Science.gov

Sample records for flagellar genes activates

  1. Deduction of upstream sequences of Xanthomonas campestris flagellar genes responding to transcription activation by FleQ

    SciTech Connect

    Hu, R.-M.; Yang, T.-C.; Yang, S.-H.; Tseng, Y.-H. . E-mail: yhtseng@chtai.ctc.edu.tw

    2005-10-07

    Xanthomonas campestris pv. campestris (Xcc), a close relative to Pseudomonas aeruginosa, is the pathogen causing black rot in cruciferous plants. In P. aeruginosa, FleQ serves as a cognate activator of {sigma}{sup 54} in transcription from several {sigma}{sup 54}-dependent promoters of flagellar genes. These P. aeruginosa promoters have been analyzed for FleQ-binding sequences; however, no consensus was deduced. Xcc, although lacks fleSR, has a fleQ homologue residing among over 40 contiguously clustered flagellar genes. A fleQ mutant, Xc17fleQ, constructed by insertional mutation is deficient in FleQ protein, non-flagellated, and immobile. Transcriptional fusion assays on six putative {sigma}{sup 54}-dependent promoters of the flagellar genes, fliE, fliQ, fliL, flgG, flgB, and flhF, indicated that each of them is also FleQ dependent. Each of these promoters has a sequence with weak consensus to 5'-gaaacCCgccgCcgctTt-3', immediately upstream of the predicted {sigma}{sup 54}-binding site, with an imperfect inverted repeat containing a GC-rich center flanked by several A and T at 5'- and 3'-ends, respectively. Replacing this region in fliE promoter with a HindIII recognition sequence abolished the transcription, indicating that this region responds to transcription activation by FleQ.

  2. Aeromonas hydrophila Lateral Flagellar Gene Transcriptional Hierarchy

    PubMed Central

    Wilhelms, Markus; Gonzalez, Victor; Merino, Susana

    2013-01-01

    Aeromonas hydrophila AH-3 lateral flagella are not assembled when bacteria grow in liquid media; however, lateral flagellar genes are transcribed. Our results indicate that A. hydrophila lateral flagellar genes are transcribed at three levels (class I to III genes) and share some similarities with, but have many important differences from, genes of Vibrio parahaemolyticus. A. hydrophila lateral flagellum class I gene transcription is σ70 dependent, which is consistent with the fact that lateral flagellum is constitutively transcribed, in contrast to the characteristics of V. parahaemolyticus. The fact that multiple genes are included in class I highlights that lateral flagellar genes are less hierarchically transcribed than polar flagellum genes. The A. hydrophila lafK-fliEJL gene cluster (where the subscript L distinguishes genes for lateral flagella from those for polar flagella) is exclusively from class I and is in V. parahaemolyticus class I and II. Furthermore, the A. hydrophila flgAMNL cluster is not transcribed from the σ54/LafK-dependent promoter and does not contain class II genes. Here, we propose a gene transcriptional hierarchy for the A. hydrophila lateral flagella. PMID:23335410

  3. Genetic and Transcriptional Analyses of the Flagellar Gene Cluster in Actinoplanes missouriensis

    PubMed Central

    Jang, Moon-Sun; Mouri, Yoshihiro; Uchida, Kaoru; Aizawa, Shin-Ichi; Hayakawa, Masayuki; Fujita, Nobuyuki; Tezuka, Takeaki

    2016-01-01

    ABSTRACT Actinoplanes missouriensis, a Gram-positive and soil-inhabiting bacterium, is a member of the rare actinomycetes. The filamentous cells produce sporangia, which contain hundreds of flagellated spores that can swim rapidly for a short period of time until they find niches for germination. These swimming cells are called zoospores, and the mechanism of this unique temporal flagellation has not been elucidated. Here, we report all of the flagellar genes in the bacterial genome and their expected function and contribution for flagellar morphogenesis. We identified a large flagellar gene cluster composed of 33 genes that encode the majority of proteins essential for assembling the functional flagella of Gram-positive bacteria. One noted exception to the cluster was the location of the fliQ gene, which was separated from the cluster. We examined the involvement of four genes in flagellar biosynthesis by gene disruption, fliQ, fliC, fliK, and lytA. Furthermore, we performed a transcriptional analysis of the flagellar genes using RNA samples prepared from A. missouriensis grown on a sporangium-producing agar medium for 1, 3, 6, and 40 days. We demonstrated that the transcription of the flagellar genes was activated in conjunction with sporangium formation. Eleven transcriptional start points of the flagellar genes were determined using the rapid amplification of cDNA 5′ ends (RACE) procedure, which revealed the highly conserved promoter sequence CTCA(N15–17)GCCGAA. This result suggests that a sigma factor is responsible for the transcription of all flagellar genes and that the flagellar structure assembles simultaneously. IMPORTANCE The biology of a zoospore is very interesting from the viewpoint of morphogenesis, survival strategy, and evolution. Here, we analyzed flagellar genes in A. missouriensis, which produces sporangia containing hundreds of flagellated spores each. Zoospores released from the sporangia swim for a short time before germination occurs

  4. Gene Expression Profiling of Flagellar Disassembly in Chlamydomonas reinhardtii

    PubMed Central

    Chamberlain, Kara L.; Miller, Steven H.; Keller, Laura R.

    2008-01-01

    Flagella are sensory organelles that interact with the environment through signal transduction and gene expression networks. We used microarray profiling to examine gene regulation associated with flagellar length change in the green alga Chlamydomonas reinhardtii. Microarrays were probed with fluorescently labeled cDNAs synthesized from RNA extracted from cells before and during flagellar assembly or disassembly. Evaluation of the gene expression profiles identified >100 clones showing at least a twofold change in expression during flagellar length changes. Products of these genes are associated not only with flagellar structure and motility but also with other cellular responses, including signal transduction and metabolism. Expression of specific genes from each category was further characterized at higher resolution by using quantitative real-time PCR (qRT–PCR). Analysis and comparison of the gene expression profiles coupled to flagellar assembly and disassembly revealed that each process involves a new and uncharacterized whole-cell response to flagellar length changes. This analysis lays the groundwork for a more comprehensive understanding of the cellular and molecular networks regulating flagellar length changes. PMID:18493036

  5. A Complete Set of Flagellar Genes Acquired by Horizontal Transfer Coexists with the Endogenous Flagellar System in Rhodobacter sphaeroides▿ †

    PubMed Central

    Poggio, Sebastian; Abreu-Goodger, Cei; Fabela, Salvador; Osorio, Aurora; Dreyfus, Georges; Vinuesa, Pablo; Camarena, Laura

    2007-01-01

    Bacteria swim in liquid environments by means of a complex rotating structure known as the flagellum. Approximately 40 proteins are required for the assembly and functionality of this structure. Rhodobacter sphaeroides has two flagellar systems. One of these systems has been shown to be functional and is required for the synthesis of the well-characterized single subpolar flagellum, while the other was found only after the genome sequence of this bacterium was completed. In this work we found that the second flagellar system of R. sphaeroides can be expressed and produces a functional flagellum. In many bacteria with two flagellar systems, one is required for swimming, while the other allows movement in denser environments by producing a large number of flagella over the entire cell surface. In contrast, the second flagellar system of R. sphaeroides produces polar flagella that are required for swimming. Expression of the second set of flagellar genes seems to be positively regulated under anaerobic growth conditions. Phylogenic analysis suggests that the flagellar system that was initially characterized was in fact acquired by horizontal transfer from a γ-proteobacterium, while the second flagellar system contains the native genes. Interestingly, other α-proteobacteria closely related to R. sphaeroides have also acquired a set of flagellar genes similar to the set found in R. sphaeroides, suggesting that a common ancestor received this gene cluster. PMID:17293429

  6. Interactions between chemotaxis genes and flagellar genes in Escherichia coli.

    PubMed Central

    Parkinson, J S; Parker, S R; Talbert, P B; Houts, S E

    1983-01-01

    Escherichia coli mutants defective in cheY and cheZ function are motile but generally nonchemotactic; cheY mutants have an extreme counterclockwise bias in flagellar rotation, whereas cheZ mutants have a clockwise rotational bias. Chemotactic pseudorevertants of cheY and cheZ mutants were isolated on semisolid agar and examined for second-site suppressors in other chemotaxis-related loci. Approximately 15% of the cheZ revertants and over 95% of the cheY revertants contained compensatory mutations in the flaA or flaB locus. When transferred to an otherwise wild-type background, most of these suppressor mutations resulted in a generally nonchemotactic phenotype: suppressors of cheY caused a clockwise rotational bias; suppressors of cheZ produced a counterclockwise rotational bias. Chemotactic double mutants containing a che and a fla mutation invariably exhibited flagellar rotation patterns in between the opposing extremes characteristic of the component mutations. This additive effect on flagellar rotation resulted in essentially wild-type swimming behavior and is probably the major basis of suppressor action. However, suppression effects were also allele specific, suggesting that the cheY and cheZ gene products interact directly with the flaA and flaB products. These interactions may be instrumental in establishing the unstimulated swimming pattern of E. coli. Images PMID:6305913

  7. Flagellar apparatus gene sequences of Aeromonas hydrophila AL09-73 isolate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flagellar apparatus genes of recent outbreak Aeromonas hydrophila AL09-73 isolate were sequenced and characterized. Total 28 flagellar genes were identified. The sizes of the genes range from 318 to 2001 nucleotides, which potentially encode different complex flagellar proteins. At nucleotide and...

  8. Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes

    PubMed Central

    1980-01-01

    Membrane adhesions between the flagella of mating-type "plus" and "minus" gametes of Chlamydomonas reinhardi are shown to stimulate a rapid change in the ultrastructure of the flagellar tips, designated as flagellar tip activation (FTA). A dense substance, termed fibrous tip material (FTM), accumulates between the flagellar membrane and the nine single A microtubules of the tip. The A microtubules then elongate, growing into the distal region of the tip, increasing tip length by 30%. This study describes FTA kinetics during normal and mutant matings, presents experiments designed to probe its role in the mating reaction, and offers the following conclusions: (a) FTA is elicited by agents that cross-link flagellar membrane components (including natural sexual agglutinins, antiflagellar antisera, and concanavalin A) but not by flagellar adherence to polylysine-coated films. (b) FTA is reversed by flagellar disadhesion. (c) Gametes can undergo repeated cycles of FTA during successive rounds of adhesion/disadhesion. (d) FTA, flagellar tipping, and sexual signaling are simultaneously blocked by colchicine and by vinblastine, suggesting that tubulinlike molecules, perhaps exposed at the membrane surface, are involved in all three responses. (e) FTA is not blocked by short exposure to chymotrypsin, by cytochalasins B and D, nor by concanavalin A, even though all block cell fusion; the response is therefore autonomous and experimentally dissociable from later stages in the mating reaction. (f) Under no experimental conditions is mating-structure activation observed to occur unless FTA also occurs. This study concludes that FTA is a necessary event in the sexual signaling sequence, and presents a testable working model for its mechanism. PMID:7358792

  9. Active Phase and Amplitude Fluctuations of Flagellar Beating

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Klindt, Gary S.; Riedel-Kruse, Ingmar H.; Jülicher, Frank; Friedrich, Benjamin M.

    2014-07-01

    The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to propel cells and pump fluids. Small but perceivable fluctuations in the beat of individual flagella have physiological implications for synchronization in collections of flagella as well as for hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude fluctuations of flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We report a quality factor of flagellar oscillations Q =38.0±16.7 (mean±s.e.). Our analysis shows that flagellar fluctuations are dominantly of active origin. Using a minimal model of collective motor oscillations, we demonstrate how the stochastic dynamics of individual motors can give rise to active small-number fluctuations in motor-cytoskeleton systems.

  10. Rcs signalling-activated transcription of rcsA induces strong anti-sense transcription of upstream fliPQR flagellar genes from a weak intergenic promoter: regulatory roles for the anti-sense transcript in virulence and motility.

    PubMed

    Wang, Qingfeng; Harshey, Rasika M

    2009-10-01

    In Salmonella enterica, an activated Rcs signalling system inhibits initiation of transcription of the flhD master operon. Under these conditions, where motility is shut down, microarray experiments showed an increased RNA signal for three flagellar genes -fliPQR- located upstream of rcsA. We show here that it is the anti-sense (AS) strand of these genes that is transcribed, originating at a weak promoter in the intergenic region between fliR and rcsA. RcsA is an auxiliary regulator for the Rcs system, whose transcription is dependent on the response regulator RcsB. Rcs-activated rightward transcription, but not translation, of rcsA is required for stimulation of leftward AS transcription. Our results implicate a combined action of RcsB and rcsA transcription in activating the AS promoter, likely by modulating DNA superhelicity in the intergenic region. We show that the AS transcript regulates many genes in the Rcs regulon, including SPI-1 and SPI-2 virulence and stress-response genes. In the wild-type strain the AS transcript is present in low amounts, independent of Rcs signalling. Here, AS transcription modulates complementary sense RNA levels and impacts swarming motility. It appears that the flagellar AS transcript has been co-opted by the Rcs system to regulate virulence.

  11. Interaction of the atypical prokaryotic transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy.

    PubMed

    Claret, Laurent; Hughes, Colin

    2002-08-09

    The transcriptional activator FlhD2C2 is the master regulator of bacterial flagellum biogenesis and swarming migration, activating the "early" class II promoters of the large flagellar gene hierarchy. Using primer extensions, band-shift assays, and enzymatic and chemical footprinting, we describe the binding of the FlhD2C2 heterotetramer to the promoter regions of four class II flagella operons, fliAZ, flhBA and the divergent flgAMN and flgBCD(EFGHIJ). Each of the promoter regions was bound by a single heterotetramer, i.e. the flgAMN and flgBCD operons are characterised by a single FlhD2C2 binding site. Binding affinity differed, and correlated with previously reported promoter strength and order of activation. Methylation protection and interference, and depurination and depyrimidation interference provided a detailed map of critical bases within a common 46-59bp DNaseI footprint overlapping the promoter -35 sequences. These data and compilation of the 12 known class II promoter sequences of Escherichia coli, Proteus mirabilis and Salmonella typhimurium allowed determination of a FlhD2C2 binding site with pseudo symmetry, comprising two 17-18bp inverted repeats, each a consensus FlhD2C2 box, separated by a 10-11bp spacer. DNaseI hypersensitivity indicated that binding may cause a conformational change in the promoter regions. Only the FlhC subunit can bind DNA independently, but the specificity and stability of the interaction is strengthened by FlhD. Here, photo-crosslinking established that both FlhC and the stabilising FlhD contact the DNA within the FlhD2C2 tetramer. Our data suggest that specificity of recognition and stability of the FlhD2C2/DNA complex require protein-protein interaction and interaction of both FlhC and FlhD subunits with DNA. These characteristics of the FlhD and FlhC subunits in the FlhD2C2/DNA complex are strikingly atypical of prokaryotic regulators.

  12. Functional Activation of the Flagellar Type III Secretion Export Apparatus

    PubMed Central

    Phillips, Andrew M.; Calvo, Rebecca A.; Kearns, Daniel B.

    2015-01-01

    Flagella are assembled sequentially from the inside-out with morphogenetic checkpoints that enforce the temporal order of subunit addition. Here we show that flagellar basal bodies fail to proceed to hook assembly at high frequency in the absence of the monotopic protein SwrB of Bacillus subtilis. Genetic suppressor analysis indicates that SwrB activates the flagellar type III secretion export apparatus by the membrane protein FliP. Furthermore, mutants defective in the flagellar C-ring phenocopy the absence of SwrB for reduced hook frequency and C-ring defects may be bypassed either by SwrB overexpression or by a gain-of-function allele in the polymerization domain of FliG. We conclude that SwrB enhances the probability that the flagellar basal body adopts a conformation proficient for secretion to ensure that rod and hook subunits are not secreted in the absence of a suitable platform on which to polymerize. PMID:26244495

  13. FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni.

    PubMed

    Gulbronson, Connor J; Ribardo, Deborah A; Balaban, Murat; Knauer, Carina; Bange, Gert; Hendrixson, David R

    2016-01-01

    Flagellation in polar flagellates is one of the rare biosynthetic processes known to be numerically regulated in bacteria. Polar flagellates must spatially and numerically regulate flagellar biogenesis to create flagellation patterns for each species that are ideal for motility. FlhG ATPases numerically regulate polar flagellar biogenesis, yet FlhG orthologs are diverse in motif composition. We discovered that Campylobacter jejuni FlhG is at the center of a multipartite mechanism that likely influences a flagellar biosynthetic step to control flagellar number for amphitrichous flagellation, rather than suppressing activators of flagellar gene transcription as in Vibrio and Pseudomonas species. Unlike other FlhG orthologs, the FlhG ATPase domain was not required to regulate flagellar number in C. jejuni. Instead, two regions of C. jejuni FlhG that are absent or significantly altered in FlhG orthologs are involved in numerical regulation of flagellar biogenesis. Additionally, we found that C. jejuni FlhG influences FlhF GTPase activity, which may mechanistically contribute to flagellar number regulation. Our work suggests that FlhG ATPases divergently evolved in each polarly flagellated species to employ different intrinsic domains and extrinsic effectors to ultimately mediate a common output - precise numerical control of polar flagellar biogenesis required to create species-specific flagellation patterns optimal for motility.

  14. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  15. Opsonic activity of anti-flagellar serum against Clostridium chauvoei by mouse polymorphonuclear leucocytes.

    PubMed

    Tamura, Y; Tanaka, M

    1987-05-01

    The role of anti-flagellar serum against Clostridium chauvoei in phagocytosis by mouse polymorphonuclear leucocytes was examined. Anti-flagellar serum markedly increased phagocytic rate against the flagellated strain Okinawa but not against a non-flagellated mutant (NFM) derived from the same strain, while anti-NFM serum increased the phagocytic rate against both strains. These results indicate that anti-flagellar serum exerts its protective effect by opsonic activity.

  16. Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes.

    PubMed

    Petersen, Erik; Chaudhuri, Pallab; Gourley, Chris; Harms, Jerome; Splitter, Gary

    2011-10-01

    Brucella melitensis encounters a variety of conditions and stimuli during its life cycle--including environmental growth, intracellular infection, and extracellular dissemination--which necessitates flexibility of bacterial signaling to promote virulence. Cyclic-di-GMP is a bacterial secondary signaling molecule that plays an important role in adaptation to changing environments and altering virulence in a number of bacteria. To investigate the role of cyclic-di-GMP in B. melitensis, all 11 predicted cyclic-di-GMP-metabolizing proteins were separately deleted and the effect on virulence was determined. Three of these cyclic-di-GMP-metabolizing proteins were found to alter virulence. Deletion of the bpdA and bpdB genes resulted in attenuation of virulence of the bacterium, while deletion of the cgsB gene produced a hypervirulent strain. In a Vibrio reporter system to monitor apparent alteration in levels of cyclic-di-GMP, both BpdA and BpdB displayed a phenotype consistent with cyclic-di-GMP-specific phosphodiesterases, while CgsB displayed a cyclic-di-GMP synthase phenotype. Further analysis found that deletion of bpdA resulted in a dramatic decrease in flagellar promoter activities, and a flagellar mutant showed similar phenotypes to the bpdA and bpdB mutant strains in mouse models of infection. These data indicate a potential role for regulation of flagella in Brucella melitensis via cyclic-di-GMP.

  17. T-POP array identifies EcnR and PefI-SrgD as novel regulators of flagellar gene expression.

    PubMed

    Wozniak, Christopher E; Lee, Changhan; Hughes, Kelly T

    2009-03-01

    The T-POP transposon was employed in a general screen for tetracycline (Tet)-induced chromosomal loci that exhibited Tet-activated or Tet-repressed expression of a fliC-lac transcriptional fusion. Insertions that activated flagellar transcription were located in flagellar genes. T-POP insertions that exhibited Tet-dependent fliC-lac inhibition were isolated upstream of the ecnR, fimZ, pefI-srgD, rcsB, and ydiV genes and in the flagellar gene flgA, which is located upstream of the anti-sigma(28) factor gene flgM. When expressed from the chromosomal P(araBAD) promoter, EcnR, FimZ, PefI-SrgD, and RcsB inhibited the transcription of the flagellar class 1 flhDC operon. YdiV, which is weakly homologous to EAL domain proteins involved in cyclic-di-GMP regulation, appears to act at a step after class 1 transcription. By using a series of deletions of the regulatory genes to try to disrupt each pathway, these regulators were found to act largely independently of one another. These results identify EcnR and PefI-SrgD as additional components of the complex regulatory network controlling flagellar expression.

  18. Codon-based phylogenetics introduces novel flagellar gene markers to oomycete systematics.

    PubMed

    Robideau, Gregg P; Rodrigue, Nicolas; André Lévesque, C

    2014-10-01

    Oomycete systematics has traditionally been reliant on ribosomal RNA and mitochondrial cytochrome oxidase sequences. Here we report the use of two single-copy protein-coding flagellar genes, PF16 and OCM1, in oomycete systematics, showing their utility in phylogenetic reconstruction and species identification. Applying a recently proposed mutation-selection model of codon substitution, the phylogenetic relationships inferred by flagellar genes are largely in agreement with the current views of oomycete evolution, whereas nucleotide- and amino acid-level models produce biologically implausible reconstructions. Interesting parallels exist between the phylogeny inferred from the flagellar genes and zoospore ontology, providing external support for the tree obtained using the codon model. The resolution achieved for species identification is ample using PF16, and quite robust using OCM1, and the described PCR primers are able to amplify both genes for a range of oomycete genera. Altogether, when analyzed with a rich codon substitution model, these flagellar genes provide useful markers for the oomycete molecular toolbox.

  19. FlbD has a DNA-binding activity near its carboxy terminus that recognizes ftr sequences involved in positive and negative regulation of flagellar gene transcription in Caulobacter crescentus.

    PubMed Central

    Mullin, D A; Van Way, S M; Blankenship, C A; Mullin, A H

    1994-01-01

    G. Our results demonstrate that FlbD contains a sequence-specific DNA-binding activity within the 87 amino acids at its carboxy terminus, and the results suggest that FlbD exerts its effect as a positive and negative regulator of C. crescentus flagellar genes by binding to ftr sequences. Images PMID:7928958

  20. Digital image analysis of flagellar beating and microtubule sliding of activated and hyperactivated sperm flagella.

    PubMed

    Ishijima, Sumio

    2007-01-01

    Flagellar beatings of Suncus, golden hamster, and monkey spermatozoa before and after hyperactivation were analysed using high-speed video microscopy and digital image processing in order to examine the sliding mechanism of the flagellar beating and the function of accessory fibres of the mammalian spermatozoa. Although these spermatozoa have different morphology and movement characteristics, the flagellar beatings of hyperactivated spermatozoa had a few common features; i.e., sharp bends at the base of the flagellum and a low beat frequency. While nonhyperactivated (activated) spermatozoa exhibited nearly constant-curvature beating, the hyperactivated spermatozoa displayed a constant-frequency beating. A detailed analysis of the microtubule sliding of the activated and hyperactivated sperm flagella revealed that the sharp bends at the base of the flagella were induced by an increase in the total length of the microtubule sliding at the base of the flagella and that the sliding velocity of the activated and hyperactivated sperm flagella was consistent within each species. A comparison of the sliding velocity of the flagellar beating of Suncus, golden hamster, and monkey spermatozoa with the moment of inertia of the cross section of the flagellar base suggests that the sliding velocity is involved in the hardness of a sperm flagellum.

  1. Identification of multicomponent histidine-aspartate phosphorelay system controlling flagellar and motility gene expression in Geobacter species.

    PubMed

    Ueki, Toshiyuki; Leang, Ching; Inoue, Kengo; Lovley, Derek R

    2012-03-30

    Geobacter species play an important role in the natural biogeochemical cycles of aquatic sediments and subsurface environments as well as in subsurface bioremediation by oxidizing organic compounds with the reduction of insoluble Fe(III) oxides. Flagellum-based motility is considered to be critical for Geobacter species to locate fresh sources of Fe(III) oxides. Functional and comparative genomic approaches, coupled with genetic and biochemical methods, identified key regulators for flagellar gene expression in Geobacter species. A master transcriptional regulator, designated FgrM, is a member of the enhancer-binding protein family. The fgrM gene in the most studied strain of Geobacter species, Geobacter sulfurreducens strain DL-1, is truncated by a transposase gene, preventing flagellar biosynthesis. Integrating a functional FgrM homolog restored flagellar biosynthesis and motility in G. sulfurreducens DL-1 and enhanced the ability to reduce insoluble Fe(III) oxide. Interrupting the fgrM gene in G. sulfurreducens strain KN400, which is motile, removed the capacity for flagellar production and inhibited Fe(III) oxide reduction. FgrM, which is also a response regulator of the two-component His-Asp phosphorelay system, was phosphorylated by histidine kinase GHK4, which was essential for flagellar production and motility. GHK4, which is a hybrid kinase with a receiver domain at the N terminus, was phosphorylated by another histidine kinase, GHK3. Therefore, the multicomponent His-Asp phosphorelay system appears to control flagellar gene expression in Geobacter species.

  2. Identification of Multicomponent Histidine-Aspartate Phosphorelay System Controlling Flagellar and Motility Gene Expression in Geobacter Species*

    PubMed Central

    Ueki, Toshiyuki; Leang, Ching; Inoue, Kengo; Lovley, Derek R.

    2012-01-01

    Geobacter species play an important role in the natural biogeochemical cycles of aquatic sediments and subsurface environments as well as in subsurface bioremediation by oxidizing organic compounds with the reduction of insoluble Fe(III) oxides. Flagellum-based motility is considered to be critical for Geobacter species to locate fresh sources of Fe(III) oxides. Functional and comparative genomic approaches, coupled with genetic and biochemical methods, identified key regulators for flagellar gene expression in Geobacter species. A master transcriptional regulator, designated FgrM, is a member of the enhancer-binding protein family. The fgrM gene in the most studied strain of Geobacter species, Geobacter sulfurreducens strain DL-1, is truncated by a transposase gene, preventing flagellar biosynthesis. Integrating a functional FgrM homolog restored flagellar biosynthesis and motility in G. sulfurreducens DL-1 and enhanced the ability to reduce insoluble Fe(III) oxide. Interrupting the fgrM gene in G. sulfurreducens strain KN400, which is motile, removed the capacity for flagellar production and inhibited Fe(III) oxide reduction. FgrM, which is also a response regulator of the two-component His-Asp phosphorelay system, was phosphorylated by histidine kinase GHK4, which was essential for flagellar production and motility. GHK4, which is a hybrid kinase with a receiver domain at the N terminus, was phosphorylated by another histidine kinase, GHK3. Therefore, the multicomponent His-Asp phosphorelay system appears to control flagellar gene expression in Geobacter species. PMID:22362768

  3. Flagellar structure and hyperthermophily: analysis of a single flagellin gene and its product in Aquifex pyrophilus.

    PubMed Central

    Behammer, W; Shao, Z; Mages, W; Rachel, R; Stetter, K O; Schmitt, R

    1995-01-01

    The polytrichously inserted flagella of Aquifex pyrophilus, a marine hyperthermophilic bacterium growing at 85 degrees C, were isolated and purified. Electron micrographs of the 19-nm-diameter flagellar filaments show prominent helical arrays of subunits. The primary structure of these 54-kDa flagellin monomers determining the helical shape and heat stability of filaments was of particular interest. The genomic region encoding the flagellin subunit (flaA gene) and an upstream open reading frame (orf1) were cloned and sequenced. The 1,503-bp flaA and 696-bp orf1 are preceded by separate sigma 28-like promoters and ribosome-binding motifs and succeeded by palindromic transcription terminators. Both genes are actively transcribed, but the nature and function of the orf1-encoded 231-residue polypeptide remain unknown. The deduced primary structure of the 501-amino-acid flagellin encoded by flaA consists of conserved N- and C-terminal regions and a variable 246-residue central domain. In comparison to mesophilic flagellins, the thermostable A. pyrophilus flagellin is characterized by increases in aromatic residues and prolines as well as by a 7.9% +/- 3.2% increase in all hydrophobic residues that is balanced by a respective decrease in hydrophilic residues. This composition is thought to form more compact flagellin monomers and stable interface contacts between neighboring subunits in the polymer. PMID:7592443

  4. Regulation of flagellar, motility and chemotaxis genes in Rhizobium leguminosarum by the VisN/R-Rem cascade.

    PubMed

    Tambalo, Dinah D; Del Bel, Kate L; Bustard, Denise E; Greenwood, Paige R; Steedman, Audrey E; Hynes, Michael F

    2010-06-01

    In this paper, we describe the regulatory roles of VisN, VisR and Rem in the expression of flagellar, motility and chemotaxis genes in Rhizobium leguminosarum biovar viciae strains VF39SM and 3841. Individual mutations in the genes encoding these proteins resulted in a loss of motility and an absence of flagella, indicating that these regulatory genes are essential for flagellar synthesis and function. Transcriptional experiments involving gusA-gene fusions in wild-type and mutant backgrounds were performed to identify the genes under VisN/R and Rem regulation. Results showed that the chemotaxis and motility genes of R. leguminosarum could be separated into two groups: one group under VisN/R-Rem regulation and another group that is independent of this regulation. VisN and VisR regulate the expression of rem, while Rem positively regulates the expression of flaA, flaB, flaC, flaD, motA, motB, che1 and mcpD. All of these genes except mcpD are located within the main motility and chemotaxis gene cluster of R. leguminosarum. Other chemotaxis and motility genes, which are found outside of the main motility gene cluster (che2 operon, flaH for VF39SM, and flaG) or are plasmid-borne (flaE and mcpC), are not part of the VisN/R-Rem regulatory cascade. In addition, all genes exhibited the same regulation pattern in 3841 and in VF39SM, except flaE and flaH. flaE is not regulated by VisN/R-Rem in 3841 but it is repressed by Rem in VF39SM. flaH is under VisN/R-Rem regulation in 3841, but not in VF39SM. A kinetics experiment demonstrated that a subset of the flagellar genes is continuously expressed in all growth phases, indicating the importance of continuous motility for R. leguminosarum under free-living conditions. On the other hand, motility is repressed under symbiotic conditions. Nodulation experiments showed that the transcriptional activators VisN and Rem are dramatically downregulated in the nodules, suggesting that the symbiotic downregulation of motility-related genes

  5. Expression of flagellin and key regulatory flagellar genes in the non-motile bacterium Piscirickettsia salmonis.

    PubMed

    Carril, Gabriela P; Gómez, Fernando A; Marshall, Sergio H

    2017-02-08

    The Piscirickettsia salmonis genome was screened to evaluate potential flagella-related open reading frames, as well as their genomic organization and eventual expression. A complete and organized set of flagellar genes was found for P. salmonis, although no structural flagellum has ever been reported for this bacterium. To gain further understanding, the hierarchical flagellar cascade described for Legionella pneumophila was used as a reference model for putative analysis in P. salmonis. Specifically, 5 of the most relevant genes from this cascade were chosen, including 3 regulatory genes (fleQ, triggers the cascade; fliA, regulates the σ28-coding gene; and rpoN, an RNA polymerase-dependent gene) and 2 terminal structural genes (flaA and flaB, flagellin and a flagellin-like protein, respectively). Kinetic experiments evaluated gene expressions over time, with P. salmonis assessed in 2 liquid, cell-free media and during infection of the SHK-1 fish cell line. Under all conditions, the 5 target genes were primarily expressed during early growth/infection and were differentially expressed when bacteria encountered environmental stress (i.e. a high-salt concentration). Intriguingly, the flagellin monomer was fully expressed under all growth conditions and was located near the bacterial membrane. While no structural flagellum was detected under any condition, the recombinant flagellin monomer induced a proinflammatory response in SHK-1 cells, suggesting a possible immunomodulatory function. The potential implications of these observations are discussed in the context of P. salmonis biology and pathogenic potential.

  6. Cloning of Flagellar Genes in Chlamydomonas Reinhardtii by DNA Insertional Mutagenesis

    PubMed Central

    Tam, L. W.; Lefebvre, P. A.

    1993-01-01

    Chlamydomonas is a popular genetic model system for studying many cellular processes. In this report, we describe a new approach to isolate Chlamydomonas genes using the cloned nitrate reductase gene (NIT1) as an insertional mutagen. A linearized plasmid containing the NIT1 gene was introduced into nit1 mutant cells by glass-bead transformation. Of 3000 Nit(+) transformants examined, 74 showed motility defects of a wide range of phenotypes, suggesting that DNA transformation is an effective method for mutagenizing cells. For 13 of 15 such motility mutants backcrossed to nit(-) mutant strains, the motility phenotype cosegregated with the Nit(+) phenotype, indicating that the motility defects of these 13 mutants may be caused by integration of the plasmid. Further genetic analysis indicated that three of these mutants contained alleles of previously identified loci: mbo2 (move backward only), pf13 (paralyzed flagella) and vfl1 (variable flagellar number). Three other abnormal-flagellar-number mutants did not map to any previously described loci at which mutations produce similar phenotypes. Genomic sequences flanking the integrated plasmid in the mbo2 and vfl1 mutants were isolated and used as probes to obtain wild-type genomic clones, which complemented the motility defects upon transformation into cells. Our results demonstrate the potential of this new approach for cloning genes identified by mutation in Chlamydomonas. PMID:8244002

  7. Nucleotide sequence and characterization of a Bacillus subtilis gene encoding a flagellar switch protein.

    PubMed Central

    Zuberi, A R; Bischoff, D S; Ordal, G W

    1991-01-01

    The nucleotide sequence of the Bacillus subtilis fliM gene has been determined. This gene encodes a 38-kDa protein that is homologous to the FliM flagellar switch proteins of Escherichia coli and Salmonella typhimurium. Expression of this gene in Che+ cells of E. coli and B. subtilis interferes with normal chemotaxis. The nature of the chemotaxis defect is dependent upon the host used. In B. subtilis, overproduction of FliM generates mostly nonmotile cells. Those cells that are motile switch less frequently. Expression of B. subtilis FliM in E. coli also generates nonmotile cells. However, those cells that are motile have a tumble bias. The B. subtilis fliM gene cannot complement an E. coli fliM mutant. A frameshift mutation was constructed in the fliM gene, and the mutation was transferred onto the B. subtilis chromosome. The mutant has a Fla- phenotype. This phenotype is consistent with the hypothesis that the FliM protein encodes a component of the flagellar switch in B. subtilis. Additional characterization of the fliM mutant suggests that the hag and mot loci are not expressed. These loci are regulated by the SigD form of RNA polymerase. We also did not observe any methyl-accepting chemotaxis proteins in an in vivo methylation experiment. The expression of these proteins is also dependent upon SigD. It is possible that a functional basal body-hook complex may be required for the expression of SigD-regulated chemotaxis and motility genes. Images PMID:1898932

  8. Identification of a gene cluster involved in flagellar basal body biogenesis in Caulobacter crescentus.

    PubMed

    Hahnenberger, K M; Shapiro, L

    1987-03-05

    The bacterial flagellum is a complex structure composed of a transmembrane basal body, a hook, and a filament. In Caulobacter crescentus the biosynthesis and assembly of this structure is under temporal and spatial control. To help to define the order of assembly of the flagellar components and to identify the genes involved in the early steps of basal body construction, mutants defective in basal body formation have been analyzed. Mutants in the flaD flaB flaC gene cluster were found to be unable to assemble a complete basal body. The flaD BC motC region was cloned and the genes were localized by subcloning and complementation analysis. A series of Tn5 insertion mutations in the flaD BC region were mapped. Complementation analysis of the Tn5 insertion mutants indicated the existence of at least four transcriptional units in the region and identified the presence of two new genes designated flbN and flbO. Mutants in flbN, flaB, flaC and flbO were unable to assemble any basal body structure and are likely to be involved in the early steps of basal body formation. The flaD mutant, however, was found to contain a partially assembled basal body consisting of the rod and three hook-distal rings. All of the mutants in this cluster exhibited pleiotropic effects on the expression of other flagellar and chemotaxis functions, including the level of synthesis of flagellins, the hook protein and hook protein precursor, and the level of chemotaxis methylation.

  9. Molecular Cloning and Characterization of the Helicobacter pylori fliD Gene, an Essential Factor in Flagellar Structure and Motility

    PubMed Central

    Seong Kim, Jang; Hoon Chang, Ji; Il Chung, Soo; Sun Yum, Jung

    1999-01-01

    Helicobacter pylori colonizes the human stomach and can cause gastroduodenal disease. Flagellar motility is regarded as a major factor in the colonizing ability of H. pylori. The functional roles of flagellar structural proteins other than FlaA, FlaB, and FlgE are not well understood. The fliD operon of H. pylori consists of flaG, fliD, and fliS genes, in the order stated, under the control of a ς28-dependent promoter. In an effort to elucidate the function of the FliD protein, a hook-associated protein 2 homologue, in flagellar morphogenesis and motility, the fliD gene (2,058 bp) was cloned and isogenic mutants were constructed by disruption of the fliD gene with a kanamycin resistance cassette and electroporation-mediated allelic-exchange mutagenesis. In the fliD mutant, morphologically abnormal flagellar appendages in which very little filament elongation was apparent were observed. The fliD mutant strain was completely nonmotile, indicating that these abnormal flagella were functionally defective. Furthermore, the isogenic fliD mutant of H. pylori SS1, a mouse-adapted strain, was not able to colonize the gastric mucosae of host mice. These results suggest that H. pylori FliD is an essential element in the assembly of the functional flagella that are required for colonization of the gastric mucosa. PMID:10559162

  10. The Type VI Secretion System Modulates Flagellar Gene Expression and Secretion in Citrobacter freundii and Contributes to Adhesion and Cytotoxicity to Host Cells.

    PubMed

    Liu, Liyun; Hao, Shuai; Lan, Ruiting; Wang, Guangxia; Xiao, Di; Sun, Hui; Xu, Jianguo

    2015-07-01

    The type VI secretion system (T6SS) as a virulence factor-releasing system contributes to virulence development of various pathogens and is often activated upon contact with target cells. Citrobacter freundii strain CF74 has a complete T6SS genomic island (GI) that contains clpV, hcp-2, and vgr T6SS genes. We constructed clpV, hcp-2, vgr, and T6SS GI deletion mutants in CF74 and analyzed their effects on the transcriptome overall and, specifically, on the flagellar system at the levels of transcription and translation. Deletion of the T6SS GI affected the transcription of 84 genes, with 15 and 69 genes exhibiting higher and lower levels of transcription, respectively. Members of the cell motility class of downregulated genes of the CF74ΔT6SS mutant were mainly flagellar genes, including effector proteins, chaperones, and regulators. Moreover, the production and secretion of FliC were also decreased in clpV, hcp-2, vgr, or T6SS GI deletion mutants in CF74 and were restored upon complementation. In swimming motility assays, the mutant strains were found to be less motile than the wild type, and motility was restored by complementation. The mutant strains were defective in adhesion to HEp-2 cells and were restored partially upon complementation. Further, the CF74ΔT6SS, CF74ΔclpV, and CF74Δhcp-2 mutants induced lower cytotoxicity to HEp-2 cells than the wild type. These results suggested that the T6SS GI in CF74 regulates the flagellar system, enhances motility, is involved in adherence to host cells, and induces cytotoxicity to host cells. Thus, the T6SS plays a wide-ranging role in C. freundii.

  11. Comprehensive Mapping of the Escherichia coli Flagellar Regulatory Network

    PubMed Central

    Fitzgerald, Devon M.; Bonocora, Richard P.; Wade, Joseph T.

