Sample records for flagella

  1. Cell envelopes of chemotaxis mutants of Escherichia coli rotate their flagella counterclockwise.

    PubMed Central

    Szupica, C J; Adler, J

    1985-01-01

    Flagella rotated exclusively counterclockwise in Escherichia coli cell envelopes prepared from wild-type cells, whose flagella rotated both clockwise and counterclockwise, from mutants rotating their flagella counterclockwise only, and even from mutants rotating their flagella primarily clockwise. Some factor needed for clockwise flagellar rotation appeared to be missing or defective in the cell envelopes. PMID:3884599

  2. Polar flagella rotation in Vibrio parahaemolyticus confers resistance to bacteriophage infection

    PubMed Central

    Zhang, Hui; Li, Lu; Zhao, Zhe; Peng, Daxin; Zhou, Xiaohui

    2016-01-01

    Bacteriophage has been recognized as a novel approach to treat bacterial infectious diseases. However, phage resistance may reduce the efficacy of phage therapy. Here, we described a mechanism of bacterial resistance to phage infections. In Gram-negative enteric pathogen Vibrio parahaemolyticus, we found that polar flagella can reduce the phage infectivity. Deletion of polar flagella, but not the lateral flagella, can dramatically promote the adsorption of phage to the bacteria and enhances the phage infectivity to V. parahaemolyticus, indicating that polar flagella play an inhibitory role in the phage infection. Notably, it is the rotation, not the physical presence, of polar flagella that inhibits the phage infection of V. parahaemolyticus. Strikingly, phage dramatically reduces the virulence of V. parahaemolyticus only when polar flagella were absent both in vitro and in vivo. These results indicated that polar flagella rotation is a previously unidentified mechanism that confers bacteriophage resistance. PMID:27189325

  3. Synchronization and Collective Dynamics of Flagella and Cilia as Hydrodynamically Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Uchida, Nariya; Golestanian, Ramin; Bennett, Rachel R.

    2017-10-01

    Cooperative motion of flagella and cilia faciliates swimming of microorganisms and material transport in the body of multicellular organisms. Using minimal models, we address the roles of hydrodynamic interaction in synchronization and collective dynamics of flagella and cilia. Collective synchronization of bacterial flagella is studied with a model of bacterial carpets. Cilia and eukaryotic flagella are characterized by periodic modulation of their driving forces, which produces various patterns of two-body synchronization and metachronal waves. Long-range nature of the interaction introduces novel features in the dynamics of these model systems. The flagella of a swimmer synchronize also by a viscous drag force mediated through the swimmer's body. Recent advance in experimental studies of the collective dynamics of flagella, cilia and related artificial systems are summarized.

  4. Purification and Thermal Stability of Intact Bacillus subtilis Flagella

    PubMed Central

    Dimmitt, K.; Simon, M.

    1971-01-01

    Flagella were prepared and purified in a relatively intact form from bacterial lysates. Immunochemical tests showed that over 95% of the protein in the final preparation consisted of flagellar antigen. These flagella are more stable to thermal denaturation than flagella filaments obtained by shearing. Their thermal properties more closely resemble those of flagella in the native state on bacteria. The presence of the hook structure is responsible for this extra stability. Images PMID:4993323

  5. Flagella and motility behaviour of square bacteria.

    PubMed Central

    Alam, M; Claviez, M; Oesterhelt, D; Kessel, M

    1984-01-01

    Square bacteria are shown to have right-handed helical (RH) flagella. They swim forward by clockwise (CW), and backwards by counterclockwise (CCW) rotation of their flagella. They are propelled by several or single filaments arising at several or single points on the cell surface. When there are several filaments a stable bundle is formed that does not fly apart during the change from clockwise to counterclockwise rotation or vice versa. In addition to the flagella attached to the cells, large amounts of detached flagella aggregated into thick super-flagella, can be observed at all phases of growth. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6526006

  6. Fluid mechanics of swimming bacteria with multiple flagella.

    PubMed

    Kanehl, Philipp; Ishikawa, Takuji

    2014-04-01

    It is known that some kinds of bacteria swim by forming a bundle of their multiple flagella. However, the details of flagella synchronization as well as the swimming efficiency of such bacteria have not been fully understood. In this study, swimming of multiflagellated bacteria is investigated numerically by the boundary element method. We assume that the cell body is a rigid ellipsoid and the flagella are rigid helices suspended on flexible hooks. Motors apply constant torque to the hooks, rotating the flagella either clockwise or counterclockwise. Rotating all flagella clockwise, bundling of all flagella is observed in every simulated case. It is demonstrated that the counter rotation of the body speeds up the bundling process. During this procedure the flagella synchronize due to hydrodynamic interactions. Moreover, the results illustrated that during running the multiflagellated bacterium shows higher propulsive efficiency (distance traveled per one flagellar rotation) over a bacterium with a single thick helix. With an increasing number of flagella the propulsive efficiency increases, whereas the energetic efficiency decreases, which indicates that efficiency is something multiflagellated bacteria are assigning less priority to than to motility. These findings form a fundamental basis in understanding bacterial physiology and metabolism.

  7. The role of H4 flagella in Escherichia coli ST131 virulence

    PubMed Central

    Kakkanat, Asha; Totsika, Makrina; Schaale, Kolja; Duell, Benjamin L.; Lo, Alvin W.; Phan, Minh-Duy; Moriel, Danilo G.; Beatson, Scott A.; Sweet, Matthew J.; Ulett, Glen C.; Schembri, Mark A.

    2015-01-01

    Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug resistant clone associated with urinary tract and bloodstream infections. Most ST131 strains exhibit resistance to multiple antibiotics and cause infections associated with limited treatment options. The largest sub-clonal ST131 lineage is resistant to fluoroquinolones, contains the type 1 fimbriae fimH30 allele and expresses an H4 flagella antigen. Flagella are motility organelles that contribute to UPEC colonisation of the upper urinary tract. In this study, we examined the specific role of H4 flagella in ST131 motility and interaction with host epithelial and immune cells. We show that the majority of H4-positive ST131 strains are motile and are enriched for flagella expression during static pellicle growth. We also tested the role of H4 flagella in ST131 through the construction of specific mutants, over-expression strains and isogenic mutants that expressed alternative H1 and H7 flagellar subtypes. Overall, our results revealed that H4, H1 and H7 flagella possess conserved phenotypes with regards to motility, epithelial cell adhesion, invasion and uptake by macrophages. In contrast, H4 flagella trigger enhanced induction of the anti-inflammatory cytokine IL-10 compared to H1 and H7 flagella, a property that may contribute to ST131 fitness in the urinary tract. PMID:26548325

  8. Branchial Cilia and Sperm Flagella Recruit Distinct Axonemal Components

    PubMed Central

    Konno, Alu; Shiba, Kogiku; Cai, Chunhua; Inaba, Kazuo

    2015-01-01

    Eukaryotic cilia and flagella have highly conserved 9 + 2 structures. They are functionally diverged to play cell-type-specific roles even in a multicellular organism. Although their structural components are therefore believed to be common, few studies have investigated the molecular diversity of the protein components of the cilia and flagella in a single organism. Here we carried out a proteomic analysis and compared protein components between branchial cilia and sperm flagella in a marine invertebrate chordate, Ciona intestinalis. Distinct feature of protein recruitment in branchial cilia and sperm flagella has been clarified; (1) Isoforms of α- and β-tubulins as well as those of actins are distinctly used in branchial cilia or sperm flagella. (2) Structural components, such as dynein docking complex, tektins and an outer dense fiber protein, are used differently by the cilia and flagella. (3) Sperm flagella are specialized for the cAMP- and Ca2+-dependent regulation of outer arm dynein and for energy metabolism by glycolytic enzymes. Our present study clearly demonstrates that flagellar or ciliary proteins are properly recruited according to their function and stability, despite their apparent structural resemblance and conservation. PMID:25962172

  9. Polymorphism in Bacterial Flagella Suspensions

    NASA Astrophysics Data System (ADS)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  10. Effect of flagella expression on adhesion of Achromobacter piechaudii to chalk surfaces.

    PubMed

    Nejidat, A; Saadi, I; Ronen, Z

    2008-12-01

    To examine flagella role and cell motility in adhesion of Achromobacter piechaudii to chalk. Transmission electron microscopy revealed that stationary cells have thicker and longer flagella than logarithmic cells. SDS-PAGE analysis showed that flagellin was more abundant in stationary cells than logarithmic ones. Sonication or inhibition of flagellin synthesis caused a 30% reduction in adhesion to chalk. Preincubation of chalk with flagella extracts reduced adhesion, by 50%. Three motility mutants were isolated. Mutants 94 and 153 were nonmotile, expressed normal levels of flagellin, have regular flagella and exhibited reduced adhesion. Mutant 208 expressed low levels of flagellin, no flagella and a spherical cell shape but with normal adhesion capacity. Multiple cell surface factors affect the adhesion efficiency to chalk. Flagella per se through physical interaction and through cell motility contribute to the adhesion process. The adhesion behaviour of mutant 208 suggests that cell shape can compensate for flagellar removal and motility. Physiological status affects bacterial cell surface properties and hence adhesion efficiency to chalk. This interaction is essential to sustain biodegradation activities and thus, remediation of contaminated chalk aquifers.

  11. Flagella bending affects macroscopic properties of bacterial suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potomkin, M.; Tournus, M.; Berlyand, L. V.

    To survive in harsh conditions, motile bacteria swim in complex environments and respond to the surrounding flow. Here, we develop a mathematical model describing how flagella bending affects macroscopic properties of bacterial suspensions. First, we show how the flagella bending contributes to the decrease in the effective viscosity observed in dilute suspension. Our results do not impose tumbling (random reorientation) as was previously done to explain the viscosity reduction. Second, we demonstrate how a bacterium escapes from wall entrapment due to the self-induced buckling of flagella. Our results shed light on the role of flexible bacterial flagella in interactions ofmore » bacteria with shear flow and walls or obstacles.« less

  12. Flagella from Five Cronobacter Species Induce Pro-Inflammatory Cytokines in Macrophage Derivatives from Human Monocytes

    PubMed Central

    Cruz-Córdova, Ariadnna; Rocha-Ramírez, Luz M.; Ochoa, Sara A.; Gónzalez-Pedrajo, Bertha; Espinosa, Norma; Eslava, Carlos; Hernández-Chiñas, Ulises; Mendoza-Hernández, Guillermo; Rodríguez-Leviz, Alejandra; Valencia-Mayoral, Pedro; Sadowinski-Pine, Stanislaw; Hernández-Castro, Rigoberto; Estrada-García, Iris; Muñoz-Hernández, Onofre; Rosas, Irma; Xicohtencatl-Cortes, Juan

    2012-01-01

    Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10) in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng) induced the release of IL-8 (3314–6025 pg/ml), TNF-α (39–359 pg/ml), and IL-10 (2–96 pg/ml), in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200) suppressed the secretion of IL-8, TNF-α, and IL-10 between 95–100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria. PMID:23284883

  13. Effects of number and configuration of flagella on motility of Helicobacter species.

    NASA Astrophysics Data System (ADS)

    Constantino, Maira A.; Sharba, Sinan; Shen, Zeli; Fox, James G.; Haesebrouck, Freddy; Linden, Sara; Bansil, Rama

    Helicobacters are ulcer-causing bacteria that colonize the viscoelastic gastric mucus layer of mammals. Previous studies have shown that motility and colonization are affected by helical body shape, number and configuration of flagella. In a recent study, using fast time-resolution and high-magnification 2-D phase-contrast microscopy to image individual helical and rod-shaped H. pylori we measured the rotation rate of the cell body and flagella and found that helical shape produces less than 15% changes in swimming speeds as compared to the rod-shaped cell. Motility of H. pylori was strongly influenced by its multiple unipolar flagella. Here we compare rotational and translational speeds of H. cetorum and H. suis which have bipolar flagella, with H. cetorum having single bipolar flagella and H. suis having multiple flagella. Preliminary results show that H. suis bacteria swim slower but rotate at the same rate as H. pylori and present two swimming modes. It can swim as a pusher, with one active rotating bundle and one inactive bundle, wrapped around the body or with both bundles active. Similar work on H. cetorum is ongoing and will also be presented. NSF PHY 1410798.

  14. Chirality Switching by Martensitic Transformation in Protein Cylindrical Crystals: Application to Bacterial Flagella

    NASA Astrophysics Data System (ADS)

    Komai, Ricardo Kiyohiro

    Martensitic transformations provide unique engineering properties that, when designed properly, become important parts of new technology. Martensitic transformations have been studied for many years in traditional alloys (iron, steel, titanium, etc.), however there is still much to be learned in regards to these transformations in biological materials. Olson and Hartman showed in 1982 that these transformations are also observed in bacterial flagella and T4 bacteriophage viral sheaths, allowing for propulsion of bacteria in a fluid environment and, for the virus, is responsible for the infection mechanism. This work demonstrates, using the bacterial flagella as an example, that these transformations can be modelled using thermodynamic methods that are also used to model the transformations in alloys. This thesis work attempts to explain the transformations that occur in bacterial flagella, which are capable of small strain, highly reversible martensitic transformations. The first stress/temperature phase diagrams of these flagella were created by adding the mechanical energy of the transformation of the flagella to limited chemical thermodynamics information of the transformation. Mechanical energy is critical to the transformation process because the bacterial body applies a torque to the radius of the flagella. Finally, work has begun and will be completed in regards to understanding the kinetics of the transformation of the flagella. The motion of the transformation interface can be predicted by using a Landau-Ginzburg model. The crystallography of the transformation in bacterial flagella is also being computed to determine the invariant lines of transformation that occur within this cylindrical crystal. This work has shown that it is possible to treat proteins in a similar manner that alloys are treated when using thermodynamic modelling. Much can be learned from translating what is known regarding phase transformations in hard material systems to soft, organic systems.

  15. Modeling and analysis of propulsion in the multiflagellated micoorganism Giardia lamblia

    NASA Astrophysics Data System (ADS)

    Lenaghan, Scott C.; Chen, Jun; Zhang, Mingjun

    2013-07-01

    The goal of this work was to analyze the propulsion of multiflagellated microorganisms, and to draw insight to the underlying physics and biology of the movement. Giardia lamblia was chosen as the model organism due to its unique ability to mechanically attach to various surfaces, its rapid movement, and its fine control over steering and navigation. In this work, a mechanics model was utilized to study the mechanics and propulsive contribution of the ventral and anterior flagella in Giardia. It was discovered that energy is supplied mainly at the proximal portion of these flagella, supporting the hypothesis that a decreasing adenosine triphosphate (ATP) gradient along the length of the flagella would not affect the motion observed. Similarly, the elasticity of the flagella allows the energy input at the proximal portion to be transferred to the distal portion, where the majority of thrust is generated. Specifically, we found that the ventral flagella are the driving force for planar propulsion and turning, while the anterior flagella are used for steering and control.

  16. Importance of Flagella and Enterotoxins for Aeromonas Virulence in a Mouse Model

    EPA Science Inventory

    A genetic characterization of eight virulence factor genes, elastase, lipase, polar flagella (flaA/flaB, flaG), lateral flagella (lafA), and the enterotoxins alt, act, and ast, was performed using polymerase chain reaction with 55 drinking water and nine clinical isolates. When 1...

  17. Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging.

    PubMed

    Zhao, Ziyi; Zhao, Yifan; Zhuang, Xiang-Yu; Lo, Wei-Chang; Baker, Matthew A B; Lo, Chien-Jung; Bai, Fan

    2018-05-14

    The bacterial flagellum is a large extracellular protein organelle that extrudes from the cell surface. The flagellar filament is assembled from tens of thousands of flagellin subunits that are exported through the flagellar type III secretion system. Here, we measure the growth of Escherichia coli flagella in real time and find that, although the growth rate displays large variations at similar lengths, it decays on average as flagella lengthen. By tracking single flagella, we show that the large variations in growth rate occur as a result of frequent pauses. Furthermore, different flagella on the same cell show variable growth rates with correlation. Our observations are consistent with an injection-diffusion model, and we propose that an insufficient cytoplasmic flagellin supply is responsible for the pauses in flagellar growth in E. coli.

  18. Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics*

    PubMed Central

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-01-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. PMID:24741115

  19. Periplasmal Physics: The Rotational Dynamics of Spirochetal Flagella

    NASA Astrophysics Data System (ADS)

    Huber, Greg

    2012-02-01

    Spirochetes are distinguished by the location of their flagella, which reside within the periplasm: the tiny space between the bacterial cell wall and the outer membrane. In Borrelia burgdorferi/ (the causative agent of Lyme Disease), rotation of the flagella leads to cellular undulations that drive swimming. Exactly how these shape changes arise due to the forces and torques acting between the flagella and the cell body is unknown. By applying low-Reynolds number hydrodynamic theory to the motion of an elastic flagellum rotating in the periplasm, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. We obtain analytical solutions for the force and torque on the rotating flagellum through lubrication analysis, as well as through scaling analysis, and find results are in close agreement numerical simulations. (Joint work with J. Yang and C.W. Wolgemuth.)

  20. Characterization of Flagella Produced by Clinical Strains of Stenotrophomonas maltophilia

    PubMed Central

    de Oliveira-Garcia, Doroti; Dall'Agnol, Monique; Rosales, Mónica; Azzuz, Ana C.G.S.; Martinez, Marina B.; Girón, Jorge A.

    2002-01-01

    Stenotrophomonas maltophilia is an emerging nosocomial pathogen associated with opportunistic infections in patients with cystic fibrosis, cancer, and HIV. Adherence of this organism to abiotic surfaces such as medical implants and catheters represents a major risk for hospitalized patients. The adhesive surface factors involved in adherence of these bacteria are largely unknown, and their flagella have not yet been characterized biochemically and antigenically. We purified and characterized the flagella produced by S. maltophilia clinical strains. The flagella filaments are composed of a 38-kDa subunit, SMFliC, and analysis of its N-terminal amino acid sequence showed considerable sequence identity to the flagellins of Serratia marcescens (78.6%), Escherichia coli, Proteus mirabilis, Shigella sonnei (71.4%), and Pseudomonas aeruginosa (57.2%). Ultrastructural analysis by scanning electron microscopy of bacteria adhering to plastic showed flagellalike structures within the bacterial clusters, suggesting that flagella are produced as the bacteria spread on the abiotic surface. PMID:12194767

  1. Bacterial Flagella as a Model Rigid Rod of Tunable Shape

    NASA Astrophysics Data System (ADS)

    Schwenger, Walter; Yardimci, Sevim; Gibaud, Thomas; Snow, Henry; Urbach, Jeff; Dogic, Zvonimir

    In this research, we study the physical properties of suspensions of bacterial flagella from Salmonella typhimurium prepared in a variety of rigid polymorphic shapes. Flagella act as a rigid colloidal particle that can exhibit non-trivial geometry including helices of varying dimensions, straight rods, or a combination of the two in the same filament. By controlling the conditions in which flagella are prepared, the polymorphic shape assumed by the filament can be controlled. Utilizing different polymorphic shapes, we combine results from optical microscopy observations of single filaments with bulk rheological measurements to help understand the role that constituent colloidal geometry plays in complex bulk behavior.

  2. CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas

    PubMed Central

    Tam, Lai-Wa; Ranum, Paul T.; Lefebvre, Paul A.

    2013-01-01

    The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes—LF1, LF2, LF3, and LF4—cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location: the proximal 1 μm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC)—LF1, LF2, and LF3—are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC. PMID:23283985

  3. Unlocking the secrets of multi-flagellated propulsion: drawing insights from Tritrichomonas foetus

    PubMed Central

    Lenaghan, Scott C.; Nwandu-Vincent, Stefan; Reese, Benjamin E.; Zhang, Mingjun

    2014-01-01

    In this work, a high-speed imaging platform and a resistive force theory (RFT) based model were applied to investigate multi-flagellated propulsion, using Tritrichomonas foetus as an example. We discovered that T. foetus has distinct flagellar beating motions for linear swimming and turning, similar to the ‘run and tumble’ strategies observed in bacteria and Chlamydomonas. Quantitative analysis of the motion of each flagellum was achieved by determining the average flagella beat motion for both linear swimming and turning, and using the velocity of the flagella as inputs into the RFT model. The experimental approach was used to calculate the curvature along the length of the flagella throughout each stroke. It was found that the curvatures of the anterior flagella do not decrease monotonically along their lengths, confirming the ciliary waveform of these flagella. Further, the stiffness of the flagella was experimentally measured using nanoindentation, allowing for calculation of the flexural rigidity of T. foetus's flagella, 1.55×10−21 N m2. Finally, using the RFT model, it was discovered that the propulsive force of T. foetus was similar to that of sperm and Chlamydomonas, indicating that multi-flagellated propulsion does not necessarily contribute to greater thrust generation, and may have evolved for greater manoeuvrability or sensing. The results from this study have demonstrated the highly coordinated nature of multi-flagellated propulsion and have provided significant insights into the biology of T. foetus. PMID:24478286

  4. Fine Structure of the Motile Cells and Flagella in a Member of the Actinoplanaceae (Actinomycetales)

    PubMed Central

    Bland, Charles E.

    1970-01-01

    The motile cells (sporangiospores) of an undescribed member of the Actinoplanaceae are studied by electron microscopy as shadowed, negatively stained, and sectioned preparations. The rod-shaped spores exhibit a typically bacterial internal structure. However, a single tubular structure (rhapidosome) is positioned just inside the site of flagellar attachment of each spore and is oriented perpendicular to the direction of the flagella. Flagella arise from basal dises and pass through the plasma membrane and the two-layered cell wall to become associated with other flagella to function as a posteriorly directed unit. Each flagellum consists of a helical band or ribbon which dissociates into 5 or 6 subfibrils. Images PMID:4098725

  5. Coordinated Beating of Algal Flagella is Mediated by Basal Coupling

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty; Goldstein, Raymond

    Cilia or flagella often exhibit synchronized behavior. This includes phase-locking, as seen in Chlamydomonas, and metachronal wave formation in the respiratory cilia of higher organisms. Since the observations by Gray and Rothschild of phase synchrony of nearby swimming spermatozoa, it has been a working hypothesis that synchrony arises from hydrodynamic interactions between beating filaments. Recent work on the dynamics of physically separated pairs of flagella isolated from the multicellular alga Volvox has shown that hydrodynamic coupling alone is sufficient for synchrony. However, the situation is more complex when considering multiple flagella on a single cell. We suggest that a mechanism, internal to the cell, provides an additional flagellar coupling. For instance, flagella of Chlamydomonas mutants deficient in filamentary connections between basal bodies are found to display markedly different synchronization from the wildtype. Diverse flagellar coordination strategies found in quadri-, octo- and hexadecaflagellates reveal further evidence that intracellular couplings between flagellar basal bodies compete with hydrodynamic interactions to determine the precise form of flagellar synchronization in unicellular algae.

  6. Evolution: Tracing the origins of centrioles, cilia, and flagella.

    PubMed

    Carvalho-Santos, Zita; Azimzadeh, Juliette; Pereira-Leal, José B; Bettencourt-Dias, Mónica

    2011-07-25

    Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.

  7. Joint Program on Molecular Biology of Marine Organisms

    DTIC Science & Technology

    1992-08-20

    and lateral flagella formation in a marine vibrio (Belas and Colwell, 1982). Upon contact with a surface, the polar flagella of Vibrio ... parahemolyticus ceased to function. Shortl’ thereafter, lateral flagella formed around the cells, apparently mediating the "irreversible" attachment process. Pilus...Colwell. 1982. Adsorption kinetics of 18 Slaterally and polarly flagellated Vibrio . J. Bacteriol. 151:1568-1580. S-- Brown, C.M., D.C. Ellwood, and

  8. Analysis of a Spontaneous Non-Motile and Avirulent Mutant Shows That FliM Is Required for Full Endoflagella Assembly in Leptospira interrogans.

    PubMed

    Fontana, Célia; Lambert, Ambroise; Benaroudj, Nadia; Gasparini, David; Gorgette, Olivier; Cachet, Nathalie; Bomchil, Natalia; Picardeau, Mathieu

    2016-01-01

    Pathogenic Leptospira strains are responsible for leptospirosis, a worldwide emerging zoonotic disease. These spirochetes are unique amongst bacteria because of their corkscrew-like cell morphology and their periplasmic flagella. Motility is reported as an important virulence determinant, probably favoring entry and dissemination of pathogenic Leptospira in the host. However, proteins constituting the periplasmic flagella and their role in cell shape, motility and virulence remain poorly described. In this study, we characterized a spontaneous L. interrogans mutant strain lacking motility, correlated with the loss of the characteristic hook-shaped ends, and virulence in the animal model. Whole genome sequencing allowed the identification of one nucleotide deletion in the fliM gene resulting in a premature stop codon, thereby preventing the production of flagellar motor switch protein FliM. Genetic complementation restored cell morphology, motility and virulence comparable to those of wild type cells. Analyses of purified periplasmic flagella revealed a defect in flagella assembly, resulting in shortened flagella compared to the wild type strain. This also correlated with a lower amount of major filament proteins FlaA and FlaB. Altogether, these findings demonstrate that FliM is required for full and correct assembly of the flagella which is essential for motility and virulence.

  9. Demonstrating Bacterial Flagella.

    ERIC Educational Resources Information Center

    Porter, John R.; And Others

    1992-01-01

    Describes an effective laboratory method for demonstrating bacterial flagella that utilizes the Proteus mirabilis organism and a special harvesting technique. Includes safety considerations for the laboratory exercise. (MDH)

  10. Swimming Dynamics of the Lyme Disease Spirochete

    NASA Astrophysics Data System (ADS)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2012-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  11. Intestinal Epithelial Cell Response to Clostridium difficile Flagella.

    PubMed

    Batah, Jameel; Kansau, Imad

    2016-01-01

    Clostridium difficile is the bacterium responsible for most antibiotic-associated diarrhea in North America and Europe. This bacterium, which colonizes the gut of humans and animals, produces toxins that are known to contribute directly to damage of the gut. It is known that bacterial flagella are involved in intestinal lesions through the inflammatory host response. The C. difficile flagellin recognizes TLR5 and consequently activates the NF-κB and the MAPK signaling pathways which elicit the synthesis of pro-inflammatory cytokines. Increasing interest on the role of C. difficile flagella in eliciting this cell response was recently developed and the development of tools to study cell response triggered by C. difficile flagella will improve our understanding of the pathogenesis of C. difficile.

  12. Swimming dynamics of the lyme disease spirochete.

    PubMed

    Vig, Dhruv K; Wolgemuth, Charles W

    2012-11-21

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi's swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  13. Both flagella and F4 fimbriae from F4ac+ enterotoxigenic Escherichia coli contribute to attachment to IPEC-J2 cells in vitro.

    PubMed

    Zhou, Mingxu; Duan, Qiangde; Zhu, Xiaofang; Guo, Zhiyan; Li, Yinchau; Hardwidge, Philip R; Zhu, Guoqiang

    2013-05-13

    The role of flagella in the pathogenesis of F4ac+ Enterotoxigenic Escherichia coli (ETEC) mediated neonatal and post-weaning diarrhea (PWD) is not currently understood. We targeted the reference C83902 ETEC strain (O8:H19:F4ac+ LT+ STa+ STb+), to construct isogenic mutants in the fliC (encoding the major flagellin protein), motA (encoding the flagella motor), and faeG (encoding the major subunit of F4 fimbriae) genes. Both the ΔfliC and ΔfaeG mutants had a reduced ability to adhere to porcine intestinal epithelial IPEC-J2 cells. F4 fimbriae expression was significantly down-regulated after deleting fliC, which revealed that co-regulation exists between flagella and F4 fimbriae. However, there was no difference in adhesion between the ΔmotA mutant and its parent strain. These data demonstrate that both flagella and F4 fimbriae are required for efficient F4ac+ ETEC adhesion in vitro.

  14. Flagellar central pair assembly in Chlamydomonas reinhardtii

    PubMed Central

    2013-01-01

    Background Most motile cilia and flagella have nine outer doublet and two central pair (CP) microtubules. Outer doublet microtubules are continuous with the triplet microtubules of the basal body, are templated by the basal body microtubules, and grow by addition of new subunits to their distal (“plus”) ends. In contrast, CP microtubules are not continuous with basal body microtubules, raising the question of how these microtubules are assembled and how their polarity is established. Methods CP assembly in Chlamydomonas reinhardtii was analyzed by electron microscopy and wide-field and super-resolution immunofluorescence microscopy. To analyze CP assembly independently from flagellar assembly, the CP-deficient katanin mutants pf15 or pf19 were mated to wild-type cells. HA-tagged tubulin and the CP-specific protein hydin were used as markers to analyze de novo CP assembly inside the formerly mutant flagella. Results In regenerating flagella, the CP and its projections assemble near the transition zone soon after the onset of outer doublet elongation. During de novo CP assembly in full-length flagella, the nascent CP was first apparent in a subdistal region of the flagellum. The developing CP replaces a fibrous core that fills the axonemal lumen of CP-deficient flagella. The fibrous core contains proteins normally associated with the C1 CP microtubule and proteins involved in intraflagellar transport (IFT). In flagella of the radial spoke-deficient mutant pf14, two pairs of CPs are frequently present with identical correct polarities. Conclusions The temporal separation of flagellar and CP assembly in dikaryons formed by mating CP-deficient gametes to wild-type gametes revealed that the formation of the CP does not require proximity to the basal body or transition zone, or to the flagellar tip. The observations on pf14 provide further support that the CP self-assembles without a template and eliminate the possibility that CP polarity is established by interaction with axonemal radial spokes. Polarity of the developing CP may be determined by the proximal-to-distal gradient of precursor molecules. IFT proteins accumulate in flagella of CP mutants; the abnormal distribution of IFT proteins may explain why these flagella are often shorter than normal. PMID:24283352

  15. Pix proteins and the evolution of centrioles.

    PubMed

    Woodland, Hugh R; Fry, Andrew M

    2008-01-01

    We have made a wide phylogenetic survey of Pix proteins, which are constituents of vertebrate centrioles in most eukaryotes. We have also surveyed the presence and structure of flagella or cilia and centrioles in these organisms, as far as is possible from published information. We find that Pix proteins are present in a vast range of eukaryotes, but not all. Where centrioles are absent so are Pix proteins. If one considers the maintenance of Pix proteins over evolutionary time scales, our analysis would suggest that their key function is to make cilia and flagella, and the same is true of centrioles. Moreover, this survey raises the possibility that Pix proteins are only maintained to make cilia and flagella that undulate, and even then only when they are constructed by transporting ciliary constituents up the cilium using the intraflagellar transport (IFT) system. We also find that Pix proteins have become generally divergent within Ecdysozoa and between this group and other taxa. This correlates with a simplification of centrioles within Ecdysozoa and a loss or divergence of cilia/flagella. Thus Pix proteins act as a weathervane to indicate changes in centriole function, whose core activity is to make cilia and flagella.

  16. A method for the purification of bacterial flagellin that allows simple upscaling.

    PubMed

    Hiriart, Yanina; Errea, Agustina; González Maciel, Dolores; Lopez, Juan Carlos; Rumbo, Martin

    2012-01-01

    There is a growing interest in enterobacterial flagellins that may result in a demand to produce flagellin on an industrial scale for possible applications as an adjuvant, immunomodulatory agent or vaccine antigen. Traditionally, small-scale production of flagellin has occurred in the laboratory by flagellar shearing of bacterial surfaces and subsequent ultracentrifugation. The main drawback of this method is the need to use low-agitation cultures to avoid the loss of flagella due to shearing during culture. In the present work, we describe a scalable protocol for the production of flagellin with higher yields than traditional laboratory-scale protocols. The use of cross-flow filtration to concentrate bacterial cultures combines extensive shearing of flagella with a reduction in volume, greatly simplifying downstream processing. This technique also allows the use of highly-agitated culture conditions because any sheared flagella are retained in the bacterial concentrate. Flagella obtained with this procedure showed in vivo and in vitro innate activating capacities similar to those of flagella produced at laboratory scale. This procedure is flexible, allowing an increase in production scale, an enhancement of flagellin yield and no requirement for expensive equipment.

  17. Application of the Indirect Immunoperoxidase Stain Technique to the Flagella of Azospirillum brasilense

    PubMed Central

    Hall, Patrick G.; Krieg, Noel R.

    1984-01-01

    An indirect immunoperoxidase stain was used to demonstrate by electron microscopy that an antigenic difference exists between the polar flagellum and the lateral flagella of Azospirillum brasilense ATCC 29145. Images PMID:16346482

  18. Synchronization of eukaryotic flagella in vivo: from two to thousands

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2012-02-01

    From unicellular organisms as small as a few microns to the largest vertebrates on Earth, we find groups of beating flagella or cilia that exhibit striking spatiotemporal organization. This may take the form of precise frequency and phase locking, as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates such as Paramecium and in our own respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. This talk will summarize recent work using the unicellular alga Chlamydomonas reinhardtii and its multicellular cousin Volvox carteri to study in detail the nature of flagellar synchronization and its possible hydrodynamic origins.

  19. Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella

    PubMed Central

    Sartori, Pablo; Geyer, Veikko F; Scholich, Andre; Jülicher, Frank; Howard, Jonathon

    2016-01-01

    Cilia and flagella are model systems for studying how mechanical forces control morphology. The periodic bending motion of cilia and flagella is thought to arise from mechanical feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to deformations and stresses, which feed back and regulate the motors. Three alternative feedback mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In this work, we combined theoretical and experimental approaches to show that the curvature control mechanism is the one that accords best with the bending waveforms of Chlamydomonas flagella. We make the surprising prediction that the motors respond to the time derivative of curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar beat. DOI: http://dx.doi.org/10.7554/eLife.13258.001 PMID:27166516

  20. Chlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons

    PubMed Central

    Cole, Douglas G.; Diener, Dennis R.; Himelblau, Amy L.; Beech, Peter L.; Fuster, Jason C.; Rosenbaum, Joel L.

    1998-01-01

    We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519–5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979–992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule- dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia. PMID:9585417

  1. Curcumin Reduces the Motility of Salmonella enterica Serovar Typhimurium by Binding to the Flagella, Thereby Leading to Flagellar Fragility and Shedding

    PubMed Central

    Balakrishnan, Arjun; Negi, Vidya Devi; Sakorey, Deepika; Chandra, Nagasuma

    2016-01-01

    ABSTRACT One of the important virulence properties of the pathogen is its ability to travel to a favorable environment, cross the viscous mucus barrier (intestinal barrier for enteric pathogens), and reach the epithelia to initiate pathogenesis with the help of an appendage, like flagella. Nonetheless, flagella can act as an “Achilles heel,” revealing the pathogen's presence to the host through the stimulation of innate and adaptive immune responses. We assessed whether curcumin, a dietary polyphenol, could alter the motility of Salmonella, a foodborne pathogen. It reduced the motility of Salmonella enterica serovar Typhimurium by shortening the length of the flagellar filament (from ∼8 μm to ∼5 μm) and decreasing its density (4 or 5 flagella/bacterium instead of 8 or 9 flagella/bacterium). Upon curcumin treatment, the percentage of flagellated bacteria declined from ∼84% to 59%. However, no change was detected in the expression of the flagellin gene and protein. A fluorescence binding assay demonstrated binding of curcumin to the flagellar filament. This might make the filament fragile, breaking it into smaller fragments. Computational analysis predicted the binding of curcumin, its analogues, and its degraded products to a flagellin molecule at an interface between domains D1 and D2. Site-directed mutagenesis and a fluorescence binding assay confirmed the binding of curcumin to flagellin at residues ASN120, ASP123, ASN163, SER164, ASN173, and GLN175. IMPORTANCE This work, to our knowledge the first report of its kind, examines how curcumin targets flagellar density and affects the pathogenesis of bacteria. We found that curcumin does not affect any of the flagellar synthesis genes. Instead, it binds to the flagellum and makes it fragile. It increases the torsional stress on the flagellar filament that then breaks, leaving fewer flagella around the bacteria. Flagella, which are crucial ligands for Toll-like receptor 5, are some of the most important appendages of Salmonella. Curcumin is an important component of turmeric, which is a major spice used in Asian cooking. The loss of flagella can, in turn, change the pathogenesis of bacteria, making them more robust and fit in the host. PMID:27091154

  2. [Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation].

    PubMed

    Kovtunov, E A; Shelud'ko, A V; Chernyshova, M P; Petrova, L P; Katsy, E I

    2013-11-01

    Bacteria Azospirillum brasilense have mixed flagellation: in addition to the polar flagellum, numerous lateral flagella are formed in their cells on medium with increased density. Flagella determine the active swimming and swarming capacities of azospirilla. Using A. brasilense Sp245 as an example, we showed that the Omegon-Km artificial transposon insertion into the chromosomal gene for 3-hydroxyisobutyrate dehydrogenase (mmsB) was concurrent with the appearance of significant defects in the formation of polar flagella and with the paralysis of lateral flagella. The Sp245 mutant with the Omegon insertion into the plasmid AZOBR_p1-borne gene for 3-oxoacyl-[acyl-carrier protein]-reductase (fabG) showed the complete loss of flagella and the swarming capacity, as well as significant defects in polar flagellar assembly (though some cells are still motile in liquid medium). The viability of the A. brasilense Sp245 mutants with the Omegon insertion into the mmsB or fabG gene was not reduced. No considerable differences in the fatty acid composition of whole cell lipid extracts were found for the A. brasilense Sp245 strain and its mmsB and fabG mutants.

  3. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone

    PubMed Central

    Awata, Junya; Takada, Saeko; Standley, Clive; Lechtreck, Karl F.; Bellvé, Karl D.; Pazour, Gregory J.; Fogarty, Kevin E.; Witman, George B.

    2014-01-01

    ABSTRACT The protein nephrocystin-4 (NPHP4) is widespread in ciliated organisms, and defects in NPHP4 cause nephronophthisis and blindness in humans. To learn more about the function of NPHP4, we have studied it in Chlamydomonas reinhardtii. NPHP4 is stably incorporated into the distal part of the flagellar transition zone, close to the membrane and distal to CEP290, another transition zone protein. Therefore, these two proteins, which are incorporated into the transition zone independently of each other, define different domains of the transition zone. An nphp4-null mutant forms flagella with nearly normal length, ultrastructure and intraflagellar transport. When fractions from isolated wild-type and nphp4 flagella were compared, few differences were observed between the axonemes, but the amounts of certain membrane proteins were greatly reduced in the mutant flagella, and cellular housekeeping proteins >50 kDa were no longer excluded from mutant flagella. Therefore, NPHP4 functions at the transition zone as an essential part of a barrier that regulates both membrane and soluble protein composition of flagella. The phenotypic consequences of NPHP4 mutations in humans likely follow from protein mislocalization due to defects in the transition zone barrier. PMID:25150219

  4. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon.

    PubMed

    Calvio, Cinzia; Celandroni, Francesco; Ghelardi, Emilia; Amati, Giuseppe; Salvetti, Sara; Ceciliani, Fabrizio; Galizzi, Alessandro; Senesi, Sonia

    2005-08-01

    The number and disposition of flagella harbored by eubacteria are regulated by a specific trait successfully maintained over generations. The genes governing the number of flagella in Bacillus subtilis have never been identified, although the ifm locus has long been recognized to influence the motility phenotype of this microorganism. The characterization of a spontaneous ifm mutant of B. subtilis, displaying diverse degrees of cell flagellation in both liquid and solid media, raised the question of how the ifm locus governs the number and assembly of functional flagella. The major finding of this investigation is the characterization of a newly identified dicistronic operon, named swrA, that controls both swimming motility and swarming differentiation in B. subtilis. Functional analysis of the swrA operon allowed swrAA (previously named swrA [D. B. Kearns, F. Chu, R. Rudner, and R. Losick, Mol. Microbiol. 52:357-369, 2004]) to be the first gene identified in B. subtilis that controls the number of flagella in liquid environments and the assembly of flagella in response to cell contact with solid surfaces. Evidence is given that the second gene of the operon, swrAB, is essential for enabling the surface-adhering cells to undergo swarming differentiation. Preliminary data point to a molecular interaction between the two gene products.

  5. Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber.

    PubMed

    McClaine, Jennifer W; Ford, Roseanne M

    2002-04-20

    A parallel-plate flow chamber was used to measure the attachment and detachment rates of Escherichia coli to a glass surface at various fluid velocities. The effect of flagella on adhesion was investigated by performing experiments with several E. coli strains: AW405 (motile); HCB136 (nonmotile mutant with paralyzed flagella); and HCB137 (nonmotile mutant without flagella). We compared the total attachment rates and the fraction of bacteria retained on the surface to determine how the presence and movement of the flagella influence transport to the surface and adhesion strength in this dynamic system. At the lower fluid velocities, there was no significant difference in the total attachment rates for the three bacterial strains; nonmotile strains settled at a rate that was of the same order of magnitude as the diffusion rate of the motile strain. At the highest fluid velocity, the effect of settling was minimized to better illustrate the importance of motility, and the attachment rates of both nonmotile strains were approximately five times slower than that of the motile bacteria. Thus, different processes controlled the attachment rate depending on the parameter regime in which the experiment was performed. The fractions of motile bacteria retained on the glass surface increased with increasing velocity, whereas the opposite trend was found for the nonmotile strains. This suggests that the rotation of the flagella enables cells to detach from the surface (at the lower fluid velocities) and strengthens adhesion (at higher fluid velocities), whereas nonmotile cells detach as a result of shear. There was no significant difference in the initial attachment rates of the two nonmotile species, which suggests that merely the presence of flagella was not important in this stage of biofilm development. Copyright 2002 Wiley Periodicals, Inc.

  6. The flagella of F18ab Escherichia coli is a virulence factor that contributes to infection in a IPEC-J2 cell model in vitro.

    PubMed

    Duan, Qiangde; Zhou, Mingxu; Zhu, Xiaofang; Bao, Wenbin; Wu, Shenglong; Ruan, Xiaosai; Zhang, Weiping; Yang, Yang; Zhu, Jun; Zhu, Guoqiang

    2012-11-09

    Bacterial flagella contribute to pathogen virulence; however, the role of flagella in the pathogenesis of F18ab E. coli-mediated swine edema disease (ED) is not currently known. We therefore evaluated the role of flagella in F18ab E. coli adhesion, invasion, biofilm formation, and IL-8 production using an in vitro cell infection model approach with gene-deletion mutant and complemented bacterial strains. We demonstrated that the flagellin-deficient fliC mutant had a marked decrease in the ability to adhere to and invade porcine epithelial IPEC-J2 cells. Surprisingly, there was no difference in adhesion between the F18 fimbriae-deficient ΔfedA mutant and its parent strain. In addition, both the ΔfedA and double ΔfliCΔfedA mutants exhibited an increased ability to invade IPEC-J2 cells compared to the wild-type strain, although this may be due to increased expression of other adhesins following the loss of F18ab fimbriae and flagella. Compared to the wild-type strain, the ΔfliC mutant showed significantly reduced ability to form biofilm, whereas the ΔfedA mutant increased biofilm formation. Although ΔfliC, ΔfedA, and ΔfliCΔfedA mutants had a reduced ability to stimulate IL-8 production from infected Caco-2 cells, the ΔfliC mutant impaired this ability to a greater extent than the ΔfedA mutant. The results from this study clearly demonstrate that flagella are required for efficient F18ab E. coli adhesion, invasion, biofilm formation, and IL-8 production in vitro. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model.

    PubMed

    Engel, Benjamin D; Ludington, William B; Marshall, Wallace F

    2009-10-05

    The assembly and maintenance of eukaryotic flagella are regulated by intraflagellar transport (IFT), the bidirectional traffic of IFT particles (recently renamed IFT trains) within the flagellum. We previously proposed the balance-point length control model, which predicted that the frequency of train transport should decrease as a function of flagellar length, thus modulating the length-dependent flagellar assembly rate. However, this model was challenged by the differential interference contrast microscopy observation that IFT frequency is length independent. Using total internal reflection fluorescence microscopy to quantify protein traffic during the regeneration of Chlamydomonas reinhardtii flagella, we determined that anterograde IFT trains in short flagella are composed of more kinesin-associated protein and IFT27 proteins than trains in long flagella. This length-dependent remodeling of train size is consistent with the kinetics of flagellar regeneration and supports a revised balance-point model of flagellar length control in which the size of anterograde IFT trains tunes the rate of flagellar assembly.

  8. The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16

    PubMed Central

    Hou, Yuqing; Witman, George B.

    2017-01-01

    Cilia are assembled via intraflagellar transport (IFT). The IFT machinery is composed of motors and multisubunit particles, termed IFT-A and IFT-B, that carry cargo into the cilium. Knowledge of how the IFT subunits interact with their cargo is of critical importance for understanding how the unique ciliary domain is established. We previously reported a Chlamydomonas mutant, ift46-1, that fails to express the IFT-B protein IFT46, has greatly reduced levels of other IFT-B proteins, and assembles only very short flagella. A spontaneous suppression of ift46-1 restored IFT-B levels and enabled growth of longer flagella, but the flagella lacked outer dynein arms. Here we show that the suppression is due to insertion of the transposon MRC1 into the ift46-1 allele, causing the expression of a fusion protein including the IFT46 C-terminal 240 amino acids. The IFT46 C-terminus can assemble into and stabilize IFT-B but does not support transport of outer arm dynein into flagella. ODA16, a cargo adaptor specific for outer arm dynein, also fails to be imported into the flagella in the absence of the IFT46 N-terminus. We conclude that the IFT46 N-terminus, ODA16, and outer arm dynein interact for IFT of the latter. PMID:28701346

  9. Analysis of the swimming activity of Pseudomonas aeruginosa by using photonic force microscope

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Han; Chang, Bo-Jui; Huang, Ying-Jung; Fan, Chia-Chieh; Peng, Hwei-Ling; Chi, Sien; Hsu, Long

    2005-08-01

    Swimming activity of flagella is a main factor of the motility of bacteria. Flagella expressed on the surface of bacterial species serve as a primary means of motility including swimming. We propose to use optical tweezers to analyze the swimming activity of bacteria. The sample bacteria in the work is Pseudomonas aeruginosa, and it is a gram-negative bacterium and often causes leading to burn wound infections, urinary-tract infections, and pneumonia. The single polar flagellum of P. aeruginosa has been demonstrated to be important virulence and colonization factor of this opportunistic pathogen. We demonstrate a gene to regulate the bacterial swimming activity in P. aeruginosa PAO1 by biological method. However, the change of flagellar morphology was not observed by electron microscopy analysis, suggesting that the gene regulates the flagellar rotation that could not be detected by biological method. PFM exhibits a spatial resolution of a few nanometers to detect the relative position of the probe at an acquisition rate over 1 MHz. By binding a probe such as a bead or a quantum dot on the flagella, we expect the rotation of the probe due to the flagella could be detected. It is expected that the study of the swimming activity of P. aeruginosa provide potent method for the pathogenic role of the flagella in P. aeruginosa.

  10. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    PubMed

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Molecular cloning and subcellular localization of Tektin2-binding protein 1 (Ccdc 172) in rat spermatozoa.

    PubMed

    Yamaguchi, Airi; Kaneko, Takane; Inai, Tetsuichiro; Iida, Hiroshi

    2014-04-01

    Tektins (TEKTs) are composed of a family of filament-forming proteins localized in cilia and flagella. Five types of mammalian TEKTs have been reported, all of which have been verified to be present in sperm flagella. TEKT2, which is indispensable for sperm structure, mobility, and fertilization, was present at the periphery of the outer dense fiber (ODF) in the sperm flagella. By yeast two-hybrid screening, we intended to isolate flagellar proteins that could interact with TEKT2, which resulted in the isolation of novel two genes from the mouse testis library, referred as a TEKT2-binding protein 1 (TEKT2BP1) and -protein 2 (TEKT2BP2). In this study, we characterized TEKT2BP1, which is registered as a coiled-coil domain-containing protein 172 (Ccdc172) in the latest database. RT-PCR analysis indicated that TEKT2BP1 was predominantly expressed in rat testis and that its expression was increased after 3 weeks of postnatal development. Immunocytochemical studies discovered that TEKT2BP1 localized in the middle piece of rat spermatozoa, predominantly concentrated at the mitochondria sheath of the flagella. We hypothesize that the TEKT2-TEKT2BP1 complex might be involved in the structural linkage between the ODF and mitochondria in the middle piece of the sperm flagella.

  12. Salmonella enterica Serovar Kentucky Flagella are Required for Broiler Skin Adhesion and Caco-2 Cell Invasion

    USDA-ARS?s Scientific Manuscript database

    Non-typhoidal Salmonella are the main source of pathogenic bacterial contamination in the poultry industry. Recently, Salmonella enterica serovar Kentucky has been recognized as the most prominent serovar on carcasses in poultry processing plants. Previous studies showed that flagella are one of the...

  13. Salmonella enterica serovar Kentucky flagella are required for broiler skin adhesion and Caco-2 cell invasion

    USDA-ARS?s Scientific Manuscript database

    Nontyphoidal Salmonella strains are the main source of pathogenic bacterial contamination in the poultry industry. Recently, Salmonella enterica serovar Kentucky has been recognized as the most prominent serovar on carcasses in poultry-processing plants. Previous studies showed that flagella are one...

  14. Comparative proteome analysis of cryopreserved flagella and head plasma membrane proteins from sea bream spermatozoa: effect of antifreeze proteins.

    PubMed

    Zilli, Loredana; Beirão, José; Schiavone, Roberta; Herraez, Maria Paz; Gnoni, Antonio; Vilella, Sebastiano

    2014-01-01

    Cryopreservation induces injuries to fish spermatozoa that in turn affect sperm quality in terms of fertilization ability, motility, DNA and protein integrity and larval survival. To reduce the loss of sperm quality due to freezing-thawing, it is necessary to improve these procedures. In the present study we investigated the ability of two antifreeze proteins (AFPI and AFPIII) to reduce the loss of quality of sea bream spermatozoa due to cryopreservation. To do so, we compared viability, motility, straight-line velocity and curvilinear velocity of fresh and (AFPs)-cryopreserved spermatozoa. AFPIII addition to cryopreservation medium improved viability, motility and straight-line velocity with respect to DMSO or DMSO plus AFPI. To clarify the molecular mechanism(s) underlying these findings, the protein profile of two different cryopreserved sperm domains, flagella and head plasma membranes, was analysed. The protein profiles differed between fresh and frozen-thawed semen and results of the image analysis demonstrated that, after cryopreservation, out of 270 proteins 12 were decreased and 7 were increased in isolated flagella, and out of 150 proteins 6 showed a significant decrease and 4 showed a significant increase in head membranes. Mass spectrometry analysis identified 6 proteins (4 from isolated flagella and 2 present both in flagella and head plasma membranes) within the protein spots affected by the freezing-thawing procedure. 3 out of 4 proteins from isolated flagella were involved in the sperm bioenergetic system. Our results indicate that the ability of AFPIII to protect sea bream sperm quality can be, at least in part, ascribed to reducing changes in the sperm protein profile occurring during the freezing-thawing procedure. Our results clearly demonstrated that AFPIII addition to cryopreservation medium improved the protection against freezing respect to DMSO or DMSO plus AFPI. In addition we propose specific proteins of spermatozoa as markers related to the procedures of fish sperm cryopreservation.

  15. Detection of Salmonella enterica serovar Enteritidis (SE) Antibodies in Serum Using A Polystyrene Bead/SE Flagella Agglutination Assay

    USDA-ARS?s Scientific Manuscript database

    Serologic screening of flocks can be an important method to detect Salmonella enteritidis (SE) infections but can be labor intensive or lack specificity. Our goal was to develop a rapid agglutination assay using SE flagella adsorbed to polystyrene beads as a simple, relatively specific test to dete...

  16. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography.

    PubMed

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex.

  17. Gliding Motility Revisited: How Do the Myxobacteria Move without Flagella?

    PubMed Central

    Mauriello, Emilia M. F.; Mignot, Tâm; Yang, Zhaomin; Zusman, David R.

    2010-01-01

    Summary: In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review. PMID:20508248

  18. Three-dimensional structural analysis of eukaryotic flagella/cilia by electron cryo-tomography

    PubMed Central

    Bui, Khanh Huy; Pigino, Gaia; Ishikawa, Takashi

    2011-01-01

    Electron cryo-tomography is a potential approach to analyzing the three-dimensional conformation of frozen hydrated biological macromolecules using electron microscopy. Since projections of each individual object illuminated from different orientations are merged, electron tomography is capable of structural analysis of such heterogeneous environments as in vivo or with polymorphism, although radiation damage and the missing wedge are severe problems. Here, recent results on the structure of eukaryotic flagella, which is an ATP-driven bending organelle, from green algae Chlamydomonas are presented. Tomographic analysis reveals asymmetric molecular arrangements, especially that of the dynein motor proteins, in flagella, giving insight into the mechanism of planar asymmetric bending motion. Methodological challenges to obtaining higher-resolution structures from this technique are also discussed. PMID:21169680

  19. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography

    PubMed Central

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex. PMID:27493552

  20. Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii.

    PubMed

    Wilson, Nedra F; Lefebvre, Paul A

    2004-10-01

    Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H. Takino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). Here, we demonstrate that lithium treatment depletes the pool of flagellar proteins from the cell body and that the heterotrimeric kinesin Fla10p accumulates in flagella. We identify GSK3 in Chlamydomonas and demonstrate that its kinase activity is inhibited by lithium in vitro. The tyrosine-phosphorylated, active form of GSK3 was enriched in flagella and GSK3 associated with the axoneme in a phosphorylation-dependent manner. The level of active GSK3 correlated with flagellar length; early during flagellar regeneration, active GSK3 increased over basal levels. This increase in active GSK3 was rapidly lost within 30 min of regeneration as the level of active GSK3 decreased relative to the predeflagellation level. Taken together, these results suggest a possible role for GSK3 in regulating the assembly and length of flagella.

  1. hemingway is required for sperm flagella assembly and ciliary motility in Drosophila.

    PubMed

    Soulavie, Fabien; Piepenbrock, David; Thomas, Joëlle; Vieillard, Jennifer; Duteyrat, Jean-Luc; Cortier, Elisabeth; Laurençon, Anne; Göpfert, Martin C; Durand, Bénédicte

    2014-04-01

    Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left-right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604-amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly.

  2. Bacterial Flagella: Twist and Stick, or Dodge across the Kingdoms

    PubMed Central

    Rossez, Yannick; Wolfson, Eliza B.; Holmes, Ashleigh; Gally, David L.; Holden, Nicola J.

    2015-01-01

    The flagellum organelle is an intricate multiprotein assembly best known for its rotational propulsion of bacteria. However, recent studies have expanded our knowledge of other functions in pathogenic contexts, particularly adherence and immune modulation, e.g., for Salmonella enterica, Campylobacter jejuni, Pseudomonas aeruginosa, and Escherichia coli. Flagella-mediated adherence is important in host colonisation for several plant and animal pathogens, but the specific interactions that promote flagella binding to such diverse host tissues has remained elusive. Recent work has shown that the organelles act like probes that find favourable surface topologies to initiate binding. An emerging theme is that more general properties, such as ionic charge of repetitive binding epitopes and rotational force, allow interactions with plasma membrane components. At the same time, flagellin monomers are important inducers of plant and animal innate immunity: variation in their recognition impacts the course and outcome of infections in hosts from both kingdoms. Bacteria have evolved different strategies to evade or even promote this specific recognition, with some important differences shown for phytopathogens. These studies have provided a wider appreciation of the functions of bacterial flagella in the context of both plant and animal reservoirs. PMID:25590430

  3. Energy Consumption of Actively Beating Flagella

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Nicastro, Daniela; Dogic, Zvonimir

    2012-02-01

    Motile cilia and flagella are important for propelling cells or driving fluid over tissues. The microtubule-based core in these organelles, the axoneme, has a nearly universal ``9+2'' arrangement of 9 outer doublet microtubules assembled around two singlet microtubules in the center. Thousands of molecular motor proteins are attached to the doublets and walk on neighboring outer doublets. The motors convert the chemical energy of ATP hydrolysis into sliding motion between adjacent doublet microtubules, resulting in precisely regulated oscillatory beating. Using demembranated sea urchin sperm flagella as an experimental platform, we simultaneously monitor the axoneme's consumption of ATP and its beating dynamics while key parameters, such as solution viscosity and ATP concentration, are varied. Insights into motor cooperativity during beating and energetic consequences of hydrodynamic interactions will be presented.

  4. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    PubMed Central

    Merchant, Sabeeha S.; Prochnik, Simon E.; Vallon, Olivier; Harris, Elizabeth H.; Karpowicz, Steven J.; Witman, George B.; Terry, Astrid; Salamov, Asaf; Fritz-Laylin, Lillian K.; Maréchal-Drouard, Laurence; Marshall, Wallace F.; Qu, Liang-Hu; Nelson, David R.; Sanderfoot, Anton A.; Spalding, Martin H.; Kapitonov, Vladimir V.; Ren, Qinghu; Ferris, Patrick; Lindquist, Erika; Shapiro, Harris; Lucas, Susan M.; Grimwood, Jane; Schmutz, Jeremy; Cardol, Pierre; Cerutti, Heriberto; Chanfreau, Guillaume; Chen, Chun-Long; Cognat, Valérie; Croft, Martin T.; Dent, Rachel; Dutcher, Susan; Fernández, Emilio; Ferris, Patrick; Fukuzawa, Hideya; González-Ballester, David; González-Halphen, Diego; Hallmann, Armin; Hanikenne, Marc; Hippler, Michael; Inwood, William; Jabbari, Kamel; Kalanon, Ming; Kuras, Richard; Lefebvre, Paul A.; Lemaire, Stéphane D.; Lobanov, Alexey V.; Lohr, Martin; Manuell, Andrea; Meier, Iris; Mets, Laurens; Mittag, Maria; Mittelmeier, Telsa; Moroney, James V.; Moseley, Jeffrey; Napoli, Carolyn; Nedelcu, Aurora M.; Niyogi, Krishna; Novoselov, Sergey V.; Paulsen, Ian T.; Pazour, Greg; Purton, Saul; Ral, Jean-Philippe; Riaño-Pachón, Diego Mauricio; Riekhof, Wayne; Rymarquis, Linda; Schroda, Michael; Stern, David; Umen, James; Willows, Robert; Wilson, Nedra; Zimmer, Sara Lana; Allmer, Jens; Balk, Janneke; Bisova, Katerina; Chen, Chong-Jian; Elias, Marek; Gendler, Karla; Hauser, Charles; Lamb, Mary Rose; Ledford, Heidi; Long, Joanne C.; Minagawa, Jun; Page, M. Dudley; Pan, Junmin; Pootakham, Wirulda; Roje, Sanja; Rose, Annkatrin; Stahlberg, Eric; Terauchi, Aimee M.; Yang, Pinfen; Ball, Steven; Bowler, Chris; Dieckmann, Carol L.; Gladyshev, Vadim N.; Green, Pamela; Jorgensen, Richard; Mayfield, Stephen; Mueller-Roeber, Bernd; Rajamani, Sathish; Sayre, Richard T.; Brokstein, Peter; Dubchak, Inna; Goodstein, David; Hornick, Leila; Huang, Y. Wayne; Jhaveri, Jinal; Luo, Yigong; Martínez, Diego; Ngau, Wing Chi Abby; Otillar, Bobby; Poliakov, Alexander; Porter, Aaron; Szajkowski, Lukasz; Werner, Gregory; Zhou, Kemin; Grigoriev, Igor V.; Rokhsar, Daniel S.; Grossman, Arthur R.

    2010-01-01

    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella. PMID:17932292

  5. IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation.

    PubMed

    Liu, Hong; Li, Wei; Zhang, Yong; Zhang, Zhengang; Shang, Xuejun; Zhang, Ling; Zhang, Shiyang; Li, Yanwei; Somoza, Andres V; Delpi, Brandon; Gerton, George L; Foster, James A; Hess, Rex A; Pazour, Gregory J; Zhang, Zhibing

    2017-05-01

    Intraflagellar transport (IFT) is a conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. However, IFT25, a component of the IFT complex, is not required for the formation of cilia in somatic tissues. In mice, the gene is highly expressed in the testis, and its expression is upregulated during the final phase when sperm flagella are formed. To investigate the role of IFT25 in sperm flagella formation, the gene was specifically disrupted in male germ cells. All homozygous knockout mice survived to adulthood and did not show any gross abnormalities. However, all homozygous knockout males were completely infertile. Sperm numbers were reduced and these sperm were completely immotile. Multiple morphological abnormalities were observed in sperm, including round heads, short and bent tails, with some tails showing branched flagella and others with frequent abnormal thicknesses, as well as swollen tips of the tail. Transmission electron microscopy revealed that flagellar accessory structures, including the fibrous sheath and outer dense fibers, were disorganized, and most sperm had also lost the "9+2" microtubule structure. In the testis, IFT25 forms a complex with other IFT proteins. In Ift25 knockout testes, IFT27, an IFT25 binding partner, was missing, and IFT20 and IFT81 levels were also reduced. Our findings suggest that IFT25, although not necessary for the formation of cilia in somatic cells, is indispensable for sperm flagellum formation and male fertility in mice. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.

