, sometimes girdling, caused when the cones are torn off by red squirrels.
78 FR 35101 - Flag Day and National Flag Week, 2013
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
... Glory has followed, reminding us of the rights and responsibilities we share as citizens. This week, we celebrate that legacy, and we honor the brave men and women who have secured it through centuries of service...
46 CFR 154.17 - U.S. flag vessel: Certificate of Inspection endorsement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES General § 154.17.... flag vessel allowed to carry a liquefied gas listed in Table 4 has the following endorsement for each...
46 CFR 154.17 - U.S. flag vessel: Certificate of Inspection endorsement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES General § 154.17.... flag vessel allowed to carry a liquefied gas listed in Table 4 has the following endorsement for each...
46 CFR 154.17 - U.S. flag vessel: Certificate of Inspection endorsement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES General § 154.17.... flag vessel allowed to carry a liquefied gas listed in Table 4 has the following endorsement for each...
Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades
NASA Technical Reports Server (NTRS)
Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.
1947-01-01
An analysis is presented of rim cooling of gas-turbine blades; that is, reducing the temperature at the base of the blade (wheel rim), which cools the blade by conduction alone. Formulas for temperature and stress distributions along the blade are derived and, by the use of experimental stress-rupture data for a typical blade alloy, a relation is established between blade life (time for rupture), operating speed, and amount of rim cooling for several gas temperatures. The effect of blade parameter combining the effects of blade dimensions, blade thermal conductivity, and heat-transfer coefficient is determined. The effect of radiation on the results is approximated. The gas temperatures ranged from 1300F to 1900F and the rim temperature, from 0F to 1000F below the gas temperature. This report is concerned only with blades of uniform cross section, but the conclusions drawn are generally applicable to most modern turbine blades. For a typical rim-cooled blade, gas temperature increases are limited to about 200F for 500F of cooling of the blade base below gas temperature, and additional cooling brings progressively smaller increases. In order to obtain large increases in thermal conductivity or very large decreases in heat-transfer coefficient or blade length or necessary. The increases in gas temperature allowable with rim cooling are particularly small for turbines of large dimensions and high specific mass flows. For a given effective gas temperature, substantial increases in blade life, however, are possible with relatively small amounts of rim cooling.
Computing Shapes Of Cascade Diffuser Blades
NASA Technical Reports Server (NTRS)
Tran, Ken; Prueger, George H.
1993-01-01
Computer program generates sizes and shapes of cascade-type blades for use in axial or radial turbomachine diffusers. Generates shapes of blades rapidly, incorporating extensive cascade data to determine optimum incidence and deviation angle for blade design based on 65-series data base of National Advisory Commission for Aeronautics and Astronautics (NACA). Allows great variability in blade profile through input variables. Also provides for design of three-dimensional blades by allowing variable blade stacking. Enables designer to obtain computed blade-geometry data in various forms: as input for blade-loading analysis; as input for quasi-three-dimensional analysis of flow; or as points for transfer to computer-aided design.
van Leeuwen, Cornelis; Roby, Jean-Philippe; Alonso-Villaverde, Virginia; Gindro, Katia
2013-01-09
In this study, 10 clones of Vitis vinifera Cabernet franc (not yet commercial) have been phenotyped on precocity, grape composition, and assessment of wine quality made by microvinification in 2008-2010. Additionally, two original criteria have been considered: concentration of 3-isobutyl-2-methoxypyrazine (IBMP) in grapes and wines (the green bell pepper flavor) and resistance of grapevines to downy mildew ( Plasmopara viticola ) by stilbene quantification upon infection. Precocity of veraison varied up to four days at veraison. Berry size and yield were highly variable among clones. However, these variables were not correlated. Tanins and anthocyanins varied among clones in grapes and wines. Variations in grape and wine IBMP were not significant. Some clones showed lower susceptibility for downy mildew on leaves. Lower susceptibility was linked to a higher production of stilbenic phytoalexins involved in downy mildew resistance mechanisms.
Wood, Kenneth R.; Appelhans, Marc S.; Wagner, Warren L.
2017-01-01
Abstract Melicope stonei K.R. Wood, Appelhans & W.L. Wagner (section Pelea, Rutaceae), a new endemic tree species from Kaua‘i, Hawaiian Islands, is described and illustrated with notes on its distribution, ecology, conservation status, and phylogenetic placement. The new species differs from its Hawaiian congeners by its unique combination of distinct carpels and ramiflorous inflorescences arising on stems below the leaves; plants monoecious; leaf blades (5–)8–30 × (4–)6–11 cm, with abaxial surface densely tomentose, especially along midribs; and very long petioles of up to 9 cm. Since its discovery in 1988, 94 individuals have been documented and are confined to a 1.5 km2 region of unique high canopy mesic forest. Melicope stonei represents a new Critically Endangered (CR) single island endemic species on Kaua‘i. PMID:29033653
Wood, Kenneth R; Appelhans, Marc S; Wagner, Warren L
2017-01-01
Melicope stonei K.R. Wood, Appelhans & W.L. Wagner (section Pelea, Rutaceae), a new endemic tree species from Kaua'i, Hawaiian Islands, is described and illustrated with notes on its distribution, ecology, conservation status, and phylogenetic placement. The new species differs from its Hawaiian congeners by its unique combination of distinct carpels and ramiflorous inflorescences arising on stems below the leaves; plants monoecious; leaf blades (5-)8-30 × (4-)6-11 cm, with abaxial surface densely tomentose, especially along midribs; and very long petioles of up to 9 cm. Since its discovery in 1988, 94 individuals have been documented and are confined to a 1.5 km 2 region of unique high canopy mesic forest. Melicope stonei represents a new Critically Endangered (CR) single island endemic species on Kaua'i.