    2014-01-01

    Flagellar synthesis is a highly regulated process in all motile bacteria. In Escherichia coli and related species, the transcription factor FlhDC is the master regulator of a multi-tiered transcription network. FlhDC activates transcription of a number of genes, including some flagellar genes and the gene encoding the alternative Sigma factor FliA. Genes whose expression is required late in flagellar assembly are primarily transcribed by FliA, imparting temporal regulation of transcription and coupling expression to flagellar assembly. In this study, we use ChIP-seq and RNA-seq to comprehensively map the E. coli FlhDC and FliA regulons. We define a surprisingly restricted FlhDC regulon, including two novel regulated targets and two binding sites not associated with detectable regulation of surrounding genes. In contrast, we greatly expand the known FliA regulon. Surprisingly, 30 of the 52 FliA binding sites are located inside genes. Two of these intragenic promoters are associated with detectable noncoding RNAs, while the others either produce highly unstable RNAs or are inactive under these conditions. Together, our data redefine the E. coli flagellar regulatory network, and provide new insight into the temporal orchestration of gene expression that coordinates the flagellar assembly process. PMID:25275371

  12. Select Acetophenones Modulate Flagellar Motility in Chlamydomonas

    PubMed Central

    Evans, Shakila K.; Pearce, Austin A.; Ibezim, Prudence K.; Primm, Todd P.; Gaillard, Anne R.

    2009-01-01

    Acetophenones were screened for activity against positive phototaxis of Chlamydomonas cells, a process that requires coordinated flagellar motility. The structure-activity relationships of a series of acetophenones are reported, including acetophenones that affect flagellar motility and cell viability. Notably, 4-methoxyacetophenone, 3,4-dimethoxyacetophenone, and 4-hydroxyacetophenone induced negative phototaxis in Chlamydomonas, suggesting interference with activity of flagellar proteins and control of flagellar dominance. PMID:20659114

  13. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber.

    PubMed

    Morita, Masaya; Kitamura, Makoto; Nakajima, Ayako; Sri Susilo, Endang; Takemura, Akihiro; Okuno, Makoto

    2009-04-01

    The sea cucumber Holothuria atra is a broadcast spawner. Among broadcast spawners, fertilization occurs by means of an egg-derived substance(s) that induces sperm flagellar motility activation and chemotaxis. Holothuria atra sperm were quiescent in seawater, but exhibited flagellar motility activation near eggs with chorion (intact eggs). In addition, they moved in a helical motion toward intact eggs as well as a capillary filled with the water layer of the egg extracts, suggesting that an egg-derived compound(s) causes motility activation and chemotaxis. Furthermore, demembranated sperm flagella were reactivated in high pH (> 7.8) solution without cAMP, and a phosphorylation assay using (gamma-32P)ATP showed that axonemal protein phosphorylation and dephosphorylation also occurred in a pH-dependent manner. These results suggest that the activation of sperm motility in holothurians is controlled by pH-sensitive changes in axonemal protein phosphorylation. Ca2+ concentration affected the swimming trajectory of demembranated sperm, indicating that Ca2+-binding proteins present at the flagella may be associated with regulation of flagellar waveform. Moreover, the phosphorylation states of several axonemal proteins were Ca2+-sensitive, indicating that Ca2+ impacts both kinase and phosphatase activities. In addition, in vivo sperm protein phosphorylation occurred after treatment with a water-soluble egg extract. Our results suggest that one or more egg-derived compounds activate motility and subsequent chemotactic behavior via Ca2+-sensitive flagellar protein phosphorylation.

  14. Mutations in the Borrelia burgdorferi Flagellar Type III Secretion System Genes fliH and fliI Profoundly Affect Spirochete Flagellar Assembly, Morphology, Motility, Structure, and Cell Division

    PubMed Central

    Gao, Lihui; Zhao, Xiaowei; Liu, Jun; Norris, Steven J.

    2015-01-01

    ABSTRACT The Lyme disease spirochete Borrelia burgdorferi migrates to distant sites in the tick vectors and mammalian hosts through robust motility and chemotaxis activities. FliH and FliI are two cytoplasmic proteins that play important roles in the type III secretion system (T3SS)-mediated export and assembly of flagellar structural proteins. However, detailed analyses of the roles of FliH and FliI in B. burgdorferi have not been reported. In this study, fliH and fliI transposon mutants were utilized to dissect the mechanism of the Borrelia type III secretion system. The fliH and fliI mutants exhibited rod-shaped or string-like morphology, greatly reduced motility, division defects (resulting in elongated organisms with incomplete division points), and noninfectivity in mice by needle inoculation. Mutants in fliH and fliI were incapable of translational motion in 1% methylcellulose or soft agar. Inactivation of either fliH or fliI resulted in the loss of the FliH-FliI complex from otherwise intact flagellar motors, as determined by cryo-electron tomography (cryo-ET). Flagellar assemblies were still present in the mutant cells, albeit in lower numbers than in wild-type cells and with truncated flagella. Genetic complementation of fliH and fliI mutants in trans restored their wild-type morphology, motility, and flagellar motor structure; however, full-length flagella and infectivity were not recovered in these complemented mutants. Based on these results, disruption of either fliH or fliI in B. burgdorferi results in a severe defect in flagellar structure and function and cell division but does not completely block the export and assembly of flagellar hook and filament proteins. PMID:25968649

  15. Characterization of the ATP-phosphohydrolase activity of bovine spermatozoa flagellar extracts.

    PubMed

    Young, L G; Smithwick, E B

    1975-02-01

    The ATP-phosphohydrolase activity of extracts prepared from bovine spermatozoa flagella (BSFE), was characterized with respect to enzyme, substrate, activator ion and salt concentration, temperature dependence and time stability. BSFE required the presence of a divalent cation for activity: Mg++ or Ca++ could function as activator; Mn++, Zn++ and Cd++ could not. EDTA, but not EGTA, was inhibitory to enzymatic activity. Ca++ inhibited the Mg++ stimulated activity. ATP was dephosphorylated more rapidly than GTP greater than CTP greater than ITP, and ADP was dephosphorylated at 40% of the rate of ATP. The magnesium activated ATPase was stimulated by potassium and inhibited by sodium ions. Activation of BSFE ATP-phosphohydrolase was maximal in the presence of Mg++ and ATP in equimolar concentrations and K+ (0.05-0.3 M) at 30 degrees C. Although the enzymatic activity of the extract was found to decrease rapidly with time, it could be maintained for up to three days by the addition of 2-beta-mercaptoethanol to the bovine spermatozoa flagellar extracts.

  16. Characterization of the Alternative Sigma Factor σ54 and the Transcriptional Regulator FleQ of Legionella pneumophila, Which Are Both Involved in the Regulation Cascade of Flagellar Gene Expression

    PubMed Central

    Jacobi, Sebastian; Schade, Rüdiger; Heuner, Klaus

    2004-01-01

    We cloned and analyzed Legionella pneumophila Corby homologs of rpoN (encoding σ54) and fleQ (encoding σ54 activator protein). Two other genes (fleR and pilR) whose products have a σ54 interaction domain were identified in the genome sequence of L. pneumophila. An rpoN mutant strain was nonflagellated and expressed very small amounts of the FlaA (flagellin) protein. Like the rpoN mutant, the fleQ mutant strain of L. pneumophila was also nonflagellated and expressed only small amounts of FlaA protein compared to the amounts expressed by the wild type. In this paper we show that the σ54 factor and the FleQ protein are involved in regulation of flagellar gene operons in L. pneumophila. RpoN and FleQ positively regulate the transcription of FliM and FleN, both of which have a σ54-dependent promoter consensus sequence. However, they seemed to be dispensable for transcription of flaA, fliA, or icmR. Our results confirmed a recently described model of the flagellar gene regulation cascade in L. pneumophila (K. Heuner and M. Steinert, Int. J. Med. Microbiol. 293:133-145, 2003). Flagellar gene regulation was found to be different from that of Enterobacteriaceae but seems to be comparable to that described for Pseudomonas or Vibrio spp. PMID:15090493

  17. A conserved CaM- and radial spoke associated complex mediates regulation of flagellar dynein activity.

    PubMed

    Dymek, Erin E; Smith, Elizabeth F

    2007-11-05

    For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)- binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which is located at the base of the spoke. In a microtubule sliding assay, the addition of antibodies generated against FAP91 to mutant axonemes with reduced dynein activity restores dynein activity to wild-type levels. These combined results indicate that the CaM- and spoke-associated complex mediates regulatory signals between the radial spokes and dynein arms.

  18. Characterization of the relationship between polar and lateral flagellar structural genes in the deep-sea bacterium Shewanella piezotolerans WP3.

    PubMed

    Jian, Huahua; Wang, Han; Zeng, Xianping; Xiong, Lei; Wang, Fengping; Xiao, Xiang

    2016-12-22

    Bacteria with a dual flagellar system, which consists of a polar flagellum (PF) and several lateral flagella (LF), have been identified in diverse environments. Nevertheless, whether and how these two flagellar systems interact with each other is largely unknown. In the present study, the relationship between the structural genes for the PF and LF of the deep-sea bacterium Shewanella piezotolerans WP3 was investigated by genetic, phenotypic and phylogenetic analyses. The mutation of PF genes induced the expression of LF genes and the production of LF in liquid medium, while the defective LF genes led to a decrease in PF gene transcription. However, the level of PF flagellin remained unchanged in LF gene mutants. Further investigation showed that the flgH2 gene (encoding LF L-ring protein) can compensate for mutations of the flgH1 gene (encoding PF L-ring protein), but this compensation does not occur between the flagellar hook-filament junction proteins (FlgL1, FlgL2). Swarming motility was shown to specifically require LF genes, and PF genes cannot substitute for the LF genes in the lateral flagella synthesis. Considering the importance of flagella-dependent motility for bacterial survival in the abyssal sediment, our study thus provided a better understanding of the adaptation strategy of benthic bacteria.

  19. Characterization of the relationship between polar and lateral flagellar structural genes in the deep-sea bacterium Shewanella piezotolerans WP3

    PubMed Central

    Jian, Huahua; Wang, Han; Zeng, Xianping; Xiong, Lei; Wang, Fengping; Xiao, Xiang

    2016-01-01

    Bacteria with a dual flagellar system, which consists of a polar flagellum (PF) and several lateral flagella (LF), have been identified in diverse environments. Nevertheless, whether and how these two flagellar systems interact with each other is largely unknown. In the present study, the relationship between the structural genes for the PF and LF of the deep-sea bacterium Shewanella piezotolerans WP3 was investigated by genetic, phenotypic and phylogenetic analyses. The mutation of PF genes induced the expression of LF genes and the production of LF in liquid medium, while the defective LF genes led to a decrease in PF gene transcription. However, the level of PF flagellin remained unchanged in LF gene mutants. Further investigation showed that the flgH2 gene (encoding LF L-ring protein) can compensate for mutations of the flgH1 gene (encoding PF L-ring protein), but this compensation does not occur between the flagellar hook-filament junction proteins (FlgL1, FlgL2). Swarming motility was shown to specifically require LF genes, and PF genes cannot substitute for the LF genes in the lateral flagella synthesis. Considering the importance of flagella-dependent motility for bacterial survival in the abyssal sediment, our study thus provided a better understanding of the adaptation strategy of benthic bacteria. PMID:28004809

  20. Early Caulobacter crescentus genes fliL and fliM are required for flagellar gene expression and normal cell division.

    PubMed Central

    Yu, J; Shapiro, L

    1992-01-01

    The biogenesis of the Caulobacter crescentus polar flagellum requires the expression of more than 48 genes, which are organized in a regulatory hierarchy. The flbO locus is near the top of the hierarchy, and consequently strains with mutations in this locus are nonmotile and lack the flagellar basal body complex. In addition to the motility phenotype, mutations in this locus also cause abnormal cell division. Complementing clones restore both motility and normal cell division. Sequence analysis of a complementing subclone revealed that this locus encodes at least two proteins that are homologs of the Salmonella typhimurium and Escherichia coli flagellar proteins FliL and FliM. FliM is thought to be a switch protein and to interface with the flagellum motor. The C. crescentus fliL and fliM genes form an operon that is expressed early in the cell cycle. Tn5 insertions in the fliM gene prevent the transcription of class II and class III flagellar genes, which are lower in the regulatory hierarchy. The start site of the fliLM operon lies 166 bp from the divergently transcribed flaCBD operon that encodes several basal body genes. Sequence comparison of the fliL transcription start site with those of other class I genes, flaS and flaO, revealed a highly conserved 29-bp sequence in a potential promoter region that differs from sigma 70, sigma 54, sigma 32, and sigma 28 promoter sequences, suggesting that at least three class I genes share a unique 5' regulatory region. Images PMID:1315735

  1. Escherichia coli Flagellar Genes as Target Sites for Integration and Expression of Genetic Circuits

    PubMed Central

    Juhas, Mario; Evans, Lewis D. B.; Frost, Joe; Davenport, Peter W.; Yarkoni, Orr; Fraser, Gillian M.; Ajioka, James W.

    2014-01-01

    E. coli is a model platform for engineering microbes, so genetic circuit design and analysis will be greatly facilitated by simple and effective approaches to introduce genetic constructs into the E. coli chromosome at well-characterised loci. We combined the Red recombinase system of bacteriophage λ and Isothermal Gibson Assembly for rapid integration of novel DNA constructs into the E. coli chromosome. We identified the flagellar region as a promising region for integration and expression of genetic circuits. We characterised integration and expression at four candidate loci, fliD, fliS, fliT, and fliY, of the E. coli flagellar region 3a. The integration efficiency and expression from the four integrations varied considerably. Integration into fliD and fliS significantly decreased motility, while integration into fliT and fliY had only a minor effect on the motility. None of the integrations had negative effects on the growth of the bacteria. Overall, we found that fliT was the most suitable integration site. PMID:25350000

  2. Escherichia coli flagellar genes as target sites for integration and expression of genetic circuits.

    PubMed

    Juhas, Mario; Evans, Lewis D B; Frost, Joe; Davenport, Peter W; Yarkoni, Orr; Fraser, Gillian M; Ajioka, James W

    2014-01-01

    E. coli is a model platform for engineering microbes, so genetic circuit design and analysis will be greatly facilitated by simple and effective approaches to introduce genetic constructs into the E. coli chromosome at well-characterised loci. We combined the Red recombinase system of bacteriophage λ and Isothermal Gibson Assembly for rapid integration of novel DNA constructs into the E. coli chromosome. We identified the flagellar region as a promising region for integration and expression of genetic circuits. We characterised integration and expression at four candidate loci, fliD, fliS, fliT, and fliY, of the E. coli flagellar region 3a. The integration efficiency and expression from the four integrations varied considerably. Integration into fliD and fliS significantly decreased motility, while integration into fliT and fliY had only a minor effect on the motility. None of the integrations had negative effects on the growth of the bacteria. Overall, we found that fliT was the most suitable integration site.

  3. Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression.

    PubMed

    Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K

    2008-07-01

    Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC(-) mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (Harpin(Ecc)) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC(+) plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC(-) mutant are responsible for the inhibition of rsmB RNA

  4. Synthetic Cystic Fibrosis Sputum Medium Regulates Flagellar Biosynthesis through the flhF Gene in Burkholderia cenocepacia

    PubMed Central

    Kumar, Brijesh; Cardona, Silvia T.

    2016-01-01

    Burkholderia cenocepacia belongs to the Burkholderia cepacia complex (Bcc), a group of at least 18 distinct species that establish chronic infections in the lung of people with the genetic disease cystic fibrosis (CF). The sputum of CF patients is rich in amino acids and was previously shown to increase flagellar gene expression in B. cenocepacia. We examined flagellin expression and flagellar morphology of B. cenocepacia grown in synthetic cystic fibrosis sputum medium (SCFM) compared to minimal medium. We found that CF nutritional conditions induce increased motility and flagellin expression. Individual amino acids added at the same concentrations as found in SCFM also increased motility but not flagellin expression, suggesting a chemotactic effect of amino acids. Electron microscopy and flagella staining demonstrated that the increase in flagellin corresponds to a change in the number of flagella per cell. In minimal medium, the ratio of multiple: single: aflagellated cells was 2:3.5:4.5; while under SCFM conditions, the ratio was 7:2:1. We created a deletion mutant, ΔflhF, to study whether this putative GTPase regulates the flagellation pattern of B. cenocepacia K56-2 during growth in CF conditions. The ΔflhF mutant exhibited 80% aflagellated, 14% single and 6% multiple flagellated bacterial subpopulations. Moreover, the ratio of multiple to single flagella in WT and ΔflhF was 3.5 and 0.43, respectively in CF conditions. The observed differences suggest that FlhF positively regulates flagellin expression and the flagellation pattern in B. cenocepacia K56-2 during CF nutritional conditions. PMID:27379216

  5. Borrelia burgdorferi uniquely regulates its motility genes and has an intricate flagellar hook-basal body structure.

    PubMed

    Sal, Melanie S; Li, Chunhao; Motalab, M A; Shibata, Satoshi; Aizawa, Shin-ichi; Charon, Nyles W

    2008-03-01

    Borrelia burgdorferi is a flat-wave, motile spirochete that causes Lyme disease. Motility is provided by periplasmic flagella (PFs) located between the cell cylinder and an outer membrane sheath. The structure of these PFs, which are composed of a basal body, a hook, and a filament, is similar to the structure of flagella of other bacteria. To determine if hook formation influences flagellin gene transcription in B. burgdorferi, we inactivated the hook structural gene flgE by targeted mutagenesis. In many bacteria, completion of the hook structure serves as a checkpoint for transcriptional control of flagellum synthesis and other chemotaxis and motility genes. Specifically, the hook allows secretion of the anti-sigma factor FlgM and concomitant late gene transcription promoted by sigma28. However, the control of B. burgdorferi PF synthesis differs from the control of flagellum synthesis in other bacteria; the gene encoding sigma28 is not present in the genome of B. burgdorferi, nor are any sigma28 promoter recognition sequences associated with the motility genes. We found that B. burgdorferi flgE mutants lacked PFs, were rod shaped, and were nonmotile, which substantiates previous evidence that PFs are involved in both cell morphology and motility. Although most motility and chemotaxis gene products accumulated at wild-type levels in the absence of FlgE, mutant cells had markedly decreased levels of the flagellar filament proteins FlaA and FlaB. Further analyses showed that the reduction in the levels of flagellin proteins in the spirochetes lacking FlgE was mediated at the posttranscriptional level. Taken together, our results indicate that in B. burgdorferi, the completion of the hook does not serve as a checkpoint for transcriptional regulation of flagellum synthesis. In addition, we also present evidence that the hook protein in B. burgdorferi forms a high-molecular-weight complex and that formation of this complex occurs in the periplasmic space.

  6. A Complex LuxR-LuxI Type Quorum Sensing Network in a Roseobacterial Marine Sponge Symbiont Activates Flagellar Motility and Inhibits Biofilm Formation

    PubMed Central

    Zan, Jindong; Cicirelli, Elisha M.; Mohamed, Naglaa M.; Sibhatu, Hiruy; Kroll, Stephanie; Choi, Ohkee; Uhlson, Charis L.; Wysoczinski, Christina L.; Murphy, Robert C.; Churchill, Mair E.A.; Hill, Russell T.; Fuqua, Clay

    2012-01-01

    Summary Bacteria isolated from marine sponges, including the Silicibacter-Ruegeria (SR) subgroup of the Roseobacter clade, produce N-acylhomoserine lactone (AHL) quorum sensing signal molecules. This study is the first detailed analysis of AHL quorum sensing in sponge-associated bacteria, specifically Ruegeria sp. KLH11, from the sponge Mycale laxissima. Two pairs of luxR and luxI homologues and one solo luxI homologue were identified and designated ssaRI, ssbRI, and sscI (sponge-associated symbiont locus A, B, and C, luxRI or luxI homologue). SsaI produced predominantly long-chain 3-oxo-AHLs and both SsbI and SscI specified 3-OH-AHLs. Addition of exogenous AHLs to KLH11 increased the expression of ssaI but not ssaR, ssbI or ssbR, and genetic analyses revealed a complex interconnected arrangement between SsaRI and SsbRI systems. Interestingly, flagellar motility was abolished in the ssaI and ssaR mutants, with the flagellar biosynthesis genes under strict SsaRI control, and active motility only at high culture density. Conversely, ssaI and ssaR mutants formed more robust biofilms than wild type KLH11. AHLs and transcript of the ssaI gene were detected in M. laxissima extracts suggesting that AHL signaling contributes to the decision between motility and sessility and that it also may facilitate acclimation to different environments including the sponge host. PMID:22742196

  7. Identification of flgZ as a Flagellar Gene Encoding a PilZ Domain Protein That Regulates Swimming Motility and Biofilm Formation in Pseudomonas

    PubMed Central

    Redondo-Nieto, Miguel; González de Heredia, Elena; Baena, Irene; Martín-Martín, Irene; Rivilla, Rafael; Martín, Marta

    2014-01-01

    Diguanylate cyclase and phosphodiesterase enzymatic activities control c-di-GMP levels modulating planktonic versus sessile lifestyle behavior in bacteria. The PilZ domain is described as a sensor of c-di-GMP intracellular levels and the proteins containing a PilZ domain represent the best studied class of c-di-GMP receptors forming part of the c-di-GMP signaling cascade. In P. fluorescens F113 we have found two diguanylate cyclases (WspR, SadC) and one phosphodiesterase (BifA) implicated in regulation of swimming motility and biofilm formation. Here we identify a flgZ gene located in a flagellar operon encoding a protein that contains a PilZ domain. Moreover, we show that FlgZ subcellular localization depends on the c-di-GMP intracellular levels. The overexpression analysis of flgZ in P. fluorescens F113 and P. putida KT2440 backgrounds reveal a participation of FlgZ in Pseudomonas swimming motility regulation. Besides, the epistasis of flgZ over wspR and bifA clearly shows that c-di-GMP intracellular levels produced by the enzymatic activity of the diguanylate cyclase WspR and the phosphodiesterase BifA regulates biofilm formation through FlgZ. PMID:24504373

  8. FlgM Is Secreted by the Flagellar Export Apparatus in Bacillus subtilis

    PubMed Central

    Calvo, Rebecca A.

    2014-01-01

    The bacterial flagellum is assembled from over 20 structural components, and flagellar gene regulation is morphogenetically coupled to the assembly state by control of the anti-sigma factor FlgM. In the Gram-negative bacterium Salmonella enterica, FlgM inhibits late-class flagellar gene expression until the hook-basal body structural intermediate is completed and FlgM is inhibited by secretion from the cytoplasm. Here we demonstrate that FlgM is also secreted in the Gram-positive bacterium Bacillus subtilis and is degraded extracellularly by the proteases Epr and WprA. We further demonstrate that, like in S. enterica, the structural genes required for the flagellar hook-basal body are required for robust activation of σD-dependent gene expression and efficient secretion of FlgM. Finally, we determine that FlgM secretion is strongly enhanced by, but does not strictly require, hook-basal body completion and instead demands a minimal subset of flagellar proteins that includes the FliF/FliG basal body proteins, the flagellar type III export apparatus components FliO, FliP, FliQ, FliR, FlhA, and FlhB, and the substrate specificity switch regulator FliK. PMID:25313396

  9. Listeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses

    PubMed Central

    Zhang, Ting; Bae, Dongryeoul

    2016-01-01

    ABSTRACT The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is structurally similar to the Bacillus cereus alkyl base DNA glycosylase (AlkD), was identified. This determinant was involved in the transcriptional repression of flagellar motility genes and was named adlP (encoding an AlkD-like protein [AdlP]). Deletion of adlP activated the expression of flagellar motility genes at 37°C and disrupted the temperature-dependent inhibition of L. monocytogenes motility. The adlP null strains demonstrated decreased survival in murine macrophage-like RAW264.7 cells and less virulence in mice. Furthermore, the deletion of adlP significantly decreased biofilm formation and impaired the survival of bacteria under several stress conditions, including the presence of a DNA alkylation compound (methyl methanesulfonate), an oxidative agent (H2O2), and aminoglycoside antibiotics. Our findings strongly suggest that adlP may encode a bifunctional protein that transcriptionally represses the expression of flagellar motility genes and influences stress responses through its DNA glycosylase activity. IMPORTANCE We discovered a novel protein that we named AlkD-like protein (AdlP). This protein affected flagellar motility, biofilm formation, and virulence. Our data suggest that AdlP may be a bifunctional protein that represses flagellar motility genes and influences stress responses through its DNA glycosylase activity. PMID:27316964

  10. The Global Regulatory hns Gene Negatively Affects Adhesion to Solid Surfaces by Anaerobically Grown Escherichia coli by Modulating Expression of Flagellar Genes and Lipopolysaccharide Production

    PubMed Central

    Landini, Paolo; Zehnder, Alexander J. B.

    2002-01-01

    The initial binding of bacterial cells to a solid surface is a critical and essential step in biofilm formation. In this report we show that stationary-phase cultures of Escherichia coli W3100 (a K-12 strain) can efficiently attach to sand columns when they are grown in Luria broth medium at 28°C in fully aerobic conditions. In contrast, growth in oxygen-limited conditions results in a sharp decrease in adhesion to hydrophilic substrates. We show that the production of lipopolysaccharide (LPS) and of flagella, as well as the transcription of the fliC gene, encoding the major flagellar subunit, increases under oxygen-limited conditions. Inactivation of the global regulatory hns gene counteracts increased production of LPS and flagella in response to anoxia and allows E. coli W3100 to attach to sand columns even when it is grown under oxygen-limited conditions. We propose that increased production of the FliC protein and of LPS in response to oxygen limitation results in the loss of the ability of E. coli W3100 to adhere to hydrophilic surfaces. Indeed, overexpression of the fliC gene results in a decreased adhesion to sand even when W3100 is grown in fully aerobic conditions. Our observations strongly suggest that anoxia is a negative environmental signal for adhesion in E. coli. PMID:11872702

  11. Vaccination with recombinant flagellar proteins FlgJ and FliN induce protection against Brucella abortus 544 infection in BALB/c mice.

    PubMed

    Li, Xianbo; Xu, Jie; Xie, Yongfei; Qiu, Yefeng; Fu, Simei; Yuan, Xitong; Ke, Yuehua; Yu, Shuang; Du, Xinying; Cui, Mingquan; Chen, Yanfen; Wang, Tongkun; Wang, Zhoujia; Yu, Yaqing; Huang, Kehe; Huang, Liuyu; Peng, Guangneng; Chen, Zeliang; Wang, Yufei

    2012-12-28

    Brucella has been considered as a non-motile, facultative intracellular pathogenic bacterium. However, the genome sequences of different Brucella species reveal the presence of the flagellar genes needed for the construction of a functional flagellum. Due to its roles in the interaction between pathogen and host, we hypothesized that some of the flagellar proteins might induce protective immune responses and these proteins will be good subunit vaccine candidates. This study was conducted to screening of protective antigens among these flagellar proteins. Firstly, according to the putative functional roles, a total of 30 flagellar genes of Brucella abortus were selected for in vitro expression. 15 of these flagellar genes were successfully expressed as his-tagged recombinant proteins in Escherichia coli ER2566. Then, these proteins were purified and used to analyze their T cell immunity induction activity by an in vitro gamma interferon (IFN-γ) assay. Five of the flagellar proteins could stimulate significantly higher levels of IFN-γ secretion in splenocytes from S19 immunized mice, indicating their T cell induction activity. Finally, immunogenicity and protection activity of these 5 flagellar proteins were evaluated in BALB/c mice. Results showed that immunization with FlgJ (BAB1_0260) or FliN (BAB2_0122) plus adjuvant could provide protection against B. abortus 544 infection. Furthermore, mice immunized with FlgJ and FliN developed a vigorous immunoglobulin G response, and in vitro stimulation of their splenocytes with immunizing proteins induced the secretion of IFN-γ. Altogether, these data suggest that flagellar proteins FlgJ and FliN are protective antigens that could produce humoral and cell-mediated responses in mice and candidates for use in future studies of vaccination against brucellosis.

  12. Genetic Analysis and Detection of fliCH1 and fliCH12 Genes Coding for Serologically Closely Related Flagellar Antigens in Human and Animal Pathogenic Escherichia coli

    PubMed Central

    Beutin, Lothar; Delannoy, Sabine; Fach, Patrick

    2016-01-01

    The E. coli flagellar types H1 and H12 show a high serological cross-reactivity and molecular serotyping appears an advantageous method to establish a clear discrimination between these flagellar types. Analysis of fliCH1 and fliCH12 gene sequences showed that they were 97.5% identical at the nucleotide level. Because of this high degree of homology we developed a two-step real-time PCR detection procedure for reliable discrimination of H1 and H12 flagellar types in E. coli. In the first step, a real-time PCR assay for common detection of both fliCH1 and fliCH12 genes is used, followed in a second step by real-time PCR assays for specific detection of fliCH1 and fliCH12, respectively. The real-time PCR for common detection of fliCH1 and fliCH12 demonstrated 100% sensitivity and specificity as it reacted with all tested E. coli H1 and H12 strains and not with any of the reference strains encoding all the other 51 flagellar antigens. The fliCH1 and fliCH12 gene specific assays detected all E. coli H1 and all E. coli H12 strains, respectively (100% sensitivity). However, both assays showed cross-reactions with some flagellar type reference strains different from H1 and H12. The real-time PCR assays developed in this study can be used in combination for the detection and identification of E. coli H1 and H12 strains isolated from different sources. PMID:26913025

  13. Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli.

    PubMed Central

    Dean, G E; Macnab, R M; Stader, J; Matsumura, P; Burks, C

    1984-01-01

    The motA and motB gene products of Escherichia coli are integral membrane proteins necessary for flagellar rotation. We determined the DNA sequence of the region containing the motA gene and its promoter. Within this sequence, there is an open reading frame of 885 nucleotides, which with high probability (98% confidence level) meets criteria for a coding sequence. The 295-residue amino acid translation product had a molecular weight of 31,974, in good agreement with the value determined experimentally by gel electrophoresis. The amino acid sequence, which was quite hydrophobic, was subjected to a theoretical analysis designed to predict membrane-spanning alpha-helical segments of integral membrane proteins; four such hydrophobic helices were predicted by this treatment. Additional amphipathic helices may also be present. A remarkable feature of the sequence is the existence of two segments of high uncompensated charge density, one positive and the other negative. Possible organization of the protein in the membrane is discussed. Asymmetry in the amino acid composition of translated DNA sequences was used to distinguish between two possible initiation codons. The use of this method as a criterion for authentication of coding regions is described briefly in an Appendix. PMID:6090403

  14. Properties of flagellar "rigor waves" formed by abrupt removal of adenosine triphosphate from actively swimming sea urchin sperm.

    PubMed

    Gibbons, B H; Gibbons, I R

    1974-12-01

    Sea urchin sperm were demembranated and reactivated with a solution containing 0.04% Triton X-100 and 0.03 mM ATP. The ATP concentration was then lowered abruptly by diluting the sperm suspension 50-fold into reactivating solution containing no ATP. The flagella of the sperm in the diluted suspension were not motile, but they were bent into a variety of stationary rigor wave forms closely resembling the wave forms occurring at different stages of the flagellar bending cycle during normal movement. The form of these rigor waves was unchanged upon storage for several hours in the presence of dithiothreitol and EDTA. Addition of 1 microM ATP induced slow relaxation of the waves, with most of the sperm becoming partially straightened over a period of about 30 min; somewhat higher concentrations gave a more rapid and complete relaxation. Concentrations of ATP above 10 microM induced resumption of normal beating movements. Addition of ITP, GTP, or GDP (up to 1 mM) produced no relaxation of the rigor waves. Digestion with trypsin to an extent sufficient to disrupt the radial spokes and the nexin links caused no change in the rigor wave forms, suggesting that these wave forms could be maintained by the dynein cross-bridges between the outer doublet tubules of the flagellar axoneme. Study of the effects of viscous shear on the rigor wave axonemes has shown that they are resistant to distortion by bending, although they can be twisted relatively easily.

  15. Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi.

    PubMed

    Yang, Qian; Defoirdt, Tom

    2015-04-01

    Vibrios belonging to the Harveyi clade are among the major pathogens of aquatic organisms. Quorum sensing (QS) is essential for virulence of V. harveyi towards different hosts. However, most virulence factors reported to be controlled by QS to date are negatively regulated by QS, therefore suggesting that their impact on virulence is limited. In this study, we report that QS positively regulates flagellar motility. We found that autoinducer synthase mutants showed significantly lower swimming motility than the wild type, and the swimming motility could be restored by adding synthetic signal molecules. Further, motility of a luxO mutant with inactive QS (LuxO D47E) was significantly lower than that of the wild type and of a luxO mutant with constitutively maximal QS activity (LuxO D47A). Furthermore, we found that the expression of flagellar genes (both early, middle and late genes) was significantly lower in the luxO mutant with inactive QS when compared with wild type and the luxO mutant with maximal QS activity. Motility assays and gene expression also revealed the involvement of the quorum-sensing master regulator LuxR in the QS regulation of motility. Finally, the motility inhibitor phenamil significantly decreased the virulence of V. harveyi towards gnotobiotic brine shrimp larvae.

  16. Regulation of Eukaryotic Flagellar Motility

    NASA Astrophysics Data System (ADS)

    Mitchell, David R.

    2005-03-01

    The central apparatus is essential for normal eukaryotic flagellar bend propagation as evidenced by the paralysis associated with mutations that prevent central pair (CP) assembly. Interactions between doublet-associated radial spokes and CP projections are thought to modulate spoke-regulated protein kinases and phosphatases on outer doublets, and these enzymes in turn modulate dynein activity. To better understand CP control mechanisms, we determined the three-dimensional structure of the Chlamydomonas reinhardtii CP complex and analyzed CP orientation during formation and propagation of flagellar bending waves. We show that a single CP microtubule, C1, is near the outermost doublet in curved regions of the flagellum, and this orientation is maintained by twists between successive principal and reverse bends. The Chlamydomonas CP is inherently twisted; twists are not induced by bend formation, and do not depend on forces or signals transmitted through spoke-central pair interactions. We hypothesize that CP orientation passively responds to bend formation, and that bend propagation drives rotation of the CP and maintains a constant CP orientation in bends, which in turn permits signal transduction between specific CP projections and specific doublet-associated dyneins through radial spokes. The central pair kinesin, Klp1, although essential for normal motility, is therefore not the motor that drives CP rotation. The CP also acts as a scaffold for enzymes that maintain normal intraflagellar ATP concentration.

  17. Assembly mechanism of Trypanosoma brucei BILBO1 at the flagellar pocket collar.

    PubMed

    Vidilaseris, Keni; Lesigang, Johannes; Morriswood, Brooke; Dong, Gang

    2015-01-01

    The flagellar pocket is a bulb-like invagination of the plasma membrane that encloses the base of the single flagellum in trypanosomes. It is the site of all endo- and exocytic activity in the parasite and has thus been proposed to be a therapeutic target. At the neck of the flagellar pocket is an electron-dense cytoskeletal structure named the flagellar pocket collar. The protein BILBO1 was the first characterized and remains the only known component of the flagellar pocket collar, with essential functions in the biogenesis of both the flagellar pocket and flagellar pocket collar. We recently reported that the filamentous assembly of Trypanosoma brucei BILBO1 (TbBILBO1) is mediated by its central coiled coil domain and C-terminal leucine zipper. Here, we discuss how TbBILBO1 might assemble at the flagellar pocket collar in T. brucei.

  18. RflM functions as a transcriptional repressor in the autogenous control of the Salmonella Flagellar master operon flhDC.

    PubMed

    Singer, Hanna M; Erhardt, Marc; Hughes, Kelly T

    2013-09-01

    Motility of bacteria like Salmonella enterica is a highly regulated process that responds to a variety of internal and external stimuli. A hierarchy of three promoter classes characterizes the Salmonella flagellar system, and the onset of flagellar gene expression depends on the oligomeric regulatory complex and class 1 gene product FlhD(4)C(2). The flhDC promoter is a target for a broad range of transcriptional regulators that bind within the flhDC promoter region and either negatively or positively regulate flhDC operon transcription. In this work, we demonstrate that the RflM protein is a key component of flhDC regulation. Transposon mutagenesis was performed to investigate a previously described autoinhibitory effect of the flagellar master regulatory complex FlhD(4)C(2). RflM is a LuxR homolog that functions as a flagellar class 1 transcriptional repressor. RflM was found to be the negative regulator of flhDC expression that is responsible for the formerly described autoinhibitory effect of the FlhD(4)C(2) complex on flhDC operon transcription (K. Kutsukake, Mol. Gen. Genet. 254:440-448, 1997). We conclude that upon commencement of flagellar gene expression, the FlhD(4)C(2) complex initiates a regulatory feedback loop by activating rflM gene expression. rflM encodes a transcriptional repressor, RflM, which fine-tunes flhDC expression levels.

  19. Flagellar regeneration in the scaly green flagellate Tetraselmis striata (Prasinophyceae): regeneration kinetics and effect of inhibitors

    NASA Astrophysics Data System (ADS)

    Reize, I. B.; Melkonian, M.

    1987-06-01

    Flagellar regeneration after experimental amputation was studied in synchronized axenic cultures of the scaly green flagellate Tetraselmis striata (Prasinophyceae). After removal of flagella by mechanical shearing, 95% of the cells regrow all four flagella (incl. the scaly covering) to nearly full length with a linear velocity of 50 nm/min under standard conditions. Flagellar regeneration is independent of photosynthesis (no effect of DCMU; the same regeneration rate in the light or in the dark), but depends on de novo protein synthesis: cycloheximide at a low concentration (0.35 μM) blocks flagellar regeneration reversibly. No pool of flagellar precursors appears to be present throughout the flagellated phase of the cell cycle. A transient pool of flagellar precursors, sufficient to generate 2.5 μm of flagellar length, however, develops during flagellar regeneration. Tunicamycin (2 μg/ml) inhibits flagellar regeneration only after a second flagellar amputation, when flagella reach only one third the length of the control. Flagellar regeneration in T. striata differs considerably from that of Chlamydomonas reinhardtii and represents an excellent model system for the study of synchronous Golgi apparatus (GA) activation, and transport and exocytosis of GA-derived macromolecules (scales).

  20. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis.

    PubMed

    Minamino, Tohru; Morimoto, Yusuke V; Kinoshita, Miki; Aldridge, Phillip D; Namba, Keiichi

    2014-12-22

    For self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI(6)FliJ complex is structurally similar to the α(3)β(3)γ complex of F(O)F(1)-ATPase. FliJ allows the gate to efficiently utilize PMF to drive flagellar protein export but it remains unknown how. Here, we report the role of ATP hydrolysis by the FliI(6)FliJ complex. The export apparatus processively transported flagellar proteins to grow flagella even with extremely infrequent or no ATP hydrolysis by FliI mutation (E211D and E211Q, respectively). This indicates that the rate of ATP hydrolysis is not at all coupled with the export rate. Deletion of FliI residues 401 to 410 resulted in no flagellar formation although this FliI deletion mutant retained 40% of the ATPase activity, suggesting uncoupling between ATP hydrolysis and activation of the gate. We propose that infrequent ATP hydrolysis by the FliI6FliJ ring is sufficient for gate activation, allowing processive translocation of export substrates for efficient flagellar assembly.