  6. Ralstonia eutropha H16 Flagellation Changes According to Nutrient Supply and State of Poly(3-Hydroxybutyrate) Accumulation▿

    PubMed Central

    Raberg, Matthias; Reinecke, Frank; Reichelt, Rudolf; Malkus, Ursula; König, Simone; Pötter, Markus; Fricke, Wolfgang Florian; Pohlmann, Anne; Voigt, Birgit; Hecker, Michael; Friedrich, Bärbel; Bowien, Botho; Steinbüchel, Alexander

    2008-01-01

    Two-dimensional polyacrylamide gel electrophoresis (2D PAGE), in combination with matrix-assisted laser desorption ionization-time of flight analysis, and the recently revealed genome sequence of Ralstonia eutropha H16 were employed to detect and identify proteins that are differentially expressed during different phases of poly(3-hydroxybutyric acid) (PHB) metabolism. For this, a modified protein extraction protocol applicable to PHB-harboring cells was developed to enable 2D PAGE-based proteome analysis of such cells. Subsequently, samples from (i) the exponential growth phase, (ii) the stationary growth phase permissive for PHB biosynthesis, and (iii) a phase permissive for PHB mobilization were analyzed. Among several proteins exhibiting quantitative changes during the time course of a cultivation experiment, flagellin, which is the main protein of bacterial flagella, was identified. Initial investigations that report on changes of flagellation for R. eutropha were done, but 2D PAGE and electron microscopic examinations of cells revealed clear evidence that R. eutropha exhibited further significant changes in flagellation depending on the life cycle, nutritional supply, and, in particular, PHB metabolism. The results of our study suggest that R. eutropha is strongly flagellated in the exponential growth phase and loses a certain number of flagella in transition to the stationary phase. In the stationary phase under conditions permissive for PHB biosynthesis, flagellation of cells admittedly stagnated. However, under conditions permissive for intracellular PHB mobilization after a nitrogen source was added to cells that are carbon deprived but with full PHB accumulation, flagella are lost. This might be due to a degradation of flagella; at least, the cells stopped flagellin synthesis while normal degradation continued. In contrast, under nutrient limitation or the loss of phasins, cells retained their flagella. PMID:18502919

  7. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.

    PubMed

    Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim

    2016-02-10

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.

  8. A quantitative description of flagellar movement in golden hamster spermatozoa.

    PubMed

    Ishijima, S; Mohri, H

    1985-01-01

    Flagellar movement of golden hamster spermatozoa obtained from the testis and the caput and cauda epididymides was observed by a light microscope while holding them at their heads with a micropipette. Flagellar movement of capacitated spermatozoa and of reactivated spermatozoa demembranated with Triton X-100 was also observed. Testicular and caput epididymal spermatozoa showed weak movement in Tyrode's solution, whereas cauda epididymal spermatozoa showed vigorous movement. The flagellar bends of the cauda epididymal spermatozoa were almost planar. Capacitated spermatozoa moved with waves of a large amplitude. Demembranated spermatozoa reactivated with ATP only had a latent period before the initiation of flagellar movement, and beat at low frequency, whereas demembranated spermatozoa reactivated with both ATP and cAMP began to move immediately at high frequency. Thrust and hydrodynamic power output were calculated using the parameters for the typical waveforms of cauda epididymal spermatozoa before and after capacitation. The possible role of the large amplitude beat in capacitated spermatozoa is discussed. A comparison of the 'principal' and 'reverse' bends in golden hamster sperm flagella as defined by Woolley (1977) with those in sea urchin sperm flagella suggests that the so-called 'principal' bend in golden hamster sperm flagella corresponds to the reverse bend in sea urchin sperm flagella and vice versa.

  9. The heterotrimeric motor protein kinesin-II localizes to the midpiece and flagellum of sea urchin and sand dollar sperm.

    PubMed

    Henson, J H; Cole, D G; Roesener, C D; Capuano, S; Mendola, R J; Scholey, J M

    1997-01-01

    We have utilized immunoblotting and light microscopic immunofluorescent staining methods to examine the expression and localization of sea urchin kinesin-II, a heterotrimeric plus end-directed microtubule motor protein (previously referred to as KRP(85/95)), in sea urchin and sand dollar sperm. We demonstrate the presence of the 85 K and 115 K subunits of kinesin-II in sperm and localize these proteins to the sperm flagella and midpiece. The kinesin-II localization pattern is punctate and discontinuous, and in the flagella it is quite distinct from the continuous labeling present in sperm labeled with anti-flagellar dynein. The kinesin-II staining is largely insensitive to prefixation detergent extraction, suggesting that it is not associated with membranous elements in the sperm. In the midpiece the kinesin-II staining is similar to the pattern present in sperm labeled with an anti-centrosomal antibody. To our knowledge, this is the first localization of kinesin-like proteins in mature sperm and corroborates the recent identification and localization of kinesin-like proteins in the flagella and basal body of the unicellular green alga Chlamydomonas. We hypothesize that kinesin-II in the sperm may play functional roles in intraflagellar transport and/or the formation of flagella during spermatogenesis.

  10. Flagellum motion in 2-D: Work rate and efficiency of the non-sinusoidal approach

    NASA Astrophysics Data System (ADS)

    Viridi, Sparisoma; Nuraini, Nuning; Stephanie, Monica; Rifqi, Ainur; Christina, Dina; Thania, Elsa; Sihite, Erland

    2018-03-01

    Today microorganisms have been widely used to support human life. Some examples include foodstuffs (Spirulina.sp), to help with medical needs, for mining purposes and more. On the other hand, the development of technology is also very big influence on human life. The combination of technology and health science will be very useful if we can develop it. One is the cancer treatment by utilizing the movement of the flagella to be made a nanorobot used as a carrier of cancer drugs. Movement of flagella that resembles the shape of the arc and straight line can be searched formulation and then applied to the manufacture of nanorobot tail. Then the nanorobot will carry a cancer drug that leads directly to the cancer cells. So hopefully with this nanorobot, can minimize the death of healthy cells around cancer cells. From the results of research and analysis of the movement of flagella, it can be concluded that the smaller the mass of the flagella, the greater the efficiency will be or will be more efficient. So, the energy needed nanorobot will be smaller. Model with non-sinusoidal approach (Brokaw, 1965) is discussed in this work and formulation to get the energy efficiency is proposed and analyzed. Unfortunately, there is a negative value in the formulation.

  11. Contribution of flagella and motility to gut colonisation and pathogenicity of Salmonella Enteritidis in the chicken.

    PubMed

    Barbosa, Fernanda de Oliveira; Freitas Neto, Oliveiro Caetano de; Batista, Diego Felipe Alves; Almeida, Adriana Maria de; Rubio, Marcela da Silva; Alves, Lucas Bocchini Rodrigues; Vasconcelos, Rosemeire de Oliveira; Barrow, Paul Andrew; Berchieri Junior, Angelo

    Salmonella Enteritidis causes fowl paratyphoid in poultry and is frequently associated to outbreaks of food-borne diseases in humans. The role of flagella and flagella-mediated motility into host-pathogen interplay is not fully understood and requires further investigation. In this study, one-day-old chickens were challenged orally with a wild-type strain Salmonella Enteritidis, a non-motile but fully flagellated (SE ΔmotB) or non-flagellated (SE ΔfliC) strain to evaluate their ability to colonise the intestine and spread systemically and also of eliciting gross and histopathological changes. SE ΔmotB and SE ΔfliC were recovered in significantly lower numbers from caecal contents in comparison with Salmonella Enteritidis at early stages of infection (3 and 5dpi). The SE ΔmotB strain, which synthesises paralysed flagella, showed poorer intestinal colonisation ability than the non-flagellated SE ΔfliC. Histopathological analyses demonstrated that the flagellated strains induced more intense lymphoid reactivity in liver, ileum and caeca. Thus, in the present study the flagellar structure and motility seemed to play a role in the early stages of the intestinal colonisation by Salmonella Enteritidis in the chicken. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography

    PubMed Central

    Nicastro, Daniela; McIntosh, J. Richard; Baumeister, Wolfgang

    2005-01-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999

  13. Pili and flagella biology, structure, and biotechnological applications.

    PubMed

    Van Gerven, Nani; Waksman, Gabriel; Remaut, Han

    2011-01-01

    Bacteria and Archaea expose on their outer surfaces a variety of thread-like proteinaceous organelles with which they interact with their environments. These structures are repetitive assemblies of covalently or non-covalently linked protein subunits, organized into filamentous polymers known as pili ("hair"), flagella ("whips") or injectisomes ("needles"). They serve different roles in cell motility, adhesion and host invasion, protein and DNA secretion and uptake, conductance, or cellular encapsulation. Here we describe the functional, morphological and genetic diversity of these bacterial filamentous protein structures. The organized, multi-copy build-up and/or the natural function of pili and flagella have lead to their biotechnological application as display and secretion tools, as therapeutic targets or as molecular motors. We review the documented and potential technological exploitation of bacterial surface filaments in light of their structural and functional traits. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Bacterial flagella grow through an injection-diffusion mechanism.

    PubMed

    Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc

    2017-03-06

    The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.

  15. Viscous Dynamics of Lyme Disease and Syphilis Spirochetes Reveal Flagellar Torque and Drag

    PubMed Central

    Harman, Michael; Vig, Dhruv K.; Radolf, Justin D.; Wolgemuth, Charles W.

    2013-01-01

    The spirochetes that cause Lyme disease (Borrelia burgdorferi) and syphilis (Treponema pallidum) swim through viscous fluids, such as blood and interstitial fluid, by undulating their bodies as traveling, planar waves. These undulations are driven by rotation of the flagella within the periplasmic space, the narrow (∼20–40 nm in width) compartment between the inner and outer membranes. We show here that the swimming speeds of B. burgdorferi and T. pallidum decrease with increases in viscosity of the external aqueous milieu, even though the flagella are entirely intracellular. We then use mathematical modeling to show that the measured changes in speed are consistent with the exertion of constant torque by the spirochetal flagellar motors. Comparison of simulations, experiments, and a simple model for power dissipation allows us to estimate the torque and resistive drag that act on the flagella of these major spirochetal pathogens. PMID:24268139

  16. [The taxonomic rank and place of Colpodellida in the system of the Protista].

    PubMed

    Myl'nikov, A P; Krylov, M V; Frolov, A O

    2000-01-01

    The analysis of ultrastructure organisation and divergent processes in Colpodellida, Perkinsida, Gregarinea and Coccidea has confirmed the presence of unique basic structures in all of these organisms and the necessity to combine them into the single phylum Sporozoa. A taxonomic rank and place of Colpodellida in the system of living organisms is represented as follows: phylum Sporozoa Leuckart, 1879; em. Krylov, Mylnikov, 1986. (Syn.: Apicomplexa Levine, 1970). Predators or parasites. Common basic structure: pellicular membranes, subpellicular microtubules, micropores, conoid, rhoptries and micronemes, tubular mitochondrial cristae. Class Perkinsea Levine, 1978. Predators or parasites, vegetative stages with two heterodynamic flagella. Subclass 1. Colpodellia nom. nov. (Syn.: Spiromonadia Krylov, Mylnikov, 1986). Predators, two heterodynamic flagella with string-like mastigonemes (if present), division is exclusively within a cyst, with 2-4 daughter cells being produced, extrusomes are trichocyst-like. Subclass 2. Perkinsia Levine, 1978. Parasites, zoospores with two heterodynamic flagella, mastigonemes (if present) bristle-like or string-like.

  17. Spirochete motility and morpholgy

    NASA Astrophysics Data System (ADS)

    Charon, Nyles

    2004-03-01

    Spirochetes have a unique structure, and as a result their motility is different from that of other bacteria. These organisms can swim in a highly viscous, gel-like medium, such as that found in connective tissue, that inhibits the motility of most other bacteria. In spirochetes, the organelles for motility, the periplasmic flagella, reside inside the cell within the periplasmic space. A given periplasmic flagellum is attached only at one end of the cell, and depending on the species, may or may not overlap in the center of the cell. The number of periplasmic flagella varies from species to species. These structures have been shown to be directly involved in motility and function by rotating within the periplasmic space (1). The present talk focuses on the spirochete that causes Lyme disease, Borrelia burgdorferi. In many bacterial species, cell shape is usually dictated by the peptidoyglycan layer of the cell wall. In the first part of the talk, results will be presented that the morphology of B. burgdorferi is the result of a complex interaction between the cell cylinder and the internal periplasmic flagella resulting in a cell with a flat-wave morphology. Backward moving, propagating waves enable these bacteria to swim and translate in a given direction. Using targeted mutagenesis, we inactivated the gene encoding the major periplasmic flagellar filament protein FlaB. The resulting flaB mutants not only were non-motile, but were rod-shaped (2). Western blot analysis indicated that flaB was no longer synthesized, and electron microscopy revealed that the mutants were completely deficient in periplasmic flagella. Our results indicate that the periplasmic flagella of B. burgdorferi have a skeletal function. These organelles dynamically interact with the rod-shaped cell cylinder to enable the cell to swim, and to confer in part its flat-wave morphology The latter part of the talk concerns the basis for asymmetrical rotation of the periplasmic flagella of B. burgdorferi during chemotaxis. In translational motility, the bundles of periplasmic flagella rotate in opposite directions. When not translating, they rotate in the same direction, and the cells flex. We present evidence that asymmetrical rotation of the bundles during translation does not depend upon the chemotaxis signal transduction system. The histidine kinase CheA is known to be an essential component in the signaling pathway for bacterial chemotaxis. Mutants of cheA in flagellated bacteria continually rotate their flagella in one direction. B. burgdorferi has two copies of cheA. We reasoned that if chemotaxis were essential for asymmetrical rotation of the flagellar bundles, and if the flagellar motors at both cell ends were identical, inactivation of the two cheA genes should result in cells that constant flex. To test this hypothesis, the signaling pathway was completely blocked by construction of a double cheA mutant. This mutant was completely deficient in chemotaxis. Rather than flexing, it failed to reverse, and it continually translated only in one direction. The results indicate that asymmetrical rotation does not depend upon the chemotaxis system but rather upon differences between the two flagellar bundles. We propose that certain factors within the spirochete localize at flagellar motors at one end of the cell to effect this asymmetry (3). References: 1. Charon, N.W. and S.F. Goldstein. 2002. The genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Ann. Rev. Genetics. 36: 47-73. 2. Motaleb M.A., L. Corum, J.L Bono, A.F. Elias, P. Rosa, D.S. Samuels, N.W. Charon. 2000. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc Natl Acad Sci. 2000 97:10899-10904. 3. Li, C. R. Bakker, M. Motaleb, F. Cabello, M.L. Sartakova, and N.W. Charon. 2002. Asymmetrical flagellar rotation in Borrelia burgdorferi non-chemotaxis mutants. Proc. Natl. Acad. Sci. 99:6169-6174.

  18. Imaging of the 3D dynamics of flagellar beating in human sperm.

    PubMed

    Silva-Villalobos, F; Pimentel, J A; Darszon, A; Corkidi, G

    2014-01-01

    The study of the mechanical and environmental factors that regulate a fundamental event such as fertilization have been subject of multiple studies. Nevertheless, the microscopical size of the spermatozoa and the high beating frequency of their flagella (up to 20 Hz) impose a series of technological challenges for the study of the mechanical factors implicated. Traditionally, due to the inherent characteristics of the rapid sperm movement, and to the technological limitations of microscopes (optical or confocal) to follow in three dimensions (3D) their movement, the analysis of their dynamics has been studied in two dimensions, when the head is confined to a surface. Flagella propel sperm and while their head can be confined to a surface, flagellar movement is not restricted to 2D, always displaying 3D components. In this work, we present a highly novel and useful tool to analyze sperm flagella dynamics in 3D. The basis of the method is a 100 Hz oscillating objective mounted on a bright field optical microscope covering a 16 microns depth space at a rate of ~ 5000 images per second. The best flagellum focused subregions were associated to their respective Z real 3D position. Unprecedented graphical results making evident the 3D movement of the flagella are shown in this work and supplemental material illustrating a 3D animation using the obtained experimental results is also included.

  19. Igg Subclasses Targeting the Flagella of Salmonella enterica Serovar Typhimurium Can Mediate Phagocytosis and Bacterial Killing

    PubMed Central

    Goh, Yun Shan; Armour, Kathryn L; Clark, Michael R; Grant, Andrew J; Mastroeni, Pietro

    2016-01-01

    Invasive non-typhoidal Salmonella are a common cause of invasive disease in immuno-compromised individuals and in children. Multi-drug resistance poses challenges to disease control, with a critical need for effective vaccines. Flagellin is an attractive vaccine candidate due to surface exposure and high epitope copy number, but its potential as a target for opsonophacytic antibodies is unclear. We examined the effect of targeting flagella with different classes of IgG on the interaction between Salmonella Typhimurium and a human phagocyte-like cell line, THP-1. We tagged the FliC flagellar protein with a foreign CD52 mimotope (TSSPSAD) and bacteria were opsonized with a panel of humanised CD52 antibodies with the same antigen-binding V-region, but different constant regions. We found that IgG binding to flagella increases bacterial phagocytosis and reduces viable intracellular bacterial numbers. Opsonisation with IgG3, followed by IgG1, IgG4, and IgG2, resulted in the highest level of bacterial uptake and in the highest reduction in the intracellular load of viable bacteria. Taken together, our data provide proof-of-principle evidence that targeting flagella with antibodies can increase the antibacterial function of host cells, with IgG3 being the most potent subclass. These data will assist the rational design of urgently needed, optimised vaccines against iNTS disease. PMID:27366588

  20. Function of the conserved FHIPEP domain of the flagellar type III export apparatus, protein FlhA.

    PubMed

    Barker, Clive S; Inoue, Tomoharu; Meshcheryakova, Irina V; Kitanobo, Seiya; Samatey, Fadel A

    2016-04-01

    The Type III flagellar protein export apparatus of bacteria consists of five or six membrane proteins, notably FlhA, which controls the export of other proteins and is homologous to the large family of FHIPEP export proteins. FHIPEP proteins contain a highly-conserved cytoplasmic domain. We mutagenized the cloned Salmonella flhA gene for the 692 amino acid FlhA, changing a single, conserved amino acid in the 68-amino acid FHIPEP region. Fifty-two mutations at 30 positions mostly led to loss of motility and total disappearance of microscopically visible flagella, also Western blot protein/protein hybridization showed no detectable export of hook protein and flagellin. There were two exceptions: a D199A mutant strain, which produced short-stubby flagella; and a V151L mutant strain, which did not produce flagella and excreted mainly un-polymerized hook protein. The V151L mutant strain also exported a reduced amount of hook-cap protein FlgD, but when grown with exogenous FlgD it produced polyhooks and polyhook-filaments. A suppressor mutant in the cytoplasmic domain of the export apparatus membrane protein FlhB rescued export of hook-length control protein FliK and facilitated growth of full-length flagella. These results suggested that the FHIPEP region is part of the gate regulating substrate entry into the export apparatus pore. © 2015 John Wiley & Sons Ltd.

  1. Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus.

    PubMed

    Senesi, Sonia; Ghelardi, Emilia; Celandroni, Francesco; Salvetti, Sara; Parisio, Eva; Galizzi, Alessandro

    2004-02-01

    Knowledge of the highly regulated processes governing the production of flagella in Bacillus subtilis is the result of several observations obtained from growing this microorganism in liquid cultures. No information is available regarding the regulation of flagellar formation in B. subtilis in response to contact with a solid surface. One of the best-characterized responses of flagellated eubacteria to surfaces is swarming motility, a coordinate cell differentiation process that allows collective movement of bacteria over solid substrates. This study describes the swarming ability of a B. subtilis hypermotile mutant harboring a mutation in the ifm locus that has long been known to affect the degree of flagellation and motility in liquid media. On solid media, the mutant produces elongated and hyperflagellated cells displaying a 10-fold increase in extracellular flagellin. In contrast to the mutant, the parental strain, as well as other laboratory strains carrying a wild-type ifm locus, fails to activate a swarm response. Furthermore, it stops to produce flagella when transferred from liquid to solid medium. Evidence is provided that the absence of flagella is due to the lack of flagellin gene expression. However, restoration of flagellin synthesis in cells overexpressing sigma(D) or carrying a deletion of flgM does not recover the ability to assemble flagella. Thus, the ifm gene plays a determinantal role in the ability of B. subtilis to contact with solid surfaces.

  2. Building a flagellum in biological outer space.

    PubMed

    Evans, Lewis D B; Hughes, Colin; Fraser, Gillian M

    2014-02-01

    Flagella, the rotary propellers on the surface of bacteria, present a paradigm for how cells build and operate complex molecular 'nanomachines'. Flagella grow at a constant rate to extend several times the length of the cell, and this is achieved by thousands of secreted structural subunits transiting through a central channel in the lengthening flagellum to incorporate into the nascent structure at the distant extending tip. A great mystery has been how flagella can assemble far outside the cell where there is no conventional energy supply to fuel their growth. Recent work published by Evans et al. [ Nature (2013) 504: 287-290], has gone some way towards solving this puzzle, presenting a simple and elegant transit mechanism in which growth is powered by the subunits them selves as they link head-to-tail in a chain that is pulled through the length of the growing structure to the tip. This new mechanism answers an old question and may have resonance in other assembly processes.

  3. Bacterial flagella grow through an injection-diffusion mechanism

    PubMed Central

    Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc

    2017-01-01

    The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell. DOI: http://dx.doi.org/10.7554/eLife.23136.001 PMID:28262091

  4. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  5. Adhesion of Photoactive Microalgae to Surfaces is Switchable by Light

    NASA Astrophysics Data System (ADS)

    Bäumchen, Oliver; Kreis, Christian; Le Blay, Marine; Linne, Christine; Makowski, Marcin

    The natural habitats of many microorganisms are confined geometries, such as the interstitial space of rocks and soil, where interactions with interfaces and surfaces are of paramount importance. We performed in vivo force spectroscopy experiments on the unicellular biflagellated microalga Chlamydomonas, a prime model organism in cell- and microbiology, and discovered that the flagella-mediated adhesion to surfaces can be switched on and off by light. Time-resolved micropipette experiments show that the light-switchable adhesiveness of the flagella is a completely reversible process that is based on a redistribution of adhesion-promoting flagella-membrane proteins within seconds. Light-switchable adhesion enables the cell to regulate the transition between planktonic and surface-associated state, which possibly represents a significant biological advantage for photoactive microorganisms. In terms of the colonization of surfaces and the formation of biofilms, the findings might have immediate economic and environmental relevance in biotechnological settings, such as photo-bioreactors for the sustainable production of biofuels.

  6. Effects of elasticity and geometry on the locomotion of a model bacterium

    NASA Astrophysics Data System (ADS)

    Nguyen, Frank; Graham, Michael

    2017-11-01

    The locomotion of flagellated bacteria in viscous fluid provides the blueprint for a number of micro-scale engineering applications. The elasticities of both the hook protein (connecting cell body and flagellum) and the flagella themselves play a key role in determining the stability of locomotion. We use a coarse-grained discretization of elastic flagella connected to a rigid cell body to examine trajectories and flow fields for free swimmers. We indeed find that hook and/or flagellar buckling occurs above a critical flexibility relative to the swimmer's torque input. This renders straight swimming ineffective, though not necessarily undesirable in practice. Simulations with multiple flagella show bundling may partially stabilize the buckling effect. For a single flagellum or single bundle, we define a parameter space of characteristic angles tracking the overall time-averaged shape of the swimmer while also delineating stability boundaries between different modes of buckling. Ultimately our results may provide insight on how swimmers move through complex environments and how to design microrobotic swimmers for specific applications. NHS, GERS.

  7. Flagellin glycosylation with pseudaminic acid in Campylobacter and Helicobacter: prospects for development of novel therapeutics.

    PubMed

    Salah Ud-Din, Abu Iftiaf Md; Roujeinikova, Anna

    2018-04-01

    Many pathogenic bacteria require flagella-mediated motility to colonise and persist in their hosts. Helicobacter pylori and Campylobacter jejuni are flagellated epsilonproteobacteria associated with several human pathologies, including gastritis, acute diarrhea, gastric carcinoma and neurological disorders. In both species, glycosylation of flagellin with an unusual sugar pseudaminic acid (Pse) plays a crucial role in the biosynthesis of functional flagella, and thereby in bacterial motility and pathogenesis. Pse is found only in pathogenic bacteria. Its biosynthesis via six consecutive enzymatic steps has been extensively studied in H. pylori and C. jejuni. This review highlights the importance of flagella glycosylation and details structural insights into the enzymes in the Pse pathway obtained via a combination of biochemical, crystallographic, and mutagenesis studies of the enzyme-substrate and -inhibitor complexes. It is anticipated that understanding the underlying structural and molecular basis of the catalytic mechanisms of the Pse-synthesising enzymes will pave the way for the development of novel antimicrobials.

  8. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    PubMed Central

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  9. Involvement of cell shape and flagella in the bacterial retention during percolation of contaminated water through soil columns in tropical region.

    PubMed

    Nola, Moise; Ewoti, Olive V Noah; Nougang, Mireille; Moungang, Marlyse L; Chihib, Nour-Eddine; Krier, Francois; Servais, Pierre; Hornez, Jean-Pierre; Njine, Thomas

    2010-09-01

    Microorganisms' retention in soil contributes to the natural purification of groundwater. Bacteria found in groundwater are generally of various shapes. The aim of this study was to assess the importance of cell shape and flagella in bacterial retention during polluted water percolation through two soil columns CA and CB, in the equatorial region in Central Africa. Percolation tests were carried out using different water loads samples which were contaminated by Escherichia coli (straight rods, peritrichous flagella), Vibrio parahaemolyticus (rods bacteria, polar flagella), and Staphylococcus saprophyticus (spherical, free-flagellum). It has been noted that showed that through soil column CA, the mean values of cells retention ratios (T(R)) varied with bacteria species considered, and from one applied water load sample to another. E. coli T(R) and that of S. saprophyticus were not significantly different (P> 0.05) for the two soil columns. V. parahaemolyticus T(R) significantly differed from that of E. coli and S. saprophyticus through soil column CA (P< 0.01) when the highest water load was applied, and through soil column CB (P< 0.05) for each of water load applied. A relative hierarchical arrangement of retained cells based on the T(R) showed that V. parahaemolyticus was less retained through the 2 soil columns. S. saprophyticus in most cases was more retained than others. The physical properties of the bacterial cell must be taken into consideration when evaluating the transfer of bacteriological pollutants towards groundwater.

  10. Propulsion by passive filaments and active flagella near boundaries.

    PubMed

    Evans, Arthur A; Lauga, Eric

    2010-10-01

    Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is decreased by the presence of boundaries. Here, we use a series of simple models to analytically elucidate the propulsive effects of a solid boundary on passively actuated filaments and model flagella. For passive flexible filaments actuated periodically at one end, the presence of the wall is shown to increase the propulsive forces generated by the filaments in the case of displacement-driven actuation, while it decreases the force in the case of force-driven actuation. In the case of active filaments as models for eukaryotic flagella, we demonstrate that the manner in which a solid wall affects propulsion cannot be known a priori, but is instead a nontrivial function of the flagellum frequency, wavelength, its material characteristics, the manner in which the molecular motors self-organize to produce oscillations (prescribed activity model or self-organized axonemal beating model), and the boundary conditions applied experimentally to the tethered flagellum. In particular, we show that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform expressed by the flagella, which results in a decrease in their propulsive force.

  11. Equations of Interdoublet Separation during Flagella Motion Reveal Mechanisms of Wave Propagation and Instability

    PubMed Central

    Bayly, Philip V.; Wilson, Kate S.

    2014-01-01

    The motion of flagella and cilia arises from the coordinated activity of dynein motor protein molecules arrayed along microtubule doublets that span the length of axoneme (the flagellar cytoskeleton). Dynein activity causes relative sliding between the doublets, which generates propulsive bending of the flagellum. The mechanism of dynein coordination remains incompletely understood, although it has been the focus of many studies, both theoretical and experimental. In one leading hypothesis, known as the geometric clutch (GC) model, local dynein activity is thought to be controlled by interdoublet separation. The GC model has been implemented as a numerical simulation in which the behavior of a discrete set of rigid links in viscous fluid, driven by active elements, was approximated using a simplified time-marching scheme. A continuum mechanical model and associated partial differential equations of the GC model have remained lacking. Such equations would provide insight into the underlying biophysics, enable mathematical analysis of the behavior, and facilitate rigorous comparison to other models. In this article, the equations of motion for the flagellum and its doublets are derived from mechanical equilibrium principles and simple constitutive models. These equations are analyzed to reveal mechanisms of wave propagation and instability in the GC model. With parameter values in the range expected for Chlamydomonas flagella, solutions to the fully nonlinear equations closely resemble observed waveforms. These results support the ability of the GC hypothesis to explain dynein coordination in flagella and provide a mathematical foundation for comparison to other leading models. PMID:25296329

  12. Testing the time-of-flight model for flagellar length sensing.

    PubMed

    Ishikawa, Hiroaki; Marshall, Wallace F

    2017-11-07

    Cilia and flagella are microtubule-based organelles that protrude from the surface of most cells, are important to the sensing of extracellular signals, and make a driving force for fluid flow. Maintenance of flagellar length requires an active transport process known as intraflagellar transport (IFT). Recent studies reveal that the amount of IFT injection negatively correlates with the length of flagella. These observations suggest that a length-dependent feedback regulates IFT. However, it is unknown how cells recognize the length of flagella and control IFT. Several theoretical models try to explain this feedback system. We focused on one of the models, the "time-of-flight" model, which measures the length of flagella on the basis of the travel time of IFT protein in the flagellar compartment. We tested the time-of-flight model using Chlamydomonas dynein mutant cells, which show slower retrograde transport speed. The amount of IFT injection in dynein mutant cells was higher than that in control cells. This observation does not support the prediction of the time-of-flight model and suggests that Chlamydomonas uses another length-control feedback system rather than that described by the time-of-flight model. © 2017 Ishikawa and Marshall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Sperm traits in farmed and wild Atlantic salmon Salmo salar.

    PubMed

    Camarillo-Sepulveda, N; Hamoutene, D; Lush, L; Burt, K; Volkoff, H; Fleming, I A

    2016-02-01

    Differences in sperm metabolism and morphology between wild and non-local farmed Atlantic salmon Salmo salar were assessed by measuring metabolic enzyme activities and length of sperm flagella. No differences were observed between wild and farmed S. salar sperm with regards to cell counts or any of the biochemical variables assessed. Flagella of sperm cells were significantly longer in wild than farmed S. salar; however, this did not result in higher energy levels or different fertilization rates. © 2015 The Fisheries Society of the British Isles.

  14. FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath.

    PubMed

    Lambert, Ambroise; Picardeau, Mathieu; Haake, David A; Sermswan, Rasana W; Srikram, Amporn; Adler, Ben; Murray, Gerald A

    2012-06-01

    Spirochetes have periplasmic flagella composed of a core surrounded by a sheath. The pathogen Leptospira interrogans has four flaB (proposed core subunit) and two flaA (proposed sheath subunit) genes. The flaA genes are organized in a locus with flaA2 immediately upstream of flaA1. In this study, flaA1 and flaA2 mutants were constructed by transposon mutagenesis. Both mutants still produced periplasmic flagella. The flaA1 mutant did not produce FlaA1 but continued to produce FlaA2 and retained normal morphology and virulence in a hamster model of infection but had reduced motility. The flaA2 mutant did not produce either the FlaA1 or the FlaA2 protein. Cells of the flaA2 mutant lacked the distinctive hook-shaped ends associated with L. interrogans and lacked translational motility in liquid and semisolid media. These observations were confirmed with a second, independent flaA2 mutant. The flaA2 mutant failed to cause disease in animal models of acute infection. Despite lacking FlaA proteins, the flagella of the flaA2 mutant were of the same thickness as wild-type flagella, as measured by electron microscopy, and exhibited a normal flagellum sheath, indicating that FlaA proteins are not essential for the synthesis of the flagellum sheath, as observed for other spirochetes. This study shows that FlaA subunits contribute to leptospiral translational motility, cellular shape, and virulence.

  15. A genetic switch controls the production of flagella and toxins in Clostridium difficile.

    PubMed

    Anjuwon-Foster, Brandon R; Tamayo, Rita

    2017-03-01

    In the human intestinal pathogen Clostridium difficile, flagella promote adherence to intestinal epithelial cells. Flagellar gene expression also indirectly impacts production of the glucosylating toxins, which are essential to diarrheal disease development. Thus, factors that regulate the expression of the flgB operon will likely impact toxin production in addition to flagellar motility. Here, we report the identification a "flagellar switch" that controls the phase variable production of flagella and glucosylating toxins. The flagellar switch, located upstream of the flgB operon containing the early stage flagellar genes, is a 154 bp invertible sequence flanked by 21 bp inverted repeats. Bacteria with the sequence in one orientation expressed flagellum and toxin genes, produced flagella, and secreted the toxins ("flg phase ON"). Bacteria with the sequence in the inverse orientation were attenuated for flagellar and toxin gene expression, were aflagellate, and showed decreased toxin secretion ("flg phase OFF"). The orientation of the flagellar switch is reversible during growth in vitro. We provide evidence that gene regulation via the flagellar switch occurs post-transcription initiation and requires a C. difficile-specific regulatory factor to destabilize or degrade the early flagellar gene mRNA when the flagellar switch is in the OFF orientation. Lastly, through mutagenesis and characterization of flagellar phase locked isolates, we determined that the tyrosine recombinase RecV, which catalyzes inversion at the cwpV switch, is also responsible for inversion at the flagellar switch in both directions. Phase variable flagellar motility and toxin production suggests that these important virulence factors have both advantageous and detrimental effects during the course of infection.

  16. An analytical model of flagellate hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders

    2017-04-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left-right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming trajectory. We find that the longitudinal flagellum is responsible for the average translational motion whereas the transversal flagellum governs the rotational motion. Finally, we show that the transversal flagellum can lead to strong feeding currents to localized capture sites on the cell surface.

  17. Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange

    NASA Astrophysics Data System (ADS)

    Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas

    2006-03-01

    The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.

  18. Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin

    PubMed Central

    Kubo, Tomohiro; Brown, Jason M.; Bellve, Karl; Craige, Branch; Craft, Julie M.; Fogarty, Kevin; Lechtreck, Karl F.

    2016-01-01

    ABSTRACT The assembly and maintenance of most cilia and flagella rely on intraflagellar transport (IFT). Recent in vitro studies have suggested that, together, the calponin-homology domain within the IFT81 N-terminus and the highly basic N-terminus of IFT74 form a module for IFT of tubulin. By using Chlamydomonas mutants for IFT81 and IFT74, we tested this hypothesis in vivo. Modification of the predicted tubulin-binding residues in IFT81 did not significantly affect basic anterograde IFT and length of steady-state flagella but slowed down flagellar regeneration, a phenotype similar to that seen in a strain that lacks the IFT74 N-terminus. In both mutants, the frequency of tubulin transport by IFT was greatly reduced. A double mutant that combined the modifications to IFT81 and IFT74 was able to form only very short flagella. These results indicate that, together, the IFT81 and IFT74 N-termini are crucial for flagellar assembly, and are likely to function as the main module for IFT of tubulin. PMID:27068536

  19. Role of Proteus mirabilis MR/P fimbriae and flagella in adhesion, cytotoxicity and genotoxicity induction in T24 and Vero cells.

    PubMed

    Scavone, Paola; Villar, Silvia; Umpiérrez, Ana; Zunino, Pablo

    2015-06-01

    Proteus mirabilis is frequently associated with complicated urinary tract infections (UTI). It is proposed that several virulence factors are associated with P. mirabilis uropathogenicity. The aim of this work was to elucidate genotoxic and cytotoxic effects mediated by MR/P fimbriae and flagella in eukaryotic cells in vitro. Two cell lines (kidney- and bladder-derived) were infected with a clinical wild-type P. mirabilis strain and an MR/P and a flagellar mutant. We evaluated adhesion, genotoxicity and cytotoxicity by microscopy, comet assay and triple staining technique, respectively. Mutant strains displayed lower adhesion rates than the P. mirabilis wild-type strain and were significantly less effective to induce genotoxic and cytotoxic effects compared to the wild type. We report for the first time that P. mirabilis MR/P fimbriae and flagella mediate genotoxic and cytotoxic effects on eukaryotic cells, at least in in vitro conditions. These results could contribute to design new strategies for the control of UTI. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Mice Deficient in the Axonemal Protein Tektin-t Exhibit Male Infertility and Immotile-Cilium Syndrome Due to Impaired Inner Arm Dynein Function

    PubMed Central

    Tanaka, Hiromitsu; Iguchi, Naoko; Toyama, Yoshiro; Kitamura, Kouichi; Takahashi, Tohru; Kaseda, Kazuhiro; Maekawa, Mamiko; Nishimune, Yoshitake

    2004-01-01

    The haploid germ cell-specific Tektin-t protein is a member of the Tektin family of proteins that form filaments in flagellar, ciliary, and axonemal microtubules. To investigate the physiological role of Tektin-t, we generated mice with a mutation in the tektin-t gene. The homozygous mutant males were infertile, while the females were fully fertile. Sperm morphology and function were abnormal, with frequent bending of the sperm flagella and marked defects in motility. In vitro fertilization assays showed that the defective spermatozoa were able to fertilize eggs. Electron microscopic examination showed that the dynein inner arm structure was disrupted in the sperm flagella of tektin-t-deficient mice. Furthermore, homozygous mutant mice had functionally defective tracheal cilia, as evidenced by altered dynein arm morphology. These results indicate that Tektin-t participates in dynein inner arm formation or attachment and that the loss of Tektin-t results in impaired motility of both flagella and cilia. Therefore, the tektin-t gene is one of the causal genes for immotile-cilium syndrome/primary ciliary dyskinesia. PMID:15340058

  1. Flagella, flexibility and flow: Physical processes in microbial ecology

    NASA Astrophysics Data System (ADS)

    Brumley, D. R.; Rusconi, R.; Son, K.; Stocker, R.

    2015-12-01

    How microorganisms interact with their environment and with their conspecifics depends strongly on their mechanical properties, on the hydrodynamic signatures they generate while swimming and on fluid flows in their environment. The rich fluid-structure interaction between flagella - the appendages microorganisms use for propulsion - and the surrounding flow, has broad reaching effects for both eukaryotic and prokaryotic microorganisms. Here, we discuss selected recent advances in our understanding of the physical ecology of microorganisms, which have hinged on the ability to directly interrogate the movement of individual cells and their swimming appendages, in precisely controlled fluid environments, and to image them at appropriately fast timescales. We review how a flagellar buckling instability can unexpectedly serve a fundamental function in the motility of bacteria, we elucidate the role of hydrodynamics and flexibility in the emergent properties of groups of eukaryotic flagella, and we show how fluid flows characteristic of microbial habitats can strongly bias the migration and spatial distribution of bacteria. The topics covered here are illustrative of the potential inherent in the adoption of experimental methods and conceptual frameworks from physics in understanding the lives of microorganisms.

  2. Microscopic artificial swimmers

    NASA Astrophysics Data System (ADS)

    Dreyfus, Rémi; Baudry, Jean; Roper, Marcus L.; Fermigier, Marc; Stone, Howard A.; Bibette, Jérôme

    2005-10-01

    Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.

  3. A healthy understanding of intraflagellar transport.

    PubMed

    Sloboda, Roger D

    2002-05-01

    A microtubule-dependent motility process called intraflagellar transport (IFT) occurs beneath the plasma membrane of cilia and flagella. IFT was first observed in Chlamydomonas, and orthologs of some of the polypeptides involved in IFT have recently been identified in other organisms, including C. elegans and the mouse. In addition to a role in the assembly and maintenance of cilia and flagella, evidence is reviewed here that indicates defects in the process of IFT may be related to problems with human health. Moreover, recent data suggest the possibility of two new roles for IFT in cell function. The first is in transcriptional control of the genes encoding ciliary and flagellar proteins. IFT could provide a mechanism whereby the cell senses the presence or absence of its cilia or flagella and responds by turning on gene transcription resulting in replacement of the missing organelle. The second role is in signal transduction, whereby cilia act as sensors of the external cellular environment and transduce information about the surroundings into intracellular signals that are sent via IFT to the cell body, thus inducing an appropriate cellular response to the environment. Copyright 2002 Wiley-Liss, Inc.

  4. Salmonella Enteritidis flagellar mutants have a colonization benefit in the chicken oviduct.

    PubMed

    Kilroy, Sofie; Raspoet, Ruth; Martel, An; Bosseler, Leslie; Appia-Ayme, Corinne; Thompson, Arthur; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2017-02-01

    Egg borne Salmonella Enteritidis is still a major cause of human food poisoning. Eggs can become internally contaminated following colonization of the hen's oviduct. In this paper we aimed to analyze the role of flagella of Salmonella Enteritidis in colonization of the hen's oviduct. Using a transposon library screen we showed that mutants lacking functional flagella are significantly more efficient in colonizing the hen's oviduct in vivo. A micro-array analysis proved that transcription of a number of flagellar genes is down-regulated inside chicken oviduct cells. Flagella contain flagellin, a pathogen associated molecular pattern known to bind to Toll-like receptor 5, activating a pro-inflammatory cascade. In vitro tests using primary oviduct cells showed that flagellin is not involved in invasion. Using a ligated loop model, a diminished inflammatory reaction was seen in the oviduct resulting from injection of an aflagellated mutant compared to the wild-type. It is hypothesized that Salmonella Enteritidis downregulates flagellar gene expression in the oviduct and consequently prevents a flagellin-induced inflammatory response, thereby increasing its oviduct colonization efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    PubMed Central

    Olcese, Chiara; Patel, Mitali P.; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J.; Vaughan, Cara K.; Hayward, Jane; Goldenberg, Alice; Emes, Richard D.; Munye, Mustafa M.; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean- François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R.; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M. K.; Antonarakis, Stylianos E.; Loebinger, Michael R.; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Beales, Philip L.; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Allan, Daly; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; McCarthy, Shane; Muddyman, Dawn; Muntoni, Francesco; Parker, Victoria; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter J.; Schmidts, Miriam; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M.

    2017-01-01

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins. PMID:28176794

  6. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3.

    PubMed

    Olcese, Chiara; Patel, Mitali P; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J; Vaughan, Cara K; Hayward, Jane; Goldenberg, Alice; Emes, Richard D; Munye, Mustafa M; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean-François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M K; Antonarakis, Stylianos E; Loebinger, Michael R; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M

    2017-02-08

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2-DNAAF4-HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins.

  7. Unique mechanism of Helicobacter pylori for colonizing the gastric mucus.

    PubMed

    Yoshiyama, H; Nakazawa, T

    2000-01-01

    Helicobacter pylori is a human gastric pathogen causing chronic infection. Urease and motility using flagella are essential factors for its colonization. Urease of H. pylori exists both on the surface and in the cytoplasm, and is involved in neutralizing gastric acid and in chemotactic motility. H. pylori senses the concentration gradients of urea in the gastric mucus layer, then moves toward the epithelial surface by chemotactic movement. The energy source for the flagella movement is the proton motive force. The hydrolysis of urea by the cytoplasmic urease possibly generates additional energy for the flagellar rotation in the mucus gel layer.

  8. A genetic switch controls the production of flagella and toxins in Clostridium difficile

    PubMed Central

    2017-01-01

    In the human intestinal pathogen Clostridium difficile, flagella promote adherence to intestinal epithelial cells. Flagellar gene expression also indirectly impacts production of the glucosylating toxins, which are essential to diarrheal disease development. Thus, factors that regulate the expression of the flgB operon will likely impact toxin production in addition to flagellar motility. Here, we report the identification a “flagellar switch” that controls the phase variable production of flagella and glucosylating toxins. The flagellar switch, located upstream of the flgB operon containing the early stage flagellar genes, is a 154 bp invertible sequence flanked by 21 bp inverted repeats. Bacteria with the sequence in one orientation expressed flagellum and toxin genes, produced flagella, and secreted the toxins (“flg phase ON”). Bacteria with the sequence in the inverse orientation were attenuated for flagellar and toxin gene expression, were aflagellate, and showed decreased toxin secretion (“flg phase OFF”). The orientation of the flagellar switch is reversible during growth in vitro. We provide evidence that gene regulation via the flagellar switch occurs post-transcription initiation and requires a C. difficile-specific regulatory factor to destabilize or degrade the early flagellar gene mRNA when the flagellar switch is in the OFF orientation. Lastly, through mutagenesis and characterization of flagellar phase locked isolates, we determined that the tyrosine recombinase RecV, which catalyzes inversion at the cwpV switch, is also responsible for inversion at the flagellar switch in both directions. Phase variable flagellar motility and toxin production suggests that these important virulence factors have both advantageous and detrimental effects during the course of infection. PMID:28346491

  9. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

    DOE PAGES

    Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.; ...

    2014-12-04

    In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less

  10. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.

    In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less

  11. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli

    PubMed Central

    Sampaio, Suely C. F.; Luiz, Wilson B.; Vieira, Mônica A. M.; Ferreira, Rita C. C.; Garcia, Bruna G.; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L. M.; Ferreira, Luís C. S.

    2016-01-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliC and fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of aEPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of aEPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The aEPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of aEPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  12. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella

    PubMed Central

    Dutcher, S. K.

    2016-01-01

    Cilia and flagella are highly conserved organelles that beat rhythmically with propulsive, oscillatory waveforms. The mechanism that produces these autonomous oscillations remains a mystery. It is widely believed that dynein activity must be dynamically regulated (switched on and off, or modulated) on opposite sides of the axoneme to produce oscillations. A variety of regulation mechanisms have been proposed based on feedback from mechanical deformation to dynein force. In this paper, we show that a much simpler interaction between dynein and the passive components of the axoneme can produce coordinated, propulsive oscillations. Steady, distributed axial forces, acting in opposite directions on coupled beams in viscous fluid, lead to dynamic structural instability and oscillatory, wave-like motion. This ‘flutter’ instability is a dynamic analogue to the well-known static instability, buckling. Flutter also occurs in slender beams subjected to tangential axial loads, in aircraft wings exposed to steady air flow and in flexible pipes conveying fluid. By analysis of the flagellar equations of motion and simulation of structural models of flagella, we demonstrate that dynein does not need to switch direction or inactivate to produce autonomous, propulsive oscillations, but must simply pull steadily above a critical threshold force. PMID:27798276

  13. How Giardia Swim and Divide

    PubMed Central

    Ghosh, Sudip; Frisardi, Marta; Rogers, Rick; Samuelson, John

    2001-01-01

    To determine how binuclear giardia swim, we used video microscopy to observe trophozoites of Giardia intestinalis, which were labeled with an amino-specific Alexa Fluor dye that highlighted the flagella and adherence disc. Giardia swam forward by means of the synchronous beating of anterior, posterolateral, and ventral flagella in the plane of the ventral disc, while caudal flagella swam in a plane perpendicular to the disc. Giardia turned in the plane of the disc by means of a rudder-like motion of its tail, which was constant rather than beating. To determine how giardia divide, we used three-dimensional confocal microscopy, the same surface label, nuclear stains, and antitubulin antibodies. Giardia divided with mirror-image symmetry in the plane of the adherence disc, so that the right nucleus of the mother became the left nucleus of the daughter. Pairs of nuclei were tethered together by microtubules which surrounded nuclei and prevented mother or daughter giardia from receiving two copies of the same nucleus. New adherence discs formed upon a spiral backbone of microtubules, which had a clockwise rotation when viewed from the ventral surface. These dynamic observations of the parasite begin to reveal how giardia swim and divide. PMID:11705969

  14. Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Ko, William; Lim, Sookkyung; Lee, Wanho; Kim, Yongsam; Berg, Howard C.; Peskin, Charles S.

    2017-06-01

    The helical flagella that are attached to the cell body of bacteria such as Escherichia coli and Salmonella typhimurium allow the cell to swim in a fluid environment. These flagella are capable of polymorphic transformation in that they take on various helical shapes that differ in helical pitch, radius, and chirality. We present a mathematical model of a single flagellum described by Kirchhoff rod theory that is immersed in a fluid governed by Stokes equations. We perform numerical simulations to demonstrate two mechanisms by which polymorphic transformation can occur, as observed in experiments. First, we consider a flagellar filament attached to a rotary motor in which transformations are triggered by a reversal of the direction of motor rotation [L. Turner et al., J. Bacteriol. 182, 2793 (2000), 10.1128/JB.182.10.2793-2801.2000]. We then consider a filament that is fixed on one end and immersed in an external fluid flow [H. Hotani, J. Mol. Biol. 156, 791 (1982), 10.1016/0022-2836(82)90142-5]. The detailed dynamics of the helical flagellum interacting with a viscous fluid is discussed and comparisons with experimental and theoretical results are provided.

  15. Magnetic Actuation of Self-assembled Bacteria Inspired Nanoswimmers

    NASA Astrophysics Data System (ADS)

    Ali, Jamel; Cheang, U. Kei; Martindale, James D.; Jabbarzadeh, Mehdi; Fu, Henry C.; Kim, Min Jun

    2017-11-01

    Currently, there is growing interest in developing nanoscale swimmers for biological and biomedical tasks. Of particular interest is the development of soft stimuli-responsive nanorobots to probe cellular and sub-cellular environments. While there have been a few reports of nanoscale robotic swimmers, which have shown potential to be used for these tasks, they often lack multifuctionality. In particular, no man-made soft nanoscale material has been able to match the ability of natural bacterial flagella to undergo rapid and reversible morphological changes in response to multiple forms of environmental stimuli. Towards this end, we report self-assembled stimuli-responsive nanoscale robotic swimmers composed of single or multiple bacterial flagella and attached to magnetic nanoparticles. We visualize the movement of flagella using high resolution fluorescence microscopy while controlling these swimmers via a magnetic control system. Differences in in propulsion before and after the change in flagellar form are observed. Furthermore, we demonstrate the ability to induce flagellar bundling in multiflagellated nanoswimmers. This work was funded by the National Science Foundation (DMR 1712061 and CMMI 1737682 to M.J.K. and DMR 1650970 and CBET 1651031 to H.C.F.), and the Korea Evaluation Institute of Industrial Technology (MOTIE) (NO. 10052980) award to M.J.K.

  16. From molecular evolution to biobricks and synthetic modules: a lesson by the bacterial flagellum.

    PubMed

    Altegoer, Florian; Schuhmacher, Jan; Pausch, Patrick; Bange, Gert

    2014-10-01

    The bacterial flagellum is a motility structure and represents one of the most sophisticated nanomachines in the biosphere. Here, we review the current knowledge on the flagellum, its architecture with respect to differences between Gram-negative and Gram-positive bacteria and other species-specific variations (e.g. the flagellar filament protein, Flagellin). We further focus on the mechanism by which the two nucleotide-binding proteins FlhF and FlhG ensure the correct reproduction of flagella place and number (the flagellation pattern). We will finish the review with an overview of current biotechnological applications, and a perspective of how understanding flagella can contribute to developing modules for synthetic approaches.

  17. Biotemplated flagellar nanoswimmers

    NASA Astrophysics Data System (ADS)

    Ali, Jamel; Cheang, U. Kei; Darvish, Armin; Kim, Hoyeon; Kim, Min Jun

    2017-11-01

    In this article, a porous hollow biotemplated nanoscale helix that can serve as a low Reynolds number robotic swimmer is reported. The nanorobot utilizes repolymerized bacterial flagella from Salmonella typhimurium as a nanotemplate for biomineralization. We demonstrate the ability to generate templated nanotubes with distinct helical geometries by using specific alkaline pH values to fix the polymorphic form of flagellar templates. Using uniform rotating magnetic fields to mimic the motion of the flagellar motor, we explore the swimming characteristics of these silica templated flagella and demonstrate the ability to wirelessly control their trajectories. The results suggest that the biotemplated nanoswimmer can be a cost-effective alternative to the current top-down methods used to produce helical nanorobots.

  18. Numerical studies of bacterial-carpet microflows

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Tillberg, Dan; Powers, Thomas R.

    2004-03-01

    Bacterial carpets are arrays of motile bacteria attached to two-dimensional surfaces. Improved understanding of carpet flows is important in the design of microfluidic devices and transport systems powered by bacterial flagellar motion. In recent experiments by the group of Howard Berg, cells of swarming S. marcescens are stuck to the surface, with most of their flagella free to rotate in the fluid. These studies show modified transport and greatly enhanced diffusion near the active carpet surface. We present theoretical models of the flagella-driven flow, bridging the nano- to the macro-scale, simulate the diffusion and advection of passive tracers, and compare the numerical results with the tracking data of Berg et al.

  19. Physics of microswimmers--single particle motion and collective behavior: a review.

    PubMed

    Elgeti, J; Winkler, R G; Gompper, G

    2015-05-01

    Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.

  20. Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella.

    PubMed

    Vutukuri, Hanumantha Rao; Bet, Bram; van Roij, René; Dijkstra, Marjolein; Huck, Wilhelm T S

    2017-12-01

    The quest for designing new self-propelled colloids is fuelled by the demand for simple experimental models to study the collective behaviour of their more complex natural counterparts. Most synthetic self-propelled particles move by converting the input energy into translational motion. In this work we address the question if simple self-propelled spheres can assemble into more complex structures that exhibit rotational motion, possibly coupled with translational motion as in flagella. We exploit a combination of induced dipolar interactions and a bonding step to create permanent linear bead chains, composed of self-propelled Janus spheres, with a well-controlled internal structure. Next, we study how flexibility between individual swimmers in a chain can affect its swimming behaviour. Permanent rigid chains showed only active rotational or spinning motion, whereas longer semi-flexible chains showed both translational and rotational motion resembling flagella like-motion, in the presence of the fuel. Moreover, we are able to reproduce our experimental results using numerical calculations with a minimal model, which includes full hydrodynamic interactions with the fluid. Our method is general and opens a new way to design novel self-propelled colloids with complex swimming behaviours, using different complex starting building blocks in combination with the flexibility between them.

  1. Flagellar flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2016-08-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment measured the flow in the fluid around an Escherichia coli swarm [Wu, Hosu, and Berg, Proc. Natl. Acad. Sci. USA 108, 4147 (2011)], 10.1073/pnas.1016693108. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of the swarm with flow speeds of about 10 μ m /s , about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the action of cells stalled at the edge of a colony that extend their flagellar filaments outward, moving fluid over the virgin agar. In this work we quantitatively test this hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements. The results we obtain are in agreement with the flagellar hypothesis. The model provides further quantitative insight into the flagella orientations and their spatial distributions as well as the tangential speed profile. In particular, the model suggests that flagella are on average pointing radially out of the swarm and are not wrapped tangentially.

  2. A cell-body groove housing the new flagellum tip suggests an adaptation of cellular morphogenesis for parasitism in the bloodstream form of Trypanosoma brucei.

    PubMed

    Hughes, Louise; Towers, Katie; Starborg, Tobias; Gull, Keith; Vaughan, Sue

    2013-12-15

    Flagella are highly conserved organelles present in a wide variety of species. In Trypanosoma brucei the single flagellum is necessary for morphogenesis, cell motility and pathogenesis, and is attached along the cell body. A new flagellum is formed alongside the old during the cell division cycle. In the (insect) procyclic form, the flagella connector (FC) attaches the tip of the new flagellum to the side of the old flagellum, ensuring faithful replication of cell architecture. The FC is not present in the bloodstream form of the parasite. We show here, using new imaging techniques including serial block-face scanning electron microscopy (SBF-SEM), that the distal tip of the new flagellum in the bloodstream form is embedded within an invagination in the cell body plasma membrane, named the groove. We suggest that the groove has a similar function to the flagella connector. The groove is a mobile junction located alongside the microtubule quartet (MtQ) and occurred within a gap in the subpellicular microtubule corset, causing significant modification of microtubules during elongation of the new flagellum. It appears likely that this novel form of morphogenetic structure has evolved to withstand the hostile immune response in the mammalian blood.

  3. Association of Lis1 with outer arm dynein is modulated in response to alterations in flagellar motility

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.; King, Stephen M.

    2012-01-01

    The cytoplasmic dynein regulatory factor Lis1, which induces a persistent tight binding to microtubules and allows for transport of cargoes under high-load conditions, is also present in motile cilia/flagella. We observed that Lis1 levels in flagella of Chlamydomonas strains that exhibit defective motility due to mutation of various axonemal substructures were greatly enhanced compared with wild type; this increase was absolutely dependent on the presence within the flagellum of the outer arm dynein α heavy chain/light chain 5 thioredoxin unit. To assess whether cells might interpret defective motility as a “high-load environment,” we reduced the flagellar beat frequency of wild-type cells through enhanced viscous load and by reductive stress; both treatments resulted in increased levels of flagellar Lis1, which altered the intrinsic beat frequency of the trans flagellum. Differential extraction of Lis1 from wild-type and mutant axonemes suggests that the affinity of outer arm dynein for Lis1 is directly modulated. In cytoplasm, Lis1 localized to two punctate structures, one of which was located near the base of the flagella. These data reveal that the cell actively monitors motility and dynamically modulates flagellar levels of the dynein regulatory factor Lis1 in response to imposed alterations in beat parameters. PMID:22855525

  4. Light microscopy morphological characteristics of the sperm flagellum may be related to axonemal abnormalities.

    PubMed

    Mitchell, V; Sigala, J; Ballot, C; Jumeau, F; Barbotin, A L; Duhamel, A; Rives, N; Rigot, J M; Escalier, D; Peers, M C

    2015-03-01

    Although electron microscopy provides a detailed analysis of ultrastructural abnormalities, this technique is not available in all laboratories. We sought to determine whether certain characteristics of the flagellum as assessed by light microscopy were related to axonemal abnormalities. Forty-one patients with an absence of outer dynein arms (type I), a lack of a central complex (type III) and an absence of peripheral doublets (type IV) were studied. Sperm morphology was scored according to David's modified classification. Flagella with an irregular thickness were classified as being of normal length, short or broken. There were correlations between missing outer dynein arms and abnormal, short or coiled flagellum. Type III patients showed the highest flagellar defects (a short (P = 0.0027) or an absent flagellum (P = 0.011)). Just over 68% of the irregular flagella were short in Type III patients, whereas this value was only 34.5% in type I and 26.4% in type IV (P = 0.002). There was a negative correlation between misassembly and spermatozoa of irregular flagella (r = -0.79; P = 0.019). It is concluded that light microscopy analysis of flagellum abnormalities may help provide a correct diagnosis, identify sperm abnormalities with fertility potentials and outcomes in assisted reproduction technologies and assess the genetic risk. © 2014 Blackwell Verlag GmbH.

  5. Flagellar motility of the pathogenic spirochetes

    PubMed Central

    Wolgemuth, Charles W.

    2016-01-01

    Bacterial pathogens are often classified by their toxicity and invasiveness. The invasiveness of a given bacterium is determined by how capable the bacterium is at invading a broad range of tissues in its host. Of mammalian pathogens, some of the most invasive come from a group of bacteria known as the spirochetes, which cause diseases such as syphilis, Lyme disease, relapsing fever and leptospirosis. Most of the spirochetes are characterized by their distinct shapes and unique motility. They are long, thin bacteria that can be shaped like flat-waves, helices, or have more irregular morphologies. Like many other bacteria, the spirochetes use long, helical appendages known as flagella to move; however, the spirochetes enclose their flagella in the periplasm, the narrow space between the inner and outer membranes. Rotation of the flagella in the periplasm causes the entire cell body to rotate and/or undulate. These deformations of the bacterium produce the force that drives the motility of these organisms, and it is this unique motility that likely allows these bacteria to be highly invasive in mammals. This review will describe the current state of knowledge on the motility and biophysics of these organisms and provide evidence on how this knowledge can inform our understanding of spirochetal diseases. PMID:26481969

  6. Physics of microswimmers—single particle motion and collective behavior: a review

    NASA Astrophysics Data System (ADS)

    Elgeti, J.; Winkler, R. G.; Gompper, G.

    2015-05-01

    Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.

  7. Flagellar coordination in Chlamydomonas cells held on micropipettes.

    PubMed

    Rüffer, U; Nultsch, W

    1998-01-01

    The two flagella of Chlamydomonas are known to beat synchronously: During breaststroke beating they are generally coordinated in a bilateral way while in shock responses during undulatory beating coordination is mostly parallel [Rüffer and Nultsch, 1995: Botanica Acta 108:169-276]. Analysis of a great number of shock responses revealed that in undulatory beats also periods of bilateral coordination are found and that the coordination type may change several times during a shock response, without concomitant changes of the beat envelope and the beat period. In normal wt cells no coordination changes are found during breaststroke beating, but only short temporary asynchronies: During 2 or 3 normal beats of the cis flagellum, the trans flagellum performs 3 or 4 flat beats with a reduced beat envelope and a smaller beat period, resulting in one additional trans beat. Long periods with flat beats of the same shape and beat period are found in both flagella of the non-phototactic mutant ptx1 and in defective wt 622E cells. During these periods, the coordination is parallel, the two flagella beat alternately. A correlation between normal asynchronous trans beats and the parallel-coordinated beats in the presumably cis defective cells and also the undulatory beats is discussed. In the cis defective cells, a perpetual spontaneous change between parallel beats with small beat periods (higher beat frequency) and bilateral beats with greater beat periods (lower beat frequency) are observed and render questionable the existence of two different intrinsic beat frequencies of the two flagella cis and trans. Asynchronies occur spontaneously but may also be induced by light changes, either step-up or step-down, but not by both stimuli in turn as breaststroke flagellar photoresponses (BFPRs). Asynchronies are not involved in phototaxis. They are independent of the BFPRs, which are supposed to be the basis of phototaxis. Both types of coordination must be assumed to be regulated internally, involving calcium-sensitive basal-body associated fibrous structures.

  8. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction.

    PubMed

    Höög, Johanna L; Lacomble, Sylvain; Bouchet-Marquis, Cedric; Briggs, Laura; Park, Kristin; Hoenger, Andreas; Gull, Keith

    2016-01-01

    Cellular junctions are crucial for the formation of multicellular organisms, where they anchor cells to each other and/or supportive tissue and enable cell-to-cell communication. Some unicellular organisms, such as the parasitic protist Trypanosoma brucei, also have complex cellular junctions. The flagella connector (FC) is a three-layered transmembrane junction that moves with the growing tip of a new flagellum and attaches it to the side of the old flagellum. The FC moves via an unknown molecular mechanism, independent of new flagellum growth. Here we describe the detailed 3D architecture of the FC suggesting explanations for how it functions and its mechanism of motility. We have used a combination of electron tomography and cryo-electron tomography to reveal the 3D architecture of the FC. Cryo-electron tomography revealed layers of repetitive filamentous electron densities between the two flagella in the interstitial zone. Though the FC does not change in length and width during the growth of the new flagellum, the interstitial zone thickness decreases as the FC matures. This investigation also shows interactions between the FC layers and the axonemes of the new and old flagellum, sufficiently strong to displace the axoneme in the old flagellum. We describe a novel filament, the flagella connector fibre, found between the FC and the axoneme in the old flagellum. The FC is similar to other cellular junctions in that filamentous proteins bridge the extracellular space and are anchored to underlying cytoskeletal structures; however, it is built between different portions of the same cell and is unique because of its intrinsic motility. The detailed description of its structure will be an important tool to use in attributing structure / function relationships as its molecular components are discovered in the future. The FC is involved in the inheritance of cell shape, which is important for the life cycle of this human parasite.