Hemiboea suiyangensis (Gesneriaceae): a new species from Guizhou, China.
Li, Shuwan; Han, Mengqi; Li, Xiaojie; Li, Zhenyu; Xiang, Xiaoguo
2018-01-01
The limestone areas in south China are a major biodiversity hotspot for terrestrial biomes. Hemiboea , with 34 species and 5 varieties, mainly distributed in south China, is one of the characteristic plant groups in limestone areas. Hemiboea suiyangensis , a new species of Gesneriaceae from limestone areas in Guizhou, China, is described and illustrated. The new species is easily distinguished from other Hemiboea species by having an oblique-infundibular corolla with an abaxially gibbous swelling on the upper half of the tube and with a densely villose throat and lower lobes. Hemiboea suiyangensis is similar to H. omeiensis W. T. Wang in the shape of the leaf blade, but differs from the latter by the shape of the petiole, involucre, calyx and corolla and the colour of the corolla. The conservation status of this species is considered to be "Critically Endangered" (CR) according to IUCN Red List Criteria.
Direct contribution of the seagrass Thalassia testudinum to lime mud production.
Enríquez, Susana; Schubert, Nadine
2014-05-22
Seagrass beds contribute to oceanic carbonate lime mud production by providing a habitat for a wide variety of calcifying organisms and acting as efficient sediment traps. Here we provide evidence for the direct implication of Thalassia testudinum in the precipitation of aragonite needles. The crystals are located internally in the cell walls, and as external deposits on the blade, and are similar in size and shape to the aragonite needles reported for modern tropical carbonate factories. Seagrass calcification is a biological, light-enhanced process controlled by the leaf, and estimates of seagrass annual carbonate production in a Caribbean reef lagoon are as significant as values reported for Halimeda incrassata. Thus, we conclude that seagrass calcification is another biological source for the aragonite lime mud deposits found in tropical banks, and that tropical seagrass habitats may play a more important role in the oceanic carbon cycle than previously considered.
Direct contribution of the seagrass Thalassia testudinum to lime mud production
NASA Astrophysics Data System (ADS)
Enríquez, Susana; Schubert, Nadine
2014-05-01
Seagrass beds contribute to oceanic carbonate lime mud production by providing a habitat for a wide variety of calcifying organisms and acting as efficient sediment traps. Here we provide evidence for the direct implication of Thalassia testudinum in the precipitation of aragonite needles. The crystals are located internally in the cell walls, and as external deposits on the blade, and are similar in size and shape to the aragonite needles reported for modern tropical carbonate factories. Seagrass calcification is a biological, light-enhanced process controlled by the leaf, and estimates of seagrass annual carbonate production in a Caribbean reef lagoon are as significant as values reported for Halimeda incrassata. Thus, we conclude that seagrass calcification is another biological source for the aragonite lime mud deposits found in tropical banks, and that tropical seagrass habitats may play a more important role in the oceanic carbon cycle than previously considered.
Direct contribution of the seagrass Thalassia testudinum to lime mud production
Enríquez, Susana; Schubert, Nadine
2014-01-01
Seagrass beds contribute to oceanic carbonate lime mud production by providing a habitat for a wide variety of calcifying organisms and acting as efficient sediment traps. Here we provide evidence for the direct implication of Thalassia testudinum in the precipitation of aragonite needles. The crystals are located internally in the cell walls, and as external deposits on the blade, and are similar in size and shape to the aragonite needles reported for modern tropical carbonate factories. Seagrass calcification is a biological, light-enhanced process controlled by the leaf, and estimates of seagrass annual carbonate production in a Caribbean reef lagoon are as significant as values reported for Halimeda incrassata. Thus, we conclude that seagrass calcification is another biological source for the aragonite lime mud deposits found in tropical banks, and that tropical seagrass habitats may play a more important role in the oceanic carbon cycle than previously considered. PMID:24848374
Lee, Sang-Choon; Kim, Soo-Jin; Han, Soon-Ki; An, Gynheung; Kim, Seong-Ryong
2017-07-01
From a T-DNA-tagging population in rice, we identified OsGASR1 (LOC_Os03g55290), a member of the GAST (gibberellin (GA)-Stimulated Transcript) family that is induced by salt stress and ABA treatment. This gene was highly expressed in the regions of cell proliferation and panicle development, as revealed by a GUS assay of the mutant line. In the osgasr1 mutants, the second leaf blades were much longer than those of the segregating wild type due to an increase in cell length. In addition, five α-amylase genes were up-regulated in the mutants, implying that OsGASR1 is a negative regulator of those genes. These results suggest that OsGASR1 plays important roles in seedling growth and α-amylase gene expression. Copyright © 2017 Elsevier GmbH. All rights reserved.