  1. Genetic and Molecular Characterization of Flagellar Assembly in Shewanella oneidensis

    PubMed Central

    Wu, Lin; Wang, Jixuan; Tang, Peng; Chen, Haijiang; Gao, Haichun

    2011-01-01

    Shewanella oneidensis is a highly motile organism by virtue of a polar flagellum. Unlike most flagellated bacteria, it contains only one major chromosome segment encoding the components of the flagellum with the exception of the motor proteins. In this region, three genes encode flagellinsaccording to the original genome annotation. However, we find that only flaA and flaB encode functional filament subunits. Although these two genesare under the control of different promoters, they are actively transcribed and subsequently translated, producing a considerable number of flagellin proteins. Additionally, both flagellins are able to interact with their chaperon FliS and are subjected to feedback regulation. Furthermore, FlaA and FlaB are glycosylated by a pathwayinvolving a major glycosylating enzyme,PseB, in spite of the lack of the majority of theconsensus glycosylation sites. In conclusion, flagellar assembly in S. oneidensis has novel features despite the conservation of homologous genes across taxa. PMID:21731763

  2. Regulation of flagellar motility during biofilm formation

    PubMed Central

    Guttenplan, Sarah B.; Kearns, Daniel B.

    2013-01-01

    Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form non-motile multicellular aggregates held together by an extracellular matrix called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are likely diluted to extinction through growth. Both short term and long term control is likely important to the motility-to-biofilm transition to stabilize aggregates and optimize resource investment. We emphasize the newly discovered classes of flagellar functional regulators and speculate that others await discovery in the context of biofilm formation. PMID:23480406

  3. Hydrodynamic synchronization of flagellar oscillators

    NASA Astrophysics Data System (ADS)

    Friedrich, Benjamin

    2016-11-01

    In this review, we highlight the physics of synchronization in collections of beating cilia and flagella. We survey the nonlinear dynamics of synchronization in collections of noisy oscillators. This framework is applied to flagellar synchronization by hydrodynamic interactions. The time-reversibility of hydrodynamics at low Reynolds numbers requires swimming strokes that break time-reversal symmetry to facilitate hydrodynamic synchronization. We discuss different physical mechanisms for flagellar synchronization, which break this symmetry in different ways.

  4. In situ ellipsometric study of surface immobilization of flagellar filaments

    NASA Astrophysics Data System (ADS)

    Kurunczi, S.; Németh, A.; Hülber, T.; Kozma, P.; Petrik, P.; Jankovics, H.; Sebestyén, A.; Vonderviszt, F.; Fried, M.; Bársony, I.

    2010-10-01

    Protein filaments composed of thousands of subunits are promising candidates as sensing elements in biosensors. In this work in situ spectroscopic ellipsometry is applied to monitor the surface immobilization of flagellar filaments. This study is the first step towards the development of layers of filamentous receptors for sensor applications. Surface activation is performed using silanization and a subsequent glutaraldehyde crosslinking. Structure of the flagellar filament layers immobilized on activated and non-activated Si wafer substrates is determined using a two-layer effective medium model that accounted for the vertical density distribution of flagellar filaments with lengths of 300-1500 nm bound to the surface. The formation of the first interface layer can be explained by the multipoint covalent attachment of the filaments, while the second layer is mainly composed of tail pinned filaments floating upwards with the free parts. As confirmed by atomic force microscopy, covalent immobilization resulted in an increased surface density compared to absorption.

  5. FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella.

    PubMed

    Minamino, Tohru; Kinoshita, Miki; Inoue, Yumi; Morimoto, Yusuke V; Ihara, Kunio; Koya, Satomi; Hara, Noritaka; Nishioka, Noriko; Kojima, Seiji; Homma, Michio; Namba, Keiichi

    2016-06-01

    For construction of the bacterial flagellum, flagellar proteins are exported via its specific export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane (TM) export gate complex and a cytoplasmic ATPase complex consisting of FliH, FliI, and FliJ. FlhA is a TM export gate protein and plays important roles in energy coupling of protein translocation. However, the energy coupling mechanism remains unknown. Here, we performed a cross-complementation assay to measure robustness of the energy transduction system of the export apparatus against genetic perturbations. Vibrio FlhA restored motility of a Salmonella ΔflhA mutant but not that of a ΔfliH-fliI flhB(P28T) ΔflhA mutant. The flgM mutations significantly increased flagellar gene expression levels, allowing Vibrio FlhA to exert its export activity in the ΔfliH-fliI flhB(P28T) ΔflhA mutant. Pull-down assays revealed that the binding affinities of Vibrio FlhA for FliJ and the FlgN-FlgK chaperone-substrate complex were much lower than those of Salmonella FlhA. These suggest that Vibrio FlhA requires the support of FliH and FliI to efficiently and properly interact with FliJ and the FlgN-FlgK complex. We propose that FliH and FliI ensure robust and efficient energy coupling of protein export during flagellar assembly.

  6. Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor

    PubMed Central

    Terahara, Naoya; Noguchi, Yukina; Nakamura, Shuichi; Kami-ike, Nobunori; Ito, Masahiro; Namba, Keiichi; Minamino, Tohru

    2017-01-01

    The flagellar motor of Bacillus subtilis possesses two distinct H+-type MotAB and Na+-type MotPS stators. In contrast to the MotAB motor, the MotPS motor functions efficiently at elevated viscosity in the presence of 200 mM NaCl. Here, we analyzed the torque-speed relationship of the Bacillus MotAB and MotPS motors over a wide range of external loads. The stall torque of the MotAB and MotPS motors at high load was about 2,200 pN nm and 220 pN nm, respectively. The number of active stators in the MotAB and MotPS motors was estimated to be about ten and one, respectively. However, the number of functional stators in the MotPS motor was increased up to ten with an increase in the concentration of a polysaccharide, Ficoll 400, as well as in the load. The maximum speeds of the MotAB and MotPS motors at low load were about 200 Hz and 50 Hz, respectively, indicating that the rate of the torque-generation cycle of the MotPS motor is 4-fold slower than that of the MotAB motor. Domain exchange experiments showed that the C-terminal periplasmic domain of MotS directly controls the assembly and disassembly dynamics of the MotPS stator in a load- and polysaccharide-dependent manner. PMID:28378843

  7. Modulation of the Lytic Activity of the Dedicated Autolysin for Flagellum Formation SltF by Flagellar Rod Proteins FlgB and FlgF

    PubMed Central

    Herlihey, Francesca A.; Osorio-Valeriano, Manuel; Dreyfus, Georges

    2016-01-01

    ABSTRACT SltF was identified previously as an autolysin required for the assembly of flagella in the alphaproteobacteria, but the nature of its peptidoglycan lytic activity remained unknown. Sequence alignment analyses suggest that it could function as either a muramidase, lytic transglycosylase, or β-N-acetylglucosaminidase. Recombinant SltF from Rhodobacter sphaeroides was purified to apparent homogeneity, and it was demonstrated to function as a lytic transglycosylase based on enzymatic assays involving mass spectrometric analyses. Circular dichroism (CD) analysis determined that it is composed of 83.4% α-structure and 1.48% β-structure and thus is similar to family 1A lytic transglycosylases. However, alignment of apparent SltF homologs identified in the genome database defined a new subfamily of the family 1 lytic transglycosylases. SltF was demonstrated to be endo-acting, cleaving within chains of peptidoglycan, with optimal activity at pH 7.0. Its activity is modulated by two flagellar rod proteins, FlgB and FlgF: FlgB both stabilizes and stimulates SltF activity, while FlgF inhibits it. Invariant Glu57 was confirmed as the sole catalytic acid/base residue of SltF. IMPORTANCE The bacterial flagellum is comprised of a basal body, hook, and helical filament, which are connected by a rod structure. With a diameter of approximately 4 nm, the rod is larger than the estimated pore size within the peptidoglycan sacculus, and hence its insertion requires the localized and controlled lysis of this essential cell wall component. In many beta- and gammaproteobacteria, this lysis is catalyzed by the β-N-acetylglucosaminidase domain of FlgJ. However, FlgJ of the alphaproteobacteria lacks this activity and instead it recruits a separate enzyme, SltF, for this purpose. In this study, we demonstrate that SltF functions as a newly identified class of lytic transglycosylases and that its autolytic activity is uniquely modulated by two rod proteins, FlgB and FlgF. PMID

  8. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.

    PubMed

    Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim

    2016-02-10

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.

  9. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles

    PubMed Central

    2016-01-01

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials. PMID:26821214

  10. Studies on the mechanism of bacterial flagellar rotation and the flagellar number regulation.

    PubMed

    Kojima, Seiji

    2016-01-01

    Many motile bacteria have the motility organ, the flagellum. It rotates by the rotary motor driven by the ion-motive force and is embedded in the cell surface at the base of each flagellar filament. Many researchers have been studying its rotary mechanism for years, but most of the energy conversion processes have been remained in mystery. We focused on the flagellar stator, which works at the core process of energy conversion, and found that the periplasmic region of the stator changes its conformation to be activated only when the stator units are incorporated into the motor and anchored at the cell wall. Meanwhile, the physiologically important supramolecular complex is localized in the cell at the right place and the right time with a proper amount. How the cell achieves such a proper localization is the fundamental question for life science, and we undertake this problem by analyzing the mechanism for biogenesis of a single polar flagellum of Vibrio alginolyticus. Here I describe the molecular mechanism of how the flagellum is generated at the specific place with a proper number, and also how the flagellar stator is incorporated into the motor to complete the functional motor assembly, based on our studies.

  11. The glycosylphosphatidylinositol-PLC in Trypanosoma brucei forms a linear array on the exterior of the flagellar membrane before and after activation.

    PubMed

    Hanrahan, Orla; Webb, Helena; O'Byrne, Robert; Brabazon, Elaine; Treumann, Achim; Sunter, Jack D; Carrington, Mark; Voorheis, H Paul

    2009-06-01

    Bloodstream forms of Trypanosoma brucei contain a glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) that cleaves the GPI-anchor of the variable surface glycoprotein (VSG). Its location in trypanosomes has been controversial. Here, using confocal microscopy and surface labelling techniques, we show that the GPI-PLC is located exclusively in a linear array on the outside of the flagellar membrane, close to the flagellar attachment zone, but does not co-localize with the flagellar attachment zone protein, FAZ1. Consequently, the GPI-PLC and the VSG occupy the same plasma membrane leaflet, which resolves the topological problem associated with the cleavage reaction if the VSG and the GPI-PLC were on opposite sides of the membrane. The exterior location requires the enzyme to be tightly regulated to prevent VSG release under basal conditions. During stimulated VSG release in intact cells, the GPI-PLC did not change location, suggesting that the release mechanism involves lateral diffusion of the VSG in the plane of the membrane to the fixed position of the GPI-PLC.

  12. Biochemical, immunological, metabolic, and molecular studies on flagellar development in Euglena gracilis

    SciTech Connect

    Levasseur, P.J.

    1989-01-01

    The emergent flagellum of Euglena gracilis arises from an anterior invagination of the organism and possesses, along with the typical eukaryotic axoneme, a glycoprotein surface layer, a complement of structurally complex mastigonemes and a paraxial rod. Nonionic detergent extraction of isolated flagella yielded a fraction containing 21% of the flagellar protein. This fraction contained at least 25 components. In vivo radiolabeling experiments indicated that Euglena possessed a pool of flagellar precursors. This was evidence by the observation that flagellar proteins radiolabeled during an initial regeneration could be mobilized to flagella of a subsequent regeneration. At least one component in the pool was present in sufficient quantity to support an entire regeneration. This protein was tentatively identified as a mastigonemal protein of M{sub r} {approximately} 220,000. A cDNA library was constructed to investigate flagellar gene expression in Euglena.

  13. Genetic Diversity of the fliC Genes Encoding the Flagellar Antigen H19 of Escherichia coli and Application to the Specific Identification of Enterohemorrhagic E. coli O121:H19.

    PubMed

    Beutin, Lothar; Delannoy, Sabine; Fach, Patrick

    2015-06-15

    Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes.

  14. Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis.

    PubMed

    Bode, Nadine J; Debnath, Irina; Kuan, Lisa; Schulfer, Anjelique; Ty, Maureen; Pearson, Melanie M

    2015-06-01

    The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence.

  15. Salmonella Enteritidis flagellar mutants have a colonization benefit in the chicken oviduct.

    PubMed

    Kilroy, Sofie; Raspoet, Ruth; Martel, An; Bosseler, Leslie; Appia-Ayme, Corinne; Thompson, Arthur; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2017-02-01

    Egg borne Salmonella Enteritidis is still a major cause of human food poisoning. Eggs can become internally contaminated following colonization of the hen's oviduct. In this paper we aimed to analyze the role of flagella of Salmonella Enteritidis in colonization of the hen's oviduct. Using a transposon library screen we showed that mutants lacking functional flagella are significantly more efficient in colonizing the hen's oviduct in vivo. A micro-array analysis proved that transcription of a number of flagellar genes is down-regulated inside chicken oviduct cells. Flagella contain flagellin, a pathogen associated molecular pattern known to bind to Toll-like receptor 5, activating a pro-inflammatory cascade. In vitro tests using primary oviduct cells showed that flagellin is not involved in invasion. Using a ligated loop model, a diminished inflammatory reaction was seen in the oviduct resulting from injection of an aflagellated mutant compared to the wild-type. It is hypothesized that Salmonella Enteritidis downregulates flagellar gene expression in the oviduct and consequently prevents a flagellin-induced inflammatory response, thereby increasing its oviduct colonization efficiency.

  16. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli

    PubMed Central

    Sampaio, Suely C. F.; Luiz, Wilson B.; Vieira, Mônica A. M.; Ferreira, Rita C. C.; Garcia, Bruna G.; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L. M.; Ferreira, Luís C. S.

    2016-01-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliC and fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of aEPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of aEPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The aEPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of aEPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  17. Flagellar flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2016-08-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment measured the flow in the fluid around an Escherichia coli swarm [Wu, Hosu, and Berg, Proc. Natl. Acad. Sci. USA 108, 4147 (2011)], 10.1073/pnas.1016693108. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of the swarm with flow speeds of about 10 μ m /s , about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the action of cells stalled at the edge of a colony that extend their flagellar filaments outward, moving fluid over the virgin agar. In this work we quantitatively test this hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements. The results we obtain are in agreement with the flagellar hypothesis. The model provides further quantitative insight into the flagella orientations and their spatial distributions as well as the tangential speed profile. In particular, the model suggests that flagella are on average pointing radially out of the swarm and are not wrapped tangentially.

  18. Flagellar oscillation: a commentary on proposed mechanisms.

    PubMed

    Woolley, David M

    2010-08-01

    Eukaryotic flagella and cilia have a remarkably uniform internal 'engine' known as the '9+2' axoneme. With few exceptions, the function of cilia and flagella is to beat rhythmically and set up relative motion between themselves and the liquid that surrounds them. The molecular basis of axonemal movement is understood in considerable detail, with the exception of the mechanism that provides its rhythmical or oscillatory quality. Some kind of repetitive 'switching' event is assumed to occur; there are several proposals regarding the nature of the 'switch' and how it might operate. Herein I first summarise all the factors known to influence the rate of the oscillation (the beating frequency). Many of these factors exert their effect through modulating the mean sliding velocity between the nine doublet microtubules of the axoneme, this velocity being the determinant of bend growth rate and bend propagation rate. Then I explain six proposed mechanisms for flagellar oscillation and review the evidence on which they are based. Finally, I attempt to derive an economical synthesis, drawing for preference on experimental research that has been minimally disruptive of the intricate structure of the axoneme. The 'provisional synthesis' is that flagellar oscillation emerges from an effect of passive sliding direction on the dynein arms. Sliding in one direction facilitates force-generating cycles and dynein-to-dynein synchronisation along a doublet; sliding in the other direction is inhibitory. The direction of the initial passive sliding normally oscillates because it is controlled hydrodynamically through the alternating direction of the propulsive thrust. However, in the absence of such regulation, there can be a perpetual, mechanical self-triggering through a reversal of sliding direction due to the recoil of elastic structures that deform as a response to the prior active sliding. This provisional synthesis may be a useful basis for further examination of the problem.

  19. Rhythmicity, Recurrence, and Recovery of Flagellar Beating

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty Y.; Goldstein, Raymond E.

    2014-12-01

    The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the alga C. reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and fluctuations of interbeat intervals that are correlated and even recurrent, with memory extending to hundreds of beats. These features are altered qualitatively by physiological perturbations. Further, we quantify the recovery of periodic breaststroke beating from transient hydrodynamic forcing. These results will help constrain microscopic theories on the origins and regulation of flagellar beating.

  20. Sequence Variations in the Flagellar Antigen Genes fliCH25 and fliCH28 of Escherichia coli and Their Use in Identification and Characterization of Enterohemorrhagic E. coli (EHEC) O145:H25 and O145:H28.

    PubMed

    Beutin, Lothar; Delannoy, Sabine; Fach, Patrick

    2015-01-01

    Enterohemorrhagic E. coli (EHEC) serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliCH25 and fliCH28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliCH25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliCH25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliCH28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC) O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliCH25[O145] and fliCH28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1-10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy) and detection of the respective fliCH25[O145] and fliCH28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates.

  1. Quantitative analysis and modeling of katanin function in flagellar length control

    PubMed Central

    Kannegaard, Elisa; Rego, E. Hesper; Schuck, Sebastian; Feldman, Jessica L.; Marshall, Wallace F.

    2014-01-01

    Flagellar length control in Chlamydomonas reinhardtii provides a simple model system in which to investigate the general question of how cells regulate organelle size. Previous work demonstrated that Chlamydomonas cytoplasm contains a pool of flagellar precursor proteins sufficient to assemble a half-length flagellum and that assembly of full-length flagella requires synthesis of additional precursors to augment the preexisting pool. The regulatory systems that control the synthesis and regeneration of this pool are not known, although transcriptional regulation clearly plays a role. We used quantitative analysis of length distributions to identify candidate genes controlling pool regeneration and found that a mutation in the p80 regulatory subunit of katanin, encoded by the PF15 gene in Chlamydomonas, alters flagellar length by changing the kinetics of precursor pool utilization. This finding suggests a model in which flagella compete with cytoplasmic microtubules for a fixed pool of tubulin, with katanin-mediated severing allowing easier access to this pool during flagellar assembly. We tested this model using a stochastic simulation that confirms that cytoplasmic microtubules can compete with flagella for a limited tubulin pool, showing that alteration of cytoplasmic microtubule severing could be sufficient to explain the effect of the pf15 mutations on flagellar length. PMID:25143397

  2. Transcriptional regulation of coordinate changes in flagellar mRNAs during differentiation of Naegleria gruberi amoebae into flagellates

    SciTech Connect

    Lee, J.H.; Walsh, C.J.

    1988-06-01

    The nuclear run-on technique was used to measure the rate of transcription of flagellar genes during the differentiation of Naegleria gruberi amebae into flagellates. Synthesis of mRNAs for the axonemal proteins ..cap alpha..- and BETA-tubulin and flagellar calmodulin, as well as a coordinately regulated poly(A)/sup +/ RNA that codes for an unidentified protein, showed transient increases averaging 22-fold. The rate of synthesis of two poly(A)/sup +/ RNAs common to ameobae and flagellates was low until the transcription of the flagellar genes began to decline, at which time synthesis of the RNAs found in ameobae increased 3- to 10-fold. The observed changes in the rate of transcription can account quantitatively for the 20-fold increase in flagellar mRNA concentration during the differentiation. The data for the flagellar calmodulin gene demonstrate transcriptional regulation for a nontubulin axonemal protein. The data also demonstrate at least two programs of transcriptional regulation during the differentiation and raise the intriguing possibility that some significant fraction of the nearly 200 different proteins of the flagellar axoneme is transcriptionally regulated during the 1 h it takes N. gruberi amebae to form visible flagella.

  3. Limiting Speed of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Nirody, Jasmine; Berry, Richard; Oster, George

    The bacterial flagellar motor (BFM) drives swimming in a wide variety of bacterial species, making it crucial for several fundamental biological processes including chemotaxis and community formation. Recent experiments have shown that the structure of this nanomachine is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we put forward a model for the torque generation mechanism of this motor and propose that the maximum speed of the motor increases as additional torque-generators are recruited. This is contrary to the current widely-held belief that there is a universal upper limit to the speed of the BFM. Our result arises from the assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.

  4. Nonlinear amplitude dynamics in flagellar beating

    PubMed Central

    Casademunt, Jaume

    2017-01-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  5. How molecular motors shape the flagellar beat

    PubMed Central

    Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank

    2007-01-01

    Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446

  6. The Flagellar Protein FliL Is Essential for Swimming in Rhodobacter sphaeroides▿ †

    PubMed Central

    Suaste-Olmos, Fernando; Domenzain, Clelia; Mireles-Rodríguez, José Cruz; Poggio, Sebastian; Osorio, Aurora; Dreyfus, Georges; Camarena, Laura

    2010-01-01

    In this work we characterize the function of the flagellar protein FliL in Rhodobacter sphaeroides. Our results show that FliL is essential for motility in this bacterium and that in its absence flagellar rotation is highly impaired. A green fluorescent protein (GFP)-FliL fusion forms polar and lateral fluorescent foci that show different spatial dynamics. The presence of these foci is dependent on the expression of the flagellar genes controlled by the master regulator FleQ, suggesting that additional components of the flagellar regulon are required for the proper localization of GFP-FliL. Eight independent pseudorevertants were isolated from the fliL mutant strain. In each of these strains a single nucleotide change in motB was identified. The eight mutations affected only three residues located on the periplasmic side of MotB. Swimming of the suppressor mutants was not affected by the presence of the wild-type fliL allele. Pulldown and yeast two-hybrid assays showed that that the periplasmic domain of FliL is able to interact with itself but not with the periplasmic domain of MotB. From these results we propose that FliL could participate in the coupling of MotB with the flagellar rotor in an indirect fashion. PMID:20889747

  7. Use of the flagellar H7 gene as a target in multiplex PCR assays and improved specificity in identification of enterohemorrhagic Escherichia coli strains.

    PubMed Central

    Gannon, V P; D'Souza, S; Graham, T; King, R K; Rahn, K; Read, S

    1997-01-01

    PCR products of 1.8 kb were generated with DNAs from all Escherichia coli H7 strains tested by using oligonucleotide primers which flank the fliC gene. Three RsaI digestion profiles of these PCR products were evident on agarose gels; the first occurred with serotype O55:H7, O157:H7, or nonmotile (NM) strains, the second occurred with serotype O1:H7 and O18:H7 strains, and the third occurred with serotype O?:H7, O19:H7, O121:H7, O88:H7, and O156:H7 strains. Despite these differences, the nucleotide sequences of the E. coli E32511 (O157:NM) and U5-41 (O1:H7) fliC genes were 97% homologous. Two PCR primer pairs synthesized on the basis of the E32511 H7 fliC sequence amplified specific DNA fragments from all E. coli H7 strains, but did not amplify DNA fragments from the other bacterial strains. The H7-specific primers were used in combination with other primers which target the Verotoxin 1(VT1) and VT2 genes and the E. coli O157:H7 eaeA gene in multiplex PCR assays. In these assays, vt and eaeA PCR products were observed with DNAs from the majority of EHEC strains and vt, eaeA, and fliC PCR products were observed with DNAs from E. coli O157:H7 or NM strains. Only eaeA PCR products were present with DNA from enteropathogenic E. coli, and only vt PCR products occurred with VT-producing E. coli which are not EHEC. The multiplex PCR assays described allow for the specific identification of E. coli O157:H7 or NM and other EHEC strains. PMID:9041407

  8. MotD of Sinorhizobium meliloti and Related α-Proteobacteria Is the Flagellar-Hook-Length Regulator and Therefore Reassigned as FliK

    PubMed Central

    Eggenhofer, Elke; Rachel, Reinhard; Haslbeck, Martin; Scharf, Birgit

    2006-01-01

    The flagella of the soil bacterium Sinorhizobium meliloti differ from the enterobacterial paradigm in the complex filament structure and modulation of the flagellar rotary speed. The mode of motility control in S. meliloti has a molecular corollary in two novel periplasmic motility proteins, MotC and MotE, that are present in addition to the ubiquitous MotA/MotB energizing proton channel. A fifth motility gene is located in the mot operon downstream of the motB and motC genes. Its gene product was originally designated MotD, a cytoplasmic motility protein having an unknown function. We report here reassignment of MotD as FliK, the regulator of flagellar hook length. The FliK gene is one of the few flagellar genes not annotated in the contiguous flagellar regulon of S. meliloti. Characteristic for its class, the 475-residue FliK protein contains a conserved, compactly folded Flg hook domain in its carboxy-terminal region. Deletion of fliK leads to formation of prolonged flagellar hooks (polyhooks) with missing filament structures. Extragenic suppressor mutations all mapped in the cytoplasmic region of the transmembrane export protein FlhB and restored assembly of a flagellar filament, and thus motility, in the presence of polyhooks. The structural properties of FliK are consistent with its function as a substrate specificity switch of the flagellar export apparatus for switching from rod/hook-type substrates to filament-type substrates. PMID:16513744

  9. Listeria monocytogenes DNA glycosylase AdiP affects flagellar motility, biofilm formation, virulence, and stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is struct...

  10. Rhythmicity, recurrence, and recovery of flagellar beating

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty; Goldstein, Raymond

    2015-03-01

    The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the unicellular alga Chlamydomonas reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and fluctuations of interbeat intervals that are correlated and even recurrent, with memory extending to hundreds of beats. These features are altered qualitatively by physiological perturbations. Further, we quantify the recovery of periodic breaststroke beating from transient hydrodynamic forcing. These results will help constrain microscopic theories on the origins and regulation of flagellar beating. Financial support is acknowledged from the EPSRC, ERC Advanced Investigator Grant No. 247333, and a Senior Investigator Award from the Wellcome Trust.

  11. Hydrodynamic interaction of bacterial flagella - flagellar bundling

    NASA Astrophysics Data System (ADS)

    Lim, Sookkyung

    2013-11-01

    Flagellar bundling is an important aspect of locomotion in bacteria such as Escherichia coli. To study the hydrodynamic behavior of helical flagella, we present a computational model that is based on the geometry of the bacterial flagellar filament at the micrometer scale. We consider two model flagella, each of which has a rotary motor at its base with the rotation rate of the motor set at 100 Hz. Bundling occurs when both flagella are left-handed helices turning counterclockwise (when viewed from the nonmotor end of the flagellum looking back toward the motor) or when both flagella are right-handed helices turning clockwise. Helical flagella of the other combinations of handedness and rotation direction do not bundle. In this work we use the generalized immersed boundary method combined with the unconstrained Kirchhoff rod theory, which allows us to study the complicated hydrodynamics of flagellar behavior. This is a joint work with Charlie Peskin at NYU. NSF

  12. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  13. Load Response of the Flagellar Beat

    NASA Astrophysics Data System (ADS)

    Klindt, Gary S.; Ruloff, Christian; Wagner, Christian; Friedrich, Benjamin M.

    2016-12-01

    Cilia and flagella exhibit regular bending waves that perform mechanical work on the surrounding fluid, to propel cellular swimmers and pump fluids inside organisms. Here, we quantify a force-velocity relationship of the beating flagellum, by exposing flagellated Chlamydomonas cells to controlled microfluidic flows. A simple theory of flagellar limit-cycle oscillations, calibrated by measurements in the absence of flow, reproduces this relationship quantitatively. We derive a link between the energy efficiency of the flagellar beat and its ability to synchronize to oscillatory flows.

  14. Flagellar region 3b supports strong expression of integrated DNA and the highest chromosomal integration efficiency of the Escherichia coli flagellar regions

    PubMed Central

    Juhas, Mario; Ajioka, James W

    2015-01-01

    The Gram-negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits. PMID:26074421

  15. Protein Arginine Methyltransferases Interact with IFT Particles and Change Location During Flagellar Growth and Resorption.

    PubMed

    Mizuno, Katsutoshi; Sloboda, Roger D

    2017-03-15

    Changes in protein activity driven by post translational modifications comprise an important mechanism for the control of many cellular processes. Several flagellar proteins are methylated on arginine residues during flagellar resorption; however, the function is not understood. To learn more about the role of protein methylation during flagellar dynamics, we have focused on protein arginine methyltransferases (PRMTs) 1, 3, 5, and 10. These PRMTs localize to the tip of flagella and in a punctate pattern along the length, very similar, but not identical, to that of intraflagellar transport (IFT) components. In addition, we found that PRMTs 1 and 3 are also highly enriched at the base of the flagella, and the basal localization of these PRMTs changes during flagellar regeneration and resorption. Proteins with methyl arginine residues are also enriched at the tip and base of flagella, and their localization also changes during flagellar assembly and disassembly. PRMTs are lost from the flagella of fla10-1 cells, which carry a temperature sensitive mutation in the anterograde motor for IFT. The data define the distribution of specific PRMTs and their target proteins in flagella, and demonstrate that PRMTs are cargo for translocation within flagella by the process of IFT.

  16. RNA-mediated gene activation

    PubMed Central

    Jiao, Alan L; Slack, Frank J

    2014-01-01

    The regulation of gene expression by non-coding RNAs (ncRNAs) has become a new paradigm in biology. RNA-mediated gene silencing pathways have been studied extensively, revealing diverse epigenetic and posttranscriptional mechanisms. In contrast, the roles of ncRNAs in activating gene expression remains poorly understood. In this review, we summarize the current knowledge of gene activation by small RNAs, long non-coding RNAs, and enhancer-derived RNAs, with an emphasis on epigenetic mechanisms. PMID:24185374

  17. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies

    PubMed Central

    Dutta, Soumita

    2017-01-01

    ABSTRACT The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas. This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of

  18. Pseudomonas fluorescens F113 Can Produce a Second Flagellar Apparatus, Which Is Important for Plant Root Colonization

    PubMed Central

    Barahona, Emma; Navazo, Ana; Garrido-Sanz, Daniel; Muriel, Candela; Martínez-Granero, Francisco; Redondo-Nieto, Miguel; Martín, Marta; Rivilla, Rafael

    2016-01-01

    The genomic sequence of Pseudomonas fluorescens F113 has shown the presence of a 41 kb cluster of genes that encode the production of a second flagellar apparatus. Among 2,535 pseudomonads strains with sequenced genomes, these genes are only present in the genomes of F113 and other six strains, all but one belonging to the P. fluorescens cluster of species, in the form of a genetic island. The genes are homologous to the flagellar genes of the soil bacterium Azotobacter vinelandii. Regulation of these genes is mediated by the flhDC master operon, instead of the typical regulation in pseudomonads, which is through fleQ. Under laboratory conditions, F113 does not produce this flagellum and the flhDC operon is not expressed. However, ectopic expression of the flhDC operon is enough for its production, resulting in a hypermotile strain. This flagellum is also produced under laboratory conditions by the kinB and algU mutants. Genetic analysis has shown that kinB strongly represses the expression of the flhDC operon. This operon is activated by the Vfr protein probably in a c-AMP dependent way. The strains producing this second flagellum are all hypermotile and present a tuft of polar flagella instead of the single polar flagellum produced by the wild-type strain. Phenotypic variants isolated from the rhizosphere produce this flagellum and mutation of the genes encoding it, results in a defect in competitive colonization, showing its importance for root colonization. PMID:27713729

  19. Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise

    PubMed Central

    Wakabayashi, Ken-ichi; King, Stephen M.

    2006-01-01

    Redox-based regulatory systems are essential for many cellular activities. Chlamydomonas reinhardtii exhibits alterations in motile behavior in response to different light conditions (photokinesis). We hypothesized that photokinesis is signaled by variations in cytoplasmic redox poise resulting from changes in chloroplast activity. We found that this effect requires photosystem I, which generates reduced NADPH. We also observed that photokinetic changes in beat frequency and duration of the photophobic response could be obtained by altering oxidative/reductive stress. Analysis of reactivated cell models revealed that this redox poise effect is mediated through the outer dynein arms (ODAs). Although the global redox state of the thioredoxin-related ODA light chains LC3 and LC5 and the redox-sensitive Ca2+-binding subunit of the docking complex DC3 did not change upon light/dark transitions, we did observe significant alterations in their interactions with other flagellar components via mixed disulfides. These data indicate that redox poise directly affects ODAs and suggest that it may act in the control of flagellar motility. PMID:16754958

  20. Silencing of a putative inner arm dynein heavy chain results in flagellar immotility in Trypanosoma brucei

    PubMed Central

    Springer, Amy L.; Bruhn, David F.; Kinzel, Kathryn W.; Rosenthal, Noël F.; Zukas, Randi; Klingbeil, Michele M.

    2010-01-01

    The Trypanosoma brucei flagellum controls motility and is crucial for cell polarity and division. Unique features of trypanosome motility suggest that flagellar beat regulation in this organism is unusual and worthy of study. The flagellar axoneme, required for motility, has a structure that is highly conserved among eukaryotes. Of the several dyneins in the axonemal inner arm complex, dynein f is thought to control flagellar waveform shape. A T. brucei gene predicted to encode the dynein f alpha heavy chain, TbDNAH10, was silenced using RNA interference in procyclic T. brucei cells. This resulted in immotile flagella, showing no movement except for occasional slight twitches at the tips. Cell growth slowed dramatically and cells were found in large clusters. Microscopic analysis of silenced cultures showed many cells with detached flagella, sometimes entangled between multiple cells. DAPI staining showed an increased frequency of mis-positioned kinetoplasts and multinucleate cells, suggesting that these cells experience disruption at an early cell cycle stage, probably secondary to the motility defect. TEM images showed apparently normal axonemes and no discernable defects in inner arm structure. This study demonstrates use of RNAi as an effective method to study very large genes such as dynein heavy chains (HCs), and the immotility phenotype of these dynein knockdowns suggests that an intact inner arm is necessary for flagellar beating in T. brucei. Since analogous mutants in Chlamydomonas reinhardtii retain motility, this phenotype likely reflects differences in requirements for motility and/or dynein assembly between the two organisms and these comparative studies will help elucidate the mechanisms of flagellar beat regulation. PMID:20888370

  1. Purification, crystallization and preliminary X-ray analysis of FliT, a bacterial flagellar substrate-specific export chaperone

    PubMed Central

    Kinoshita, Miki; Yamane, Midori; Matsunami, Hideyuki; Minamino, Tohru; Namba, Keiichi; Imada, Katsumi

    2009-01-01

    The assembly process of the bacterial flagellum is coupled to flagellar gene expression. FliT acts not only as a flagellar type III substrate-specific export chaperone for the filament-capping protein FliD but also as a negative regulator that suppresses flagellar gene expression through its specific interaction with the master regulator FlhD4C2 complex. In this study, FliT of Salmonella enterica serovar Typhimurium was expressed, purified and crystallized. Crystals of SeMet FliT were obtained by the sitting-drop vapour-diffusion technique with potassium/sodium tartrate as the precipitant. The crystals grew in the trigonal space group P3121 or P3221 and diffracted to 3.2 Å resolution. The anomalous difference Patterson map of the SeMet FliT crystal showed significant peaks in its Harker sections, indicating the usefulness of the derivative data for structure determination. PMID:19652350

  2. Proposed model for the flagellar rotary motor.

    PubMed

    Mitsui, Toshio; Ohshima, Hiroyuki

    2005-11-25

    Flagellated bacteria swim by rotating helical filaments driven by motors embedded in the cell wall and cytoplasmic membrane. A model is proposed to explain the mechanism of the motor. The protons passing through the channels induce a strong electric field in Mot molecules. This field originates an impulse force to cause the flagellar rotation if the following conditions are fulfilled: (a) Mot molecules have a spontaneous electric polarization. (b) The lipid bilayers are viscoelastic. (c) There is a delay of deformation in response to stress in Mot molecules. The conclusions driven from the model are in agreement with the following experimental observations, denoting the flagellar rotation velocity as omega. (1) The torque is practically constant independent of omega from 0 to a critical value omega(cr) and then decreases sharply. (2) When omega is smaller than omega(cr), the torque varies little with temperature. (3) The critical velocity omega(cr) shifts to lower speed at lower temperatures. (4) Where omega is larger than omega(cr), declining of the torque steepens at lower temperatures. (5) When omega is smaller than omega(cr), one revolution of the flagellar rotation consists of a constant number of steps. (6) When omega is smaller than omega(cr), omega is proportional to the transmembrane potential difference. (7) The stator produces constant torque even when the stator is rotated relative to the rotor by external forces. (8) How the flagellar rotation velocity changes when the direction of the proton passage is reversed. (9) The motor has a switch that reverses the sense of the flagelllar rotation with the same absolute value of torque.

  3. Studies on flagellar shortening in Chlamydomonas reinhardtii

    SciTech Connect

    Cherniack, J.

    1985-01-01

    Flagellar shortening of Chlamydomonas reinhardtii was promoted by sodium chloride, pyrophosphate (sodium, potassium and ammonium salts), EDTA and EGTA, succinate, citrate and oxalate (sodium salts), caffeine and aminophylline. Removal of calcium from the medium potentiated the effects of these agents in inducing shortening. Investigations of the release of phosphorylated compounds to the medium during pyrophosphate-induced flagellar shortening of cells pre-labelled with /sup 32/P, revealed an as yet unidentified /sup 32/P-labelled compound with distinct chromatographic properties. Chromatography and electrophoresis indicates that it is a small, highly polar molecule with a high charge to mass ratio, containing thermo- and acid-labile phosphate linkages. Investigations showed of the release of /sup 35/S-labelled protein to the medium from cells pre-labelled with /sup 35/S-sulfate showed that flagellated cells released two prominent polypeptides which comigrated with ..cap alpha..- and ..beta..-flagellar tubulin on SDS polyacrylamide gel electrophoresis, while deflagellated cells did not.

  4. A quantitative model of the switch cycle of an archaeal flagellar motor and its sensory control.

    PubMed

    Nutsch, Torsten; Oesterhelt, Dieter; Gilles, Ernst Dieter; Marwan, Wolfgang

    2005-10-01

    By reverse-engineering we have detected eight kinetic phases of the symmetric switch cycle of the Halobacterium salinarum flagellar motor assembly and identified those steps in the switch cycle that are controlled by sensory rhodopsins during phototaxis. Upon switching the rotational sense, the flagellar motor assembly passes through a stop state from which all subunits synchronously resume rotation in the reverse direction. The assembly then synchronously proceeds through three subsequent functional states of the switch: Refractory, Competent, and Active, from which the rotational sense is switched again. Sensory control of the symmetric switch cycle occurs at two steps in each rotational sense by inversely regulating the probabilities for a change from the Refractory to the Competent and from Competent to the Active rotational mode. We provide a mathematical model for flagellar motor switching and its sensory control, which is able to explain all tested experimental results on spontaneous and light-controlled motor switching, and give a mechanistic explanation based on synchronous conformational transitions of the subunits of the switch complex after reversible dissociation and binding of a response regulator (CheYP). We conclude that the kinetic mechanism of flagellar motor switching and its sensory control is fundamentally different in the archaeon H. salinarum and the bacterium Escherichia coli.

  5. Monitoring bacterial chemotaxis by using bioluminescence resonance energy transfer: Absence of feedback from the flagellar motors

    PubMed Central

    Shimizu, Thomas S.; Delalez, Nicolas; Pichler, Klemens; Berg, Howard C.