  9. Leishmania sand fly interaction: progress and challenges.

    PubMed

    Bates, Paul A

    2008-08-01

    Complex interactions occurs between Leishmania parasites and their sand fly vectors. Promastigotes of Leishmania live exclusively within the gut, possess flagella and are motile, and kinesins, kinases and G proteins have been described that play a role in regulating flagellar assembly. Movement within the gut is not random: promastigotes can detect gradients of solutes via chemotaxis and osmotaxis. Further they use their flagella to attach to the fly midgut using surface glyconconjugates, a key step in establishment of the infection. Differentiation of mammal-infective stages is characterised by significant biochemical and cellular remodelling. Further, the parasites can manipulate the behaviour of the vector to maximise their transmission, and flies may even deliver altruistic apoptotic forms to aid transmission of infective stages.

  10. Bacterial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  11. Visualization of bacterial flagella dynamics in a viscous shear flow

    NASA Astrophysics Data System (ADS)

    Ali, Jamel; Kim, Minjun

    2016-11-01

    We report on the dynamics of tethered bacterial flagella in an applied viscous shear flow and analyze their behavior using image processing. Flagellin proteins were repolymerized into flagellar filaments functionalized with biotin at their proximal end, and allowed to self-assemble within a micro channel coated with streptavidin. It was observed that all attached flagellar filaments aligned with the steady shear flow of various polymeric solutions. Furthermore it was observed that many of the filaments were stretched, and at elevated flow rates began to undergo polymorphic transformations, which were initiated at one end of the flagellum. When undergoing a change to a different helical form the flagellum was observed to transform to an oppositely handed helix, as to counteract the viscous torque imparted by the shear flow. It was also observed that some flagellar filaments did not undergo polymorphic transformations, but rotated about their helical axis. The rate of this rotation appears to be a function of the applied flow rate. These results expand on previous experimental work and aid in the development of a novel platform that harnesses the autonomic response of a 'forest' of bacterial flagella for engineering applications. This work was funded by NSF Grant CMMI-1000255, KEIT MOTIE Grant No. 10052980, and with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

  12. Flagellar dynamics reveal the distribution of chemotactic signaling molecule CheY-P in E. coli

    NASA Astrophysics Data System (ADS)

    Bano, Roshni; Mears, Patrick; Chemla, Yann; Golding, Ido

    E. colicells swim in a random walk consisting of ''runs'' - during which the flagella that propel the cell rotate counter-clockwise (CCW) - and ''tumbles''- during which one or more flagella rotate clockwise (CW). The tumbling frequency is modulated by the phosphorylation state of the signaling molecule CheY, which depends on the cell's environment. Phosphorylated CheY (CheY-P) binds to a flagellar motor and engenders a change in rotation state from CCW to CW. Despite advances in methods used to observe chemotactic signaling, it remains a challenge to measure the CheY-P level in cells directly. Here, we used an optical trap assay coupled with fluorescence microscopy to observe the dynamics of fluorescently labelled flagella in individual cells. By measuring the distribution of flagellar states in multi-flagellated cells and using our recent finding that each flagellar motor independently measures the cellular CheY-P concentration, we are able to extract the probability distribution of the CheY-P level in the cell. This analysis reveals the magnitude of fluctuations in chemotactic signaling in the live cell. We further investigate how this CheY-P distribution changes when cells encounter chemical gradients and perform chemotaxis. This work was supported by the National Science Foundation (NSF) through the Centre for Physics of Living Cells (CPLC).

  13. Cloning and expression of colonization factor antigen I (CFA/I) epitopes of enterotoxigenic Escherichia coli (ETEC) in Salmonella flagellin.

    PubMed

    Luna, M G; Martins, M M; Newton, S M; Costa, S O; Almeida, D F; Ferreira, L C

    1997-01-01

    Oligonucleotides coding for linear epitopes of the fimbrial colonization factor antigen I (CFA/I) of enterotoxigenic Escherichia coli (ETEC) were cloned and expressed in a deleted form of the Salmonella muenchen flagellin fliC (H1-d) gene. Four synthetic oligonucleotide pairs coding for regions corresponding to amino acids 1 to 15 (region I), amino acids 11 to 25 (region II), amino acids 32 to 45 (region III) and amino acids 88 to 102 (region IV) were synthesized and cloned in the Salmonella flagellin-coding gene. All four hybrid flagellins were exported to the bacterial surface where they produced flagella, but only three constructs were fully motile. Sera recovered from mice immunized with intraperitoneal injections of purified flagella containing region II (FlaII) or region IV (FlaIV) showed high titres against dissociated solid-phase-bound CFA/I subunits. Hybrid flagellins containing region I (FlaI) or region III (FlaIII) elicited a weak immune response as measured in enzyme-linked immunosorbent assay (ELISA) with dissociated CFA/I subunits. None of the sera prepared with purified hybrid flagella were able to agglutinate or inhibit haemagglutination promoted by CFA/I-positive strains. Moreover, inhibition ELISA tests indicated that antisera directed against region I, II, III or IV cloned in flagellin were not able to recognize surface-exposed regions on the intact CFA/I fimbriae.

  14. A putative lateral flagella of the cystic fibrosis pathogen Burkholderia dolosa regulates swimming motility and host cytokine production

    PubMed Central

    Clark, Bradley S.; Weatherholt, Molly; Renaud, Diane; Scott, David; LiPuma, John J.; Priebe, Gregory; Gerard, Craig

    2018-01-01

    Burkholderia dolosa caused an outbreak in the cystic fibrosis clinic at Boston Children’s Hospital and was associated with high mortality in these patients. This species is part of a larger complex of opportunistic pathogens known as the Burkholderia cepacia complex (Bcc). Compared to other species in the Bcc, B. dolosa is highly transmissible; thus understanding its virulence mechanisms is important for preventing future outbreaks. The genome of one of the outbreak strains, AU0158, revealed a homolog of the lafA gene encoding a putative lateral flagellin, which, in other non-Bcc species, is used for movement on solid surfaces, attachment to host cells, or movement inside host cells. Here, we analyzed the conservation of the lafA gene and protein sequences, which are distinct from those of the polar flagella, and found lafA homologs to be present in numerous β-proteobacteria but notably absent from most other Bcc species. A lafA deletion mutant in B. dolosa showed a greater swimming motility than wild-type due to an increase in the number of polar flagella, but did not appear to contribute to biofilm formation, host cell invasion, or murine lung colonization or persistence over time. However, the lafA gene was important for cytokine production in human peripheral blood mononuclear cells, suggesting it may have a role in recognition by the human immune response. PMID:29346379

  15. Flagellum Density Regulates Proteus mirabilis Swarmer Cell Motility in Viscous Environments

    PubMed Central

    Tuson, Hannah H.; Copeland, Matthew F.; Carey, Sonia; Sacotte, Ryan

    2013-01-01

    Proteus mirabilis is an opportunistic pathogen that is frequently associated with urinary tract infections. In the lab, P. mirabilis cells become long and multinucleate and increase their number of flagella as they colonize agar surfaces during swarming. Swarming has been implicated in pathogenesis; however, it is unclear how energetically costly changes in P. mirabilis cell morphology translate into an advantage for adapting to environmental changes. We investigated two morphological changes that occur during swarming—increases in cell length and flagellum density—and discovered that an increase in the surface density of flagella enabled cells to translate rapidly through fluids of increasing viscosity; in contrast, cell length had a small effect on motility. We found that swarm cells had a surface density of flagella that was ∼5 times larger than that of vegetative cells and were motile in fluids with a viscosity that inhibits vegetative cell motility. To test the relationship between flagellum density and velocity, we overexpressed FlhD4C2, the master regulator of the flagellar operon, in vegetative cells of P. mirabilis and found that increased flagellum density produced an increase in cell velocity. Our results establish a relationship between P. mirabilis flagellum density and cell motility in viscous environments that may be relevant to its adaptation during the infection of mammalian urinary tracts and movement in contact with indwelling catheters. PMID:23144253

  16. SAS6-like protein in Plasmodium indicates that conoid-associated apical complex proteins persist in invasive stages within the mosquito vector.

    PubMed

    Wall, Richard J; Roques, Magali; Katris, Nicholas J; Koreny, Ludek; Stanway, Rebecca R; Brady, Declan; Waller, Ross F; Tewari, Rita

    2016-06-24

    The SAS6-like (SAS6L) protein, a truncated paralogue of the ubiquitous basal body/centriole protein SAS6, has been characterised recently as a flagellum protein in trypanosomatids, but associated with the conoid in apicomplexan Toxoplasma. The conoid has been suggested to derive from flagella parts, but is thought to have been lost from some apicomplexans including the malaria-causing genus Plasmodium. Presence of SAS6L in Plasmodium, therefore, suggested a possible role in flagella assembly in male gametes, the only flagellated stage. Here, we have studied the expression and role of SAS6L throughout the Plasmodium life cycle using the rodent malaria model P. berghei. Contrary to a hypothesised role in flagella, SAS6L was absent during gamete flagellum formation. Instead, SAS6L was restricted to the apical complex in ookinetes and sporozoites, the extracellular invasive stages that develop within the mosquito vector. In these stages SAS6L forms an apical ring, as we show is also the case in Toxoplasma tachyzoites. The SAS6L ring was not apparent in blood-stage invasive merozoites, indicating that the apical complex is differentiated between the different invasive forms. Overall this study indicates that a conoid-associated apical complex protein and ring structure is persistent in Plasmodium in a stage-specific manner.

  17. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Jibuti, Levan; Zimmermann, Walter; Rafaï, Salima; Peyla, Philippe

    2017-11-01

    Micro-organisms usually can swim in their liquid environment by flagellar or ciliary beating. In this numerical work, we analyze the influence of flagellar beating on the orbits of a swimming cell in a shear flow. We also calculate the effect of the flagellar beating on the rheology of a dilute suspension of microswimmers. A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of two anterior flagella modeled by two counter-rotating fore beads. The active swimmer model reveals unusual angular orbits in a linear shear flow. Namely, the swimmer sustains orientations transiently across the flow. Such behavior is a result of the interplay between shear flow and the swimmer's periodic beating motion of flagella, which exert internal torques on the cell body. This peculiar behavior has some significant consequences on the rheological properties of the suspension. We calculate Einstein's viscosity of the suspension composed of such isolated modeled microswimmers (dilute case) in a shear flow. We use numerical simulations based on a Rotne-Prager-like approximation for hydrodynamic interaction between simplified flagella and the cell body. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to nonactive ones as well as a shear thinning behavior in accordance with previous experimental measurements [Phys. Rev. Lett. 104, 098102 (2010), 10.1103/PhysRevLett.104.098102].

  18. Reduced viscosity for flagella moving in a solution of long polymer chains

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Li, Gaojin; Ardekani, Arezoo M.

    2018-02-01

    The bacterial flagellum thickness is smaller than the radius of gyration of long polymer chain molecules. The flow velocity gradient over the length of polymer chains can be nonuniform and continuum models of polymeric liquids break in this limit. In this work, we use Brownian dynamics simulations to study a rotating helical flagellum in a polymer solution and overcome this limitation. As the polymer size increases, the viscosity experienced by the flagellum asymptotically reduces to the solvent viscosity. The contribution of polymer molecules to the local viscosity in a solution of long polymer chains decreases with the inverse of polymer size to the power 1/2. The difference in viscosity experienced by the bacterial cell body and flagella can predict the nonmonotonic swimming speed of bacteria in polymer solutions.

  19. Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies

    PubMed Central

    Werner, Steffen; Rink, Jochen C.; Riedel-Kruse, Ingmar H.; Friedrich, Benjamin M.

    2014-01-01

    We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way. PMID:25426857

  20. Structural Characterization of the Fla2 Flagellum of Rhodobacter sphaeroides

    PubMed Central

    de la Mora, Javier; Uchida, Kaoru; del Campo, Ana Martínez; Camarena, Laura; Aizawa, Shin-Ichi

    2015-01-01

    ABSTRACT Rhodobacter sphaeroides is a free-living alphaproteobacterium that contains two clusters of functional flagellar genes in its genome: one acquired by horizontal gene transfer (fla1) and one that is endogenous (fla2). We have shown that the Fla2 system is normally quiescent and under certain conditions produces polar flagella, while the Fla1 system is always active and produces a single flagellum at a nonpolar position. In this work we purified and characterized the structure and analyzed the composition of the Fla2 flagellum. The number of polar filaments per cell is 4.6 on average. By comparison with the Fla1 flagellum, the prominent features of the ultra structure of the Fla2 HBB are the absence of an H ring, thick and long hooks, and a smoother zone at the hook-filament junction. The Fla2 helical filaments have a pitch of 2.64 μm and a diameter of 1.4 μm, which are smaller than those of the Fla1 filaments. Fla2 filaments undergo polymorphic transitions in vitro and showed two polymorphs: curly (right-handed) and coiled. However, in vivo in free-swimming cells, we observed only a bundle of filaments, which should probably be left-handed. Together, our results indicate that Fla2 cell produces multiple right-handed polar flagella, which are not conventional but exceptional. IMPORTANCE R. sphaeroides possesses two functional sets of flagellar genes. The fla1 genes are normally expressed in the laboratory and were acquired by horizontal transfer. The fla2 genes are endogenous and are expressed in a Fla1− mutant grown phototrophically and in the absence of organic acids. The Fla1 system produces a single lateral or subpolar flagellum, and the Fla2 system produces multiple polar flagella. The two kinds of flagella are never expressed simultaneously, and both are used for swimming in liquid media. The two sets of genes are certainly ready for responding to specific environmental conditions. The characterization of the Fla2 system will help us to understand its role in the physiology of this microorganism. PMID:26124240

  1. Induction by Bradyrhizobium diazoefficiens of Different Pathways for Growth in D-mannitol or L-arabinose Leading to Pronounced Differences in CO2 Fixation, O2 Consumption, and Lateral-Flagellum Production.

    PubMed

    Cogo, Carolina; Pérez-Giménez, Julieta; Rajeswari, Chandrasekar B; Luna, María F; Lodeiro, Aníbal R

    2018-01-01

    Bradyrhizobium diazoefficiens , a soybean N 2 -fixing symbiont, constitutes the basic input in one of the most prominent inoculant industries worldwide. This bacterium may be cultured with D-mannitol or L-arabinose as carbon-plus-energy source (C-source) with similar specific growth rates, but with higher biomass production with D-mannitol. To better understand the bacterium's carbon metabolism, we analyzed, by liquid chromatography and tandem mass spectrometry (MS), the whole set of proteins obtained from cells grown on each C-source. Among 3,334 proteins identified, 266 were overproduced in D-mannitol and 237 in L-arabinose, but among these, only 22% from D-mannitol cultures and 35% from L-arabinose cultures were annotated with well defined functions. In the D-mannitol-differential pool we found 19 enzymes of the pentose-phosphate and Calvin-Benson-Bassham pathways and accordingly observed increased extracellular-polysaccharide production by D-mannitol grown bacteria in a CO 2 -enriched atmosphere. Moreover, poly-3-hydroxybutyrate biosynthesis was increased, suggesting a surplus of reducing power. In contrast, the L-arabinose-differential pool contained 11 enzymes of the L-2-keto-3-deoxyarabonate pathway, 4 enzymes for the synthesis of nicotinamide-adenine dinucleotide from aspartate, with those cultures having a threefold higher O 2 -consumption rate than the D-mannitol cultures. The stoichiometric balances deduced from the modeled pathways, however, resulted in similar O 2 consumptions and ATP productions per C-mole of substrate. These results suggested higher maintenance-energy demands in L-arabinose, which energy may be used partly for flagella-driven motility. Since B. diazoefficiens produces the lateral-flagella system in only L-arabinose, we calculated the O 2 -consumption rates of a lafR ::Km mutant devoid of lateral flagella cultured in L-arabinose or D-mannitol. Contrary to that of the wild-type, the O 2 -consumption rate of this mutant was similar on both C-sources, and accordingly outcompeted the wild-type in coculture, suggesting that the lateral flagella behaved as parasitic structures under these conditions. Proteomic data are available via ProteomeXchange with identifier PXD008263.

  2. Theory of polymorphism in bacterial flagella

    NASA Astrophysics Data System (ADS)

    Powers, Thomas

    2004-03-01

    Escherichia coli and Salmonella swim using several flagella, each of which consists of a rotary motor, a universal joint known as the hook, and a helical filament which acts a propeller. The filament is normally left-handed in the absence of external stress, but undergoes mechanical phase transitions to other helical states ("polymorphs") in response to external torque. The filament is made of identical flagellin protein subunits which are organized into eleven protofilaments which wind around the filament. We develop an effective theory in which the flagellin subunits and their connections along the protofilaments are modelled with a double-well potential. A helical spring represents the other connections of the subunits, and introduces a twist-stretch coupling and an element of frustration in our model. We solve for the ground states and the phase diagram for filament shapes.

  3. Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure.

    PubMed

    O'Toole, Eileen T; Giddings, Thomas H; Porter, Mary E; Ostrowski, Lawrence E

    2012-08-01

    In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD. Copyright © 2012 Wiley Periodicals, Inc.

  4. Centrioles to basal bodies in the spermiogenesis of Mastotermes darwiniensis (Insecta, Isoptera).

    PubMed

    Riparbelli, Maria Giovanna; Callaini, Giuliano; Mercati, David; Hertel, Horst; Dallai, Romano

    2009-05-01

    In addition to their role in centrosome organization, the centrioles have another distinct function as basal bodies for the formation of cilia and flagella. Centriole duplication has been reported to require two alternate assembly pathways: template or de novo. Since spermiogenesis in the termite Mastotermes darwiniensis lead to the formation of multiflagellate sperm, this process represents a useful model system in which to follow basal body formation and flagella assembly. We present evidence of a possible de novo pathway for basal body formation in the differentiating germ cell. This cell also contains typical centrosomal proteins, such as centrosomin, pericentrin-like protein, gamma-tubulin, that undergo redistribution as spermatid differentiation proceeds. The spermatid centrioles are long structures formed by nine doublet rather than triplet microtubules provided with short projections extending towards the surrounding cytoplasm and with links between doublets. The sperm basal bodies are aligned in parallel beneath the nucleus. They consist of long regions close to the nucleus showing nine doublets in a cartwheel array devoid of any projections; on the contrary, the short region close to the plasma membrane, where the sperm flagella emerge, is characterized by projections similar to those observed in the centrioles linking the basal body to the plasma membrane. It is hypothesized that this appearance is in connection with the centriole elongation and further with the flagellar axonemal organization. Microtubule doublets of sperm flagellar axonemes are provided with outer dynein arms, while inner arms are rarely visible. (c) 2009 Wiley-Liss, Inc.

  5. Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium.

    PubMed

    Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar

    2010-02-01

    Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.

  6. [Biofilm Formation by the Nonflagellated flhB1 Mutant of Azospirillum brasilense Sp245].

    PubMed

    Shelud'ko, A V; Filip'echeva, Yu A; Shumiliva, E M; Khlebtsov, B N; Burov, A M; Petrova, L P; Katsy, E I

    2015-01-01

    Azospirillum brasilense Sp245 with mixed flagellation are able to form biofilms on various surfaces. A nonflagellated mutant of this strain with inactivated chromosomal copy of the flhB gene (flhB1) was shown to exhibit specific traits at the later stages of biofilm formation on a hydrophilic (glass) surface. Mature biofilms of the flhB1::Omegon-Km mutant Sp245.1063 were considerably thinner than those of the parent strain Sp245. The biofilms of the mutant were more susceptible to the forces of hydrodynamic shear. A. brasilense Sp245 cells in biofilms were not found to possess lateral flagella. Cells with polar flagella were, however, revealed by atomic force microscopy of mature native biofilms of strain Sp245. Preservation of a polar flagellum (probably nonmotile) on the cells of A. brasilense Sp245 may enhance the biofilm stability.

  7. Flies without centrioles.

    PubMed

    Basto, Renata; Lau, Joyce; Vinogradova, Tatiana; Gardiol, Alejandra; Woods, C Geoffrey; Khodjakov, Alexey; Raff, Jordan W

    2006-06-30

    Centrioles and centrosomes have an important role in animal cell organization, but it is uncertain to what extent they are essential for animal development. The Drosophila protein DSas-4 is related to the human microcephaly protein CenpJ and the C. elegans centriolar protein Sas-4. We show that DSas-4 is essential for centriole replication in flies. DSas-4 mutants start to lose centrioles during embryonic development, and, by third-instar larval stages, no centrioles or centrosomes are detectable. Mitotic spindle assembly is slow in mutant cells, and approximately 30% of the asymmetric divisions of larval neuroblasts are abnormal. Nevertheless, mutant flies develop with near normal timing into morphologically normal adults. These flies, however, have no cilia or flagella and die shortly after birth because their sensory neurons lack cilia. Thus, centrioles are essential for the formation of centrosomes, cilia, and flagella, but, remarkably, they are not essential for most aspects of Drosophila development.

  8. Bacterial flagella and Type III secretion: case studies in the evolution of complexity.

    PubMed

    Pallen, M J; Gophna, U

    2007-01-01

    Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.

  9. Flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2015-11-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment (HC Berg, Harvard University) measured the flow in the fluid around the swarm. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of a E.coli swarm with flow speeds of about 10 μm/s, about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the flagella of cells stalled at the edge of a colony which extend their flagellar filaments outwards, moving fluid over the virgin agar. In this talk we quantitatively test his hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements.

  10. Mobilifilum chasei: morphology and ecology of a spirochete from an intertidal stratified microbial mat community

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; Stolz, J.; Craft, F.; Esteve, I.; Guerrero, R.

    1990-01-01

    Spirochetes were found in the lower anoxiphototrophic layer of a stratified microbial mat (North Pond, Laguna Figueroa, Baja California, Mexico). Ultra-structural analysis of thin sections of field samples revealed spirochetes approximately 0.25 micrometer in diameter with 10 or more periplasmic flagella, leading to the interpretation that these spirochetes bear 10 flagellar insertions on each end. Morphometric study showed these free-living spirochetes greatly resemble certain symbiotic ones, i.e., Borrelia and certain termite spirochetes, the transverse sections of which are presented here. The ultrastructure of this spirochete also resembles Hollandina and Diplocalyx (spirochetes symbiotic in arthropods) more than it does Spirochaeta, the well known genus of mud-dwelling spirochetes. The new spirochete was detected in mat material collected both in 1985 and in 1987. Unique morphology (i.e., conspicuous outer coat of inner membrane, large number of periplasmic flagella) and ecology prompt us to name a new free-living spirochete.

  11. Biopolymer dynamics driven by helical flagella

    NASA Astrophysics Data System (ADS)

    Balin, Andrew K.; Zöttl, Andreas; Yeomans, Julia M.; Shendruk, Tyler N.

    2017-11-01

    Microbial flagellates typically inhabit complex suspensions of polymeric material which can impact the swimming speed of motile microbes, filter feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena, in particular, the hydrodynamic and steric influence of a rotating helical filament on suspended polymers. Our Stokesian dynamics simulations show that as a stationary rotating helix pumps fluid along its long axis, polymers migrate radially inward while being elongated. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. This accumulation of polymers within the vicinity of the helix is stronger for longer polymers. We further analyze the stochastic work performed by the helix on the polymers and show that this quantity is positive on average and increases with polymer contour length.

  12. The role of adhesins in bacteria motility modification

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Gordon, Vernita; Motto, Dominick; Shrout, Joshua; Parsek, Matthew; Wong, Gerard

    2010-03-01

    Bacterial biofilms are multicellular communities responsible for a broad range of infections. To investigate the early-stage formation of biofilms, we have developed high-throughput techniques to quantify the motility of surface-associated bacteria. We translate microscopy movies of bacteria into a searchable database of trajectories using tracking algorithms adapted from colloidal physics. By analyzing the motion of both wild-type (WT) and isogenic knockout mutants, we have previously characterized fundamental motility mechanisms in P. aeruginosa. Here, we develop biometric routines to recognize signatures of adhesion and trapping. We find that newly attached bacteria move faster than previously adherent bacteria, and are more likely to be oriented out-of-plane. Motility appendages influence the bacterium's ability to become trapped: WT bacteria exhibit two types of trapped trajectories, whereas flagella-deficient bacteria rarely become trapped. These results suggest that flagella play a key role in adhesion.

  13. Numerical modelling of chirality-induced bi-directional swimming of artificial flagella

    PubMed Central

    Namdeo, S.; Khaderi, S. N.; Onck, P. R.

    2014-01-01

    Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. PMID:24511253

  14. Complete genome sequence of Conexibacter woesei type strain (ID131577T)

    PubMed Central

    Pukall, Rüdiger; Lapidus, Alla; Glavina Del Rio, Tijana; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Mavromatis, Konstantinos; Ivanova, Natalia; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Chain, Patrick; Meincke, Linda; Sims, David; Brettin, Thomas; Detter, John C.; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Kyrpides, Nikos C.; Klenk, Hans-Peter; Hugenholtz, Philip

    2010-01-01

    The genus Conexibacter (Monciardini et al. 2003) represents the type genus of the family Conexibacteraceae (Stackebrandt 2005, emend. Zhi et al. 2009) with Conexibacter woesei as the type species of the genus. C. woesei is a representative of a deep evolutionary line of descent within the class Actinobacteria. Strain ID131577T was originally isolated from temperate forest soil in Gerenzano (Italy). Cells are small, short rods that are motile by peritrichous flagella. They may form aggregates after a longer period of growth and, then as a typical characteristic, an undulate structure is formed by self-aggregation of flagella with entangled bacterial cells. Here we describe the features of the organism, together with the complete sequence and annotation. The 6,359,369 bp long genome of C. woesei contains 5,950 protein-coding and 48 RNA genes and is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304704

  15. Hydrodynamics of the double-wave structure of insect spermatozoa flagella

    PubMed Central

    Pak, On Shun; Spagnolie, Saverio E.; Lauga, Eric

    2012-01-01

    In addition to conventional planar and helical flagellar waves, insect sperm flagella have also been observed to display a double-wave structure characterized by the presence of two superimposed helical waves. In this paper, we present a hydrodynamic investigation of the locomotion of insect spermatozoa exhibiting the double-wave structure, idealized here as superhelical waves. Resolving the hydrodynamic interactions with a non-local slender body theory, we predict the swimming kinematics of these superhelical swimmers based on experimentally collected geometric and kinematic data. Our consideration provides insight into the relative contributions of the major and minor helical waves to swimming; namely, propulsion is owing primarily to the minor wave, with negligible contribution from the major wave. We also explore the dependence of the propulsion speed on geometric and kinematic parameters, revealing counterintuitive results, particularly for the case when the minor and major helical structures are of opposite chirality. PMID:22298815

  16. Chromosomal flhB1 gene of the alphaproteobacterium Azospirillum brasilense Sp245 is essential for correct assembly of both constitutive polar flagellum and inducible lateral flagella.

    PubMed

    Filip'echeva, Yulia; Shelud'ko, Andrei; Prilipov, Alexei; Telesheva, Elizaveta; Mokeev, Dmitry; Burov, Andrei; Petrova, Lilia; Katsy, Elena

    2018-03-01

    Azospirillum brasilense has the ability of swimming and swarming motility owing to the work of a constitutive polar flagellum and inducible lateral flagella, respectively. The interplay between these flagellar systems is poorly understood. One of the key elements of the flagellar export apparatus is the protein FlhB. Two predicted flhB genes are present in the genome of A. brasilense Sp245 (accession nos. HE577327-HE577333). Experimental evidence obtained here indicates that the chromosomal coding sequence (CDS) AZOBR_150177 (flhB1) of Sp245 is essential for the production of both types of flagella. In an flhB1:: Omegon-Km mutant, Sp245.1063, defects in polar and lateral flagellar assembly and motility were complemented by expressing the wild-type flhB1 gene from plasmid pRK415. It was found that Sp245.1063 lost the capacity for slight but statistically significant decrease in mean cell length in response to transfer from solid to liquid media, and vice versa; in the complemented mutant, this capacity was restored. It was also shown that after the acquisition of the pRK415-harbored downstream CDS AZOBR_150176, cells of Sp245 and Sp245.1063 ceased to elongate on solid media. These initial data suggest that the AZOBR_150176-encoded putative multisensory hybrid sensor histidine kinase-response regulator, in concert with FlhB1, plays a role in morphological response of azospirilla to changes in the hardness of a milieu.

  17. Description of two species of early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp.

    PubMed

    Okamoto, Noriko; Horák, Aleš; Keeling, Patrick J

    2012-01-01

    In alveolate evolution, dinoflagellates have developed many unique features, including the cell that has epicone and hypocone, the undulating transverse flagellum. However, it remains unclear how these features evolved. The early branching dinoflagellates so far investigated such as Hematodinium, Amoebophrya and Oxyrrhis marina differ in many ways from of core dinoflagellates, or dinokaryotes. Except those handful of well studied taxa, the vast majority of early branching dinoflagellates are known only by environmental sequences, and remain enigmatic. In this study we describe two new species of the early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp. from marine intertidal sandy beach. Molecular phylogeny of the small subunit (SSU) ribosomal RNA and Hsp90 gene places Psammosa spp. as an early branch among the dinoflagellates. Morphologically (1) they lack the typical dinoflagellate epicone-hypocone structure, and (2) undulation in either flagella. Instead they display a mosaïc of dinokaryotes traits, i.e. (3) presence of bi-partite trychocysts; Oxyrrhis marina-like traits, i.e. (4) presence of flagellar hairs, (5) presence of two-dimensional cobweb scales ornamenting both flagella (6) transversal cell division; a trait shared with some syndineansand Parvilucifera spp. i.e. (7) a nucleus with a conspicuous nucleolus and condensed chromatin distributed beneath the nuclear envelope; as well as Perkinsus marinus -like features i.e. (8) separate ventral grooves where flagella emerge and (9) lacking dinoflagellate-type undulating flagellum. Notably Psammosa retains an apical complex structure, which is shared between perkinsids, colpodellids, chromerids and apicomplexans, but is not found in dinokaryotic dinoflagellates.

  18. Description of Two Species of Early Branching Dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp

    PubMed Central

    Okamoto, Noriko; Horák, Aleš; Keeling, Patrick J.

    2012-01-01

    In alveolate evolution, dinoflagellates have developed many unique features, including the cell that has epicone and hypocone, the undulating transverse flagellum. However, it remains unclear how these features evolved. The early branching dinoflagellates so far investigated such as Hematodinium, Amoebophrya and Oxyrrhis marina differ in many ways from of core dinoflagellates, or dinokaryotes. Except those handful of well studied taxa, the vast majority of early branching dinoflagellates are known only by environmental sequences, and remain enigmatic. In this study we describe two new species of the early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp. from marine intertidal sandy beach. Molecular phylogeny of the small subunit (SSU) ribosomal RNA and Hsp90 gene places Psammosa spp. as an early branch among the dinoflagellates. Morphologically (1) they lack the typical dinoflagellate epicone–hypocone structure, and (2) undulation in either flagella. Instead they display a mosaïc of dinokaryotes traits, i.e. (3) presence of bi-partite trychocysts; Oxyrrhis marina–like traits, i.e. (4) presence of flagellar hairs, (5) presence of two-dimensional cobweb scales ornamenting both flagella (6) transversal cell division; a trait shared with some syndineansand Parvilucifera spp. i.e. (7) a nucleus with a conspicuous nucleolus and condensed chromatin distributed beneath the nuclear envelope; as well as Perkinsus marinus -like features i.e. (8) separate ventral grooves where flagella emerge and (9) lacking dinoflagellate-type undulating flagellum. Notably Psammosa retains an apical complex structure, which is shared between perkinsids, colpodellids, chromerids and apicomplexans, but is not found in dinokaryotic dinoflagellates. PMID:22719825

  19. The Motility Symbiont of the Termite Gut Flagellate Caduceia versatilis Is a Member of the “Synergistes” Group▿ †

    PubMed Central

    Hongoh, Yuichi; Sato, Tomoyuki; Dolan, Michael F.; Noda, Satoko; Ui, Sadaharu; Kudo, Toshiaki; Ohkuma, Moriya

    2007-01-01

    The flagellate Caduceia versatilis in the gut of the termite Cryptotermes cavifrons reportedly propels itself not by its own flagella but solely by the flagella of ectosymbiotic bacteria. Previous microscopic observations have revealed that the motility symbionts are flagellated rods partially embedded in the host cell surface and that, together with a fusiform type of ectosymbiotic bacteria without flagella, they cover almost the entire surface. To identify these ectosymbionts, we conducted 16S rRNA clone analyses of bacteria physically associated with the Caduceia cells. Two phylotypes were found to predominate in the clone library and were phylogenetically affiliated with the “Synergistes” phylum and the order Bacteroidales in the Bacteroidetes phylum. Probes specifically targeting 16S rRNAs of the respective phylotypes were designed, and fluorescence in situ hybridization (FISH) was performed. As a result, the “Synergistes” phylotype was identified as the motility symbiont; the Bacteroidales phylotype was the fusiform ectobiont. The “Synergistes” phylotype was a member of a cluster comprising exclusively uncultured clones from the guts of various termite species. Interestingly, four other phylotypes in this cluster, including the one sharing 95% sequence identity with the motility symbiont, were identified as nonectosymbiotic, or free-living, gut bacteria by FISH. We thus suggest that the motility ectosymbiont has evolved from a free-living gut bacterium within this termite-specific cluster. Based on these molecular and previous morphological data, we here propose a novel genus and species, “Candidatus Tammella caduceiae,” for this unique motility ectosymbiont of Caducaia versatilis. PMID:17675420

  20. [Swarming phenomenon of an aeromonas spec (author's transl)].

    PubMed

    Müller, H E; Lenz, W

    1975-05-01

    A genuine swarming phenomenon, such as has previously been known to occur in Proteus, Bacillus and Clostridium species only, was observed in an Aeromonas species. Fig. 1 shows the terraced swarming zones of the Aeromonas species on nutrient agar. The swarming rate, expressed as the growth of the swarming zone per time unit, was measured to be 70-120 mum/min on blood agar at 30 degrees C. The swarming could be inhibited by incubation at 37 degrees C (Table 2), by low saline concentrations (Table 3) as well as by addition of 4-nitro-phenylglycerol to the medium (Table 4). A DIENES-phenomenon between the swarming zones of Proteus strains and that of the Aeromonas species could not be observed (Fig. 2). The manner of swarming as seen in phase contrast microscopy was the same kind as that of Proteus. Furthermore, it could be shown by means of light- and electronmicroscopical investigations that the swarming phenomenon is connected with changes in the cell morphology and the form of flagellation (Figs. 4 and 5). Whereas in broth cultures (Fig. 3) as well as in the centre of colonies on solid media (Fig. 5a) the cells appeared as cocoid rods with polar flagellation, they developed elongated forms at the edge of the swarming zone, which - either in addition to or devoid of the polar flagella - were peritrichously populated with thin, flagella-like filaments (Figs. tb, 6, 7 and 8). The discussion deals with the various forms of bacterial surface translocation and investigates into the role of peritrichous flagella or fimbriae in the swarming phenomenon.

  1. Crowning: a novel Escherichia coli colonizing behaviour generating a self-organized corona

    PubMed Central

    2014-01-01

    Background Encased in a matrix of extracellular polymeric substances (EPS) composed of flagella, adhesins, amyloid fibers (curli), and exopolysaccharides (cellulose, β-1,6-N-acetyl-D-glucosamine polymer-PGA-, colanic acid), the bacteria Escherichia coli is able to attach to and colonize different types of biotic and abiotic surfaces forming biofilms and colonies of intricate morphological architectures. Many of the biological aspects that underlie the generation and development of these E. coli’s formations are largely poorly understood. Results Here, we report the characterization of a novel E. coli sessile behaviour termed "crowning" due to the bacterial generation of a new 3-D architectural pattern: a corona. This bacterial pattern is formed by joining bush-like multilayered "coronal flares or spikes" arranged in a ring, which self-organize through the growth, self-clumping and massive self-aggregation of cells tightly interacting inside semisolid agar on plastic surfaces. Remarkably, the corona’s formation is developed independently of the adhesiveness of the major components of E. coli’s EPS matrix, the function of chemotaxis sensory system, type 1 pili and the biofilm master regulator CsgD, but its formation is suppressed by flagella-driven motility and glucose. Intriguingly, this glucose effect on the corona development is not mediated by the classical catabolic repression system, the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. Thus, corona formation departs from the canonical regulatory transcriptional core that controls biofilm formation in E. coli. Conclusions With this novel "crowning" activity, E. coli expands its repertoire of colonizing collective behaviours to explore, invade and exploit environments whose critical viscosities impede flagella driven-motility. PMID:24568619

  2. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  3. Measurement of the force and torque produced in the calcium response of reactivated rat sperm flagella.

    PubMed

    Moritz, M J; Schmitz, K A; Lindemann, C B

    2001-05-01

    Rat sperm that are demembranated with Triton X-100 and reactivated with Mg-ATP show a strong mechanical response to the presence of free calcium ion. At pCa < 4, the midpiece region of the flagellum develops a strong and sustained curvature that gives the cell the overall appearance of a fishhook [Lindemann and Goltz, 1988: Cell Motil. Cytoskeleton 10:420-431]. In the present study, the force and torque that maintain the calcium-induced hook have been examined quantitatively. In addition, full-length and shortened flagella were manipulated to evaluate the plasticity of the hooks and determined the critical length necessary for maintaining the curvature. The hooks were found to be highly resilient, returning to their original configuration (>95%) after being straightened and released. The results from manipulating the shortened flagella suggest that the force holding the hook in the curved configuration is generated in the basal 60 microm of the flagellum. The force required to straighten the calcium-induced hooks was measured with force-calibrated glass microprobes, and the bending torque was calculated from the measured force. The force and torque required to straighten the flagellum were found to be proportional to the change in curvature of the hooked region of the flagellum, suggesting an elastic-like behavior. The average torque to open the hooks to a straight position was 2.6 (+/-1.4) x 10(-7) dyne x cm (2.6 x 10(-14) N x m) and the apparent stiffness was 4.3 (+/-1.3) x 10(-10) dyne x cm(2) (4.3 x 10(-19) N x m(2)). The stiffness of the hook was determined to be approximately one quarter the rigor stiffness of a rat sperm flagellum measured under comparable conditions.

  4. The bioluminescent Listeria monocytogenes strain Xen32 is defective in flagella expression and highly attenuated in orally infected BALB/cJ mice.

    PubMed

    Bergmann, Silke; Rohde, Manfred; Schughart, Klaus; Lengeling, Andreas

    2013-07-15

    In vivo bioluminescence imaging (BLI) is a powerful method for the analysis of host-pathogen interactions in small animal models. The commercially available bioluminescent Listeria monocytogenes strain Xen32 is commonly used to analyse immune functions in knockout mice and pathomechanisms of listeriosis. To analyse and image listerial dissemination after oral infection we have generated a murinised Xen32 strain (Xen32-mur) which expresses a previously described mouse-adapted internalin A. This strain was used alongside the Xen32 wild type strain and the bioluminescent L. monocytogenes strains EGDe-lux and murinised EGDe-mur-lux to characterise bacterial dissemination in orally inoculated BALB/cJ mice. After four days of infection, Xen32 and Xen32-mur infected mice displayed consistently higher rates of bioluminescence compared to EGDe-lux and EGDe-mur-lux infected animals. However, surprisingly both Xen32 strains showed attenuated virulence in orally infected BALB/c mice that correlated with lower bacterial burden in internal organs at day 5 post infection, smaller losses in body weights and increased survival compared to EGDe-lux or EGDe-mur-lux inoculated animals. The Xen32 strain was made bioluminescent by integration of a lux-kan transposon cassette into the listerial flaA locus. We show here that this integration results in Xen32 in a flaA frameshift mutation which makes this strain flagella deficient. The bioluminescent L. monocytogenes strain Xen32 is deficient in flagella expression and highly attenuated in orally infected BALB/c mice. As this listerial strain has been used in many BLI studies of murine listeriosis, it is important that the scientific community is aware of its reduced virulence in vivo.

  5. The Gene Ontology of eukaryotic cilia and flagella.

    PubMed

    Roncaglia, Paola; van Dam, Teunis J P; Christie, Karen R; Nacheva, Lora; Toedt, Grischa; Huynen, Martijn A; Huntley, Rachael P; Gibson, Toby J; Lomax, Jane

    2017-01-01

    Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO. Members of the SYSCILIA and Gene Ontology Consortia suggested additions and changes to GO, to reflect new knowledge in the field. The project initially aimed to improve coverage of ciliary parts, and was then broadened to cilia-related biological processes. Discussions were documented in a public tracker. We engaged the broader cilia community via direct consultation and by referring to the literature. Ontology updates were implemented via ontology editing tools. So far, we have created or modified 127 GO terms representing parts and processes related to eukaryotic cilia/flagella or prokaryotic flagella. A growing number of biological pathways are known to involve cilia, and we continue to incorporate this knowledge in GO. The resulting expansion in GO allows more precise representation of experimentally derived knowledge, and SYSCILIA and GO biocurators have created 199 annotations to 50 human ciliary proteins. The revised ontology was also used to curate mouse proteins in a collaborative project. The revised GO and annotations, used in comparative 'before and after' analyses of representative ciliary datasets, improve enrichment results significantly. Our work has resulted in a broader and deeper coverage of ciliary composition and function. These improvements in ontology and protein annotation will benefit all users of GO enrichment analysis tools, as well as the ciliary research community, in areas ranging from microscopy image annotation to interpretation of high-throughput studies. We welcome feedback to further enhance the representation of cilia biology in GO.

  6. Absence of CFAP69 Causes Male Infertility due to Multiple Morphological Abnormalities of the Flagella in Human and Mouse.

    PubMed

    Dong, Frederick N; Amiri-Yekta, Amir; Martinez, Guillaume; Saut, Antoine; Tek, Julie; Stouvenel, Laurence; Lorès, Patrick; Karaouzène, Thomas; Thierry-Mieg, Nicolas; Satre, Véronique; Brouillet, Sophie; Daneshipour, Abbas; Hosseini, Seyedeh Hanieh; Bonhivers, Mélanie; Gourabi, Hamid; Dulioust, Emmanuel; Arnoult, Christophe; Touré, Aminata; Ray, Pierre F; Zhao, Haiqing; Coutton, Charles

    2018-04-05

    The multiple morphological abnormalities of the flagella (MMAF) phenotype is among the most severe forms of sperm defects responsible for male infertility. The phenotype is characterized by the presence in the ejaculate of immotile spermatozoa with severe flagellar abnormalities including flagella being short, coiled, absent, and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous, and genes thus far associated with MMAF account for only one-third of cases. Here we report the identification of homozygous truncating mutations (one stop-gain and one splicing variant) in CFAP69 of two unrelated individuals by whole-exome sequencing of a cohort of 78 infertile men with MMAF. CFAP69 encodes an evolutionarily conserved protein found at high levels in the testis. Immunostaining experiments in sperm from fertile control individuals showed that CFAP69 localized to the midpiece of the flagellum, and the absence of CFAP69 was confirmed in both individuals carrying CFPA69 mutations. Additionally, we found that sperm from a Cfap69 knockout mouse model recapitulated the MMAF phenotype. Ultrastructural analysis of testicular sperm from the knockout mice showed severe disruption of flagellum structure, but histological analysis of testes from these mice revealed the presence of all stages of the seminiferous epithelium, indicating that the overall progression of spermatogenesis is preserved and that the sperm defects likely arise during spermiogenesis. Together, our data indicate that CFAP69 is necessary for flagellum assembly/stability and that in both humans and mice, biallelic truncating mutations in CFAP69 cause autosomal-recessive MMAF and primary male infertility. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Reassembling biological machinery in vitro.

    PubMed

    Hess, Henry

    2009-09-25

    Inspired by the specialized glycolytic system of flagella of mammalian sperm, Mukai et al. (2009) describe the controlled immobilization of two enzymes constituting the first steps in the glycolytic pathway. Extension of this work may provide "power converters" for bionanodevices, which transduce chemical energy from glucose to ATP.

  8. Numerical study of the motion of a flagellated swimmer inside a tube in the Stokes regime

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Jiao, Yusheng; Xu, Xinliang; Ding, Yang

    2017-11-01

    Confined environments are common to micro-swimmers such bacteria and previous studies have shown that confinements such as a wall can influenced the trajectory of the micro-swimmers. Here we study whether some micro-swimmers can achieve a higher speed and energetic efficiency within a long tube comparing to the free-space case using a numerical model. The swimmer consists of an elliptical head and two helical flagella. To solve the governing Stokes equations inside an infinite tube, we combine the method of fundamental solution (MSF) and the method of Stokeslet. The geometry parameters, including shape and size of head and flagella, and relative spatial position of these components, are varied. Our results show that the geometry of the swimmer and the tube can greatly affect the speed of the micro-swimmer. For certain geometric parameters of the micro-swimmer, a greater confinement leads to a higher speed, which is consistent with the results from our robotic experiments.

  9. Emergence of multiple synchronization modes in hydrodynamically-coupled cilia

    NASA Astrophysics Data System (ADS)

    Guo, Hanliang; Kanso, Eva

    2016-11-01

    Motile cilia and flagella exhibit different phase coordinations. For example, closely swimming spermatozoa are observed to synchronize together; bi-flagellates Chlamydomonas regulate the flagella in a "breast-stroke" fashion; cilia on the surface of Paramecium beat in a fixed phase lag in an orchestrated wave like fashion. Experimental evidence suggests that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms behind it remain illusive. Here, adapting a "geometric switch" model, we observe different synchronization modes in pairs of hydrodynamically-coupled cilia by changing physical parameters such as the strength of the cilia internal motor and the separation distance between cilia. Interestingly, we find regions in the parameter space where the coupled cilia reach stable phase coordinations and regions where the phase coordinations are sensitive to perturbations. We also find that leaning into the fluid reduces the sensitivity to perturbations, and produces stable phase coordination that is neither in-phase nor anti-phase, which could explain the origin of metachronal waves in large cilia populations.

  10. Bacterial flagellar capping proteins adopt diverse oligomeric states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postel, Sandra; Deredge, Daniel; Bonsor, Daniel A.

    2016-09-24

    Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD fromPseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find thatPseudomonasFliD exhibits unexpected structural similarity to other flagellar proteins atmore » the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.« less

  11. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment

    NASA Astrophysics Data System (ADS)

    Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.

    2014-09-01

    We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.

  12. Dynamic Receptor Team Formation Can Explain the High Signal Transduction Gain in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Albert, R.; Chiu, Y.; Othmer, H.

    2004-05-01

    Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, such as the chemokinesis of the bacterium Escherichia coli, which swims by rotating its flagella. When rotated counterclockwise (CCW) the flagella coalesce into a propulsive bundle, producing a relatively straight ``run'', and when rotated clockwise (CW) they fly apart, resulting in a ``tumble'' which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient runs that carry the cell in a favorable direction are extended. The overall structure of the signal transduction pathways is well-characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation.

  13. Hydrodynamics of insect spermatozoa

    NASA Astrophysics Data System (ADS)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  14. Light and electron microscope observations on Nephroselmis gaoae sp. nov. (Prasinophyceae)

    NASA Astrophysics Data System (ADS)

    Tseng, C. K.; Jiao-Fen, Chen; Zhe-Fu, Zhang; Hui-Qi, Zhang

    1994-09-01

    Nephroselmis gaoae sp. nov. is described on the basis of light and electron microscope observations of cultured material originally collected and isolated from seawater of Jiaozhou Bay, Qingdao, China. The periplasts on the cell body and flagella are covered by five types of scales, two types on the flagella and three on the body. Among these, the morphology and the number of spines of large stellate body scales differ remarkably from those of previously described species of Nephroselmis. Apart from these, the unusual fine structure of the eyespot (stigma) is very characteristic. As in the other species of Nephroselmis, the eyespot lies immediately under the two-membraned chloroplast envelope; unlike the others, however, it is not composed of a number of osmiophilic globules, but consists of about 14 curved rod-shaped osmiophilic bodies arranged loosely and randomly. This feature distinguishes the present new species not only from the other species of Nephroselmis but also from the other motile algal species, the eyespots structure of which had been previously described.

  15. The counterbend dynamics of cross-linked filament bundles and flagella

    PubMed Central

    Coy, Rachel

    2017-01-01

    Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in biology. They are considered in textbooks as simple filaments with larger stiffness. Recent observations of flagellar counterbend, however, show that induction of curvature in one section of a passive flagellum instigates a compensatory counter-curvature elsewhere, exposing the intricate role of the diminutive cross-linking proteins at large scales. We show that this effect, a material property of the cross-linking mechanics, modifies the bundle dynamics and induces a bimodal L2 − L3 length-dependent material response that departs from the Euler–Bernoulli theory. Hence, the use of simpler theories to analyse experiments can result in paradoxical interpretations. Remarkably, the counterbend dynamics instigates counter-waves in opposition to driven oscillations in distant parts of the bundle, with potential impact on the regulation of flagellar bending waves. These results have a range of physical and biological applications, including the empirical disentanglement of material quantities via counterbend dynamics. PMID:28566516

  16. Flagellar motility is critical for Listeria monocytogenes biofilm formation.

    PubMed

    Lemon, Katherine P; Higgins, Darren E; Kolter, Roberto

    2007-06-01

    The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined.

  17. Novel mechanisms power bacterial gliding motility.

    PubMed

    Nan, Beiyan; Zusman, David R

    2016-07-01

    For many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility. Bacterial gliders are a heterogeneous group containing diverse bacteria that utilize surface motilities that do not depend on traditional flagella or pili, but are powered by mechanisms that are less well understood. Recently, advances in our understanding of the molecular machineries for several gliding bacteria revealed the roles of modified ion channels, secretion systems and unique machinery for surface movements. These novel mechanisms provide rich source materials for studying the function and evolution of complex microbial nanomachines. In this review, we summarize recent findings made on the gliding mechanisms of the myxobacteria, flavobacteria and mycoplasmas. © 2016 John Wiley & Sons Ltd.

  18. H-NS represses transcription of the flagellin gene lafA of lateral flagella in Vibrio parahaemolyticus.

    PubMed

    Wang, Yan; Zhang, Yiquan; Yin, Zhe; Wang, Jie; Zhu, Yongzhe; Peng, Haoran; Zhou, Dongsheng; Qi, Zhongtian; Yang, Wenhui

    2018-01-01

    Swarming motility is ultimately mediated by the proton-powered lateral flagellar (laf) system in Vibrio parahaemolyticus. Expression of laf genes is tightly regulated by a number of environmental conditions and regulatory factors. The nucleoid-associated DNA-binding protein H-NS is a small and abundant protein that is widely distributed in bacteria, and H-NS-like protein-dependent expression of laf genes has been identified in Vibrio cholerae and V. parahaemolyticus. The data presented here show that H-NS acts as a repressor of the swarming motility in V. parahaemolyticus. A single σ 28 -dependent promoter was detected for lafA encoding the flagellin of the lateral flagella, and its activity was directly repressed by H-NS. Thus, H-NS represses swarming motility by directly acting on lafA. Briefly, this work revealed a novel function for H-NS as a repressor of the expression of lafA and swarming motility in V. parahaemolyticus.

  19. A pink-pigmented, oxidative, nonmotile bacterium as a cause of opportunistic infections.

    PubMed

    Korvick, J A; Rihs, J D; Gilardi, G L; Yu, V L

    1989-06-01

    We describe two cases of bacteremia due to a pink-pigmented, oxidative, nonmotile, gram-negative, rod-shaped organism. One case occurred in a febrile neutropenic patient and another in a chronically debilitated patient with pancreatic abscess. The first patient was cured with gentamicin and ticarcillin, but the second patient died while receiving cefamandole therapy. The organisms described here are similar to Methylobacterium mesophilicum (Pseudomonas mesophilica) and the "unnamed taxon" organisms. A major difference from M mesophilicum is the lack of methanol utilization. Further distinctions between our isolates and M mesophilicum are the lack of flagella in our organisms, growth at 42 degrees C, growth on MacConkey's agar, lack of acetamide assimilation, and citrate utilization. The lack of flagella is the principle difference between our isolates and those in the unnamed taxon. Both of the isolates were resistant to the cephalosporins, but susceptible to the aminoglycosides, ticarcillin-clavulanic acid, sulfamethoxazole and trimethoprim, and imipenem. With the growing population of immunocompromised and chronically ill patients, these organisms may emerge as important pathogens.

  20. Organization and sequence of four flagellin-encoding genes of Edwardsiella icataluri

    USDA-ARS?s Scientific Manuscript database

    Edwardsiella ictaluri, the cause of enteric septicemia in channel catfish (Ictalurus punctatus), is motile by means of peritrichous flagella. We determined the complete flagellin gene sequences and their organization in E. ictaluri by sequencing genomic segments selected from a lambda-ZAP phage gen...

  1. Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice.

    PubMed

    Zhang, Yong; Liu, Hong; Li, Wei; Zhang, Zhengang; Shang, Xuejun; Zhang, David; Li, Yuhong; Zhang, Shiyang; Liu, Junpin; Hess, Rex A; Pazour, Gregory J; Zhang, Zhibing

    2017-12-01

    Intraflagellar transport (IFT) is an evolutionarily conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. In mice, mutations in IFT proteins have been shown to cause several ciliopathies including retinal degeneration, polycystic kidney disease, and hearing loss. However, little is known about its role in the formation of the sperm tail, which has the longest flagella of mammalian cells. IFT27 is a component of IFT-B complex and binds to IFT25 directly. In mice, IFT27 is highly expressed in the testis. To investigate the role of IFT27 in male germ cells, the floxed Ift27 mice were bred with Stra8-iCre mice so that the Ift27 gene was disrupted in spermatocytes/spermatids. The Ift27: Stra8-iCre mutant mice did not show any gross abnormalities, and all of the mutant mice survived to adulthood. There was no difference between testis weight/body weight between controls and mutant mice. All adult homozygous mutant males examined were completely infertile. Histological examination of the testes revealed abnormally developed germ cells during the spermiogenesis phase. The epididymides contained round bodies of cytoplasm. Sperm number was significantly reduced compared to the controls and only about 2% of them remained significantly reduced motility. Examination of epididymal sperm by light microscopy and SEM revealed multiple morphological abnormalities including round heads, short and bent tails, abnormal thickness of sperm tails in some areas, and swollen tail tips in some sperm. TEM examination of epididymal sperm showed that most sperm lost the "9+2″ axoneme structure, and the mitochondria sheath, fibrous sheath, and outer dense fibers were also disorganized. Some sperm flagella also lost cell membrane. Levels of IFT25 and IFT81 were significantly reduced in the testis of the conditional Ift27 knockout mice, and levels of IFT20, IFT74, and IFT140 were not changed. Sperm lipid rafts, which were disrupted in the conditional Ift25 knockout mice, appeared to be normal in the conditional Ift27 knockout mice. Our findings suggest that like IFT25, IFT27, even though not required for ciliogenesis in somatic cells, is essential for sperm flagella formation, sperm function, and male fertility in mice. IFT25 and IFT27 control sperm formation/function through many common mechanisms, but IFT25 has additional roles beyond IFT27. Published by Elsevier Inc.

  2. Intraflagellar Transporter Protein (IFT27), an IFT25 binding partner, Is Essential For Male Fertility and Spermiogenesis In Mice

    PubMed Central

    Zhang, Yong; Liu, Hong; Li, Wei; Zhang, Zhengang; Shang, Xuejun; Zhang, David; Li, Yuhong; Zhang, Shiyang; Liu, Junpin; Hess, Rex A; Pazour, Gregory J; Zhang, Zhibing

    2017-01-01

    Intraflagellar transport (IFT) is an evolutionarily conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. In mice, mutations in IFT proteins have been shown to cause several ciliopathies including retinal degeneration, polycystic kidney disease, and hearing loss. However, little is known about its role in the formation of the sperm tail, which has the longest flagella of mammalian cells. IFT27 is a component of IFT-B complex and binds to IFT25 directly. In mice, IFT27 is highly expressed in the testis. To investigate the role of IFT27 in male germ cells, the floxed Ift27 mice were bred with Stra8-iCre mice so that the Ift27 gene was disrupted in spermatocytes/spermatids. The Ift27:Stra8-iCre mutant mice did not show any gross abnormalities, and all of the mutant mice survive to adulthood. There was no difference between testis weight/body weight between controls and mutant mice. All adult homozygous mutant males examined were completely infertile. Histological examination of the testes revealed abnormally developed germ cells during the spermiogenesis phase. The epididymis contained round bodies of cytoplasm. Sperm number was significantly reduced compared to the controls and only about 2% of them remained significantly reduced motility. Examination of epididymal sperm by light microscopy and SEM revealed multiple morphological abnormalities including round heads, short and bent tails, abnormal thickness of sperm tails in some areas, and swollen tail tips in some sperm. TEM examination of epididymal sperm showed that most sperm lost the “9+2” axoneme structure, and the mitochondria sheath, fibrous sheath, and outer dense fibers were also disorganized. Some sperm flagella also lost cell membrane. Levels of IFT25 and IFT81 were significantly reduced in the testis of the conditional Ift27 knockout mice, and levels of IFT20, IFT74, and IFT140 were not changed. Sperm lipid rafts, which were disrupted in the conditional Ift25 knockout mice, appeared to be normal in the conditional Ift27 knockout mice. Our findings suggest that like IFT25, IFT27, even though not required to ciliogenesis in somatic cells, is essential for sperm flagella formation, sperm function, and male fertility in mice. IFT25 and IFT27 control sperm formation/function through many common mechanisms, but IFT25 has additional roles beyond IFT27. PMID:28964737

  3. Proteins--The Basis of Life

    ERIC Educational Resources Information Center

    Wrigley, Colin

    2012-01-01

    Proteins are a diverse class of biochemical macromolecules, including substances as (apparently) unrelated as silk and sinew, hair and horn, feathers and flagella, enzymes and epidermis, gelatine (jelly) and gluten and gore, spider web, meat and fish muscle. Yet they are unified by being polymers of amino acids. Discovery of the nature of proteins…

  4. Living on the edge: Emergence of spontaneous gac mutations in Pseudomonas protegens during swarming motility

    USDA-ARS?s Scientific Manuscript database

    Swarming motility is a flagella-driven multicellular behavior that allows bacteria to colonize new niches and escape competition. Here, we investigated the spatial distribution and evolution of ‘social cheaters’ in swarming colonies of Pseudomonas protegens Pf-5. Lipopeptide surfactants in the orfam...

  5. Flagella biosynthesis and regulation by the Rcs pathway within the fish pathogen Yersinia ruckeri during infection

    USDA-ARS?s Scientific Manuscript database

    The gram-negative Enterobacterium Yersinia ruckeri is the etiologic agent of enteric redmouth disease (ERM) within farmed rainbow trout (Oncorhynchus mykiss, Walbaum). Over the past decade, there has been an increase in the prevalence of non-motile variants of Y. ruckeri and the appearance of these ...

  6. Generation of the membrane potential and its impact on the motility, ATP production and growth in Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    The generation of an electrical membrane potential (''), the major constituent of the proton motive force (pmf) is crucial for the ATP synthesis, bacterial growth and motility. The pmf drives the rotation of flagella and is vital for the microaerophilic human pathogen Campylobacter jejuni to coloniz...

  7. An AlgU-regulated antisense transcript encoded within the Pseudomonas syringae fleQ gene has a positive effect on motility

    USDA-ARS?s Scientific Manuscript database

    Bacterial flagella production is controlled by a multi-tiered regulatory system that coordinates expression of 40-50 subunits and correct assembly of these complicated structures. Flagellar expression is environmentally controlled, presumably to optimize the benefits and liabilities of flagellar ex...

  8. Intracellular Transport: How Do Motors Work Together?

    PubMed Central

    Mallik, Roop; Gross, Steven P.