    2006-01-01

    We looked for a feedback system in Escherichia coli that might sense the rotational bias of flagellar motors and regulate the activity of the chemotaxis receptor kinase. Our search was based on the assumption that any machinery that senses rotational bias will be perturbed if flagellar rotation stops. We monitored the activity of the kinase in swimming cells by bioluminescence resonance energy transfer (BRET) between Renilla luciferase fused to the phosphatase, CheZ, and yellow fluorescent protein fused to the response regulator, CheY. Then we jammed the flagellar motors by adding an antifilament antibody that crosslinks adjacent filaments in flagellar bundles. At steady state, the rate of phosphorylation of CheY is equal to the rate of dephosphorylation of CheY-P, which is proportional to the degree of association between CheZ and CheY-P, the quantity sensed by BRET. No changes were observed, even upon addition of an amount of antibody that stopped the swimming of >95% of cells within a few seconds. So, the kinase does not appear to be sensitive to motor output. The BRET technique is complementary to one based on FRET, described previously. Its reliability was confirmed by measurements of the response of cells to the addition of attractants. PMID:16452163

  6. Shear stress transmission model for the flagellar rotary motor.

    PubMed

    Mitsui, Toshio; Ohshima, Hiroyuki

    2008-09-01

    Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The mechanism of the flagellar motor is discussed by reforming the model proposed by the present authors in 2005. It is shown that the mean strength of Coulomb field produced by a proton passing the channel is very strong in the Mot assembly so that the Mot assembly can be a shear force generator and induce the flagellar rotation. The model gives clear calculation results in agreement with experimental observations, e g., for the characteristic torque-velocity relationship of the flagellar rotation.

  7. Complex Interplay between FleQ, Cyclic Diguanylate and Multiple σ Factors Coordinately Regulates Flagellar Motility and Biofilm Development in Pseudomonas putida

    PubMed Central

    Jiménez-Fernández, Alicia; López-Sánchez, Aroa; Jiménez-Díaz, Lorena; Navarrete, Blanca; Calero, Patricia; Platero, Ana Isabel

    2016-01-01

    Most bacteria alternate between a free living planktonic lifestyle and the formation of structured surface-associated communities named biofilms. The transition between these two lifestyles requires a precise and timely regulation of the factors involved in each of the stages that has been likened to a developmental process. Here we characterize the involvement of the transcriptional regulator FleQ and the second messenger cyclic diguanylate in the coordinate regulation of multiple functions related to motility and surface colonization in Pseudomonas putida. Disruption of fleQ caused strong defects in flagellar motility, biofilm formation and surface attachment, and the ability of this mutation to suppress multiple biofilm-related phenotypes associated to cyclic diguanylate overproduction suggests that FleQ mediates cyclic diguanylate signaling critical to biofilm growth. We have constructed a library containing 94 promoters potentially involved in motility and biofilm development fused to gfp and lacZ, screened this library for FleQ and cyclic diguanylate regulation, and assessed the involvement of alternative σ factors σN and FliA in the transcription of FleQ-regulated promoters. Our results suggest a dual mode of action for FleQ. Low cyclic diguanylate levels favor FleQ interaction with σN-dependent promoters to activate the flagellar cascade, encompassing the flagellar cluster and additional genes involved in cyclic diguanylate metabolism, signal transduction and gene regulation. On the other hand, characterization of the FleQ-regulated σN- and FliA-independent PlapA and PbcsD promoters revealed two disparate regulatory mechanisms leading to a similar outcome: the synthesis of biofilm matrix components in response to increased cyclic diguanylate levels. PMID:27636892

  8. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas.

    PubMed

    Reck, Jaimee; Schauer, Alexandria M; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A; Porter, Mary E

    2016-08-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.

  9. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas

    PubMed Central

    Reck, Jaimee; Schauer, Alexandria M.; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A.; Porter, Mary E.

    2016-01-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms. PMID:27251063

  10. Probing the role of IFT particle complex A and B in flagellar entry and exit of IFT-dynein in Chlamydomonas.

    PubMed

    Williamson, Shana M; Silva, David A; Richey, Elizabeth; Qin, Hongmin

    2012-07-01

    Mediating the transport of flagellar precursors and removal of turnover products, intraflagellar transport (IFT) is required for flagella assembly and maintenance. The IFT apparatus is composed of the anterograde IFT motor kinesin II, the retrograde IFT motor IFT-dynein, and IFT particles containing two complexes, A and B. In order to have a balanced two-way transportation, IFT-dynein has to be carried into flagella and transported to the flagellar tip by kinesin II, where it is activated to drive the retrograde IFT back to the flagellar base. In this study, we investigated the role of complex A and complex B in the flagellar entry and exit of IFT-dynein. We showed that regardless of the amount of complex A, IFT-dynein accumulated proportionally to the amount of complex B in the flagella of fla15/ift144 and fla17-1/ift139, two complex A temperature-sensitive mutants. Complex A was depleted from both cellular and flagellar compartments in fla15/ift144 mutant. However, in fla17-1/ift139 mutant, the flagellar level of complex A was at the wild-type level, which was in radical contrast to the significantly reduced cellular amount of complex A. These results support that complex A is not required for the flagellar entry of IFT-dynein, but might be essential for the lagellar exit of IFT-dynein. Additionally, we confirmed the essential role of IFT172, a complex B subunit, in the flagellar entry of IFT-dynein. These results indicate that complexes A and B play complementary but distinct roles for IFT-dynein, with complex B carrying IFT-dynein into the flagella while complex A mediates the flagellar exit of IFT-dynein.

  11. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.

    PubMed Central

    Magariyama, Y; Sugiyama, S; Muramoto, K; Kawagishi, I; Imae, Y; Kudo, S

    1995-01-01

    Swimming speeds and flagellar rotation rates of individual free-swimming Vibrio alginolyticus cells were measured simultaneously by laser dark-field microscopy at 25, 30, and 35 degrees C. A roughly linear relation between swimming speed and flagellar rotation rate was observed. The ratio of swimming speed to flagellar rotation rate was 0.113 microns, which indicated that a cell progressed by 7% of pitch of flagellar helix during one flagellar rotation. At each temperature, however, swimming speed had a tendency to saturate at high flagellar rotation rate. That is, the cell with a faster-rotating flagellum did not always swim faster. To analyze the bacterial motion, we proposed a model in which the torque characteristics of the flagellar motor were considered. The model could be analytically solved, and it qualitatively explained the experimental results. The discrepancy between the experimental and the calculated ratios of swimming speed to flagellar rotation rate was about 20%. The apparent saturation in swimming speed was considered to be caused by shorter flagella that rotated faster but produced less propelling force. Images FIGURE 1 FIGURE 4 PMID:8580359

  12. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    PubMed

    Minamino, Tohru; Morimoto, Yusuke V; Hara, Noritaka; Aldridge, Phillip D; Namba, Keiichi

    2016-03-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  13. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export

    PubMed Central

    Minamino, Tohru; Morimoto, Yusuke V.; Hara, Noritaka; Aldridge, Phillip D.; Namba, Keiichi

    2016-01-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+–protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration. PMID:26943926

  14. Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads

    PubMed Central

    2013-01-01

    Background Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. Results Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. Conclusions This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness. PMID:24195767

  15. Flagellar synchronization through direct hydrodynamic interactions.

    PubMed

    Brumley, Douglas R; Wan, Kirsty Y; Polin, Marco; Goldstein, Raymond E

    2014-07-29

    Flows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory. At close spacings it produces robust synchrony for thousands of beats, while at increasing separations synchrony is degraded by stochastic processes. Manipulation of the relative flagellar orientation reveals in-phase and antiphase states, consistent with dynamical theories. Flagellar tracking with exquisite precision reveals waveform changes that result from hydrodynamic coupling. This study proves unequivocally that flagella coupled solely through a fluid can achieve robust synchrony despite differences in their intrinsic properties.DOI: http://dx.doi.org/10.7554/eLife.02750.001.

  16. SEROLOGICAL SIMILARITY OF FLAGELLAR AND MITOTIC MICROTUBULES

    PubMed Central

    Fulton, Chandler; Kane, R. E.; Stephens, R. E.

    1971-01-01

    An antiserum to flagellar axonemes from sperm of Arbacia punctulata contains antibodies which react both with intact flagellar outer fibers and with purified tubulin from the outer fibers. Immunodiffusion tests indicate the presence of similar antigenic determinants on outer-fiber tubulins from sperm flagella of five species of sea urchins and a sand dollar, but not a starfish. The antibodies also react with extracts containing tubulins from different classes of microtubules, including central-pair fibers and both A- and B-subfibers from outer fibers of sperm flagella, an extract from unfertilized eggs, mitotic apparatuses from first cleavage embryos, and cilia from later embryos. Though most tubulins tested share similar antigenic determinants, some clear differences have been detected, even, in Pseudoboletia indiana, between the outer-fiber tubulins of sperm flagella and blastular cilia. Though tubulins are "actin-like" proteins, antitubulin serum does not react with actin from sea urchin lantern muscle. On the basis of these observations, we suggest that various echinoid microtubules are built of similar, but not identical, tubulins. PMID:4106543

  17. Analysis of flagellar phosphoproteins from Chlamydomonas reinhardtii.

    PubMed

    Boesger, Jens; Wagner, Volker; Weisheit, Wolfram; Mittag, Maria

    2009-07-01

    Cilia and flagella are cell organelles that are highly conserved throughout evolution. For many years, the green biflagellate alga Chlamydomonas reinhardtii has served as a model for examination of the structure and function of its flagella, which are similar to certain mammalian cilia. Proteome analysis revealed the presence of several kinases and protein phosphatases in these organelles. Reversible protein phosphorylation can control ciliary beating, motility, signaling, length, and assembly. Despite the importance of this posttranslational modification, the identities of many ciliary phosphoproteins and knowledge about their in vivo phosphorylation sites are still missing. Here we used immobilized metal affinity chromatography to enrich phosphopeptides from purified flagella and analyzed them by mass spectrometry. One hundred forty-one phosphorylated peptides were identified, belonging to 32 flagellar proteins. Thereby, 126 in vivo phosphorylation sites were determined. The flagellar phosphoproteome includes different structural and motor proteins, kinases, proteins with protein interaction domains, and many proteins whose functions are still unknown. In several cases, a dynamic phosphorylation pattern and clustering of phosphorylation sites were found, indicating a complex physiological status and specific control by reversible protein phosphorylation in the flagellum.

  18. On Flagellar Structure in Certain Flagellates

    PubMed Central

    Gibbons, I. R.; Grimstone, A. V.

    1960-01-01

    This paper describes the structure of the flagella, basal bodies, and some of the associated fibre systems in three genera of complex flagellates, Trichonympha, Pseudotrichonympha, and Holomastigotoides. Three groups of longitudinal fibres occur in a flagellum: two central and nine outer fibres such as have been repeatedly described in other material, and an additional set of nine smaller secondary fibres not previously identified as such. Each central fibre shows a helical substructure; the pair of them are enveloped in a common sheath. Each outer fibre is a doublet with one subfibre bearing projections—called arms—that extend toward the adjacent outer fibre. The basal body is formed by a cylinder of nine triplet outer fibres. Two subfibres of each triplet continue into the flagellum and constitute the doublets. The third subfibre terminates at the transition of basal body to flagellum, possibly giving rise to the nine radial transitional fibres that seem to attach the end of the basal body to the surface of the organism. The central and secondary flagellar fibres are not present in the lumen of the basal body, but other complex structures occur there. The form of these intraluminal structures differs from genus to genus. The flagellar unit is highly asymmetrical. All the flagella examined have possessed the same one of the two possible enantiomorphic forms. At least two systems of fibres are associated with the basal bodies of all three genera. PMID:13827900

  19. A study of bacterial flagellar bundling.

    PubMed

    Flores, Heather; Lobaton, Edgar; Méndez-Diez, Stefan; Tlupova, Svetlana; Cortez, Ricardo

    2005-01-01

    Certain bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion. We present a computational model of the flagellar motion and their hydrodynamic interaction. The model is based on the equations of Stokes flow to describe the fluid motion. The elasticity of the flagella is modeled with a network of elastic springs while the motor is represented by a torque at the base of each flagellum. The fluid velocity due to the forces is described by regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their expressions are derived. The model is used to analyze the swimming motion of a single flagellum and of a group of three flagella in close proximity to one another. When all flagellar motors rotate counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the same initial conditions lead to a tumbling behavior characterized by the separation of the flagella, changes in their orientation, and no net swimming motion. The analysis of the flow provides some intuition for these processes.

  20. Instability of hooks during bacterial flagellar swimming

    NASA Astrophysics Data System (ADS)

    Jabbarzadeh, Mehdi; Fu, Henry C.; Henry Fu Team

    2016-11-01

    In bacteria, a flexible hook transmits torque from the rotary motor at the cell body to the flagellum. Previously, the hook has been modeled as a Kirchhoff rod between the cell body and rotating flagellum. To study effects of the hook's flexibility on the bacteria's swimming speed and trajectory for wide range hook stiffnesses and flagellum configurations, we develop an efficient simplified spring model for the hook by linearizing the Kirchhoff rod. We treat the hydrodynamics of the cell body and helical flagellum using resistance matrices calculated by the method of regularized Stokeslets. We investigate flagellar and swimming dynamics for a range of hook flexibilities and flagellar orientations relative to the cell body and compare the results to models without hook flexibility. We investigate in detail parameters corresponding to E. coli and Vibrio alginolyticus. Generally, the flagellum changes orientation relative to the cell body, undergoing an orbit with the period of the motor rotation. We find that as the hook stiffness decreases, steady-state orbits of the flagellum first become unstable before the hook buckles, which may suggest a new mechanism of flick initiation in run-reverse-flick motility. We also find that for some parameter ranges, there are multiple stable steady state orbits, which may have implications for the tumbling and turning of bacteria.

  1. Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration in Chlamydomonas

    PubMed Central

    1982-01-01

    We labeled gametes of Chlamydomonas with 10-min pulses of 35SO4(-2) before and at various times after deflagellation, and isolated whole cells and flagella immediately after the pulse. The labeled proteins were separated by one- or two-dimensional gel electrophoresis, and the amount of isotope incorporated into specific proteins was determined. Individual proteins were identified with particular structures by correlating missing axonemal polypeptides with ultrastructural defects in paralyzed mutants, or by polypeptide analysis of flagellar fractions. Synthesis of most flagellar proteins appeared to be coordinately induced after flagellar amputation. The rate of synthesis for most quantified proteins increased at least 4- to 10-fold after deflagellation. The kinetics of synthesis of proteins contained together within a structure (e.g., the radial spoke proteins [RSP] ) were frequently similar; however, the kinetics of synthesis of proteins contained in different structures (e.g., RSP vs. alpha- and beta- tubulins) were different. Most newly synthesized flagellar proteins were rapidly transported into the flagellum with kinetics reflecting the rate of growth of the organelle; exceptions included a central tubule complex protein (CT1) and an actinlike component, both of which appeared to be supplied almost entirely from pre-existing, unlabeled pools. Isotope dilution experiments showed that, for most quantified axonemal proteins, a minimum of 35-40% of the polypeptide chains used in assembling a new axoneme was synthesized during regeneration; these proteins appeared to have predeflagellation pools of approximately the same size relative to their stoichiometries in the axoneme. In contrast, CT1 and the actinlike protein had comparatively large pools. PMID:7118994

  2. Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50

    PubMed Central

    Yang, Yong; Cochran, Deborah A.; Gargano, Mary D.; King, Iryna; Samhat, Nayef K.; Burger, Benjain P.; Sabourin, Katherine R.; Hou, Yuqing; Awata, Junya; Parry, David A.D.; Marshall, Wallace F.; Witman, George B.; Lu, Xiangyi

    2011-01-01

    Eukaryotic cilia and flagella are vital sensory and motile organelles. The calcium channel PKD2 mediates sensory perception on cilia and flagella, and defects in this can contribute to ciliopathic diseases. Signaling from Pkd2-dependent Ca2+ rise in the cilium to downstream effectors may require intermediary proteins that are largely unknown. To identify these proteins, we carried out genetic screens for mutations affecting Drosophila melanogaster sperm storage, a process mediated by Drosophila Pkd2. Here we show that a new mutation lost boys (lobo) encodes a conserved flagellar protein CG34110, which corresponds to vertebrate Ccdc135 (E = 6e-78) highly expressed in ciliated respiratory epithelia and sperm, and to FAP50 (E = 1e-28) in the Chlamydomonas reinhardtii flagellar proteome. CG34110 localizes along the fly sperm flagellum. FAP50 is tightly associated with the outer doublet microtubules of the axoneme and appears not to be a component of the central pair, radial spokes, dynein arms, or structures defined by the mbo waveform mutants. Phenotypic analyses indicate that both Pkd2 and lobo specifically affect sperm movement into the female storage receptacle. We hypothesize that the CG34110/Ccdc135/FAP50 family of conserved flagellar proteins functions within the axoneme to mediate Pkd2-dependent processes in the sperm flagellum and other motile cilia. PMID:21289096

  3. Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation

    PubMed Central

    Cicova, Zdenka; Dejung, Mario; Skalicky, Tomas; Eisenhuth, Nicole; Hanselmann, Steffen; Morriswood, Brooke; Figueiredo, Luisa M.; Butter, Falk; Janzen, Christian J.

    2016-01-01

    Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level, and in a systematic way. However, detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here, we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor Tb927.11.2400, identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage-specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin-like (TbFlabarinL), and demonstrate that it originates from a gene duplication event, which occurred in the African trypanosomes. TbFlabarinL is not essential for the growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated TbFlabarinL-specific antibodies, and showed that it localizes in the flagellum. Co-immunoprecipitation experiments together with a biochemical cell fractionation suggest a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod. PMID:27779220

  4. Complex spatial organization and flagellin composition of flagellar propeller from marine magnetotactic ovoid strain MO-1.

    PubMed

    Zhang, Wei-Jia; Santini, Claire-Lise; Bernadac, Alain; Ruan, Juanfang; Zhang, Sheng-Da; Kato, Takayuki; Li, Ying; Namba, Keiichi; Wu, Long-Fei

    2012-03-02

    Marine magnetotactic ovoid bacterium MO-1 is capable of swimming along the geomagnetic field lines by means of its two sheathed flagellar bundles at a speed up to 300 μm/s. In this study, by using electron microscopy, we showed that, in each bundle, six individual flagella were organized in hexagon with a seventh in the middle. We identified 12 flagellin paralogs and 2 putative flagellins in the genome of MO-1. Among them, 13 were tandemly located on an ~ 17-kb segment while the 14th was on a separated locus. Using reverse transcription PCR and quantitative PCR, we found that all the 14 flagellin or putative flagellin genes were transcribed and that 2 of them were more abundantly expressed than others. A nLC (nanoliquid chromatography)-ESI (electrospray ionization)-MS/MS (mass spectrometry/mass spectrometry) mass spectrometry analysis identified all the 12 flagellin proteins in three glycosylated polypeptide bands resolved by one-dimensional denaturing polyacrylamide gel electrophoresis and 10 of them in 21 spots obtained by means of two-dimensional electrophoresis of flagellar extracts. Most spots contained more than one flagellin, and eight of the ten identified flagellins existed in multiple isoforms. Taken together, these results show unprecedented complexity in the spatial organization and flagellin composition of the flagellar propeller. Such architecture is observed only for ovoid-coccoid, bilophotrichously flagellated magnetotactic bacteria living in marine sediments, suggesting a species and environmental specificity.

  5. Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip.

    PubMed

    Pedersen, Lotte B; Miller, Mark S; Geimer, Stefan; Leitch, Jeffery M; Rosenbaum, Joel L; Cole, Douglas G

    2005-02-08

    The transport of flagellar precursors and removal of turnover products from the flagellar tip is mediated by intraflagellar transport (IFT) , which is essential for both flagellar assembly and maintenance . Large groups of IFT particles are moved from the flagellar base to the tip by kinesin-2, and smaller groups are returned to the base by cytoplasmic dynein 1b. The IFT particles are composed of two protein complexes, A and B, comprising approximately 16-18 polypeptides. How cargo is unloaded from IFT particles, turnover products loaded, and active IFT motors exchanged at the tip is unknown. We previously showed that the Chlamydomonas microtubule end binding protein 1 (CrEB1) localizes to the flagellar tip and is depleted from the tips of the temperature-sensitive (ts) mutant fla11ts . We demonstrate here that FLA11 encodes IFT protein 172, a component of IFT complex B, and show that IFT172 interacts with CrEB1. Because fla11ts cells are defective in IFT particle turnaround at the tip, our results indicate that IFT172 is involved in regulating the transition between anterograde and retrograde IFT at the tip, perhaps by a mechanism involving CrEB1. Therefore, IFT172 is involved in the control of flagellar assembly/disassembly at the tip.

  6. Flagellar hook protein from Salmonella SJ25.

    PubMed

    Kagawa, H; Owaribe, K; Asakura, S; Takahashi, N

    1976-01-01

    From acid-disintegrated flagellar hooks of Salmonella SJ25 an immunochemically pure preparation of hook protein was obtained by column chromatography. The molecular weight of the protein determined by sodium dodecyl sulfate-gel electrophoresis was 43,000, whereas that of SJ25 flagellin was 56,000. The amino-terminal residue of the hook protein was determined to be seryl. The amino acid composition of the protein was determined, the results being very similar to that for an Escheria coli hook protein reported by Silverman and Simon (1972). Within a wavelength range of 200 to 250 nm, our purified preparation of hook protein gave a circular dichroism spectrum with unusually small amplitudes, suggesting that the alpha-helix content of the protein was very low.

  7. THE FLAGELLAR PHOTORESPONSE IN VOLVOX SPECIES (VOLVOCACEAE, CHLOROPHYCEAE)(1).

    PubMed

    Solari, Cristian A; Drescher, Knut; Goldstein, Raymond E

    2011-06-01

    Steering their swimming direction toward the light is crucial for the viability of Volvox colonies, the larger members of the volvocine algae. While it is known that this phototactic steering is achieved by a difference in behavior of the flagella on the illuminated and shaded sides, conflicting reports suggest that this asymmetry arises either from a change in beating direction or a change in beating frequency. Here, we report direct observations of the flagellar behavior of various Volvox species with different phyletic origin in response to light intensity changes and thereby resolve this controversy: Volvox barberi W. Shaw from the section Volvox sensu Nozaki (2003) changes the direction of the flagellar beating plane, while species encompassed in the group Eudorina (Volvox carteri F. Stein, Volvox aureus Ehrenb., and Volvox tertius Art. Mey.) decrease the flagellar beating frequency, sometimes down to flagellar arrest.

  8. Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum.

    PubMed

    Nutsch, Torsten; Marwan, Wolfgang; Oesterhelt, Dieter; Gilles, Ernst Dieter

    2003-11-01

    Prokaryotic taxis, the active search of motile cells for the best environmental conditions, is one of the paradigms for signal transduction. The search algorithm implemented by the cellular biochemistry modulates the probability of switching the rotational direction of the flagellar motor, a nanomachine that propels prokaryotic cells. On the basis of the well-known biochemical mechanisms of chemotaxis in Escherichia coli, kinetic modeling of the events leading from chemoreceptor activation by ligand binding to the motility response has been performed with great success. In contrast to Escherichia coli, Halobacterium salinarum, in addition, responds to visible light, which is sensed through specific photoreceptors of different wavelength sensitivity (phototaxis). Light stimuli of defined intensity and time course can be controlled precisely, which facilitates input-output measurements used for system analysis of the molecular network connecting the sensory receptors to the flagellar motor switch. Here, we analyze the response of halobacterial cells to single and double-pulse light stimuli and present the first kinetic model for prokaryotic cells that couples the signal-transduction pathway with the flagellar motor switch. Modeling based on experimental data supports the current biochemical model of halobacterial phototaxis. Moreover, the simulations demonstrate that motor switching occurs through subsequent rate-limiting steps, which are both under sensory control, suggesting that two signals may be involved in halobacterial phototaxis.

  9. Genetic Interactions at the Fla10 Locus: Suppressors and Synthetic Phenotypes That Affect the Cell Cycle and Flagellar Function in Chlamydomonas Reinhardtii

    PubMed Central

    Lux-III, F. G.; Dutcher, S. K.

    1991-01-01

    Through the isolation of suppressors of temperature-sensitive flagellar assembly mutations at the FLA10 locus of Chlamydomonas reinhardtii, we have identified six other genes involved in flagellar assembly. Mutations at these suppressor loci, termed SUF1-SUF6, display allele specificity with respect to which fla10(-) mutant alleles they suppress. An additional mutation, apm1-122, which confers resistance to the plant herbicides amiprophos-methyl and oryzalin, was also found to interact with mutations at the FLA10 locus. The apm1-122 mutation in combination with three fla10(-) mutant alleles results in synthetic cold-sensitive cell division defects, and in combination with an additional pseudo-wild-type fla10(-) allele yields a synthetic temperature-sensitive flagellar motility phenotype. Based upon the genetic interactions of these loci, we propose that the FLA10 gene product interacts with multiple components of the flagellar apparatus and plays a role both in flagellar assembly and in the cell cycle. PMID:1874415

  10. Flagellar mutants of Chlamydomonas: Studies of radial spoke-defective strains by dikaryon and revertant analysis

    PubMed Central

    Luck, David; Piperno, Gianni; Ramanis, Zenta; Huang, B.

    1977-01-01

    The motility mutant of Chlamydomonas reinhardtii pf14 lacks radial spoke structures in its flagellar axonemes, and 12 proteins present in wild type are missing from a two-dimensional map (isoelectrofocusing/sodium dodecyl sulfate electrophoresis) of its 35S-labeled flagellar proteins. Six of these same proteins are missing in pf1, which lacks spoke-heads. To determine whether any of the missing proteins represent the mutant gene product two experimental approaches have been applied. The first makes use of the fact that gametes of either mutant strain when fused with wild-type gametes to form quadriflagellate dikaryons undergo recovery of flagellar function. Recovery at the molecular level was monitored by prelabeling the mutant proteins with 35S and allowing recovery to occur in the absence of protein synthesis. It is to be expected that the mutant gene product would not be restored as a radioactive protein and that recovery would depend on the assembly of the wild-type counterpart that is not labeled. The second technique makes use of revertants induced by UV irradiation. Dikaryon rescue in the case of pf14 leads to restoration of 11 radioactive components; only protein 3 fails to appear as a radioactive spot. For pf1 only two radioactive proteins are restored; proteins 4, 6, 9, and 10 were not radioactive. Analysis of revertants of pf1 gave evidence (altered map positions) that protein 4 is the mutant gene product. In the case of pf14, analysis of 22 revertants has not provided similar positive evidence that protein 3 is the gene product. Images PMID:269405

  11. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay.

    PubMed

    Fredericks, Christine E; Shibata, Satoshi; Aizawa, Shin-Ichi; Reimann, Sylvia A; Wolfe, Alan J

    2006-08-01

    As part of our attempt to map the impact of acetyl phosphate (acetyl approximately P) on the entire network of two-component signal transduction pathways in Escherichia coli, we asked whether the influence of acetyl approximately P on capsular biosynthesis and flagellar biogenesis depends on the Rcs phosphorelay. To do so, we performed a series of epistasis experiments: mutations in the components of the pathway that controls acetyl approximately P levels were combined with mutations in components of the Rcs phosphorelay. Cells that did not synthesize acetyl approximately P produced no capsule under normally permissive conditions, while those that accumulated acetyl approximately P synthesized capsule under conditions previously considered to be non-permissive. Acetyl approximately P-dependent capsular biosynthesis required both RcsB and RcsA, while the lack of RcsC restored capsular biosynthesis to acetyl approximately P-deficient cells. Similarly, acetyl approximately P-sensitive repression of flagellar biogenesis was suppressed by the loss of RcsB (but not of RcsA), while it was enhanced by the lack of RcsC. Taken together, these results show that both acetyl approximately P-sensitive activation of capsular biosynthesis and acetyl approximately P-sensitive repression of flagellar biogenesis require the Rcs phosphorelay. Moreover, they provide strong genetic support for the hypothesis that RcsC can function as either a kinase or a phosphatase dependent on environmental conditions. Finally, we learned that RcsB and RcsC inversely regulated the timing of flagellar biogenesis: rcsB mutants elaborated flagella prematurely, while rcsC mutants delayed their display of flagella. Temporal control of flagella biogenesis implicates the Rcs phosphorelay (and, by extension, acetyl approximately P) in the transition of motile, planktonic individuals into sessile biofilm communities.

  12. Structural insights into bacterial flagellar hooks similarities and specificities

    PubMed Central

    Yoon, Young-Ho; Barker, Clive S.; Bulieris, Paula V.; Matsunami, Hideyuki; Samatey, Fadel A.

    2016-01-01

    Across bacteria, the protein that makes the flagellar hook, FlgE, has a high variability in amino acid residue composition and sequence length. We hereby present the structure of two fragments of FlgE protein from Campylobacter jejuni and from Caulobacter crescentus, which were obtained by X-ray crystallography, and a high-resolution model of the hook from Caulobacter. By comparing these new structures of FlgE proteins, we show that bacterial hook can be divided in two distinct parts. The first part comprises domains that are found in all FlgE proteins and that will make the basic structure of the hook that is common to all flagellated bacteria. The second part, hyper-variable both in size and structure, will be bacteria dependent. To have a better understanding of the C. jejuni hook, we show that a special strain of Salmonella enterica, which was designed to encode a gene of flgE that has the extra domains found in FlgE from C. jejuni, is fully motile. It seems that no matter the size of the hook protein, the hook will always have a structure made of 11 protofilaments. PMID:27759043

  13. Functional characterization of FlgM in the regulation of flagellar synthesis and motility in Yersinia pseudotuberculosis.

    PubMed

    Ding, Lisha; Wang, Yao; Hu, Yangbo; Atkinson, Steve; Williams, Paul; Chen, Shiyun

    2009-06-01

    We describe here the functional characterization of the flgM gene in Yersinia pseudotuberculosis. Direct interaction of FlgM with the alternative sigma factor sigma(28) (FliA) was first confirmed. A conserved region in the C-terminus of FlgM was found which included the sigma(28) binding domain. By site-directed mutagenesis, bacterial two-hybrid analysis and Western blotting, the primary FlgM binding sites with sigma(28) were shown to be Ile85, Ala86 and Leu89. A role for FlgM in swimming motility was demonstrated by inactivation of flgM and subsequent complementation in trans. Transcriptional fusion analyses showed differential gene expression of flhDC, fliA, flgM and fliC in the fliA and flgM mutants compared with the wild-type. flhDC expression was not influenced by sigma(28) or FlgM while fliA expression was abolished in the fliA mutant and considerably reduced in the flgM mutant when compared to the wild-type, indicating that both FliA and FlgM can activate fliA transcription. Conversely, flgM transcription was higher in the fliA mutant when compared to the wild-type, suggesting that flgM transcription was repressed by sigma(28). Interestingly, fliC expression was markedly increased in the flgM mutant, suggesting a negative regulatory role for FlgM in fliC expression. The transcription of other sigma-dependent genes (cheW, flgD, flaA, csrA and fliZ) was also examined in fliA and flgM mutant backgrounds and this revealed that other sigma-factors apart from sigma(28) may be involved in flagellar biogenesis in Y. pseudotuberculosis. Taking together the motility phenotypes and effects of flgM mutation on the regulation of these key motility genes, we propose that the mechanisms regulating flagellar biogenesis in Y. pseudotuberculosis may differ from those described for other bacteria.

  14. Hybrid flagellar motor/MEMS based TNT detection system

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Woo; Tung, Steve

    2006-05-01

    Effective and rapid detection of nitroaromatic explosive compounds, especially trinitrotoluene (TNT), is very important to homeland security as well as to environmental monitoring of contaminants in soil and water, and landmine detection. In this research, we explore a novel nanoscale flagellar motor based TNT detection system (nFMTNT). The nFMTNT is a bio-hybrid MEMS system which combines genetically engineered flagellar motors and MEMS devices. The system consists of three major components: (1) a non-pathogenic, genetically modified Escherichia coli strain KAF95 with a rotating flagellar filament, (2) a microchannel with tethered cells, and (3) a sub-micron bead attached to a rotating flagellar filament. The operational principle of nFMTNT is based on detecting the change in the rotational behavior of the nanoscale flagellar filament in the presence of TNT. The rotational behavior of flagellar filaments of E. coli KAF95 was shown to be extremely sensitive to the presence of nitrate or nitrite. Normally, the flagellar filaments were locked in to rotate in the counterclockwise direction. However, when a nitrate or nitrite was present in the immediate environment, the filaments cease to rotate. Our results indicate that the threshold concentrations required for this response were 10 -4 M for nitrate and 10 -3 M for nitrite. This is equivalent to around 10 pg of nitrate and 100 pg of nitrite, based on the dimension of the MEMS-based reaction system used for the experiment (400 μm × 100 μm × 40 μm). These detection limits can be even lower when the size of the system is reduced.

  15. Loss of the lac operon contributes to Salmonella invasion of epithelial cells through derepression of flagellar synthesis.

    PubMed

    Jiang, Lingyan; Ni, Zhiwei; Wang, Lei; Feng, Lu; Liu, Bin

    2015-03-01

    Salmonella, a genus that is closely related to Escherichia coli, includes many pathogens of humans and other animals. A notable feature that distinguishes Salmonella from E. coli is lactose negativity, because the lac operon is lost in most Salmonella genomes. Here, we expressed the lac operon in Salmonella enterica serovar Typhimurium and compared the virulence of the Lac(+) strain to that of the wild-type strain in a murine model, invasion assays, and macrophage replication assays. We showed that the Lac(+) strain is attenuated in vivo and the attenuation of virulence is caused by its defect in epithelial cell invasion. However, the invasion-defective phenotype is unrelated to lactose utilization. Through sequencing and the comparison of the transcriptome profile between the Lac(+) and wild-type strains during invasion, we found that most flagellar genes were markedly downregulated in the Lac(+) strain, while other genes associated with invasion, such as the majority of genes encoded in Salmonella pathogenicity island 1, were not differentially expressed. Moreover, we discovered that lacA is the major repressor of flagellar gene expression in the lac operon. In conclusion, these data demonstrate that the lac operon decreases Salmonella invasion of epithelial cells through repression of flagellar biosynthesis. As the ability to invade epithelial cells is a critical virulence determinant of Salmonella, our results provide important evidence that the loss of the lac operon contributes to the evolution of Salmonella pathogenicity.

  16. The Helicobacter pylori Anti-Sigma Factor FlgM Is Predominantly Cytoplasmic and Cooperates with the Flagellar Basal Body Protein FlhA ▿ †

    PubMed Central

    Rust, Melanie; Borchert, Sophie; Niehus, Eike; Kuehne, Sarah A.; Gripp, Eugenia; Bajceta, Afrodita; McMurry, Jonathan L.; Suerbaum, Sebastian; Hughes, Kelly T.; Josenhans, Christine

    2009-01-01

    Helicobacter pylori requires flagellar motility and orientation to persist actively in its habitat. A particular feature of flagella in most Helicobacter species including H. pylori is a membraneous flagellar sheath. The anti-sigma factor FlgM of H. pylori is unusual, since it lacks an N-terminal domain present in other FlgM homologs, e.g., FlgM of Salmonella spp., whose regulatory function is intimately coupled to its secretion through the flagellar type III secretion system. The aim of the present study was to characterize the localization and secretion of the short H. pylori FlgM in the presence of a flagellar sheath and to elucidate its interaction with other flagellar proteins, such as the basal body protein FlhA, which was previously shown to cooperate with FlgM for regulation. H. pylori FlgM was only released into the medium in minor amounts in wild-type bacteria, where the bulk amount of the protein was retained in the cytoplasm. Some FlgM was detected in the flagellar fraction. FlgM was expressed in flhA mutants and was less soluble and differentially localized in bacterial fractions of the flhA mutant in comparison to wild-type bacteria. FlgM-green fluorescent protein and FlgM-V5 translational fusions were generated and expressed in H. pylori. FlgM displayed a predominantly polar distribution and interacted with the C-terminal domain of FlhA (FlhAC). We suggest that, in H. pylori, FlgM secretion may not be paramount for its regulatory function and that protein interactions at the flagellar basal body may determine the turnover and localization of functional FlgM. PMID:19465658

  17. A 12-base-pair deletion in the flagellar master control gene flhC causes nonmotility of the pathogenic German sorbitol-fermenting Escherichia coli O157:H- strains.

    PubMed

    Monday, Steven R; Minnich, Scott A; Feng, Peter C H

    2004-04-01

    An atypical, Stx2-producing, pathogenic Escherichia coli O157:H(-) strain has been isolated with increasing frequency from hemolytic uremic syndrome patients in Germany. The lack of the H7 antigen coupled with the strain's ability to ferment sorbitol and express beta-glucuronidase have complicated its detection and identification. In this study, we have determined that the loss of motility in these German sorbitol-fermenting (SF) O157 strains is due to a 12-bp in-frame deletion in flhC that is required for transcriptional activation of genes involved in flagellum biosynthesis. Either complementation with a functional flhC or repair of this mutation restored H7 antigen expression and motility. PCR analysis of several nonmotile E. coli O157 strains from various geographical sources confirmed that the 12-bp flhC deletion is found only in the cluster of German SF O157 strains, providing a potentially useful marker by which these atypical strains can be identified. The loss of motility via mutations in the flhDC operon that we observed in the German SF O157 strains is consistent with a similar phenomenon currently observed in a significant subset of other important gram-negative pathogens.

  18. Reactivation of flagellar motility in demembranated Leishmania reveals role of cAMP in flagellar wave reversal to ciliary waveform

    PubMed Central

    Mukhopadhyay, Aakash Gautam; Dey, Chinmoy Sankar

    2016-01-01

    The flagellum of parasitic trypanosomes is a multifunctional appendage essential for its viability and infectivity. However, the biological mechanisms that make the flagellum so dynamic remains unexplored. No method is available to access and induce axonemal motility at will to decipher motility regulation in trypanosomes. For the first time we report the development of a detergent-extracted/demembranated ATP-reactivated model for studying flagellar motility in Leishmania. Flagellar beat parameters of reactivated parasites were similar to live ones. Using this model we discovered that cAMP (both exogenous and endogenous) induced flagellar wave reversal to a ciliary waveform in reactivated parasites via cAMP-dependent protein kinase A. The effect was reversible and highly specific. Such an effect of cAMP on the flagellar waveform has never been observed before in any organism. Flagellar wave reversal allows parasites to change direction of swimming. Our findings suggest a possible cAMP-dependent mechanism by which Leishmania responds to its surrounding microenvironment, necessary for its survival. Our demembranated-reactivated model not only serves as an important tool for functional studies of flagellated eukaryotic parasites but has the potential to understand ciliary motility regulation with possible implication on human ciliopathies. PMID:27849021

  19. Flagellar membranes are rich in raft-forming phospholipids

    PubMed Central

    Serricchio, Mauro; Schmid, Adrien W.; Steinmann, Michael E.; Sigel, Erwin; Rauch, Monika; Julkowska, Daria; Bonnefoy, Serge; Fort, Cécile; Bastin, Philippe; Bütikofer, Peter

    2015-01-01

    ABSTRACT The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei. PMID:26276100

  20. Loose coupling in the bacterial flagellar motor

    PubMed Central

    Boschert, Ryan; Adler, Frederick R.; Blair, David F.

    2015-01-01

    Physiological properties of the flagellar rotary motor have been taken to indicate a tightly coupled mechanism in which each revolution is driven by a fixed number of energizing ions. Measurements that would directly test the tight-coupling hypothesis have not been made. Energizing ions flow through membrane-bound complexes formed from the proteins MotA and MotB, which are anchored to the cell wall and constitute the stator. Genetic and biochemical evidence points to a “power stroke” mechanism in which the ions interact with an aspartate residue of MotB to drive conformational changes in MotA that are transmitted to the rotor protein FliG. Each stator complex contains two separate ion-binding sites, raising the question of whether the power stroke is driven by one, two, or either number of ions. Here, we describe simulations of a model in which the conformational change can be driven by either one or two ions. This loosely coupled model can account for the observed physiological properties of the motor, including those that have been taken to indicate tight coupling; it also accords with recent measurements of motor torque at high load that are harder to explain in tight-coupling models. Under loads relevant to a swimming cell, the loosely coupled motor would perform about as well as a two-proton motor and significantly better than a one-proton motor. The loosely coupled motor is predicted to be especially advantageous under conditions of diminished energy supply, or of reduced temperature, turning faster than an obligatorily two-proton motor while using fewer ions. PMID:25825730

  1. Crystallization and preliminary X-ray analysis of Salmonella FliI, the ATPase component of the type III flagellar protein-export apparatus

    SciTech Connect

    Minamino, Tohru; Imada, Katsumi; Tahara, Aiko; Kihara, May; Macnab, Robert M.; Namba, Keiichi

    2006-10-01

    Crystals of an N-terminally truncated variant of the Salmonella flagellar ATPase FliI, which exports substrate proteins into the central channel of the growing flagellar structure by utilizing the energy of ATP hydrolysis, have been obtained and characterized by X-ray diffraction. Most of the structural components making up the bacterial flagellum are translocated through the central channel of the growing flagellar structure by the type III flagellar protein-export apparatus in an ATPase-driven manner and are assembled at the growing end. FliI is the ATPase that drives flagellar protein export using the energy of ATP hydrolysis. FliI forms an oligomeric ring structure in order to attain maximum ATPase activity. In this study, FliI(Δ1–18), an N-terminally truncated variant of FliI lacking the first 18 residues, was purified and crystallized. Crystals were obtained using the hanging-drop vapour-diffusion technique with PEG 8000 as a precipitant. FliI(Δ1–18) crystals grew in the monoclinic space group P2{sub 1}, with unit-cell parameters a = 48, b = 73, c = 126 Å, β = 94°, and diffracted to 2.4 Å resolution. Anomalous difference Patterson maps of Os-derivative and Pt-derivative crystals showed significant peaks in their Harker sections, indicating that both derivatives are suitable for structure determination.

  2. DNA elements regulating alpha1-tubulin gene induction during regeneration of eukaryotic flagella.

    PubMed

    Periz, G; Keller, L R

    1997-07-01

    Eukaryotic flagella are complex organelles composed of more than 200 polypeptides. Little is known about the regulatory mechanisms governing synthesis of the flagellar protein subunits and their assembly into this complex organelle. The unicellular green alga Chlamydomonas reinhardtii is the premier experimental model system for studying such cellular processes. When acid shocked, C. reinhardtii excises its flagella, rapidly and coordinately activates transcription of a set of flagellar genes, and ultimately regenerates a new flagellar pair. To define functionally the regulatory sequences that govern induction of the set of genes after acid shock, we analyzed the alpha1-tubulin gene promoter. To simplify transcriptional analysis in vivo, we inserted the selectable marker gene ARG7 on the same plasmid with a tagged alpha1-tubulin gene and stably introduced it into C. reinhardtii cells. By deletion of various sequences, two promoter regions (-176 to -122 and -85 to -16) were identified as important for induction of the tagged alpha1-tubulin gene. Deleting the region between -176 and -122 from the transcription start site resulted in an induction level which was only 45 to 70% of that of the resident gene. Deleting the region upstream of -56 resulted in a complete loss of inducibility without affecting basal expression. The alpha1-tubulin promoter region from -85 to -16 conferred partial acid shock inducibility to an arylsulfatase (ARS) reporter gene. These results show that induction of the alpha1-tubulin gene after acid shock is a complex response that requires diverse sequence elements.

  3. Two Distinct Ca2+ Signaling Pathways Modulate Sperm Flagellar Beating Patterns in Mice1

    PubMed Central

    Chang, Haixin; Suarez, Susan S.

    2011-01-01

    Hyperactivation, a swimming pattern of mammalian sperm in the oviduct, is essential for fertilization. It is characterized by asymmetrical flagellar beating and an increase of cytoplasmic Ca2+. We observed that some mouse sperm swimming in the oviduct produce high-amplitude pro-hook bends (bends in the direction of the hook on the head), whereas other sperm produce high-amplitude anti-hook bends. Switching direction of the major bends could serve to redirect sperm toward oocytes. We hypothesized that different Ca2+ signaling pathways produce high-amplitude pro-hook and anti-hook bends. In vitro, sperm that hyperactivated during capacitation (because of activation of CATSPER plasma membrane Ca2+ channels) developed high-amplitude pro-hook bends. The CATSPER activators procaine and 4-aminopyridine (4-AP) also induced high-amplitude pro-hook bends. Thimerosal, which triggers a Ca2+ release from internal stores, induced high-amplitude anti-hook bends. Activation of CATSPER channels is facilitated by a pH rise, so both Ca2+ and pH responses to treatments with 4-AP and thimerosal were monitored. Thimerosal triggered a Ca2+ increase that initiated at the base of the flagellum, whereas 4-AP initiated a rise in the proximal principal piece. Only 4-AP triggered a flagellar pH rise. Proteins were extracted from sperm for examination of phosphorylation patterns induced by Ca2+ signaling. Procaine and 4-AP induced phosphorylation of proteins on threonine and serine, whereas thimerosal primarily induced dephosphorylation of proteins. Tyrosine phosphorylation was unaffected. We concluded that hyperactivation, which is associated with capacitation, can be modulated by release of Ca2+ from intracellular stores to reverse the direction of the dominant flagellar bend and, thus, redirect sperm. PMID:21389347

  4. From conformational spread to allosteric and cooperative models of E. coli flagellar motor

    NASA Astrophysics Data System (ADS)

    Pezzotta, A.; Adorisio, M.; Celani, A.

    2017-02-01

    Escherichia coli swims using flagella activated by rotary motors. The direction of rotation of the motors is indirectly regulated by the binding of a single messenger protein. The conformational spread model has been shown to accurately describe the equilibrium properties as well as the dynamics of the flagellar motor. In this paper we study this model from an analytic point of view. By exploiting the separation of timescales observed in experiments, we show how to reduce the conformational spread model to a coarse-grained, cooperative binding model. We show that this simplified model reproduces very well the dynamics of the motor switch.

  5. Structure and assembly of the flagellar hook-basal body complex of Salmonella typhimurium

    SciTech Connect

    Jones, C.J.

    1989-01-01

    The hook-basal body (HBB) complex is a multi-component structure which comprises a significant part of the bacterial flagellar motor. Electrophoretic mobility shifts of HBB complex component proteins from four non-flagellate mutants have enabled the author to assign each protein as being the product of the gene defective in each of the respective strains. The author has purified and characterized HBB complexes lacking either the L ring or both the P and L rings, and concluded that the 27-kDa basal-body protein is the major component of the L ring, and that the 38-kDa basal-body protein is the major component of the P ring. He has sequenced the genes encoding the subunit proteins of the M, P, and L rings of the basal body, and have examined both the gene and deduced amino acid sequences for clues regarding the regulation of these genes and the structure of their products. By quantitating the amount of {sup 35}S incorporated into the component protein vivo and correcting for the amount of contained in each protein (as deduced from gene sequencing data), he has determined the relative stoichiometries of most of the known component proteins of the HBB complex. He has developed a protocol for differential {sup 35}S-radiolabeling of HBB complexes in vivo and used it to examine the HBB complex assembly process. He has identified proteins required for M-ring assembly or stabilization and for the possible initiation of rod assembly. The rod is not stable until the P ring is assembled onto it. The monomers of the P and L rings are exported independent of flagellar assembly. These radiolabeling experiments have also enabled me to identify several new component proteins of the HBB complex.

  6. Role of flgA for Flagellar Biosynthesis and Biofilm Formation of Campylobacter jejuni NCTC11168.

    PubMed

    Kim, Joo-Sung; Park, Changwon; Kim, Yun-Ji

    2015-11-01

    The complex roles of flagella in the pathogenesis of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are important. Compared with the wild-type, an insertional mutation of the flgA gene (cj0769c) demonstrated significant decrease in the biofilm formation of C. jejuni NCTC11168 on major food contact surfaces, such as polystyrene, stainless steel, and borosilicate glass. The flgA mutant was completely devoid of flagella and non-motile whereas the wild-type displayed the full-length flagella and motility. In addition, the biofilm formation of the wild-type was inversely dependent on the viscosity of the media. These results support that flagellar-mediated motility plays a significant role in the biofilm formation of C. jejuni NCTC11168. Moreover, our adhesion assay suggests that it plays an important role during biofilm maturation after initial attachment. Furthermore, C. jejuni NCTC11168 wild-type formed biofilm with a net-like structure of extracellular fiber-like material, but such a structure was significantly reduced in the biofilm of the flgA mutant. It supports that the extracellular fiber-like material may play a significant role in the biofilm formation of C. jejuni. This study demonstrated that flgA is essential for flagellar biosynthesis and motility, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.

  7. Preparation and preliminary X-ray diffraction analysis of crystals of bacterial flagellar sigma factor σ{sup 28} in complex with the σ{sup 28}-binding region of its antisigma factor, FlgM

    SciTech Connect

    Okada, Kengo; Ichihara, Hisako; Takahashi, Hiroyuki; Fujita, Nobuyuki; Ishihama, Akira; Hakoshima, Toshio

    2007-03-01

    A complex of E. coli flagellar and chemotaxis-specific sigma factor σ{sup 28} bound to the σ{sup 28}-binding region of its antisigma factor FlgM was crystallized. Diffraction data were collected to a resolution of 2.7 Å. The sigma 28 kDa (σ{sup 28}) factor is a transcription factor specific for the expression of bacterial flagellar and chemotaxis genes. Its antisigma factor, FlgM, binds σ{sup 28} factor and inhibits its activity as a transcription factor. In this study, crystals of the complex between Escherichia coli σ{sup 28} and the C-terminal σ{sup 28}-binding region of FlgM were obtained. The crystals belong to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 106.7 (2), c = 51.74 (3) Å, containing one complex in the crystallographic asymmetric unit. An X-ray intensity data set was collected to a resolution of 2.7 Å.

  8. Mutational Analysis of the Flagellar Rotor Protein FliN: Identification of Surfaces Important for Flagellar Assembly and Switching†

    PubMed Central

    Paul, Koushik; Harmon, Jacob G.; Blair, David F.

    2006-01-01

    FliN is a component of the flagellar switch complex in many bacterial species. The crystal structure is known for most of FliN, and a targeted cross-linking study (K. Paul and D. F. Blair, J. Bacteriol. 188:2502-2511, 2006) showed that it is organized in ring-shaped tetramers at the bottom of the basal body C ring. FliN is essential for flagellar assembly and direction switching, but its precise functions have not been defined. Here, we identify functionally important regions on FliN by systematic mutagenesis. Nonconservative mutations were made at positions sampling the surface of the protein, and the effects on flagellar assembly and function were measured. Flagellar assembly was disrupted by mutations in a conserved hydrophobic patch centered on the dimer twofold axis or by mutations on the surface that forms the dimer-dimer interface in the tetramer. The assembly defect in hydrophobic-patch mutants was partially rescued by overexpression of the flagellar export proteins FliH and FliI, and coprecipitation assays demonstrated a binding interaction between FliN and FliH that was weakened by mutations in the hydrophobic patch. Thus, FliN might contribute to export by providing binding sites for FliH or FliH-containing complexes. The region around the hydrophobic patch is also important for switching; certain mutations in or near the patch caused a smooth-swimming chemotaxis defect that in most cases could be partially rescued by overexpression of the clockwise-signaling protein CheY. The results indicate that FliN is more closely involved in switching than has been supposed, possibly contributing to the binding site for CheY on the switch. PMID:16816196

  9. Evolution. Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system.

    PubMed

    Taylor, Tiffany B; Mulley, Geraldine; Dills, Alexander H; Alsohim, Abdullah S; McGuffin, Liam J; Studholme, David J; Silby, Mark W; Brockhurst, Michael A; Johnson, Louise J; Jackson, Robert W

    2015-02-27

    A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homolog of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and toward its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.

  10. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    PubMed Central

    van Oene, Maarten M.; Dickinson, Laura E.; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor’s response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor’s performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level. PMID:28266562

  11. Association of Lis1 with outer arm dynein is modulated in response to alterations in flagellar motility

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.; King, Stephen M.

    2012-01-01

    The cytoplasmic dynein regulatory factor Lis1, which induces a persistent tight binding to microtubules and allows for transport of cargoes under high-load conditions, is also present in motile cilia/flagella. We observed that Lis1 levels in flagella of Chlamydomonas strains that exhibit defective motility due to mutation of various axonemal substructures were greatly enhanced compared with wild type; this increase was absolutely dependent on the presence within the flagellum of the outer arm dynein α heavy chain/light chain 5 thioredoxin unit. To assess whether cells might interpret defective motility as a “high-load environment,” we reduced the flagellar beat frequency of wild-type cells through enhanced viscous load and by reductive stress; both treatments resulted in increased levels of flagellar Lis1, which altered the intrinsic beat frequency of the trans flagellum. Differential extraction of Lis1 from wild-type and mutant axonemes suggests that the affinity of outer arm dynein for Lis1 is directly modulated. In cytoplasm, Lis1 localized to two punctate structures, one of which was located near the base of the flagella. These data reveal that the cell actively monitors motility and dynamically modulates flagellar levels of the dynein regulatory factor Lis1 in response to imposed alterations in beat parameters. PMID:22855525

  12. Bone Regeneration Using Gene-Activated Matrices.

    PubMed

    D'Mello, Sheetal; Atluri, Keerthi; Geary, Sean M; Hong, Liu; Elangovan, Satheesh; Salem, Aliasger K

    2017-01-01

    Gene delivery to bone is a potential therapeutic strategy for directed, sustained, and regulated protein expression. Tissue engineering strategies for bone regeneration include delivery of proteins, genes (viral and non-viral-mediated delivery), and/or cells to the bone defect site. In addition, biomimetic scaffolds and scaffolds incorporating bone anabolic agents greatly enhance the bone repair process. Regional gene therapy has the potential of enhancing bone defect healing and bone regeneration by delivering osteogenic genes locally to the osseous lesions, thereby reducing systemic toxicity and the need for using supraphysiological dosages of therapeutic proteins. By implanting gene-activated matrices (GAMs), sustained gene expression and continuous osteogenic protein production in situ can be achieved in a way that stimulates osteogenesis and bone repair within osseous defects. Critical parameters substantially affecting the therapeutic efficacy of gene therapy include the choice of osteogenic transgene(s), selection of non-viral or viral vectors, the wound environment, and the selection of ex vivo and in vivo gene delivery strategies, such as GAMs. It is critical for gene therapy applications that clinically beneficial amounts of proteins are synthesized endogenously within and around the lesion in a sustained manner. It is therefore necessary that reliable and reproducible methods of gene delivery be developed and tested for their efficacy and safety before translating into clinical practice. Practical considerations such as the age, gender, and systemic health of patients and the nature of the disease process also need to be taken into account in order to personalize the treatments and progress towards developing a clinically applicable gene therapy for healing bone defects. This review discusses tissue engineering strategies to regenerate bone with specific focus on non-viral gene delivery systems.

  13. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel.

    PubMed

    Lishko, Polina V; Botchkina, Inna L; Fedorenko, Andriy; Kirichok, Yuriy

    2010-02-05

    Human spermatozoa are quiescent in the male reproductive system and must undergo activation once introduced into the female reproductive tract. This process is known to require alkalinization of sperm cytoplasm, but the mechanism responsible for transmembrane proton extrusion has remained unknown because of the inability to measure membrane conductance in human sperm. Here, by successfully patch clamping human spermatozoa, we show that proton channel Hv1 is their dominant proton conductance. Hv1 is confined to the principal piece of the sperm flagellum, where it is expressed at unusually high density. Robust flagellar Hv1-dependent proton conductance is activated by membrane depolarization, an alkaline extracellular environment, endocannabinoid anandamide, and removal of extracellular zinc, a potent Hv1 blocker. Hv1 allows only outward transport of protons and is therefore dedicated to inducing intracellular alkalinization and activating spermatozoa. The importance of Hv1 for sperm activation makes it an attractive target for controlling male fertility.

  14. Direct evidence of flagellar synchronization through hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas; Polin, Marco; Wan, Kirsty; Goldstein, Raymond

    2013-11-01

    Eukaryotic cilia and flagella exhibit striking coordination, from the synchronous beating of two flagella in Chlamydomonas to the metachronal waves and large-scale flows displayed by carpets of cilia. However, the precise mechanisms responsible for flagellar synchronization remain unclear. We perform a series of experiments involving two individual flagella in a quiescent fluid. Cells are isolated from the colonial alga Volvox carteri, held in place at a fixed distance d, and oriented so that their flagellar beating planes coincide. In this fashion, we are able to explicitly assess the role of hydrodynamics in achieving synchronization. For closely separated cells, the flagella are capable of exhibiting a phase-locked state for thousands of beats at a time, despite significant differences in their intrinsic frequencies. For intermediate values of d, synchronous periods are interrupted by brief phase slips, while for d >> 1 the flagellar phase difference drifts almost linearly with time. The coupling strength extracted through analysis of the synchronization statistics exhibits excellent agreement with hydrodynamic predictions. This study unambiguously reveals that flagella coupled only through hydrodynamics are capable of exhibiting robust synchrony.

  15. Helicobacter pylori CheZ(HP) and ChePep form a novel chemotaxis-regulatory complex distinct from the core chemotaxis signaling proteins and the flagellar motor.

    PubMed

    Lertsethtakarn, Paphavee; Howitt, Michael R; Castellon, Juan; Amieva, Manuel R; Ottemann, Karen M

    2015-09-01

    Chemotaxis is important for Helicobacter pylori to colonize the stomach. Like other bacteria, H. pylori uses chemoreceptors and conserved chemotaxis proteins to phosphorylate the flagellar rotational response regulator, CheY, and modulate the flagellar rotational direction. Phosphorylated CheY is returned to its non-phosphorylated state by phosphatases such as CheZ. In previously studied cases, chemotaxis phosphatases localize to the cellular poles by interactions with either the CheA chemotaxis kinase or flagellar motor proteins. We report here that the H. pylori CheZ, CheZ(HP), localizes to the poles independently of the flagellar motor, CheA, and all typical chemotaxis proteins. Instead, CheZ(HP) localization depends on the chemotaxis regulatory protein ChePep, and reciprocally, ChePep requires CheZ(HP) for its polar localization. We furthermore show that these proteins interact directly. Functional domain mapping of CheZ(HP) determined the polar localization motif lies within the central domain of the protein and that the protein has regions outside of the active site that participate in chemotaxis. Our results suggest that CheZ(HP) and ChePep form a distinct complex. These results therefore suggest the intriguing idea that some phosphatases localize independently of the other chemotaxis and motility proteins, possibly to confer unique regulation on these proteins' activities.

  16. Anatomical and Molecular Design of the Drosophila Antenna as a Flagellar Auditory Organ

    PubMed Central

    TODI, SOKOL V.; SHARMA, YASHODA; EBERL, DANIEL F.

    2007-01-01

    The molecular basis of hearing is less well understood than many other senses. However, recent studies in Drosophila have provided some important steps towards a molecular understanding of hearing. In this report, we summarize these findings and their implications on the relationship between hearing and touch. In Drosophila, hearing is accomplished by Johnston’s Organ, a chordotonal organ containing over 150 scolopidia within the second antennal segment. We will discuss anatomical features of the antenna and how they contribute to the function of this flagellar auditory receptor. The effects of several mutants, identified through mutagenesis screens or as homologues of vertebrate auditory genes, will be summarized. Based on evidence gathered from these studies, we propose a speculative model for how the chordotonal organ might function. PMID:15252880

  17. Two flagellar stators and their roles in motility and virulence in Pseudomonas syringae pv. tabaci 6605.

    PubMed

    Kanda, Eiko; Tatsuta, Takafumi; Suzuki, Tomoko; Taguchi, Fumiko; Naito, Kana; Inagaki, Yoshishige; Toyoda, Kazuhiro; Shiraishi, Tomonori; Ichinose, Yuki

    2011-02-01

    The motor proteins around the flagellar basal body consist of two cytoplasmic membrane proteins, MotA and MotB, and function as a complex that acts as the stator to generate the torque that drives rotation. Genome analysis of several Pseudomonas syringae pathovars revealed that there are two sets of genes encoding motor proteins: motAB and motCD. Deduced amino acid sequences for MotA/B and MotC/D showed homologies to the H(+)-driven stator from Escherichia coli and Na(+)-driven stator from Vibrio alginolyticus, respectively. However, the swimming motility of P. syringae pv. tabaci (Pta) 6605 was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone but not by the sodium stator-specific inhibitor phenamil. To identify a gene encoding the stator protein required for motility, ∆motAB, ∆motCD, and ∆motABCD mutants were generated. The ∆motCD mutant had remarkably reduced and the ∆motABCD mutant completely abolished swimming motilities, whereas the ∆motAB mutant retained some degree of these abilities. The ∆motCD and ∆motABCD mutants did not produce N-acyl-homoserine lactones (AHLs), quorum-sensing molecules in this pathogen, and remarkably reduced the ability to cause disease in host tobacco leaves, as we previously observed in the ∆fliC mutant strain. These results strongly indicate that both stator pairs in Pta 6605 are proton-dependent and that MotCD is important for not only flagellar motility but also for production of AHLs and the ability to cause disease in host plants.

  18. Bacterial flagellar microhydrodynamics: Laminar flow over complex flagellar filaments, analog archimedean screws and cylinders, and its perturbations.

    PubMed

    Trachtenberg, Shlomo; Fishelov, Dalia; Ben-Artzi, Matania

    2003-09-01

    The flagellar filament, the bacterial organelle of motility, is the smallest rotary propeller known. It consists of 1), a basal body (part of which is the proton driven rotary motor), 2), a hook (universal joint-allowing for off-axial transmission of rotary motion), and 3), a filament (propeller-a long, rigid, supercoiled helical assembly allowing for the conversion of rotary motion into linear thrust). Helically perturbed (so-called "complex") filaments have a coarse surface composed of deep grooves and ridges following the three-start helical lines. These surface structures, reminiscent of a turbine or Archimedean screw, originate from symmetry reduction along the six-start helical lines due to dimerization of the flagellin monomers from which the filament self assembles. Using high-resolution electron microscopy and helical image reconstruction methods, we calculated three-dimensional density maps of the complex filament of Rhizobium lupini H13-3 and determined its surface pattern and boundaries. The helical symmetry of the filament allows viewing it as a stack of identical slices spaced axially and rotated by constant increments. Here we use the closed outlines of these slices to explore, in two dimensions, the hydrodynamic effect of the turbine-like boundaries of the flagellar filament. In particular, we try to determine if, and under what conditions, transitions from laminar to turbulent flow (or perturbations of the laminar flow) may occur on or near the surface of the bacterial propeller. To address these questions, we apply the boundary element method in a manner allowing the handling of convoluted boundaries. We tested the method on several simple, well-characterized cylindrical structures before applying it to real, highly convoluted biological surfaces and to simplified mechanical analogs. Our results indicate that under extreme structural and functional conditions, and at low Reynolds numbers, a deviation from laminar flow might occur on the flagellar

  19. Individual Flagellar Waveform Affects Collective Behavior of Chlamydomonas reinhardtii.

    PubMed

    Kage, Azusa; Mogami, Yoshihiro

    2015-08-01

    Bioconvection is a form of collective motion that occurs spontaneously in the suspension of swimming microorganisms. In a previous study, we quantitatively described the "pattern transition," a phase transition phenomenon that so far has exclusively been observed in bioconvection of the unicellular green alga Chlamydomonas. We suggested that the transition could be induced by changes in the balance between the gravitational and shear-induced torques, both of which act to determine the orientation of the organism in the shear flow. As both of the torques should be affected by the geometry of the Chlamydomonas cell, alteration in the flagellar waveform might change the extent of torque generation by altering overall geometry of the cell. Based on this working hypothesis, we examined bioconvection behavior of two flagellar mutants of Chlamydomonas reinhardtii, ida1 and oda2, making reference to the wild type. Flagella of ida1 beat with an abnormal waveform, while flagella of oda2 show a normal waveform but lower beat frequency. As a result, both mutants had swimming speed of less than 50% of the wild type. ida1 formed bioconvection patterns with smaller spacing than those of wild type and oda2. Two-axis view revealed the periodic movement of the settling blobs of ida1, while oda2 showed qualitatively similar behavior to that of wild type. Unexpectedly, ida1 showed stronger negative gravitaxis than did wild type, while oda2 showed relatively weak gravitaxis. These findings suggest that flagellar waveform, not swimming speed or beat frequency, strongly affect bioconvection behavior in C. reinhardtii.

  20. [Structure and function of the bacterial flagellar type III protein export system in Salmonella
].

    PubMed

    Minamino, Tohru

    2015-01-01

    The bacterial flagellum is a filamentous organelle that propels the bacterial cell body in liquid media. For construction of the bacterial flagellum beyond the cytoplasmic membrane, flagellar component proteins are transported by its specific protein export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane export gate complex and a cytoplasmic ATPase ring complex. Flagellar substrate-specific chaperones bind to their cognate substrates in the cytoplasm and escort the substrates to the docking platform of the export gate. The export apparatus utilizes ATP and proton motive force across the cytoplasmic membrane as the energy sources to drive protein export and coordinates protein export with assembly by ordered export of substrates to parallel with their order of assembly. In this review, we summarize our current understanding of the structure and function of the flagellar protein export system in Salmonella enterica serovar Typhimurium.

  1. Involvement of the flagellar assembly pathway in Vibrio alginolyticus adhesion under environmental stresses

    PubMed Central

    Wang, Lu; Huang, Lixing; Su, Yongquan; Qin, Yingxue; Kong, Wendi; Ma, Ying; Xu, Xiaojin; Lin, Mao; Zheng, Jiang; Yan, Qingpi

    2015-01-01

    Adhesion is an important virulence factor of Vibrio alginolyticus. This factor may be affected by environmental conditions; however, its molecular mechanism remains unclear. In our previous research, adhesion deficient strains were obtained by culturing V. alginolyticus under stresses including Cu, Pb, Hg, and low pH. With RNA-seq and bioinformatics analysis, we found that all of these stress treatments significantly affected the flagellar assembly pathway, which may play an important role in V. alginolyticus adhesion. Therefore, we hypothesized that the environmental stresses of the flagellar assembly pathway may be one way in which environmental conditions affect adhesion. To verify our hypothesis, a bioinformatics analysis, QPCR, RNAi, in vitro adhesion assay and motility assay were performed. Our results indicated that (1) the flagellar assembly pathway was sensitive to environmental stresses, (2) the flagellar assembly pathway played an important role in V. alginolyticus adhesion, and (3) motility is not the only way in which the flagellar assembly pathway affects adhesion. PMID:26322276

  2. Growth rate control of flagellar assembly in Escherichia coli strain RP437

    PubMed Central

    Sim, Martin; Koirala, Santosh; Picton, David; Strahl, Henrik; Hoskisson, Paul A.; Rao, Christopher V.; Gillespie, Colin S.; Aldridge, Phillip D.

    2017-01-01

    The flagellum is a rotary motor that enables bacteria to swim in liquids and swarm over surfaces. Numerous global regulators control flagellar assembly in response to cellular and environmental factors. Previous studies have also shown that flagellar assembly is affected by the growth-rate of the cell. However, a systematic study has not yet been described under controlled growth conditions. Here, we investigated the effect of growth rate on flagellar assembly in Escherichia coli using steady-state chemostat cultures where we could precisely control the cell growth-rate. Our results demonstrate that flagellar abundance correlates with growth rate, where faster growing cells produce more flagella. They also demonstrate that this growth-rate dependent control occurs through the expression of the flagellar master regulator, FlhD4C2. Collectively, our results demonstrate that motility is intimately coupled to the growth-rate of the cell. PMID:28117390

  3. The Deep-Sea Bacterium Photobacterium profundum SS9 Utilizes Separate Flagellar Systems for Swimming and Swarming under High-Pressure Conditions ▿ †

    PubMed Central

    Eloe, Emiley A.; Lauro, Federico M.; Vogel, Rudi F.; Bartlett, Douglas H.

    2008-01-01

    Motility is a critical function needed for nutrient acquisition, biofilm formation, and the avoidance of harmful chemicals and predators. Flagellar motility is one of the most pressure-sensitive cellular processes in mesophilic bacteria; therefore, it is ecologically relevant to determine how deep-sea microbes have adapted their motility systems for functionality at depth. In this study, the motility of the deep-sea piezophilic bacterium Photobacterium profundum SS9 was investigated and compared with that of the related shallow-water piezosensitive strain Photobacterium profundum 3TCK, as well as that of the well-studied piezosensitive bacterium Escherichia coli. The SS9 genome contains two flagellar gene clusters: a polar flagellum gene cluster (PF) and a putative lateral flagellum gene cluster (LF). In-frame deletions were constructed in the two flagellin genes located within the PF cluster (flaA and flaC), the one flagellin gene located within the LF cluster (flaB), a component of a putative sodium-driven flagellar motor (motA2), and a component of a putative proton-driven flagellar motor (motA1). SS9 PF flaA, flaC, and motA2 mutants were defective in motility under all conditions tested. In contrast, the flaB and motA1 mutants were defective only under conditions of high pressure and high viscosity. flaB and motA1 gene expression was strongly induced by elevated pressure plus increased viscosity. Direct swimming velocity measurements were obtained using a high-pressure microscopic chamber, where increases in pressure resulted in a striking decrease in swimming velocity for E. coli and a gradual reduction for 3TCK which proceeded up to 120 MPa, while SS9 increased swimming velocity at 30 MPa and maintained motility up to a maximum pressure of 150 MPa. Our results indicate that P. profundum SS9 possesses two distinct flagellar systems, both of which have acquired dramatic adaptations for optimal functionality under high-pressure conditions. PMID:18723648

  4. CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas.

    PubMed

    Tam, Lai-Wa; Ranum, Paul T; Lefebvre, Paul A

    2013-03-01

    The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes-LF1, LF2, LF3, and LF4-cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location: the proximal 1 μm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC)-LF1, LF2, and LF3-are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC.

  5. The de novo synthesis of GDP-fucose is essential for flagellar adhesion and cell growth in Trypanosoma brucei.

    PubMed

    Turnock, Daniel C; Izquierdo, Luis; Ferguson, Michael A J

    2007-09-28

    The protozoan parasite Trypanosoma brucei causes human African sleeping sickness in sub-Saharan Africa. The parasite makes several essential glycoproteins, which has led to the investigation of the sugar nucleotides and glycosyltransferases required to synthesize these structures. Fucose is a common sugar in glycoconjugates from many organisms; however, the sugar nucleotide donor GDP-fucose was only recently detected in T. brucei, and the importance of fucose metabolism in this organism is not known. In this paper, we identified the genes encoding functional GDP-fucose biosynthesis enzymes in T. brucei and created conditional null mutants of TbGMD, the gene encoding the first enzyme in the pathway from GDP-mannose to GDP-fucose, in both bloodstream form and procyclic form parasites. Under nonpermissive conditions, both life cycle forms of the parasite became depleted in GDP-fucose and suffered growth arrest, demonstrating that fucose metabolism is essential to both life cycle stages. In procyclic form parasites, flagellar detachment from the cell body was also observed under nonpermissive conditions, suggesting that fucose plays a significant role in flagellar adhesion. Fluorescence microscopy of epitope-tagged TbGMD revealed that this enzyme is localized in glycosomes, despite the absence of PTS-1 or PTS-2 target sequences.

  6. Mechanics of torque generation in the bacterial flagellar motor

    PubMed Central

    Mandadapu, Kranthi K.; Nirody, Jasmine A.; Berry, Richard M.; Oster, George

    2015-01-01

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual “power stroke.” Specifically, we propose that ion-induced conformational changes about a proline “hinge” residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque–speed and speed–ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator. PMID:26216959

  7. Mechanics of torque generation in the bacterial flagellar motor.

    PubMed

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  8. An Element of Determinism in a Stochastic Flagellar Motor Switch

    PubMed Central

    Xie, Li; Altindal, Tuba; Wu, Xiao-Lun

    2015-01-01

    Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements. PMID:26554590

  9. Constraints on models for the flagellar rotary motor.

    PubMed Central

    Berg, H C

    2000-01-01

    Most bacteria that swim are propelled by flagellar filaments, each driven at its base by a rotary motor embedded in the cell wall and cytoplasmic membrane. A motor is about 45 nm in diameter and made up of about 20 different kinds of parts. It is assembled from the inside out. It is powered by a proton (or in some species, a sodium-ion) flux. It steps at least 400 times per revolution. At low speeds and high torques, about 1000 protons are required per revolution, speed is proportional to protonmotive force, and torque varies little with temperature or hydrogen isotope. At high speeds and low torques, torque increases with temperature and is sensitive to hydrogen isotope. At room temperature, torque varies remarkably little with speed from about -100 Hz (the present limit of measurement) to about 200 Hz, and then it declines rapidly reaching zero at about 300 Hz. These are facts that motor models should explain. None of the existing models for the flagellar rotary motor completely do so. PMID:10836502

  10. Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei

    PubMed Central

    Höög, Johanna L; Lacomble, Sylvain; O’Toole, Eileen T; Hoenger, Andreas; McIntosh, J Richard; Gull, Keith

    2014-01-01

    Defects in flagella growth are related to a number of human diseases. Central to flagellar growth is the organization of microtubules that polymerize from basal bodies to form the axoneme, which consists of hundreds of proteins. Flagella exist in all eukaryotic phyla, but neither the mechanism by which flagella grow nor the conservation of this process in evolution are known. Here, we study how protein complexes assemble onto the growing axoneme tip using (cryo) electron tomography. In Chlamydomonas reinhardtii microtubules and associated proteins are added simultaneously. However, in Trypanosoma brucei, disorganized arrays of microtubules are arranged into the axoneme structure by the later addition of preformed protein complexes. Post assembly, the T. brucei transition zone alters structure and its association with the central pair loosens. We conclude that there are multiple ways to form a flagellum and that species-specific structural knowledge is critical before evaluating flagellar defects. DOI: http://dx.doi.org/10.7554/eLife.01479.001 PMID:24448408

  11. Analysis of Flagellar Phosphoproteins from Chlamydomonas reinhardtii▿ †

    PubMed Central

    Boesger, Jens; Wagner, Volker; Weisheit, Wolfram; Mittag, Maria

    2009-01-01

    Cilia and flagella are cell organelles that are highly conserved throughout evolution. For many years, the green biflagellate alga Chlamydomonas reinhardtii has served as a model for examination of the structure and function of its flagella, which are similar to certain mammalian cilia. Proteome analysis revealed the presence of several kinases and protein phosphatases in these organelles. Reversible protein phosphorylation can control ciliary beating, motility, signaling, length, and assembly. Despite the importance of this posttranslational modification, the identities of many ciliary phosphoproteins and knowledge about their in vivo phosphorylation sites are still missing. Here we used immobilized metal affinity chromatography to enrich phosphopeptides from purified flagella and analyzed them by mass spectrometry. One hundred forty-one phosphorylated peptides were identified, belonging to 32 flagellar proteins. Thereby, 126 in vivo phosphorylation sites were determined. The flagellar phosphoproteome includes different structural and motor proteins, kinases, proteins with protein interaction domains, and many proteins whose functions are still unknown. In several cases, a dynamic phosphorylation pattern and clustering of phosphorylation sites were found, indicating a complex physiological status and specific control by reversible protein phosphorylation in the flagellum. PMID:19429781

  12. Mechanism for adaptive remodeling of the bacterial flagellar switch

    PubMed Central

    Lele, Pushkar P.; Branch, Richard W.; Nathan, Vedhavalli S. J.; Berg, Howard C.

    2012-01-01

    The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange depend on the direction of flagellar rotation, not on CheY-P binding per se. Our results are consistent with a model in which the structural differences associated with the direction of rotation modulate the strength of FliM binding. When the motor spins counterclockwise, FliM binding strengthens, the fraction of FliM molecules that exchanges decreases, and the ring content increases. The larger number of CheY-P binding sites enhances the motor’s sensitivity, i.e., the motor adapts. An interesting unresolved question is how additional copies of FliM might be accommodated. PMID:23169659

  13. Bacterial flagellar capping proteins adopt diverse oligomeric states

    PubMed Central

    Postel, Sandra; Deredge, Daniel; Bonsor, Daniel A; Yu, Xiong; Diederichs, Kay; Helmsing, Saskia; Vromen, Aviv; Friedler, Assaf; Hust, Michael; Egelman, Edward H; Beckett, Dorothy; Wintrode, Patrick L; Sundberg, Eric J

    2016-01-01

    Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD from Pseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find that Pseudomonas FliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies. DOI: http://dx.doi.org/10.7554/eLife.18857.001 PMID:27664419

  14. Structure of the microtubule-binding domain of flagellar dynein.

    PubMed

    Kato, Yusuke S; Yagi, Toshiki; Harris, Sarah A; Ohki, Shin-ya; Yura, Kei; Shimizu, Youské; Honda, Shinya; Kamiya, Ritsu; Burgess, Stan A; Tanokura, Masaru

    2014-11-04

    Flagellar dyneins are essential microtubule motors in eukaryotes, as they drive the beating motions of cilia and flagella. Unlike myosin and kinesin motors, the track binding mechanism of dyneins and the regulation between the strong and weak binding states remain obscure. Here we report the solution structure of the microtubule-binding domain of flagellar dynein-c/DHC9 (dynein-c MTBD). The structure reveals a similar overall helix-rich fold to that of the MTBD of cytoplasmic dynein (cytoplasmic MTBD), but dynein-c MTBD has an additional flap, consisting of an antiparallel b sheet. The flap is positively charged and highly flexible. Despite the structural similarity to cytoplasmic MTBD, dynein-c MTBD shows only a small change in the microtubule- binding affinity depending on the registry change of coiled coil-sliding, whereby lacks the apparent strong binding state. The surface charge distribution of dynein-c MTBD also differs from that of cytoplasmic MTBD, which suggests a difference in the microtubule-binding mechanism.