    2010-01-01

    How many motors move cargos on microtubules inside a cell, and how do they work together to achieve regulated transport? A new study uses an optical trap to investigate the motion of protein-bound beads on the surface of flagella to address these questions and comes up with some intriguing answers. PMID:19467211

  9. Active depinning of bacterial droplets: The collective surfing of Bacillus subtilis

    PubMed Central

    Hennes, Marc; Tailleur, Julien; Charron, Gaëlle

    2017-01-01

    How systems are endowed with migration capacity is a fascinating question with implications ranging from the design of novel active systems to the control of microbial populations. Bacteria, which can be found in a variety of environments, have developed among the richest set of locomotion mechanisms both at the microscopic and collective levels. Here, we uncover, experimentally, a mode of collective bacterial motility in humid environment through the depinning of bacterial droplets. Although capillary forces are notoriously enormous at the bacterial scale, even capable of pinning water droplets of millimetric size on inclined surfaces, we show that bacteria are able to harness a variety of mechanisms to unpin contact lines, hence inducing a collective slipping of the colony across the surface. Contrary to flagella-dependent migration modes like swarming, we show that this much faster “colony surfing” still occurs in mutant strains of Bacillus subtilis lacking flagella. The active unpinning seen in our experiments relies on a variety of microscopic mechanisms, which could each play an important role in the migration of microorganisms in humid environment. PMID:28536199

  10. Hydrodynamics of freely swimming flagellates

    NASA Astrophysics Data System (ADS)

    Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas; Bohr, Tomas; Andersen, Anders

    2016-11-01

    Flagellates are a diverse group of unicellular organisms forming an important part of the marine ecosystem. The arrangement of flagella around the cell serves as a key trait optimizing and compromising essential functions. With micro-particle image velocimetry we observed time-resolved near-cell flows around freely swimming flagellates, and we developed an analytical model based on the Stokes flow around a solid sphere propelled by a variable number of differently placed, temporally varying point forces, each representing one flagellum. The model allows us to reproduce the observed flow patterns and swimming dynamics, and to extract quantities such as swimming velocities and prey clearance rates as well as flow disturbances revealing the organism to flow-sensing predators. Our results point to optimal flagellar arrangements and beat patterns, and essential trade-offs. For biflagellates with two symmetrically arranged flagella we contrasted two species using undulatory and ciliary beat patterns, respectively, and found breast-stroke type beat patterns with equatorial power strokes to be favorable for fast as well as quiet swimming. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  11. Entrainment and capture by swimming cells

    NASA Astrophysics Data System (ADS)

    Mathijssen, Arnold; Jeanneret, Raphael; Polin, Marco

    Floating particles that collide with a micro-swimmer can be entrained for long distances, which provides an opportunity for numerous biological processes to occur with prolonged contact times, including the capture of nutrients and virus infection. Here, we show that the entrainment mechanism is universal for different organisms, C. reinhardtii, T. subcordiforms and O. marina, regardless of diversity in propulsion mechanism and hydrodynamic signature. The flows generated near these microbes are simulated throughout the swimming stroke, and the resulting entrainment lengths compared with our experiments. We find a series of compromises: Flagella can reduce contact times with less tidy interactions, but the entrainment frequency increases as flagella pull particles towards the body. The contact time grows quadratically with swimmer size, but decreases with swimming speed or encounter rate. With the inclusion of Brownian noise, there is an optimal particle size for each swimmer and, conversely, there is an optimal organism for each floating object. We analyse the features of the entrainment mechanism with a Taylor-dispersion theory, and demonstrate how the presented trade-offs may be tuned quantitatively in various biological situations.

  12. Bending patterns of chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant.

    PubMed

    Brokaw, C J; Luck, D J

    1985-01-01

    Flash photomicrography at frequencies up to 300 Hz and computer-assisted image analysis have been used to obtain parameters describing the flagellar bending patterns of mutants of Chlamydomonas reinhardtii. All strains contained the uni1 mutation, to facilitate photography. The radial spoke head deficient mutant pf17, and the central pair deficient mutant, pf15, in combination with suppressor mutations that restore motility without restoring the ultrastructural or biochemical deficiencies, both generate forward mode bending patterns with increased shear amplitude and decreased asymmetry relative to the "wild-type" uni1 flagella described previously. In the reverse beating mode, the suppressed pf17 mutants generate reverse bending patterns with large shear amplitudes. Reverse beating of the suppressed pf15 mutants is rare. There is a reciprocal relationship between increased shear amplitude and decreased beat frequency, so that the velocity of sliding between flagellar microtubules is not increased by an increase in shear amplitude. The suppressor mutations alone cause decreased frequency and sliding velocity in both forward and reverse mode beating, with little change in shear amplitude or symmetry.

  13. Propulsion of helical flagella near boundaries

    NASA Astrophysics Data System (ADS)

    Rodenborn, Bruce; Giesbrecht, Grant; Ni, Katha; Vock, Isaac

    The presence of nearby boundaries is known to have dramatic effects on the swimming behavior of microorganisms because of the no-slip condition at the boundary. Microorganisms that use a helical flagellum experience forces both along the axis of the helix and in the direction perpendicular to the axis. These low Reynolds number boundary effects have primarily been studied using live bacteria and using numerical simulations. However, small scale measurements give limited information about the forces and torques on the microorganisms. Furthermore, numerical studies are approximate because they have generally used Stokeslet-based simulations with image Stokeslets to represent the effects of the boundaries. Instead, we directly measure the propulsion of macroscopic helical flagella with diameter 12 mm using a fluid with viscosity 105 times that of water to ensure the Reynolds number in the experiments is much less than unity, just as for bacteria. We measure the parallel and perpendicular forces as a function of boundary distance to determine the nonzero elements of the propulsive matrix for axial rotation near a boundary. We then compare our results to the theory and simulations of Lauga et al. and to biological measurements.

  14. Hydrodynamic synchronization of flagella on the surface of the colonial alga Volvox carteri

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas; Polin, Marco; Goldstein, Raymond; Pedley, Timothy

    2012-11-01

    Whether on the surface of unicellular ciliates or in the respiratory epithelium, groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales. The mechanism responsible for the emergence of these metachronal waves is still unclear, mostly because finding an experimental system in which the beating filaments can be followed individually is challenging. We propose the multicellular green alga Volvox carteri as an ideal model system to study metachronal coordination, and report the existence of robust metachronal waves on its surface. Inspired by flagellar tip trajectories of Volvox somatic cells, we model a flagellum using a sphere of radius a elastically bound to a circular orbit of radius r0, perpendicular to a no-slip plane. This elastohydrodynamic model of weakly-coupled self-sustained oscillators can be recast in terms of interacting phase oscillators, offering an intuitive understanding of the mechanism driving the emergence of coordination. Our results confirm that elasticity is fundamental to guarantee fast and robust synchronization, and that sufficiently compliant trajectories lead to the emergence of metachronal waves in a manner essentially independent of boundary conditions.

  15. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport.

    PubMed

    Chaya, Taro; Omori, Yoshihiro; Kuwahara, Ryusuke; Furukawa, Takahisa

    2014-06-02

    Cilia and flagella are formed and maintained by intraflagellar transport (IFT) and play important roles in sensing and moving across species. At the distal tip of the cilia/flagella, IFT complexes turn around to switch from anterograde to retrograde transport; however, the underlying regulatory mechanism is unclear. Here, we identified ICK localization at the tip of cilia as a regulator of ciliary transport. In ICK-deficient mice, we found ciliary defects in neuronal progenitor cells with Hedgehog signal defects. ICK-deficient cells formed cilia with mislocalized Hedgehog signaling components. Loss of ICK caused the accumulation of IFT-A, IFT-B, and BBSome components at the ciliary tips. In contrast, overexpression of ICK induced the strong accumulation of IFT-B, but not IFT-A or BBSome components at ciliary tips. In addition, ICK directly phosphorylated Kif3a, while inhibition of this Kif3a phosphorylation affected ciliary formation. Our results suggest that ICK is a Kif3a kinase and essential for proper ciliogenesis in development by regulating ciliary transport at the tip of cilia. © 2014 The Authors.

  16. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport

    PubMed Central

    Chaya, Taro; Omori, Yoshihiro; Kuwahara, Ryusuke; Furukawa, Takahisa

    2014-01-01

    Cilia and flagella are formed and maintained by intraflagellar transport (IFT) and play important roles in sensing and moving across species. At the distal tip of the cilia/flagella, IFT complexes turn around to switch from anterograde to retrograde transport; however, the underlying regulatory mechanism is unclear. Here, we identified ICK localization at the tip of cilia as a regulator of ciliary transport. In ICK-deficient mice, we found ciliary defects in neuronal progenitor cells with Hedgehog signal defects. ICK-deficient cells formed cilia with mislocalized Hedgehog signaling components. Loss of ICK caused the accumulation of IFT-A, IFT-B, and BBSome components at the ciliary tips. In contrast, overexpression of ICK induced the strong accumulation of IFT-B, but not IFT-A or BBSome components at ciliary tips. In addition, ICK directly phosphorylated Kif3a, while inhibition of this Kif3a phosphorylation affected ciliary formation. Our results suggest that ICK is a Kif3a kinase and essential for proper ciliogenesis in development by regulating ciliary transport at the tip of cilia. PMID:24797473

  17. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model.

    PubMed

    Byrd, Matthew S; Pang, Bing; Hong, Wenzhou; Waligora, Elizabeth A; Juneau, Richard A; Armbruster, Chelsie E; Weimer, Kristen E D; Murrah, Kyle; Mann, Ethan E; Lu, Haiping; Sprinkle, April; Parsek, Matthew R; Kock, Nancy D; Wozniak, Daniel J; Swords, W Edward

    2011-08-01

    Biofilms contribute to Pseudomonas aeruginosa persistence in a variety of diseases, including cystic fibrosis, burn wounds, and chronic suppurative otitis media. However, few studies have directly addressed P. aeruginosa biofilms in vivo. We used a chinchilla model of otitis media, which has previously been used to study persistent Streptococcus pneumoniae and Haemophilus influenzae infections, to show that structures formed in vivo are biofilms of bacterial and host origin within a matrix that includes Psl, a P. aeruginosa biofilm polysaccharide. We evaluated three biofilm and/or virulence mediators of P. aeruginosa known to affect biofilm formation in vitro and pathogenesis in vivo--bis-(3',5')-cyclic dimeric GMP (c-di-GMP), flagella, and quorum sensing--in a chinchilla model. We show that c-di-GMP overproduction has a positive impact on bacterial persistence, while quorum sensing increases virulence. We found no difference in persistence attributed to flagella. We conclude from these studies that a chinchilla otitis media model provides a means to evaluate pathogenic mediators of P. aeruginosa and that in vitro phenotypes should be examined in multiple infection systems to fully understand their role in disease.

  18. Individual behavior and pairwise interactions between microswimmers in anisotropic liquid

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Lavrentovich, Oleg D.; Aranson, Igor S.

    2015-01-01

    A motile bacterium swims by generating flow in its surrounding liquid. Anisotropy of the suspending liquid significantly modifies the swimming dynamics and corresponding flow signatures of an individual bacterium and impacts collective behavior. We study the interactions between swimming bacteria in an anisotropic environment exemplified by lyotropic chromonic liquid crystal. Our analysis reveals a significant localization of the bacteria-induced flow along a line coaxial with the bacterial body, which is due to strong viscosity anisotropy of the liquid crystal. Despite the fact that the average viscosity of the liquid crystal is two to three orders of magnitude higher than the viscosity of pure water, the speed of bacteria in the liquid crystal is of the same order of magnitude as in water. We show that bacteria can transport a cargo (a fluorescent particle) along a predetermined trajectory defined by the direction of molecular orientation of the liquid crystal. We demonstrate that while the hydrodynamic interaction between flagella of two close-by bacteria is negligible, the observed convergence of the swimming speeds as well as flagella waves' phase velocities may occur due to viscoelastic interaction between the bacterial bodies.

  19. Cryoelectron tomography of radial spokes in cilia and flagella

    PubMed Central

    Pigino, Gaia; Bui, Khanh Huy; Maheshwari, Aditi; Lupetti, Pietro; Diener, Dennis

    2011-01-01

    Radial spokes (RSs) are ubiquitous components in the 9 + 2 axoneme thought to be mechanochemical transducers involved in local control of dynein-driven microtubule sliding. They are composed of >23 polypeptides, whose interactions and placement must be deciphered to understand RS function. In this paper, we show the detailed three-dimensional (3D) structure of RS in situ in Chlamydomonas reinhardtii flagella and Tetrahymena thermophila cilia that we obtained using cryoelectron tomography (cryo-ET). We clarify similarities and differences between the three spoke species, RS1, RS2, and RS3, in T. thermophila and in C. reinhardtii and show that part of RS3 is conserved in C. reinhardtii, which only has two species of complete RSs. By analyzing C. reinhardtii mutants, we identified the specific location of subsets of RS proteins (RSPs). Our 3D reconstructions show a twofold symmetry, suggesting that fully assembled RSs are produced by dimerization. Based on our cryo-ET data, we propose models of subdomain organization within the RS as well as interactions between RSPs and with other axonemal components. PMID:22065640

  20. Elastohydrodynamic synchronization of adjacent beating flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Lauga, Eric; Pesci, Adriana I.; Proctor, Michael R. E.

    2016-11-01

    It is now well established that nearby beating pairs of eukaryotic flagella or cilia typically synchronize in phase. A substantial body of evidence supports the hypothesis that hydrodynamic coupling between the active filaments, combined with waveform compliance, provides a robust mechanism for synchrony. This elastohydrodynamic mechanism has been incorporated into bead-spring models in which the beating flagella are represented by microspheres tethered by radial springs as they are driven about orbits by internal forces. While these low-dimensional models reproduce the phenomenon of synchrony, their parameters are not readily relatable to those of the filaments they represent. More realistic models, which reflect the underlying elasticity of the axonemes and the active force generation, take the form of fourth-order nonlinear partial differential equations (PDEs). While computational studies have shown the occurrence of synchrony, the effects of hydrodynamic coupling between nearby filaments governed by such continuum models have been examined theoretically only in the regime of interflagellar distances d large compared to flagellar length L . Yet in many biological situations d /L ≪1 . Here we present an asymptotic analysis of the hydrodynamic coupling between two extended filaments in the regime d /L ≪1 and find that the form of the coupling is independent of the microscopic details of the internal forces that govern the motion of the individual filaments. The analysis is analogous to that yielding the localized induction approximation for vortex filament motion, extended to the case of mutual induction. In order to understand how the elastohydrodynamic coupling mechanism leads to synchrony of extended objects, we introduce a heuristic model of flagellar beating. The model takes the form of a single fourth-order nonlinear PDE whose form is derived from symmetry considerations, the physics of elasticity, and the overdamped nature of the dynamics. Analytical and numerical studies of this model illustrate how synchrony between a pair of filaments is achieved through the asymptotic coupling.

  1. A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. brasiliense 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems.

    PubMed

    Moleleki, Lucy Novungayo; Pretorius, Rudolph Gustav; Tanui, Collins Kipngetich; Mosina, Gabolwelwe; Theron, Jacques

    2017-01-01

    Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain. © 2016 BSPP and John Wiley & Sons Ltd.

  2. Surface Structures Involved in Plant Stomata and Leaf Colonization by Shiga-Toxigenic Escherichia Coli O157:H7

    PubMed Central

    Saldaña, Zeus; Sánchez, Ethel; Xicohtencatl-Cortes, Juan; Puente, Jose Luis; Girón, Jorge A.

    2011-01-01

    Shiga-toxigenic Escherichia coli (STEC) O157:H7 uses a myriad of surface adhesive appendages including pili, flagella, and the type 3 secretion system (T3SS) to adhere to and inflict damage to the human gut mucosa. Consumption of contaminated ground beef, milk, juices, water, or leafy greens has been associated with outbreaks of diarrheal disease in humans due to STEC. The aim of this study was to investigate which of the known STEC O157:H7 adherence factors mediate colonization of baby spinach leaves and where the bacteria reside within tainted leaves. We found that STEC O157:H7 colonizes baby spinach leaves through the coordinated production of curli, the E. coli common pilus, hemorrhagic coli type 4 pilus, flagella, and T3SS. Electron microscopy analysis of tainted leaves revealed STEC bacteria in the internal cavity of the stomata, in intercellular spaces, and within vascular tissue (xylem and phloem), where the bacteria were protected from the bactericidal effect of gentamicin, sodium hypochlorite or ozonated water treatments. We confirmed that the T3S escN mutant showed a reduced number of bacteria within the stomata suggesting that T3S is required for the successful colonization of leaves. In agreement, non-pathogenic E. coli K-12 strain DH5α transformed with a plasmid carrying the locus of enterocyte effacement (LEE) pathogenicity island, harboring the T3SS and effector genes, internalized into stomata more efficiently than without the LEE. This study highlights a role for pili, flagella, and T3SS in the interaction of STEC with spinach leaves. Colonization of plant stomata and internal tissues may constitute a strategy by which STEC survives in a nutrient-rich microenvironment protected from external foes and may be a potential source for human infection. PMID:21887151

  3. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified.

    PubMed

    Brokaw, C J

    1985-10-01

    Computer simulation is used to examine a simple flagellar model that will initiate and propagate bending waves in the absence of viscous resistances. The model contains only an elastic bending resistance and an active sliding mechanism that generates reduced active shear moment with increasing sliding velocity. Oscillation results from a distributed control mechanism that reverses the direction of operation of the active sliding mechanism when the curvature reaches critical magnitudes in either direction. Bend propagation by curvature-controlled flagellar models therefore does not require interaction with the viscous resistance of an external fluid. An analytical examination of moment balance during bend propagation by this model yields a solution curve giving values of frequency and wavelength that satisfy the moment balance equation and give uniform bend propagation, suggesting that the model is underdetermined. At 0 viscosity, the boundary condition of 0 shear rate at the basal end of the flagellum during the development of new bends selects the particular solution that is obtained by computer simulations. Therefore, the details of the pattern of bend initiation at the basal end of a flagellum can be of major significance in determining the properties of propagated bending waves in the distal portion of a flagellum. At high values of external viscosity, the model oscillates at frequencies and wavelengths that give approximately integral numbers of waves on the flagellum. These operating points are selected because they facilitate the balance of bending moments at the ends of the model, where the external viscous moment approaches 0. These mode preferences can be overridden by forcing the model to operate at a predetermined frequency. The strong mode preferences shown by curvature-controlled flagellar models, in contrast to the weak or absent mode preferences shown by real flagella, therefore do not demonstrate the inapplicability of the moment-balance approach to real flagella. Instead, they indicate a need to specify additional properties of real flagella that are responsible for selecting particular operating points.

  4. Recessive HYDIN Mutations Cause Primary Ciliary Dyskinesia without Randomization of Left-Right Body Asymmetry

    PubMed Central

    Olbrich, Heike; Schmidts, Miriam; Werner, Claudius; Onoufriadis, Alexandros; Loges, Niki T.; Raidt, Johanna; Banki, Nora Fanni; Shoemark, Amelia; Burgoyne, Tom; Al Turki, Saeed; Hurles, Matthew E.; Köhler, Gabriele; Schroeder, Josef; Nürnberg, Gudrun; Nürnberg, Peter; Chung, Eddie M.K.; Reinhardt, Richard; Marthin, June K.; Nielsen, Kim G.; Mitchison, Hannah M.; Omran, Heymut

    2012-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder characterized by defective cilia and flagella motility. Chronic destructive-airway disease is caused by abnormal respiratory-tract mucociliary clearance. Abnormal propulsion of sperm flagella contributes to male infertility. Genetic defects in most individuals affected by PCD cause randomization of left-right body asymmetry; approximately half show situs inversus or situs ambiguous. Almost 70 years after the hy3 mouse possessing Hydin mutations was described as a recessive hydrocephalus model, we report HYDIN mutations in PCD-affected persons without hydrocephalus. By homozygosity mapping, we identified a PCD-associated locus, chromosomal region 16q21-q23, which contains HYDIN. However, a nearly identical 360 kb paralogous segment (HYDIN2) in chromosomal region 1q21.1 complicated mutational analysis. In three affected German siblings linked to HYDIN, we identified homozygous c.3985G>T mutations that affect an evolutionary conserved splice acceptor site and that subsequently cause aberrantly spliced transcripts predicting premature protein termination in respiratory cells. Parallel whole-exome sequencing identified a homozygous nonsense HYDIN mutation, c.922A>T (p.Lys307∗), in six individuals from three Faroe Island PCD-affected families that all carried an 8.8 Mb shared haplotype across HYDIN, indicating an ancestral founder mutation in this isolated population. We demonstrate by electron microscopy tomography that, consistent with the effects of loss-of-function mutations, HYDIN mutant respiratory cilia lack the C2b projection of the central pair (CP) apparatus; similar findings were reported in Hydin-deficient Chlamydomonas and mice. High-speed videomicroscopy demonstrated markedly reduced beating amplitudes of respiratory cilia and stiff sperm flagella. Like the hy3 mouse model, all nine PCD-affected persons had normal body composition because nodal cilia function is apparently not dependent on the function of the CP apparatus. PMID:23022101

  5. EVALUATING THE ROLE OF SDIA AND HHA IN ENHANCED ADHERENCE OF A SDIA HHA DOUBLE MUTANT OF ENTEROHEMORRHAGIC ESCHERICHIA COLI O157:H7

    USDA-ARS?s Scientific Manuscript database

    Adherence of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 to biotic (epithelial cells) and abiotic surfaces (biofilm formation) proceeds from an initial reversible adherence to an irreversible stage of intimate adherence. While flagella and fimbriae facilitate initial stage of adherence in both...

  6. Hha Represses Biofilm Formation in Escherichia coli O157:H7 by Affecting the Expression of Flagella and Curli Fimbriae

    USDA-ARS?s Scientific Manuscript database

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen that produces a broad-spectrum of diarrheal illnesses in infected humans. Although the genetic and molecular mechanisms enabling EHEC O157:H7 to produce characteristic adherence on epithelial cells are well characterized, the g...

  7. Anaerobiospirillum succiniciproducens bacteraemia

    PubMed Central

    Pienaar, C; Kruger, A J; Venter, E C; Pitout, J D D

    2003-01-01

    This report describes a case of bacteraemia caused by Anaerobiospirillum succiniciproducens. Anaerobiospirillum succiniciproducens is a rare cause of bacteraemia in humans, and when encountered usually occurs in immunocompromised patients. The organism is an anaerobic, spiral shaped, Gram negative bacillus with bipolar tufts of flagella. In this report, the morphology, with special reference to electron microscopic features, culture characteristics, and antimicrobial susceptibility are described. PMID:12663649

  8. Mining the Giardia genome and proteome for conserved and unique basal body proteins

    PubMed Central

    Lauwaet, Tineke; Smith, Alias J.; Reiner, David S.; Romijn, Edwin P.; Wong, Catherine C. L.; Davids, Barbara J.; Shah, Sheila A.; Yates, John R.; Gillin, Frances D.

    2015-01-01

    Giardia lamblia is a flagellated protozoan parasite and a major cause of diarrhea in humans. Its microtubular cytoskeleton mediates trophozoite motility, attachment and cytokinesis, and is characterized by an attachment disk and eight flagella that are each nucleated in a basal body. To date, only 10 giardial basal body proteins have been identified, including universal signaling proteins that are important for regulating mitosis or differentiation. In this study, we have exploited bioinformatics and proteomic approaches to identify new Giardia basal body proteins and confocal microscopy to confirm their localization in interphase trophozoites. This approach identified 75 homologs of conserved basal body proteins in the genome including 65 not previously known to be associated with Giardia basal bodies. Thirteen proteins were confirmed to co-localize with centrin to the Giardia basal bodies. We also demonstrate that most basal body proteins localize to additional cytoskeletal structures in interphase trophozoites. This might help to explain the roles of the four pairs of flagella and Giardia-specific organelles in motility and differentiation. A deeper understanding of the composition of the Giardia basal bodies will contribute insights into the complex signaling pathways that regulate its unique cytoskeleton and the biological divergence of these conserved organelles. PMID:21723868

  9. Nonlinear amplitude dynamics in flagellar beating

    NASA Astrophysics Data System (ADS)

    Oriola, David; Gadêlha, Hermes; Casademunt, Jaume

    2017-03-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  10. Nonlinear amplitude dynamics in flagellar beating.

    PubMed

    Oriola, David; Gadêlha, Hermes; Casademunt, Jaume

    2017-03-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  11. Nonlinear amplitude dynamics in flagellar beating

    PubMed Central

    Casademunt, Jaume

    2017-01-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating. PMID:28405357

  12. Flagellated bacterial motility in polymer solutions

    PubMed Central

    Martinez, Vincent A.; Schwarz-Linek, Jana; Reufer, Mathias; Wilson, Laurence G.; Morozov, Alexander N.; Poon, Wilson C. K.

    2014-01-01

    It is widely believed that the swimming speed, v, of many flagellated bacteria is a nonmonotonic function of the concentration, c, of high-molecular-weight linear polymers in aqueous solution, showing peaked v(c) curves. Pores in the polymer solution were suggested as the explanation. Quantifying this picture led to a theory that predicted peaked v(c) curves. Using high-throughput methods for characterizing motility, we measured v and the angular frequency of cell body rotation, Ω, of motile Escherichia coli as a function of polymer concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of different molecular weights. We find that nonmonotonic v(c) curves are typically due to low-molecular-weight impurities. After purification by dialysis, the measured v(c) and Ω(c) relations for all but the highest-molecular-weight PVP can be described in detail by Newtonian hydrodynamics. There is clear evidence for non-Newtonian effects in the highest-molecular-weight PVP solution. Calculations suggest that this is due to the fast-rotating flagella seeing a lower viscosity than the cell body, so that flagella can be seen as nano-rheometers for probing the non-Newtonian behavior of high polymer solutions on a molecular scale. PMID:25468981

  13. The effect of simulated microgravity on bacteria from the mir space station

    NASA Astrophysics Data System (ADS)

    Baker, Paul W.; Leff, Laura

    2004-03-01

    The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.

  14. Translocation of Tektin 3 to the equatorial segment of heads in bull spermatozoa exposed to dibutyryl cAMP and calyculin A.

    PubMed

    Tsukamoto, Mariko; Hiyama, Erina; Hirotani, Karen; Gotoh, Takafumi; Inai, Tetsuichiro; Iida, Hiroshi

    2017-01-01

    Tektins (TEKTs) are filamentous proteins associated with microtubules in cilia, flagella, basal bodies, and centrioles. Five TEKTs (TEKT1, -2, -3, -4, and -5) have been identified as components of mammalian sperm flagella. We previously reported that TKET1 and -3 are also present in the heads of rodent spermatozoa. The present study clearly demonstrates that TEKT2 is present at the acrosome cap whereas TEKT3 resides just beneath the plasma membrane of the post-acrosomal region of sperm heads in unactivated bull spermatozoa, and builds on the distributional differences of TEKT1, -2, and -3 on sperm heads. We also discovered that hyperactivation of bull spermatozoa by cell-permeable cAMP and calyculin A, a protein phosphatase inhibitor, promoted translocation of TEKT3 from the post-acrosomal region to the equatorial segment in sperm heads, and that TEKT3 accumulated at the equatorial segment is lost upon acrosome reaction. Thus, translocation of TEKT3 to the equatorial segment may be a capacitation- or hyperactivation-associated phenomenon in bull spermatozoa. Mol. Reprod. Dev. 84: 30-43, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Viscosity-dependent variations in the cell shape and swimming manner of Leptospira.

    PubMed

    Takabe, Kyosuke; Tahara, Hajime; Islam, Md Shafiqul; Affroze, Samia; Kudo, Seishi; Nakamura, Shuichi

    2017-02-01

    Spirochaetes are spiral or flat-wave-shaped Gram-negative bacteria that have periplasmic flagella between the peptidoglycan layer and outer membrane. Rotation of the periplasmic flagella transforms the cell body shape periodically, allowing the cell to swim in aqueous environments. Because the virulence of motility-deficient mutants of pathogenic species is drastically attenuated, motility is thought to be an essential virulence factor in spirochaetes. However, it remains unknown how motility practically contributes to the infection process. We show here that the cell body configuration and motility of the zoonotic spirochaete Leptospira changes depending on the viscosity of the medium. Leptospira swim and reverse the swimming direction by transforming the cell body. Motility analysis showed that the frequency of cell shape transformation was increased by increasing the viscosity of the medium. The increased cell body transformation induced highly frequent reversal of the swimming direction. A simple kinetic model based on the experimental results shows that the viscosity-induced increase in reversal limits cell migration, resulting in the accumulation of cells in high-viscosity regions. This behaviour could facilitate the colonization of the spirochaete on host tissues covered with mucosa.

  16. In-vitro maturation of round spermatids using co-culture on Vero cells.

    PubMed

    Cremades, N; Bernabeu, R; Barros, A; Sousa, M

    1999-05-01

    In an attempt to determine whether co-culture could promote sperm maturation, three patients with non-obstructive azoospermia, two with maturation arrest at the level of primary spermatocytes and one patient with <1% tubules showing complete spermatogenesis, and one patient with total globozoospermia, gave consent to experimentally co-culture round spermatids retrieved from the testicle on Vero cell monolayers. In all azoospermic patients elongating spermatids could be obtained from round spermatids. In one case of maturation arrest, of 37 round spermatids co-cultured for up to 5 days, 30% developed flagella, 46% matured to elongating and 19% to elongated spermatids, with one mature spermatozoon also obtained (3%). In the same patient, primary cultures of three round spermatids with flagella enabled development of one further mature spermatozoon. In the case with total globozoospermia, of six round spermatids co-cultured for up to 5 days, one mature spermatozoon was obtained, with a flagellum and normal head morphology. These preliminary findings suggest that it may be possible to overcome the round spermatid block, and even the triggering of morphological abnormalities arising at the spermiogenic level, by in-vitro maturation under special environmental conditions.

  17. The effect of simulated microgravity on bacteria from the Mir space station.

    PubMed

    Baker, Paul W; Leff, Laura

    2004-01-01

    The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.

  18. The effect of simulated microgravity on bacteria from the Mir space station

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Leff, Laura

    2004-01-01

    The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.

  19. Fluorescent ATP analog mant-ATP reports dynein activity in the isolated Chlamydomonas axoneme

    NASA Astrophysics Data System (ADS)

    Feofilova, Maria; Howard, Jonathon

    Eukaryotic flagella are long rod-like extensions of cells, which play a fundamental role in single cell movement, as well as in fluid transport. Flagella contain a highly evolutionary conserved mechanical structure called the axoneme. The motion of the flagellum is generated by dynein motor proteins located all along the length of the axoneme. How the force production of motors is controlled spatially and temporally is still an open question. Therefore, monitoring dynein activity in the axonemal structure is expected to provide novel insights in regulation of the beat. We use high sensitivity fluorescence microscopy to monitor the binding and hydrolysis kinetics of the fluorescently labeled ATP analogue mant-ATP (2'(3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate), which is known to support dynein activity. By studying the kinetics of mant-ATP fluorescence, we identified distinct mant-ATP binding sites in the axoneme. The application of this method to axonemes with reduced amounts of dynein, showed evidence that one of the sites is associated with binding to dynein. In the future, we would like to use this method to find the spatial distribution of dynein activity in the axoneme.

  20. Cell morphology and flagellation of nitrogen-fixing spirilla.

    PubMed

    Hegazi, N A; Vlassak, K

    1979-01-01

    Twenty isolates of N2-fixing spirilla were isolated from the rhizosphere of maize and sugar cane grown in Egyptian and Belgian soils. Electron microscopy distinguished two morphological groups. The first includes short and thick curved rods with an unipolar flagellum while cells of the second group are much longer with the typical appearance of spiral cells and most probably possess a bipolar tuft of flagella.

  1. Phage-Coupled Piezoelectric Biodetector for Salmonella Typhimurium

    DTIC Science & Technology

    2005-08-01

    protein. (POR) porin. (A) lipid A. (LPS) lipopolysaccharide (core polysaccharide and O-antigen). (F) fimbriae or flagella or pili...large protein and polysaccharide molecules in solution gave responses that did not correlate with mass changes imposed at the solid- liquid interface...chains, which are linked to lipid A via a genera-specific core polysaccharide . These 94 differences account for serotype specificity. To date, well over

  2. Synchronization of Eukaryotic Flagella and the Evolution of Multicellularity

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond

    2009-03-01

    Flagella, among the most highly conserved structures in eukaryotes, are responsible for such tasks as fluid transport, motility and phototaxis, establishment of embryonic left-right asymmetry, and intercellular communication, and are thought to have played a key role in the development of multicellularity. These tasks are usually performed by the coordinated action of groups of flagella (from pairs to thousands), which display various types of spatio-temporal organization. The origin and quantitative characterization of flagellar synchronization has remained an important open problem, involving interplay between intracellular biochemistry and interflagellar mechanical/hydrodynamic coupling. The Volvocine green algae serve as useful model organisms for the study of these phenomena, as they form a lineage spanning from unicellular Chlamydomonas to germ-soma differentiated Volvox, having as many as 50,000 biflagellated surface somatic cells. In this talk I will describe extensive studies [1], using micromanipulation and high-speed imaging, of the flagellar synchronization of two key species - Chlamydomonas reinhardtii and Volvox carteri - over tens of thousands of cycles. With Chlamydomonas we find that the flagellar dynamics moves back and forth between a stochastic synchronized state consistent with a simple model of hydrodynamically coupled noisy oscillators, and a deterministic one driven by a large interflagellar frequency difference. These results reconcile previously contradictory studies, based on short observations, showing only one or the other of these two states, and, more importantly, show that the flagellar beat frequencies themselves are regulated by the cell. Moreover, high-resolution three-dimensional tracking of swimming cells provides strong evidence that these dynamical states are related to reorientation events in the trajectories, yielding a eukaryotic equivalent of the ``run and tumble'' motion of peritrichously flagellated bacteria. The degree of synchronization is found to depend upon the presence of external fluid flow, an important aspect of the dynamics in the context of evolutionary transitions to multicellularity. Comparison is made with dynamics of somatic cells of Volvox, which we have found can display metachronal waves, not previously reported in this organism. Implications of these findings for phototactic steering are also discussed. 0.2cm [1] M.Polin, I. Tuval, K. Drescher, J.P. Gollub, and R.E. Goldstein, submitted (2009).

  3. Electrophysiological and Genetic Analysis of Chemosensory Mechanisms in Spirochaeta Aurantia

    DTIC Science & Technology

    1988-05-01

    Ghiorse, and E. P. Greenberg. 1987. Isolation of the outer membrane and characterization of the major outer membrane protein from Spirochaeta... proteins which at least in part constitute the flagella. Three proteins in the 60-65 kdaltons range predominate in preparations consisting of HBBs...the filaments can be solubilized by acid treatment) and thus, these proteins have been assigned as HBB components. Six proteins in the 30-38 kdalton

  4. Modelling the fluid mechanics of cilia and flagella in reproduction and development.

    PubMed

    Montenegro-Johnson, Thomas D; Smith, Andrew A; Smith, David J; Loghin, Daniel; Blake, John R

    2012-10-01

    Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher-order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: 1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and 2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite-element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.

  5. Host and symbiont intraspecific variability: The case of Paramecium calkinsi and "Candidatus Trichorickettsia mobilis".

    PubMed

    Sabaneyeva, E; Castelli, M; Szokoli, F; Benken, K; Lebedeva, N; Salvetti, A; Schweikert, M; Fokin, S; Petroni, G

    2018-02-01

    Newly isolated strains of the ciliate Paramecium calkinsi and their cytoplasmic bacterial endosymbionts were characterized by a multidisciplinary approach, including live observation, ultrastructural investigation, and molecular analysis. Despite morphological resemblance, the characterized P. calkinsi strains showed a significant molecular divergence compared to conspecifics, possibly hinting for a cryptic speciation. The endosymbionts were clearly found to be affiliated to the species "Candidatus Trichorickettsia mobilis" (Rickettsiales, Rickettsiaceae), currently encompassing only bacteria retrieved in an obligate intracellular association with other ciliates. However, a relatively high degree of intraspecific divergence was observed as well, thus it was possible to split "Candidatus Trichorickettsia" into three subspecies, one of which represented so far only by the newly characterized endosymbionts of P. calkinsi. Other features distinguished the members of each different subspecies. In particular, the endosymbionts of P. calkinsi resided in the cytoplasm and possessed numerous peritrichous flagella, although no motility was evidenced, whereas their conspecifics in other hosts were either cytoplasmic and devoid of flagella, or macronuclear, displaying flagellar-driven motility. Moreover, contrarily to previously analyzed "Candidatus Trichorickettsia" hosts, infected P. calkinsi cells frequently became amicronucleate and demonstrated abnormal cell division, eventually leading to decline of the laboratory culture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion.

    PubMed

    Lovewell, Rustin R; Collins, Ryan M; Acker, Julie L; O'Toole, George A; Wargo, Matthew J; Berwin, Brent

    2011-09-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.

  7. Step-Wise Loss of Bacterial Flagellar Torsion Confers Progressive Phagocytic Evasion

    PubMed Central

    Lovewell, Rustin R.; Collins, Ryan M.; Acker, Julie L.; O'Toole, George A.; Wargo, Matthew J.; Berwin, Brent

    2011-01-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria. PMID:21949654

  8. Radial spoke proteins of Chlamydomonas flagella

    PubMed Central

    Yang, Pinfen; Diener, Dennis R.; Yang, Chun; Kohno, Takahiro; Pazour, Gregory J.; Dienes, Jennifer M.; Agrin, Nathan S.; King, Stephen M.; Sale, Winfield S.; Kamiya, Ritsu; Rosenbaum, Joel L.; Witman, George B.

    2007-01-01

    Summary The radial spoke is a ubiquitous component of ‘9+2’ cilia and flagella, and plays an essential role in the control of dynein arm activity by relaying signals from the central pair of microtubules to the arms. The Chlamydomonas reinhardtii radial spoke contains at least 23 proteins, only 8 of which have been characterized at the molecular level. Here, we use mass spectrometry to identify 10 additional radial spoke proteins. Many of the newly identified proteins in the spoke stalk are predicted to contain domains associated with signal transduction, including Ca2+-, AKAP- and nucleotide-binding domains. This suggests that the spoke stalk is both a scaffold for signaling molecules and itself a transducer of signals. Moreover, in addition to the recently described HSP40 family member, a second spoke stalk protein is predicted to be a molecular chaperone, implying that there is a sophisticated mechanism for the assembly of this large complex. Among the 18 spoke proteins identified to date, at least 12 have apparent homologs in humans, indicating that the radial spoke has been conserved throughout evolution. The human genes encoding these proteins are candidates for causing primary ciliary dyskinesia, a severe inherited disease involving missing or defective axonemal structures, including the radial spokes. PMID:16507594

  9. Coarse graining Escherichia coli chemotaxis: from multi-flagella propulsion to logarithmic sensing.

    PubMed

    Curk, Tine; Matthäus, Franziska; Brill-Karniely, Yifat; Dobnikar, Jure

    2012-01-01

    Various sensing mechanisms in nature can be described by the Weber-Fechner law stating that the response to varying stimuli is proportional to their relative rather than absolute changes. The chemotaxis of bacteria Escherichia coli is an example where such logarithmic sensing enables sensitivity over large range of concentrations. It has recently been experimentally demonstrated that under certain conditions E. coli indeed respond to relative gradients of ligands. We use numerical simulations of bacteria in food gradients to investigate the limits of validity of the logarithmic behavior. We model the chemotactic signaling pathway reactions, couple them to a multi-flagella model for propelling and take the effects of rotational diffusion into account to accurately reproduce the experimental observations of single cell swimming. Using this simulation scheme we analyze the type of response of bacteria subject to exponential ligand profiles and identify the regimes of absolute gradient sensing, relative gradient sensing, and a rotational diffusion dominated regime. We explore dependance of the swimming speed, average run time and the clockwise (CW) bias on ligand variation and derive a small set of relations that define a coarse grained model for bacterial chemotaxis. Simulations based on this coarse grained model compare well with microfluidic experiments on E. coli diffusion in linear and exponential gradients of aspartate.

  10. COMPARATIVE ANALYSIS OF MAMMALIAN SPERM MOTILITY

    PubMed Central

    Phillips, David M.

    1972-01-01

    Spermatozoa of several mammalian species were studied by means of high-speed cinematography and electron microscopy. Three types of motile patterns were observed in mouse spermatozoa. The first type involved an asymmetrical beat which seemed to propel the sperm in circular paths. The second type involved rotation of the sperm and appeared to allow them to maintain straight paths. In the third type of pattern, the sperm appeared to move by crawling on surfaces in a snakelike manner. Spermatozoa of rabbit and Chinese hamster also had an asymmetrical beat which sometimes caused them to swim in circles. In spite of the asymmetry of the beat, these spermatozoa were also able to swim in straight paths by rotating around a central axis as they swam. Spermatozoa of some species appeared very flexible; their flagella formed arcs with a very small radius of curvature as they beat. Spermatozoa of other species appeared very stiff, and their flagella formed arcs with a very large radius of curvature. The stiffness of the spermatozoan appeared to correlate positively with the cross-sectional area of the dense fibers. This suggests that the dense fibers may be stiff elastic elements. Opossum sperm become paired as they pass through the epididymis. Pairs of opossum spermatozoa beat in a coordinated, alternating manner. PMID:5025110

  11. Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse.

    PubMed

    Pasek, Raymond C; Malarkey, Erik; Berbari, Nicolas F; Sharma, Neeraj; Kesterson, Robert A; Tres, Laura L; Kierszenbaum, Abraham L; Yoder, Bradley K

    2016-04-15

    Spermiogenesis is the differentiation of spermatids into motile sperm consisting of a head and a tail. The head harbors a condensed elongated nucleus partially covered by the acrosome-acroplaxome complex. Defects in the acrosome-acroplaxome complex are associated with abnormalities in sperm head shaping. The head-tail coupling apparatus (HTCA), a complex structure consisting of two cylindrical microtubule-based centrioles and associated components, connects the tail or flagellum to the sperm head. Defects in the development of the HTCA cause sperm decapitation and disrupt sperm motility, two major contributors to male infertility. Here, we provide data indicating that mutations in the gene Coiled-coil domain containing 42 (Ccdc42) is associated with malformation of the mouse sperm flagella. In contrast to many other flagella and motile cilia genes, Ccdc42 expression is only observed in the brain and developing sperm. Male mice homozygous for a loss-of-function Ccdc42 allele (Ccdc42(KO)) display defects in the number and location of the HTCA, lack flagellated sperm, and are sterile. The testes enriched expression of Ccdc42 and lack of other phenotypes in mutant mice make it an ideal candidate for screening cases of azoospermia in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A trans-acting leader RNA from a Salmonella virulence gene

    PubMed Central

    Choi, Eunna; Han, Yoontak; Cho, Yong-Joon; Nam, Daesil; Lee, Eun-Jin

    2017-01-01

    Bacteria use flagella to move toward nutrients, find its host, or retract from toxic substances. Because bacterial flagellum is one of the ligands that activate the host innate immune system, its synthesis should be tightly regulated during host infection, which is largely unknown. Here, we report that a bacterial leader mRNA from the mgtCBR virulence operon in the intracellular pathogen Salmonella enterica serovar Typhimurium binds to the fljB coding region of mRNAs in the fljBA operon encoding the FljB phase 2 flagellin, a main component of bacterial flagella and the FljA repressor for the FliC phase 1 flagellin, and degrades fljBA mRNAs in an RNase E-dependent fashion during infection. A nucleotide substitution of the fljB flagellin gene that prevents the mgtC leader RNA-mediated down-regulation increases the fljB-encoded flagellin synthesis, leading to a hypermotile phenotype inside macrophages. Moreover, the fljB nucleotide substitution renders Salmonella hypervirulent, indicating that FljB-based motility must be compromised in the phagosomal compartment where Salmonella resides. This suggests that this pathogen promotes pathogenicity by producing a virulence protein and limits locomotion by a trans-acting leader RNA from the same virulence gene during infection. PMID:28874555

  13. Effects of Nonequilibrium Plasmas on Eukaryotic Cells

    DTIC Science & Technology

    2009-05-01

    medical applications, such as the removal of dead tissue and the acceleration of wound healing. These "plasma-induced" bioeffects are therefore of... blood coagulation device. Unfortunately, due to various issues related to experimenting with blood in our lab, we were unable to conduct this...species with flagella) and viability, 1 mL of algal culture was added into a well of a 12-well culture plate ( liquid depth in the well 5 mm), the

  14. Transcriptional Control of the Lateral-Flagellar Genes of Bradyrhizobium diazoefficiens.

    PubMed

    Mongiardini, Elías J; Quelas, J Ignacio; Dardis, Carolina; Althabegoiti, M Julia; Lodeiro, Aníbal R

    2017-08-01

    Bradyrhizobium diazoefficiens , a soybean N 2 -fixing symbiont, possesses a dual flagellar system comprising a constitutive subpolar flagellum and inducible lateral flagella. Here, we analyzed the genomic organization and biosynthetic regulation of the lateral-flagellar genes. We found that these genes are located in a single genomic cluster, organized in two monocistronic transcriptional units and three operons, one possibly containing an internal transcription start site. Among the monocistronic units is blr6846, homologous to the class IB master regulators of flagellum synthesis in Brucella melitensis and Ensifer meliloti and required for the expression of all the lateral-flagellar genes except lafA2 , whose locus encodes a single lateral flagellin. We therefore named blr6846 lafR ( la teral- f lagellar r egulator). Despite its similarity to two-component response regulators and its possession of a phosphorylatable Asp residue, lafR behaved as an orphan response regulator by not requiring phosphorylation at this site. Among the genes induced by lafR is flbT L , a class III regulator. We observed different requirements for FlbT L in the synthesis of each flagellin subunit. Although the accumulation of lafA1 , but not lafA2 , transcripts required FlbT L , the production of both flagellin polypeptides required FlbT L Moreover, the regulation cascade of this lateral-flagellar regulon appeared to be not as strictly ordered as those found in other bacterial species. IMPORTANCE Bacterial motility seems essential for the free-living style in the environment, and therefore these microorganisms allocate a great deal of their energetic resources to the biosynthesis and functioning of flagella. Despite energetic costs, some bacterial species possess dual flagellar systems, one of which is a primary system normally polar or subpolar, and the other is a secondary, lateral system that is produced only under special circumstances. Bradyrhizobium diazoefficiens , an N 2 -fixing symbiont of soybean plants, possesses dual flagellar systems, including the lateral system that contributes to swimming in wet soil and competition for nodulation and is expressed under high energy availability, as well as under requirement for high torque by the flagella. The structural organization and transcriptional regulation of the 41 genes that comprise this secondary flagellar system seem adapted to adjust bacterial energy expenditures for motility to the soil's environmental dynamics. Copyright © 2017 American Society for Microbiology.

  15. Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella*

    PubMed Central

    Lin, Jianfeng; Tritschler, Douglas; Song, Kangkang; Barber, Cynthia F.; Cobb, Jennifer S.; Porter, Mary E.; Nicastro, Daniela

    2011-01-01

    The directional flow generated by motile cilia and flagella is critical for many processes, including human development and organ function. Normal beating requires the control and coordination of thousands of dynein motors, and the nexin-dynein regulatory complex (N-DRC) has been identified as an important regulatory node for orchestrating dynein activity. The nexin link appears to be critical for the transformation of dynein-driven, linear microtubule sliding to flagellar bending, yet the molecular composition and mechanism of the N-DRC remain largely unknown. Here, we used proteomics with special attention to protein phosphorylation to analyze the composition of the N-DRC and to determine which subunits may be important for signal transduction. Two-dimensional electrophoresis and MALDI-TOF mass spectrometry of WT and mutant flagellar axonemes from Chlamydomonas identified 12 N-DRC-associated proteins, including all seven previously observed N-DRC components. Sequence and PCR analyses identified the mutation responsible for the phenotype of the sup-pf-4 strain, and biochemical comparison with a radial spoke mutant revealed two components that may link the N-DRC and the radial spokes. Phosphoproteomics revealed eight proteins with phosphorylated isoforms for which the isoform patterns changed with the genotype as well as two components that may play pivotal roles in N-DRC function through their phosphorylation status. These data were assembled into a model of the N-DRC that explains aspects of its regulatory function. PMID:21700706

  16. Sperm flagella protein components: Human meichroacidin constructed by the membrane occupation and recognition nexus motif

    PubMed Central

    MATSUOKA, YASUHIRO; NISHIMURA, HIROMI; NUMAZAWA, KAHORI; TSUCHIDA, JUNJI; MIYAGAWA, YASUSHI; TSUJIMURA, AKIRA; MATSUMIYA, KIYOMI; OKUYAMA, AKIHIKO; NISHIMUNE, YOSHITAKE

    2005-01-01

    Background and Aims:   In a previous study, the authors of the present study cloned mouse meichroacidin (MCA), which is expressed in stages of spermatogenesis from pachytene spermatocytes through round spermatid germ cells. MCA protein contains the membrane occupation and recognition nexus (MORN) motif and localizes to a male meiotic metaphase chromosome. Recently, a MCA homolog of carp (Cyprinus carpio), MORN motif‐containing sperm‐specific axonemal protein (MSAP), was reportedly identified and localized in sperm flagella. Present knowledge of human spermiogenesis requires the identification of proteins in human sperm. The present study identified the human orthologue of MCA. Methods:   Colony hybridization using a human testis plasmid cDNA library was carried out to clone human MCA (h‐MCA) cDNA. Northern blot, Western blot, and immunohistochemical analyses were carried out. Results:   h‐MCA was found to be specifically expressed in the testes. The h‐MCA amino acid sequence shared 79.8% identity with mouse MCA and contained MORN motifs. h‐MCA localized in the sperm flagellum and basal body, as does MSAP in carp. Conclusion:   Expression and localization analyses showed that h‐MCA is a component of the sperm flagellum and basal body and might play an important role in the development of the sperm flagellum in humans. (Reprod Med Biol 2005; 4: 213–219) PMID:29699225

  17. Visualisation of morphological interaction of diamond and silver nanoparticles with Salmonella Enteritidis and Listeria monocytogenes.

    PubMed

    Sawosz, Ewa; Chwalibog, André; Mitura, Katarzyna; Mitura, Stanisław; Szeliga, Jacek; Niemiec, Tomasz; Rupiewicz, Marlena; Grodzik, Marta; Sokołowska, Aleksandra

    2011-09-01

    Currently, medicine intensively searches for methods to transport drugs to a target (sick) point within the body. The objective of the present investigation was to evaluate morphological characteristics of the assembles of silver or diamond nanoparticles with Salmonella Enteritidis (G-) or Listeria monocytogenes (G+), to reveal possibilities of constructing nanoparticle-bacteria vehicles. Diamond nanoparticles (nano-D) were produced by the detonation method. Hydrocolloids of silver nanoparticles (nano-Ag) were produced by electric non-explosive patented method. Hydrocolloids of nanoparticles (200 microl) were added to bacteria suspension (200 microl) in the following order: nano-D + Salmonella E.; nano-D + Listeria monocytogenes; nano-Ag + Salmonella E; nano-Ag + Listeria monocytogenes. Samples were inspected by transmission electron microscopy. Visualisation of nanoparticles and bacteria interaction showed harmful effects of both nanoparticles on bacteria morphology. The most spectacular effect of nano-D were strong links between nano-D packages and the flagella of Salmonella E. Nano-Ag were closely attached to Listeria monocytogenes but not to Salmonella E. There was no evidence of entering nano-Ag inside Listeria monocytogenes but smaller particles were placed inside Salmonella E. The ability of nano-D to attach to the flagella and the ability of nano-Ag to penetrate inside bacteria cells can be utilized to design nano-bacteria vehicles, being carriers for active substances attached to nanoparticles.

  18. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas

    PubMed Central

    Reck, Jaimee; Schauer, Alexandria M.; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A.; Porter, Mary E.

    2016-01-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms. PMID:27251063

  19. Analysis of the role of the two flagella of Bradyrhizobium japonicum in competition for nodulation of soybean.

    PubMed

    Althabegoiti, Maria Julia; Covelli, Julieta M; Pérez-Giménez, Julieta; Quelas, Juan Ignacio; Mongiardini, Elías J; López, Maria Florencia; López-García, Silvina L; Lodeiro, Aníbal R

    2011-06-01

    Bradyrhizobium japonicum has two types of flagella. One has thin filaments consisting of the 33-kDa flagellins FliCI and FliCII (FliCI-II) and the other has thick filaments consisting of the 65-kDa flagellins FliC1, FliC2, FliC3, and FliC4 (FliC1-4). To investigate the roles of each flagellum in competition for nodulation, we obtained mutants deleted in fliCI-II and/or fliC1-4 in the genomic backgrounds of two derivatives from the reference strain USDA 110: the streptomycin-resistant derivative LP 3004 and its more motile derivative LP 3008. All mutations diminished swimming motility. When each mutant was co-inoculated with the parental strain on soybean plants cultivated in vermiculite either at field capacity or flooded, their competitiveness differed according to the flagellin altered. ΔfliCI-II mutants were more competitive, occupying 64-80% of the nodules, while ΔfliC1-4 mutants occupied 45-49% of the nodules. Occupation by the nonmotile double mutant decreased from 55% to 11% as the water content of the vermiculite increased from 85% to 95% field capacity to flooding. These results indicate that the influence of motility on competitiveness depended on the water status of the rooting substrate. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Insights into the Structure and Function of Ciliary and Flagellar Doublet Microtubules

    PubMed Central

    Linck, Richard; Fu, Xiaofeng; Lin, Jianfeng; Ouch, Christna; Schefter, Alexandra; Steffen, Walter; Warren, Peter; Nicastro, Daniela

    2014-01-01

    Cilia and flagella are conserved, motile, and sensory cell organelles involved in signal transduction and human disease. Their scaffold consists of a 9-fold array of remarkably stable doublet microtubules (DMTs), along which motor proteins transmit force for ciliary motility and intraflagellar transport. DMTs possess Ribbons of three to four hyper-stable protofilaments whose location, organization, and specialized functions have been elusive. We performed a comprehensive analysis of the distribution and structural arrangements of Ribbon proteins from sea urchin sperm flagella, using quantitative immunobiochemistry, proteomics, immuno-cryo-electron microscopy, and tomography. Isolated Ribbons contain acetylated α-tubulin, β-tubulin, conserved protein Rib45, >95% of the axonemal tektins, and >95% of the calcium-binding proteins, Rib74 and Rib85.5, whose human homologues are related to the cause of juvenile myoclonic epilepsy. DMTs contain only one type of Ribbon, corresponding to protofilaments A11-12-13-1 of the A-tubule. Rib74 and Rib85.5 are associated with the Ribbon in the lumen of the A-tubule. Ribbons contain a single ∼5-nm wide filament, composed of equimolar tektins A, B, and C, which interact with the nexin-dynein regulatory complex. A summary of findings is presented, and the functions of Ribbon proteins are discussed in terms of the assembly and stability of DMTs, ciliary motility, and other microtubule systems. PMID:24794867

  1. Curcumin alters the cytoskeleton and microtubule organization on trophozoites of Giardia lamblia.

    PubMed

    Gutiérrez-Gutiérrez, Filiberto; Palomo-Ligas, Lissethe; Hernández-Hernández, José Manuel; Pérez-Rangel, Armando; Aguayo-Ortiz, Rodrigo; Hernández-Campos, Alicia; Castillo, Rafael; González-Pozos, Sirenia; Cortés-Zárate, Rafael; Ramírez-Herrera, Mario Alberto; Mendoza-Magaña, María Luisa; Castillo-Romero, Araceli

    2017-08-01

    Giardia lamblia is a worldwide protozoan responsible for a significant number of intestinal infections. There are several drugs for the treatment of giardiasis, but they often cause side effects. Curcumin, a component of turmeric, has antigiardial activity; however, the molecular target and mechanism of antiproliferative activity are not clear. The effects of curcumin on cellular microtubules have been widely investigated. Since tubulin is the most abundant protein in the cytoskeleton of Giardia, to elucidate whether curcumin has activity against the microtubules of this parasite, we treated trophozoites with curcumin and the cells were analyzed by scanning electron microscopy and confocal microscopy. Curcumin inhibited Giardia proliferation and adhesion in a time-concentration-dependent mode. The higher inhibitory concentrations of curcumin (3 and 15μM) disrupted the cytoskeletal structures of trophozoites; the damage was evident on the ventral disk, flagella and in the caudal region, also the membrane was affected. The immunofluorescence images showed altered distribution of tubulin staining on ventral disk and flagella. Additionally, we found that curcumin caused a clear reduction of tubulin expression. By docking analysis and molecular dynamics we showed that curcumin has a high probability to bind at the interface of the tubulin dimer close to the vinblastine binding site. All the data presented indicate that curcumin may inhibit Giardia proliferation by perturbing microtubules. Copyright © 2017. Published by Elsevier B.V.

  2. Chiral self-assembly of helical particles.

    PubMed

    Kolli, Hima Bindu; Cinacchi, Giorgio; Ferrarini, Alberta; Giacometti, Achille

    2016-01-01

    The shape of the building blocks plays a crucial role in directing self-assembly towards desired architectures. Out of the many different shapes, the helix has a unique position. Helical structures are ubiquitous in nature and a helical shape is exhibited by the most important biopolymers like polynucleotides, polypeptides and polysaccharides as well as by cellular organelles like flagella. Helical particles can self-assemble into chiral superstructures, which may have a variety of applications, e.g. as photonic (meta)materials. However, a clear and definite understanding of these structures has not been entirely achieved yet. We have recently undertaken an extensive investigation on the phase behaviour of hard helical particles, using numerical simulations and classical density functional theory. Here we present a detailed study of the phase diagram of hard helices as a function of their morphology. This includes a variety of liquid-crystal phases, with different degrees of orientational and positional ordering. We show how, by tuning the helix parameters, it is possible to control the organization of the system. Starting from slender helices, whose phase behaviour is similar to that of rodlike particles, an increase in curliness leads to the onset of azimuthal correlations between the particles and the formation of phases specific to helices. These phases feature a new kind of screw order, of which there is experimental evidence in colloidal suspensions of helical flagella.

  3. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, Guillaume; Duncan, Garry A.; Agarakova, Irina

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might havemore » retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.« less

  4. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex[C][W

    PubMed Central

    Blanc, Guillaume; Duncan, Garry; Agarkova, Irina; Borodovsky, Mark; Gurnon, James; Kuo, Alan; Lindquist, Erika; Lucas, Susan; Pangilinan, Jasmyn; Polle, Juergen; Salamov, Asaf; Terry, Astrid; Yamada, Takashi; Dunigan, David D.; Grigoriev, Igor V.; Claverie, Jean-Michel; Van Etten, James L.

    2010-01-01

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes. PMID:20852019

  5. Organization of P, S, and Fe Inclusions in a Freshwater Magnetococcus

    NASA Technical Reports Server (NTRS)

    Cox, Lea; Popa Radu; Douglas, Susanne; Belz, Andrea; Nealson, Kenneth H.

    2001-01-01

    Magnetotactic bacteria are a heterogeneous group of motile, mainly aquatic procaryotes that align and swim along geomagnetic field lines. They are of interest to astrobiologists because of the magnetite crystals found in the Mars meteorite ALH84001 which share many characteristics with the magnetite produced intracellularly by magnetotactic bacteria. These bacteria are diverse morphologically, physiologically and phylogenetically, sharing a few key characteristics: 1) the presence of intracellular membrane-bound magnetic crystals (magnetosomes), usually but not always arranged in chains; 2) motility by means of flagella; and 3) microaerophillic or anaerobic physiology. The bilophotrichous (having two flagella bundles) magnetotactic cocci (MC) are ubiquitous in aquatic habitats but have proven extremely difficult to cultivate. Because only several marine strains have been isolated and grown in axenic culture, little is known about the physiology and the biogeochemical roles of the MC. We studied the composition and distribution of intracellular structures in an uncultured MC, designated ARB-1. To do this, a combination of light microscopy, environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used. Cells of ARB-1 were separated from sediments collected from Baldwin Lake (Los Angeles Arboretum, Arcadia, CA). They are large spherical to oblate spheroidal Gram-negative cells, ranging from 1 to 4 micrometers along the maximum dimension, which is perpendicular to the direction of swimming. Cells have two large phosphorus-containing inclusions that comprise a large percentage of the cell volume. Many smaller sulfur inclusions are located at the convex end of the cell. Most of the cellular Fe is present in the magnetosomes. These may be arranged as a clump at the concave end of the cell, near the two flagella bundles, or as chains, or as both a clump and chains. The magnetosomes were identified as magnetite (Fe3O4) by selected area electron diffraction (SAED) and high resolution TEM. We saw a trend between cell size and organization of the magnetosomes. Smaller, more spherical cells were more likely to have chains than were larger, more oblate cells. This may indicate different populations of cells, or it may be attributed to variations in cell growth cycle. The size distribution (length) of magnetosomes in chains was similar to that of magnetosomes in clusters, except that there was a larger size range for clustered magnetosomes. Magnetosomes from ARB-1 cells average 82 nm in length. If plotted on a graph of length as a function of aspect ratio, they fall within the single domain region of the plot. If compared with the size distributions of magnetite from ALH84001 and magnetosomes from the cultured magnetotactic vibrio MV-1, the magnetites produced by ARB-1 cells are, on average, larger and have a wider range of aspect ratio. ARB-1 cells have a specific organization of the P, S, and Fe inclusions. The P inclusions always occupy the majority of the cell volume and separate the S inclusions from the disorganized clumps of magnetosomes and the flagella bundles. The P inclusions may contain polyphosphate, which could play several roles in motility, adaptation to stress, growth and division, buoyancy, and energy. The S inclusions might be a way to store S, a potential energy source, when the cells move from sulfide to oxygen zones. The consistency of P, S, and Fe organization in ARB-1 cells suggests that these inclusions have some specific and interactive functions.

  6. Load Response of the Flagellar Beat

    NASA Astrophysics Data System (ADS)

    Klindt, Gary S.; Ruloff, Christian; Wagner, Christian; Friedrich, Benjamin M.

    2016-12-01

    Cilia and flagella exhibit regular bending waves that perform mechanical work on the surrounding fluid, to propel cellular swimmers and pump fluids inside organisms. Here, we quantify a force-velocity relationship of the beating flagellum, by exposing flagellated Chlamydomonas cells to controlled microfluidic flows. A simple theory of flagellar limit-cycle oscillations, calibrated by measurements in the absence of flow, reproduces this relationship quantitatively. We derive a link between the energy efficiency of the flagellar beat and its ability to synchronize to oscillatory flows.

  7. A Molecular Epidemiologic Case-Case Study of Prostate Cancer Susceptibility.

    DTIC Science & Technology

    1999-09-01

    Thompson, P.A., and Barbour, A. A flagella-less mutant as a live attenuated vaccine against Borrelia Burgdorferi infection in mouse model of lyme ...Immunol., 148:3385, 1992. Sadienze A., Rosa, P. A., Thompson, P. A., Hogan, D. M., and. Barbou,r A. G. Antibody-resistant mutants of Borrelia ...cells and OspA protein of Borrelia burgdorferi. New York Acad. Sci. 797:140-150, 1996. Thompson, P. A. and Berton, M. T. STAT6 is required for IL-4

  8. Binding of Helocobacter pyori to Human Gastric Mucose: Identification and Characterization of a Lewis b Bingind Protein.