  15. Surface organization and composition of Euglena. II. Flagellar mastigonemes

    PubMed Central

    1978-01-01

    The surface of the Euglena flagellum is coated with about 30,000 fine filaments of two distinct types. The longer of these nontubular mastigonemes (about 3 micron) appear to be attached to the paraflagellar rod whereas the shorter nontubular mastigonemes (about 1.5 micron) are the centrifugally arranged portions of a larger complex, which consists of an attached unit parallel to and outside of the flagellar membrane. Units are arranged laternally in near registration and longitudinally overlap by one-half of a unit length. Rows of mastigoneme units are firmly attached to the axoneme microtubules or to the paraflagellar rod as evidenced by their persistence after removal of the flagellar membrane with neutral detergents. SDS-acrylamide gels of whole flagella revealed about 30 polypeptides, of which two gave strong positive staining with the periodic acid-Schiff (PAS) procedure. At least one of these two bands (glycoproteins) has been equated with the surface mastigonemes by parallel analysis of isolated and purified mastigonemes, particularly after phenol extraction. The faster moving glycoprotein has been selectively removed from whole flagella and from the mastigoneme fraction with low concentrations of neutral detergents at neutral or high pH. The larger glycoprotein was found to be polydisperse when electrophoresed through 1% agarose/SDS gels. Thin-layer chromatography of hydrolysates of whole flagella or of isolated mastigonemes has indicated that the major carbohydrate moiety is the pentose sugar, xylose, with possibly a small amount of glucose and an unknown minor component. PMID:98532

  16. Gains of Bacterial Flagellar Motility in a Fungal World

    PubMed Central

    Pion, Martin; Bshary, Redouan; Bindschedler, Saskia; Filippidou, Sevasti; Wick, Lukas Y.; Job, Daniel

    2013-01-01

    The maintenance of energetically costly flagella by bacteria in non-water-saturated media, such as soil, still presents an evolutionary conundrum. Potential explanations have focused on rare flooding events allowing dispersal. Such scenarios, however, overlook bacterial dispersal along mycelia as a possible transport mechanism in soils. The hypothesis tested in this study is that dispersal along fungal hyphae may lead to an increase in the fitness of flagellated bacteria and thus offer an alternative explanation for the maintenance of flagella even in unsaturated soils. Dispersal along fungal hyphae was shown for a diverse array of motile bacteria. To measure the fitness effect of dispersal, additional experiments were conducted in a model system mimicking limited dispersal, using Pseudomonas putida KT2440 and its nonflagellated (ΔfliM) isogenic mutant in the absence or presence of Morchella crassipes mycelia. In the absence of the fungus, flagellar motility was beneficial solely under conditions of water saturation allowing dispersal, while under conditions limiting dispersal, the nonflagellated mutant exhibited a higher level of fitness than the wild-type strain. In contrast, in the presence of a mycelial network under conditions limiting dispersal, the flagellated strain was able to disperse using the mycelial network and had a higher level of fitness than the mutant. On the basis of these results, we propose that the benefit of mycelium-associated dispersal helps explain the persistence of flagellar motility in non-water-saturated environments. PMID:23995942

  17. Gains of bacterial flagellar motility in a fungal world.

    PubMed

    Pion, Martin; Bshary, Redouan; Bindschedler, Saskia; Filippidou, Sevasti; Wick, Lukas Y; Job, Daniel; Junier, Pilar

    2013-11-01

    The maintenance of energetically costly flagella by bacteria in non-water-saturated media, such as soil, still presents an evolutionary conundrum. Potential explanations have focused on rare flooding events allowing dispersal. Such scenarios, however, overlook bacterial dispersal along mycelia as a possible transport mechanism in soils. The hypothesis tested in this study is that dispersal along fungal hyphae may lead to an increase in the fitness of flagellated bacteria and thus offer an alternative explanation for the maintenance of flagella even in unsaturated soils. Dispersal along fungal hyphae was shown for a diverse array of motile bacteria. To measure the fitness effect of dispersal, additional experiments were conducted in a model system mimicking limited dispersal, using Pseudomonas putida KT2440 and its nonflagellated (ΔfliM) isogenic mutant in the absence or presence of Morchella crassipes mycelia. In the absence of the fungus, flagellar motility was beneficial solely under conditions of water saturation allowing dispersal, while under conditions limiting dispersal, the nonflagellated mutant exhibited a higher level of fitness than the wild-type strain. In contrast, in the presence of a mycelial network under conditions limiting dispersal, the flagellated strain was able to disperse using the mycelial network and had a higher level of fitness than the mutant. On the basis of these results, we propose that the benefit of mycelium-associated dispersal helps explain the persistence of flagellar motility in non-water-saturated environments.

  18. Resurrection of the flagellar rotary motor near zero load

    PubMed Central

    Yuan, Junhua; Berg, Howard C.

    2008-01-01

    Flagellated bacteria, such as Escherichia coli, are propelled by helical flagellar filaments, each driven at its base by a reversible rotary motor, powered by a transmembrane proton flux. Torque is generated by the interaction of stator proteins, MotA and MotB, with a rotor protein FliG. The physiology of the motor has been studied extensively in the regime of relatively high load and low speed, where it appears to operate close to thermodynamic equilibrium. Here, we describe an assay that allows systematic study of the motor near zero load, where proton translocation and movement of mechanical components are rate limiting. Sixty-nanometer-diameter gold spheres were attached to hooks of cells lacking flagellar filaments, and light scattered from a sphere was monitored at the image plane of a microscope through a small pinhole. Paralyzed motors of cells carrying a motA point mutation were resurrected at 23°C by expression of wild-type MotA, and speeds jumped from zero to a maximum value (≈300 Hz) in one step. Thus, near zero load, the speed of the motor is independent of the number of torque-generating units. Evidently, the units act independently (they do not interfere with one another), and there are no intervals during which a second unit can add to the speed generated by the first (the duty ratio is close to 1). PMID:18202173

  19. Effects of osmolality on sperm morphology, motility and flagellar wave parameters in Northern pike (Esox lucius L.).

    PubMed

    Alavi, S M Hadi; Rodina, Marek; Viveiros, Ana T M; Cosson, Jacky; Gela, David; Boryshpolets, Sergei; Linhart, Otomar

    2009-07-01

    Northern pike (Esox lucius L.) spermatozoa are uniflagellated cells differentiated into a head without acrosome, a midpiece and a flagellar tail region flanked by a fin structure. Total, flagellar, head and midpiece lengths of spermatozoa were measured and show mean values of 34.5, 32.0, 1.32, 1.17 microm, respectively, with anterior and posterior widths of the midpiece measuring 0.8 and 0.6 microm, respectively. The osmolality of seminal plasma ranged from 228 to 350 mOsmol kg(-1) (average: 283.88+/-33.05). After triggering of sperm motility in very low osmolality medium (distilled water), blebs appeared along the flagellum. At later periods in the motility phase, the tip of the flagellum became curled into a loop shape which resulted in a shortening of the flagellum and a restriction of wave development to the proximal part (close to head). Spermatozoa velocity and percentage of motile spermatozoa decreased rapidly as a function of time postactivation and depended on the osmolality of activation media (P<0.05). In general, the greatest percentage of motile spermatozoa and highest spermatozoa velocity were observed between 125 and 235 mOsmol kg(-1). Osmolality above 375 mOsmol kg(-1) inhibited the motility of spermatozoa. After triggering of sperm motility in activation media, beating waves propagated along the full length of flagella, while waves appeared dampened during later periods in the motility phase, and were absent at the end of the motility phase. By increasing osmolality, the velocity of spermatozoa reached the highest value while wave length, amplitude, number of waves and curvatures also were at their highest values. This study showed that sperm morphology can be used for fish classification. Sperm morphology, in particular, the flagellar part showed several changes during activation in distilled water. Sperm motility of pike is inhibited due to high osmolality in the seminal plasma. Osmolality of activation medium affects the percentage of motile

  20. A Novel Trypanosoma cruzi Protein Associated to the Flagellar Pocket of Replicative Stages and Involved in Parasite Growth

    PubMed Central

    Durante, Ignacio M.; Cámara, María de los Milagros; Buscaglia, Carlos A.

    2015-01-01

    The flagellar pocket constitutes an active and strategic site in the body of trypanosomatids (i.e. parasitic protozoa that cause important human and/or livestock diseases), which participates in several important processes such as cell polarity, morphogenesis and replication. Most importantly, the flagellar pocket is the unique site of surface protein export and nutrient uptake in trypanosomatids, and thus constitutes a key portal for the interaction with the host. In this work, we identified and characterized a novel Trypanosoma cruzi protein, termed TCLP 1, that accumulates at the flagellar pocket area of parasite replicative forms, as revealed by biochemical, immuno-cytochemistry and electron microscopy techniques. Different in silico analyses revealed that TCLP 1 is the founding member of a family of chimeric molecules restricted to trypanosomatids bearing, in addition to eukaryotic ubiquitin-like and protein-protein interacting domains, a motif displaying significant structural homology to bacterial multi-cargo chaperones involved in the secretion of virulence factors. Using the fidelity of an homologous expression system we confirmed TCLP 1 sub-cellular distribution and showed that TCLP 1-over-expressing parasites display impaired survival and accelerated progression to late stationary phase under starvation conditions. The reduced endocytic capacity of TCLP 1-over-expressors likely underlies (at least in part) this growth phenotype. TCLP 1 is involved in the uptake of extracellular macromolecules required for nutrition and hence in T. cruzi growth. Due to the bacterial origin, sub-cellular distribution and putative function(s), we propose TCLP 1 and related orthologs in trypanosomatids as appealing therapeutic targets for intervention against these health-threatening parasites. PMID:26086767

  1. Flagellar generated flow mediates attachment of Giardia lamblia

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Luo, Haibei; Picou, Theodore; McAllister, Ryan; Elmendorf, Heidi

    2011-03-01

    Giardia lamblia is a protozoan parasite responsible for widespread diarrheal disease in humans and animals worldwide. Attachment to the host intestinal mucosa and resistance to peristalsis is necessary for establishing infection, but the physical basis for this attachment is poorly understood. We report results from TIRF and confocal fluorescence microscopy that demonstrate that the regular beating of the posterior flagella generate a flow through the ventral disk, a suction-cup shaped structure that is against the substrate during attachment. Finite element simulations are used to compare the negative pressure generated by the flow to the measured attachment force and the expected performance of the flagellar pump. NIH grant 1R21AI062934-0.

  2. Antiphase synchronization in a flagellar-dominance mutant of Chlamydomonas.

    PubMed

    Leptos, Kyriacos C; Wan, Kirsty Y; Polin, Marco; Tuval, Idan; Pesci, Adriana I; Goldstein, Raymond E

    2013-10-11

    Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-phase beating in a low-Reynolds number version of breaststroke swimming. We report the discovery that ptx1, a flagellar-dominance mutant of C. reinhardtii, can exhibit synchronization in precise antiphase, as in the freestyle swimming stroke. High-speed imaging shows that ptx1 flagella switch stochastically between in-phase and antiphase states, and that the latter has a distinct waveform and significantly higher frequency, both of which are strikingly similar to those found during phase slips that stochastically interrupt in-phase beating of the wild-type. Possible mechanisms underlying these observations are discussed.

  3. Flagellar swimmers oscillate between pusher- and puller-type swimming

    NASA Astrophysics Data System (ADS)

    Klindt, Gary S.; Friedrich, Benjamin M.

    2015-12-01

    Self-propulsion of cellular microswimmers generates flow signatures, commonly classified as pusher and puller type, which characterize hydrodynamic interactions with other cells or boundaries. Using experimentally measured beat patterns, we compute that the flagellated green alga Chlamydomonas oscillates between pusher and puller, rendering it an approximately neutral swimmer, when averaging over its full beat cycle. Beyond a typical distance of 100 μ m from the cell, inertia attenuates oscillatory microflows. We show that hydrodynamic interactions between cells oscillate in time and are of similar magnitude as stochastic swimming fluctuations. From our analysis, we also find that the rate of hydrodynamic dissipation varies in time, which implies that flagellar beat patterns are not optimized with respect to this measure.

  4. Flagellar Kinematics and Swimming of Algal Cells in Viscoelastic Fluids

    PubMed Central

    Qin, B.; Gopinath, A.; Yang, J.; Gollub, J. P.; Arratia, P. E.

    2015-01-01

    The motility of microorganisms is influenced greatly by their hydrodynamic interactions with the fluidic environment they inhabit. We show by direct experimental observation of the bi-flagellated alga Chlamydomonas reinhardtii that fluid elasticity and viscosity strongly influence the beating pattern - the gait - and thereby control the propulsion speed. The beating frequency and the wave speed characterizing the cyclical bending are both enhanced by fluid elasticity. Despite these enhancements, the net swimming speed of the alga is hindered for fluids that are sufficiently elastic. The origin of this complex response lies in the interplay between the elasticity-induced changes in the spatial and temporal aspects of the flagellar cycle and the buildup and subsequent relaxation of elastic stresses during the power and recovery strokes. PMID:25778677

  5. Torque and rotation rate of the bacterial flagellar motor.

    PubMed Central

    Läuger, P

    1988-01-01

    This paper describes an analysis of microscopic models for the coupling between ion flow and rotation of bacterial flagella. In model I it is assumed that intersecting half-channels exist on the rotor and the stator and that the driving ion is constrained to move together with the intersection site. Model II is based on the assumption that ion flow drives a cycle of conformational transitions in a channel-like stator subunit that are coupled to the motion of the rotor. Analysis of both mechanisms yields closed expressions relating the torque M generated by the flagellar motor to the rotation rate v. Model I (and also, under certain assumptions, model II) accounts for the experimentally observed linear relationship between M and v. The theoretical equations lead to predictions on the relationship between rotation rate and driving force which can be tested experimentally. PMID:3342270

  6. Protein export through the bacterial flagellar type III export pathway.

    PubMed

    Minamino, Tohru

    2014-08-01

    For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  7. Hybrid-fuel bacterial flagellar motors in Escherichia coli.

    PubMed

    Sowa, Yoshiyuki; Homma, Michio; Ishijima, Akihiko; Berry, Richard M

    2014-03-04

    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H(+) or Na(+) ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H(+)- and Na(+)-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na(+) concentration ([Na(+)]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na(+) and H(+) stator components expressed at high and medium levels, respectively, Na(+) stator units dominate at high [Na(+)] and are replaced by H(+) units when Na(+) is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H(+) and Na(+) stator components sharing a common rotor.

  8. Nuclear actin activates human transcription factor genes including the OCT4 gene.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; Tokunaga, Makio; Sakata-Sogawa, Kumiko; Harata, Masahiko

    2015-01-01

    RNA microarray analyses revealed that nuclear actin activated many human transcription factor genes including OCT4, which is required for gene reprogramming. Oct4 is known to be activated by nuclear actin in Xenopus oocytes. Our findings imply that this process of OCT4 activation is conserved in vertebrates and among cell types and could be used for gene reprogramming of human cells.

  9. Structural Analysis of the Flagellar Component Proteins in Solution by Small Angle X-Ray Scattering.

    PubMed

    Lee, Lawrence K

    2017-01-01

    Small angle X-ray scattering is an increasingly utilized method for characterizing the shape and structural properties of proteins in solution. The technique is amenable to very large protein complexes and to dynamic particles with different conformational states. It is therefore ideally suited to the analysis of some flagellar motor components. Indeed, we recently used the method to analyze the solution structure of the flagellar motor protein FliG, which when combined with high-resolution snapshots of conformational states from crystal structures, led to insights into conformational transitions that are important in mediating the self-assembly of the bacterial flagellar motor. Here, we describe procedures for X-ray scattering data collection of flagellar motor components, data analysis, and interpretation.

  10. The use of a flagellar export signal for the secretion of recombinant proteins in Salmonella.

    PubMed

    Vonderviszt, Ferenc; Sajó, Ráchel; Dobó, József; Závodszky, Péter

    2012-01-01

    The flagellum-specific export system is a specialized type III export machinery, which exports external flagellar proteins through the central channel of the flagellar filament. A number of evidence indicates that short segments within the disordered N-terminal region of flagellar axial proteins are recognized by the flagellum-specific export apparatus. Recently, we have demonstrated that the 26-47 segment of Salmonella typhimurium flagellin is capable of mediating flagellar export. N-terminal flagellin segments containing the export signal combined with a hexahistidine tag can be attached to heterologous proteins (preferentially in the size range of 9-40 kDa) facilitating their secreted expression and easy purification from the medium. Certain over-expressed proteins that are easily degraded within the cells are found intact in the medium implying a potential application of this expression system for proteins of high proteolytic susceptibility.

  11. CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis

    PubMed Central

    Mukherjee, Sampriti; Yakhnin, Helen; Kysela, Dave; Sokoloski, Josh; Babitzke, Paul; Kearns, Daniel B.

    2011-01-01

    CsrA is a widely distributed RNA binding protein that regulates translation initiation and/or mRNA stability of target transcripts. CsrA activity is antagonized by sRNA(s) containing multiple CsrA binding sites in several Gram-negative bacterial species. Here we discover FliW, the first protein antagonist of CsrA activity that constitutes a partner switching mechanism to control flagellin synthesis in the Gram-positive organism Bacillus subtilis. Following the flagellar assembly checkpoint of hook completion, secretion of flagellin (Hag) releases FliW protein from a FliW-Hag complex. FliW then binds to CsrA and relieves CsrA-mediated translational repression of hag for flagellin synthesis concurrent with filament assembly. Thus, flagellin homeostatically restricts its own translation. Homeostatic autoregulation may be a general mechanism to precisely control structural subunits required at specific times and in finite amounts such as those involved in the assembly of flagella, type III secretion machines, and pili. Finally, phylogenetic analysis suggests that CsrA, a highly pleiotropic virulence regulator in many bacterial pathogens, had an ancestral role in flagellar assembly and evolved to co-regulate various cellular processes with motility. PMID:21895793

  12. Curcumin Reduces the Motility of Salmonella enterica Serovar Typhimurium by Binding to the Flagella, Thereby Leading to Flagellar Fragility and Shedding

    PubMed Central

    Balakrishnan, Arjun; Negi, Vidya Devi; Sakorey, Deepika; Chandra, Nagasuma

    2016-01-01

    ABSTRACT One of the important virulence properties of the pathogen is its ability to travel to a favorable environment, cross the viscous mucus barrier (intestinal barrier for enteric pathogens), and reach the epithelia to initiate pathogenesis with the help of an appendage, like flagella. Nonetheless, flagella can act as an “Achilles heel,” revealing the pathogen's presence to the host through the stimulation of innate and adaptive immune responses. We assessed whether curcumin, a dietary polyphenol, could alter the motility of Salmonella, a foodborne pathogen. It reduced the motility of Salmonella enterica serovar Typhimurium by shortening the length of the flagellar filament (from ∼8 μm to ∼5 μm) and decreasing its density (4 or 5 flagella/bacterium instead of 8 or 9 flagella/bacterium). Upon curcumin treatment, the percentage of flagellated bacteria declined from ∼84% to 59%. However, no change was detected in the expression of the flagellin gene and protein. A fluorescence binding assay demonstrated binding of curcumin to the flagellar filament. This might make the filament fragile, breaking it into smaller fragments. Computational analysis predicted the binding of curcumin, its analogues, and its degraded products to a flagellin molecule at an interface between domains D1 and D2. Site-directed mutagenesis and a fluorescence binding assay confirmed the binding of curcumin to flagellin at residues ASN120, ASP123, ASN163, SER164, ASN173, and GLN175. IMPORTANCE This work, to our knowledge the first report of its kind, examines how curcumin targets flagellar density and affects the pathogenesis of bacteria. We found that curcumin does not affect any of the flagellar synthesis genes. Instead, it binds to the flagellum and makes it fragile. It increases the torsional stress on the flagellar filament that then breaks, leaving fewer flagella around the bacteria. Flagella, which are crucial ligands for Toll-like receptor 5, are some of the most important

  13. Cancer genes: rare recombinants instead of activated oncogenes (a review).

    PubMed Central

    Duesberg, P H

    1987-01-01

    The 20 known transforming (onc) genes of retroviruses are defined by sequences that are transduced from cellular genes termed protooncogenes or cellular oncogenes. Based on these sequences, viral onc genes have been postulated to be transduced cellular cancer genes, and proto-onc genes have been postulated to be latent cancer genes that can be activated from within the cell to cause virus-negative tumors. The hypothesis is popular because it promises direct access to cellular cancer genes. However, the existence of latent cancer genes presents a paradox, since such genes are clearly undesirable. The hypothesis predicts that viral onc genes and proto-onc genes are isogenic; that expression of proto-onc genes induces tumors; that activated proto-onc genes transform diploid cells upon transfection, like viral onc genes; and that diploid tumors exist. As yet, none of these predictions is confirmed. Instead: Structural comparisons between viral onc genes, essential retroviral genes, and proto-onc genes show that all viral onc genes are indeed new genes, rather than transduced cellular cancer genes. They are recombinants put together from truncated viral and truncated proto-onc genes. Proto-onc genes are frequently expressed in normal cells. To date, not one activated proto-onc gene has been isolated that transforms diploid cells. Above all, no diploid tumors with activated proto-onc genes have been found. Moreover, the probability of spontaneous transformation in vivo is at least 10(9) times lower than predicted from the mechanisms thought to activate proto-onc genes. Therefore, the hypothesis that proto-onc genes are latent cellular oncogenes appears to be an overinterpretation of sequence homology to structural and functional homology with viral onc genes. Here it is proposed that only rare truncations and illegitimate recombinations that alter the germ-line configuration of cellular genes generate viral and possibly cellular cancer genes. The clonal chromosome

  14. The Histone-Like Nucleoid Structuring Protein (H-NS) Is a Negative Regulator of the Lateral Flagellar System in the Deep-Sea Bacterium Shewanella piezotolerans WP3.

    PubMed

    Jian, Huahua; Xu, Guanpeng; Gai, Yingbao; Xu, Jun; Xiao, Xiang

    2016-04-01

    Although the histone-like nucleoid structuring protein (H-NS) is well known for its involvement in the adaptation of mesophilic bacteria, such as Escherichia coli, to cold environments and high-pressure stress, an understanding of the role of H-NS in the cold-adapted benthic microorganisms that live in the deep-sea ecosystem, which covers approximately 60% of the earth's surface, is still lacking. In this study, we characterized the function of H-NS in Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1,914 m. Anhns gene deletion mutant (WP3Δhns) was constructed, and comparative whole-genome microarray analysis was performed. H-NS had a significant influence (fold change, >2) on the expression of a variety of WP3 genes (274 and 280 genes were upregulated and downregulated, respectively), particularly genes related to energy production and conversion. Notably, WP3Δhnsexhibited higher expression levels of lateral flagellar genes than WP3 and showed enhanced swarming motility and lateral flagellar production compared to those of WP3. The DNA gel mobility shift experiment showed that H-NS bound specifically to the promoter of lateral flagellar genes. Moreover, the high-affinity binding sequences of H-NS were identified by DNase I protection footprinting, and the results support the "binding and spreading" model for H-NS functioning. To our knowledge, this is the first attempt to characterize the function of the universal regulator H-NS in a deep-sea bacterium. Our data revealed that H-NS has a novel function as a repressor of the expression of genes related to the energy-consuming secondary flagellar system and to swarming motility.

  15. The Histone-Like Nucleoid Structuring Protein (H-NS) Is a Negative Regulator of the Lateral Flagellar System in the Deep-Sea Bacterium Shewanella piezotolerans WP3

    PubMed Central

    Jian, Huahua; Xu, Guanpeng; Gai, Yingbao; Xu, Jun

    2016-01-01

    Although the histone-like nucleoid structuring protein (H-NS) is well known for its involvement in the adaptation of mesophilic bacteria, such as Escherichia coli, to cold environments and high-pressure stress, an understanding of the role of H-NS in the cold-adapted benthic microorganisms that live in the deep-sea ecosystem, which covers approximately 60% of the earth's surface, is still lacking. In this study, we characterized the function of H-NS in Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1,914 m. An hns gene deletion mutant (WP3Δhns) was constructed, and comparative whole-genome microarray analysis was performed. H-NS had a significant influence (fold change, >2) on the expression of a variety of WP3 genes (274 and 280 genes were upregulated and downregulated, respectively), particularly genes related to energy production and conversion. Notably, WP3Δhns exhibited higher expression levels of lateral flagellar genes than WP3 and showed enhanced swarming motility and lateral flagellar production compared to those of WP3. The DNA gel mobility shift experiment showed that H-NS bound specifically to the promoter of lateral flagellar genes. Moreover, the high-affinity binding sequences of H-NS were identified by DNase I protection footprinting, and the results support the “binding and spreading” model for H-NS functioning. To our knowledge, this is the first attempt to characterize the function of the universal regulator H-NS in a deep-sea bacterium. Our data revealed that H-NS has a novel function as a repressor of the expression of genes related to the energy-consuming secondary flagellar system and to swarming motility. PMID:26873312

  16. Activities of Human Gene Nomenclature Committee

    SciTech Connect

    2002-07-16

    The objective of this project, shared between NIH and DOE, has been and remains to enable the medical genetics communities to use common names for genes that are discovered by different gene hunting groups, in different species. This effort provides consistent gene nomenclature and approved gene symbols to the community at large. This contributes to a uniform and consistent understanding of genomes, particularly the human as well as functional genomics based on comparisons between homologous genes in related species (human and mice).

  17. Following the Viterbi Path to Deduce Flagellar Actin-Interacting Proteins of Leishmania spp.: Report on Cofilins and Twinfilins

    NASA Astrophysics Data System (ADS)

    Pacheco, Ana Carolina L.; Araújo, Fabiana F.; Kamimura, Michel T.; Medeiros, Sarah R.; Viana, Daniel A.; Oliveira, Fátima de Cássia E.; Filho, Raimundo Araújo; Costa, Marcília P.; Oliveira, Diana M.

    2007-11-01

    For performing vital cellular processes, such as motility, eukaryotic cells rely on the actin cytoskeleton, whose structure and dynamics are tightly controlled by a large number of actin-interacting (AIP) or actin-related/regulating (ARP) proteins. Trypanosomatid protozoa, such as Leishmania, rely on their flagellum for motility and sensory reception, which are believed to allow parasite migration, adhesion, invasion and even persistence on mammalian host tissues to cause disease. Actin can determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes, while the identification and analyses of AIPs can help to improve understanding of their mechanical properties on physiological architectures, such as the present case regarding Leishmania flagellar apparatus. This work conveniently apply bioinformatics tools in some refined pattern recognition techniques (such as hidden Markov models (HMMs) through the Viterbi algorithm/path) in order to improve the recognition of actin-binding/interacting activity through identification of AIPs in genomes, transcriptomes and proteomes of Leishmania species. We here report cofilin and twinfilin as putative components of the flagellar apparatus, a direct bioinformatics contribution in the secondary annotation of Leishmania and trypanosomatid genomes.

  18. Flagellar mitochondrial association of the male-specific Don Juan protein in Drosophila spermatozoa.

    PubMed

    Santel, A; Blümer, N; Kämpfer, M; Renkawitz-Pohl, R

    1998-11-01

    The Drosophila don juan gene encodes a basic protein (Don Juan protein), which is solely expressed postmeiotically during spermiogenesis in elongated spermatids and in mature sperm. Transgenic expression of a GFP-tagged Don Juan protein (DJ-GFP) in the male germ line showed an association of the fusion protein with the sperm tail. Detailed examination of DJ-GFP localization revealed novel insights into its distinct temporal and spatial distribution along the sperm tail during the last phase of spermatid maturation. Co-localization of DJ-GFP with actin-labeled cysts demonstrated its emergence in elongated spermatids during individualization. Additionally, the endogenous Don Juan protein was detected with epitope-specific antibodies in finally elongated nuclei of spermatids. After completion of nuclear shaping Don Juan is no longer detectable in the sperm heads with the onset of individualization. Mislocalization of the DJ-GFP protein in flagella of a mutant with defective mitochondrial differentiation provides evidence of mitochondrial association of the fusion protein with flagellar mitochondrial arrays. Ectopically expressed DJ-GFP in premeiotic germ cells as well as salivary gland cells confirmed the capability of the fusion protein to associate with mitochondria. Therefore we suppose that Don Juan is a nuclear-encoded, germ-cell specifically expressed mitochondrial protein, which might be involved in the final steps of mitochondrial differentiation within the flagellum.

  19. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    EPA Science Inventory

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  20. Real-Time Imaging of Fluorescent Flagellar Filaments

    NASA Astrophysics Data System (ADS)

    Ryu, William

    2003-03-01

    Bacteria swim by rotating flagellar filaments that are several micrometers long, but only about 18 nm in diameter. The filaments can exist in different polymorphic forms, having distinct values of curvature and twist. Rotation rates are on the order of 100 Hz. In the past, the motion of individual filaments has been visualized by dark-field or differential-interference-contrast microscopy, methods hampered by intense scattering from the cell body or shallow depth of field, respectively. We have found a simple procedure for fluorescently labeling cells and filaments that allows recording their motion in real time with an inexpensive video camera and an ordinary fluorescence microscope with mercury-arc or strobed laser illumination. We report our initial findings with cells of Escherichia coli. Tumbles (events that enable swimming cells to alter course) are remarkably varied. Not every filament on a cell needs to change its direction of rotation: different filaments can change directions at different times, and a tumble can result from the change in direction of only one. Polymorphic transformations tend to occur in the sequence normal, semicoiled, curly 1, with changes in the direction of movement of the cell body correlated with transformations to the semicoiled form.

  1. Polar features in the flagellar propulsion of E. coli bacteria

    NASA Astrophysics Data System (ADS)

    Bianchi, S.; Saglimbeni, F.; Lepore, A.; Di Leonardo, R.

    2015-06-01

    E. coli bacteria swim following a run and tumble pattern. In the run state all flagella join in a single helical bundle that propels the cell body along approximately straight paths. When one or more flagellar motors reverse direction the bundle unwinds and the cell randomizes its orientation. This basic picture represents an idealization of a much more complex dynamical problem. Although it has been shown that bundle formation can occur at either pole of the cell, it is still unclear whether these two run states correspond to asymmetric propulsion features. Using holographic microscopy we record the 3D motions of individual bacteria swimming in optical traps. We find that most cells possess two run states characterized by different propulsion forces, total torque, and bundle conformations. We analyze the statistical properties of bundle reversal and compare the hydrodynamic features of forward and backward running states. Our method is naturally multi-particle and opens up the way towards controlled hydrodynamic studies of interacting swimming cells.

  2. Real-Time Imaging of Fluorescent Flagellar Filaments

    PubMed Central

    Turner, Linda; Ryu, William S.; Berg, Howard C.

    2000-01-01

    Bacteria swim by rotating flagellar filaments that are several micrometers long, but only about 20 nm in diameter. The filaments can exist in different polymorphic forms, having distinct values of curvature and twist. Rotation rates are on the order of 100 Hz. In the past, the motion of individual filaments has been visualized by dark-field or differential-interference-contrast microscopy, methods hampered by intense scattering from the cell body or shallow depth of field, respectively. We have found a simple procedure for fluorescently labeling cells and filaments that allows recording their motion in real time with an inexpensive video camera and an ordinary fluorescence microscope with mercury-arc or strobed laser illumination. We report our initial findings with cells of Escherichia coli. Tumbles (events that enable swimming cells to alter course) are remarkably varied. Not every filament on a cell needs to change its direction of rotation: different filaments can change directions at different times, and a tumble can result from the change in direction of only one. Polymorphic transformations tend to occur in the sequence normal, semicoiled, curly 1, with changes in the direction of movement of the cell body correlated with transformations to the semicoiled form. PMID:10781548

  3. Model Studies of the Dynamics of Bacterial Flagellar Motors

    SciTech Connect

    Bai, F; Lo, C; Berry, R; Xing, J

    2009-03-19

    The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation and switching mechanism of the motor. In our previous paper, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze this model. In this paper we show (1) the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et al.; (2) with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently observed by Yuan and Berg; (3) the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental verification.

  4. Polar features in the flagellar propulsion of E. coli bacteria.

    PubMed

    Bianchi, S; Saglimbeni, F; Lepore, A; Di Leonardo, R

    2015-06-01

    E. coli bacteria swim following a run and tumble pattern. In the run state all flagella join in a single helical bundle that propels the cell body along approximately straight paths. When one or more flagellar motors reverse direction the bundle unwinds and the cell randomizes its orientation. This basic picture represents an idealization of a much more complex dynamical problem. Although it has been shown that bundle formation can occur at either pole of the cell, it is still unclear whether these two run states correspond to asymmetric propulsion features. Using holographic microscopy we record the 3D motions of individual bacteria swimming in optical traps. We find that most cells possess two run states characterized by different propulsion forces, total torque, and bundle conformations. We analyze the statistical properties of bundle reversal and compare the hydrodynamic features of forward and backward running states. Our method is naturally multi-particle and opens up the way towards controlled hydrodynamic studies of interacting swimming cells.

  5. Transient pauses of the bacterial flagellar motor at low load

    NASA Astrophysics Data System (ADS)

    Nord, A. L.; Pedaci, F.; Berry, R. M.

    2016-11-01

    The bacterial flagellar motor (BFM) is the molecular machine responsible for the swimming and chemotaxis of many species of motile bacteria. The BFM is bidirectional, and changes in the rotation direction of the motor are essential for chemotaxis. It has previously been observed that many species of bacteria also demonstrate brief pauses in rotation, though the underlying cause of such events remains poorly understood. We examine the rotation of Escherichia coli under low mechanical load with high spatial and temporal resolution. We observe and characterize transient pauses in rotation in a strain which lacks a functional chemosensory network, showing that such events are a phenomenon separate from a change in rotational direction. Rotating at low load, the BFM of E. coli exhibits about 10 pauses s-1, lasting on average 5 ms, during which time the rotor diffuses with net forwards rotation. Replacing the wild type stators with Na+ chimera stators has no substantial effect on the pausing. We discuss possible causes of such events, which are likely a product of a transient change in either the stator complex or the rotor.

  6. Correspondence between resting state activity and brain gene expression

    PubMed Central

    Wang, Guang-Zhong; Belgard, T. Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M.; Lu, Hanzhang; Geschwind, Daniel H.; Konopka, Genevieve

    2015-01-01

    SUMMARY The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional Amplitude of Low Frequency Fluctuations (fALFF) from two independent human fMRI resting state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance, and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, these data support a population-level relationship between regional steady state brain gene expression and resting state brain activity. PMID:26590343

  7. Giardia Flagellar Motility Is Not Directly Required to Maintain Attachment to Surfaces

    PubMed Central

    House, Susan A.; Richter, David J.; Pham, Jonathan K.; Dawson, Scott C.

    2011-01-01

    Giardia trophozoites attach to the intestinal microvilli (or inert surfaces) using an undefined “suction-based” mechanism, and remain attached during cell division to avoid peristalsis. Flagellar motility is a key factor in Giardia's pathogenesis and colonization of the host small intestine. Specifically, the beating of the ventral flagella, one of four pairs of motile flagella, has been proposed to generate a hydrodynamic force that results in suction-based attachment via the adjacent ventral disc. We aimed to test this prevailing “hydrodynamic model” of attachment mediated by flagellar motility. We defined four distinct stages of attachment by assessing surface contacts of the trophozoite with the substrate during attachment using TIRF microscopy (TIRFM). The lateral crest of the ventral disc forms a continuous perimeter seal with the substrate, a cytological indication that trophozoites are fully attached. Using trophozoites with two types of molecularly engineered defects in flagellar beating, we determined that neither ventral flagellar beating, nor any flagellar beating, is necessary for the maintenance of attachment. Following a morpholino-based knockdown of PF16, a central pair protein, both the beating and morphology of flagella were defective, but trophozoites could still initiate proper surface contacts as seen using TIRFM and could maintain attachment in several biophysical assays. Trophozoites with impaired motility were able to attach as well as motile cells. We also generated a strain with defects in the ventral flagellar waveform by overexpressing a dominant negative form of alpha2-annexin::GFP (D122A, D275A). This dominant negative alpha2-annexin strain could initiate attachment and had only a slight decrease in the ability to withstand normal and shear forces. The time needed for attachment did increase in trophozoites with overall defective flagellar beating, however. Thus while not directly required for attachment, flagellar motility is

  8. Nonconventional cation-coupled flagellar motors derived from the alkaliphilic Bacillus and Paenibacillus species.

    PubMed

    Ito, Masahiro; Takahashi, Yuka

    2017-01-01

    Prior to 2008, all previously studied conventional bacterial flagellar motors appeared to utilize either H(+) or Na(+) as coupling ions. Membrane-embedded stator complexes support conversion of energy using transmembrane electrochemical ion gradients. The main H(+)-coupled stators, known as MotAB, differ from Na(+)-coupled stators, PomAB of marine bacteria, and MotPS of alkaliphilic Bacillus. However, in 2008, a MotAB-type flagellar motor of alkaliphilic Bacillus clausii KSM-K16 was revealed as an exception with the first dual-function motor. This bacterium was identified as the first bacterium with a single stator-rotor that can utilize both H(+) and Na(+) for ion-coupling at different pH ranges. Subsequently, another exception, a MotPS-type flagellar motor of alkaliphilic Bacillus alcalophilus AV1934, was reported to utilize Na(+) plus K(+) and Rb(+) as coupling ions for flagellar rotation. In addition, the alkaline-tolerant bacterium Paenibacillus sp. TCA20, which can utilize divalent cations such as Ca(2+), Mg(2+), and Sr(2+), was recently isolated from a hot spring in Japan, which contains a high Ca(2+) concentration. These findings show that bacterial flagellar motors isolated from unique environments utilize unexpected coupling ions. This suggests that bacteria that grow in different extreme environments adapt to local conditions and evolve their motility machinery.

  9. High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms

    PubMed Central

    Wilson, Laurence G.; Carter, Lucy M.; Reece, Sarah E.

    2013-01-01

    Axonemes form the core of eukaryotic flagella and cilia, performing tasks ranging from transporting fluid in developing embryos to the propulsion of sperm. Despite their abundance across the eukaryotic domain, the mechanisms that regulate the beating action of axonemes remain unknown. The flagellar waveforms are 3D in general, but current understanding of how axoneme components interact stems from 2D data; comprehensive measurements of flagellar shape are beyond conventional microscopy. Moreover, current flagellar model systems (e.g., sea urchin, human sperm) contain accessory structures that impose mechanical constraints on movement, obscuring the “native” axoneme behavior. We address both problems by developing a high-speed holographic imaging scheme and applying it to the (male) microgametes of malaria (Plasmodium) parasites. These isolated flagella are a unique, mathematically tractable model system for the physics of microswimmers. We reveal the 3D flagellar waveforms of these microorganisms and map the differential shear between microtubules in their axonemes. Furthermore, we overturn claims that chirality in the structure of the axoneme governs the beat pattern [Hirokawa N, et al. (2009) Ann Rev Fluid Mech 41:53–72], because microgametes display a left- or right-handed character on alternate beats. This breaks the link between structural chirality in the axoneme and larger scale symmetry breaking (e.g., in developing embryos), leading us to conclude that accessory structures play a critical role in shaping the flagellar beat. PMID:24194551

  10. Entosiphon sulcatum (Euglenophyceae): flagellar roots of the basal body complex and reservoir region

    SciTech Connect

    Solomon, J.A.; Walne, P.L.; Kivic, P.A.

    1987-03-01

    The flagellar root system of Entosiphon sulcatum (Dujardin) Stein (Euglenophyceae) is described and compared with kinetoplastid and other euglenoid systems. An asymmetric pattern of three microtubular roots, one between the two flagellar basal bodies and one on either side (here called the intermediate, dorsal, and ventral roots), is consistent within the euglenoid flagellates studied thus far. The dorsal root is associated with the basal body of the anterior flagellum (F1) and lies on the left dorsal side of the basal body complex. Originating between the two flagellar basal bodies, and associated with the basal body of the trailing flagellum (F2), the intermediate root is morphologically distinguished by fibrils interconnecting the individual microtubules to one another and to the overlying reservoir membrane. The intermediate root is often borne on a ridge projecting into the reservoir. The ventral root originates near the F2 basal body and lies on the right ventral side of the cell. Fibrillar connections link the membrane of F2 with the reservoir membrane at the reservoir-canal transition level. A large cross-banded fiber joins the two flagellar basal bodies, and a series of smaller striated fibers links the anterior accessory and flagellar basal bodies. Large nonstriated fibers extend from the basal body complex posteriorly into the cytoplasm.

  11. Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation.

    PubMed

    Gunbin, Konstantin V; Ponomarenko, Mikhail P; Suslov, Valentin V; Gusev, Fedor; Fedonin, Gennady G; Rogaev, Evgeny I

    2017-02-24

    Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.

  12. Cloning, sequencing, and disruption of the Bacillus subtilis sigma 28 gene.

    PubMed Central

    Helmann, J D; Márquez, L M; Chamberlin, M J

    1988-01-01

    Bacillus subtilis contains multiple forms of RNA polymerase holoenzyme, distinguished by the presence of different specificity determinants known as sigma factors. The sigma 28 factor was initially purified as a unique transcriptional activity in vegetatively growing B. subtilis cells. Purification of the sigma 28 protein has allowed tryptic peptides to be prepared and sequenced. The sequence of one tryptic peptide fragment was used to prepare an oligonucleotide probe specific for the sigma 28 structural gene, and the gene was isolated from a B. subtilis subgenomic library. The complete nucleotide sequence of the sigma 28 gene was determined, and the cloned sigma 28 gene was used to construct a mutant strain which does not express the sigma 28 protein. This strain also failed to synthesize flagellin protein and grew as long filaments. The predicted sigma 28 gene product is a 254-amino-acid polypeptide with a calculated molecular weight of 29,500. The sigma 28 protein sequence was similar to that of other sequenced sigma factors and to the flbB gene product of Escherichia coli. Since the flbB gene product is a positive regulator of flagellar synthesis in E. coli, it is likely that sigma 28 functions to regulate flagellar synthesis in B. subtilis. Images PMID:2832368

  13. Orthogonal gene knock out and activation with a catalytically active Cas9 nuclease

    PubMed Central

    Dahlman, James E.; Abudayyeh, Omar O.; Joung, Julia; Gootenberg, Jonathan S.; Zhang, Feng; Konermann, Silvana

    2015-01-01

    We have developed a CRISPR-based method that uses catalytically active Cas9 and distinct sgRNA constructs to knock out and activate different genes in the same cell. These sgRNAs, with 14 15 bp target sequences and MS2 binding loops, can activate gene expression using an active Cas9 nuclease, without inducing DSBs. We use these ‘dead RNAs’ to perform orthogonal gene knockout and transcriptional activation in human cells. PMID:26436575

  14. The murine Sry gene encodes a nuclear transcriptional activator

    SciTech Connect

    Dubin, R.A.; Ostrer, H.

    1994-09-01

    The Sry gene functions as a genetic switch in gonadal ridge initiating testis determination. The murine Sry and human SRY open reading frames (ORF) share a conserved 79 amino acid motif, the HMG-box, that binds DNA. Outside this region the two genes share no additional homology. These studies were undertaken to determine whether the Sry/SRY genes encode nuclear transcriptional regulators. As judged by the accumulation of lacZ-SRY hybrid proteins in the nucleus, both the human and murine SRY ORFs contain a nuclear localization signal. The murine Sry HMG-box selectively binds the sequence NACAAT in vitro when presented with a random pool of oligonucleotides and binds AACAAT with the highest affinity. The murine Sry ORF, when expressed in HeLa cells, activates transcription of a reporter gene containing multiple copies of the AACAAT binding site. Activation was observed for a GAL4-responsive gene when the murine Sry ORF was linked to the DNA-binding domain of GAL4. Using this system, the activation function was mapped to a C-terminal glutamine/histidine-rich domain. In addition, LexA-Sry fusion genes activated a LexA-responsive gene in yeast. In contrast, a GAL4-human SRY fusion gene did not cause transcriptional activation. These studies suggest that both the human and mouse SRY ORFs encode nuclear, DNA-binding proteins, and that the mouse Sry ORF can function as a transcriptional activator with separable DNA-binding and activator domains.

  15. Zipping and entanglement in flagellar bundle of E. coli: Role of motile cell body

    NASA Astrophysics Data System (ADS)

    Adhyapak, Tapan Chandra; Stark, Holger

    2015-11-01

    The course of a peritrichous bacterium, such as E. coli, crucially depends on the level of synchronization and self-organization of several rotating flagella. However, the rotation of each flagellum generates countermovements of the body which in turn affect the flagellar dynamics. Using a detailed numerical model of an E. coli, we demonstrate that flagellar entanglement, besides fluid flow relative to the moving body, dramatically changes the dynamics of flagella from that compared to anchored flagella. In particular, bundle formation occurs through a zipping motion in a remarkably rapid time, affected little by initial flagellar orientation. A simplified analytical model supports our observations. Finally, we illustrate how entanglement, hydrodynamic interactions, and body movement contribute to zipping and bundling.

  16. Preparing well-oriented sols of straight bacterial flagellar filaments for X-ray fiber diffraction.

    PubMed

    Yamashita, I; Vonderviszt, F; Noguchi, T; Namba, K

    1991-01-20

    Well-oriented sols of straight bacterial flagellar filaments have been obtained by preparing reconstituted flagellar filaments with an appropriate length distribution and choosing appropriate solvent conditions. An average filament length of 300 to 500 nm and the use of solvents with very low concentrations of salt has allowed us to prepare highly fluid sols that make flow orientation possible. X-ray fiber diffraction from these sols has shown distinct layer-line reflections to 3.5 A resolution in the meridional direction. Layer-line intensities have been collected by the angular deconvolution method up to 5 A resolution. The possibility of using a magnetic field to further improve the orientation has been explored and a solvent condition that makes flagellar sols sensitive to the magnetic field has been found. General applicability of the method to other systems is also discussed.

  17. Biochemical characterization of tektins from sperm flagellar doublet microtubules.

    PubMed

    Linck, R W; Stephens, R E

    1987-04-01

    Tektins, protein components of stable protofilaments from sea urchin sperm flagellar outer doublet microtubules (Linck, R. W., and G. L. Langevin, 1982, J. Cell Sci., 58:1-22), are separable by preparative SDS PAGE into 47-, 51-, and 55-kD equimolar components. High resolution two-dimensional tryptic peptide mapping reveals 63-67% coincidence among peptides of the 51-kD tektin chain and its 47- and 55-kD counterparts, greater than 70% coincidence between the 47- and 55-kD tektins, but little obvious similarity to either alpha- or beta-tubulin. With reverse-phase HPLC on a C18 column, using 6 M guanidine-HCl solubilization and a 0.1% trifluoroacetic acid/CH3CN gradient system (Stephens, R. E., 1984, J. Cell Biol. 90:37a [Abstr.]), the relatively less hydrophobic 51-kD tektin elutes at greater than 45% CH3CN, immediately followed by the 55-kD chain. The 47-kD tektin is substantially more hydrophobic, eluting between the two tubulins. The amino acid compositions of the tektins are very similar to each other but totally distinct from tubulin chains, being characterized by a greater than 50% higher arginine plus lysine content (in good agreement with the number of tryptic peptides) and about half the content of glycine, histidine, proline, and tyrosine. The proline content correlates well with the fact that tektin filaments have twice as much alpha-helical content as tubulin. Total hydrophobic amino acid content correlates with HPLC elution times for the tektins but not tubulins. The average amino acid composition of the tektins indicates that they resemble intermediate filament proteins, as originally postulated from structural, solubility, and electrophoretic properties. Tektins have higher cysteine and tryptophan contents than desmin and vimentin, which characteristically have only one residue of each, more closely resembling certain keratins in these amino acids.

  18. Biochemical characterization of tektins from sperm flagellar doublet microtubules

    PubMed Central

    1987-01-01

    Tektins, protein components of stable protofilaments from sea urchin sperm flagellar outer doublet microtubules (Linck, R. W., and G. L. Langevin, 1982, J. Cell Sci., 58:1-22), are separable by preparative SDS PAGE into 47-, 51-, and 55-kD equimolar components. High resolution two-dimensional tryptic peptide mapping reveals 63-67% coincidence among peptides of the 51-kD tektin chain and its 47- and 55-kD counterparts, greater than 70% coincidence between the 47- and 55-kD tektins, but little obvious similarity to either alpha- or beta- tubulin. With reverse-phase HPLC on a C18 column, using 6 M guanidine- HCl solubilization and a 0.1% trifluoroacetic acid/CH3CN gradient system (Stephens, R. E., 1984, J. Cell Biol. 90:37a [Abstr.]), the relatively less hydrophobic 51-kD tektin elutes at greater than 45% CH3CN, immediately followed by the 55-kD chain. The 47-kD tektin is substantially more hydrophobic, eluting between the two tubulins. The amino acid compositions of the tektins are very similar to each other but totally distinct from tubulin chains, being characterized by a greater than 50% higher arginine plus lysine content (in good agreement with the number of tryptic peptides) and about half the content of glycine, histidine, proline, and tyrosine. The proline content correlates well with the fact that tektin filaments have twice as much alpha-helical content as tubulin. Total hydrophobic amino acid content correlates with HPLC elution times for the tektins but not tubulins. The average amino acid composition of the tektins indicates that they resemble intermediate filament proteins, as originally postulated from structural, solubility, and electrophoretic properties. Tektins have higher cysteine and tryptophan contents than desmin and vimentin, which characteristically have only one residue of each, more closely resembling certain keratins in these amino acids. PMID:3558479

  19. Flagellar coordination in Chlamydomonas cells held on micropipettes.

    PubMed

    Rüffer, U; Nultsch, W

    1998-01-01

    The two flagella of Chlamydomonas are known to beat synchronously: During breaststroke beating they are generally coordinated in a bilateral way while in shock responses during undulatory beating coordination is mostly parallel [Rüffer and Nultsch, 1995: Botanica Acta 108:169-276]. Analysis of a great number of shock responses revealed that in undulatory beats also periods of bilateral coordination are found and that the coordination type may change several times during a shock response, without concomitant changes of the beat envelope and the beat period. In normal wt cells no coordination changes are found during breaststroke beating, but only short temporary asynchronies: During 2 or 3 normal beats of the cis flagellum, the trans flagellum performs 3 or 4 flat beats with a reduced beat envelope and a smaller beat period, resulting in one additional trans beat. Long periods with flat beats of the same shape and beat period are found in both flagella of the non-phototactic mutant ptx1 and in defective wt 622E cells. During these periods, the coordination is parallel, the two flagella beat alternately. A correlation between normal asynchronous trans beats and the parallel-coordinated beats in the presumably cis defective cells and also the undulatory beats is discussed. In the cis defective cells, a perpetual spontaneous change between parallel beats with small beat periods (higher beat frequency) and bilateral beats with greater beat periods (lower beat frequency) are observed and render questionable the existence of two different intrinsic beat frequencies of the two flagella cis and trans. Asynchronies occur spontaneously but may also be induced by light changes, either step-up or step-down, but not by both stimuli in turn as breaststroke flagellar photoresponses (BFPRs). Asynchronies are not involved in phototaxis. They are independent of the BFPRs, which are supposed to be the basis of phototaxis. Both types of coordination must be assumed to be regulated

  20. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body.

    PubMed

    Qin, Hongmin; Diener, Dennis R; Geimer, Stefan; Cole, Douglas G; Rosenbaum, Joel L

    2004-01-19

    Intraflagellar transport (IFT) is the bidirectional movement of multisubunit protein particles along axonemal microtubules and is required for assembly and maintenance of eukaryotic flagella and cilia. One posited role of IFT is to transport flagellar precursors to the flagellar tip for assembly. Here, we examine radial spokes, axonemal subunits consisting of 22 polypeptides, as potential cargo for IFT. Radial spokes were found to be partially assembled in the cell body, before being transported to the flagellar tip by anterograde IFT. Fully assembled radial spokes, detached from axonemal microtubules during flagellar breakdown or turnover, are removed from flagella by retrograde IFT. Interactions between IFT particles, motors, radial spokes, and other axonemal proteins were verified by coimmunoprecipitation of these proteins from the soluble fraction of Chlamydomonas flagella. These studies indicate that one of the main roles of IFT in flagellar assembly and maintenance is to transport axonemal proteins in and out of the flagellum.

  1. Constitutive androstane receptor activation evokes the expression of glycolytic genes.

    PubMed

    Yarushkin, Andrei A; Kazantseva, Yuliya A; Prokopyeva, Elena A; Markova, Diana N; Pustylnyak, Yuliya A; Pustylnyak, Vladimir O

    2016-09-23

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in a mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation.

  2. FlrA, a sigma54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization.

    PubMed

    Millikan, Deborah S; Ruby, Edward G

    2003-06-01

    Flagellum-mediated motility of Vibrio fischeri is an essential factor in the bacterium's ability to colonize its host, the Hawaiian squid Euprymna scolopes. To begin characterizing the nature of the flagellar regulon, we have cloned a gene, designated flrA, from V. fischeri that encodes a putative sigma(54)-dependent transcriptional activator. Genetic arrangement of the flrA locus in V. fischeri is similar to motility master-regulator operons of Vibrio cholerae and Vibrio parahaemolyticus. In addition, examination of regulatory regions of a number of flagellar operons in V. fischeri revealed apparent sigma(54) recognition motifs, suggesting that the flagellar regulatory hierarchy is controlled by a similar mechanism to that described in V. cholerae. However, in contrast to its closest known relatives, flrA mutant strains of V. fischeri ES114 were completely abolished in swimming capability. Although flrA provided in trans restored motility to the flrA mutant, the complemented strain was unable to reach wild-type levels of symbiotic colonization in juvenile squid, suggesting a possible role for the proper expression of FlrA in regulating symbiotic colonization factors in addition to those required for motility. Comparative RNA arbitrarily primed PCR analysis of the flrA mutant and its wild-type parent revealed several differentially expressed transcripts. These results define a regulon that includes both flagellar structural genes and other genes apparently not involved in flagellum elaboration or function. Thus, the transcriptional activator FlrA plays an essential role in regulating motility, and apparently in modulating other symbiotic functions, in V. fischeri.

  3. Modeling the Activity of Single Genes

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric; Gibson, Michael

    1999-01-01

    The central dogma of molecular biology states that information is stored in DNA, transcribed to messenger RNA (mRNA) and then translated into proteins. This picture is significantly augmentated when we consider the action of certain proteins in regulating transcription. These transcription factors provide a feedback pathway by which genes can regulate one another's expression as mRNA and then as protein. To review: DNA, RNA and proteins have different functions. DNA is the molecular storehouse of genetic information. When cells divide, the DNA is replicated, so that each daughter cell maintains the same genetic information as the mother cell. RNA acts as a go-between from DNA to proteins. Only a single copy of DNA is present, but multiple copies of the same piece of RNA may be present, allowing cells to make huge amounts of protein. In eukaryotes (organisms with a nucleus), DNA is found in the nucleus only. RNA is copied in the nucleus then translocates(moves) outside the nucleus, where it is transcribed into proteins. Along the way, the RNA may be spliced, i.e., may have pieces cut out. RNA then attaches to ribosomes and is translated to proteins. Proteins are the machinery of the cell other than DNA and RNA, all the complex molecules of the cell are proteins. Proteins are specialized machines, each of which fulfills its own task, which may be transporting oxygen, catalyzing reactions, or responding to extracellular signals, just to name a few. One of the more interesting functions a protein may have is binding directly or indirectly to DNA to perform transcriptional regulation, thus forming a closed feedback loop of gene regulation. The structure of DNA and the central dogma were understood in the 50s; in the early 80s it became possible to make arbitrary modifications to DNA and use cellular machinery to transcribe and translate the resulting genes; more recently, genomes (i.e., the complete DNA sequence) of many organisms have been sequenced. This large

  4. Genetic dissection of the Leishmania paraflagellar rod, a unique flagellar cytoskeleton structure.

    PubMed

    Maga, J A; Sherwin, T; Francis, S; Gull, K; LeBowitz, J H

    1999-08-01

    The paraflagellar rod (PFR) is a unique network of cytoskeletal filaments that lies alongside the axoneme in the flagella of most trypanosomatids. While little is known about how two major Leishmania mexicana PFR protein components, PFR1 and PFR2, assemble into this complex structure, previous analysis of PFR2 null mutants demonstrated that the PFR is essential for proper cell motility. The structural roles of PFR1 and PFR2 are now examined through comparison of PFR2 null mutants with new PFR1 null mutant and PFR1/PFR2 double null mutant parasites. Both PFR1 and PFR2 were essential for PFR formation and cell motility. When elimination of one PFR gene prevented assembly of a native PFR structure, the other PFR protein accumulated at the distal flagellar tip. Comparison of PFR substructures remaining in each mutant revealed that: (1) fibers that attach the PFR to the axoneme did not contain PFR1 or PFR2, and assemble in the absence of a PFR. (2) PFR1 was synthesized and transported to the flagella in the absence of PFR2, where it formed a stable association with the axoneme attachment fibers. (3) PFR2 was synthesized and transported to the flagella in the absence of PFR1, though it was not found associated with the axoneme attachment fibers. (4) PFR1 and PFR2 were located throughout the subdomains of the PFR. These data suggest that while PFR filaments contain both PFR1 and PFR2, the PFR is attached to the axoneme by interaction of PFR1 with the axoneme attachment fibers.

  5. FlhF, a signal recognition particle-like GTPase, is involved in the regulation of flagellar arrangement, motility behaviour and protein secretion in Bacillus cereus.

    PubMed

    Salvetti, Sara; Ghelardi, Emilia; Celandroni, Francesco; Ceragioli, Mara; Giannessi, Francesco; Senesi, Sonia

    2007-08-01

    Flagellar arrangement is a highly conserved feature within bacterial species. However, only a few genes regulating cell flagellation have been described in polar flagellate bacteria. This report demonstrates that the arrangement of flagella in the peritrichous flagellate Bacillus cereus is controlled by flhF. Disruption of flhF in B. cereus led to a reduction in the number of flagella from 10-12 to 1-3 filaments per cell in the insertion mutant MP06. Moreover, compared to the parental strain, MP06 exhibited: (i) shorter smooth swimming phases, causing reduced swimming motility but not affecting chemotaxis; (ii) complete inhibition of swarming motility, as differentiated swarm cells were never detected; (iii) an increased amount of extracellular proteins; and (iv) differential export of virulence determinants, such as haemolysin BL (HBL), phosphatidylcholine-preferring phospholipase C (PC-PLC) and non-haemolytic enterotoxin (NHE). Introduction of a plasmid harbouring flhF (pDGflhF) into MP06 completely restored the wild-type phenotype in the trans-complemented strain MP07. B. cereus flhF was found to constitute a monocistronic transcriptional unit and its overexpression did not produce abnormal features in the wild-type background. Characterization of a B. cereus mutant (MP05) carrying a partial flhF deletion indicated that the last C-terminal domain of FlhF is involved in protein export while not required for flagellar arrangement and motility behaviour. Taken together, these data suggest that B. cereus FlhF is a promising candidate for connecting diverse cellular functions, such as flagellar arrangement, motility behaviour, pattern of protein secretion and virulence phenotype.

  6. Identification of the flagellar chaperone FlgN in the phytopathogen Xanthomonas axonopodis pathovar citri by its interaction with hook-associated FlgK.

    PubMed

    Khater, Letícia; Alegria, Marcos C; Borin, Paula F L; Santos, Túlio M; Docena, Cássia; Tasic, Ljubica; Farah, Chuck S; Ramos, Carlos H I

    2007-09-01

    Genome annotation of the plant pathogen Xanthomonas axonopodis pv. citri (Xac), identified flagellar genes in a 15.7 kb gene cluster. However, FlgN, a secretion chaperone for hook-associated proteins FlgK and FlgL, was not identified. We performed extensive screening of the X. axonopodis pv. citri genome with the yeast two-hybrid system to identify a protein with the characteristics of the flagellar chaperone FlgN. We found a candidate (XAC1990) encoded by an operon for components of the flagellum apparatus that interacted with FlgK. In order to further support this finding, Xac FlgK and XAC1990 were cloned, expressed, and purified. The recombinant proteins were characterized by spectroscopic methods and their interaction in vitro confirmed by pull-down assays. We, therefore, conclude that XAC1990 and its homologs in other Xanthomonas species are, in fact, FlgN proteins. These observations extend the sequence diversity covered by this family of proteins.

  7. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  8. Carcinogen-induced trans activation of gene expression

    SciTech Connect

    Kleinberger, T.; Flint, Y.B.; Blank, M.; Etkin, S.; Lavi, S.

    1988-03-01

    The authors report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later.

  9. Dietary Methanol Regulates Human Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Sheshukova, Ekaterina V.; Kosorukov, Vyacheslav S.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling. PMID:25033451

  10. Quantification of flagellar motor stator dynamics through in vivo proton-motive force control.

    PubMed

    Tipping, Murray J; Steel, Bradley C; Delalez, Nicolas J; Berry, Richard M; Armitage, Judith P

    2013-01-01

    The bacterial flagellar motor, one of the few rotary motors in nature, produces torque to drive the flagellar filament by ion translocation through membrane-bound stator complexes. We used the light-driven proton pump proteorhodopsin (pR) to control the proton-motive force (PMF) in vivo by illumination. pR excitation was shown to be sufficient to replace native PMF generation, and when excited in cells with intact native PMF generation systems increased motor speed beyond the physiological norm. We characterized the effects of rapid in vivo PMF changes on the flagellar motor. Transient PMF disruption events from loss of illumination caused motors to stop, with rapid recovery of their previous rotation rate after return of illumination. However, extended periods of PMF loss led to stepwise increases in rotation rate upon PMF return as stators returned to the motor. The rate constant for stator binding to a putative single binding site on the motor was calculated to be 0.06 s(-1). Using GFP-tagged MotB stator proteins, we found that transient PMF disruption leads to reversible stator diffusion away from the flagellar motor, showing that PMF presence is necessary for continued motor integrity, and calculated a stator dissociation rate of 0.038 s(-1).

  11. A novel type bacterial flagellar motor that can use divalent cations as a coupling ion

    PubMed Central

    Imazawa, Riku; Takahashi, Yuka; Aoki, Wataru; Sano, Motohiko; Ito, Masahiro

    2016-01-01

    The bacterial flagellar motor is a sophisticated nanomachine embedded in the cell envelope and powered by an electrochemical gradient of H+, Na+, or K+across the cytoplasmic membrane. Here we describe a new member of the bacterial flagellar stator channel family (MotAB1 of Paenibacillus sp. TCA20 (TCA-MotAB1)) that is coupled to divalent cations (Ca2+and Mg2+). In the absence of divalent cations of alkaline earth metals, no swimming was observed in Paenibacillus sp. TCA20, which grows optimally in Ca2+-rich environments. This pattern was confirmed by swimming assays of a stator-free Bacillus subtilis mutant expressing TCA-MotAB1. Both a stator-free and major Mg2+uptake system-deleted B. subtilis mutant expressing TCA-MotAB1 complemented both growth and motility deficiency under low Mg2+conditions and exhibited [Mg2+]in identical to that of the wild-type. This is the first report of a flagellar motor that can use Ca2+and Mg2+as coupling ions. These findings will promote the understanding of the operating principles of flagellar motors and molecular mechanisms of ion selectivity. PMID:26794857

  12. A Comparative Overview of the Flagellar Apparatus of Dinoflagellate, Perkinsids and Colpodellids

    PubMed Central

    Okamoto, Noriko; Keeling, Patrick J.

    2014-01-01

    Dinoflagellates are a member of the Alveolata, and elucidation of the early evolution of alveolates is important for our understanding of dinoflagellates, and vice versa. The ultrastructure of the flagellar apparatus has been described from several dinoflagellates in the last few decades, and the basic components appear to be well conserved. The typical dinoflagellate apparatus is composed of two basal bodies surrounded by striated collars attached to a connective fiber. The longitudinal basal body is connected to a longitudinal microtubular root (LMR; equivalent of R1) and single microtubular root (R2), whereas the transverse basal body is connected to a transverse microtubular root (TMR; R3) and transverse striated root (TSR) with a microtubule (R4). Some of these components, especially the connective fibers and collars, are dinoflagellate specific characteristics that make their flagellar apparatus relatively complex. We also compare these structures with the flagellar apparatus from a number of close relatives of dinoflagellates and their sister, the apicomplexans, including colpodellids, perkinsids, and Psammosa. Though the ultrastructural knowledge of these lineages is still relatively modest, it provides us with an interesting viewpoint of the character evolution of the flagellar apparatus among those lineages. PMID:27694777

  13. Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems.

    PubMed

    Quelas, J Ignacio; Althabegoiti, M Julia; Jimenez-Sanchez, Celia; Melgarejo, Augusto A; Marconi, Verónica I; Mongiardini, Elías J; Trejo, Sebastián A; Mengucci, Florencia; Ortega-Calvo, José-Julio; Lodeiro, Aníbal R

    2016-04-07

    Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species.

  14. Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems

    PubMed Central

    Quelas, J. Ignacio; Althabegoiti, M. Julia; Jimenez-Sanchez, Celia; Melgarejo, Augusto A.; Marconi, Verónica I.; Mongiardini, Elías J.; Trejo, Sebastián A.; Mengucci, Florencia; Ortega-Calvo, José-Julio; Lodeiro, Aníbal R.

    2016-01-01

    Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species. PMID:27053439

  15. DRC3 connects the N-DRC to dynein g to regulate flagellar waveform

    PubMed Central

    Awata, Junya; Song, Kangkang; Lin, Jianfeng; King, Stephen M.; Sanderson, Michael J.; Nicastro, Daniela; Witman, George B.

    2015-01-01

    The nexin-dynein regulatory complex (N-DRC), which is a major hub for the control of flagellar motility, contains at least 11 different subunits. A major challenge is to determine the location and function of each of these subunits within the N-DRC. We characterized a Chlamydomonas mutant defective in the N-DRC subunit DRC3. Of the known N-DRC subunits, the drc3 mutant is missing only DRC3. Like other N-DRC mutants, the drc3 mutant has a defect in flagellar motility. However, in contrast to other mutations affecting the N-DRC, drc3 does not suppress flagellar paralysis caused by loss of radial spokes. Cryo–electron tomography revealed that the drc3 mutant lacks a portion of the N-DRC linker domain, including the L1 protrusion, part of the distal lobe, and the connection between these two structures, thus localizing DRC3 to this part of the N-DRC. This and additional considerations enable us to assign DRC3 to the L1 protrusion. Because the L1 protrusion is the only non-dynein structure in contact with the dynein g motor domain in wild-type axonemes and this is the only N-DRC–dynein connection missing in the drc3 mutant, we conclude that DRC3 interacts with dynein g to regulate flagellar waveform. PMID:26063732

  16. Physical activity in adulthood: genes and mortality

    PubMed Central

    Karvinen, Sira; Waller, Katja; Silvennoinen, Mika; Koch, Lauren G.; Britton, Steven L.; Kaprio, Jaakko; Kainulainen, Heikki; Kujala, Urho M.

    2015-01-01

    Observational studies report a strong inverse relationship between leisure-time physical activity and all-cause mortality. Despite suggestive evidence from population-based associations, scientists have not been able to show a beneficial effect of physical activity on the risk of death in controlled intervention studies among individuals who have been healthy at baseline. On the other hand, high cardiorespiratory fitness is known to be a strong predictor of reduced mortality, even more robust than physical activity level itself. Here, in both animals and/or human twins, we show that the same genetic factors influence physical activity levels, cardiorespiratory fitness, and risk of death. Previous observational follow-up studies in humans suggest that increasing fitness through physical activity levels could prolong life; however, our controlled interventional study with laboratory rats bred for low and high intrinsic fitness contrast with these findings. Also, we find no evidence for the suggested association using pairwise analysis among monozygotic twin pairs who are discordant in their physical activity levels. Based on both our animal and human findings, we propose that genetic pleiotropy might partly explain the frequently observed associations between high baseline physical activity and later reduced mortality in humans. PMID:26666586

  17. Sequential development of flagellar defects in spermatids and epididymal spermatozoa of selenium-deficient rats.

    PubMed

    Olson, Gary E; Winfrey, Virginia P; Hill, Kristina E; Burk, Raymond F

    2004-03-01

    In this study cauda epididymal spermatozoa of rats maintained on a selenium-deficient diet for 5 and 7 months exhibited an array of flagellar defects. Spermatids and spermatozoa were analyzed by light and electron microscopy to define the appearance of flagellar abnormalities during spermiogenesis and post-testicular sperm development. Late spermatids of selenium-deficient rats displayed normal structural organization of the flagellar plasma membrane, axoneme, outer dense fibers, fibrous sheath and annulus, but they exhibited a premature termination of the mitochondrial sheath. A comparison of late spermatids and caput epididymal spermatozoa revealed that a late step in flagellar differentiation was the structural remodeling of the annulus and its accompanying fusion with both the fibrous sheath and the mitochondrial sheath. In selenium-deficient animals, however, the annulus failed to fuse with the mitochondrial sheath, generating an apparent weak point in the flagellum. After epididymal passage, cauda epididymal spermatozoa of selenium-deficient animals also exhibited extensive flagellar disorganization resulting from the apparent sliding and extrusion of specific outer dense fiber-doublet microtubule complexes from the proximal and the distal ends of the mitochondrial sheath and the accompanying loss of the midpiece plasma membrane. Only fiber complex number 4 was extruded proximally, whereas fibers 4, 5, 6 and 7 were extruded from the mitochondrial sheath-deficient posterior midpiece. Axonemal fibers 8, 9, 1, 2 and 3 retained their normal geometric relationships. These data suggest that the known loss of male fertility in selenium deficiency results from the sequential development of sperm defects expressed during both spermiogenesis and maturation in the epididymis.

  18. A species-specific periplasmic flagellar protein of Serpulina (Treponema) hyodysenteriae.

    PubMed Central

    Li, Z; Dumas, F; Dubreuil, D; Jacques, M

    1993-01-01

    We have previously reported that a 46-kDa protein present in an outer membrane protein preparation seemed to be a species-specific antigen of Serpulina hyodysenteriae (Z. S. Li, N. S. Jensen, M. Bélanger, M.-C. L'Espérance, and M. Jacques, J. Clin. Microbiol. 30:2941-2947, 1992). The objective of this study was to further characterize this antigen. A Western blot (immunoblot) analysis and immunogold labeling with a monospecific antiserum against this protein confirmed that the protein was present in all S. hyodysenteriae reference strains but not in the nonpathogenic organism Serpulina innocens. The immunogold labeling results also indicated that the protein was associated with the periplasmic flagella of S. hyodysenteriae. N-terminal amino acid sequencing confirmed that the protein was in fact a periplasmic flagellar sheath protein. The molecular mass of this protein, first estimated to be 46 kDa by Western blotting, was determined to be 44 kDa when the protein was evaluated more precisely by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the protein was glycosylated, as determined by glycoprotein staining and also by N-glycosidase F treatment. Five other periplasmic flagellar proteins of S. hyodysenteriae, which may have been the core proteins and had molecular masses of 39, 35, 32, 30, and 29 kDa, were antigenically related and cross-reacted with the periplasmic flagellar proteins of S. innocens. Finally, serum from a pig experimentally infected with S. hyodysenteriae recognized the 44-kDa periplasmic flagellar sheath protein. Our results suggest that the 44-kDa periplasmic flagellar sheath protein of S. hyodysenteriae is a species-specific glycoprotein antigen. Images PMID:8253687

  19. Peroxisome proliferator-activated receptor alpha target genes.

    PubMed

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  20. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    PubMed Central

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well. PMID:20936127

  1. Entropy and information in flagellar axoneme cybernetics: a radial spokes integrative function.

    PubMed

    Cibert, Christian

    2003-04-01

    Radial spokes and the consequences of their relationships with the central apparatus seem to play a very important role in the regulation of axonemal activity. We modeled their behavior and observed that it appears to differ in the cilium and the flagellum with respect to the development of bending as a function of time. Specifically, our calculation raises the question of the real function of the radial spokes in the regulation of the axoneme, because a given curvature of the flagellar axoneme may correspond to two opposite of their tilts. The stable nil/low amplitude shear points that we had characterized along the flagellum allowed us to describe their axoneme as a series of modules [Cibert, 2002: Cell Motil. Cytoskeleton 51:89-111]. We observed that a nil/low shearing point moves along each module during beating when a new bend is created at the base of the flagellum [Cibert, 2001: Cell Motil. Cytoskeleton 49:161-175]. We propose that the structural gradients of isoforms of tubulin could be basic verniers that act as structural references for the axonemal machinery during the beating. This allowed us to interpret the axonemal organization as a segmented structure, that could be analyzed according to the complexion(1) theory and Shannon's information theory, which associate entropy and probability in the creation of information. The important consequence of this interpretation is that regulation of the axonemal machinery appears to be due to the upstream and downstream cross-talk between the axonemal segments that do not involve any dedicated integrative structure but depend on the energy level of the entire length of each module.

  2. Absence of canonical active chromatin marks in developmentally regulated genes

    PubMed Central

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  3. Tbx16 regulates hox gene activation in mesodermal progenitor cells

    PubMed Central

    Payumo, Alexander Y.; McQuade, Lindsey E.; Walker, Whitney J.; Yamazoe, Sayumi; Chen, James K.

    2016-01-01

    The transcription factor T-box 16 (Tbx16/Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. The mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic, and we describe here the application of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identify 124 Tbx16-regulated genes that are expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis, and somitogenesis. Unexpectedly, we observe that loss of Tbx16 function precociously activates posterior hox genes in MPCs, and overexpression of a single posterior hox gene is sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs. PMID:27376691

  4. Human DJ-1-specific Transcriptional Activation of Tyrosine Hydroxylase Gene*

    PubMed Central

    Ishikawa, Shizuma; Taira, Takahiro; Takahashi-Niki, Kazuko; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M. M.

    2010-01-01

    Loss-of-function mutation in the DJ-1 gene causes a subset of familial Parkinson disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. DJ-1 has multiple functions, including transcriptional regulation, and one of transcriptional target genes for DJ-1 is the tyrosine hydroxylase (TH) gene, the product of which is a key enzyme for dopamine biosynthesis. It has been reported that DJ-1 is a neuroprotective transcriptional co-activator that sequesters a transcriptional co-repressor polypyrimidine tract-binding protein-associated splicing factor (PSF) from the TH gene promoter. In this study, we found that knockdown of human DJ-1 by small interference RNA in human dopaminergic cell lines attenuated TH gene expression and 4-dihydroxy-l-phenylalanine production but that knockdown or knock-out of mouse DJ-1 in mouse cell lines or in mice did not affect such expression and TH activity. In reporter assays using the human TH gene promoter linked to the luciferase gene, stimulation of TH promoter activity was observed in human cells, but not mouse cells, that had been transfected with DJ-1. Although human DJ-1 and mouse DJ-1 were associated either with human or with mouse PSF, TH promoter activity inhibited by PSF was restored by human DJ-1 but not by mouse DJ-1. Chromatin immunoprecipitation assays revealed that the complex of PSF with DJ-1 bound to the human but not the mouse TH gene promoter. These results suggest a novel species-specific transcriptional regulation of the TH promoter by DJ-1 and one of the mechanisms for no reduction of TH in DJ-1-knock-out mice. PMID:20938049

  5. Human DJ-1-specific transcriptional activation of tyrosine hydroxylase gene.

    PubMed

    Ishikawa, Shizuma; Taira, Takahiro; Takahashi-Niki, Kazuko; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2010-12-17

    Loss-of-function mutation in the DJ-1 gene causes a subset of familial Parkinson disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. DJ-1 has multiple functions, including transcriptional regulation, and one of transcriptional target genes for DJ-1 is the tyrosine hydroxylase (TH) gene, the product of which is a key enzyme for dopamine biosynthesis. It has been reported that DJ-1 is a neuroprotective transcriptional co-activator that sequesters a transcriptional co-repressor polypyrimidine tract-binding protein-associated splicing factor (PSF) from the TH gene promoter. In this study, we found that knockdown of human DJ-1 by small interference RNA in human dopaminergic cell lines attenuated TH gene expression and 4-dihydroxy-L-phenylalanine production but that knockdown or knock-out of mouse DJ-1 in mouse cell lines or in mice did not affect such expression and TH activity. In reporter assays using the human TH gene promoter linked to the luciferase gene, stimulation of TH promoter activity was observed in human cells, but not mouse cells, that had been transfected with DJ-1. Although human DJ-1 and mouse DJ-1 were associated either with human or with mouse PSF, TH promoter activity inhibited by PSF was restored by human DJ-1 but not by mouse DJ-1. Chromatin immunoprecipitation assays revealed that the complex of PSF with DJ-1 bound to the human but not the mouse TH gene promoter. These results suggest a novel species-specific transcriptional regulation of the TH promoter by DJ-1 and one of the mechanisms for no reduction of TH in DJ-1-knock-out mice.

  6. Purification and characterization of the flagellar hook-basal body complex of Bacillus subtilis.

    PubMed

    Kubori, T; Okumura, M; Kobayashi, N; Nakamura, D; Iwakura, M; Aizawa, S I

    1997-04-01

    The flagellar hook-basal body (HBB) complex of the Gram-positive bacterium Bacillus subtilis was purified and analysed by electron microscopy, gel electrophoresis, and amino acid sequencing of the major component proteins. The purified HBB complex consisted of the inner (M and S) rings, a rod and a hook. There were no outer (P and L) rings that are found in Gram-negative bacteria. The hook was 15 nm in thickness and 70 nm in length, which is thinner and longer than the hook of Salmonella typhimurium. The hook protein had an apparent molecular mass of 29 kDa, and its N-terminal sequence was identical to that of B. subtilis FIgG, which was previously reported as a rod protein. The sequence of the reported FIgG protein of B. subtilis is more closely related to that of FIgE (the hook protein) rather than FIgG (the rod protein) of S. typhimurium, in spite of the difference of the apparent molecular masses between the two hook proteins (29 kDa versus 42 kDa). The hook-basal body contained six major proteins (with apparent molecular masses of 82, 59, 35, 32, 29 and 20 kDa) and two minor proteins (23 kDa and 13 kDa), which consistently appeared from preparation to preparation. The N-terminus of each of these proteins was sequenced. Comparison with protein databases revealed the following polypeptide-gene correspondences: 82 kDa, fIiF; 59 kDa, fIgK; 35 kDa, orfF; 32 kDa, yqhF; 23 kDa, orf3 of the fIaA locus; 20 kDa, fIgB and fIgC; 13 kDa, not determined. The band at 20 kDa was a mixture of FIgB and FIgC, as revealed by two-dimensional gel analysis. Characteristic features of B. subtilis HBB are discussed in comparison with those of S. typhimiurium.

  7. [Cascade of gene activation in Landouzy Dejerine muscular dystrophy].

    PubMed

    Belayew, A

    2010-01-01

    Our laboratory studies the Landouzy Dejerine muscular dystrophy or FSHD, a genetic disease which affects 7 in 100,000 individuals. The genetic defect is a deletion on chromosome 4 that decreases the copy number of a repeated DNA element, disturbs chromatin structure and activates the expression of neighbouring genes. The originality of our team has been to identify a gene within the repeated element itself and to show its activation in FSHD muscle cells. This gene expresses DUX4, a transcription factor that targets tens of genes, some of which express other transcription factors which target other genes, leading to a general deregulation. This DUX4-mediated cascade recapitulates by itself the major pathological features of FSHD: muscle atrophy, differentiation defect, oxidative stress... The homologous DUX4c gene located 42 kb from the repeat array expresses a protein that triggers myoblast proliferation. Its high expression level in severe cases of FSHD most probably contributes to the pathology by interfering with myoblast fusion with the muscle fibers at the last steps of muscle regeneration. We are performing global analyses of proteins and metabolites in healthy and FSHD myotubes (collaboration R Wattiez and JM Colet, UMONS) to identify abnormalities and their links with DUX4 or DUX4C.