    DTIC Science & Technology

    1995-06-01

    putative virulence factors of H. pylori have been identified to date. These factors include a urease , flagella, a mucinase, a cytotoxin, and two adhesins...The urease is believed to aid in bacterial survival of the harsh gastric environment by generating ammonia from urea to neutralize the low pH (Segal...A Laboratory Manual. Cold Spring Harbor, New York. Cold Spring Harbor Laboratory Press. Hazell, S., A. Lee. 1986. Campylobacter pyloridis urease

  9. A Cyanobacterium Capable of Swimming Motility

    NASA Astrophysics Data System (ADS)

    Waterbury, John B.; Willey, Joanne M.; Franks, Diana G.; Valois, Frederica W.; Watson, Stanley W.

    1985-10-01

    A novel cyanobacterium capable of swimming motility wass isolated in pure culture from several locations in the Atlantic Ocean. It is a small unicellular form, assignable to the genus Synechococcus, that is capable of swimming through liquids at speeds of 25 micrometers per second. Light microscopy revealed that the motile cells display many features characteristic of bacterial flagellar motility. However, electron microscopy failed to reveal flagella and shearing did not arrest motility, indicating that the cyanobacterium may be propelled by a novel mechanism.

  10. Methods for Imaging Shewanella Oneidensis MR-1 Nanofilaments

    DTIC Science & Technology

    2010-01-01

    R.E., 1980. Flagella on Legionnaires ’ disease bacteria: ultrastructural observations. Ann. Intern. Med. 93, 711–714. Choi, C.Q., 2006. Nanowires...Perspective paper Methods for imaging Shewanella oneidensis MR-1 nanofilaments R. Ray a, S . Lizewski b, L.A. Fitzgerald b, B. Little a, B.R...Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC. 20375, USA a b s t r a c ta r t i c l e i n f o Article history: Received 21 May 2010

  11. Pathogenesis of Proteus mirabilis Infection

    PubMed Central

    Armbruster, Chelsie E.; Mobley, Harry L. T.; Pearson, Melanie M.

    2017-01-01

    Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTI) that are often polymicrobial. These infections may be accompanied by urolithiasis, development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54 kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a “Dienes line”, develops due to the killing action of each strain’s type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending UTI or CAUTI using both single-species and polymicrobial models. Global gene expression studies carried out in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances. PMID:29424333

  12. Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups.

    PubMed

    Brugerolle, Guy; Bricheux, Geneviève; Philippe, Hervé; Coffea, Gérard

    2002-03-01

    Comparative electron microscopic studies of Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) showed that they share a distinctive flagellar transitional zone and a very similar flagellar apparatus. In both species, the basic couple of basal bodies and flagella #1 and #2 are connected to the dorsal and ventral roots, respectively. Collodictyon triciliatum has two additional basal bodies and flagella, #3 and #4, situated on each side of the basic couple, each of which also bears a dorsal root. The horseshoe-shaped arrangement of dictyosomes, mitochondria with tubular cristae and the deep ventral groove are very similar to those of Diphylleia rotans. These two genera have very specific features and are placed in a new family, Collodictyonidae, distinct from other eukaryotic groups. Electron microscopic observation of mitotic telophase in Diphylleia rotans revealed two chromosomal masses, surrounded by the nuclear envelope, within the dividing parental nucleus, as in the telophase stage of the heliozoan Actinophrys and the helioflagellate Dimorpha. Spindle microtubules arise from several MTOCs outside the nucleus, and several microtubules penetrate within the dividing nucleus, via pores at the poles. This semi-open type of orthomitosis is reminiscent of that of actinophryids. The SSU rDNA sequence of Diphylleia rotans was compared with that of all the eukaryotic groups that have a slow-evolving rDNA. Diphylleia did not strongly assemble with any group and emerged in a very poorly resolved part of the eukaryotic phylogenetic tree.

  13. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins

    NASA Astrophysics Data System (ADS)

    Namdeo, S.; Onck, P. R.

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  14. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins.

    PubMed

    Namdeo, S; Onck, P R

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  15. Regulation of Flagellum Biosynthesis in Response to Cell Envelope Stress in Salmonella enterica Serovar Typhimurium

    PubMed Central

    2018-01-01

    ABSTRACT Flagellum-driven motility of Salmonella enterica serovar Typhimurium facilitates host colonization. However, the large extracellular flagellum is also a prime target for the immune system. As consequence, expression of flagella is bistable within a population of Salmonella, resulting in flagellated and nonflagellated subpopulations. This allows the bacteria to maximize fitness in hostile environments. The degenerate EAL domain protein RflP (formerly YdiV) is responsible for the bistable expression of flagella by directing the flagellar master regulatory complex FlhD4C2 with respect to proteolytic degradation. Information concerning the environmental cues controlling expression of rflP and thus about the bistable flagellar biosynthesis remains ambiguous. Here, we demonstrated that RflP responds to cell envelope stress and alterations of outer membrane integrity. Lipopolysaccharide (LPS) truncation mutants of Salmonella Typhimurium exhibited increasing motility defects due to downregulation of flagellar gene expression. Transposon mutagenesis and genetic profiling revealed that σ24 (RpoE) and Rcs phosphorelay-dependent cell envelope stress response systems sense modifications of the lipopolysaccaride, low pH, and activity of the complement system. This subsequently results in activation of RflP expression and degradation of FlhD4C2 via ClpXP. We speculate that the presence of diverse hostile environments inside the host might result in cell envelope damage and would thus trigger the repression of resource-costly and immunogenic flagellum biosynthesis via activation of the cell envelope stress response. PMID:29717015

  16. Dynamic Receptor Team Formation Can Explain the High Signal Transduction Gain in Escherichia coli

    PubMed Central

    Albert, Réka; Chiu, Yu-wen; Othmer, Hans G.

    2004-01-01

    Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, either by directed movement, a process called taxis, or by altering the speed or frequency of turning, which is called kinesis. Chemokinesis has been most thoroughly studied in the peritrichous bacterium Escherichia coli, which has four helical flagella distributed over the cell surface, and swims by rotating them. When rotated counterclockwise the flagella coalesce into a propulsive bundle, producing a relatively straight “run,” and when rotated clockwise they fly apart, resulting in a “tumble” which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient, runs that carry the cell in a favorable direction are extended. The cell senses spatial gradients as temporal changes in receptor occupancy and changes the probability of counterclockwise rotation (the bias) on a fast timescale, but adaptation returns the bias to baseline on a slow timescale, enabling the cell to detect and respond to further concentration changes. The overall structure of the signal transduction pathways is well characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation. PMID:15111386

  17. Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli.

    PubMed

    Albert, Réka; Chiu, Yu-Wen; Othmer, Hans G

    2004-05-01

    Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, either by directed movement, a process called taxis, or by altering the speed or frequency of turning, which is called kinesis. Chemokinesis has been most thoroughly studied in the peritrichous bacterium Escherichia coli, which has four helical flagella distributed over the cell surface, and swims by rotating them. When rotated counterclockwise the flagella coalesce into a propulsive bundle, producing a relatively straight "run," and when rotated clockwise they fly apart, resulting in a "tumble" which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient, runs that carry the cell in a favorable direction are extended. The cell senses spatial gradients as temporal changes in receptor occupancy and changes the probability of counterclockwise rotation (the bias) on a fast timescale, but adaptation returns the bias to baseline on a slow timescale, enabling the cell to detect and respond to further concentration changes. The overall structure of the signal transduction pathways is well characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation.

  18. Spermatogenesis in Animals as Revealed by Electron Microscopy

    PubMed Central

    Yasuzumi, G.; Tanaka, Hiroaki

    1958-01-01

    This paper reports an electron microscope study of typical and atypical spermatogenesis in the pond snail, Cipangopaludina malteata. In the typical spermatid the nucleus undergoes profound changes as development proceeds, affecting both its form and internal fine structure. A large number of roughly parallel, dense filaments, arranged along the long axis of the nucleus, fuse with each other to form in the end the homogeneous helical body characteristic of the head of the adult spermatozoa. The nebenkern is apparently mitochondrial in nature and, in its early development, is similar to that of insects except that it appears as a double structure from the beginning. As differentiation proceeds, the mitochondria lose their membranes, and the residual, now denuded cristae, reorganize to give a parallel radial arrangement. In the last stages of development, the nebenkern derivations become applied to the sheath of the middle piece in a compact helical fashion. In the development of the atypical spermatozoa, the nucleus fails to differentiate and simply shrinks in volume until only a remnant, devoid of DNA, is left. The cytoplasm shows numerous vesicles containing small Feulgen-positive bodies, 80 to 130 mµ in diameter. These vesicles plus contents increase in number as spermatogenesis proceeds. The "head" structure of the atypical spermatozoa consists of a bundle (7 to 17) of tail flagella, each with a centriole at its anterior end. The end-piece of the atypical form appears brush-like and is made up of the free ends of the several flagella. PMID:13587559

  19. STEM tomography analysis of the trypanosome transition zone.

    PubMed

    Trépout, Sylvain; Tassin, Anne-Marie; Marco, Sergio; Bastin, Philippe

    2018-04-01

    The protist Trypanosoma brucei is an emerging model for the study of cilia and flagella. Here, we used scanning transmission electron microscopy (STEM) tomography to describe the structure of the trypanosome transition zone (TZ). At the base of the TZ, nine transition fibres irradiate from the B microtubule of each doublet towards the membrane. The TZ adopts a 9 + 0 structure throughout its length of ∼300 nm and its lumen contains an electron-dense structure. The proximal portion of the TZ has an invariant length of 150 nm and is characterised by a collarette surrounding the membrane and the presence of electron-dense material between the membrane and the doublets. The distal portion exhibits more length variation (from 55 to 235 nm) and contains typical Y-links. STEM analysis revealed a more complex organisation of the Y-links compared to what was reported by conventional transmission electron microscopy. Observation of the very early phase of flagellum assembly demonstrated that the proximal portion and the collarette are assembled early during construction. The presence of the flagella connector that maintains the tip of the new flagellum to the side of the old was confirmed and additional filamentous structures making contact with the membrane of the flagellar pocket were also detected. The structure and potential functions of the TZ in trypanosomes are discussed, as well as its mode of assembly. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Mechanical properties of the passive sea urchin sperm flagellum.

    PubMed

    Pelle, Dominic W; Brokaw, Charles J; Lesich, Kathleen A; Lindemann, Charles B

    2009-09-01

    In this study we used Triton X-100 extracted sea urchin spermatozoa to investigate the mechanical behavior of the basic 9+2 axoneme. The dynein motors were disabled by vanadate so that the flagellum is rendered a passive structure. We find that when a proximal portion of the flagellum is bent with a glass microprobe, the remainder of the flagellum distal to the probe exhibits a bend in the opposite direction (a counterbend). The counterbend can be understood from the prevailing sliding doublet model of axoneme mechanics, but does require the existence of elastic linkages between the outer doublets. Analysis of the shapes of counterbends provides a consensus value of 0.03-0.08/microm(2) for the ratio of the interdoublet shear resistance (E(S)) to the bending resistance (E(B)) and we find that the ratio E(S)/E(B) is relatively conserved for both passive flagella and transiently quiescent live flagella. This ratio expresses a fundamental mechanical property of the eukaryotic axoneme. It defines the contributions to total bending resistance derived from bending the microtubules and from stretching the interdoublet linkages, respectively. Using this ratio, and computer simulations of earlier experiments that measured the total stiffness of the flagellum, we obtain estimates of approximately 1 x 10(8) pN nm(2)/rad for E(B) and 6 pN/rad for E(S), assuming that both elasticities are linear. Our results indicate that the behavior of the flagellum is close to that predicted by a linear model for shear elasticity.

  1. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio).

    PubMed

    McAllister, Brian G; Kime, David E

    2003-11-19

    To determine whether early life exposure to tributyltin (TBT), an aromatase inhibitor, impaired reproductive function in fish, Danio rerio were exposed to environmentally realistic levels (0.01-100 ng l(-1)) of TBT from 0 to 30, 30 to 60, and 0 to 70 days post-hatch, and the sex ratio and sperm motility of the adults examined 3-5 months after cessation of exposure. Fish exposed for 70 days to 0.1 ng l(-1) of TBT, a concentration presently below the detection limit in water, showed a male biased population which produced a high incidence of sperm lacking flagella. At 1 ng l(-1), the motility of sperm was significantly lower than that of control fish, while at 10 ng l(-1), all sperm lacked flagella and, at 100 ng l(-1), milt volume had increased. The effect of exposure on sex ratio was similar after exposure from 0 to 70 and 0 to 30 days, but even 100 ng l(-1) gave only 65% males after exposure from 30 to 60 days. Effects on sperm motility and morphology and on milt volume were less pronounced after 30 day than 70 day exposure. Our data suggest that screening for aromatase inhibiting activity and assessment of its risks in early life to human and wildlife fertility needs to be urgently addressed, and that the reproductive toxicity of TBT may presently be underestimated.

  2. Three outer arm dynein heavy chains of Chlamydomonas reinhardtii operate in a coordinated fashion both in vitro and in vivo.

    PubMed

    Takazaki, Hiroko; Liu, Zhongmei; Jin, Mingyue; Kamiya, Ritsu; Yasunaga, Takuo

    2010-07-01

    Outer arm dynein (OAD) in cilia and flagella contains two to three nonidentical heavy chains (HCs) that possess motor activity. In Chlamydomonas, flagellar OAD contains three HCs, alpha-, beta-, and gamma-HCs, each appearing to have a distinct role. To determine the precise molecular mechanism of their function, cross-sectional electron micrographs of wild-type and single HC-disruption mutants were compared and statistically analyzed. While the alpha-HC mutant displayed an OAD of lower density, which was attributed to a lack of alpha-HC, the OAD of beta- and gamma-HC mutants not only lacked the corresponding HC, but was also significantly affected in its structure, particularly with respect to the localization of alpha-HC. The lack of beta-HC induced mislocalization of alpha-HC, while a disruption of the gamma-HC gene resulted in the synchronized movement of alpha-HC and beta-HC in the manners for stacking. Interestingly, using cryo-electron microscopy, purified OADs were typically observed consisting of two stacked heads and an independent single head, which presumably corresponded to gamma-HC. This conformation is different from previous reports in which the three HCs displayed a stacked form in flagella observed by cryo-electron tomography and a bouquet structure on mica in deep-etch replica images. These results suggest that gamma-HC supports the tight stacking arrangement of inter or intra alpha-/beta-HC to facilitate the proper functioning of OAD. 2010 Wiley-Liss, Inc.

  3. Centrioles, centrosomes, and cilia in health and disease.

    PubMed

    Nigg, Erich A; Raff, Jordan W

    2009-11-13

    Centrioles are barrel-shaped structures that are essential for the formation of centrosomes, cilia, and flagella. Here we review recent advances in our understanding of the function and biogenesis of these organelles, and we emphasize their connection to human disease. Deregulation of centrosome numbers has long been proposed to contribute to genome instability and tumor formation, whereas mutations in centrosomal proteins have recently been genetically linked to microcephaly and dwarfism. Finally, structural or functional centriole aberrations contribute to ciliopathies, a variety of complex diseases that stem from the absence or dysfunction of cilia.

  4. A peculiar new virus-spermatozoon association in the bug Raphigaster nebulosa (Poda) (Heteroptera-Insecta).

    PubMed

    Mercati, David; Dallai, Romano

    2016-01-01

    The sperm of the heteropteran bug Raphigaster nebulosa (Poda) are of two types, differing in length and size of their flagella. The thicker sperm are shorter than the thinner ones and have large mitochondrial derivatives. The presence of virus particles associated with the plasma membrane of thinner sperm is described for the first time; thicker sperm are immune to virus infection. The fact that virus particles are present on thinner sperm only initiates considerations on the transmission of virus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Oscillation-based methods for actuation and manipulation of nano-objects

    NASA Astrophysics Data System (ADS)

    Popov, V. L.

    2017-09-01

    We discuss how oscillations can be used for fixation or manipulation of nano-objects or producing nano-drives. The underlying principles are scale-invariant and principally can be scaled down up to the molecular scale. The main underlying principle of fixation and actuation occurs to be symmetry breaking of an oscillating system. From this unifying standpoint, a series of actuation principles are discussed as dragging, ratchets, micro walking, friction-inertia actuators, oscillation tweezers, flagella motors for propulsion in liquids as well as some recently proposed actuation principles.

  6. Plasmid AZOBR_p1-borne fabG gene for putative 3-oxoacyl-[acyl-carrier protein] reductase is essential for proper assembly and work of the dual flagellar system in the alphaproteobacterium Azospirillum brasilense Sp245.

    PubMed

    Filip'echeva, Yulia A; Shelud'ko, Andrei V; Prilipov, Alexei G; Burygin, Gennady L; Telesheva, Elizaveta M; Yevstigneyeva, Stella S; Chernyshova, Marina P; Petrova, Lilia P; Katsy, Elena I

    2018-02-01

    Azospirillum brasilense can swim and swarm owing to the activity of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf), respectively. Experimental data on the regulation of the Fla and Laf assembly in azospirilla are scarce. Here, the coding sequence (CDS) AZOBR_p1160043 (fabG1) for a putative 3-oxoacyl-[acyl-carrier protein (ACP)] reductase was found essential for the construction of both types of flagella. In an immotile leaky Fla - Laf - fabG1::Omegon-Km mutant, Sp245.1610, defects in flagellation and motility were fully complemented by expressing the CDS AZOBR_p1160043 from plasmid pRK415. When pRK415 with the cloned CDS AZOBR_p1160045 (fliC) for a putative 65.2 kDa Sp245 Fla flagellin was transferred into the Sp245.1610 cells, the bacteria also became able to assemble a motile single flagellum. Some cells, however, had unusual swimming behavior, probably because of the side location of the organelle. Although the assembly of Laf was not restored in Sp245.1610 (pRK415-p1160045), this strain was somewhat capable of swarming motility. We propose that the putative 3-oxoacyl-[ACP] reductase encoded by the CDS AZOBR_p1160043 plays a role in correct flagellar location in the cell envelope and (or) in flagellar modification(s), which are also required for the inducible construction of Laf and for proper swimming and swarming motility of A. brasilense Sp245.

  7. Phenotypic changes contributing to Enterobacter gergoviae biocide resistance.

    PubMed

    Périamé, M; Philippe, N; Condell, O; Fanning, S; Pagès, J-M; Davin-Regli, A

    2015-08-01

    Enterobacter gergoviae is a recurrent contaminant of cosmetic and hygiene products. To understand how this bacterium adapts to biocides, we studied Ent. gergoviae CIP 76.01 and its triclosan and Methylisothiazolinone-chloromethylisothiazolinone (MIT-CMIT) tolerant isogenic mutants. They were compared with others also isolated from contaminated cosmetics. Phenotypic differences were noted and these included changes in the bacterial envelope and flagella along with differences in motility, and biofilm growth rates. Triclosan and MIT-CMIT derivatives expressed flagella and other MIT-CMIT derivatives exhibited some external appendages. Those bacteria expressing a high-level minimal inhibitory concentration to MIT-CMIT, expressed a strong biofilm formation. No differential phenotypes were noted for carbon source utilisation. Enterobacter gergoviae demonstrated a diverse response to both of these preservatives contained in cosmetic preparations, depending on their concentrations. Interestingly, this adaptive response is associated with modifications of filament structure-related proteins contributing to increase the organism motility and the production of biofilm. Recurrent contaminations of cosmetics products by Ent. gergoviae, needed a better understanding concerning the bacterial adaptation to preservative agents, with particular concern to triclosan and MIT-CMIT. We demonstrated that bacteria response is associated to various mechanisms represented by expression of external appendages (pili or fimbriae) that control cell motility and biofilm formation and evolving as the concentration of biocides adaptation increased. Such mechanisms which are not chemical specific can also promote a cross-resistance to other biocidal agents. The characterization of Ent. gergoviae adaptability to biocides allows industry to adjust the ranges of concentrations and composition of preservatives in formula. © 2015 The Society for Applied Microbiology.

  8. CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia.

    PubMed

    Hampton, Hannah G; McNeil, Matthew B; Paterson, Thomas J; Ney, Blair; Williamson, Neil R; Easingwood, Richard A; Bostina, Mihnea; Salmond, George P C; Fineran, Peter C

    2016-06-01

    SdhE is required for the flavinylation and activation of succinate dehydrogenase and fumarate reductase (FRD). In addition, SdhE is conserved in proteobacteria (α, β and γ) and eukaryotes. Although the function of this recently characterized family of proteins has been determined, almost nothing is known about how their genes are regulated. Here, the RsmA (CsrA) and RsmC (HexY) post-transcriptional and post-translational regulators have been identified and shown to repress sdhEygfX expression in Serratia sp. ATCC 39006. Conversely, the flagella master regulator complex, FlhDC, activated sdhEygfX transcription. To investigate the hierarchy of control, we developed a novel approach that utilized endogenous CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) genome-editing by a type I-F system to generate a chromosomal point mutation in flhC. Mutation of flhC alleviated the ability of RsmC to repress sdhEygfX expression, whereas RsmA acted in both an FlhDC-dependent and -independent manner to inhibit sdhEygfX. Mutation of rsmA or rsmC, or overexpression of FlhDC, led to increased prodigiosin, biosurfactant, swimming and swarming. Consistent with the modulation of sdhE by motility regulators, we have demonstrated that SdhE and FRD are required for maximal flagella-dependent swimming. Together, these results demonstrate that regulators of both metabolism and motility (RsmA, RsmC and FlhDC) control the transcription of the sdhEygfX operon.

  9. CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia

    PubMed Central

    Paterson, Thomas J.; Ney, Blair; Williamson, Neil R.; Easingwood, Richard A.; Bostina, Mihnea; Salmond, George P. C.

    2016-01-01

    SdhE is required for the flavinylation and activation of succinate dehydrogenase and fumarate reductase (FRD). In addition, SdhE is conserved in proteobacteria (α, β and γ) and eukaryotes. Although the function of this recently characterized family of proteins has been determined, almost nothing is known about how their genes are regulated. Here, the RsmA (CsrA) and RsmC (HexY) post-transcriptional and post-translational regulators have been identified and shown to repress sdhEygfX expression in Serratia sp. ATCC 39006. Conversely, the flagella master regulator complex, FlhDC, activated sdhEygfX transcription. To investigate the hierarchy of control, we developed a novel approach that utilized endogenous CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) genome-editing by a type I-F system to generate a chromosomal point mutation in flhC. Mutation of flhC alleviated the ability of RsmC to repress sdhEygfX expression, whereas RsmA acted in both an FlhDC-dependent and -independent manner to inhibit sdhEygfX. Mutation of rsmA or rsmC, or overexpression of FlhDC, led to increased prodigiosin, biosurfactant, swimming and swarming. Consistent with the modulation of sdhE by motility regulators, we have demonstrated that SdhE and FRD are required for maximal flagella-dependent swimming. Together, these results demonstrate that regulators of both metabolism and motility (RsmA, RsmC and FlhDC) control the transcription of the sdhEygfX operon. PMID:27010574

  10. Spirosymplokos deltaeiberi nov. gen., nov. sp.: variable-diameter composite spirochete from microbial mats

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Ashen, J.; Sole, M.; Margulis, L.

    1993-01-01

    Large (up to 100 micrometers long), loosely coiled, free-living spirochetes with variable diameters (from 0.4 to 3 micrometers in the same cell) were seen at least 40 times between August 1990 and January 1993. These spirochetes were observed in mud water and enrichment media from highly specific habitats in intertidal evaporite flats at three disjunct localities, one in Spain and two in Mexico. All three are sites of commercial saltworks. Associated with Microcoleus chthonoplastes the large spirochetes from Spain display phototaxis and a composite organization. Shorter and smaller-diameter spirochetes are seen inside both healthy and spent periplasm of larger ones. Small spirochetes attached to large ones have been observed live. From two to twelve spirochete protoplasmic cylinders were seen inside a single common outer membrane. A distinctive granulated cytoplasm in which the granules are of similar diameter (20-32 nanometers) to that of the flagella (26 nanometers) was present. Granule diameters were measured in thin section and in negatively-stained whole-mount preparations. Based on their ultrastructure, large size, variable diameter, number of flagella (3 to 6), and phototactic behavior these unique spirochetes are formally named Spirosymplokos deltaeiberi. Under anoxic (or low oxygen) conditions they formed blooms in mixed culture in media selective for spirochetes. Cellobiose was the major carbon source in 80% seawater, the antibiotic rifampicin was added, mat from the original field site was present and tubes were incubated in the light at from 18-31 degrees C. Within 1-2 weeks populations of the large spirochete developed at 25 degrees C but they could not be transferred to fresh medium.

  11. Immune Recognition of the Epidemic Cystic Fibrosis Pathogen Burkholderia dolosa.

    PubMed

    Roux, Damien; Weatherholt, Molly; Clark, Bradley; Gadjeva, Mihaela; Renaud, Diane; Scott, David; Skurnik, David; Priebe, Gregory P; Pier, Gerald; Gerard, Craig; Yoder-Himes, Deborah R

    2017-06-01

    Burkholderia dolosa caused an outbreak in the cystic fibrosis (CF) clinic at Boston Children's Hospital from 1998 to 2005 and led to the infection of over 40 patients, many of whom died due to complications from infection by this organism. To assess whether B. dolosa significantly contributes to disease or is recognized by the host immune response, mice were infected with a sequenced outbreak B. dolosa strain, AU0158, and responses were compared to those to the well-studied CF pathogen Pseudomonas aeruginosa In parallel, mice were also infected with a polar flagellin mutant of B. dolosa to examine the role of flagella in B. dolosa lung colonization. The results showed a higher persistence in the host by B. dolosa strains, and yet, neutrophil recruitment and cytokine production were lower than those with P. aeruginosa The ability of host immune cells to recognize B. dolosa was then assessed, B. dolosa induced a robust cytokine response in cultured cells, and this effect was dependent on the flagella only when bacteria were dead. Together, these results suggest that B. dolosa can be recognized by host cells in vitro but may avoid or suppress the host immune response in vivo through unknown mechanisms. B. dolosa was then compared to other Burkholderia species and found to induce similar levels of cytokine production despite being internalized by macrophages more than Burkholderia cenocepacia strains. These data suggest that B. dolosa AU0158 may act differently with host cells and is recognized differently by immune systems than are other Burkholderia strains or species. Copyright © 2017 American Society for Microbiology.

  12. Immune Recognition of the Epidemic Cystic Fibrosis Pathogen Burkholderia dolosa

    PubMed Central

    Roux, Damien; Weatherholt, Molly; Clark, Bradley; Gadjeva, Mihaela; Renaud, Diane; Scott, David; Skurnik, David; Priebe, Gregory P.; Pier, Gerald; Gerard, Craig

    2017-01-01

    ABSTRACT Burkholderia dolosa caused an outbreak in the cystic fibrosis (CF) clinic at Boston Children's Hospital from 1998 to 2005 and led to the infection of over 40 patients, many of whom died due to complications from infection by this organism. To assess whether B. dolosa significantly contributes to disease or is recognized by the host immune response, mice were infected with a sequenced outbreak B. dolosa strain, AU0158, and responses were compared to those to the well-studied CF pathogen Pseudomonas aeruginosa. In parallel, mice were also infected with a polar flagellin mutant of B. dolosa to examine the role of flagella in B. dolosa lung colonization. The results showed a higher persistence in the host by B. dolosa strains, and yet, neutrophil recruitment and cytokine production were lower than those with P. aeruginosa. The ability of host immune cells to recognize B. dolosa was then assessed, B. dolosa induced a robust cytokine response in cultured cells, and this effect was dependent on the flagella only when bacteria were dead. Together, these results suggest that B. dolosa can be recognized by host cells in vitro but may avoid or suppress the host immune response in vivo through unknown mechanisms. B. dolosa was then compared to other Burkholderia species and found to induce similar levels of cytokine production despite being internalized by macrophages more than Burkholderia cenocepacia strains. These data suggest that B. dolosa AU0158 may act differently with host cells and is recognized differently by immune systems than are other Burkholderia strains or species. PMID:28348057

  13. Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila

    PubMed Central

    Sahr, Tobias; Brüggemann, Holger; Jules, Matthieu; Lomma, Mariella; Albert-Weissenberger, Christiane; Cazalet, Christel; Buchrieser, Carmen

    2009-01-01

    Summary To transit from intra- to extracellular environments, L. pneumophila differentiates from a replicative/non-virulent to a transmissive/virulent form using the two-component system LetA/LetS and the global repressor protein CsrA. While investigating how both regulators act coordinately we characterized two ncRNAs, RsmY and RsmZ that link the LetA/LetS and CsrA regulatory networks. We demonstrate that LetA directly regulates their expression and show that RsmY and RsmZ are functional in E. coli and are able to bind CsrA in vitro. Single mutants have no (ΔrsmY) or a little (ΔrsmZ) impact on virulence, but the ΔrsmYZ strain shows a drastic defect in intracellular growth in Acanthamoeba castellanii and THP-1 monocyte-derived macrophages. Analysis of the transcriptional programs of the ΔletA, ΔletS and ΔrsmYZ strains revealed that the switch to the transmissive phase is partially blocked. One major difference between the ΔletA, ΔletS and ΔrsmYZ strains was that the latter synthesizes flagella. Taken together, LetA activates transcription of RsmY and RsmZ, which sequester CsrA and abolish its post-transcriptional repressive activity. However, the RsmYZ-CsrA pathway appears not to be the main or only regulatory circuit governing flagella synthesis. We suggest that rather RpoS and LetA, by influencing LetE and probably cyclic-di-GMP levels, regulate motility in L. pneumophila. PMID:19400772

  14. The organized melee: Emergence of collective behavior in concentrated suspensions of swimming bacteria and associated phenomena

    NASA Astrophysics Data System (ADS)

    Cisneros Salerno, Luis

    Suspensions of the aerobic bacteria Bacilus subtilis develop patterns and flows from the interplay of motility, chemotaxis and buoyancy. In sessile drops, such bioconvectively driven flows carry plumes down the slanted meniscus and concentrate cells at the drop edge, while in pendant drops such self-concentration occurs at the bottom. These dynamics are explained quantitatively by a mathematical model consisting of oxygen diffusion and consumption, chemotaxis, and viscous fluid dynamics. Concentrated regions in both geometries comprise nearly close-packed populations, forming the collective "Zooming BioNematic" (ZBN) phase. This state exhibits large-scale orientational coherence, analogous to the molecular alignment of nematic liquid crystals, coupled with remarkable spatial and temporal correlations of velocity and vorticity, as measured by both novel and standard applications of particle imaging velocimetry. To probe mechanisms leading to this phase, response of individual cells to steric stress was explored, finding that they can reverse swimming direction at spatial constrictions without turning the cell body. The consequences of this propensity to flip the flagella are quantified, showing that "forwards" and "backwards" motion are dynamically and morphologically indistinguishable. Finally, experiments and mathematical modeling show that complex flows driven by previously unknown bipolar flagellar arrangements are induced when B. subtilis are confined in a thin layer of fluid, between asymmetric boundaries. The resulting driven flow circulates around the cell body ranging over several cell diameters, in contrast to the more localized flows surrounding free swimmers. This discovery extends our knowledge of the dynamic geometry of bacteria and their flagella, and reveals new mechanisms for motility-associated molecular transport and intercellular communication.

  15. Role of gallic and p-coumaric acids in the AHL-dependent expression of flgA gene and in the process of biofilm formation in food-associated Pseudomonas fluorescens KM120.

    PubMed

    Myszka, Kamila; Schmidt, Marcin T; Białas, Wojciech; Olkowicz, Mariola; Leja, Katarzyna; Czaczyk, Katarzyna

    2016-09-01

    In the process of Pseudomonas fluorescens biofilm formation, N-acyl-l-homoserine lactone (AHL)-mediated flagella synthesis plays a key role. Inhibition of AHL production may attenuate P. fluorescens biofilm on solid surfaces. This work validated the anti-biofilm properties of p-coumaric and gallic acids via the ability of phenolics to suppress AHL synthesis in P. fluorescens KM120. The dependence between synthesis of AHL molecules, expression of flagella gene (flgA) and the ability of biofilm formation by P. fluorescens KM120 on a stainless steel surface (type 304L) was also investigated. Research was carried out in a purpose-built flow cell device. Limitations on AHL synthesis in P. fluorescens KM120 were observed at concentrations of 120 and 240 µmol L(-1) of phenolic acids in medium. At such levels of gallic and p-coumaric acids the ability of P. fluorescens KM120 to synthesize 3-oxo-C6-homoserine lactone (HSL) was not observed. These concentrations caused decreased expression of flgA gene in P. fluorescens KM120. The changes in expression of AHL-dependent flgA gene significantly decreased the rate of microorganism colonization on the stainless steel surface. Phenolic acids are able to inhibit biofilm formation. The results obtained in the work may help to develop alternative techniques for anti-biofilm treatment in the food industry. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. SPIROCHAETA MORSUS MURIS, N.SP., THE CAUSE OF RAT-BITE FEVER : SECOND PAPER.

    PubMed

    Futaki, K; Takaki, I; Taniguchi, T; Osumi, S

    1917-01-01

    1. Since our first report on the discovery of the cause of rat-bite fever, we have been able to prove the existence of the same spirochete in five out of six more cases which have come under our observation. 2. The clinical symptoms of rat-bite fever are inflammation of the bitten parts, paroxysms of fever of the relapsing type, swelling of the lymph glands, and eruption of the skin, all occurring after an incubation period usually of from 10 to 22 days, or longer. 3. Our spirochete is present in the swollen local lesion of the skin and the enlarged lymph glands. But as the spirochetes are so few in number it is exceedingly difficult to discover them directly in material taken from patients. It is therefore better to inoculate the material into a mouse. In some cases the organism is found in the blood of the inoculated animal after a lapse of 5 to 14 days, or at the latest 4 weeks. 4. Generally speaking, the spirochetes present thick and short forms of about 2 to 5 micro and have flagella at both ends. Including the flagella, they measure 6 to 10 micro in length. Some forms in the cultures reach 12 to 19 micro excluding the flagella. The curves are regular, and the majority have one curve in 1 micro. Smaller ones are found in the blood and larger ones in the tissues. 5. The spirochetes stain easily. With Giemsa's stain they take a deep violet-red; they also stain with ordinary aniline dyes. The flagella, too, take Giemsa's stain. 6. The movements of our spirochetes are very rapid, resembling those of a vibrio, and distinguish them from all other kinds of spirochetes. When, however, the movements become a little sluggish, they begin to present movements characteristic of ordinary spirochetes. 7. For experimental purposes, mice, house rats, white rats, and monkeys are the most suitable animals. Monkeys have intermittent fever after infection, and spirochetes can be found in their blood, but they are not so numerous as in the blood of mice. Mice are the most suitable animals for these experiments, and they appear, as a rule, to escape fatal consequences. 8. The spirochete is markedly affected by salvarsan. 9. The organism is not present in the blood of all rats, and there is no relation between the species of the rat and the ratio of infection. We have never found the spirochete in healthy guinea pigs or mice. By permitting a rat infected with the spirochete to bite a guinea pig, the latter develops the disease. 10. We have succeeded in cultivating the spirochete in Shimamine's medium. 11. Among the spirochetes described in the literature or discovered in the blood of rats and mice, there may be some resembling our spirochete, but none of the descriptions agree with it fully. Hence we have named our organism Spirochaeta morsus muris and regard it as belonging to the Spironemacea (Gross) of the nature of treponema. 12. The spirochete can be detected in the bodies of patients. In seven cases out of eight, it disappears on recovery, only to reappear during the relapse. 13. The spirochete can be detected in about 3 per cent of house rats. These facts enable us to identify the cause of the disease. 14. There may be other causes than the spirochete for diseases following the bite of a rat. The cause, however, of rat-bite fever in the form most common in Japan is, we believe, the spirochete which we have described.

  17. Flagellar generated flow mediates attachment of Giardia Lamblia

    NASA Astrophysics Data System (ADS)

    Picou, Theodore; Polackwich, Jamie; Burrola Gabilondo, Beatriz; McAllister, Ryan; Powers, Tom; Elmendorf, Heidi; Urbach, Jeff

    2011-11-01

    Giardia lamblia is a protozoan parasite responsible for widespread diarrheal disease in humans and animals worldwide. Attachment to the host intestinal mucosa and resistance to peristalsis is necessary for establishing infection, but the physical basis for this attachment is poorly understood. We report results from confocal fluorescence microscopy that demonstrate that the regular beating of the posterior flagella generate a flow through the ventral disk, a suction-cup shaped structure that is against the substrate during attachment. Finite element simulations show that the negative pressure generated by the flow is consistent with the measured force of attachement between the parasite and its substrate.

  18. Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy

    PubMed Central

    1981-01-01

    Video cameras with contrast and black level controls can yield polarized light and differential interference contrast microscope images with unprecedented image quality, resolution, and recording speed. The theoretical basis and practical aspects of video polarization and differential interference contrast microscopy are discussed and several applications in cell biology are illustrated. These include: birefringence of cortical structures and beating cilia in Stentor, birefringence of rotating flagella on a single bacterium, growth and morphogenesis of echinoderm skeletal spicules in culture, ciliary and electrical activity in a balancing organ of a nudibranch snail, and acrosomal reaction in activated sperm. PMID:6788777

  19. Polymorphic transformation of helical flagella of bacteria

    NASA Astrophysics Data System (ADS)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  20. Synergistic biofilm formation by Treponema denticola and Porphyromonas gingivalis.

    PubMed

    Yamada, Mitsunori; Ikegami, Akihiko; Kuramitsu, Howard K

    2005-09-15

    Biofilm formation is an important step in the etiology of periodontal diseases. In this study, in vitro biofilm formation by Treponema denticola and Porphyromonas gingivalis 381 displayed synergistic effects. Confocal microscopy demonstrated that P. gingivalis attaches to the substratum first as a primary colonizer followed by coaggregation with T. denticola to form a mixed biofilm. The T. denticola flagella mutant as well as the cytoplasmic filament mutant were shown to be essential for biofilm formation as well as coaggregation with P. gingivalis. The major fimbriae and Arg-gingipain B of P. gingivalis also play important roles in biofilm formation with T. denticola.

  1. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    PubMed

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain.

  2. Impact of hydrodynamic stresses on bacterial flagella

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Riley, Emily; Lauga, Eric

    2017-11-01

    The locomotion of bacteria powered by helical filaments, such as Escherichia coli, critically involves the generation of flows and hydrodynamic stresses which lead to forces and moments balanced by the moment applied by the bacterial rotary motor (which is embedded in the cell wall) and the deformation of the short flexible hook. In this talk we use numerical computations to accurately compute these hydrodynamic stresses, to show how they critically lead to fluid-structure instabilities at the whole-cell level, and enquire if they can be used to rationalise experimental measurements of bacterial motor torques. ERC Consolidator Grant.

  3. First Case Report of Sinusitis with Lophomonas blattarum from Iran

    PubMed Central

    Berenji, Fariba; Parian, Mahmoud; Fata, Abdolmajid; Bakhshaee, Mahdi; Fattahi, Fereshte

    2016-01-01

    Introduction. Lophomonas blattarum is a rare cause of bronchopulmonary and sinus infection. This paper presents a rare case of Lophomonas sinusitis. Case Presentation. The patient was a 31-year-old woman who was admitted because of a history of upper respiratory infection and sinusitis. Direct microscopic examination of the sputum and nasal discharge showed large numbers of living Lophomonas blattarum with irregular movement of flagella. The patient was successfully treated by Metronidazole 750 mg t.i.d. for 30 days. Conclusions. This is the first case report of Lophomonas blattarum sinusitis from Iran. PMID:26966601

  4. First Case Report of Sinusitis with Lophomonas blattarum from Iran.

    PubMed

    Berenji, Fariba; Parian, Mahmoud; Fata, Abdolmajid; Bakhshaee, Mahdi; Fattahi, Fereshte

    2016-01-01

    Introduction. Lophomonas blattarum is a rare cause of bronchopulmonary and sinus infection. This paper presents a rare case of Lophomonas sinusitis. Case Presentation. The patient was a 31-year-old woman who was admitted because of a history of upper respiratory infection and sinusitis. Direct microscopic examination of the sputum and nasal discharge showed large numbers of living Lophomonas blattarum with irregular movement of flagella. The patient was successfully treated by Metronidazole 750 mg t.i.d. for 30 days. Conclusions. This is the first case report of Lophomonas blattarum sinusitis from Iran.

  5. Control of microfabricated structures powered by flagellated bacteria using phototaxis

    NASA Astrophysics Data System (ADS)

    Steager, Edward; Kim, Chang-Beom; Patel, Jigarkumar; Bith, Socheth; Naik, Chandan; Reber, Lindsay; Kim, Min Jun

    2007-06-01

    Flagellated bacteria have been employed as microactuators in low Reynolds number fluidic environments. SU-8 microstructures have been fabricated and released on the surface of swarming Serratia marcescens, and the flagella propel the structures along the swarm surface. Phototactic control of these structures is demonstrated by exposing the localized regions of the swarm to ultraviolet light. The authors additionally discuss the control of microstructures in an open channel powered by bacteria which have been docked through a blotting technique. A tracking algorithm has been developed to analyze swarming patterns of the bacteria as well as the kinematics of the microstructures.

  6. Involvement of Mismatch Repair in the Reciprocal Control of Motility and Adherence of Uropathogenic Escherichia coli

    PubMed Central

    Cooper, Lauren A.; Simmons, Lyle A.

    2012-01-01

    Type 1 fimbriae and flagella, two surface organelles critical for colonization of the urinary tract by uropathogenic Escherichia coli (UPEC), mediate opposing virulence objectives. Type 1 fimbriae facilitate adhesion to mucosal cells and promote bacterial persistence in the urinary tract, while flagella propel bacteria through urine and along mucous layers during ascension to the upper urinary tract. Using a transposon screen of the E. coli CFT073 fim locked-ON (L-ON) mutant, a construct that constitutively expresses type 1 fimbriae and represses motility, we identified six mutants that exhibited a partial restoration of motility. Among these six mutated genes was mutS, which encodes a component of the methyl-directed mismatch repair (MMR) system. When complemented with mutS in trans, motility was again repressed. To determine whether the MMR system, in general, is involved in this reciprocal control, we characterized the effects of gene deletions of other MMR components on UPEC motility. Isogenic deletions of mutS, mutH, and mutL were constructed in both wild-type CFT073 and fim L-ON backgrounds. All MMR mutants showed an increase in motility in the wild-type background, and ΔmutH and ΔmutS mutations increased motility in the fim L-ON background. Cochallenge of the wild-type strain with an MMR-defective strain showed a subtle but significant competitive advantage in the bladder and spleen for the MMR mutant using the murine model of ascending urinary tract infection after 48 h. Our findings demonstrate that the MMR system generally affects the reciprocal regulation of motility and adherence and thus could contribute to UPEC pathogenesis during urinary tract infections. PMID:22473602

  7. Multiple Genes Repress Motility in Uropathogenic Escherichia coli Constitutively Expressing Type 1 Fimbriae▿ †

    PubMed Central

    Simms, Amy N.; Mobley, Harry L. T.

    2008-01-01

    Two surface organelles of uropathogenic Escherichia coli (UPEC), flagella and type 1 fimbriae, are critical for colonization of the urinary tract but mediate opposite actions. Flagella propel bacteria through urine and along mucus layers, while type 1 fimbriae allow bacteria to adhere to specific receptors present on uroepithelial cells. Constitutive expression of type 1 fimbriae leads to repression of motility and chemotaxis in UPEC strain CFT073, suggesting that UPEC may coordinately regulate motility and adherence. To identify genes involved in this regulation of motility by type 1 fimbriae, transposon mutagenesis was performed on a phase-locked type 1 fimbrial ON variant of strain CFT073 (CFT073 fim L-ON), followed by a screen for restoration of motility in soft agar. Functions of the genes identified included attachment, metabolism, transport, DNA mismatch repair, and transcriptional regulation, and a number of genes had hypothetical function. Isogenic deletion mutants of these genes were also constructed in CFT073 fim L-ON. Motility was partially restored in six of these mutants, including complementable mutations in four genes encoding known transcriptional regulators, lrhA, lrp, slyA, and papX; a mismatch repair gene, mutS; and one hypothetical gene, ydiV. Type 1 fimbrial expression in these mutants was unaltered, and the majority of these mutants expressed larger amounts of flagellin than the fim L-ON parental strain. Our results indicate that repression of motility in CFT073 fim L-ON is not solely due to the constitutive expression of type 1 fimbriae on the surfaces of the bacteria and that multiple genes may contribute to this repression. PMID:18359812

  8. Distribution of fluorescently labeled tubulin injected into sand dollar eggs from fertilization through cleavage.

    PubMed

    Hamaguchi, Y; Toriyama, M; Sakai, H; Hiramoto, Y

    1985-04-01

    Porcine brain tubulin labeled with fluorescein isothiocyanate (FITC) was able to polymerize by itself and co-polymerize with tubulin purified from starfish sperm flagella. When we injected the FITC-labeled tubulin into unfertilized eggs of the sand dollar, Clypeaster japonicus, and the eggs were then fertilized, the labeled tubulin was incorporated into the sperm aster. When injected into fertilized eggs at streak stage, the tubulin was quickly incorporated into each central region of growing asters. It was clearly visualized that the labeled tubulin, upon reaching metaphase, accumulated in the mitotic apparatus and later disappeared over the cytoplasm during interphase. The accumulation of the fluorescence in the mitotic apparatus was observed repeatedly at successive cleavage. After lysis of the fertilized eggs with a microtubule-stabilizing solution, fluorescent fibrous structures around the nucleus and those of the sperm aster and the mitotic apparatus were preserved and coincided with the fibrous structures observed by polarization and differential interference microscopy. We found the FITC-labeled tubulin to be incorporated into the entire mitotic apparatus within 20-30 s when injected into the eggs at metaphase or anaphase. This rapid incorporation of the labeled tubulin into the mitotic apparatus suggests that the equilibrium between mitotic microtubules and tubulin is attained very rapidly in the living eggs. Axonemal tubulin purified from starfish sperm flagella and labeled with FITC was also incorporated into microtubular structures in the same fashion as the FITC-labeled brain tubulin. These results suggest that even FITC-labeled heterogeneous tubulins undergo spatial and stage-specific regulation of assembly-disassembly in the same manner as does sand dollar egg tubulin.

  9. Distribution of fluorescently labeled tubulin injected into sand dollar eggs from fertilization through cleavage

    PubMed Central

    1985-01-01

    Porcine brain tubulin labeled with fluorescein isothiocyanate (FITC) was able to polymerize by itself and co-polymerize with tubulin purified from starfish sperm flagella. When we injected the FITC- labeled tubulin into unfertilized eggs of the sand dollar, Clypeaster japonicus, and the eggs were then fertilized, the labeled tubulin was incorporated into the sperm aster. When injected into fertilized eggs at streak stage, the tubulin was quickly incorporated into each central region of growing asters. It was clearly visualized that the labeled tubulin, upon reaching metaphase, accumulated in the mitotic apparatus and later disappeared over the cytoplasm during interphase. The accumulation of the fluorescence in the mitotic apparatus was observed repeatedly at successive cleavage. After lysis of the fertilized eggs with a microtubule-stabilizing solution, fluorescent fibrous structures around the nucleus and those of the sperm aster and the mitotic apparatus were preserved and coincided with the fibrous structures observed by polarization and differential interference microscopy. We found the FITC-labeled tubulin to be incorporated into the entire mitotic apparatus within 20-30 s when injected into the eggs at metaphase or anaphase. This rapid incorporation of the labeled tubulin into the mitotic apparatus suggests that the equilibrium between mitotic microtubules and tubulin is attained very rapidly in the living eggs. Axonemal tubulin purified from starfish sperm flagella and labeled with FITC was also incorporated into microtubular structures in the same fashion as the FITC-labeled brain tubulin. These results suggest that even FITC-labeled heterogeneous tubulins undergo spatial and stage-specific regulation of assembly-disassembly in the same manner as does sand dollar egg tubulin. PMID:3920225

  10. Cryopreservation of bull semen is associated with carbonylation of sperm proteins.

    PubMed

    Mostek, Agnieszka; Dietrich, Mariola Aleksandra; Słowińska, Mariola; Ciereszko, Andrzej

    2017-04-01

    Artificial insemination with cryopreserved semen enables affordable, large-scale dissemination of gametes with superior genetics. However, cryopreservation can cause functional and structural damage to spermatozoa that is associated with reactive oxygen species (ROS) production, impairment of sperm motility and decreased fertilizing potential, but little attention has been paid to protein changes. The goal of this study was to investigate the oxidative modifications (measured as carbonylation level changes) of bull spermatozoa proteins triggered by the cryopreservation process. Flow cytometry and computer-assisted sperm analysis were used to evaluate changes in viability, ROS level and motility of spermatozoa. Western blotting, in conjunction with two-dimensional electrophoresis (2D-oxyblot) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight spectrometry, was employed to identify and quantify the specifically carbonylated spermatozoa proteins. Cryopreservation decreased motility and viability but increased the number of ROS-positive cells. We identified 11 proteins (ropporin-1, outer dense fiber protein 2, glutathione S-transferase, triosephosphate isomerase, capping protein beta 3 isoform, actin-related protein M1, actin-related protein T2, NADH dehydrogenase, isocitrate dehydrogenase, cilia- and flagella-associated protein 161, phosphatidylethanolamine-binding protein 4) showing differences in protein carbonylation in response to cryopreservation. The identified proteins are associated with cytoskeleton and flagella organization, detoxification and energy metabolism. Moreover, almost all of the identified carbonylated proteins are involved in capacitation. Our results indicate for the first time that cryopreservation induces oxidation of selected sperm proteins via carbonylation. We suggest that carbonylation of sperm proteins could be a direct result of oxidative stress and potentially lead to disturbances of capacitation-involved proteins or could indicate cryopreservation-induced premature capacitation. Copyright © 2017. Published by Elsevier Inc.

  11. Flagellar oscillation: a commentary on proposed mechanisms.

    PubMed

    Woolley, David M

    2010-08-01

    Eukaryotic flagella and cilia have a remarkably uniform internal 'engine' known as the '9+2' axoneme. With few exceptions, the function of cilia and flagella is to beat rhythmically and set up relative motion between themselves and the liquid that surrounds them. The molecular basis of axonemal movement is understood in considerable detail, with the exception of the mechanism that provides its rhythmical or oscillatory quality. Some kind of repetitive 'switching' event is assumed to occur; there are several proposals regarding the nature of the 'switch' and how it might operate. Herein I first summarise all the factors known to influence the rate of the oscillation (the beating frequency). Many of these factors exert their effect through modulating the mean sliding velocity between the nine doublet microtubules of the axoneme, this velocity being the determinant of bend growth rate and bend propagation rate. Then I explain six proposed mechanisms for flagellar oscillation and review the evidence on which they are based. Finally, I attempt to derive an economical synthesis, drawing for preference on experimental research that has been minimally disruptive of the intricate structure of the axoneme. The 'provisional synthesis' is that flagellar oscillation emerges from an effect of passive sliding direction on the dynein arms. Sliding in one direction facilitates force-generating cycles and dynein-to-dynein synchronisation along a doublet; sliding in the other direction is inhibitory. The direction of the initial passive sliding normally oscillates because it is controlled hydrodynamically through the alternating direction of the propulsive thrust. However, in the absence of such regulation, there can be a perpetual, mechanical self-triggering through a reversal of sliding direction due to the recoil of elastic structures that deform as a response to the prior active sliding. This provisional synthesis may be a useful basis for further examination of the problem.

  12. Squirmers with swirl: a model for Volvox swimming.

    PubMed

    Pedley, T J; Brumley, D R; Goldstein, R E

    2016-07-10

    Colonies of the green alga Volvox are spheres that swim through the beating of pairs of flagella on their surface somatic cells. The somatic cells themselves are mounted rigidly in a polymeric extracellular matrix, fixing the orientation of the flagella so that they beat approximately in a meridional plane, with axis of symmetry in the swimming direction, but with a roughly [Formula: see text] azimuthal offset which results in the eponymous rotation of the colonies about a body-fixed axis. Experiments on colonies of Volvox carteri held stationary on a micropipette show that the beating pattern takes the form of a symplectic metachronal wave (Brumley  et al.   Phys. Rev. Lett. , vol. 109, 2012, 268102). Here we extend the Lighthill/Blake axisymmetric, Stokes-flow model of a free-swimming spherical squirmer (Lighthill  Commun. Pure Appl. Maths , vol. 5, 1952, pp. 109-118; Blake  J. Fluid Mech. , vol. 46, 1971 b , pp. 199-208) to include azimuthal swirl. The measured kinematics of the metachronal wave for 60 different colonies are used to calculate the coefficients in the eigenfunction expansions and hence predict the mean swimming speeds and rotation rates, proportional to the square of the beating amplitude, as functions of colony radius. As a test of the squirmer model, the results are compared with measurements (Drescher  et al.   Phys. Rev. Lett. , vol. 102, 2009, 168101) of the mean swimming speeds and angular velocities of a different set of 220 colonies, also given as functions of colony radius. The predicted variation with radius is qualitatively correct, but the model underestimates both the mean swimming speed and the mean angular velocity unless the amplitude of the flagellar beat is taken to be larger than previously thought. The reasons for this discrepancy are discussed.

  13. A Unimodal Species Response Model Relating Traits to Environment with Application to Phytoplankton Communities

    PubMed Central

    Jamil, Tahira; Kruk, Carla; ter Braak, Cajo J. F.

    2014-01-01

    In this paper we attempt to explain observed niche differences among species (i.e. differences in their distribution along environmental gradients) by differences in trait values (e.g. volume) in phytoplankton communities. For this, we propose the trait-modulated Gaussian logistic model in which the niche parameters (optimum, tolerance and maximum) are made linearly dependent on species traits. The model is fitted to data in the Bayesian framework using OpenBUGS (Bayesian inference Using Gibbs Sampling) to identify according to which environmental variables there is niche differentiation among species and traits. We illustrate the method with phytoplankton community data of 203 lakes located within four climate zones and associated measurements on 11 environmental variables and six morphological species traits of 60 species. Temperature and chlorophyll-a (with opposite signs) described well the niche structure of all species. Results showed that about 25% of the variance in the niche centres with respect to chlorophyll-a were accounted for by traits, whereas niche width and maximum could not be predicted by traits. Volume, mucilage, flagella and siliceous exoskeleton are found to be the most important traits to explain the niche centres. Species were clustered in two groups with different niches structures, group 1 high temperature-low chlorophyll-a species and group 2 low temperature-high chlorophyll-a species. Compared to group 2, species in group 1 had larger volume but lower surface area, had more often flagella but neither mucilage nor siliceous exoskeleton. These results might help in understanding the effect of environmental changes on phytoplankton community. The proposed method, therefore, can also apply to other aquatic or terrestrial communities for which individual traits and environmental conditioning factors are available. PMID:24835582

  14. Role of F1C fimbriae, flagella, and secreted bacterial components in the inhibitory effect of probiotic Escherichia coli Nissle 1917 on atypical enteropathogenic E. coli infection.

    PubMed

    Kleta, Sylvia; Nordhoff, Marcel; Tedin, Karsten; Wieler, Lothar H; Kolenda, Rafal; Oswald, Sibylle; Oelschlaeger, Tobias A; Bleiss, Wilfried; Schierack, Peter

    2014-05-01

    Enteropathogenic Escherichia coli (EPEC) is recognized as an important intestinal pathogen that frequently causes acute and persistent diarrhea in humans and animals. The use of probiotic bacteria to prevent diarrhea is gaining increasing interest. The probiotic E. coli strain Nissle 1917 (EcN) is known to be effective in the treatment of several gastrointestinal disorders. While both in vitro and in vivo studies have described strong inhibitory effects of EcN on enteropathogenic bacteria, including pathogenic E. coli, the underlying molecular mechanisms remain largely unknown. In this study, we examined the inhibitory effect of EcN on infections of porcine intestinal epithelial cells with atypical enteropathogenic E. coli (aEPEC) with respect to single infection steps, including adhesion, microcolony formation, and the attaching and effacing phenotype. We show that EcN drastically reduced the infection efficiencies of aEPEC by inhibiting bacterial adhesion and growth of microcolonies, but not the attaching and effacing of adherent bacteria. The inhibitory effect correlated with EcN adhesion capacities and was predominantly mediated by F1C fimbriae, but also by H1 flagella, which served as bridges between EcN cells. Furthermore, EcN seemed to interfere with the initial adhesion of aEPEC to host cells by secretion of inhibitory components. These components do not appear to be specific to EcN, but we propose that the strong adhesion capacities enable EcN to secrete sufficient local concentrations of the inhibitory factors. The results of this study are consistent with a mode of action whereby EcN inhibits secretion of virulence-associated proteins of EPEC, but not their expression.

  15. Characterization of Aeromonas hydrophila Wound Pathotypes by Comparative Genomic and Functional Analyses of Virulence Genes

    PubMed Central

    Grim, Christopher J.; Kozlova, Elena V.; Sha, Jian; Fitts, Eric C.; van Lier, Christina J.; Kirtley, Michelle L.; Joseph, Sandeep J.; Read, Timothy D.; Burd, Eileen M.; Tall, Ben D.; Joseph, Sam W.; Horneman, Amy J.; Chopra, Ashok K.; Shak, Joshua R.

    2013-01-01

    ABSTRACT Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966T, and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966T. The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966T and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. PMID:23611906

  16. Structures of SAS-6 suggest its organization in centrioles.

    PubMed

    van Breugel, Mark; Hirono, Masafumi; Andreeva, Antonina; Yanagisawa, Haru-aki; Yamaguchi, Shoko; Nakazawa, Yuki; Morgner, Nina; Petrovich, Miriana; Ebong, Ima-Obong; Robinson, Carol V; Johnson, Christopher M; Veprintsev, Dmitry; Zuber, Benoît

    2011-03-04

    Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.

  17. Do cyanobacteria swim using traveling surface waves?

    PubMed Central

    Ehlers, K M; Samuel, A D; Berg, H C; Montgomery, R

    1996-01-01

    Bacteria that swim without the benefit of flagella might do so by generating longitudinal or transverse surface waves. For example, swimming speeds of order 25 microns/s are expected for a spherical cell propagating longitudinal waves of 0.2 micron length, 0.02 micron amplitude, and 160 microns/s speed. This problem was solved earlier by mathematicians who were interested in the locomotion of ciliates and who considered the undulations of the envelope swept out by ciliary tips. A new solution is given for spheres propagating sinusoidal waveforms rather than Legendre polynomials. The earlier work is reviewed and possible experimental tests are suggested. Images Fig. 1 PMID:8710872

  18. Distribution and Polymorphism of the Flagellin Genes from Isolates of Campylobacter coli and Campylobacter jejuni

    DTIC Science & Technology

    1993-05-01

    R. M . Barker, P. B. 51. Whitians, T. S., and R. A. Wilson. 1988. Genetic relationships Crichton , D. C. Old, 3. M . Musser, and T. S. Whittam. 1990...a, y and iden{ify •)y Mock • J" -- "--"/’•" i l i • • ELECTEI Iq S*/, o.o a•l "(3 ! : .• m -..- ,.,. • ! Ir,,Ji-- = •, / !.9 • > ,•=’:I-; / o•/ t...siderable genetic diversity among the fin genes in Campylo- structural diversity of flagellins which form complex flagella. acter spp. A ithough a m o f th

  19. Methods for imaging Shewanella oneidensis MR-1 nanofilaments.

    PubMed

    Ray, R; Lizewski, S; Fitzgerald, L A; Little, B; Ringeisen, B R

    2010-08-01

    Nanofilament production by Shewanella oneidensis MR-1 was evaluated as a function of lifestyle (planktonic vs. sessile) under aerobic and anaerobic conditions using different sample preparation techniques prior to imaging with scanning electron microscopy. Nanofilaments could be imaged on MR-1 cells grown in biofilms or planktonically under both aerobic and anaerobic batch culture conditions after fixation, critical point drying and coating with a conductive metal. Critical point drying was a requirement for imaging nanofilaments attached to planktonically grown MR-1 cells, but not for cells grown in a biofilm. Techniques described in this paper cannot be used to differentiate nanowires from pili or flagella.

  20. Propulsion of flexible polymer structures in a rotating magnetic field.

    PubMed

    Garstecki, Piotr; Tierno, Pietro; Weibel, Douglas B; Sagués, Francesc; Whitesides, George M

    2009-05-20

    We demonstrate a new concept for the propulsions of abiological structures at low Reynolds numbers. The approach is based on the design of flexible, planar polymer structures with a permanent magnetic moment. In the presence of an external, uniform, rotating magnetic field these structures deform into three-dimensional shapes that have helical symmetry and translate linearly through fluids at Re between 10(-1) and 10. The mechanism for the motility of these structures involves reversible deformation that breaks their planar symmetry and generates propulsion. These elastic propellers resemble microorganisms that use rotational mechanisms based on flagella and cilia for their motility in fluids at low Re.

  1. Biofilm Matrix Proteins.

    PubMed

    Fong, Jiunn N C; Yildiz, Fitnat H

    2015-04-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.

  2. Genome wide transcriptional profiling of Herbaspirillum seropedicae SmR1 grown in the presence of naringenin.

    PubMed

    Tadra-Sfeir, Michelle Z; Faoro, Helisson; Camilios-Neto, Doumit; Brusamarello-Santos, Liziane; Balsanelli, Eduardo; Weiss, Vinicius; Baura, Valter A; Wassem, Roseli; Cruz, Leonardo M; De Oliveira Pedrosa, Fábio; Souza, Emanuel M; Monteiro, Rose A

    2015-01-01

    Herbaspirillum seropedicae is a diazotrophic bacterium which associates endophytically with economically important gramineae. Flavonoids such as naringenin have been shown to have an effect on the interaction between H. seropedicae and its host plants. We used a high-throughput sequencing based method (RNA-Seq) to access the influence of naringenin on the whole transcriptome profile of H. seropedicae. Three hundred and four genes were downregulated and seventy seven were upregulated by naringenin. Data analysis revealed that genes related to bacterial flagella biosynthesis, chemotaxis and biosynthesis of peptidoglycan were repressed by naringenin. Moreover, genes involved in aromatic metabolism and multidrug transport efllux were actived.

  3. Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios.

    PubMed

    Lu, Renfei; Osei-Adjei, George; Huang, Xinxiang; Zhang, Yiquan

    2018-03-01

    Quorum sensing (QS), a cell-to-cell communication process, is widely distributed in the bacterial kingdom. Bacteria use QS to control gene expression in response to cell density by detecting the signal molecules called autoinducers. AphA protein is the master QS regulator of vibrios operating at low cell density. It regulates the expression of a variety of genes, especially those encoding virulence factors, flagella/motility and biofilm formation. The role and regulation of AphA in vibrios, especially in human pathogenic vibrios, are summarized in this review. Clarification of the roles of AphA will help us to understand the pathogenesis of vibrios.

  4. New Evidence for the Presence of Indigenous Microfossils in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Yu.

    2004-01-01

    We present additional evidence for the presence of indigenous microfossils in carbonaceous meteorites scanning electron micrograph studies of freshly fractured interior surfaces of pristine samples of the Murchison CM2 carbonaceous meteorite have revealed forms in-situ that are recognizable as biofilms as well as complex and highly structured forms similar to calcareous and siliceous microfossils. Some of the forms encountered are very well-preserved and exhibit complex associated microstructures similar to bacterial flagella. New images will be presented of forms recently encountered in carbonaceous meteorites and they will be compared with those of known microbial extremophiles. KEYWORDS: carbonaceous chondrites, Murchison, microfossils, extremophiles

  5. Bacterial determinants of the social behavior of Bacillus subtilis.

    PubMed

    Romero, Diego

    2013-09-01

    Bacteria utilize sophisticated cellular machinery to sense environmental changes and coordinate the most appropriate response. Fine sensors located on cell surfaces recognize a myriad of triggers and initiate genetic cascades leading to activation or repression of certain groups of genes. Structural elements such as pilli, exopolysaccharides and flagella are also exposed at the cell surface and contribute to modulating the intimate interaction with surfaces and host cells. This review will cover the latest advances in our understanding of the biology and functionality of these bacterial determinants within the context of biofilm formation of Bacillus subtilis. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Flagellar dynamics of a connected chain of active, polar, Brownian particles

    PubMed Central

    Chelakkot, Raghunath; Gopinath, Arvind; Mahadevan, L.; Hagan, Michael F.

    2014-01-01

    We show that active, self-propelled particles that are connected together to form a single chain that is anchored at one end can produce the graceful beating motions of flagella. Changing the boundary condition from a clamp to a pivot at the anchor leads to steadily rotating tight coils. Strong noise in the system disrupts the regularity of the oscillations. We use a combination of detailed numerical simulations, mean-field scaling analysis and first passage time theory to characterize the phase diagram as a function of the filament length, passive elasticity, propulsion force and noise. Our study suggests minimal experimental tests for the onset of oscillations in an active polar chain. PMID:24352670

  7. Flagellar generated flow mediates attachment of Giardia lamblia

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Luo, Haibei; Picou, Theodore; McAllister, Ryan; Elmendorf, Heidi

    2011-03-01

    Giardia lamblia is a protozoan parasite responsible for widespread diarrheal disease in humans and animals worldwide. Attachment to the host intestinal mucosa and resistance to peristalsis is necessary for establishing infection, but the physical basis for this attachment is poorly understood. We report results from TIRF and confocal fluorescence microscopy that demonstrate that the regular beating of the posterior flagella generate a flow through the ventral disk, a suction-cup shaped structure that is against the substrate during attachment. Finite element simulations are used to compare the negative pressure generated by the flow to the measured attachment force and the expected performance of the flagellar pump. NIH grant 1R21AI062934-0.

  8. Active chiral fluids.

    PubMed

    Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F

    2012-09-01

    Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.

  9. Flagellar dynamics of a connected chain of active, polar, Brownian particles.

    PubMed

    Chelakkot, Raghunath; Gopinath, Arvind; Mahadevan, L; Hagan, Michael F

    2014-03-06

    We show that active, self-propelled particles that are connected together to form a single chain that is anchored at one end can produce the graceful beating motions of flagella. Changing the boundary condition from a clamp to a pivot at the anchor leads to steadily rotating tight coils. Strong noise in the system disrupts the regularity of the oscillations. We use a combination of detailed numerical simulations, mean-field scaling analysis and first passage time theory to characterize the phase diagram as a function of the filament length, passive elasticity, propulsion force and noise. Our study suggests minimal experimental tests for the onset of oscillations in an active polar chain.

  10. Genome wide transcriptional profiling of Herbaspirillum seropedicae SmR1 grown in the presence of naringenin

    PubMed Central

    Tadra-Sfeir, Michelle Z.; Faoro, Helisson; Camilios-Neto, Doumit; Brusamarello-Santos, Liziane; Balsanelli, Eduardo; Weiss, Vinicius; Baura, Valter A.; Wassem, Roseli; Cruz, Leonardo M.; De Oliveira Pedrosa, Fábio; Souza, Emanuel M.; Monteiro, Rose A.

    2015-01-01

    Herbaspirillum seropedicae is a diazotrophic bacterium which associates endophytically with economically important gramineae. Flavonoids such as naringenin have been shown to have an effect on the interaction between H. seropedicae and its host plants. We used a high-throughput sequencing based method (RNA-Seq) to access the influence of naringenin on the whole transcriptome profile of H. seropedicae. Three hundred and four genes were downregulated and seventy seven were upregulated by naringenin. Data analysis revealed that genes related to bacterial flagella biosynthesis, chemotaxis and biosynthesis of peptidoglycan were repressed by naringenin. Moreover, genes involved in aromatic metabolism and multidrug transport efllux were actived. PMID:26052319

  11. The tubulins of animals, plants, fungi and protists implications for metazoan evolution

    NASA Astrophysics Data System (ADS)

    Little, Melvyn; Ludueña, Richard F.; Morejohn, Louis C.; Asnes, Clara; Hoffman, Eugene

    1984-03-01

    α-Tubulin subunits from trout (S. gairdneri) sperm tails, sea urchin (S. purpuratus) cilia, protistan alga (C. elongatum) flagella and rose (Paul's Scarlet) cytoplasm have been characterized by limited proteolytic cleavage with the enzymeStaphylococcus aureus protease and electrophoresis of the digestion products on SDS-PAGE. The resulting patterns corresponded to either of two major types representative of animal and non-animal α-tubulins, respectively. A total of 28 α-tubulins have now been characterized by this method. They are classified in this paper according to the type of cleavage pattern generated by the enzymeS. aureus protease. The implications of these results for metazoan evolution are discussed.

  12. The flagellar protein FLAG1/SMP1 is a candidate for Leishmania-sand fly interaction.

    PubMed

    Di-Blasi, Tatiana; Lobo, Amanda R; Nascimento, Luanda M; Córdova-Rojas, Jose L; Pestana, Karen; Marín-Villa, Marcel; Tempone, Antonio J; Telleria, Erich L; Ramalho-Ortigão, Marcelo; McMahon-Pratt, Diane; Traub-Csekö, Yara M

    2015-03-01

    Leishmaniasis is a serious problem that affects mostly poor countries. Various species of Leishmania are the agents of the disease, which take different clinical manifestations. The parasite is transmitted by sandflies, predominantly from the Phlebotomus genus in the Old World and Lutzomyia in the New World. During development in the gut, Leishmania must survive various challenges, which include avoiding being expelled with blood remnants after digestion. It is believed that attachment to the gut epithelium is a necessary step for vector infection, and molecules from parasites and sand flies have been implicated in this attachment. In previous work, monoclonal antibodies were produced against Leishmania. Among these an antibody was obtained against Leishmania braziliensis flagella, which blocked the attachment of Leishmania panamensis flagella to Phlebotomus papatasi guts. The protein recognized by this antibody was identified and named FLAG1, and the complete FLAG1 gene sequence was obtained. This protein was later independently identified as a small, myristoylated protein and called SMP1, so from now on it will be denominated FLAG1/SMP1. The FLAG1/SMP1 gene is expressed in all developmental stages of the parasite, but has higher expression in promastigotes. The anti-FLAG1/SMP1 antibody recognized the flagellum of all Leishmania species tested and generated the expected band by western blots. This antibody was used in attachment and infection blocking experiments. Using the New World vector Lutzomyia longipalpis and Leishmania infantum chagasi, no inhibition of attachment ex vivo or infection in vivo was seen. On the other hand, when the Old World vectors P. papatasi and Leishmania major were used, a significant decrease of both attachment and infection were seen in the presence of the antibody. We propose that FLAG1/SMP1 is involved in the attachment/infection of Leishmania in the strict vector P. papatasi and not the permissive vector L. longipalpis.

  13. Carvacrol Induces Heat Shock Protein 60 and Inhibits Synthesis of Flagellin in Escherichia coli O157:H7▿

    PubMed Central

    Burt, Sara A.; van der Zee, Ruurd; Koets, Ad P.; de Graaff, Anko M.; van Knapen, Frans; Gaastra, Wim; Haagsman, Henk P.; Veldhuizen, Edwin J. A.

    2007-01-01

    The essential oils of oregano and thyme are active against a number of food-borne pathogens, such as Escherichia coli O157:H7. Carvacrol is one of the major antibacterial components of these oils, and p-cymene is thought to be its precursor in the plant. The effects of carvacrol and p-cymene on protein synthesis in E. coli O157:H7 ATCC 43895 cells were investigated. Bacteria were grown overnight in Mueller-Hinton broth with a sublethal concentration of carvacrol or p-cymene, and their protein compositions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by Western blotting. The presence of 1 mM carvacrol during overnight incubation caused E. coli O157:H7 to produce significant amounts of heat shock protein 60 (HSP60) (GroEL) (P < 0.05) and inhibited the synthesis of flagellin highly significantly (P < 0.001), causing cells to be aflagellate and therefore nonmotile. The amounts of HSP70 (DnaK) were not significantly affected. p-Cymene at 1 mM or 10 mM did not induce HSP60 or HSP70 in significant amounts and did not have a significant effect on flagellar synthesis. Neither carvacrol (0.3, 0.5, 0.8, or 1 mM) nor p-cymene (0.3, 0.5, or 0.8 mM) treatment of cells in the mid-exponential growth phase induced significant amounts of HSP60 or HSP70 within 3 h, although numerical increases of HSP60 were observed. Motility decreased with increasing concentrations of both compounds, but existing flagella were not shed. This study is the first to demonstrate that essential oil components induce HSP60 in bacteria and that overnight incubation with carvacrol prevents the development of flagella in E. coli O157:H7. PMID:17526792

  14. Novel sex cells and evidence for sex pheromones in diatoms.

    PubMed

    Sato, Shinya; Beakes, Gordon; Idei, Masahiko; Nagumo, Tamotsu; Mann, David G

    2011-01-01

    Diatoms belong to the stramenopiles, one of the largest groups of eukaryotes, which are primarily characterized by a presence of an anterior flagellum with tubular mastigonemes and usually a second, smooth flagellum. Based on cell wall morphology, diatoms have historically been divided into centrics and pennates, of which only the former have flagella and only on the sperm. Molecular phylogenies show the pennates to have evolved from among the centrics. However, the timing of flagellum loss--whether before the evolution of the pennate lineage or after--is unknown, because sexual reproduction has been so little studied in the 'araphid' basal pennate lineages, to which Pseudostaurosira belongs. Sexual reproduction of an araphid pennate, Pseudostaurosira trainorii, was studied with light microscopy (including time lapse observations and immunofluorescence staining observed under confocal scanning laser microscopy) and SEM. We show that the species produces motile male gametes. Motility is mostly associated with the extrusion and retrieval of microtubule-based 'threads', which are structures hitherto unknown in stramenopiles, their number varying from one to three per cell. We also report experimental evidence for sex pheromones that reciprocally stimulate sexualization of compatible clones and orientate motility of the male gametes after an initial 'random walk'. The threads superficially resemble flagella, in that both are produced by male gametes and contain microtubules. However, one striking difference is that threads cannot beat or undulate and have no motility of their own, and they do not bear mastigonemes. Threads are sticky and catch and draw objects, including eggs. The motility conferred by the threads is probably crucial for sexual reproduction of P. trainorii, because this diatom is non-motile in its vegetative stage but obligately outbreeding. Our pheromone experiments are the first studies in which gametogenesis has been induced in diatoms by cell-free exudates, opening new possibilities for molecular 'dissection' of sexualization.

  15. Detection of Naegleria Species in Environmental Samples from Peninsular Malaysia

    PubMed Central

    Ithoi, Init; Ahmad, Arine Fadzlun; Nissapatorn, Veeranoot; Lau, Yee Ling; Mahmud, Rohela; Mak, Joon Wah

    2011-01-01

    Background In Malaysia, researchers and medical practitioners are unfamiliar with Naegleria infections. Thus little is known about the existence of pathogenic Naegleria fowleri, and the resultant primary amoebic meningoencephalitis (PAM) is seldom included in the differential diagnosis of central nervous system infections. This study was conducted to detect the presence of Naegleria species in various environmental samples. Methods/Findings A total of 41 Naegleria-like isolates were isolated from water and dust samples. All these isolates were subjected to PCR using two primer sets designed from the ITS1-ITS2 regions. The N. fowleri species-specific primer set failed to produce the expected amplicon. The Naegleria genus-specific primers produced amplicons of 408 bp (35), 450 bp (2), 457 bp (2) or 381 bp (2) from all 41 isolates isolated from aquatic (33) and dust (8) samples. Analysis of the sequences from 10 representative isolates revealed that amplicons with fragments 408, 450 and 457 bp showed homology with non-pathogenic Naegleria species, and 381 bp showed homology with Vahlkampfia species. These results concurred with the morphological observation that all 39 isolates which exhibited flagella were Naegleria, while 2 isolates (AC7, JN034055 and AC8, JN034056) that did not exhibit flagella were Vahlkampfia species. Conclusion To date, pathogenic species of N. fowleri have not been isolated from Malaysia. All 39 isolates that produced amplicons (408, 450 and 457 bp) from the genus-specific primers were identified as being similar to nonpathogenic Naegleria. Amplicon 408 bp from 5 representative isolates showed 100% and 99.7% identity to Naegleria philippinensis isolate RJTM (AM167890) and is thus believed to be the most common species in our environment. Amplicons 450 bp and 457 bp were respectively believed to be from 2 new species of Naegleria, since representative isolates showed lower homology and had a longer base pair length when compared to the reference species in the Genbank, Naegleria schusteri (AJ566626) and Naegleria laresi (AJ566630), respectively. PMID:21915311

  16. The S-layer homology domain-containing protein SlhA from Paenibacillus alvei CCM 2051(T) is important for swarming and biofilm formation.

    PubMed

    Janesch, Bettina; Koerdt, Andrea; Messner, Paul; Schäffer, Christina

    2013-01-01

    Swarming and biofilm formation have been studied for a variety of bacteria. While this is well investigated for Gram-negative bacteria, less is known about Gram-positive bacteria, including Paenibacillus alvei, a secondary invader of diseased honeybee colonies infected with Melissococcus pluton, the causative agent of European foulbrood (EFB). Paenibacillus alvei CCM 2051(T) is a Gram-positive bacterium which was recently shown to employ S-layer homology (SLH) domains as cell wall targeting modules to display proteins on its cell surface. This study deals with the newly identified 1335-amino acid protein SlhA from P. alvei which carries at the C‑terminus three consecutive SLH-motifs containing the predicted binding sequences SRGE, VRQD, and LRGD instead of the common TRAE motif. Based on the proof of cell surface location of SlhA by fluorescence microscopy using a SlhA-GFP chimera, the binding mechanism was investigated in an in vitro assay. To unravel a putative function of the SlhA protein, a knockout mutant was constructed. Experimental data indicated that one SLH domain is sufficient for anchoring of SlhA to the cell surface, and the SLH domains of SlhA recognize both the peptidoglycan and the secondary cell wall polymer in vitro. This is in agreement with previous data from the S-layer protein SpaA, pinpointing a wider utilization of that mechanism for cell surface display of proteins in P. alvei. Compared to the wild-type bacterium ΔslhA revealed changed colony morphology, loss of swarming motility and impaired biofilm formation. The phenotype was similar to that of the flagella knockout Δhag, possibly due to reduced EPS production influencing the functionality of the flagella of ΔslhA. This study demonstrates the involvement of the SLH domain-containing protein SlhA in swarming and biofilm formation of P. alvei CCM 2051(T).

  17. Conservation of σ28-Dependent Non-Coding RNA Paralogs and Predicted σ54-Dependent Targets in Thermophilic Campylobacter Species

    PubMed Central

    Le, My Thanh; van Veldhuizen, Mart; Porcelli, Ida; Bongaerts, Roy J.; Gaskin, Duncan J. H.; Pearson, Bruce M.; van Vliet, Arnoud H. M.

    2015-01-01

    Assembly of flagella requires strict hierarchical and temporal control via flagellar sigma and anti-sigma factors, regulatory proteins and the assembly complex itself, but to date non-coding RNAs (ncRNAs) have not been described to regulate genes directly involved in flagellar assembly. In this study we have investigated the possible role of two ncRNA paralogs (CjNC1, CjNC4) in flagellar assembly and gene regulation of the diarrhoeal pathogen Campylobacter jejuni. CjNC1 and CjNC4 are 37/44 nt identical and predicted to target the 5' untranslated region (5' UTR) of genes transcribed from the flagellar sigma factor σ54. Orthologs of the σ54-dependent 5' UTRs and ncRNAs are present in the genomes of other thermophilic Campylobacter species, and transcription of CjNC1 and CNC4 is dependent on the flagellar sigma factor σ28. Surprisingly, inactivation and overexpression of CjNC1 and CjNC4 did not affect growth, motility or flagella-associated phenotypes such as autoagglutination. However, CjNC1 and CjNC4 were able to mediate sequence-dependent, but Hfq-independent, partial repression of fluorescence of predicted target 5' UTRs in an Escherichia coli-based GFP reporter gene system. This hints towards a subtle role for the CjNC1 and CjNC4 ncRNAs in post-transcriptional gene regulation in thermophilic Campylobacter species, and suggests that the currently used phenotypic methodologies are insufficiently sensitive to detect such subtle phenotypes. The lack of a role of Hfq in the E. coli GFP-based system indicates that the CjNC1 and CjNC4 ncRNAs may mediate post-transcriptional gene regulation in ways that do not conform to the paradigms obtained from the Enterobacteriaceae. PMID:26512728

  18. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae

    PubMed Central

    Häse, Claudia C.; Mekalanos, John J.

    1999-01-01

    The expression of several virulence factors of Vibrio cholerae is coordinately regulated by the ToxT molecule and the membrane proteins TcpP/H and ToxR/S, which are required for toxT transcription. To identify proteins that negatively affect toxT transcription, we screened transposon mutants of V. cholerae carrying a chromosomally integrated toxT∷lacZ reporter construct for darker blue colonies on media containing 5-bromo-4-chlor-3-indolyl β-d galactoside (X-gal). Two mutants had transposon insertions in a region homologous to the nqr gene cluster of Vibrio alginolyticus, encoding a sodium-translocating NADH–ubiquinone oxidoreductase (NQR). In V. alginolyticus, NQR is a respiration-linked Na+ extrusion pump generating a sodium motive force that can be used for solute import, ATP synthesis, and flagella rotation. Inhibition of NQR enzyme function in V. cholerae by the specific inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO) resulted in elevated toxT∷lacZ activity. Increased toxT∷lacZ expression in an nqr mutant strain compared with the parental strain was observed when the TcpP/H molecules alone were strongly expressed, suggesting that the negative effect of the NQR complex on toxT transcription is mediated through TcpP/H. However, the ability of the TcpP/H proteins to activate the toxT∷lacZ reporter construct was greatly diminished in the presence of high NaCl concentrations in the growth medium. The flagellar motor of V. cholerae appears to be driven by a sodium motive force, and modulation of flagella rotation by inhibitory drugs, high media viscosity, or specific mutations resulted in increases of toxT∷lacZ expression. Thus, the regulation of the main virulence factors of V. cholerae appears to be modulated by endogenous and exogenous sodium levels in a complex way. PMID:10077658

  19. Isolation of Salmonella mutants resistant to the inhibitory effect of Salicylidene acylhydrazides on flagella-mediated motility.

    PubMed

    Martinez-Argudo, Isabel; Veenendaal, Andreas K J; Liu, Xia; Roehrich, A Dorothea; Ronessen, Maria C; Franzoni, Giulia; van Rietschoten, Katerine N; Morimoto, Yusuke V; Saijo-Hamano, Yumiko; Avison, Matthew B; Studholme, David J; Namba, Keiichi; Minamino, Tohru; Blocker, Ariel J

    2013-01-01

    Salicylidene acylhydrazides identified as inhibitors of virulence-mediating type III secretion systems (T3SSs) potentially target their inner membrane export apparatus. They also lead to inhibition of flagellar T3SS-mediated swimming motility in Salmonella enterica serovar. Typhimurium. We show that INP0404 and INP0405 act by reducing the number of flagella/cell. These molecules still inhibit motility of a Salmonella ΔfliH-fliI-fliJ/flhB((P28T)) strain, which lacks three soluble components of the flagellar T3S apparatus, suggesting that they are not the target of this drug family. We implemented a genetic screen to search for the inhibitors' molecular target(s) using motility assays in the ΔfliH-fliI/flhB((P28T)) background. Both mutants identified were more motile than the background strain in the absence of the drugs, although HM18 was considerably more so. HM18 was more motile than its parent strain in the presence of both drugs while DI15 was only insensitive to INP0405. HM18 was hypermotile due to hyperflagellation, whereas DI15 was not hyperflagellated. HM18 was also resistant to a growth defect induced by high concentrations of the drugs. Whole-genome resequencing of HM18 indicated two alterations within protein coding regions, including one within atpB, which encodes the inner membrane a-subunit of the F(O)F(1)-ATP synthase. Reverse genetics indicated that the alteration in atpB was responsible for all of HM18's phenotypes. Genome sequencing of DI15 uncovered a single A562P mutation within a gene encoding the flagellar inner membrane protein FlhA, the direct role of which in mediating drug insensitivity could not be confirmed. We discuss the implications of these findings in terms of T3SS export apparatus function and drug target identification.

  20. Melanization and Pathogenicity in the Insect, Tenebrio molitor, and the Crustacean, Pacifastacus leniusculus, by Aeromonas hydrophila AH-3

    PubMed Central

    Noonin, Chadanat; Jiravanichpaisal, Pikul; Söderhäll, Irene; Merino, Susana; Tomás, Juan M.; Söderhäll, Kenneth

    2010-01-01

    Aeromonas hydrophila is the most common Aeromonas species causing infections in human and other animals such as amphibians, reptiles, fish and crustaceans. Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Several mutant strains of A. hydrophila AH-3 were initially used to study their virulence in two animal species, Pacifastacus leniusculus (crayfish) and Tenebrio molitor larvae (mealworm). The AH-3 strains used in this study have mutations in genes involving the synthesis of flagella, LPS structures, secretion systems, and some other factors, which have been reported to be involved in A. hydrophila pathogenicity. Our study shows that the LPS (O-antigen and external core) is the most determinant A. hydrophila AH-3 virulence factor in both animals. Furthermore, we studied the immune responses of these hosts to infection of virulent or non-virulent strains of A. hydrophila AH-3. The AH-3 wild type (WT) containing the complete LPS core is highly virulent and this bacterium strongly stimulated the prophenoloxidase activating system resulting in melanization in both crayfish and mealworm. In contrast, the ΔwaaE mutant which has LPS without O-antigen and external core was non-virulent and lost ability to stimulate this system and melanization in these two animals. The high phenoloxidase activity found in WT infected crayfish appears to result from a low expression of pacifastin, a prophenoloxidase activating enzyme inhibitor, and this gene expression was not changed in the ΔwaaE mutant infected animal and consequently phenoloxidase activity was not altered as compared to non-infected animals. Therefore we show that the virulence factors of A. hydrophila are the same regardless whether an insect or a crustacean is infected and the O-antigen and external core is essential for activation of the proPO system and as virulence factors for this bacterium. PMID:21206752

  1. Receptor Diversity and Host Interaction of Bacteriophages Infecting Salmonella enterica Serovar Typhimurium

    PubMed Central

    Kim, Hyeryen; Choi, Younho; Heu, Sunggi; Ryu, Sangryeol

    2012-01-01

    Background Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. Methodology/Principal Findings Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. Conclusions/Significance In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella. PMID:22927964

  2. The Bacterial Cytoskeleton Modulates Motility, Type 3 Secretion, and Colonization in Salmonella

    PubMed Central

    Bulmer, David M.; Kharraz, Lubna; Grant, Andrew J.; Dean, Paul; Morgan, Fiona J. E.; Karavolos, Michail H.; Doble, Anne C.; McGhie, Emma J.; Koronakis, Vassilis; Daniel, Richard A.; Mastroeni, Pietro; Anjam Khan, C. M.

    2012-01-01

    Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC. PMID:22291596

  3. Symbiotic theory of the origin of eukaryotic organelles; criteria for proof.

    PubMed

    Margulis, L

    1975-01-01

    The purpose of a scientific theory is to unite apparently disparate observations into a coherent set of generalizations with predictive power. Historical theories, which necessarily treat complex irreversible events, can never be directly tested. However they certainly can lead to predictions. The 'extreme' version of the serial endosymbiotic theory argues that three classes of eukaryotic organelles had free-living ancestors: mitochondria, basal bodies/flagella/cilia [(9 + 2) homologues] and photosynthetic plastids. Many lines of evidence support this theory and can be interpreted in relation to one another on the basis of this theory. Even if this theory should eventually be proved wrong it has the real advantage of generating a large number of unique experimentally verifiable hypotheses.

  4. Centrioles in flies: the exception to the rule?

    PubMed

    Gogendeau, Delphine; Basto, Renata

    2010-04-01

    Centrioles and basal bodies are MT based structures that present a highly conserved ninefold symmetry. Centrioles can be found at the core of the centrosome where they participate in PCM recruitment and organization, contributing to cytoplasmic MT nucleation. Basal bodies are normally located closely to the plasma membrane where they are responsible for axoneme assembly to form structures such as cilia or flagella. While it is well accepted that these organelles have important roles in cell and tissue organization, their contribution to certain phases of animal development is still not entirely established. Here we review the role of centrosomes and cilia in Drosophila melanogaster and briefly discuss the implications of these findings to other model organisms. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Spiroplasma swim by a processive change in body helicity.

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua

    2006-03-01

    Microscopic organisms must rely on very different strategies than their macroscopic counterparts to swim through liquid. To date, the best understood method for prokaryotic swimming employs the rotation of flagella. I will present data that Spiroplasma, tiny helical bacteria that infect plants and insects, use a very different approach. By measuring cell kinematics during free swimming, we find that propulsion is generated by the propagation of kink pairs down the length of the cell body. A processive change in the helicity of the body creates these waves and enables directional movement. Unlike the motion of other helical swimmers such as Spirochetes, Spiroplasma swimming velocity increases with increasing viscosity. In addition, cell morphological parameters such as helical pitch and cell length influence swimming velocity.

  6. Fast-Moving Bacteria Self-Organize into Active Two-Dimensional Crystals of Rotating Cells

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander P.; Wu, Xiao-Lun; Libchaber, Albert

    2015-04-01

    We investigate a new form of collective dynamics displayed by Thiovulum majus, one of the fastest-swimming bacteria known. Cells spontaneously organize on a surface into a visually striking two-dimensional hexagonal lattice of rotating cells. As each constituent cell rotates its flagella, it creates a tornadolike flow that pulls neighboring cells towards and around it. As cells rotate against their neighbors, they exert forces on one another, causing the crystal to rotate and cells to reorganize. We show how these dynamics arise from hydrodynamic and steric interactions between cells. We derive the equations of motion for a crystal, show that this model explains several aspects of the observed dynamics, and discuss the stability of these active crystals.

  7. Engineering building blocks for self-assembling protein nanoparticles

    PubMed Central

    2010-01-01

    Like natural viruses, manmade protein cages for drug delivery are to be ideally formed by repetitive subunits with self-assembling properties, mimicking viral functions and molecular organization. Naturally formed nanostructures (such as viruses, flagella or simpler protein oligomers) can be engineered to acquire specific traits of interest in biomedicine, for instance through the addition of cell targeting agents for desired biodistribution and specific delivery of associated drugs. However, fully artificial constructs would be highly desirable regarding finest tuning and adaptation to precise therapeutic purposes. Although engineering of protein assembling is still in its infancy, arising principles and promising strategies of protein manipulation point out the rational construction of nanoscale protein cages as a feasible concept, reachable through conventional recombinant DNA technologies and microbial protein production. PMID:21192790

  8. Advanced methods for controlling untethered magnetic devices using rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Mahoney, Arthur W., Jr.

    This dissertation presents results documenting advancements on the control of untethered magnetic devices, such as magnetic "microrobots" and magnetically actuated capsule endoscopes, motivated by problems in minimally invasive medicine. This dissertation focuses on applying rotating magnetic fields for magnetic manipulation. The contributions include advancements in the way that helical microswimmers (devices that mimic the propulsion of bacterial flagella) are controlled in the presence of gravitational forces, advancements in ways that groups of untethered magnetic devices can be differentiated and semi-independently controlled, advancements in the way that untethered magnetic device can be controlled with a single rotating permanent magnet, and an improved understanding in the nature of the magnetic force applied to an untethered device by a rotating magnet.

  9. Long-range interactions, wobbles, and phase defects in chains of model cilia

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas R.; Bruot, Nicolas; Kotar, Jurij; Goldstein, Raymond E.; Cicuta, Pietro; Polin, Marco

    2016-12-01

    Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.

  10. Development of an aptamer-ampicillin conjugate for treating biofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lijuan, Cheng; Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208; Xing, Yan

    Biofilm formation involves the development of extracellular matrix and initially depends on adherence and tropism by flagellar movement. With the widespread development of antibiotic resistance and tolerance of biofilms, there is a growing need for novel anti-infective strategies. No currently approved medications specifically target biofilms. Aptamers are single-stranded nucleic acid molecules that may bind to their targets with high affinity and affect the target functions. We developed a bifunctional conjugate by linking an aptamer targeting bacterial flagella with ampicillin. We investigated its influence on biofilm prevention and dissolution by ultraviolet–visible spectrophotometry, inverted microscopy, and atomic force microscopy. This conjugate hadmore » distinctive antibacterial activity. Notably, the conjugate was more active than either component, and thus had a synergistic effect against biofilms.« less

  11. Structural differences in the bacterial flagellar motor among bacterial species.

    PubMed

    Terashima, Hiroyuki; Kawamoto, Akihiro; Morimoto, Yusuke V; Imada, Katsumi; Minamino, Tohru

    2017-01-01

    The bacterial flagellum is a supramolecular motility machine consisting of the basal body as a rotary motor, the hook as a universal joint, and the filament as a helical propeller. Intact structures of the bacterial flagella have been observed for different bacterial species by electron cryotomography and subtomogram averaging. The core structures of the basal body consisting of the C ring, the MS ring, the rod and the protein export apparatus, and their organization are well conserved, but novel and divergent structures have also been visualized to surround the conserved structure of the basal body. This suggests that the flagellar motors have adapted to function in various environments where bacteria live and survive. In this review, we will summarize our current findings on the divergent structures of the bacterial flagellar motor.

  12. Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli.

    PubMed

    Prüss, B M

    1998-09-01

    Carbon sources that can be converted to acetate were added to the growth medium of Escherichia coli wild-type cells. Cells responded with an increased cell division rate. The addition of acetate also caused a decreased synthesis of flagella. Mutants in phosphotransacetylase, which are incapable of synthesizing acetyl phosphate, and mutants in the osmoregulator OmpR divided at a lower rate than did wild-type cells. The mutants did not increase their cell division rate upon the addition of serine, as observed for wild-type cells. These data are consistent with the idea that the previously described effect of serine upon the cell division rate is mediated by acetyl phosphate and phosphorylation of OmpR.

  13. Optimal swimming of a sheet.

    PubMed

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  14. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  15. What Organizes the Molecular Ballet that Promotes the Movement of the Axoneme in Such a Way that its Molecular Machinery Seems to be a Whole?

    NASA Astrophysics Data System (ADS)

    Cibert, Christian

    2005-03-01

    The axonemal machinery constitutes a highly organized structure whose mechanisms seem to be very simple but whose regulation remains unknown. This apparent simplicity is reinforced by the fact that many models are able to perfectly mimic the axonemal wave trains that propagate along cilia and flagella. However nobody knows what are the actual mechanisms that coordinate the molecular ballet that exist during the beat. Here we present some theoretical elements that show that if the radial spokes are one of the main elements that promote axonemal regulation, they must be involved in a complex mechanism that makes the axoneme a discrete structure whose regulation could depend on local entropy that promotes the emergence of new molecular properties.

  16. Plant Innate Immunity Induced by Flagellin Suppresses the Hypersensitive Response in Non-Host Plants Elicited by Pseudomonas syringae pv. averrhoi

    PubMed Central

    Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen

    2012-01-01

    A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction. PMID:22911741

  17. Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi.

    PubMed

    Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen

    2012-01-01

    A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction.

  18. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies

    PubMed Central

    Dutta, Soumita

    2017-01-01

    ABSTRACT The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas. This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small changes in ciliary length by minimizing variability in the population. We find that this method alters the key relationship between cell size and the amount of protein accumulated for flagellar growth. This provides a rapid alternative to traditional methods of cell synchronization for uncovering novel regulators of cilia. PMID:28289724

  19. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

    PubMed

    Dutta, Soumita; Avasthi, Prachee

    2017-01-01

    The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small changes in ciliary length by minimizing variability in the population. We find that this method alters the key relationship between cell size and the amount of protein accumulated for flagellar growth. This provides a rapid alternative to traditional methods of cell synchronization for uncovering novel regulators of cilia.

  20. Novel genes associated with enhanced motility of Escherichia coli ST131

    PubMed Central

    Kakkanat, Asha; Phan, Minh-Duy; Lo, Alvin W.; Beatson, Scott A.

    2017-01-01

    Uropathogenic Escherichia coli (UPEC) is the cause of ~75% of all urinary tract infections (UTIs) and is increasingly associated with multidrug resistance. This includes UPEC strains from the recently emerged and globally disseminated sequence type 131 (ST131), which is now the dominant fluoroquinolone-resistant UPEC clone worldwide. Most ST131 strains are motile and produce H4-type flagella. Here, we applied a combination of saturated Tn5 mutagenesis and transposon directed insertion site sequencing (TraDIS) as a high throughput genetic screen and identified 30 genes associated with enhanced motility of the reference ST131 strain EC958. This included 12 genes that repress motility of E. coli K-12, four of which (lrhA, ihfA, ydiV, lrp) were confirmed in EC958. Other genes represented novel factors that impact motility, and we focused our investigation on characterisation of the mprA, hemK and yjeA genes. Mutation of each of these genes in EC958 led to increased transcription of flagellar genes (flhD and fliC), increased expression of the FliC flagellin, enhanced flagella synthesis and a hyper-motile phenotype. Complementation restored all of these properties to wild-type level. We also identified Tn5 insertions in several intergenic regions (IGRs) on the EC958 chromosome that were associated with enhanced motility; this included flhDC and EC958_1546. In both of these cases, the Tn5 insertions were associated with increased transcription of the downstream gene(s), which resulted in enhanced motility. The EC958_1546 gene encodes a phage protein with similarity to esterase/deacetylase enzymes involved in the hydrolysis of sialic acid derivatives found in human mucus. We showed that over-expression of EC958_1546 led to enhanced motility of EC958 as well as the UPEC strains CFT073 and UTI89, demonstrating its activity affects the motility of different UPEC strains. Overall, this study has identified and characterised a number of novel factors associated with enhanced UPEC motility. PMID:28489862

  1. Cilia- and Flagella-Associated Protein 69 Regulates Olfactory Transduction Kinetics in Mice

    PubMed Central

    Dong, Frederick N.

    2017-01-01

    Animals detect odorous chemicals through specialized olfactory sensory neurons (OSNs) that transduce odorants into neural electrical signals. We identified a novel and evolutionarily conserved protein, cilia- and flagella-associated protein 69 (CFAP69), in mice that regulates olfactory transduction kinetics. In the olfactory epithelium, CFAP69 is enriched in OSN cilia, where olfactory transduction occurs. Bioinformatic analysis suggests that a large portion of CFAP69 can form Armadillo-type α-helical repeats, which may mediate protein–protein interactions. OSNs lacking CFAP69, remarkably, displayed faster kinetics in both the on and off phases of electrophysiological responses at both the neuronal ensemble level as observed by electroolfactogram and the single-cell level as observed by single-cell suction pipette recordings. In single-cell analysis, OSNs lacking CFAP69 showed faster response integration and were able to fire APs more faithfully to repeated odor stimuli. Furthermore, both male and female mutant mice that specifically lack CFAP69 in OSNs exhibited attenuated performance in a buried food pellet test when a background of the same odor to the food pellet was present even though they should have better temporal resolution of coding olfactory stimulation at the peripheral. Therefore, the role of CFAP69 in the olfactory system seems to be to allow the olfactory transduction machinery to work at a precisely regulated range of response kinetics for robust olfactory behavior. SIGNIFICANCE STATEMENT Sensory receptor cells are generally thought to evolve to respond to sensory cues as fast as they can. This idea is consistent with mutational analyses in various sensory systems, where mutations of sensory receptor cells often resulted in reduced response size and slowed response kinetics. Contrary to this idea, we have found that there is a kinetic “damper” present in the olfactory transduction cascade of the mouse that slows down the response kinetics and, by doing so, it reduces the peripheral temporal resolution in coding odor stimuli and allows for robust olfactory behavior. This study should trigger a rethinking of the significance of the intrinsic speed of sensory transduction and the pattern of the peripheral coding of sensory stimuli. PMID:28495971

  2. In Helicobacter pylori auto-inducer-2, but not LuxS/MccAB catalysed reverse transsulphuration, regulates motility through modulation of flagellar gene transcription

    PubMed Central

    2010-01-01

    Background LuxS may function as a metabolic enzyme or as the synthase of a quorum sensing signalling molecule, auto-inducer-2 (AI-2); hence, the mechanism underlying phenotypic changes upon luxS inactivation is not always clear. In Helicobacter pylori, we have recently shown that, rather than functioning in recycling methionine as in most bacteria, LuxS (along with newly-characterised MccA and MccB), synthesises cysteine via reverse transsulphuration. In this study, we investigated whether and how LuxS controls motility of H. pylori, specifically if it has its effects via luxS-required cysteine metabolism or via AI-2 synthesis only. Results We report that disruption of luxS renders H. pylori non-motile in soft agar and by microscopy, whereas disruption of mccAHp or mccBHp (other genes in the cysteine provision pathway) does not, implying that the lost phenotype is not due to disrupted cysteine provision. The motility defect of the ΔluxSHp mutant was complemented genetically by luxSHp and also by addition of in vitro synthesised AI-2 or 4, 5-dihydroxy-2, 3-pentanedione (DPD, the precursor of AI-2). In contrast, exogenously added cysteine could not restore motility to the ΔluxSHp mutant, confirming that AI-2 synthesis, but not the metabolic effect of LuxS was important. Microscopy showed reduced number and length of flagella in the ΔluxSHp mutant. Immunoblotting identified decreased levels of FlaA and FlgE but not FlaB in the ΔluxSHp mutant, and RT-PCR showed that the expression of flaA, flgE, motA, motB, flhA and fliI but not flaB was reduced. Addition of DPD but not cysteine to the ΔluxSHp mutant restored flagellar gene transcription, and the number and length of flagella. Conclusions Our data show that as well as being a metabolic enzyme, H. pylori LuxS has an alternative role in regulation of motility by modulating flagellar transcripts and flagellar biosynthesis through production of the signalling molecule AI-2. PMID:20691071

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liolios, Konstantinos; Abt, Birte; Scheuner, Carmen

    Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacte- rium that is motile via periplasmic flagella. The type strain of the species, Z-7692T, was iso- lated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strainmore » to be pub- lished. The 3,285,855 bp long genome of strain Z-7692T with its 2,817 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  4. Transcriptomic Profiling Suggests That Promysalin Alters the Metabolic Flux, Motility, and Iron Regulation in Pseudomonas putida KT2440.

    PubMed

    Giglio, Krista M; Keohane, Colleen E; Stodghill, Paul V; Steele, Andrew D; Fetzer, Christian; Sieber, Stephan A; Filiatrault, Melanie J; Wuest, William M

    2018-06-05

    Promysalin, a secondary metabolite produced by P. putida RW10S1, is a narrow-spectrum antibiotic that targets P. aeruginosa over other Pseudomonas spp. P. putida KT2440, a nonproducing strain, displays increased swarming motility and decreased pyoverdine production in the presence of exogenous promysalin. Herein, proteomic and transcriptomic experiments were used to provide insight about how promysalin elicits responses in PPKT2440 and rationalize its species selectivity. RNA-sequencing results suggest that promysalin affects PPKT2440 by (1) increasing swarming in a flagella-independent manner; (2) causing cells to behave as if they were experiencing an iron-deficient environment, and (3) shifting metabolism away from glucose conversion to pyruvate via the Entner-Doudoroff pathway. These findings highlight nature's ability to develop small molecules with specific targets, resulting in exquisite selectivity.

  5. Soft micromachines with programmable motility and morphology

    PubMed Central

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J.; Pané, Salvador; Nelson, Bradley J.

    2016-01-01

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers. PMID:27447088

  6. Soft micromachines with programmable motility and morphology.

    PubMed

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J; Pané, Salvador; Nelson, Bradley J

    2016-07-22

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers.

  7. Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.

    PubMed

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G; Gompper, Gerhard

    2015-05-20

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.

  8. Analysis of Small Deformation of Helical Flagellum of Swimming Vibrio alginolyticus

    NASA Astrophysics Data System (ADS)

    Takano, Yasunari; Yoshida, Kazuki; Kudo, Seishi; Nishitoba, Megumi; Magariyama, Yukio

    The deformation of a flagellum of Vibrio alginolyticus, single-flagellate bacteria, is analyzed theoretically assuming the shape of the flagellum to be a circular helix. The viscous force exerted on the flagellum in aqueous fluid is estimated applying the resistive-force theory based on the Stokes flow. The moment of force in the flagellum are described in analytical expressions and also the curvature and the torsion of the deformed flagellum are expressed analytically according to the Kirchhoff rod model. The deformation of the flagellum is obtained numerically solving evolution equations which determine a space curve from the curvature and the torsion. Comparing variations of the pitch of helical flagella between the numerical solutions and the results of measurement, the flexural rigidity or the elastic bending coefficient for the flagellum of Vibrio alginolyticus is estimated.

  9. Uncovering the Mystery of Gliding Motility in the Myxobacteria

    PubMed Central

    Nan, Beiyan; Zusman, David R.

    2012-01-01

    Bacterial gliding motility is the smooth movement of cells on solid surfaces unaided by flagella or pili. Many diverse groups of bacteria exhibit gliding, but the mechanism of gliding motility has remained a mystery since it was first observed more than a century ago. Recent studies on the motility of Myxococcus xanthus, a soil myxobacterium, suggest a likely mechanism for gliding in this organism. About forty M. xanthus genes were shown to be involved in gliding motility, and some of their protein products were labeled and localized within cells. These studies suggest that gliding motility in M. xanthus involves large multiprotein structural complexes, regulatory proteins, and cytoskeletal filaments. In this review, we summarize recent experiments that provide the basis for this emerging view of M. xanthus motility. We also discuss alternative models for gliding. PMID:21910630

  10. Spata6 is required for normal assembly of the sperm connecting piece and tight head–tail conjunction

    PubMed Central

    Yuan, Shuiqiao; Stratton, Clifford J.; Bao, Jianqiang; Zheng, Huili; Bhetwal, Bhupal P.; Yanagimachi, Ryuzo; Yan, Wei

    2015-01-01

    “Pinhead sperm,” or “acephalic sperm,” a type of human teratozoospermia, refers to the condition in which ejaculate contains mostly sperm flagella without heads. Family clustering and homogeneity of this syndrome suggests a genetic basis, but the causative genes remain largely unknown. Here we report that Spata6, an evolutionarily conserved testis-specific gene, encodes a protein required for formation of the segmented columns and the capitulum, two major structures of the sperm connecting piece essential for linking the developing flagellum to the head during late spermiogenesis. Inactivation of Spata6 in mice leads to acephalic spermatozoa and male sterility. Our proteomic analyses reveal that SPATA6 is involved in myosin-based microfilament transport through interaction with myosin subunits (e.g., MYL6). PMID:25605924

  11. E. coli chemotaxis and super-diffusion

    NASA Astrophysics Data System (ADS)

    Dobnikar, Jure; Matthäus, Franziska; Jagodic, Marko

    2010-03-01

    The bacteria E. coli actively propel by switching between clockwise and anti-clockwise rotation of the flagella attached to their cell membranes. This results in two modes of motion: tumbling and swimming. The switching between the two modes is coupled to the ligand sensing through the chemotactic signalling pathway inside the cell. We modelled the signalling pathway and performed numerical simulations of the chemotactic motion of a large number of E. coli bacteria under various external conditions. We have shown that under certain conditions the thermal noise in the level of receptor-bound CheR (an enzyme responsible for methylation of the receptor sites) leads to super-diffusive behaviour (L'evy walk) which is advantageous for the bacterial populations in environments with scarce food. Exerting external pressure we might observe evolution of the wild-type to the super-diffusive populations.

  12. Bacteria rolling: motilities of rosette colonies in Caulobacter crescentus

    NASA Astrophysics Data System (ADS)

    Zeng, Yu; Liu, Bin

    2016-11-01

    The aquatic bacterium Caulobacter crescentus has two life cycle stages with distinct motilities: freely swimming swarmer cells and immotile stalked cells. Here, we show a new type of movement performed by freely suspended rosettes, spontaneous aggregates of stalked cells aligned radially relative to each other. Reproductive rosette members generate predivisional daughter cells with flagella, inducing rotations of the rosette as a whole. Such rotations exhibit dynamic angular velocities and lead to intermittent linear movements along liquid-solid interfaces, resembling rolling movements. We reconstructed the translational and rotational dynamics of the rosette movements from high-speed filming and long-term tracking. A mechanical model was developed to explain the hydrodynamic mechanism underlying such motilities. Our study illustrated a nontrivial mechanism for clustered bacteria to achieve motilities and sheds light on the adaptive significance of the collective behaviors of microorganisms in complex fluid environments.

  13. A chemical kinetic theory on muscle contraction and spontaneous oscillation

    NASA Astrophysics Data System (ADS)

    Guo, Wei-Sheng; Luo, Liao-Fu; Li, Qian-Zhong

    2002-09-01

    From a set of chemical kinetic equations describing the actin-activated myosin ATPase cycle, we show that, in active muscle, the fraction of myosin heads in any given biochemical state is independent of both [ADP] and [P i]. Combining muscle mechanics data of Pate and Cooke, we deduce the muscle state equation in which muscle force is a state variable of the muscle system. The theoretical results are consistent with Baker's experimental data but somewhat different from conventional muscle theory. Based on the muscle state equation with the knowledge of special structure of muscle, we present a physical mechanism which can lead to both contraction and oscillation of sarcomeres. It explains the muscle spontaneous oscillatory contraction in a natural way and agrees well with experimental data. The model will be helpful in studying the oscillatory behavior of cilia and flagella.

  14. Chromosome movement in lysed mitotic cells is inhibited by vanadate

    PubMed Central

    1978-01-01

    Mitotic PtK1 cells, lysed at anaphase into a carbowax 20 M Brij 58 solution, continue to move chromosomes toward the spindle poles and to move the spindle poles apart at 50% in vivo rates for 10 min. Chromosome movements can be blocked by adding metabolic inhibitors to the lysis medium and inhibition of movement can be reversed by adding ATP to the medium. Vanadate at micromolar levels reversibly inhibits dynein ATPase activity and movement of demembranated flagella and cilia. It does not affect glycerinated myofibril contraction or myosin ATPase activty at less than millimolar concentrations. Vanadate at 10-- 100 micron reversibly inhibits anaphase movement of chromosomes and spindle elongation. After lysis in vanadate, spindles lose their fusiform appearance and become more barrel shaped. In vitro microtubule polymerization is insensitive to vanadate. PMID:152767

  15. [A new species of Euglena (Euglenozoa: Euglenales) isolated from extreme environments in "boiling mudflats" of Rincón de la Vieja volcano, Costa Rica].

    PubMed

    Sittenfeld, Ana; Vargas, Maribelle; Sánchez, Ethel; Mora, Marielos; Serrano, Aurelio

    2004-03-01

    A new species of euglena isolated from a hot and acid mud pool located in Las Pailas de Barro, Volcán Rincón de la Vieja, Costa Rica is described. This species inhabits hot and acid environments. Euglena pailasensis sp. nov. main features are: the absence of flagella, the presence filaments like "pilis", the presence of chloroplasts with pyrenoids crossed by several tylakoids, and acid and heat tolerance. Molecular phylogeny studies using 18S rDNA and Gap C genes indicated that the new species is related to E. mutabilis. Its taxonomic characters based on morphology, biology and sequence of the 18S rDNA and Gap C genes are discussed and compared with other closely related species of the genus.

  16. Human sperm steer with second harmonics of the flagellar beat.

    PubMed

    Saggiorato, Guglielmo; Alvarez, Luis; Jikeli, Jan F; Kaupp, U Benjamin; Gompper, Gerhard; Elgeti, Jens

    2017-11-10

    Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.

  17. Ultrastructural diversity between centrioles of eukaryotes.

    PubMed

    Gupta, Akshari; Kitagawa, Daiju

    2018-02-16

    Several decades of centriole research have revealed the beautiful symmetry present in these microtubule-based organelles, which are required to form centrosomes, cilia, and flagella in many eukaryotes. Centriole architecture is largely conserved across most organisms, however, individual centriolar features such as the central cartwheel or microtubule walls exhibit considerable variability when examined with finer resolution. Here, we review the ultrastructural characteristics of centrioles in commonly studied organisms, highlighting the subtle and not-so-subtle differences between specific structural components of these centrioles. Additionally, we survey some non-canonical centriole structures that have been discovered in various species, from the coaxial bicentrioles of protists and lower land plants to the giant irregular centrioles of the fungus gnat Sciara. Finally, we speculate on the functional significance of these differences between centrioles, and the contribution of individual structural elements such as the cartwheel or microtubules towards the stability of centrioles.Centriole structure, cartwheel, triplet microtubules, SAS-6, centrosome.

  18. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  19. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  20. Prey capture by freely swimming flagellates

    NASA Astrophysics Data System (ADS)

    Andersen, Anders; Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas

    2017-11-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. Here, we explore the dependence of swimming kinematics and prey clearance rate on flagellar arrangement and determine optimal flagellar arrangements and essential trade-offs. To describe near-cell flows around freely swimming flagellates we consider a model in which the cell is represented by a no-slip sphere and each flagellum by a point force. For uniflagellates pulled by a single flagellum the model suggests that a long flagellum favors fast swimming, whereas high clearance rate is favored by a very short flagellum. For biflagellates with both a longitudinal and a transversal flagellum we explore the helical swimming kinematics and the prey capture sites. We compare our predictions with observations of swimming kinematics, prey capture, and flows around common marine flagellates. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  1. Microtubules self-repair in response to mechanical stress

    PubMed Central

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-01-01

    Microtubules - which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport - can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of larger damages, which further decrease microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses. PMID:26343914

  2. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes.

    PubMed

    Zhang, Yuanchen; Kastman, Erik K; Guasto, Jeffrey S; Wolfe, Benjamin E

    2018-01-23

    Most studies of bacterial motility have examined small-scale (micrometer-centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes.

  3. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  4. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  5. Microtubules self-repair in response to mechanical stress

    NASA Astrophysics Data System (ADS)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  6. Microtubules self-repair in response to mechanical stress.

    PubMed

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  7. Swimming by reciprocal motion at low Reynolds number.

    PubMed

    Qiu, Tian; Lee, Tung-Chun; Mark, Andrew G; Morozov, Konstantin I; Münster, Raphael; Mierka, Otto; Turek, Stefan; Leshansky, Alexander M; Fischer, Peer

    2014-11-04

    Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell's scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric 'micro-scallop', a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.

  8. Programmable micrometer-sized motor array based on live cells.

    PubMed

    Xie, Shuangxi; Wang, Xiaodong; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2017-06-13

    Trapping and transporting microorganisms with intrinsic motility are important tasks for biological, physical, and biomedical applications. However, fast swimming speed makes the manipulation of these organisms an inherently challenging task. In this study, we demonstrated that an optoelectrical technique, namely, optically induced dielectrophoresis (ODEP), could effectively trap and manipulate Chlamydomonas reinhardtii (C. reinhardtii) cells swimming at velocities faster than 100 μm s -1 . Furthermore, live C. reinhardtii cells trapped by ODEP can form a micrometer-sized motor array. The rotating frequency of the cells ranges from 50 to 120 rpm, which can be reversibly adjusted with a fast response speed by varying the optical intensity. Functional flagella have been demonstrated to play a decisive role in the rotation. The programmable cell array with a rotating motion can be used as a bio-micropump to drive the liquid flow in microfludic chips and may shed new light on bio-actuation.

  9. Effects of hydrodynamic interactions in bacterial swimming.

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Suddhashil; Lun Wu, Xiao

    2008-03-01

    The lack of precise experimental data has prevented the investigation of the effects of long range hydrodynamic interactions in bacterial swimming. We perform measurements on various strains of bacteria with the aid of optical tweezers to shed light on this aspect of bacterial motility. Geometrical parameters recorded by fluorescence microscopy are used with theories which model flagella propulsion (Resistive force theory & Lighthill's formulation which includes long range interactions). Comparison of the predictions of these theories with experimental data, observed directly from swimming bacterium, led to the conclusion that while long range inetractions were important for single polar flagellated strains (Vibrio Alginolyticus & Caulobacter Crescentus), local force theory was adequate to describe the swimming of multi-flagellated Esherichia Coli. We performed additional measurements on E. Coli minicells (miniature cells with single polar flagellum) to try and determine the cause of this apparent effect of shielding of long range interactions in multiple flagellated bacteria.

  10. Universal entrainment mechanism controls contact times with motile cells

    NASA Astrophysics Data System (ADS)

    Mathijssen, Arnold J. T. M.; Jeanneret, Raphaël; Polin, Marco

    2018-03-01

    Contact between particles and motile cells underpins a wide variety of biological processes, from nutrient capture and ligand binding to grazing, viral infection, and cell-cell communication. The window of opportunity for these interactions depends on the basic mechanism determining contact time, which is currently unknown. By combining experiments on three different species—Chlamydomonas reinhardtii, Tetraselmis subcordiforms, and Oxyrrhis marina—with simulations and analytical modeling, we show that the fundamental physical process regulating proximity to a swimming microorganism is hydrodynamic particle entrainment. The resulting distribution of contact times is derived within the framework of Taylor dispersion as a competition between advection by the cell surface and microparticle diffusion, and predicts the existence of an optimal tracer size that is also observed experimentally. Spatial organization of flagella, swimming speed, and swimmer and tracer size influence entrainment features and provide tradeoffs that may be tuned to optimize the estimated probabilities for microbial interactions like predation and infection.

  11. Variability in sperm form and function in the context of sperm competition risk in two Tupinambis lizards

    PubMed Central

    Blengini, Cecilia S; Sergio, Naretto; Gabriela, Cardozo; Giojalas, Laura C; Margarita, Chiaraviglio

    2014-01-01

    In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success. We aim at elucidating the variability of sperm morphometric traits and velocity in two Tupinambis lizards in the context of sperm competition risk. Sperm traits showed substantial variation at all levels examined: between species, among males within species, and within the ejaculate of individual males. Sperm velocity was found to be positively correlated with flagellum: midpiece ratio, with relatively longer flagella associated with faster sperm. Our results document high variability in sperm form and function in lizards. PMID:25505535

  12. Nitric Oxide in the Crustacean Brain: Regulation of Neurogenesis and Morphogenesis in the Developing Olfactory Pathway

    PubMed Central

    Benton, J.L.; Sandeman, D.C.; Beltz, B.S.

    2009-01-01

    Nitric oxide (NO) plays major roles during development and in adult organisms. We examined the temporal and spatial patterns of nitric oxide synthase (NOS) appearance in the embryonic lobster brain to localize sources of NO activity; potential NO targets were identified by defining the distribution of NO-induced cGMP. Staining patterns are compared with NOS and cyclic 3,5 guanosine monophosphate (cGMP) distribution in adult lobster brains. Manipulation of NO levels influences olfactory glomerular formation and stabilization, as well as levels of neurogenesis among the olfactory projection neurons. In the first 2 days following ablation of the lateral antennular flagella in juvenile lobsters, a wave of increased NOS immunoreactivity and a reduction in neurogenesis occur. These studies implicate nitric oxide as a developmental architect and also support a role for this molecule in the neural response to injury in the olfactory pathway. PMID:17948307

  13. Systematic discovery of antiphage defense systems in the microbial pangenome.

    PubMed

    Doron, Shany; Melamed, Sarah; Ofir, Gal; Leavitt, Azita; Lopatina, Anna; Keren, Mai; Amitai, Gil; Sorek, Rotem

    2018-03-02

    The arms race between bacteria and phages led to the development of sophisticated antiphage defense systems, including CRISPR-Cas and restriction-modification systems. Evidence suggests that known and unknown defense systems are located in "defense islands" in microbial genomes. Here, we comprehensively characterized the bacterial defensive arsenal by examining gene families that are clustered next to known defense genes in prokaryotic genomes. Candidate defense systems were systematically engineered and validated in model bacteria for their antiphage activities. We report nine previously unknown antiphage systems and one antiplasmid system that are widespread in microbes and strongly protect against foreign invaders. These include systems that adopted components of the bacterial flagella and condensin complexes. Our data also suggest a common, ancient ancestry of innate immunity components shared between animals, plants, and bacteria. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip

    PubMed Central

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G.; Gompper, Gerhard

    2015-01-01

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. PMID:25993019

  15. Method matters: Experimental evidence for shorter avian sperm in faecal compared to abdominal massage samples.

    PubMed

    Girndt, Antje; Cockburn, Glenn; Sánchez-Tójar, Alfredo; Løvlie, Hanne; Schroeder, Julia

    2017-01-01

    Birds are model organisms in sperm biology. Previous work in zebra finches, suggested that sperm sampled from males' faeces and ejaculates do not differ in size. Here, we tested this assumption in a captive population of house sparrows, Passer domesticus. We compared sperm length in samples from three collection techniques: female dummy, faecal and abdominal massage samples. We found that sperm were significantly shorter in faecal than abdominal massage samples, which was explained by shorter heads and midpieces, but not flagella. This result might indicate that faecal sampled sperm could be less mature than sperm collected by abdominal massage. The female dummy method resulted in an insufficient number of experimental ejaculates because most males ignored it. In light of these results, we recommend using abdominal massage as a preferred method for avian sperm sampling. Where avian sperm cannot be collected by abdominal massage alone, we advise controlling for sperm sampling protocol statistically.

  16. Mechanoregulation of molecular motors in flagella

    NASA Astrophysics Data System (ADS)

    Gadelha, Hermes

    2014-11-01

    Molecular motors are nano-biological machines responsible for exerting forces that drive movement in living organisms, from cargo transport to cell division and motility. Interestingly, despite the inherent complexity of many interacting motors, order and structure may arise naturally, as exemplified by the harmonic, self-organized undulatory motion of the flagellum. The real mechanisms behind this collective spontaneous oscillation are still unknown, and it is challenging task to measure experimentally the molecular motor dynamics within the flagellar structure in real time. In this talk we will explore different competing hypotheses that are capable of generating flagellar bending waves that ``resemble'' in-vitro observations, emphasizing the need for further mathematical analysis and model validation. It also highlight that this is a fertile and challenging area of inter-disciplinary research for applied mathematicians and demonstrates the importance of future observational and theoretical studies in understanding the underlying mechanics of these motile cell appendages.

  17. The Developmental Process of the Growing Motile Ciliary Tip Region.

    PubMed

    Reynolds, Matthew J; Phetruen, Tanaporn; Fisher, Rebecca L; Chen, Ke; Pentecost, Brian T; Gomez, George; Ounjai, Puey; Sui, Haixin

    2018-05-22

    Eukaryotic motile cilia/flagella play vital roles in various physiological processes in mammals and some protists. Defects in cilia formation underlie multiple human disorders, known as ciliopathies. The detailed processes of cilia growth and development are still far from clear despite extensive studies. In this study, we characterized the process of cilium formation (ciliogenesis) by investigating the newly developed motile cilia of deciliated protists using complementary techniques in electron microscopy and image analysis. Our results demonstrated that the distal tip region of motile cilia exhibit progressive morphological changes as cilia develop. This developmental process is time-dependent and continues after growing cilia reach their full lengths. The structural analysis of growing ciliary tips revealed that B-tubules of axonemal microtubule doublets terminate far away from the tip end, which is led by the flagellar tip complex (FTC), demonstrating that the FTC might not directly mediate the fast turnover of intraflagellar transport (IFT).

  18. Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection.

    PubMed

    Shuai-Cheng, Wu; Ben-Dong, Fu; Xiu-Ling, Chu; Jian-Qing, Su; Yun-Xing, Fu; Zhen-Qiang, Cui; Dao-Xiu, Xu; Zong-Mei, Wu

    2016-11-01

    Phloretin, a natural component of many fruits, exhibits anti-virulence effects and provides a new alternative to counter bacterial infection. The aim of this study was to determine the effect of subinhibitory concentrations of phloretin on the virulence of Salmonella typhimurium. At concentrations where growth of Salmonella was not inhibited, phloretin significantly inhibited bacteria biofilm formation and motility. Subinhibitory concentrations of phloretin repressed eight genes involved in the Salmonella pathogenicity island 1 and 3 genes involved in flagella production. Furthermore, subinhibitory concentrations of phloretin inhibited the adhesion and invasion of Salmonella in IEC-6 cells and reduced the LDH levels of S. typhimurium-infected IEC-6 cells. Additionally, phloretin significantly decreased the cecum bacterial loads of the mice infected with live S. typhimurium containing subinhibitory concentrations of phloretin by gavage. These results suggested that subinhibitory concentrations of phloretin attenuate the virulence of S. typhimurium and protect against S. typhimurium infection.

  19. Genetic noise mechanism for power-law switching in bacterial flagellar motors

    NASA Astrophysics Data System (ADS)

    Krivonosov, M. I.; Zaburdaev, V.; Denisov, S. V.; Ivanchenko, M. V.

    2018-06-01

    Switching of the direction of flagella rotations is the key control mechanism governing the chemotactic activity of E. coli and many other bacteria. Power-law distributions of switching times are most peculiar because their emergence cannot be deduced from simple thermodynamic arguments. Recently, it was suggested that by adding finite-time correlations into Gaussian fluctuations regulating the energy height of the barrier between the two rotation states, it is possible to generate switching statistics with an intermediate power-law asymptotics. By using a simple model of a regulatory pathway, we demonstrate that the required amount of correlated ‘noise’ can be produced by finite number fluctuations of reacting protein molecules, a condition common to the intracellular chemistry. The corresponding power-law exponent appears as a tunable characteristic controlled by parameters of the regulatory pathway network such as the equilibrium number of molecules, sensitivities, and the characteristic relaxation time.

  20. The influence of gravity on structure and function of animals

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1984-01-01

    Gravity is the only environmental parameter that has remained constant during the period of evolution of living matter on earth. Thus, it must have been a major force in shaping living things. The influence of gravitational loading on evolution of the vertebrate skeleton is well recognized, and scale effects have been studied. This paper, however, considers in addition four pivotal events in early evolution that would seem to have been significant for the later success and diversifcation of animal life. These are evolution of the cytoskeleton, cell motility (flagellae and cilia), gravity detecting devices (accelerometers), and biomineralization. All are functionally calcium dependent in eukaryotes and all occurred or were foreshadowed in prokaryotes. A major question is why calcium was selected as an ion of great importance to the structure and function of living matter; another is whether gravity played a role in its selection.

  1. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy

    PubMed Central

    Davis, Michael L.; Mounteer, Leslie C.; Stevens, Lindsey K.; Miller, Charles D.; Zhou, Anhong

    2011-01-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout exponential growth phase (~20.9 µm/sec), while maximum velocities peak early in exponential growth phase at a velocity of 51.2 µm/sec. Pseudomonas putida KT2440 also favor smaller turn angles indicating they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. PMID:21334971

  2. Isolation and Characterization of a Geobacillus thermoleovorans Strain from an Ultra-Deep South African Gold Mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deflaun, Mary F.; Fredrickson, Jim K.; Dong, Hailiang

    2007-03-08

    A thermophilic, facultative bacterium was isolated from a depth of 3.1 km below ground surface in an ultradeep gold mine in South Africa. This isolate, designated GE-7, was cultivated from pH 8.0, 600C fissure water. GE-7 grows optimally at 650C, pH 6.5 on a wide range of carbon substrates including GE-7 is a long rod-shaped bacterium (4-6 µm long x 0.5 wide) with terminal endospores and flagella, in addition to O2, can also utilize nitrate as an electron acceptor. Phylogenetic analysis of GE-7 16S rDNA sequence revealed high sequence similarity with G. thermoleovorans DSM 5366T (99.6%), however, certain phenotypic characteristicsmore » of GE-7 were distinct from this and other strains of G. thermoleovorans previously described.« less

  3. Effect of Cell Aspect Ratio on Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Ilkanaiv, Bella; Kearns, Daniel B.; Ariel, Gil; Be'er, Avraham

    2017-04-01

    Swarming bacteria collectively migrate on surfaces using flagella, forming dynamic whirls and jets that consist of millions of individuals. Because some swarming bacteria elongate prior to actual motion, cell aspect ratio may play a significant role in the collective dynamics. Extensive research on self-propelled rodlike particles confirms that elongation promotes alignment, strongly affecting the dynamics. Here, we study experimentally the collective dynamics of variants of swarming Bacillus subtilis that differ in length. We show that the swarming statistics depends on the aspect ratio in a critical, fundamental fashion not predicted by theory. The fastest motion was obtained for the wild-type and variants that are similar in length. However, shorter and longer cells exhibit anomalous, non-Gaussian statistics and nonexponential decay of the autocorrelation function, indicating lower collective motility. These results suggest that the robust mechanisms to maintain aspect ratios may be important for efficient swarming motility. Wild-type cells are optimal in this sense.

  4. IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas

    PubMed Central

    Wood, Christopher R.; Wang, Zhaohui; Diener, Dennis; Zones, James Matt; Rosenbaum, Joel; Umen, James G.

    2012-01-01

    Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division. PMID:22328921

  5. Propulsion by a helical flagellum in a capillary tube

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Breuer, Kenneth S.; Powers, Thomas R.

    2014-01-01

    We study the microscale propulsion of a rotating helical filament confined by a cylindrical tube, using a boundary-element method for Stokes flow that accounts for helical symmetry. We determine the effect of confinement on swimming speed and power consumption. Except for a small range of tube radii at the tightest confinements, the swimming speed at fixed rotation rate increases monotonically as the confinement becomes tighter. At fixed torque, the swimming speed and power consumption depend only on the geometry of the filament centerline, except at the smallest pitch angles for which the filament thickness plays a role. We find that the "normal" geometry of Escherichia coli flagella is optimized for swimming efficiency, independent of the degree of confinement. The efficiency peaks when the arc length of the helix within a pitch matches the circumference of the cylindrical wall. We also show that a swimming helix in a tube induces a net flow of fluid along the tube.

  6. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization

    PubMed Central

    Chavez-Dozal, Alba; Hogan, David; Gorman, Clayton; Quintanal-Villalonga, Alvaro; Nishiguchi, Michele K.

    2012-01-01

    Biofilms are increasingly recognized as the predominant form for survival in the environment for most bacteria. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica, involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. In the present investigation, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. Results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships. PMID:22486781

  7. Kinesin regulation dynamics through cargo delivery, a single molecule investigation

    NASA Astrophysics Data System (ADS)

    Kovacs, Anthony; Kessler, Jonathan; Lin, Huawen; Dutcher, Susan; Wang, Yan Mei

    2015-03-01

    Kinesins are microtubule-based motors that deliver cargo to their destinations in a highly regulated manner. Although in recent years numerous regulators of cargo delivery have been identified, the regulation mechanism of kinesin through the cargo delivery and recycling process is not known. By performing single molecule fluorescence imaging measurements in Chlamydomonas flagella, which are 200 nm in diameter, 10 microns in length, and contain 9 sets of microtubule doublets, we tracked the intraflagellar transport (IFT) trains, BBSome cargo, and kinesin-2 motors through the cargo delivery process and determined the aforementioned dynamics. Upon arrival at the microtubule plus end at the flagellar tip, (1) IFT trains and BBSome cargo remain intact, dissociate together from kinesins and microtubules, and diffuse along flagellar membrane for a mean of 2.3 sec before commencing retrograde travel. (2) Kinesin motors remain bound to and diffuse along microtubules for 1.3 sec before dissociating into the flagellar lumen for recycling.

  8. Solid friction between soft filaments

    DOE PAGES

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; ...

    2015-03-02

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag,more » can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.« less

  9. Dynamics of Active Microfilaments

    NASA Astrophysics Data System (ADS)

    Ling, Feng; Guo, Hanliang; Kanso, Eva

    2017-11-01

    Soft elastic filaments are ubiquitous in natural and artificial systems at various length scales, and their interactions within and between filaments and their environments provide a persistent source of curiosity due to both the complexity of their behaviors and the relative mathematical simplicity of their structures. Specifically, a deeper understanding of the dynamic characteristics of microscopic filaments in viscous fluids is relevant to many biophysical and physiological processes. Here we start with the Cosserat model that allows all six possible modes of deformation for an elastic rod, and focus on the case of inextensible filaments submerged in viscous fluids by ignoring inertial effects and using local resistive force theory for fluid-filament interactions. We verify our simulations against special analytic solutions and present some results on the active internal control of cilia and flagella motion. We conclude by commenting on the utility of this general framework for studying other cellular and sub-cellular physical processes such as systems involving protein filaments.

  10. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton.

    PubMed

    von Dassow, Peter; John, Uwe; Ogata, Hiroyuki; Probert, Ian; Bendif, El Mahdi; Kegel, Jessica U; Audic, Stéphane; Wincker, Patrick; Da Silva, Corinne; Claverie, Jean-Michel; Doney, Scott; Glover, David M; Flores, Daniella Mella; Herrera, Yeritza; Lescot, Magali; Garet-Delmas, Marie-José; de Vargas, Colomban

    2015-06-01

    Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.

  11. RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006.

    PubMed

    Wilf, Nabil M; Reid, Adam J; Ramsay, Joshua P; Williamson, Neil R; Croucher, Nicholas J; Gatto, Laurent; Hester, Svenja S; Goulding, David; Barquist, Lars; Lilley, Kathryn S; Kingsley, Robert A; Dougan, Gordon; Salmond, George Pc

    2013-11-22

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative enterobacterium that is virulent in plant and animal models. It produces a red-pigmented trypyrrole secondary metabolite, prodigiosin (Pig), and a carbapenem antibiotic (Car), as well as the exoenzymes, pectate lyase and cellulase. Secondary metabolite production in this strain is controlled by a complex regulatory network involving quorum sensing (QS). Hfq and RsmA (two RNA binding proteins and major post-transcriptional regulators of gene expression) play opposing roles in the regulation of several key phenotypes within S39006. Prodigiosin and carbapenem production was abolished, and virulence attenuated, in an S39006 ∆hfq mutant, while the converse was observed in an S39006 rsmA transposon insertion mutant. In order to define the complete regulon of Hfq and RsmA, deep sequencing of cDNA libraries (RNA-seq) was used to analyse the whole transcriptome of S39006 ∆hfq and rsmA::Tn mutants. Moreover, we investigated global changes in the proteome using an LC-MS/MS approach. Analysis of differential gene expression showed that Hfq and RsmA directly or indirectly regulate (at the level of RNA) 4% and 19% of the genome, respectively, with some correlation between RNA and protein expression. Pathways affected include those involved in antibiotic regulation, virulence, flagella synthesis, and surfactant production. Although Hfq and RsmA are reported to activate flagellum production in E. coli and an adherent-invasive E. coli hfq mutant was shown to have no flagella by electron microscopy, we found that flagellar production was increased in the S39006 rsmA and hfq mutants. Additionally, deletion of rsmA resulted in greater genomic flux with increased activity of two mobile genetic elements. This was confirmed by qPCR and analysis of rsmA culture supernatant revealed the presence of prophage DNA and phage particles. Finally, expression of a hypothetical protein containing DUF364 increased prodigiosin production and was controlled by a putative 5' cis-acting regulatory RNA element. Using a combination of transcriptomics and proteomics this study provides a systems-level understanding of Hfq and RsmA regulation and identifies similarities and differences in the regulons of two major regulators. Additionally our study indicates that RsmA regulates both core and variable genome regions and contributes to genome stability.

  12. Tubulinlike protein from Spirochaeta bajacaliforniensis

    NASA Technical Reports Server (NTRS)

    Bermudes, D.; Fracek, S. P. Jr; Laursen, R. A.; Margulis, L.; Obar, R.; Tzertzinis, G.

    1987-01-01

    Tubulin proteins are the fundamental subunits of all polymeric microtubule-based eukaryotic structures. Long, hollow structures each composed of 13 protofilaments as revealed by electron microscopy, microtubules (240 angstroms in diameter) are nearly ubiquitous in eukaryotes. These proteins have been the subject of intense biochemical and biophysical interest since the early 1970s and are of evolutionary interest as well. If tubulin-based structures (i.e., neurotubules, mitotic spindle tubules, centrioles, kinetosomes, axonemes, etc.) evolved from spirochetes by way of motility symbioses, tubulin homologies with spirochete proteins should be detectable. Tubulin proteins are widely thought to be limited to eukaryotes. Yet both azotobacters and spirochetes have shown immunological cross-reactivity with anitubulin antibodies. In neither of these studies was tubulin isolated nor any specific antigen identified as responsible for the immunoreactivity. Furthermore, although far less uniform in structure than eukaryotic microtubules, various cytoplasmic fibers and tubules (as seen by electron microscopy) have been reported in several types of prokaryotes (e.g., Spirochaeta; large termite spirochetes; treponemes; cyanobacteria; and Azotobacter. This work forms a part of our long-range study of the possible prokaryotic origin of tubulin and microtubules. Spirochetes are helically shaped gram-negative motile prokaryotes. They differ from all other bacteria in that the position of their flagella is periplasmic: their flagella lie between the inner and outer membranes of the gram-negative cell wall. Some of the largest spirochetes have longitudinally aligned 240 angstroms microtubules. Unfortunately, in spite of many attempts, all of the larger spirochetes (family Pillotaceae) with well-defined cytoplasmic tubules and antitubulin immunoreactivity are not cultivable. However, a newly described spirochete species (Spirochaeta bajacaliforniensis) possessing cytoplasmic fibers displays antitubulin immunoreactivity in whole-cell preparations. Since preliminary observations suggested that Spirochaeta bajacaliforniensis proteins may be related to eukaryotic tubulins, their characterization was undertaken. Brain tubulin can be purified by utilizing its ability to polymerize at warm temperatures and to depolymerize in the cold. After several cycles of sedimentation and redissolution the microtubule fraction is composed of 75% tubulin and 20% high molecular mass microtubule-associated proteins (MAPs). In this paper we report that components of cell lysates, prepared from a spirochete that contains cytoplasmic fibers (Spirochaeta bajacaliforniensis), also exhibit the property of temperature-dependent cyclical sedimentation. Additionally we report the identification and characterization of the polypeptide responsible for cross-reactivity with antitubulin antiserum.

  13. Tubulinlike protein from Spirochaeta bajacaliforniensis

    NASA Technical Reports Server (NTRS)

    Bermudes, D.; Fracek, S. P. Jr; Laursen, R. A.; Margulis, L.; Obar, R.; Tzertzinis, G.

    1987-01-01

    Tubulin proteins are the fundamental subunits of all polymeric microtubule-based eukaryotic structures. Long, hollow structures each composed of 13 protofilaments as revealed by electron microscopy, microtubules (240 angstroms in diameter) are nearly ubiquitous in eukaryotes. These proteins have been the subject of intense biochemical and biophyiscal interest since the early 1970s and are of evolutionary interest as well. If tubulin-based structures (i.e., neurotubules, mitotic spindle tubules, centrioles, kinetosomes, axonemes, etc.) evolved from spirochetes by way of motility symbioses, tubulin homologies with spirochete proteins should be detectable. Tubulin proteins are widely thought to be limited to eukaryotes. Yet both azotobacters and spirochetes have shown immunological cross-reactivity with antitubulin antibodies. In neither of these studies was tubulin isolated nor any specific antigen identified as responsible for the immunoreactivity. Furthermore, although far less uniform in structure than eukaryotic microtubules, various cytoplasmic fibers and tubules (as seen by electron microscopy) have been reported in several types of prokaryotes (e.g., Spirochaeta; large termite spirochetes; treponemes; cyanobacteria; and Azotobacter. This work forms a part of our long-range study of the possible prokaryotic origin of tubulin and microtubules. Spirochetes are helically shaped gram-negative motile prokaryotes. They differ from all other bacterial in that the position of their flagella is periplasmic: their flagella lie between the inner and outer membranes of the gram-negative cell wall. Some of the largest spirochetes have longitudinally aligned 240 angstrom microtubules. Unfortunately, in spite of many attempts, all of the larger spirochetes (family Pillotaceae) with well-defined cytoplasmic tubules and antitubulin immunoreactivity are not cultivable. However, a newly described spirochete species (Spirochaeta bajacaliforniensis) possessing cytoplasmic fibers displays antitubulin immunoreactivity in whole-cell preparations. Since preliminary observations suggested that Spirochaeta bajacaliforniensis proteins may be related to eukaryotic tubulins, their characterization was undertaken. Brain tubulin can be purified by utilizing its ability to polymerize at warm temperatures and to depolymerize in the cold. After several cycles of sedimentation and redissolution the microtubule fraction is comprised of 75% tubulin and 20% high molecular mass microtubule-associated proteins (MAPs). In this paper we report that components of cell lysates, prepared from a spirochete that contains cytoplasmic fibers (Spirochaeta bajacaliforniensis), also exhibit the property of temperature-dependent cyclical sedimentation. Additionally we report the identification and characterization of the polypeptide responsible for cross-reactivity with antitubulin antiserum.

  14. Cellular mechanics and motility

    NASA Astrophysics Data System (ADS)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in cross-linked or branched networks. It is a highly dynamical system in which filaments are able to elongate or slide one on the other with the contribution of very active cellular proteins like molecular motors. The versatile properties of this cytoskeleton ensure the diversity of mechanical behaviors to explain cell rigidity as well as cell motility.

  15. Hydrodynamic dispersion of microswimmers in suspension

    NASA Astrophysics Data System (ADS)

    Martin, Matthieu; Rafaï, Salima; Peyla, Philippe

    2014-11-01

    In our laboratory, we study hydrodynamics of suspensions of micro-swimmers. These micro-organisms are unicellular algae Chlamydomonas Rheinhardii which are able to swim by using their flagella. The swimming dynamics of these micro-swimmers can be seen as a random walk, in absence of any kind of interaction. In addition, these algae have the property of being phototactic, i.e. they swim towards the light. Combining this property with a hydrodynamic flow, we were able to reversibly separate algae from the rest of the fluid. But for sufficiently high volume fraction, these active particles interact with each other. We are now interested in how the coupling of hydrodynamic interactions between swimmers and phototaxis can modify the swimming dynamics at the scale of the suspension. To this aim, we conduct experiments in microfluidic devices to study the dispersion of the micro-organisms in a the liquid phase as a function of the volume fraction. We show that the dispersion of an assembly of puller type microswimmers is quantitatively affected by hydrodynamics interactions. Phd student.

  16. Structural basis of the 9-fold symmetry of centrioles.

    PubMed

    Kitagawa, Daiju; Vakonakis, Ioannis; Olieric, Natacha; Hilbert, Manuel; Keller, Debora; Olieric, Vincent; Bortfeld, Miriam; Erat, Michèle C; Flückiger, Isabelle; Gönczy, Pierre; Steinmetz, Michel O

    2011-02-04

    The centriole, and the related basal body, is an ancient organelle characterized by a universal 9-fold radial symmetry and is critical for generating cilia, flagella, and centrosomes. The mechanisms directing centriole formation are incompletely understood and represent a fundamental open question in biology. Here, we demonstrate that the centriolar protein SAS-6 forms rod-shaped homodimers that interact through their N-terminal domains to form oligomers. We establish that such oligomerization is essential for centriole formation in C. elegans and human cells. We further generate a structural model of the related protein Bld12p from C. reinhardtii, in which nine homodimers assemble into a ring from which nine coiled-coil rods radiate outward. Moreover, we demonstrate that recombinant Bld12p self-assembles into structures akin to the central hub of the cartwheel, which serves as a scaffold for centriole formation. Overall, our findings establish a structural basis for the universal 9-fold symmetry of centrioles. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Isolation and proteomic analysis of Chlamydomonas centrioles.

    PubMed

    Keller, Lani C; Marshall, Wallace F

    2008-01-01

    Centrioles are barrel-shaped cytoskeletal organelles composed of nine triplet microtubules blades arranged in a pinwheel-shaped array. Centrioles are required for recruitment of pericentriolar material (PCM) during centrosome formation, and they act as basal bodies, which are necessary for the outgrowth of cilia and flagella. Despite being described over a hundred years ago, centrioles are still among the most enigmatic organelles in all of cell biology. To gain molecular insights into the function and assembly of centrioles, we sought to determine the composition of the centriole proteome. Here, we describe a method that allows for the isolation of virtually "naked" centrioles, with little to no obscuring PCM, from the green alga, Chlamydomonas. Proteomic analysis of this material provided evidence that multiple human disease gene products encode protein components of the centriole, including genes involved in Meckel syndrome and Oral-Facial-Digital syndrome. Isolated centrioles can be used in combination with a wide variety of biochemical assays in addition to being utilized as a source for proteomic analysis.

  18. Ultrastructure and molecular phylogenetic position of a novel phagotrophic stramenopile from low oxygen environments: Rictus lutensis gen. et sp. nov. (Bicosoecida, incertae sedis).

    PubMed

    Yubuki, Naoji; Leander, Brian S; Silberman, Jeffrey D

    2010-04-01

    A novel free free-living phagotrophic flagellate, Rictus lutensis gen. et sp. nov., with two heterodynamic flagella, a permanent cytostome and a cytopharynx was isolated from muddy, low oxygen coastal sediments in Cape Cod, MA, USA. We cultivated and characterized this flagellate with transmission electron microscopy, scanning electron microscopy and molecular phylogenetic analyses inferred from small subunit (SSU) rDNA sequences. These data demonstrated that this organism has the key ultrastructural characters of the Bicosoecida, including similar transitional zones and a similar overall flagellar apparatus consisting of an x fiber and an L-shape microtubular root 2 involved in food capture. Although the molecular phylogenetic analyses were concordant with the ultrastructural data in placing R. lutensis with the bicosoecid clade, the internal position of this relatively divergent sequence within the clade was not resolved. Therefore, we interpret R. lutensis gen. et sp. nov. as a novel bicosoecid incertae sedis. Copyright 2009 Elsevier GmbH. All rights reserved.

  19. Response kinetics of tethered bacteria to stepwise changes in nutrient concentration.

    PubMed

    Chernova, Anna A; Armitage, Judith P; Packer, Helen L; Maini, Philip K

    2003-09-01

    We examined the changes in swimming behaviour of the bacterium Rhodobacter sphaeroides in response to stepwise changes in a nutrient (propionate), following the pre-stimulus motion, the initial response and the adaptation to the sustained concentration of the chemical. This was carried out by tethering motile cells by their flagella to glass slides and following the rotational behaviour of their cell bodies in response to the nutrient change. Computerised motion analysis was used to analyse the behaviour. Distributions of run and stop times were obtained from rotation data for tethered cells. Exponential and Weibull fits for these distributions, and variability in individual responses are discussed. In terms of parameters derived from the run and stop time distributions, we compare the responses to stepwise changes in the nutrient concentration and the long-term behaviour of 84 cells under 12 propionate concentration levels from 1 nM to 25 mM. We discuss traditional assumptions for the random walk approximation to bacterial swimming and compare them with the observed R. sphaeroides motile behaviour.

  20. Proteus mirabilis and Urinary Tract Infections

    PubMed Central

    Schaffer, Jessica N.; Pearson, Melanie M.

    2015-01-01

    Proteus mirabilis is a Gram-negative bacterium which is well-known for its ability to robustly swarm across surfaces in a striking bulls’-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis. PMID:26542036

  1. SAS-1 Is a C2 Domain Protein Critical for Centriole Integrity in C. elegans

    PubMed Central

    Delattre, Marie; Balestra, Fernando R.; Blanchoud, Simon; Finger, Susanne; Knott, Graham; Müller-Reichert, Thomas; Gönczy, Pierre

    2014-01-01

    Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome. PMID:25412110

  2. Proteus mirabilis and Urinary Tract Infections.

    PubMed

    Schaffer, Jessica N; Pearson, Melanie M

    2015-10-01

    Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.

  3. Of cilium and flagellum kinematics

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.; Hansen, Joshua C.

    2009-11-01

    The kinematics of propulsion of small animals such as paramecium and spermatozoa is considered. Larger scale models of the cilium and flagellum have been built and a four-motor apparatus has been constructed to reproduce their known periodic motions. The cilium model has transverse deformational ability in one plane only, while the flagellum model has such ability in two planes. When the flagellum model is given a push-pull in one diametral plane, instead of transverse deflection in one plane, it forms a coil. Berg & Anderson's postulation (Nature 245 1973) that a flagellum rotates, is recalled. The kinematics of cilia of paramecium, of the whipping motion of the spermatozoa flagella, and of the flapping motion (rolling and pitching) of the pectoral fins of much larger animals such penguins, have been reproduced in the same basic paramecium apparatus. The results suggest that each of the tiny individual paramecium propulsors have the intrinsic dormant kinematic and structural building blocks to optimize into higher Reynolds number propulsors. A synthetic hypothesis on how small might have become large is animated.

  4. Cooperative motion of intrinsic and actuated semiflexible swimmers

    NASA Astrophysics Data System (ADS)

    Llopis, I.; Pagonabarraga, I.; Cosentino Lagomarsino, M.; Lowe, C. P.

    2013-03-01

    We examine the phenomenon of hydrodynamic-induced cooperativity for pairs of flagellated micro-organism swimmers, of which spermatozoa cells are an example. We consider semiflexible swimmers, where inextensible filaments are driven by an internal intrinsic force and torque-free mechanism (intrinsic swimmers). The velocity gain for swimming cooperatively, which depends on both the geometry and the driving, develops as a result of the near-field coupling of bending and hydrodynamic stresses. We identify the regimes where hydrodynamic cooperativity is advantageous and quantify the change in efficiency. When the filaments' axes are parallel, hydrodynamic interaction induces a directional instability that causes semiflexible swimmers that profit from swimming together to move apart from each other. Biologically, this implies that flagella need to select different synchronized collective states and to compensate for directional instabilities (e.g., by binding) in order to profit from swimming together. By analyzing the cooperative motion of pairs of externally actuated filaments, we assess the impact that stress distribution along the filaments has on their collective displacements.

  5. The swimming of a perfect deforming helix

    NASA Astrophysics Data System (ADS)

    Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric

    2017-11-01

    Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.

  6. Bacterial Flagellin-Specific Chaperone FliS Interacts with Anti-Sigma Factor FlgM

    PubMed Central

    Galeva, Anna; Moroz, Natalia; Yoon, Young-Ho; Hughes, Kelly T.; Samatey, Fadel A.

    2014-01-01

    Flagella are extracellular organelles that propel bacteria. Each flagellum consists of a basal body, a hook, and a filament. The major protein of the filament is flagellin. Induction of flagellin gene expression coincides with secretion of FlgM. The role of FlgM is to inhibit FliA (σ28), a flagellum-specific RNA polymerase responsible for flagellin transcription. To prevent premature polymerization of newly synthesized flagellin molecules, FliS, the flagellin-specific chaperone, binds flagellin and facilitates its export. In this study, the interaction between FlgM and FliS from Salmonella enterica serovar Typhimurium was characterized using gel shift, intrinsic tryptophan fluorescence, circular dichroism, limited proteolysis, and cross-linking. We have demonstrated that (i) FliS and FlgM interact specifically, forming a 1:1 complex, (ii) the FliS binding site on FlgM is proximal to or even overlaps the binding site for FliA, and (iii) FliA competes with FliS for FlgM binding. PMID:24415724

  7. Guest editorial: Special issue micro-and nanomachines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Samuel; Paxton, Walter F.; Nitta, Takahiro

    The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the designmore » and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.« less

  8. Films of Bacteria at Interfaces (FBI): Remodeling of Fluid Interfaces by Pseudomonas aeruginosa.

    PubMed

    Niepa, Tagbo H R; Vaccari, Liana; Leheny, Robert L; Goulian, Mark; Lee, Daeyeon; Stebe, Kathleen J

    2017-12-19

    Bacteria at fluid interfaces endure physical and chemical stresses unique to these highly asymmetric environments. The responses of Pseudomonas aeruginosa PAO1 and PA14 to a hexadecane-water interface are compared. PAO1 cells form elastic films of bacteria, excreted polysaccharides and proteins, whereas PA14 cells move actively without forming an elastic film. Studies of PAO1 mutants show that, unlike solid-supported biofilms, elastic interfacial film formation occurs in the absence of flagella, pili, or certain polysaccharides. Highly induced genes identified in transcriptional profiling include those for putative enzymes and a carbohydrate metabolism enzyme, alkB2; this latter gene is not upregulated in PA14 cells. Notably, PAO1 mutants lacking the alkB2 gene fail to form an elastic layer. Rather, they form an active film like that formed by PA14. These findings demonstrate that genetic expression is altered by interfacial confinement, and suggest that the ability to metabolize alkanes may play a role in elastic film formation at oil-water interfaces.

  9. Swimming by reciprocal motion at low Reynolds number

    PubMed Central

    Qiu, Tian; Lee, Tung-Chun; Mark, Andrew G.; Morozov, Konstantin I.; Münster, Raphael; Mierka, Otto; Turek, Stefan; Leshansky, Alexander M.; Fischer, Peer

    2014-01-01

    Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell’s scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric ‘micro-scallop’, a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids. PMID:25369018

  10. Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization.

    PubMed

    Koshimizu, Shizuka; Kofuji, Rumiko; Sasaki-Sekimoto, Yuko; Kikkawa, Masahide; Shimojima, Mie; Ohta, Hiroyuki; Shigenobu, Shuji; Kabeya, Yukiko; Hiwatashi, Yuji; Tamada, Yosuke; Murata, Takashi; Hasebe, Mitsuyasu

    2018-01-01

    MIKC classic (MIKC C )-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKC C -type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKC C -type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKC C -type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.

  11. Characterisation of the Transcriptomes of Genetically Diverse Listeria monocytogenes Exposed to Hyperosmotic and Low Temperature Conditions Reveal Global Stress-Adaptation Mechanisms

    PubMed Central

    Durack, Juliana; Ross, Tom; Bowman, John P.

    2013-01-01

    The ability of Listeria monocytogenes to adapt to various food and food- processing environments has been attributed to its robustness, persistence and prevalence in the food supply chain. To improve the present understanding of molecular mechanisms involved in hyperosmotic and low-temperature stress adaptation of L. monocytogenes, we undertook transcriptomics analysis on three strains adapted to sub-lethal levels of these stress stimuli and assessed functional gene response. Adaptation to hyperosmotic and cold-temperature stress has revealed many parallels in terms of gene expression profiles in strains possessing different levels of stress tolerance. Gene sets associated with ribosomes and translation, transcription, cell division as well as fatty acid biosynthesis and peptide transport showed activation in cells adapted to either cold or hyperosmotic stress. Repression of genes associated with carbohydrate metabolism and transport as well as flagella was evident in stressed cells, likely linked to activation of CodY regulon and consequential cellular energy conservation. PMID:24023890

  12. The genome sequence of the facultative intracellular pathogen Brucella melitensis.

    PubMed

    DelVecchio, Vito G; Kapatral, Vinayak; Redkar, Rajendra J; Patra, Guy; Mujer, Cesar; Los, Tamara; Ivanova, Natalia; Anderson, Iain; Bhattacharyya, Anamitra; Lykidis, Athanasios; Reznik, Gary; Jablonski, Lynn; Larsen, Niels; D'Souza, Mark; Bernal, Axel; Mazur, Mikhail; Goltsman, Eugene; Selkov, Eugene; Elzer, Philip H; Hagius, Sue; O'Callaghan, David; Letesson, Jean-Jacques; Haselkorn, Robert; Kyrpides, Nikos; Overbeek, Ross

    2002-01-08

    Brucella melitensis is a facultative intracellular bacterial pathogen that causes abortion in goats and sheep and Malta fever in humans. The genome of B. melitensis strain 16M was sequenced and found to contain 3,294,935 bp distributed over two circular chromosomes of 2,117,144 bp and 1,177,787 bp encoding 3,197 ORFs. By using the bioinformatics suite ERGO, 2,487 (78%) ORFs were assigned functions. The origins of replication of the two chromosomes are similar to those of other alpha-proteobacteria. Housekeeping genes, including those involved in DNA replication, transcription, translation, core metabolism, and cell wall biosynthesis, are distributed on both chromosomes. Type I, II, and III secretion systems are absent, but genes encoding sec-dependent, sec-independent, and flagella-specific type III, type IV, and type V secretion systems as well as adhesins, invasins, and hemolysins were identified. Several features of the B. melitensis genome are similar to those of the symbiotic Sinorhizobium meliloti.

  13. The genome sequence of the facultative intracellular pathogen Brucella melitensis

    PubMed Central

    DelVecchio, Vito G.; Kapatral, Vinayak; Redkar, Rajendra J.; Patra, Guy; Mujer, Cesar; Los, Tamara; Ivanova, Natalia; Anderson, Iain; Bhattacharyya, Anamitra; Lykidis, Athanasios; Reznik, Gary; Jablonski, Lynn; Larsen, Niels; D'Souza, Mark; Bernal, Axel; Mazur, Mikhail; Goltsman, Eugene; Selkov, Eugene; Elzer, Philip H.; Hagius, Sue; O'Callaghan, David; Letesson, Jean-Jacques; Haselkorn, Robert; Kyrpides, Nikos; Overbeek, Ross

    2002-01-01

    Brucella melitensis is a facultative intracellular bacterial pathogen that causes abortion in goats and sheep and Malta fever in humans. The genome of B. melitensis strain 16M was sequenced and found to contain 3,294,935 bp distributed over two circular chromosomes of 2,117,144 bp and 1,177,787 bp encoding 3,197 ORFs. By using the bioinformatics suite ERGO, 2,487 (78%) ORFs were assigned functions. The origins of replication of the two chromosomes are similar to those of other α-proteobacteria. Housekeeping genes, including those involved in DNA replication, transcription, translation, core metabolism, and cell wall biosynthesis, are distributed on both chromosomes. Type I, II, and III secretion systems are absent, but genes encoding sec-dependent, sec-independent, and flagella-specific type III, type IV, and type V secretion systems as well as adhesins, invasins, and hemolysins were identified. Several features of the B. melitensis genome are similar to those of the symbiotic Sinorhizobium meliloti. PMID:11756688

  14. Surface contact stimulates the just-in-time deployment of bacterial adhesins.

    PubMed

    Li, Guanglai; Brown, Pamela J B; Tang, Jay X; Xu, Jing; Quardokus, Ellen M; Fuqua, Clay; Brun, Yves V

    2012-01-01

    The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive. © 2011 Blackwell Publishing Ltd.

  15. On the propulsive efficiency of rotating elastica.

    NASA Astrophysics Data System (ADS)

    Fermigier, Marc; Champagne, Nicolas; Laik, Eric; Marthelot, Joel; Du Roure, Olivia

    2007-11-01

    A majority of microorganisms propel themselves with long flexible cilia or flagella. Understanding in detail the hydrodynamics of such propulsion mechanisms is important both from biological and engineering point of views, in particular to design artificial microswimmers. We report an experimental investigation of the propulsive force delivered by a rotating elastic filament. Macroscopic filaments made of an elastomer (Young's modulus E) loaded with solid particles to match the density of the suspending liquid are rotated at constant velocity φ in a bath of glycerin. Their three dimensional shape is time independent but varies with φ and aspect ratio L/a. The force on the filament is computed from the experimental shape using a slender body approximation (ratio of perpendicular and parallel friction coefficients : ζ= 2 ζ). The evolution of axial force is captured by a single dimensionless parameter comparing viscous and elastic stresses: Sp = (ηφ/E) (L/a)^4. As for a planar oscillating flexible tail a maximum force is found at Sp 1.

  16. Structural properties of the tubular appendage spinae from marine bacterium Roseobacter sp. strain YSCB

    PubMed Central

    Bernadac, A.; Wu, L.-F.; Santini, C.-L.; Vidaud, C.; Sturgis, J. N.; Menguy, N.; Bergam, P.; Nicoletti, C.; Xiao, T.

    2012-01-01

    Spinae are tubular surface appendages broadly found in Gram-negative bacteria. Little is known about their architecture, function or origin. Here, we report structural characterization of the spinae from marine bacteria Roseobacter sp. YSCB. Electron cryo-tomography revealed that a single filament winds into a hollow flared base with progressive change to a cylinder. Proteinase K unwound the spinae into proteolysis-resistant filaments. Thermal treatment ripped the spinae into ribbons that were melted with prolonged heating. Circular dichroism spectroscopy revealed a dominant beta-structure of the spinae. Differential scanning calorimetry analyses showed three endothermic transformations at 50–85°C, 98°C and 123°C, respectively. The heating almost completely disintegrated the spinae, abolished the 98°C transition and destroyed the beta-structure. Infrared spectroscopy identified the amide I spectrum maximum at a position similar to that of amyloid fibrils. Therefore, the spinae distinguish from other bacterial appendages, e.g. flagella and stalks, in both the structure and mechanism of assembly. PMID:23230515

  17. Hydrodynamics of bacteriophages

    NASA Astrophysics Data System (ADS)

    Katsamba, Panayiota; Lauga, Eric

    2017-11-01

    Bacteriophage viruses, one of the most abundant entities in our planet, lack the ability to move independently. Instead, they crowd fluid environments in anticipation of a random encounter with bacteria. Once they 'land' on their victim's surface, they eject their genetic material inside the host cell. A big fraction of phage species, however, first attach to the flagella of bacteria. Being immotile, these so-called flagellotropic phages still manage to reach the cell body for infection, and the process by which they move up the flagellum has intrigued the scientific community for over four decades. In 1973 Berg and Anderson proposed the nut-and-bolt mechanism in which, just like a nut being rotated moves along a bolt, the phage wraps itself around a flagellum possessing helical grooves (due to the helical rows of flagellin molecules) and exploits the rotation of the flagellum in order to passively travel along it. We provide here a first-principle theoretical model for this nut-and-bolt mechanism and show that it is able to predict experiment observations.

  18. FERMENTATION OF ETHYLENE GLYCOL BY CLOSTRIDIUM GLYCOLICUM, SP. N1

    PubMed Central

    Gaston, Lamont W.; Stadtman, E. R.

    1963-01-01

    Gaston, Lamont W. (National Heart Institute, National Institutes of Health, Bethesda, Md.) and E. R. Stadtman. Fermentation of ethylene glycol by Clostridium glycolicum, sp. n. J. Bacteriol. 85:356–362. 1963.—An anaerobic organism which utilizes ethylene glycol as a source of energy and carbon has been isolated from mud. It is a long (5 μ), slender, motile, gram-positive, spore-forming rod, with peritrichous flagellae. It grows well from 22 to 37 C at pH 7.4 to 7.6, and ferments glucose, fructose, sorbitol, dulcitol, and cellulose. It does not reduce nitrates, form indole, or cause hemolysis or proteolysis except for a slight attack on coagulated egg albumin. Fifteen amino acids and the vitamins biotin and pantothenate are required for optimal growth on ethylene glycol. Analogues other than propylene glycol do not support growth. Ethylene glycol and propylene glycol are stoichiometrically converted to equal amounts of the respective acid and alcohol. PMID:13946772

  19. Escherichia coli Biofilms Have an Organized and Complex Extracellular Matrix Structure

    PubMed Central

    Hung, Chia; Zhou, Yizhou; Pinkner, Jerome S.; Dodson, Karen W.; Crowley, Jan R.; Heuser, John; Chapman, Matthew R.; Hadjifrangiskou, Maria; Henderson, Jeffrey P.; Hultgren, Scott J.

    2013-01-01

    ABSTRACT Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. PMID:24023384

  20. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy.

    PubMed

    Davis, Michael L; Mounteer, Leslie C; Stevens, Lindsey K; Miller, Charles D; Zhou, Anhong

    2011-05-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout the exponential growth phase (~20.9 μm/s), while maximum velocities peak early in the exponential growth phase at a velocity of 51.2 μm/s. P. putida KT2440 also favors smaller turn angles indicating that they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Guest editorial: Special issue micro-and nanomachines.

    DOE PAGES

    Sanchez, Samuel; Paxton, Walter F.; Nitta, Takahiro

    2015-04-01

    The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the designmore » and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.« less

  2. Method matters: Experimental evidence for shorter avian sperm in faecal compared to abdominal massage samples

    PubMed Central

    Cockburn, Glenn; Sánchez-Tójar, Alfredo; Løvlie, Hanne; Schroeder, Julia

    2017-01-01

    Birds are model organisms in sperm biology. Previous work in zebra finches, suggested that sperm sampled from males' faeces and ejaculates do not differ in size. Here, we tested this assumption in a captive population of house sparrows, Passer domesticus. We compared sperm length in samples from three collection techniques: female dummy, faecal and abdominal massage samples. We found that sperm were significantly shorter in faecal than abdominal massage samples, which was explained by shorter heads and midpieces, but not flagella. This result might indicate that faecal sampled sperm could be less mature than sperm collected by abdominal massage. The female dummy method resulted in an insufficient number of experimental ejaculates because most males ignored it. In light of these results, we recommend using abdominal massage as a preferred method for avian sperm sampling. Where avian sperm cannot be collected by abdominal massage alone, we advise controlling for sperm sampling protocol statistically. PMID:28813481

  3. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites.

    PubMed

    Woo, Yong H; Ansari, Hifzur; Otto, Thomas D; Klinger, Christen M; Kolisko, Martin; Michálek, Jan; Saxena, Alka; Shanmugam, Dhanasekaran; Tayyrov, Annageldi; Veluchamy, Alaguraj; Ali, Shahjahan; Bernal, Axel; del Campo, Javier; Cihlář, Jaromír; Flegontov, Pavel; Gornik, Sebastian G; Hajdušková, Eva; Horák, Aleš; Janouškovec, Jan; Katris, Nicholas J; Mast, Fred D; Miranda-Saavedra, Diego; Mourier, Tobias; Naeem, Raeece; Nair, Mridul; Panigrahi, Aswini K; Rawlings, Neil D; Padron-Regalado, Eriko; Ramaprasad, Abhinay; Samad, Nadira; Tomčala, Aleš; Wilkes, Jon; Neafsey, Daniel E; Doerig, Christian; Bowler, Chris; Keeling, Patrick J; Roos, David S; Dacks, Joel B; Templeton, Thomas J; Waller, Ross F; Lukeš, Julius; Oborník, Miroslav; Pain, Arnab

    2015-07-15

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga.

  4. Cristispira from oyster styles: complex morphology of large symbiotic spirochetes

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Nault, L.; Sieburth, J. M.

    1991-01-01

    Crystalline styles (digestive organs) of bivalve mollusks provide the habitat for highly motile bacteria. Styles from freshly-collected oysters, Crassostrea virginica, were studied by electron microscopy; Cristispira spirochetes were abundant in these organs. Detailed study reveals these spirochetes to be among the most complex prokaryotic cells known. More than 600 periplasmic flagella and an adhering outer lipoprotein membrane (e.g., a 270 degrees sillon) form the ultrastructural basis for the "crista," first described by light microscopy. Unique rosette structures corresponding to the "chambers" or "ovoid inclusions" of light microscopy were detected at the periphery of all protoplasmic cylinders. Polar organelles and linearly aligned flagellar insertions are conspicuous. In size and complexity, Cristispira more resembles Pillotina, Diplocalyx, Clevelandina and Hollandina (large spirochetes symbiotic in termites) than it does Treponema. Cristispira pectinis (Gross, 1910), the type species; Spirillum ostrea (Noguchi, 1921); and another, less frequent bacterial symbiont are the predominant inhabitants of the dense style matrix. The ultrastructure of the spirillum and an electron micrograph of the third bacterium are shown.

  5. Location and description of spiral-shaped microorganisms in the normal rat cecum

    USGS Publications Warehouse

    Davis, Charles P.; Mulcahy, D.; Takeuchi, A.; Savage, D.C.

    1972-01-01

    Some indigenous microorganisms have been shown to localize in certain anatomical sites of the digestive tract of mammals. We studied the ceca of normal adult rats by light and electron microscopy to determine whether any specific bacterial population localizes in this area. All rats studied showed that the crypt was packed with organisms whose morphological character differs from those of the cecal lumen. Organisms localized in the crypt were often identified topographically close to the microvilli of the epithelial cells. These organisms could be differentiated into three types according to their characteristic ultrastructure. Type 1 was a thin spiral-shaped microbe that resembled a Borrelia. Type 2 possessed helically coiled fibers and flagella-like appendages. Type 3 was spiral-shaped but lacked axial fibers. Types 1 and 2 were both capable of penetrating through the crypt epithelium into the lamina propria where they were found in either phagocytes or extracellular locations. These observations are discussed in relation to other host-microflora localization patterns.

  6. Spermatological characters of the pseudophyllidean cestode Bothriocephalus scorpii (Müller, 1776).

    PubMed

    Levron, Céline; Brunanská, Magdaléna; Poddubnaya, Larisa G

    2006-06-01

    Spermiogenesis of Bothriocephalus scorpii (Cestoda, Pseudophyllidea) includes an orthogonal development of two flagella, followed by a flagellar rotation and a proximo-distal fusion with the median cytoplasmic process. The fusion occurs at the level of four attachment zones. The presence of dense material in the apical region of the differentiation zone in the early stage of spermiogenesis appears to be a characteristic feature for the Pseudophyllidea. The mature spermatozoon possesses two axonemes of 9+"1" pattern of the Trepaxonemata, nucleus, cortical microtubules, electron-dense granules and crested body. The anterior part of the gamete exhibits a centriole surrounded by electron-dense tubular structures arranged as incomplete spiral. When the crested body disappears, the electron-dense tubular structures are arranged into a ring encircling the axoneme. The electron-dense tubular structures and their arrangement appear to be a specific feature for the clade "Bothriocephalidea". The organization of the posterior extremity of the gamete with the nucleus is described for the first time in the Pseudophyllidea.

  7. Modeling of stochastic motion of bacteria propelled spherical microbeads

    NASA Astrophysics Data System (ADS)

    Arabagi, Veaceslav; Behkam, Bahareh; Cheung, Eugene; Sitti, Metin

    2011-06-01

    This work proposes a stochastic dynamic model of bacteria propelled spherical microbeads as potential swimming microrobotic bodies. Small numbers of S. marcescens bacteria are attached with their bodies to surfaces of spherical microbeads. Average-behavior stochastic models that are normally adopted when studying such biological systems are generally not effective for cases in which a small number of agents are interacting in a complex manner, hence a stochastic model is proposed to simulate the behavior of 8-41 bacteria assembled on a curved surface. Flexibility of the flagellar hook is studied via comparing simulated and experimental results for scenarios of increasing bead size and the number of attached bacteria on a bead. Although requiring more experimental data to yield an exact, certain flagellar hook stiffness value, the examined results favor a stiffer flagella. The stochastic model is intended to be used as a design and simulation tool for future potential targeted drug delivery and disease diagnosis applications of bacteria propelled microrobots.

  8. Power generation by flagella-propelled Serratia Marcescens

    NASA Astrophysics Data System (ADS)

    Tran, Trung-Hieu; Kim, Min Jun; Byun, Doyoung

    2010-11-01

    In this study, we present electrical power generation by using swimming Serratia marcescens which is a rod shaped bacterium species and has about 10 um long and about 20 nm thin helical filaments. Flow in micro channel is driven by bacteria attached on the wall, which is around 25 to 50 μm/sec. The driven electrolyte solution flow (buffer solution containing high concentration of S. marcescens) may be considered as movement of conductor. If we place permanent magnets on the top and bottom of the micro channel and electrodes on side walls in the micro channel, electrical current could be generated by the principle of Lorentz force acting on the moving charges. The potential between the two electrodes was measured to be up to 10mV and the electrical current was about 10pA with external load 50 Ohm. Even if the energy generated by bacteria swimming is small, it demonstrated the possible generation of power, which requires in-depth further research.

  9. In Vitro Reconstitution of Functional Type III Protein Export and Insights into Flagellar Assembly.

    PubMed

    Terashima, Hiroyuki; Kawamoto, Akihiro; Tatsumi, Chinatsu; Namba, Keiichi; Minamino, Tohru; Imada, Katsumi

    2018-06-26

    The type III secretion system (T3SS) forms the functional core of injectisomes, protein transporters that allow bacteria to deliver virulence factors into their hosts for infection, and flagella, which are critical for many pathogens to reach the site of infection. In spite of intensive genetic and biochemical studies, the T3SS protein export mechanism remains unclear due to the difficulty of accurate measurement of protein export in vivo Here, we developed an in vitro flagellar T3S protein transport assay system using an inverted cytoplasmic membrane vesicle (IMV) for accurate and controlled measurements of flagellar protein export. We show that the flagellar T3SS in the IMV fully retains export activity. The flagellar hook was constructed inside the lumen of the IMV by adding purified component proteins externally to the IMV solution. We reproduced the hook length control and export specificity switch in the IMV consistent with that seen in the native cell. Previous in vivo analyses showed that flagellar protein export is driven by proton motive force (PMF) and facilitated by ATP hydrolysis by FliI, a T3SS-specific ATPase. Our in vitro assay recapitulated these previous in vivo observations but furthermore clearly demonstrated that even ATP hydrolysis by FliI alone can drive flagellar protein export. Moreover, this assay showed that addition of the FliH 2 /FliI complex to the assay solution at a concentration similar to that in the cell dramatically enhanced protein export, confirming that the FliH 2 /FliI complex in the cytoplasm is important for effective protein transport. IMPORTANCE The type III secretion system (T3SS) is the functional core of the injectisome, a bacterial protein transporter used to deliver virulence proteins into host cells, and bacterial flagella, critical for many pathogens. The molecular mechanism of protein transport is still unclear due to difficulties in accurate measurements of protein transport under well-controlled conditions in vivo We succeeded in developing an in vitro transport assay system of the flagellar T3SS using inverted membrane vesicles (IMVs). Flagellar hook formation was reproduced in the IMV, suggesting that the export apparatus in the IMV retains a protein transport activity similar to that in the cell. Using this system, we revealed that ATP hydrolysis by the T3SS ATPase can drive protein export without PMF. Copyright © 2018 Terashima et al.

  10. Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes.

    PubMed

    Grim, Christopher J; Kozlova, Elena V; Sha, Jian; Fitts, Eric C; van Lier, Christina J; Kirtley, Michelle L; Joseph, Sandeep J; Read, Timothy D; Burd, Eileen M; Tall, Ben D; Joseph, Sam W; Horneman, Amy J; Chopra, Ashok K; Shak, Joshua R

    2013-04-23

    Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966(T), and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966(T). The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966(T) and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. Aeromonas hydrophila is a common aquatic bacterium that has increasingly been implicated in serious human infections. While many determinants of virulence have been identified in Aeromonas, rapid identification of pathogenic versus nonpathogenic strains remains a challenge for this genus, as it is for other opportunistic pathogens. This paper demonstrates, by using whole-genome sequencing of clinical Aeromonas strains, followed by corresponding virulence assays, that comparative genomics can be used to identify a virulent subtype of A. hydrophila that is aggressive during human infection and more lethal in a mouse model of infection. This aggressive pathotype contained genes for toxin production, toxin secretion, and bacterial motility that likely enabled its pathogenicity. Our results highlight the potential of whole-genome sequencing to transform microbial diagnostics; with further advances in rapid sequencing and annotation, genomic analysis will be able to provide timely information on the identities and virulence potential of clinically isolated microorganisms.

  11. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.

    PubMed Central

    Magariyama, Y; Sugiyama, S; Muramoto, K; Kawagishi, I; Imae, Y; Kudo, S

    1995-01-01

    Swimming speeds and flagellar rotation rates of individual free-swimming Vibrio alginolyticus cells were measured simultaneously by laser dark-field microscopy at 25, 30, and 35 degrees C. A roughly linear relation between swimming speed and flagellar rotation rate was observed. The ratio of swimming speed to flagellar rotation rate was 0.113 microns, which indicated that a cell progressed by 7% of pitch of flagellar helix during one flagellar rotation. At each temperature, however, swimming speed had a tendency to saturate at high flagellar rotation rate. That is, the cell with a faster-rotating flagellum did not always swim faster. To analyze the bacterial motion, we proposed a model in which the torque characteristics of the flagellar motor were considered. The model could be analytically solved, and it qualitatively explained the experimental results. The discrepancy between the experimental and the calculated ratios of swimming speed to flagellar rotation rate was about 20%. The apparent saturation in swimming speed was considered to be caused by shorter flagella that rotated faster but produced less propelling force. Images FIGURE 1 FIGURE 4 PMID:8580359

  12. The centriole duplication cycle

    PubMed Central

    Fırat-Karalar, Elif Nur; Stearns, Tim

    2014-01-01

    Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole ‘origin of duplication’ that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells. PMID:25047614

  13. The physics of the unconventional motility strategy of euglenids

    NASA Astrophysics Data System (ADS)

    Arroyo, Marino; Noselli, Giovanni; Desimone, Antonio

    Euglenids are a family of unicellular protists, which use flagella to move in a fluid. However, they are also capable of performing elegantly concerted large amplitude deformations of the cell shape, in what is known as metaboly. To perform metaboly, euglenids use an elaborate cortical complex capable of actively imposing spatially modulated shear deformations on the cell surface. This mode of cell deformation has been linked to motility, but biophysical studies have demonstrated that it leads to very small swimming velocities as compared to flagellar locomotion. Furthermore, why would these cells possess two elaborate apparatus for the same function remains unclear. In this work, we combine experimental observations of euglena gracilis cells with theoretical models to shed light into the function of metaboly. The theoretical models account for the force generation and shape evolution at the cell envelop, together with the mechanical interaction of the cell with its environment. We characterize the efficiency of the two modes of locomotion of this cells in terms of the physical nature of their environment. ERC AdG 340685 MicroMotility.

  14. SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture.

    PubMed

    Hilbert, Manuel; Noga, Akira; Frey, Daniel; Hamel, Virginie; Guichard, Paul; Kraatz, Sebastian H W; Pfreundschuh, Moritz; Hosner, Sarah; Flückiger, Isabelle; Jaussi, Rolf; Wieser, Mara M; Thieltges, Katherine M; Deupi, Xavier; Müller, Daniel J; Kammerer, Richard A; Gönczy, Pierre; Hirono, Masafumi; Steinmetz, Michel O

    2016-04-01

    Centrioles are critical for the formation of centrosomes, cilia and flagella in eukaryotes. They are thought to assemble around a nine-fold symmetric cartwheel structure established by SAS-6 proteins. Here, we have engineered Chlamydomonas reinhardtii SAS-6-based oligomers with symmetries ranging from five- to ten-fold. Expression of a SAS-6 mutant that forms six-fold symmetric cartwheel structures in vitro resulted in cartwheels and centrioles with eight- or nine-fold symmetries in vivo. In combination with Bld10 mutants that weaken cartwheel-microtubule interactions, this SAS-6 mutant produced six- to eight-fold symmetric cartwheels. Concurrently, the microtubule wall maintained eight- and nine-fold symmetries. Expressing SAS-6 with analogous mutations in human cells resulted in nine-fold symmetric centrioles that exhibited impaired length and organization. Together, our data suggest that the self-assembly properties of SAS-6 instruct cartwheel symmetry, and lead us to propose a model in which the cartwheel and the microtubule wall assemble in an interdependent manner to establish the native architecture of centrioles.

  15. Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella

    PubMed Central

    Gokhale, Avanti; Wirschell, Maureen

    2009-01-01

    Experimental analysis of isolated ciliary/flagellar axonemes has implicated the protein kinase casein kinase I (CK1) in regulation of dynein. To test this hypothesis, we developed a novel in vitro reconstitution approach using purified recombinant Chlamydomonas reinhardtii CK1, together with CK1-depleted axonemes from the paralyzed flagellar mutant pf17, which is defective in radial spokes and impaired in dynein-driven microtubule sliding. The CK1 inhibitors (DRB and CK1-7) and solubilization of CK1 restored microtubule sliding in pf17 axonemes, which is consistent with an inhibitory role for CK1. The phosphatase inhibitor microcystin-LR blocked rescue of microtubule sliding, indicating that the axonemal phosphatases, required for rescue, were retained in the CK1-depleted axonemes. Reconstitution of depleted axonemes with purified, recombinant CK1 restored inhibition of microtubule sliding in a DRB– and CK1-7–sensitive manner. In contrast, a purified “kinase-dead” CK1 failed to restore inhibition. These results firmly establish that an axonemal CK1 regulates dynein activity and flagellar motility. PMID:19752022

  16. Cyclic diguanylate signaling in Gram-positive bacteria

    PubMed Central

    Purcell, Erin B.; Tamayo, Rita

    2016-01-01

    The nucleotide second messenger 3′-5′ cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria. PMID:27354347

  17. A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms

    NASA Astrophysics Data System (ADS)

    Kühn, Jonas; Niraula, Bimochan; Liewer, Kurt; Kent Wallace, J.; Serabyn, Eugene; Graff, Emilio; Lindensmith, Christian; Nadeau, Jay L.

    2014-12-01

    Digital holographic microscopy is an ideal tool for investigation of microbial motility. However, most designs do not exhibit sufficient spatial resolution for imaging bacteria. In this study we present an off-axis Mach-Zehnder design of a holographic microscope with spatial resolution of better than 800 nm and the ability to resolve bacterial samples at varying densities over a 380 μm × 380 μm × 600 μm three-dimensional field of view. Larger organisms, such as protozoa, can be resolved in detail, including cilia and flagella. The instrument design and performance are presented, including images and tracks of bacterial and protozoal mixed samples and pure cultures of six selected species. Organisms as small as 1 μm (bacterial spores) and as large as 60 μm (Paramecium bursaria) may be resolved and tracked without changes in the instrument configuration. Finally, we present a dilution series investigating the maximum cell density that can be imaged, a type of analysis that has not been presented in previous holographic microscopy studies.

  18. The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility

    PubMed Central

    Yamamoto, Ryosuke; Song, Kangkang; Yanagisawa, Haru-aki; Fox, Laura; Yagi, Toshiki; Wirschell, Maureen; Hirono, Masafumi; Kamiya, Ritsu; Nicastro, Daniela

    2013-01-01

    Axonemal dyneins must be precisely regulated and coordinated to produce ordered ciliary/flagellar motility, but how this is achieved is not understood. We analyzed two Chlamydomonas reinhardtii mutants, mia1 and mia2, which display slow swimming and low flagellar beat frequency. We found that the MIA1 and MIA2 genes encode conserved coiled-coil proteins, FAP100 and FAP73, respectively, which form the modifier of inner arms (MIA) complex in flagella. Cryo–electron tomography of mia mutant axonemes revealed that the MIA complex was located immediately distal to the intermediate/light chain complex of I1 dynein and structurally appeared to connect with the nexin–dynein regulatory complex. In axonemes from mutants that lack both the outer dynein arms and the MIA complex, I1 dynein failed to assemble, suggesting physical interactions between these three axonemal complexes and a role for the MIA complex in the stable assembly of I1 dynein. The MIA complex appears to regulate I1 dynein and possibly outer arm dyneins, which are both essential for normal motility. PMID:23569216

  19. Deformation of a soft helical filament in an axial flow at low Reynolds number.

    PubMed

    Jawed, Mohammad K; Reis, Pedro M

    2016-02-14

    We perform a numerical investigation of the deformation of a rotating helical filament subjected to an axial flow, under low Reynolds number conditions, motivated by the propulsion of bacteria using helical flagella. Given its slenderness, the helical rod is intrinsically soft and deforms due to the interplay between elastic forces and hydrodynamic loading. We make use of a previously developed and experimentally validated computational tool framework that models the elasticity of the filament using the discrete elastic rod method and the fluid forces are treated using Lighthill's slender body theory. Under axial flow, and in the absence of rotation, the initially helical rod is extended. Above a critical flow speed its configuration comprises a straight portion connected to a localized helix near the free end. When the rod is also rotated about its helical axis, propulsion is only possible in a finite range of angular velocity, with an upper bound that is limited by buckling of the soft helix arising due to viscous stresses. A systematic exploration of the parameter space allows us to quantify regimes for successful propulsion for a number of specific bacteria.

  20. Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers.

    PubMed

    Khalil, Islam S M; Tabak, Ahmet Fatih; Hamed, Youssef; Mitwally, Mohamed E; Tawakol, Mohamed; Klingner, Anke; Sitti, Metin

    2018-02-01

    Peritrichously flagellated Escherichia coli swim back and forth by wrapping their flagella together in a helical bundle. However, other monotrichous bacteria cannot swim back and forth with a single flagellum and planar wave propagation. Quantifying this observation, a magnetically driven soft two-tailed microrobot capable of reversing its swimming direction without making a U-turn trajectory or actively modifying the direction of wave propagation is designed and developed. The microrobot contains magnetic microparticles within the polymer matrix of its head and consists of two collinear, unequal, and opposite ultrathin tails. It is driven and steered using a uniform magnetic field along the direction of motion with a sinusoidally varying orthogonal component. Distinct reversal frequencies that enable selective and independent excitation of the first or the second tail of the microrobot based on their tail length ratio are found. While the first tail provides a propulsive force below one of the reversal frequencies, the second is almost passive, and the net propulsive force achieves flagellated motion along one direction. On the other hand, the second tail achieves flagellated propulsion along the opposite direction above the reversal frequency.

  1. Active motility in bimodular bacterial aggregates

    NASA Astrophysics Data System (ADS)

    Zeng, Yu; Liu, Bin

    2017-11-01

    Dispersal capability is essential for microorganisms to achieve long-distance translocation, thus crucial for their abundance in various environments. In general, active dispersals are attributed to the movements of self-powered planktonic cells, while sessile cells that live a colonial life often disperse passively through flow entrainments. Here, we report another means of active dispersal employed by aggregates of sessile cells. The spherical rosette colonies of the bacterium Caulobacter crescentus are aggregates of sessile stalked cells, of which a small proportion undergo cell division, grow active flagella and effect whole-rosette motility. We show that these rosettes actively disperse both in bulk water and near the solid-liquid interface. In particular, the proximity of a self-powered rosette to the solid surface promotes a rolling movement, leading to its persistent transportation along the solid boundary. The active dispersal of these rosettes demonstrated a novel mode of colonial transportation that is based on the division of labor between sessile and motile cells. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).

  2. Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei

    NASA Astrophysics Data System (ADS)

    Stellamanns, Eric; Uppaluri, Sravanti; Hochstetter, Axel; Heddergott, Niko; Engstler, Markus; Pfohl, Thomas

    2014-10-01

    Unicellular parasites have developed sophisticated swimming mechanisms to survive in a wide range of environments. Cell motility of African trypanosomes, parasites responsible for fatal illness in humans and animals, is crucial both in the insect vector and the mammalian host. Using millisecond-scale imaging in a microfluidics platform along with a custom made optical trap, we are able to confine single cells to study trypanosome motility. From the trapping characteristics of the cells, we determine the propulsion force generated by cells with a single flagellum as well as of dividing trypanosomes with two fully developed flagella. Estimates of the dissipative energy and the power generation of single cells obtained from the motility patterns of the trypanosomes within the optical trap indicate that specific motility characteristics, in addition to locomotion, may be required for antibody clearance. Introducing a steerable second optical trap we could further measure the force, which is generated at the flagellar tip. Differences in the cellular structure of the trypanosomes are correlated with the trapping and motility characteristics and in consequence with their propulsion force, dissipative energy and power generation.

  3. Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure.

    PubMed

    Machado, M; Dinis, A M; Salgueiro, L; Custódio, José B A; Cavaleiro, C; Sousa, M C

    2011-04-01

    The present work evaluates the anti-Giardia activity of Syzygium aromaticum and its major compound eugenol. The effects were evaluated on parasite growth, adherence, viability and ultrastructure. S. aromaticum essential oil (IC(50)=134 μg/ml) and eugenol (IC(50)=101 μg/ml) inhibited the growth of G. lamblia. The essential oil inhibited trophozoites adherence since the first hour of incubation and was able to kill almost 50% of the parasites population in a time dependent manner. The eugenol inhibited G. lamblia trophozoites adherence since the third hour and not induce cell lyses. The main morphological alterations were modifications on the cell shape, presence of precipitates in the cytoplasm, autophagic vesicles, internalization of flagella and ventral disc, membrane blebs, and intracellular and nuclear clearing. Taken together, our findings lead us to propose that eugenol was responsible for the anti-giardial activity of the S. aromaticum essential oil and both have potential for use as therapeutic agents against giardiasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    PubMed

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  5. Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei.

    PubMed

    Stellamanns, Eric; Uppaluri, Sravanti; Hochstetter, Axel; Heddergott, Niko; Engstler, Markus; Pfohl, Thomas

    2014-10-01

    Unicellular parasites have developed sophisticated swimming mechanisms to survive in a wide range of environments. Cell motility of African trypanosomes, parasites responsible for fatal illness in humans and animals, is crucial both in the insect vector and the mammalian host. Using millisecond-scale imaging in a microfluidics platform along with a custom made optical trap, we are able to confine single cells to study trypanosome motility. From the trapping characteristics of the cells, we determine the propulsion force generated by cells with a single flagellum as well as of dividing trypanosomes with two fully developed flagella. Estimates of the dissipative energy and the power generation of single cells obtained from the motility patterns of the trypanosomes within the optical trap indicate that specific motility characteristics, in addition to locomotion, may be required for antibody clearance. Introducing a steerable second optical trap we could further measure the force, which is generated at the flagellar tip. Differences in the cellular structure of the trypanosomes are correlated with the trapping and motility characteristics and in consequence with their propulsion force, dissipative energy and power generation.

  6. Chirality of the cytoskeleton in the origins of cellular asymmetry

    PubMed Central

    2016-01-01

    Self-assembly of two important components of the cytoskeleton of eukaryotic cells, actin microfilaments and microtubules (MTs) results in polar filaments of one chirality. As is true for bacterial flagella, in actin microfilaments, screw direction is important for assembly processes and motility. For MTs, polar orientation within the cell is paramount. The alignment of these elements in the cell cytoplasm gives rise to emergent properties, including the potential for cell differentiation and specialization. Complex MTs with a characteristic chirality are found in basal bodies and centrioles; this chirality is preserved in cilia. In motile cilia, it is reflected in the direction of the effective stroke. The positioning of the basal body or cilia on the cell surface depends on polarity proteins. In evolution, survival depends on global polarity information relayed to the cell in part by orientation of the MT and actin filament cytoskeletons and the chirality of the basal body to determine left and right coordinates within a defined anterior–posterior cell and tissue axis. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821520

  7. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    PubMed Central

    Woo, Yong H; Ansari, Hifzur; Otto, Thomas D; Klinger, Christen M; Kolisko, Martin; Michálek, Jan; Saxena, Alka; Shanmugam, Dhanasekaran; Tayyrov, Annageldi; Veluchamy, Alaguraj; Ali, Shahjahan; Bernal, Axel; del Campo, Javier; Cihlář, Jaromír; Flegontov, Pavel; Gornik, Sebastian G; Hajdušková, Eva; Horák, Aleš; Janouškovec, Jan; Katris, Nicholas J; Mast, Fred D; Miranda-Saavedra, Diego; Mourier, Tobias; Naeem, Raeece; Nair, Mridul; Panigrahi, Aswini K; Rawlings, Neil D; Padron-Regalado, Eriko; Ramaprasad, Abhinay; Samad, Nadira; Tomčala, Aleš; Wilkes, Jon; Neafsey, Daniel E; Doerig, Christian; Bowler, Chris; Keeling, Patrick J; Roos, David S; Dacks, Joel B; Templeton, Thomas J; Waller, Ross F; Lukeš, Julius; Oborník, Miroslav; Pain, Arnab

    2015-01-01

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. DOI: http://dx.doi.org/10.7554/eLife.06974.001 PMID:26175406

  8. Competition between Burkholderia pseudomallei and B. thailandensis.

    PubMed

    Ngamdee, Wikanda; Tandhavanant, Sarunporn; Wikraiphat, Chanthiwa; Reamtong, Onrapak; Wuthiekanun, Vanaporn; Salje, Jeanne; Low, David A; Peacock, Sharon J; Chantratita, Narisara

    2015-03-03

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, an often fatal disease in tropical countries. Burkholderia thailandensis is a non-virulent but closely related species. Both species are soil saprophytes but are almost never isolated together. We identified two mechanisms by which B. pseudomallei affects the growth of B. thailandensis. First, we found that six different isolates of B. pseudomallei inhibited the growth of B. thailandensis on LB agar plates. Second, our results indicated that 55% of isolated strains of B. pseudomallei produced a secreted compound that inhibited the motility but not the viability of B. thailandensis. Analysis showed that the active compound was a pH-sensitive and heat-labile compound, likely a protein, which may affect flagella processing or facilitate their degradation. Analysis of bacterial sequence types (STs) demonstrated an association between this and motility inhibition. The active compound was produced from B. pseudomallei during the stationary growth phase. Taken together, our results indicate that B. pseudomallei inhibits both the growth and motility of its close relative B. thailandensis. The latter phenomenon appears to occur via a previously unreported mechanism involving flagellar processing or degradation.

  9. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    NASA Astrophysics Data System (ADS)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  10. Optical assembly of bio-hybrid micro-robots.

    PubMed

    Barroso, Álvaro; Landwerth, Shirin; Woerdemann, Mike; Alpmann, Christina; Buscher, Tim; Becker, Maike; Studer, Armido; Denz, Cornelia

    2015-04-01

    The combination of micro synthetic structures with bacterial flagella motors represents an actual trend for the construction of self-propelled micro-robots. The development of methods for fabrication of these bacteria-based robots is a first crucial step towards the realization of functional miniature and autonomous moving robots. We present a novel scheme based on optical trapping to fabricate living micro-robots. By using holographic optical tweezers that allow three-dimensional manipulation in real time, we are able to arrange the building blocks that constitute the micro-robot in a defined way. We demonstrate exemplarily that our method enables the controlled assembly of living micro-robots consisting of a rod-shaped prokaryotic bacterium and a single elongated zeolite L crystal, which are used as model of the biological and abiotic components, respectively. We present different proof-of-principle approaches for the site-selective attachment of the bacteria on the particle surface. The propulsion of the optically assembled micro-robot demonstrates the potential of the proposed method as a powerful strategy for the fabrication of bio-hybrid micro-robots.

  11. Reactions of chicken sera to recombinant Campylobacter jejuni flagellar proteins.

    PubMed

    Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E

    2015-03-01

    Campylobacter jejuni is a Gram-negative spiral rod bacterium and is the leading but underreported bacterial food-borne pathogen that causes human campylobacteriosis worldwide. Raw or undercooked poultry products are regarded as a major source for human infection. C. jejuni flagella have been implicated in colonization and adhesion to the mucosal surface of chicken gastrointestinal tracts. Therefore, flagellar proteins would be the excellent targets for further investigation. In this report, we used the recombinant technology to generate a battery of C. jejuni flagellar proteins, which were purified by His tag affinity chromatography and determined antigenic profiles of these recombinant flagellar proteins using sera from chickens older than 6 weeks of age. The immunoblot results demonstrate that each chicken serum reacted to various numbers of recombinant flagellar proteins. Among these recombinant proteins, chicken sera reacted predominantly to the FlgE1, FlgK, FlhF, FliG and FliY proteins. These antibody screening results provide a rationale for further evaluation of these recombinant flagellar proteins as potential vaccines for chickens to improve food safety as well as investigation of host immune response to C. jejuni.

  12. Adhesion of Chlamydomonas microalgae to surfaces is switchable by light

    NASA Astrophysics Data System (ADS)

    Kreis, Christian Titus; Le Blay, Marine; Linne, Christine; Makowski, Marcin Michal; Bäumchen, Oliver

    2018-01-01

    Microalgae are photoactive microbes that live in liquid-infused environments, such as soil, temporary pools and rocks, where they encounter and colonize a plethora of surfaces. Their photoactivity manifests itself in a variety of processes, including light-directed motility (phototaxis), the growth of microalgal populations, and their photosynthetic machinery. Although microbial responses to light have been widely recognized, any influence of light on cell-surface interactions remains elusive. Here, we reveal that the unspecific adhesion of microalgae to surfaces can be reversibly switched on and off by light. Using a micropipette force spectroscopy technique, we measured in vivo single-cell adhesion forces and show that the microalga's flagella provide light-switchable adhesive contacts with the surface. This light-induced adhesion to surfaces is an active and completely reversible process that occurs on a timescale of seconds. Our results suggest that light-switchable adhesiveness is a natural functionality of microalgae to regulate the transition between the planktonic and the surface-associated state, which yields an adhesive adaptation to optimize the photosynthetic efficiency in conjunction with phototaxis.

  13. An outer arm dynein light chain acts in a conformational switch for flagellar motility

    PubMed Central

    Patel-King, Ramila S.

    2009-01-01

    A system distinct from the central pair–radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the γ heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint. Furthermore, we observed that LC1 interacts directly with tubulin in a nucleotide-independent manner and tethers this motor unit to the A-tubule of the outer doublet microtubules within the axoneme. Therefore, this dynein HC is attached to the same microtubule by two sites: via both the N-terminal region and the motor domain. We propose that this γ HC–LC1–microtubule ternary complex functions as a conformational switch to control outer arm activity. PMID:19620633

  14. Discocelis saleuta gen. nov. et sp. nov. (Protista incertae sedis): - A new heterotrophic marine flagellate.

    PubMed

    Vørs, N

    1988-10-01

    The colourless flagellate Discocelis saleuta, a new genus from marine sediments, has been studied by light microscopy and single-cell sectioning for electron microscopy. The cell is discshaped and possesses an anterior velum and two anteriorly inserted unequal flagella. The cell body periphery and the velum are supported by ribbons of microtubules. Three flagellar roots, each of which comprises relatively few microtubules, arise from the flagellar basal bodies. Two of these roots run posteriorly under the ventral cell membrane, whereas the third root mainly runs along the posterior edge of the velum. The cell is further characterized by a microbody-like paranuclear organelle, and by a row of extrusomes bordering the cell periphery. Mitochondria have short tubular cristae. This minute flagellate adheres tightly to sand grains. The ultrastructure is unlike that of any well circumscribed higher order taxon, and the new genus is consequently placed incertae sedis in the kingdom Protista. Copyright © 1988 Gustav Fischer Verlag · Stuttgart · New York. Published by Elsevier GmbH.. All rights reserved.

  15. Between a Pod and a Hard Test: The Deep Evolution of Amoebae

    PubMed Central

    Kang, Seungho; Tice, Alexander K.; Spiegel, Frederick W.; Silberman, Jeffrey D.; Pánek, Tomáš; Čepička, Ivan; Kostka, Martin; Kosakyan, Anush; Alcântara, Daniel M.C.; Roger, Andrew J.; Shadwick, Lora L.; Smirnov, Alexey; Kudryavtsev, Alexander; Lahr, Daniel J.G.; Brown, Matthew W.

    2017-01-01

    Abstract Amoebozoa is the eukaryotic supergroup sister to Obazoa, the lineage that contains the animals and Fungi, as well as their protistan relatives, and the breviate and apusomonad flagellates. Amoebozoa is extraordinarily diverse, encompassing important model organisms and significant pathogens. Although amoebozoans are integral to global nutrient cycles and present in nearly all environments, they remain vastly understudied. We present a robust phylogeny of Amoebozoa based on broad representative set of taxa in a phylogenomic framework (325 genes). By sampling 61 taxa using culture-based and single-cell transcriptomics, our analyses show two major clades of Amoebozoa, Discosea, and Tevosa. This phylogeny refutes previous studies in major respects. Our results support the hypothesis that the last common ancestor of Amoebozoa was sexual and flagellated, it also may have had the ability to disperse propagules from a sporocarp-type fruiting body. Overall, the main macroevolutionary patterns in Amoebozoa appear to result from the parallel losses of homologous characters of a multiphase life cycle that included flagella, sex, and sporocarps rather than independent acquisition of convergent features. PMID:28505375

  16. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis

    PubMed Central

    Piek, Susannah; Kahler, Charlene M.

    2012-01-01

    The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism. PMID:23267440

  17. Course 3: Modelling Motor Protein Systems

    NASA Astrophysics Data System (ADS)

    Duke, T.

    Contents 1 Making a move: Principles of energy transduction 1.1 Motor proteins and Carnot engines 1.2 Simple Brownian ratchet 1.3 Polymerization ratchet 1.4 Isothermal ratchets 1.5 Motor proteins as isothermal ratchets 1.6 Design principles for effective motors 2 Pulling together: Mechano-chemical model of actomyosin 2.1 Swinging lever-arm model 2.2 Mechano-chemical coupling 2.3 Equivalent isothermal ratchet 2.4 Many motors working together 2.5 Designed to work 2.6 Force-velocity relation 2.7 Dynamical instability and biochemical synchronization 2.8 Transient response ofmuscle 3 Motors at work: Collective properties of motor proteins 3.1 Dynamical instabilities 3.2 Bidirectional movement 3.3 Critical behaviour 3.4 Oscillations 3.5 Dynamic buckling instability 3.6 Undulation of flagella 4 Sense and sensitivity: Mechano-sensation in hearing 4.1 System performance 4.2 Mechano-sensors: Hair bundles 4.3 Active amplification 4.4 Self-tuned criticality 4.5 Motor-driven oscillations 4.6 Channel compliance and relaxation oscillations 4.7 Channel-driven oscillations 4.8 Hearing at the noise limit

  18. Three Cases of Anaerobiospirillum succiniciproducens Bacteremia Confirmed by 16S rRNA Gene Sequencing

    PubMed Central

    Tee, Wee; Korman, Tony M.; Waters, Mary Jo; Macphee, Andrew; Jenney, Adam; Joyce, Linda; Dyall-Smith, Michael L.

    1998-01-01

    We describe three cases of Anaerobiospirillum succiniciproducens bacteremia from Australia. We believe one of these cases represents the first report of A. succiniciproducens bacteremia in a human immunodeficiency virus (HIV)-infected individual. The other two patients had an underlying disorder (one patient had bleeding esophageal varices complicating alcohol liver disease and one patient had non-Hodgkin’s lymphoma). A motile, gram-negative, spiral anaerobe was isolated by culturing blood from all patients. Electron microscopy showed a curved bacterium with bipolar tufts of flagella resembling Anaerobiospirillum spp. Sequencing of the 16S rRNA genes of the isolates revealed no close relatives (organisms likely to be in the same genus) in the sequence databases, nor were any sequence data available for A. succiniciproducens. This report presents for the first time the 16S rRNA gene sequence of the type strain of A. succiniciproducens, strain ATCC 29305. Two of the three clinical isolates have sequences identical to that of the type strain, while the sequence of the other strain differs from that of the type strain at 4 nucleotides. PMID:9574678

  19. [Analysis of the swimming pattern and the velocity of bacteria using video tracking method].

    PubMed

    Shigematsu, M

    1997-04-01

    The swimming patterns and the velocities of several flagellated bacteria were measured by a computer assisted video tracking method. The moving path of the individual bacterium revealed that the bacterium frequently changed its swimming direction and velocity. The velocity among bacterial strains varies widely. In low viscous environment. Campylobacter jejuni has characteristic swimming pattern with frequent changes in their swimming direction. As the viscosity increase, C. jejuni increases its velocity at a little higher viscosity of 3 centipoise (cP) and secondly increases at about 40 cP. Different from other flagellated bacteria, the swimming pattern of C. jejuni in these two velocity peaks were changed. C. jejuni exhibited continuously forward moving path in the first peak, but in the second it repeated back and forth swimming pattern. We thus assumed that C. jejuni may use a different swimming mode in high viscous media from the original mode mediated by the propelling force of the flagella. This method is useful for a detail analysis of bacterial movement and moving patterns in different environmental conditions.

  20. Zernike phase contrast cryo-electron tomography of sodium-driven flagellar hook-basal bodies from Vibrio alginolyticus.

    PubMed

    Hosogi, Naoki; Shigematsu, Hideki; Terashima, Hiroyuki; Homma, Michio; Nagayama, Kuniaki

    2011-01-01

    Vibrio alginolyticus use flagella to swim. A flagellum consists of a filament, hook and basal body. The basal body is made up of a rod and several ring structures. This study investigates the structure of the T ring which is a unique component of the V. alginolyticus sodium ion-driven flagellar basal body. Using Zernike phase contrast (ZPC) cryo-electron tomography, we compared the 3D structures of purified hook-basal bodies (HBB) from a wild-type strain (KK148) and a deletion mutant lacking MotX and MotY (TH3), which are thought to form the T ring. ZPC images of HBBs had highly improved signal-to-noise ratio compared to conventional phase contrast images. We observed the outline of the HBBs from strains KK148 and TH3, and the TH3 mutant was missing its T ring. In the wild-type strain, the T ring was beneath the LP ring and seemed to form a ring shape with diameter of 32 nm. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella

    PubMed Central

    Bui, Khanh Huy; Sakakibara, Hitoshi; Movassagh, Tandis; Oiwa, Kazuhiro; Ishikawa, Takashi

    2008-01-01

    The inner dynein arm regulates axonemal bending motion in eukaryotes. We used cryo-electron tomography to reconstruct the three-dimensional structure of inner dynein arms from Chlamydomonas reinhardtii. All the eight different heavy chains were identified in one 96-nm periodic repeat, as expected from previous biochemical studies. Based on mutants, we identified the positions of the AAA rings and the N-terminal tails of all the eight heavy chains. The dynein f dimer is located close to the surface of the A-microtubule, whereas the other six heavy chain rings are roughly colinear at a larger distance to form three dyads. Each dyad consists of two heavy chains and has a corresponding radial spoke or a similar feature. In each of the six heavy chains (dynein a, b, c, d, e, and g), the N-terminal tail extends from the distal side of the ring. To interact with the B-microtubule through stalks, the inner-arm dyneins must have either different handedness or, more probably, the opposite orientation of the AAA rings compared with the outer-arm dyneins. PMID:19029338

  2. Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly

    PubMed Central

    Cottee, Matthew A; Muschalik, Nadine; Wong, Yao Liang; Johnson, Christopher M; Johnson, Steven; Andreeva, Antonina; Oegema, Karen; Lea, Susan M; Raff, Jordan W; van Breugel, Mark

    2013-01-01

    Centrioles organise centrosomes and template cilia and flagella. Several centriole and centrosome proteins have been linked to microcephaly (MCPH), a neuro-developmental disease associated with small brain size. CPAP (MCPH6) and STIL (MCPH7) are required for centriole assembly, but it is unclear how mutations in them lead to microcephaly. We show that the TCP domain of CPAP constitutes a novel proline recognition domain that forms a 1:1 complex with a short, highly conserved target motif in STIL. Crystal structures of this complex reveal an unusual, all-β structure adopted by the TCP domain and explain how a microcephaly mutation in CPAP compromises complex formation. Through point mutations, we demonstrate that complex formation is essential for centriole duplication in vivo. Our studies provide the first structural insight into how the malfunction of centriole proteins results in human disease and also reveal that the CPAP–STIL interaction constitutes a conserved key step in centriole biogenesis. DOI: http://dx.doi.org/10.7554/eLife.01071.001 PMID:24052813

  3. Fins improve the swimming performance of fish sperm: a hydrodynamic analysis of the Siberian sturgeon Acipenser baerii.

    PubMed

    Gillies, Eric A; Bondarenko, Volodymyr; Cosson, Jacky; Pacey, Allan A

    2013-02-01

    The flagella of sturgeon sperm have an ultrastructure comprising paddle-like fins extending along most of their length. These fins are seen in several other marine and freshwater fish. The sperm of these fish are fast swimmers and are relatively short lived: it is therefore tempting to think of these fins as having evolved for hydrodynamic advantage, but the actual advantage they impart, at such a small length scale and slow speed, is unclear. The phrase "the fins improve hydrodynamic efficiency" is commonly found in biological literature, yet little hydrodynamic analysis has previously been used to support such conjectures. In this paper, we examine various hydrodynamic models of sturgeon sperm and investigate both swimming velocity and energy expenditure. All of the models indicate a modest hydrodynamic advantage of finned sperm, in both straight line swimming speed and a hydrodynamic efficiency measure. We find a hydrodynamic advantage for a flagellum with fins, over one without fins, of the order of 15-20% in straight line propulsive velocity and 10-15% in a hydrodynamic efficiency measure. Copyright © 2012 Wiley Periodicals, Inc.

  4. Magnetotaxis as a means for nanofabrication of bioelectronics

    NASA Astrophysics Data System (ADS)

    Macwan, Isaac

    Self-assembly plays an important role in the formation of different nanostructures either organic or inorganic. Controlled assembly of molecules into higher ordered hierarchical structures on the other hand require a thorough insight into the interactive forces that lie behind such an assembly. The interface between organic and inorganic materials is thus of primary significance when it comes to the tasks of selective deposition and assembly of inorganic molecules through organic agents. One of the bacterial species that belong to the class alpha-proteobacteria called Magnetospirillum magneticum (classified as AMB-1) is investigated in this study and it is found that this species is able to fulfill the requirements that are imposed by the complexity of the selective deposition and controlled assembly tasks. AMB-1 contain single-domain crystals of magnetite (Fe3O4) called magnetosomes that sense the external magnetic field that is further utilized for cellular displacement (magnetotaxis) through lash-like cellular appendages called flagella. The two flagella located at the proximal and distal ends of the cell consists of a protein monomer flagellin. Individual flagellin in turn that are located on the periphery of each of the flagellum's central channel consists of four sub-domains, two inner domains (D0, D1) made up of alpha-helices and two outer domains (D2, D3) made up of beta sheets. However, it is the domain D3 that is exposed to the surrounding micro-environment, thereby interacting with the components to be selectively deposited, in this case, carbon nanotubes (CNT). Based on the electromagnetic and molecular dynamics simulations and the real-time experimental analysis involving optical microscopy utilizing 50 micron diameter conductor (44AWG) magnetic coils as directional magnetic field generation centers to visualize the motion of free as well as loaded AMB-1 as well as electron microscopy (TEM & SEM) to analyze the interactive forces between CNT and AMB-1 flagellum, it is found that once the domain D3 is functionalized with either metallic (m-) or semiconducting (s-) carbon nanotubes (CNT), the AMB-1 cell can be used as an efficient carrier for selective deposition tasks. Two aspects that are of particular interest are the phenomenal control of direction exhibited by AMB-1 using locally generated magnetic field and the efficient interactive forces in the form of short range forces (van der Waals, hydrophobic interactions and hydrogen bonds) and long range forces (electrostatic interactions) between m-CNT or s-CNT and D3. Thus, it is recognized that a compound semiconductor manufacturing technology involving bacterial carriers and carbon-based materials such as carbon nanotubes would be a desirable choice in the future.

  5. Unidirectional rotary motion in a molecular system

    NASA Astrophysics Data System (ADS)

    Kelly, T. Ross; de Silva, Harshani; Silva, Richard A.

    1999-09-01

    The conversion of energy into controlled motion plays an important role in both man-made devices and biological systems. The principles of operation of conventional motors are well established, but the molecular processes used by `biological motors' such as muscle fibres, flagella and cilia to convert chemical energy into co-ordinated movement remain poorly understood. Although `brownian ratchets' are known to permit thermally activated motion in one direction only, the concept of channelling random thermal energy into controlled motion has not yet been extended to the molecular level. Here we describe a molecule that uses chemical energy to activate and bias a thermally induced isomerization reaction, and thereby achieve unidirectional intramolecular rotary motion. The motion consists of a 120° rotation around a single bond connecting a three-bladed subunit to the bulky remainder of the molecule, and unidirectional motion is achieved by reversibly introducing a tether between the two units to energetically favour one of the two possible rotation directions. Although our system does not achieve continuous and fast rotation, the design principles that we have used may prove relevant for a better understanding of biological and synthetic molecular motors producing unidirectional rotary motion.

  6. Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment.

    PubMed

    Spring, S; Kämpfer, P; Schleifer, K H

    2001-07-01

    Two novel thiosulfate-oxidizing strains were isolated from sediment of the littoral zone of a freshwater lake (Lake Chiemsee, Bavaria, Germany). The new isolates, designated CS-K1 and CS-K2T, were gram-negative, slightly curved rods with pointed ends that were motile by means of single polar flagella. Both strains were obligately aerobic and grew on a variety of organic substrates, but not autotrophically. The utilization of thiosulfate led to an increase in the growth yield, indicating that these strains were able to grow chemolithoheterotrophically by oxidation of thiosulfate to sulfate. The optimum thiosulfate concentrations for growth were determined to be 10 mM for strain CS-K1 and 20 mM for strain CS-K2T. Phylogenetically, both strains were affiliated to the beta-Proteobacteria. Their characterization by a polyphasic approach resulted in the placement of both strains into a single species that is related only distantly to any known type species. Thus, the creation of a novel taxon is proposed, with the name Limnobacter thiooxidans gen. nov., sp. nov., to include the novel strains. In addition, the phylogenetic position of the chemolithoheterotrophic strain 'Thiobacillus' Q was determined.

  7. Centrioles are freed from cilia by severing prior to mitosis.

    PubMed

    Parker, Jeremy D K; Hilton, Laura K; Diener, Dennis R; Rasi, M Qasim; Mahjoub, Moe R; Rosenbaum, Joel L; Quarmby, Lynne M

    2010-07-01

    Cilia are necessary for normal tissue development and homeostasis and are generally present during interphase, but not in mitosis. The precise mechanism of premitotic ciliary loss has been controversial, with data supporting either sequential disassembly through the transition zone or, alternatively, a severing event at the base of the cilia. Here we show by live cell imaging and immunofluorescence microscopy that resorbing flagella of Chlamydomonas leave remnants associated with the mother cell wall. We postulated that the remnants are the product of severing of doublet microtubules between the basal bodies and the flagellar transition zone, thereby freeing the centrioles to participate in spindle organization. We show via TEM that flagellar remnants are indeed flagellar transition zones encased in vesicles derived from the flagellar membrane. This transition zone vesicle can be lodged within the cell wall or it can be expelled into the environment. This process is observable in Chlamydomonas, first because the released flagellar remnants can remain associated with the cell by virtue of attachments to the cell wall, and second because the Chlamydomonas transition zone is particularly rich with electron-dense structure. However, release of basal bodies for spindle-associated function is likely to be conserved among the eukaryotes. 2010 Wiley-Liss, Inc.

  8. CatSperζ regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility

    PubMed Central

    Chung, Jean-Ju; Miki, Kiyoshi; Kim, Doory; Shim, Sang-Hee; Shi, Huanan F; Hwang, Jae Yeon; Cai, Xinjiang; Iseri, Yusuf; Zhuang, Xiaowei; Clapham, David E

    2017-01-01

    We report that the Gm7068 (CatSpere) and Tex40 (CatSperz) genes encode novel subunits of a 9-subunit CatSper ion channel complex. Targeted disruption of CatSperz reduces CatSper current and sperm rheotactic efficiency in mice, resulting in severe male subfertility. Normally distributed in linear quadrilateral nanodomains along the flagellum, the complex lacking CatSperζ is disrupted at ~0.8 μm intervals along the flagellum. This disruption renders the proximal flagellum inflexible and alters the 3D flagellar envelope, thus preventing sperm from reorienting against fluid flow in vitro and efficiently migrating in vivo. Ejaculated CatSperz-null sperm cells retrieved from the mated female uterus partially rescue in vitro fertilization (IVF) that failed with epididymal spermatozoa alone. Human CatSperε is quadrilaterally arranged along the flagella, similar to the CatSper complex in mouse sperm. We speculate that the newly identified CatSperζ subunit is a late evolutionary adaptation to maximize fertilization inside the mammalian female reproductive tract. DOI: http://dx.doi.org/10.7554/eLife.23082.001 PMID:28226241

  9. Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis.

    PubMed

    Gomez-Gil, B; Thompson, F L; Thompson, C C; Swings, J

    2003-01-01

    Five Gram-negative bacterial strains, oxidase-positive, motile by means of more than one polar flagella, facultative anaerobe, arginine dihydrolase-negative, lysine- and omithine decarboxylase-positive, sensitive to the vibriostatic agent O/129, were isolated from a flow-through rotifer culture system in Gent, Belgium, and previously characterized by fluorescent amplified fragment length polymorphism. Comparison of the 16S rDNA sequence of strain LMG 21460T indicated close relationships (approximately 99% similarity) to Vibrio campbellii, Vibrio harveyi, Vibrio alginolyticus and Vibrio parahaemolyticus. However, DNA hybridization experiments revealed similarity values below 70% with its closest species V. campbellii and V. harveyi. Additionally, the analysed strains differ from related Vibrio species by the utilization of melibiose and production of acid from L-arabinose and amygdalin. Among the strains analysed, differences were observed in some phenotypic characters, particularly susceptibility to ampicillin, polymyxin B and amikacin, and urease activity. The major fatty acids identified were 16:0, 18:1 omega7c, 14:0, 12:0 3-OH and 18:0. Vibrio rotiferianus sp. nov. is proposed, with type strain LMG 21460T (=CAIM 577T); it has a DNA G+C content of 44.5 +/- 0.01 mol%.

  10. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures.

    PubMed

    Lassak, Kerstin; Ghosh, Abhrajyoti; Albers, Sonja-Verena

    2012-01-01

    Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures. Copyright © 2012. Published by Elsevier Masson SAS.

  11. How molecular motors shape the flagellar beat

    PubMed Central

    Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank

    2007-01-01

    Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446

  12. Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntemann, Marcel; Stackebrandt, Erko; Held, Brittany

    2013-01-01

    Leptonema illini Hovind-Hougen 1979 is the type species of the genus Leptonema, family Leptospiraceae, phylum Spirochaetes. Organisms of this family have a Gram-negative-like cell enve- lope consisting of a cytoplasmic membrane and an outer membrane. The peptidoglycan layer is as- sociated with the cytoplasmic rather than the outer membrane. The two flagella of members of Leptospiraceae extend from the cytoplasmic membrane at the ends of the bacteria into the periplasmic space and are necessary for their motility. Here we describe the features of the L. illini type strain, together with the complete genome sequence, and annotation. This is the firstmore » genome sequence (finished at the level of Improved High Quality Draft) to be reported from of a member of the genus Leptonema and a representative of the third genus of the family Leptospiraceae for which complete or draft genome sequences are now available. The three scaffolds of the 4,522,760 bp draft genome sequence reported here, and its 4,230 protein-coding and 47 RNA genes are part of the Ge- nomic Encyclopedia of Bacteria and Archaea project.« less

  13. [A new type of flagellar structure. Type 9+n

    PubMed Central

    1977-01-01

    The ultrastructural study of the Eoacanthocephala sperm cell shows a variation from 0 to 5 in the number of the axial fibers in the axoneme. All the species of the order Eoacanthocephala available to us show this variation; moreover, every individual possesses simultaneously several different structural types. So, we are dealing with a new flagellar organization: 9+n, with 0 less than or equal to n less than or equal to 5. In the Quadrigyridae and the Tenuisentidae families, n varies from 0 to 4, with a maximum of 2 for most individuals, exceptionally at 1 for some individuals. In the Neoechinorhynchidae family, n varies from 0 to 5 with a conspicuous prevalence of 3 (from 84 to 99%, according to the individual). These results prompted us to reexamine the two other orders of Acanthocephala in which the structural types 9+2 or 9+0 have been considered as fixed. Indeed, we have found a few flagella the structure of which is different from the prevalent one. It seems, therefore, that the number of the central fibers of the axoneme in the Acanthocephala sperm cell is never absolutely fixed. PMID:557042

  14. Emergence of Chiral Phases in Active Torque Dipole Systems

    NASA Astrophysics Data System (ADS)

    Fialho, Ana; Tjhung, Elsen; Cates, Michael; Marenduzzo, Davide

    The common description of active particles as active force dipoles fails to take into account that active processes in biological systems often exhibit chiral asymmetries, generating active chiral processes and torque dipoles. Examples of such systems include cytoskeleton filaments which interact with motor proteins and beating cilia and flagella. In particular, the generation of active torques by the actomyosin cytoskeleton has been linked to the break of chiral symmetry at a cellular level. This phenomenon could constitute the primary determinant for the break of left-right symmetry in many living organisms, e.g. the position of the human heart within the human body. In order to account for the effects of chirality, we consider active torque dipoles which generate a chiral active stress. We characterize quasi-1D and 2D systems of torque dipoles, using a combination of linear stability analysis and numerical simulations (Lattice Boltzmann). Our results show that activity drives a spontaneous breaking of chiral symmetry, leading to the self-assembly of a chiral phase, in the absence of any thermodynamic interactions favoring cholesteric ordering. At high values of activity, we also observe labyrinthine patterns where the activity-induced chiral ordering is highly frustrated.

  15. Imaging intraflagellar transport in mammalian primary cilia.

    PubMed

    Besschetnova, Tatiana Y; Roy, Barnali; Shah, Jagesh V

    2009-01-01

    The primary cilium is a specialized organelle that projects from the surface of many cell types. Unlike its motile counterpart it cannot beat but does transduce extracellular stimuli into intracellular signals and acts as a specialized subcellular compartment. The cilium is built and maintained by the transport of proteins and other biomolecules into and out of this compartment. The trafficking machinery for the cilium is referred to as IFT or intraflagellar transport. It was originally identified in the green algae Chlamydomonas and has been discovered throughout the evolutionary tree. The IFT machinery is widely conserved and acts to establish, maintain, and disassemble cilia and flagella. Understanding the role of IFT in cilium signaling and regulation requires a methodology for observing it directly. Here we describe current methods for observing the IFT process in mammalian primary cilia through the generation of fluorescent protein fusions and their expression in ciliated cell lines. The observation protocol uses high-resolution time-lapse microscopy to provide detailed quantitative measurements of IFT particle velocities in wild-type cells or in the context of genetic or other perturbations. Direct observation of IFT trafficking will provide a unique tool to dissect the processes that govern cilium regulation and signaling. 2009 Elsevier Inc. All rights reserved.

  16. Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei

    PubMed Central

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-01

    Summary In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations [5]. PMID:24388851

  17. Meiosis and haploid gametes in the pathogen Trypanosoma brucei.

    PubMed

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-20

    In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector and involves meiosis, but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy.

    PubMed

    Kennedy, Eamonn; Nelson, Edward M; Tanaka, Tetsuya; Damiano, John; Timp, Gregory

    2016-02-23

    It is now possible to visualize at nanometer resolution the infection of a living biological cell with virus without compromising cell viability using scanning transmission electron microscopy (STEM). To provide contrast while preserving viability, Escherichia coli and P1 bacteriophages were first positively stained with a very low concentration of uranyl acetate in minimal phosphate medium and then imaged with low-dose STEM in a microfluidic liquid flow cell. Under these conditions, it was established that the median lethal dose of electrons required to kill half the tested population was LD50 = 30 e(-)/nm(2), which coincides with the disruption of a wet biological membrane, according to prior reports. Consistent with the lateral resolution and high-contrast signal-to-noise ratio (SNR) inferred from Monte Carlo simulations, images of the E. coli membrane, flagella, and the bacteriophages were acquired with 5 nm resolution, but the cumulative dose exceeded LD50. On the other hand, with a cumulative dose below LD50 (and lower SNR), it was still possible to visualize the infection of E. coli by P1, showing the insertion of viral DNA within 3 s, with 5 nm resolution.

  19. Polymer dynamics driven by a helical filament

    NASA Astrophysics Data System (ADS)

    Balin, Andrew; Shendruk, Tyler; Zoettl, Andreas; Yeomans, Julia

    Microbial flagellates typically inhabit complex suspensions of extracellular polymeric material which can impact the swimming speed of motile microbes, filter-feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena. We study the hydrodynamic and steric influence of a rotating helical filament on suspended polymers using Stokesian Dynamics simulations. Our results show that as a stationary rotating helix pumps fluid along its long axis, nearby polymers migrate radially inwards and are elongated in the process. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. At larger Weissenberg numbers, this accumulation of polymers within the vicinity of the helix is greater. Further, we have analysed the stochastic work performed by the helix on the polymers and we show that this quantity is positive on average and increases with polymer contour length. Our results provide a basis for understanding the microscopic interactions that govern cell dynamics in complex media. This work was supported through funding from the ERC Advanced Grant 291234 MiCE and we acknowledge EMBO funding to TNS (ALTF181-2013).

  20. Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy.

    PubMed

    Amend, Jan P; Meyer-Dombard, D'Arcy R; Sheth, Seema N; Zolotova, Natalya; Amend, Andrea C

    2003-06-01

    A novel, hyperthermophilic archaeon was isolated from a shallow geothermal well that taps marine waters on the Island of Vulcano in the southern Tyrrhenian Sea, Italy. The cells were irregular cocci, 0.6-1.5 microm in diameter, with multiple polar flagella. Growth was observed at temperatures from 45 to 85 degrees C (optimum at approximately 80 degrees C), pH 5-8 (optimum at 6.5), and 0.5-6.0% NaCl (optimum at approximately 2.8%). The minimum doubling time was 50 min. The isolate was obligately chemoheterotrophic, utilizing complex organic compounds including yeast or beef extract, peptone, tryptone, or casein for best growth. The presence of elemental sulfur enhanced growth. The isolate grew anaerobically as well as microaerobically. The G+C content of the genomic DNA was 42.5 mol%. The 16S rRNA sequence indicated that the new isolate was a member of the Thermococcales within the euryarchaeota, representing the second species in the genus Palaeococcus. Its physiology and phylogeny differed in several key characteristics from those of Palaeococcus ferrophilus, justifying the establishment of a new species; the name Palaeococcus helgesonii sp. nov. is proposed, type strain PI1 (DSM 15127).

  1. Chitinase producing bacteria with direct algicidal activity on marine diatoms

    PubMed Central

    Li, Yi; Lei, Xueqian; Zhu, Hong; Zhang, Huajun; Guan, Chengwei; Chen, Zhangran; Zheng, Wei; Fu, Lijun; Zheng, Tianling

    2016-01-01

    Chitinase producing bacteria can involve extensively in nutrient cycling and energy flow in the aquatic environment through degradation and utilization of chitin. It is well known that diatoms cells are encased by box-like frustules composed of chitin. Thus the chitin containing of diatoms shall be a natural target of chitinase producing bacteria, however, the interaction between these two organismic groups has not been studied thus far. Therefore, in this study, the algicidal mechanism of one chitinase producing bacterium (strain LY03) on Thalassiosira pseudonana was investigated. The algicidal range and algicidal mode of strain LY03 were first studied, and then bacterial viability, chemotactic ability and direct interaction characteristic between bacteria and diatom were also confirmed. Finally, the characteristic of the intracellular algicidal substance was identified and the algicidal mechanism was determined whereby algicidal bacterial cells showed chemotaxis to algal cells, fastened themselves on algal cells with their flagella, and then produced chitinase to degrade algal cell walls, and eventually caused algal lysis and death. It is the first time to investigate the interaction between chitinase producing bacteria and diatoms, and this novel special interaction mode was confirmed in this study, which will be helpful in protection and utilization of diatoms resources. PMID:26902175

  2. [Partial biological characteristics and algicidal activity of an algicidal bacterium].

    PubMed

    Li, San-Hua; Zhang, Qi-Ya

    2013-02-01

    An algicidal bacterium was isolated from freshwater (Lake Donghu in Wuhan) and coded as A01. The morphology of the algicidal bacterium was observed using optical microscope and electron microscopes, the results showed that A01 was rod-shaped, approximately 1.5 microm in length and 0.45 microm in width and with no flagella structure. A01 was Gram-negative and belongs to the family Acinetobacter sp. though identification by Gram's staining and 16S rDNA gene analysis. A01 exhibited strong algicidal activity on the bloom-forming cyanobacterium Anabaena eucompacta under laboratory conditions. The removal rate of chlorophyll a after 7-day incubation with the culture supernatant of A01 and thalli were 77% and 61%, respectively. Microscopic observation showed that almost all cyanobacterial cells were destroyed within 3 d of co-incubation with the supernatant of algicidal bacterium, but a mass of the cyanobacterial cell lysis was observed only after 5 d of co-incubation with the thalli of algicidal bacterium. These results indicated that the main algicidal component of A01 was in its culture supernatant. In other words, the strain A01 could secrete algicidal component against Anabaena eucompacta.

  3. Chitinase producing bacteria with direct algicidal activity on marine diatoms.

    PubMed

    Li, Yi; Lei, Xueqian; Zhu, Hong; Zhang, Huajun; Guan, Chengwei; Chen, Zhangran; Zheng, Wei; Fu, Lijun; Zheng, Tianling

    2016-02-23

    Chitinase producing bacteria can involve extensively in nutrient cycling and energy flow in the aquatic environment through degradation and utilization of chitin. It is well known that diatoms cells are encased by box-like frustules composed of chitin. Thus the chitin containing of diatoms shall be a natural target of chitinase producing bacteria, however, the interaction between these two organismic groups has not been studied thus far. Therefore, in this study, the algicidal mechanism of one chitinase producing bacterium (strain LY03) on Thalassiosira pseudonana was investigated. The algicidal range and algicidal mode of strain LY03 were first studied, and then bacterial viability, chemotactic ability and direct interaction characteristic between bacteria and diatom were also confirmed. Finally, the characteristic of the intracellular algicidal substance was identified and the algicidal mechanism was determined whereby algicidal bacterial cells showed chemotaxis to algal cells, fastened themselves on algal cells with their flagella, and then produced chitinase to degrade algal cell walls, and eventually caused algal lysis and death. It is the first time to investigate the interaction between chitinase producing bacteria and diatoms, and this novel special interaction mode was confirmed in this study, which will be helpful in protection and utilization of diatoms resources.

  4. Bacterial swimmers that infiltrate and take over the biofilm matrix

    PubMed Central

    Houry, Ali; Gohar, Michel; Deschamps, Julien; Tischenko, Ekaterina; Aymerich, Stéphane; Gruss, Alexandra; Briandet, Romain

    2012-01-01

    Bacteria grow in either planktonic form or as biofilms, which are attached to either inert or biological surfaces. Both growth forms are highly relevant states in nature and of paramount scientific focus. However, interchanges between bacteria in these two states have been little explored. We discovered that a subpopulation of planktonic bacilli is propelled by flagella to tunnel deep within a biofilm structure. Swimmers create transient pores that increase macromolecular transfer within the biofilm. Irrigation of the biofilm by swimmer bacteria may improve biofilm bacterial fitness by increasing nutrient flow in the matrix. However, we show that the opposite may also occur (i.e., swimmers can exacerbate killing of biofilm bacteria by facilitating penetration of toxic substances from the environment). We combined these observations with the fact that numerous bacteria produce antimicrobial substances in nature. We hypothesized and proved that motile bacilli expressing a bactericide can also kill a heterologous biofilm population, Staphylococcus aureus in this case, and then occupy the newly created space. These findings identify microbial motility as a determinant of the biofilm landscape and add motility to the complement of traits contributing to rapid alterations in biofilm populations. PMID:22773813

  5. Distinct roles of 1α and 1β heavy chains of the inner arm dynein I1 of Chlamydomonas flagella

    PubMed Central

    Toba, Shiori; Fox, Laura A.; Sakakibara, Hitoshi; Porter, Mary E.; Oiwa, Kazuhiro; Sale, Winfield S.

    2011-01-01

    The Chlamydomonas I1 dynein is a two-headed inner dynein arm important for the regulation of flagellar bending. Here we took advantage of mutant strains lacking either the 1α or 1β motor domain to distinguish the functional role of each motor domain. Single- particle electronic microscopic analysis confirmed that both the I1α and I1β complexes are single headed with similar ringlike, motor domain structures. Despite similarity in structure, however, the I1β complex has severalfold higher ATPase activity and microtubule gliding motility compared to the I1α complex. Moreover, in vivo measurement of microtubule sliding in axonemes revealed that the loss of the 1β motor results in a more severe impairment in motility and failure in regulation of microtubule sliding by the I1 dynein phosphoregulatory mechanism. The data indicate that each I1 motor domain is distinct in function: The I1β motor domain is an effective motor required for wild-type microtubule sliding, whereas the I1α motor domain may be responsible for local restraint of microtubule sliding. PMID:21148301

  6. Isolation and detection of Listeria monocytogenes in poultry meat by standard culture methods and PCR

    NASA Astrophysics Data System (ADS)

    Kureljušić, J.; Rokvić, N.; Jezdimirović, N.; Kureljušić, B.; Pisinov, B.; Karabasil, N.

    2017-09-01

    Listeria is the genus of a bacteria found in soil and water and some animals, including poultry and cattle. It can be present in raw milk and food made from raw milk. It can also live in food processing plants and contaminate a variety of processed meats. Microscopically, Listeria species appear as small, Gram-positive rods, which are sometimes arranged in short chains. In direct smears, they can be coccoid, so they can be mistaken for streptococci. Longer cells can resemble corynebacteria. Flagella are produced at room temperature but not at 37°C. Haemolytic activity on blood agar has been used as a marker to distinguish Listeria monocytogenes among other Listeria species, but it is not an absolutely definitive criterion. Further biochemical characterization is necessary to distinguish between the different Listeria species. The objective of this study was to detect, isolate and identify Listeria monocytogenes from poultry meat. Within a period of six months from January to June 2017, a total of 15 samples were collected. Three samples were positive for the presence of Listeria monocytogenes. Biochemical and microbiological tests as well as PCR technique using specific primers were used to confirm L. Monocytogenes in the samples.

  7. Some unique features of alkaliphilic anaerobes

    NASA Astrophysics Data System (ADS)

    Roof, Erin; Pikuta, Elena; Otto, Christopher; Williams, George; Hoover, Richard

    2013-09-01

    This article explores two topics involving the examination of four strains of alkaliphilic anaerobes. The first topic was dedicated to detection of the ability of microorganisms to metabolize alternative chirality substrates. Two saccharolytic anaerobic bacteria were chosen for the first experiment: Anaerovirgula multivorans strain SCAT, which is gram positive and spore-forming; and Spirochaeta dissipatitropha, strain ASpC2T, which is gram negative. It was found that both checked sugarlytics were able to use L-ribose and L-arabinose, as growth substrates. The second part was concerned of study a chemolithotrophy in two halo-alkaliphilic sulfate reducing bacteria: Desulfonatornum thiodismutans strain MLF1T and Desulfonatronum lacustre strain Z-7951T. The experiments with lithotrophs had demonstrated that strain MLF1T was capable to grow without any organic source of carbon, while strain Z-7951T had required at least 2 mM sodium acetate for growth. Anaerobic technique was used for preparation of the growth media and maintenance of these bacterial cultures. Standard methods for Gram, spore, and flagella staining were applied for characterization of cytomorphology. In this article, the results of the experiments performed on cytological, physiological, and biochemical levels are presented and discussed.

  8. Isolation and separation of physicochemically distinct fimbrial types expressed on a single culture of Escherichia coli O7:K1:H6.

    PubMed Central

    Karch, H; Leying, H; Büscher, K H; Kroll, H P; Opferkuch, W

    1985-01-01

    The fimbrial (pili) profile of a single strain of Escherichia coli O7:K1:H6 (WF96) was evaluated. Fimbriae were isolated by sucrose density gradient ultracentrifugation, purified from flagellae by the use of 0.4% sodium dodecyl sulfate (SDS), and separated into distinct fimbrial types. Analysis of the purified WF96 fimbriae by SDS-polyacrylamide gel electrophoresis revealed two polypeptide bands with molecular weights of 16,000 and 21,000. Treatment of the fimbrial mixture with saturated guanidine hydrochloride resulted in the appearance of a third band with a molecular weight of 19,500. The relative susceptibilities of the WF96 fimbrial types to disrupting chemicals (octyl-glucoside, urea, SDS, and guanidine hydrochloride) were assessed by exposure of the fimbrial mixture to each agent, separation of the depolymerized fimbriae from intact fimbriae by gel filtration on Sepharose CL-4B, and identification of the disaggregated fimbrial types by SDS-polyacrylamide gel electrophoresis of column fractions. The physicochemical heterogeneity of the three fimbrial types coexpressed on WF96 was exploited to develop a method for separation of individual fimbriae. Images PMID:2857155

  9. Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei

    PubMed Central

    Stellamanns, Eric; Uppaluri, Sravanti; Hochstetter, Axel; Heddergott, Niko; Engstler, Markus; Pfohl, Thomas

    2014-01-01

    Unicellular parasites have developed sophisticated swimming mechanisms to survive in a wide range of environments. Cell motility of African trypanosomes, parasites responsible for fatal illness in humans and animals, is crucial both in the insect vector and the mammalian host. Using millisecond-scale imaging in a microfluidics platform along with a custom made optical trap, we are able to confine single cells to study trypanosome motility. From the trapping characteristics of the cells, we determine the propulsion force generated by cells with a single flagellum as well as of dividing trypanosomes with two fully developed flagella. Estimates of the dissipative energy and the power generation of single cells obtained from the motility patterns of the trypanosomes within the optical trap indicate that specific motility characteristics, in addition to locomotion, may be required for antibody clearance. Introducing a steerable second optical trap we could further measure the force, which is generated at the flagellar tip. Differences in the cellular structure of the trypanosomes are correlated with the trapping and motility characteristics and in consequence with their propulsion force, dissipative energy and power generation. PMID:25269514

  10. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    NASA Astrophysics Data System (ADS)

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-08-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and -0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.

  11. Apoptosis of Trypanosoma musculi co-cultured with LPS activated macrophages: enhanced expression of nitric oxide synthase INF-gamma and caspase.

    PubMed

    Gugssa, A; Gebru, S; Lee, C M; Baccetti, B; Anderson, W

    2005-08-01

    Trypanosoma musculi-macrophage co-cultures were studied to investigate the biological role of lipopolysaccharide (LPS) induced cytokines in controlling the proliferation of parasites in vitro. Macrophages, isolated by peritoneal lavage, sustained the growth and proliferation of the parasites. Macrophages activated with LPS were characterized by up-regulation of nitric oxide synthase (iNOS) and phagocytosis of fluorescent latex spheres. Activated macrophages showed marked inhibition of the association and proliferation of the parasites. The LPS treated macrophages produced cytokines, especially interferon gamma (INF-gamma), which was detected by Western blot. Trypanosomes, inhibited from association with macrophages, did not proliferate and instead formed clusters held together by their flagella. Cells in these clusters were apoptotic, as demonstrated by the Apoptag reaction and gel fragmentation assay. In addition, high levels of caspase 8 and caspase 3 were shown in floating trypanosome clusters. The results would suggest that INF-gamma and other cytokines released by activated macrophages, possibly functioning through the INF-gammaR1, Fas ligand, CD95 or other death ligands in the trypanosome plasma membrane initiates the apoptosis cascade in trypanosomes.

  12. Between a Pod and a Hard Test: The Deep Evolution of Amoebae.

    PubMed

    Kang, Seungho; Tice, Alexander K; Spiegel, Frederick W; Silberman, Jeffrey D; Pánek, Tomáš; Cepicka, Ivan; Kostka, Martin; Kosakyan, Anush; Alcântara, Daniel M C; Roger, Andrew J; Shadwick, Lora L; Smirnov, Alexey; Kudryavtsev, Alexander; Lahr, Daniel J G; Brown, Matthew W

    2017-09-01

    Amoebozoa is the eukaryotic supergroup sister to Obazoa, the lineage that contains the animals and Fungi, as well as their protistan relatives, and the breviate and apusomonad flagellates. Amoebozoa is extraordinarily diverse, encompassing important model organisms and significant pathogens. Although amoebozoans are integral to global nutrient cycles and present in nearly all environments, they remain vastly understudied. We present a robust phylogeny of Amoebozoa based on broad representative set of taxa in a phylogenomic framework (325 genes). By sampling 61 taxa using culture-based and single-cell transcriptomics, our analyses show two major clades of Amoebozoa, Discosea, and Tevosa. This phylogeny refutes previous studies in major respects. Our results support the hypothesis that the last common ancestor of Amoebozoa was sexual and flagellated, it also may have had the ability to disperse propagules from a sporocarp-type fruiting body. Overall, the main macroevolutionary patterns in Amoebozoa appear to result from the parallel losses of homologous characters of a multiphase life cycle that included flagella, sex, and sporocarps rather than independent acquisition of convergent features. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Comparative proteomic analysis of Cronobacter sakazakii by iTRAQ provides insights into response to desiccation.

    PubMed

    Hu, Shuangfang; Yu, Yigang; Wu, Xinwei; Xia, Xingzhou; Xiao, Xinglong; Wu, Hui

    2017-10-01

    Cronobacter sakazakii is a foodborne pathogen throughout the world and survives extremely desiccation stress. However, the molecular basis involved in desiccation resistance of C. sakazakii is still unknown. In this study, the potential desiccation resistance factors of C. sakazakii ATCC 29544 were determined using iTRAQ-based quantitative proteomic analysis. A total of 2775 proteins were identified by iTRAQ, of which 233 showed a different protein expression between control group and desiccation stress group. Among these 233 proteins identified as desiccation resistance proteins, there were 146 proteins downregulated and 87 proteins upregulated. According to the comprehensive proteome coverage analysis, C. sakazakii increased its resistance to desiccation by reducing the gene involved with unnecessary survival functions such as those used for virulence, adhesion, invasion and flagella assembly, while increasing gene expression of genes used in withstanding osmotic stress such as those genes involved in trehalose and betaine uptake. However, the mechanism involved in amino acid metabolism in an osmotic stress response, including the producing of γ-aminobutyric acid in C. sakazakii is still uncertain. This is the first report to determine the potential desiccation resistant factors of C. sakazakii at the proteomic levels. Copyright © 2017. Published by Elsevier Ltd.

  14. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8.

    PubMed

    Jing, Chun-e; Du, Xin-jun; Li, Ping; Wang, Shuo

    2016-01-01

    Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract.

  15. Ion selectivity of the Vibrio alginolyticus flagellar motor.

    PubMed Central

    Liu, J Z; Dapice, M; Khan, S

    1990-01-01

    The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight. PMID:2394685

  16. Self-assembly of hard helices: a rich and unconventional polymorphism.

    PubMed

    Kolli, Hima Bindu; Frezza, Elisa; Cinacchi, Giorgio; Ferrarini, Alberta; Giacometti, Achille; Hudson, Toby S; De Michele, Cristiano; Sciortino, Francesco

    2014-11-07

    Hard helices can be regarded as a paradigmatic elementary model for a number of natural and synthetic soft matter systems, all featuring the helix as their basic structural unit, from natural polynucleotides and polypeptides to synthetic helical polymers, and from bacterial flagella to colloidal helices. Here we present an extensive investigation of the phase diagram of hard helices using a variety of methods. Isobaric Monte Carlo numerical simulations are used to trace the phase diagram; on going from the low-density isotropic to the high-density compact phases a rich polymorphism is observed, exhibiting a special chiral screw-like nematic phase and a number of chiral and/or polar smectic phases. We present full characterization of the latter, showing that they have unconventional features, ascribable to the helical shape of the constituent particles. Equal area construction is used to locate the isotropic-to-nematic phase transition, and the results are compared with those stemming from an Onsager-like theory. Density functional theory is also used to study the nematic-to-screw-nematic phase transition; within the simplifying assumption of perfectly parallel helices, we compare different levels of approximation, that is second- and third-virial expansions and a Parsons-Lee correction.

  17. Flagellum synchronization inhibits large-scale hydrodynamic instabilities in sperm suspensions

    NASA Astrophysics Data System (ADS)

    Schöller, Simon F.; Keaveny, Eric E.

    2016-11-01

    Sperm in suspension can exhibit large-scale collective motion and form coherent structures. Our picture of such coherent motion is largely based on reduced models that treat the swimmers as self-locomoting rigid bodies that interact via steady dipolar flow fields. Swimming sperm, however, have many more degrees of freedom due to elasticity, have a more exotic shape, and generate spatially-complex, time-dependent flow fields. While these complexities are known to lead to phenomena such as flagellum synchronization and attraction, how these effects impact the overall suspension behaviour and coherent structure formation is largely unknown. Using a computational model that captures both flagellum beating and elasticity, we simulate suspensions on the order of 103 individual swimming sperm cells whose motion is coupled through the surrounding Stokesian fluid. We find that the tendency for flagella to synchronize and sperm to aggregate inhibits the emergence of the large-scale hydrodynamic instabilities often associated with active suspensions. However, when synchronization is repressed by adding noise in the flagellum actuation mechanism, the picture changes and the structures that resemble large-scale vortices appear to re-emerge. Supported by an Imperial College PhD scholarship.

  18. Complete genome sequence of Methanospirillum hungatei type strain JF1

    DOE PAGES

    Gunsalus, Robert; Cook, Lauren E.; Crable, Bryan R.; ...

    2016-01-06

    Methanospirillum hungatei strain JF1 (DSM 864) is a methane-producing archaeon and is the type species of the genus Methanospirillum, which belongs to the family Methanospirillaceae within the order Methanomicrobiales. Its genome was selected for sequencing due to its ability to utilize hydrogen and carbon dioxide and/or formate as a sole source of energy. Ecologically, M. hungatei functions as the hydrogen- and/or formate-using partner with many species of syntrophic bacteria. Its morphology is distinct from other methanogens with the ability to form long chains of cells (up to 100 m in length), which are enclosed within a sheath-like structure, and terminalmore » cells with polar flagella. The genome of M. hungatei strain JF1 is the first completely sequenced genome of the family Methanospirillaceae, and it has a circular genome of 3,544,738 bp containing 3,239 protein coding and 68 RNA genes. Furthermore, the large genome of M. hungatei JF1 suggests the presence of unrecognized biochemical/physiological properties that likely extend to the other Methanospirillaceae and include the ability to form the unusual sheath-like structure and to successfully interact with syntrophic bacteria.« less

  19. Colonization and infection by Helicobacter pylori in humans.

    PubMed

    Andersen, Leif Percival

    2007-11-01

    When Helicobacter pylori arrives in the human stomach, it may penetrate the mucin layer and adhere to the gastric epithelial cells or it may pass through the stomach without colonizing the mucosa. In this paper, the colonization process and the ensuing immunological response will be briefly described. Urease production is necessary for H. pylori to establish a pH-neutral microenvironment around the bacteria. The flagella enable the bacteria to move and the shape of H. pylori makes it possible to penetrate the mucin layer where it comes into contact with the gastric epithelial cells. H. pylori contains several adhesins that enable it to adhere to the epithelial cells. This adherence activates IL-8 which, together with bacterial antigens, attracts polymorphs and monocytes and causes acute gastritis. Antigen-presenting cells activate lymphocytes and other mononuclear cells that are attracted to the inflamed mucosa, causing chronic superficial gastritis and initiating a cytotoxic or an antigen-producing Th response. The infection is established within a few weeks after the primary exposure to H. pylori. After this initial colonization, many chemical, biochemical, and immunologic reactions take place that are of importance in the progress of the infection and the development of disease.

  20. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia

    PubMed Central

    Cohen, Taylor S.; Prince, Alice S.

    2013-01-01

    The respiratory tract is exceptionally well defended against infection from inhaled bacteria, with multiple proinflammatory signaling cascades recruiting phagocytes to clear airway pathogens. However, organisms that efficiently activate damaging innate immune responses, such as those mediated by the inflammasome and caspase-1, may cause pulmonary damage and interfere with bacterial clearance. The extracellular, opportunistic pathogen Pseudomonas aeruginosa expresses not only pathogen-associated molecular patterns that activate NF-κB signaling in epithelial and immune cells, but also flagella that activate the NLRC4 inflammasome. We demonstrate that induction of inflammasome signaling, ascribed primarily to the alveolar macrophage, impaired P. aeruginosa clearance and was associated with increased apoptosis/pyroptosis and mortality in a murine model of acute pneumonia. Strategies that limited inflammasome activation, including infection by fliC mutants, depletion of macrophages, deletion of NLRC4, reduction of IL-1β and IL-18 production, inhibition of caspase-1, and inhibition of downstream signaling in IL-1R– or IL-18R–null mice, all resulted in enhanced bacterial clearance and diminished pathology. These results demonstrate that the inflammasome provides a potential target to limit the pathological consequences of acute P. aeruginosa pulmonary infection. PMID:23478406

Top