  8. The neurotensin gene is a downstream target for Ras activation.

    PubMed Central

    Evers, B M; Zhou, Z; Celano, P; Li, J

    1995-01-01

    Ras regulates novel patterns of gene expression and the differentiation of various eukaryotic cell types. Stable transfection of Ha-ras into the human colon cancer line CaCo2 results in the morphologic differentiation to a small bowel phenotype. The purpose of our study was to determine whether the Ras regulatory pathway plays a role in the expression of the neurotensin gene (NT/N), a terminally differentiated endocrine product specifically localized in the gastrointestinal tract to the adult small bowel. We found that CaCo2-ras cells, but not parental CaCo2, express high levels of the human NT/N gene and, moreover, that this increase in gene expression is regulated at the level of transcription. Transfection experiments using NT/N-CAT mutation constructs identify the proximal 200 bp of NT/N flanking sequence as sufficient for maximal Ras-mediated NT/N reporter gene induction. Furthermore, a proximal AP-1/CRE motif is crucial for this Ras-mediated NT/N activation. Wild-type Ha-ras induces NT/N gene expression, albeit at lower levels than activated Ras; a dominant-negative Raf blocks this NT/N induction, suggesting that Raf lies down-stream of Ras in this pathway. In addition, postconfluent cultures of CaCo2 cells, which are differentiated to a small bowel phenotype, express the NT/N gene by 6 d after reaching confluency; this increase of NT/N expression is associated with concomitant increases of cellular p21ras protein. We conclude that Ras (both wild-type and activated) enhances expression of the NT/N gene in the gut-derived CaCo2 cell line, suggesting an important role for the Ras signaling pathway in NT/N gene transcription. Our results underscore the possibility that tissue-specific genes (such as NT/N) expressed in distinct subpopulations of the gut may be subject to Ras regulation. Finally, we speculate that the NT/N gene and the CaCo2 and CaCo2-ras cell systems will provide unique models to further define the cellular mechanisms leading to mammalian

  9. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode.

    PubMed

    Beznosov, Sergei N; Veluri, Pavan S; Pyatibratov, Mikhail G; Chatterjee, Abhijit; MacFarlane, Douglas R; Fedorov, Oleg V; Mitra, Sagar

    2015-01-13

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g(-1) after 50 cycles and with high rate capability, delivering 770 mAh g(-1) at 5 A g(-1) (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.

  10. The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman

    2013-11-01

    In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.

  11. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode

    NASA Astrophysics Data System (ADS)

    Beznosov, Sergei N.; Veluri, Pavan S.; Pyatibratov, Mikhail G.; Chatterjee, Abhijit; Macfarlane, Douglas R.; Fedorov, Oleg V.; Mitra, Sagar

    2015-01-01

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g-1 after 50 cycles and with high rate capability, delivering 770 mAh g-1 at 5 A g-1 (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.

  12. Magnetite-Binding Flagellar Filaments Displaying the MamI Loop Motif.

    PubMed

    Bereczk-Tompa, Éva; Pósfai, Mihály; Tóth, Balázs; Vonderviszt, Ferenc

    2016-11-03

    This work aimed at developing a novel method for fabricating 1 D magnetite nanostructures with the help of mutated flagellar filaments. We constructed four different flagellin mutants displaying magnetite-binding motifs: two contained fragments of magnetosome-associated proteins from magnetotactic bacteria (MamI and Mms6), and synthetic sequences were used for the other two. A magnetic selection method identified the MamI mutant as having the highest binding affinity to magnetite. Filaments built from MamI loop-containing flagellin subunits were used as templates to form chains of magnetite nanoparticles along the filament by capturing them from suspension. Our study represents a proof-of-concept that flagellar filaments can be engineered to facilitate formation of 1 D magnetite nanostructures under ambient conditions. In addition, it proves the interaction between MamI and magnetite, with implications for the role of this protein in magnetotactic bacteria.

  13. Amphipathic helical ordering of the flagellar secretion signal of Salmonella flagellin.

    PubMed

    Tőke, Orsolya; Vonderviszt, Ferenc

    2016-08-05

    Export of external flagellar proteins requires a signal located within their N-terminal disordered part, however, these regions do not share any significant sequence similarity suggesting that the secondary/tertiary structure might be important for recognition by the export gate. NMR experiments were performed to reveal the conformational properties of the flagellin signal sequence in vitro. It assumed a largely disordered fluctuating structure in aqueous environment, but acquired a folded structure containing an amphipathic helical portion in 50% MeOH or upon addition of SDS micelles which are known to promote hydrophobic interactions. Our observations raise the possibility that the signal sequence may partially undergo amphipathic helical ordering upon interaction with the recognition unit of the flagellar export machinery in a similar way as revealed for protein import into intracellular eukaryotic organelles mediated by targeting signals of high diversity.

  14. Flagellar filament bio-templated inorganic oxide materials – towards an efficient lithium battery anode

    PubMed Central

    Beznosov, Sergei N.; Veluri, Pavan S.; Pyatibratov, Mikhail G.; Chatterjee, Abhijit; MacFarlane, Douglas R.; Fedorov, Oleg V.; Mitra, Sagar

    2015-01-01

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g−1 after 50 cycles and with high rate capability, delivering 770 mAh g−1 at 5 A g−1 (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future. PMID:25583370

  15. Transcriptional activation of virulence genes of Rhizobium etli.

    PubMed

    Wang, Luyao; Lacroix, Benoît; Guo, Jianhua; Citovsky, Vitaly

    2017-01-09

    Recently, Rhizobium etli has emerged, in addition to Agrobacterium spp., as a prokaryotic species that encodes a functional machinery for DNA transfer to plant cells. To understand this R. etli-mediated genetic transformation, it would be useful to define how its vir genes respond to the host plants. Here, we explored the transcriptional activation of the vir genes contained on the R. etli p42a plasmid. Using a reporter construct harboring lacZ under the control of the R. etli virE promoter, we showed that the signal phenolic molecule acetosyringone (AS) induced R. etli vir gene expression both in R. etli and in A. tumefaciens background. Furthermore, in both bacterial backgrounds, the p42a plasmid also promoted plant genetic transformation with a reporter T-DNA. Importantly, the R. etli vir genes were transcriptionally activated by AS in a bacterial species-specific fashion in regard to the VirA/VirG signal sensor system, and this activation was induced by signals from the natural host species of this bacterium, but not from non-host plants. Early kinetics of transcriptional activation of the major vir genes of R. etli also revealed several features distinct from those known for A. tumefaciens: the expression of the virG gene reached saturation relatively quickly, and virB2, which in R. etli is located outside of the virB operon, was expressed only at low levels and did not respond to AS. These differences in vir gene transcription may contribute to the lower efficiency of T-DNA transfer of R. etli p42a versus pTiC58 of A. tumefaciens IMPORTANCE: The region encoding homologs of Agrobacterium tumefaciens virulence genes in the Rhizobium etli CE3 p42a plasmid was the first endogenous virulence system encoded by a non-Agrobacterium species demonstrated to be functional in DNA transfer and stable integration into plant cell genome. In this study, we explore the transcriptional regulation and induction of virulence genes in R. etli and show similarities and differences

  16. RNA activation of haploinsufficient Foxg1 gene in murine neocortex

    PubMed Central

    Fimiani, Cristina; Goina, Elisa; Su, Qin; Gao, Guangping; Mallamaci, Antonello

    2016-01-01

    More than one hundred distinct gene hemizygosities are specifically linked to epilepsy, mental retardation, autism, schizophrenia and neuro-degeneration. Radical repair of these gene deficits via genome engineering is hardly feasible. The same applies to therapeutic stimulation of the spared allele by artificial transactivators. Small activating RNAs (saRNAs) offer an alternative, appealing approach. As a proof-of-principle, here we tested this approach on the Rett syndrome-linked, haploinsufficient, Foxg1 brain patterning gene. We selected a set of artificial small activating RNAs (saRNAs) upregulating it in neocortical precursors and their derivatives. Expression of these effectors achieved a robust biological outcome. saRNA-driven activation (RNAa) was limited to neural cells which normally express Foxg1 and did not hide endogenous gene tuning. saRNAs recognized target chromatin through a ncRNA stemming from it. Gene upregulation required Ago1 and was associated to RNApolII enrichment throughout the Foxg1 locus. Finally, saRNA delivery to murine neonatal brain replicated Foxg1-RNAa in vivo. PMID:27995975

  17. Linear topology confers in vivo gene transfer activity to polyethylenimines.

    PubMed

    Brissault, B; Leborgne, C; Guis, C; Danos, O; Cheradame, H; Kichler, A

    2006-01-01

    Although polyethylenimines (PEIs) are frequently used transfection agents, it is still unclear which of their properties are required for efficient gene delivery. This is even more striking when working in vivo since some PEIs are able to generate significant gene expression, whereas others are not. To facilitate a rational development of compounds with improved transfection activities, studies aimed at identifying the properties involved in the transfection process seem indispensable. In the present work, we investigated how transfection with linear PEI of 22 kDa allows for high reporter gene expression in lungs after intravenous injection, whereas the branched PEI of 25 kDa does not. To this end, we synthesized L-PEI derivatives that are intermediates between linear and branched PEIs. Our results show that the topology plays a crucial role in obtaining in vivo reporter gene expression, whereas the content of primary, secondary, and tertiary amines is only of minor importance.

  18. A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes.

    PubMed Central

    Gagnon, C; White, D; Huitorel, P; Cosson, J

    1994-01-01

    To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes. Images PMID:7841521

  19. The RABL5 homolog IFT22 regulates the cellular pool size and the amount of IFT particles partitioned to the flagellar compartment in Chlamydomonas reinhardtii.

    PubMed

    Silva, David A; Huang, Xiaomeng; Behal, Robert H; Cole, Douglas G; Qin, Hongmin

    2012-01-01

    Cilia and flagella, sensory and motile structures protruding from the cell body, rely on the continuous bidirectional traffic of intraflagellar transport (IFT) particles to ferry flagellar precursors into flagella for assembly. Cells synthesize a large pool of IFT particle proteins in the cell body, but only a small portion engages in active transport within the flagella at any given time. The atypical small G protein Rab-like 5 (RABL5) has been shown to move in an IFT-like manner in the flagella, but its function in ciliogenesis is controversial. In this report, we demonstrate that IFT22, the Chlamydomonas reinhardtii homolog of RABL5, is a bona fide IFT particle complex B subunit. Although the amount of IFT22 remains unaffected by depletion of either complex A or B, depletion of IFT22 leads to a smaller pool of both complex A and B. Strikingly, the smaller cellular pool of IFT particles does not lead to a reduced distribution of IFT particles to flagella. Instead, the amount of IFT particle proteins, including IFT22 itself, increase in the flagella. Moreover, cells over-expressing IFT22 also accumulate IFT particles in their flagella. Taken together, these data indicate that, in C. reinhardtii, IFT22 controls the cellular levels of both complex A and B, thus plays a critical role in determining the cellular availability of IFT particles. In addition, although IFT22 may not directly carry any precursors for flagellar assembly, it controls how many IFT particles participate in ferrying precursors into flagella.

  20. Bio-Hybrid Micro/Nanodevices Powered by Flagellar Motor: Challenges and Strategies

    PubMed Central

    Kim, Jin-Woo; Tung, Steve

    2015-01-01

    Molecular motors, which are precision engineered by nature, offer exciting possibilities for bio-hybrid engineered systems. They could enable real applications ranging from micro/nano fluidics, to biosensing, to medical diagnoses. This review describes the fundamental biological insights and fascinating potentials of these remarkable sensing and actuation machines, in particular, bacterial flagellar motors, as well as their engineering perspectives with regard to applications in bio-engineered hybrid systems. PMID:26284237

  1. A solid-state control system for dynein-based ciliary/flagellar motility

    PubMed Central

    2013-01-01

    Ciliary and flagellar beating requires the coordinated action of multiple dyneins with different enzymatic and motor properties. In this issue, Yamamoto et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201211048) identify the MIA (modifier of inner arms) complex within the Chlamydomonas reinhardtii axoneme that physically links to a known regulatory structure and provides a signaling conduit from the radial spokes to an inner arm dynein essential for waveform determination. PMID:23569213

  2. Analysis of flagellar bending in hamster spermatozoa: characterization of an effective stroke.

    PubMed

    Kinukawa, Masashi; Ohmuro, Junko; Baba, Shoji A; Murashige, Sunao; Okuno, Makoto; Nagata, Masao; Aoki, Fugaku

    2005-12-01

    The mechanism by which flagella generate the propulsive force for movement of hamster spermatozoa was analyzed quantitatively. Tracing points positioned 30, 60, 90, and 120 microm from the head-midpiece junction on the flagellum revealed that they all had zigzag trajectories. These points departed from and returned to the line that crossed the direction of progression. They moved along the concave side (but not the convex side) of the flagellar envelope that was drawn by tracing the trajectory of the entire flagellum. To clarify this asymmetry, the bending rate was analyzed by measuring the curvatures of points 30, 60, 90, and 120 microm from the head-midpiece junction. The bending rate was not constant through the cycle of flagellar bending. The rate was higher when bending was in the direction described by the curve of the hook-shaped head (defined as a principal bend [P-bend]) to the opposite side (R-bend). We measured a lower bending rate in the principal direction (R-bend to P-bend). To identify the point at which the propulsive force is generated efficiently within the cycle of flagellar bending, we calculated the propulsive force generated at each point on the flagellum. The value of the propulsive force was positive whenever the flagellum bent from an R-bend to a P-bend (when the bending rate was lowest). By contrast, the propulsive force value was zero or negative when the flagellum bent in the other direction (when the bending rate was higher). These results indicate that flagellar bending in hamster spermatozoa produces alternate effective and ineffective strokes during propulsion.

  3. Function of the conserved FHIPEP domain of the flagellar type III export apparatus, protein FlhA.

    PubMed

    Barker, Clive S; Inoue, Tomoharu; Meshcheryakova, Irina V; Kitanobo, Seiya; Samatey, Fadel A

    2016-04-01

    The Type III flagellar protein export apparatus of bacteria consists of five or six membrane proteins, notably FlhA, which controls the export of other proteins and is homologous to the large family of FHIPEP export proteins. FHIPEP proteins contain a highly-conserved cytoplasmic domain. We mutagenized the cloned Salmonella flhA gene for the 692 amino acid FlhA, changing a single, conserved amino acid in the 68-amino acid FHIPEP region. Fifty-two mutations at 30 positions mostly led to loss of motility and total disappearance of microscopically visible flagella, also Western blot protein/protein hybridization showed no detectable export of hook protein and flagellin. There were two exceptions: a D199A mutant strain, which produced short-stubby flagella; and a V151L mutant strain, which did not produce flagella and excreted mainly un-polymerized hook protein. The V151L mutant strain also exported a reduced amount of hook-cap protein FlgD, but when grown with exogenous FlgD it produced polyhooks and polyhook-filaments. A suppressor mutant in the cytoplasmic domain of the export apparatus membrane protein FlhB rescued export of hook-length control protein FliK and facilitated growth of full-length flagella. These results suggested that the FHIPEP region is part of the gate regulating substrate entry into the export apparatus pore.

  4. DNA Adenine Methylation Regulates Virulence Gene Expression in Salmonella enterica Serovar Typhimurium▿

    PubMed Central

    Balbontín, Roberto; Rowley, Gary; Pucciarelli, M. Graciela; López-Garrido, Javier; Wormstone, Yvette; Lucchini, Sacha; García-del Portillo, Francisco; Hinton, Jay C. D.; Casadesús, Josep

    2006-01-01

    Transcriptomic analyses during growth in Luria-Bertani medium were performed in strain SL1344 of Salmonella enterica serovar Typhimurium and in two isogenic derivatives lacking Dam methylase. More genes were repressed than were activated by Dam methylation (139 versus 37). Key genes that were differentially regulated by Dam methylation were verified independently. The largest classes of Dam-repressed genes included genes belonging to the SOS regulon, as previously described in Escherichia coli, and genes of the SOS-inducible Salmonella prophages ST64B, Gifsy-1, and Fels-2. Dam-dependent virulence-related genes were also identified. Invasion genes in pathogenicity island SPI-1 were activated by Dam methylation, while the fimbrial operon std was repressed by Dam methylation. Certain flagellar genes were repressed by Dam methylation, and Dam− mutants of S. enterica showed reduced motility. Altered expression patterns in the absence of Dam methylation were also found for the chemotaxis genes cheR (repressed by Dam) and STM3216 (activated by Dam) and for the Braun lipoprotein gene, lppB (activated by Dam). The requirement for DNA adenine methylation in the regulation of specific virulence genes suggests that certain defects of Salmonella Dam− mutants in the mouse model may be caused by altered patterns of gene expression. PMID:16997949

  5. Characterization of ciliobrevin A mediated dynein ATPase inhibition on flagellar motility of Leishmania donovani.

    PubMed

    Reddy, G Srinivas; Mukhopadhyay, Aakash Gautam; Dey, Chinmoy Sankar

    2017-04-04

    Axonemal dyneins are members of AAA+ proteins involved in force generation and are responsible for flagellar motility in eukaryotes. In this study, we characterized the effects of ciliobrevin A (CbA), a dynein ATPase inhibitor, on flagella driven motility of the protozoan parasite Leishmania donovani. Using fast-capture video microscopy, we observed that CbA decreased flagellar beat frequency of swimming parasites in a concentration-dependent manner. Beat frequency of live and reactivated L. donovani decreased by approximately 89% and 41% respectively in the presence of 250μM CbA. This inhibition was lost when CbA was removed, suggesting its effects were reversible. CbA also altered wavelength and amplitude of the flagellum of live parasites. Waveform analysis of live and reactivated L. donovani revealed that CbA significantly affected flagellar waveform by inducing non-uniform bends with the flagellum beating away from the cell axis. These results suggest that CbA sensitive dynein ATPases possibly are responsible for power generation and waveform maintenance of the flagellum of L. donovani. This ability to inhibit axonemal dyneins also emphasizes the use of dynein inhibitors as valuable tools in studying functional roles of axonemal dyneins of flagellated eukaryotes.

  6. Structure and function of the bi-directional bacterial flagellar motor.

    PubMed

    Morimoto, Yusuke V; Minamino, Tohru

    2014-02-18

    The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electrochemical potential difference of protons across the cytoplasmic membrane. The flagellar motor consists of a rotor made of FliF, FliG, FliM and FliN and a dozen stators consisting of MotA and MotB. FliG, FliM and FliN also act as a molecular switch, enabling the motor to spin in both counterclockwise and clockwise directions. Each stator is anchored to the peptidoglycan layer through the C-terminal periplasmic domain of MotB and acts as a proton channel to couple the proton flow through the channel with torque generation. Highly conserved charged residues at the rotor-stator interface are required not only for torque generation but also for stator assembly around the rotor. In this review, we will summarize our current understanding of the structure and function of the proton-driven bacterial flagellar motor.

  7. Structure and Function of the Bi-Directional Bacterial Flagellar Motor

    PubMed Central

    Morimoto, Yusuke V.; Minamino, Tohru

    2014-01-01

    The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electrochemical potential difference of protons across the cytoplasmic membrane. The flagellar motor consists of a rotor made of FliF, FliG, FliM and FliN and a dozen stators consisting of MotA and MotB. FliG, FliM and FliN also act as a molecular switch, enabling the motor to spin in both counterclockwise and clockwise directions. Each stator is anchored to the peptidoglycan layer through the C-terminal periplasmic domain of MotB and acts as a proton channel to couple the proton flow through the channel with torque generation. Highly conserved charged residues at the rotor–stator interface are required not only for torque generation but also for stator assembly around the rotor. In this review, we will summarize our current understanding of the structure and function of the proton-driven bacterial flagellar motor. PMID:24970213

  8. Flagellar cells and ciliary cells in the renal tubule of elasmobranchs.

    PubMed

    Lacy, E R; Luciano, L; Reale, E

    1989-01-01

    Flagella or cilia are present on most epithelial cells in the renal tubule of elasmobranch fishes (little skate, spiny dogfish, smooth dogfish, Atlantic sharpnose, scalloped hammerhead, cow-nosed ray). Flagellar cells, those with numerous flagella ordered in one, two, or more rows on the luminal surface, are shown here for the first time in a vertebrate. The flagellar cells are intercalated among other epithelial cells, each bearing a single cilium, from Bowman's capsule to the third subdivision of the intermediate segment of the nephron. The flagella form undulated ribbons up to 55 microns long. In every ribbon the axis of the central pair of microtubules in the axoneme is oriented parallel to the long axis of the flagellar row. This suggests a beat perpendicular to these two axes. The arrangement of the flagella in ribbons most likely promotes movement of glomerular filtrate down the renal tubule. Cells bearing numerous cilia occur in the large collecting ducts of spiny dogfish but without apparent preferential orientation of the cilia.

  9. Correlation between supercoiling and conformational motions of the bacterial flagellar filament.

    PubMed

    Stadler, Andreas M; Unruh, Tobias; Namba, Keiichi; Samatey, Fadel; Zaccai, Giuseppe

    2013-11-05

    The bacterial flagellar filament is a very large macromolecular assembly of a single protein, flagellin. Various supercoiled states of the filament exist, which are formed by two structurally different conformations of flagellin in different ratios. We investigated the correlation between supercoiling of the protofilaments and molecular dynamics in the flagellar filament using quasielastic and elastic incoherent neutron scattering on the picosecond and nanosecond timescales. Thermal fluctuations in the straight L- and R-type filaments were measured and compared to the resting state of the wild-type filament. Amplitudes of motion on the picosecond timescale were found to be similar in the different conformational states. Mean-square displacements and protein resilience on the 0.1 ns timescale demonstrate that the L-type state is more flexible and less resilient than the R-type, whereas the wild-type state lies in between. Our results provide strong support that supercoiling of the protofilaments in the flagellar filament is determined by the strength of molecular forces in and between the flagellin subunits.

  10. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold.

    PubMed

    Beeby, Morgan; Ribardo, Deborah A; Brennan, Caitlin A; Ruby, Edward G; Jensen, Grant J; Hendrixson, David R

    2016-03-29

    Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes.

  11. Flagellar phenotypic plasticity in volvocalean algae correlates with Péclet number.

    PubMed

    Solari, Cristian A; Drescher, Knut; Ganguly, Sujoy; Kessler, John O; Michod, Richard E; Goldstein, Raymond E

    2011-10-07

    Flagella-generated fluid stirring has been suggested to enhance nutrient uptake for sufficiently large micro-organisms, and to have played a role in evolutionary transitions to multicellularity. A corollary to this predicted size-dependent benefit is a propensity for phenotypic plasticity in the flow-generating mechanism to appear in large species under nutrient deprivation. We examined four species of volvocalean algae whose radii and flow speeds differ greatly, with Péclet numbers (Pe) separated by several orders of magnitude. Populations of unicellular Chlamydomonas reinhardtii and one- to eight-celled Gonium pectorale (Pe ∼ 0.1-1) and multicellular Volvox carteri and Volvox barberi (Pe ∼ 100) were grown in diluted and undiluted media. For C. reinhardtii and G. pectorale, decreasing the nutrient concentration resulted in smaller cells, but had no effect on flagellar length and propulsion force. In contrast, these conditions induced Volvox colonies to grow larger and increase their flagellar length, separating the somatic cells further. Detailed studies on V. carteri found that the opposing effects of increasing beating force and flagellar spacing balance, so the fluid speed across the colony surface remains unchanged between nutrient conditions. These results lend further support to the hypothesized link between the Péclet number, nutrient uptake and the evolution of biological complexity in the Volvocales.

  12. Identification and Validation of Novel Chromosomal Integration and Expression Loci in Escherichia coli Flagellar Region 1

    PubMed Central

    Juhas, Mario; Ajioka, James W.

    2015-01-01

    Escherichia coli is used as a chassis for a number of Synthetic Biology applications. The lack of suitable chromosomal integration and expression loci is among the main hurdles of the E. coli engineering efforts. We identified and validated chromosomal integration and expression target sites within E. coli K12 MG1655 flagellar region 1. We analyzed five open reading frames of the flagellar region 1, flgA, flgF, flgG, flgI, and flgJ, that are well-conserved among commonly-used E. coli strains, such as MG1655, W3110, DH10B and BL21-DE3. The efficiency of the integration into the E. coli chromosome and the expression of the introduced genetic circuit at the investigated loci varied significantly. The integrations did not have a negative impact on growth; however, they completely abolished motility. From the investigated E. coli K12 MG1655 flagellar region 1, flgA and flgG are the most suitable chromosomal integration and expression loci. PMID:25816013

  13. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching

    SciTech Connect

    Lee, Lawrence K.; Ginsburg, Michael A.; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela

    2010-09-13

    The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.

  14. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins

    NASA Astrophysics Data System (ADS)

    Namdeo, S.; Onck, P. R.

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  15. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells

    PubMed Central

    Bukatin, Anton; Kukhtevich, Igor; Stoop, Norbert; Dunkel, Jörn; Kantsler, Vasily

    2015-01-01

    Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream swimming of mammalian sperm cells along solid surfaces, suggesting a robust physical mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself relative to an ambient flow is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments at different shear rates and viscosities. Using a 3D reconstruction algorithm to identify the flagellar beat patterns causing left or right turning, we present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this 3D analysis uncovers ambidextrous flagellar waveforms and shows that the cell’s turning direction is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror symmetry in the midpiece section, likely arising from a buckling instability. These results challenge current theoretical models of sperm locomotion. PMID:26655343

  16. Flagellar biosynthesis exerts temporal regulation of secretion of specific Campylobacter jejuni colonization and virulence determinants.

    PubMed

    Barrero-Tobon, Angelica M; Hendrixson, David R

    2014-09-01

    The Campylobacter jejuni flagellum exports both proteins that form the flagellar organelle for swimming motility and colonization and virulence factors that promote commensal colonization of the avian intestinal tract or invasion of human intestinal cells respectively. We explored how the C. jejuni flagellum is a versatile secretory organelle by examining molecular determinants that allow colonization and virulence factors to exploit the flagellum for their own secretion. Flagellar biogenesis was observed to exert temporal control of secretion of these proteins, indicating that a bolus of secretion of colonization and virulence factors occurs during hook biogenesis with filament polymerization itself reducing secretion of these factors. Furthermore, we found that intramolecular and intermolecular requirements for flagellar-dependent secretion of these proteins were most reminiscent to those for flagellin secretion. Importantly, we discovered that secretion of one colonization and virulence factor, CiaI, was not required for invasion of human colonic cells, which counters previous hypotheses for how this protein functions during invasion. Instead, secretion of CiaI was essential for C. jejuni to facilitate commensal colonization of the natural avian host. Our work provides insight into the versatility of the bacterial flagellum as a secretory machine that can export proteins promoting diverse biological processes.

  17. Structure of Salmonella FlhE, conserved member of a flagellar Type III secretion operon

    DOE PAGES

    Lee, Jaemin; Monzingo, Arthur F.; Keatinge-Clay, Adrian T.; ...

    2014-12-26

    In this paper, the bacterial flagellum is assembled by a multicomponent transport apparatus categorized as a type III secretion system. The secretion of proteins that assemble into the flagellum is driven by the proton motive force. The periplasmic protein FlhE is a member of the flhBAE operon in the majority of bacteria where FlhE is found. FlhA and FlhB are established components of the flagellar type III secretion system. The absence of FlhE results in a proton leak through the flagellar system, inappropriate secretion patterns, and cell death, indicating that FlhE regulates an important aspect of proper flagellar biosynthesis. Wemore » isolated FlhE from the periplasm of Salmonella and solved its structure to 1.5 Å resolution. The structure reveals a β-sandwich fold, with no close structural homologs. Finally, possible roles of FlhE, including that of a chaperone, are discussed.« less

  18. Activity-Regulated Genes as Mediators of Neural Circuit Plasticity

    PubMed Central

    Leslie, Jennifer H.; Nedivi, Elly

    2011-01-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Many electrophysiological and molecular mechanisms are common to the seemingly diverse types of activity-dependent functional adaptation that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. They fine-tune brain circuits by strengthening or weakening synaptic connections or by altering synapse numbers. Their effects are further modulated by posttranscriptional regulatory mechanisms, often also dependent on activity, that control activity-regulated gene transcript and protein function. Thus, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. PMID:21601615

  19. Transcriptional activation of cloned human beta-globin genes by viral immediate-early gene products.

    PubMed

    Green, M R; Treisman, R; Maniatis, T

    1983-11-01

    When the human beta-globin gene is transfected into Hela cells, no beta-globin RNA is detected unless the gene is linked to a viral transcription enhancer. In this paper we show that trans-acting adenovirus and herpesvirus (pseudorabies) transcriptional regulatory proteins can circumvent this enhancer requirement for detectable beta-globin transcription in transient expression assays. The viral gene products can be provided by constitutively expressed, integrated viral genes in established cell lines, by viral infection of permissive cells, or by transfection of cells with bacterial plasmids carrying the viral immediate-early genes. These results demonstrate the utility of transient expression assays for studying regulatory mechanisms involving trans-acting factors. Analysis of beta-globin promoter mutants indicates that between 75 and 128 bp of sequence 5' to the mRNA cap site is required for enhancer-dependent transcription in Hela cells. In contrast, beta-globin transcription in the presence of viral immediate-early gene products requires only 36 bp of 5'-flanking sequence, which includes the TATA box. Thus both cis and trans-acting viral factors activate beta-globin gene transcription in transient expression experiments, but the mechanisms by which they act appear to be fundamentally different.

  20. Metallothionein gene activation in the earthworm (Lumbricus rubellus).

    PubMed

    Höckner, M; Dallinger, R; Stürzenbaum, S R

    2015-05-08

    In order to cope with changing environmental conditions, organisms require highly responsive stress mechanisms. Heavy metal stress is handled by metallothioneins (MTs), the regulation of which is evolutionary conserved in insects and vertebrates and involves the binding of metal transcription factor 1 (MTF-1) to metal responsive elements (MREs) positioned in the promoter of MT genes. However, in most invertebrate phyla, the transcriptional activation of MTs is different and the exact mechanism is still unknown. Interestingly, although MREs are typically present also in invertebrate MT gene promoters, MTF-1 is notably absent. Here we use Lumbricus rubellus, the red earthworm, to study the elusive mechanism of wMT-2 activation in control and Cd-exposed conditions. EMSA and DNase I footprinting approaches were used to pinpoint functional binding sites within the wMT-2 promoter region, which revealed that the cAMP responsive element (CRE) is a promising candidate which may act as a transcriptional activator of invertebrate MTs.

  1. "Active" cancer immunotherapy by anti-Met antibody gene transfer.

    PubMed

    Vigna, Elisa; Pacchiana, Giovanni; Mazzone, Massimiliano; Chiriaco, Cristina; Fontani, Lara; Basilico, Cristina; Pennacchietti, Selma; Comoglio, Paolo M

    2008-11-15

    Gene therapy provides a still poorly explored opportunity to treat cancer by "active" immunotherapy as it enables the transfer of genes encoding antibodies directed against specific oncogenic proteins. By a bidirectional lentiviral vector, we transferred the cDNA encoding the heavy and light chains of a monoclonal anti-Met antibody (DN-30) to epithelial cancer cells. In vitro, the transduced cells synthesized and secreted correctly assembled antibodies with the expected high affinity, inducing down-regulation of the Met receptor and strong inhibition of the invasive growth response. The inhibitory activity resulted (a) from the interference of the antibody with the Met receptor intracellular processing ("cell autonomous activity," in cis) and (b) from the antibody-induced cleavage of Met expressed at the cell surface ("bystander effect," in trans). The monoclonal antibody gene transferred into live animals by systemic administration or by local intratumor delivery resulted in substantial inhibition of tumor growth. These data provide proof of concept both for targeting the Met receptor and for a gene transfer-based immunotherapy strategy.

  2. Periplasmic flagellar export apparatus protein, FliH, is involved in post-transcriptional regulation of FlaB, motility and virulence of the relapsing fever spirochete Borrelia hermsii.

    PubMed

    Guyard, Cyril; Raffel, Sandra J; Schrumpf, Merry E; Dahlstrom, Eric; Sturdevant, Daniel; Ricklefs, Stacy M; Martens, Craig; Hayes, Stanley F; Fischer, Elizabeth R; Hansen, Bryan T; Porcella, Stephen F; Schwan, Tom G

    2013-01-01

    Spirochetes are bacteria characterized in part by rotating periplasmic flagella that impart their helical or flat-wave morphology and motility. While most other bacteria rely on a transcriptional cascade to regulate the expression of motility genes, spirochetes employ post-transcriptional mechanism(s) that are only partially known. In the present study, we characterize a spontaneous non-motile mutant of the relapsing fever spirochete Borrelia hermsii that was straight, non-motile and deficient in periplasmic flagella. We used next generation DNA sequencing of the mutant's genome, which when compared to the wild-type genome identified a 142 bp deletion in the chromosomal gene encoding the flagellar export apparatus protein FliH. Immunoblot and transcription analyses showed that the mutant phenotype was linked to the posttranscriptional deficiency in the synthesis of the major periplasmic flagellar filament core protein FlaB. Despite the lack of FlaB, the amount of FlaA produced by the fliH mutant was similar to the wild-type level. The turnover of the residual pool of FlaB produced by the fliH mutant was comparable to the wild-type spirochete. The non-motile mutant was not infectious in mice and its inoculation did not induce an antibody response. Trans-complementation of the mutant with an intact fliH gene restored the synthesis of FlaB, a normal morphology, motility and infectivity in mice. Therefore, we propose that the flagellar export apparatus protein regulates motility of B. hermsii at the post-transcriptional level by influencing the synthesis of FlaB.

  3. CRISPR RNA-guided activation of endogenous human genes.

    PubMed

    Maeder, Morgan L; Linder, Samantha J; Cascio, Vincent M; Fu, Yanfang; Ho, Quan H; Joung, J Keith

    2013-10-01

    Short guide RNAs (gRNAs) can direct catalytically inactive CRISPR-associated 9 nuclease (dCas9) to repress endogenous genes in bacteria and human cells. Here we show that single or multiple gRNAs can direct dCas9 fused to a VP64 transcriptional activation domain to increase expression of endogenous human genes. This proof-of-principle work shows that clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems can target heterologous effector domains to endogenous sites in human cells.

  4. Interplay between the localization and kinetics of phosphorylation in flagellar pole development of the bacterium Caulobacter crescentus.

    PubMed

    Tropini, Carolina; Huang, Kerwyn Casey

    2012-01-01

    Bacterial cells maintain sophisticated levels of intracellular organization that allow for signal amplification, response to stimuli, cell division, and many other critical processes. The mechanisms underlying localization and their contribution to fitness have been difficult to uncover, due to the often challenging task of creating mutants with systematically perturbed localization but normal enzymatic activity, and the lack of quantitative models through which to interpret subtle phenotypic changes. Focusing on the model bacterium Caulobacter crescentus, which generates two different types of daughter cells from an underlying asymmetric distribution of protein phosphorylation, we use mathematical modeling to investigate the contribution of the localization of histidine kinases to the establishment of cellular asymmetry and subsequent developmental outcomes. We use existing mutant phenotypes and fluorescence data to parameterize a reaction-diffusion model of the kinases PleC and DivJ and their cognate response regulator DivK. We then present a systematic computational analysis of the effects of changes in protein localization and abundance to determine whether PleC localization is required for correct developmental timing in Caulobacter. Our model predicts the developmental phenotypes of several localization mutants, and suggests that a novel strain with co-localization of PleC and DivJ could provide quantitative insight into the signaling threshold required for flagellar pole development. Our analysis indicates that normal development can be maintained through a wide range of localization phenotypes, and that developmental defects due to changes in PleC localization can be rescued by increased PleC expression. We also show that the system is remarkably robust to perturbation of the kinetic parameters, and while the localization of either PleC or DivJ is required for asymmetric development, the delocalization of one of these two components does not prevent

  5. Tumor suppressor genes are larger than apoptosis-effector genes and have more regions of active chromatin: Connection to a stochastic paradigm for sequential gene expression programs.

    PubMed

    Garcia, Marlene; Mauro, James A; Ramsamooj, Michael; Blanck, George

    2015-08-03

    Apoptosis- and proliferation-effector genes are substantially regulated by the same transactivators, with E2F-1 and Oct-1 being notable examples. The larger proliferation-effector genes have more binding sites for the transactivators that regulate both sets of genes, and proliferation-effector genes have more regions of active chromatin, i.e, DNase I hypersensitive and histone 3, lysine-4 trimethylation sites. Thus, the size differences between the 2 classes of genes suggest a transcriptional regulation paradigm whereby the accumulation of transcription factors that regulate both sets of genes, merely as an aspect of stochastic behavior, accumulate first on the larger proliferation-effector gene "traps," and then accumulate on the apoptosis effector genes, thereby effecting sequential activation of the 2 different gene sets. As IRF-1 and p53 levels increase, tumor suppressor proteins are first activated, followed by the activation of apoptosis-effector genes, for example during S-phase pausing for DNA repair. Tumor suppressor genes are larger than apoptosis-effector genes and have more IRF-1 and p53 binding sites, thereby likewise suggesting a paradigm for transcription sequencing based on stochastic interactions of transcription factors with different gene classes. In this report, using the ENCODE database, we determined that tumor suppressor genes have a greater number of open chromatin regions and histone 3 lysine-4 trimethylation sites, consistent with the idea that a larger gene size can facilitate earlier transcriptional activation via the inclusion of more transactivator binding sites.

  6. Redistribution and shedding of flagellar membrane glycoproteins visualized using an anti-carbohydrate monoclonal antibody and concanavalin A

    PubMed Central

    1986-01-01

    Two carbohydrate-binding probes, the lectin concanavalin A and an anti- carbohydrate monoclonal antibody designated FMG-1, have been used to study the distribution of their respective epitopes on the surface of Chlamydomonas reinhardtii, strain pf-18. Both of these ligands bind uniformly to the external surface of the flagellar membrane and the general cell body plasma membrane, although the labeling is more intense on the flagellar membrane. In addition, both ligands cross- react with cell wall glycoproteins. With respect to the flagellar membrane, both concanavalin A and the FMG-1 monoclonal antibody bind preferentially to the principal high molecular weight glycoproteins migrating with an apparent molecular weight of 350,000 although there is, in addition, cross-reactivity with a number of minor glycoproteins. Western blots of V-8 protease digests of the high molecular weight flagellar glycoproteins indicate that the epitopes recognized by the lectin and the antibody are both repeated multiple times within the glycoproteins and occur together, although the lectin and the antibody do not compete for the same binding sites. Incubation of live cells with the monoclonal antibody or lectin at 4 degrees C results in a uniform labeling of the flagellar surface; upon warming of the cells, these ligands are redistributed along the flagellar surface in a characteristic manner. All of the flagellar surface-bound antibody or lectin collects into a single aggregate at the tip of each flagellum; this aggregate subsequently migrates to the base of the flagellum, where it is shed into the medium. The rate of redistribution is temperature dependent and the glycoproteins recognized by these ligands co-redistribute with the lectin or monoclonal antibody. This dynamic flagellar surface phenomenon bears a striking resemblance to the capping phenomenon that has been described in numerous mammalian cell types. However, it occurs on a structure (the flagellum) that lacks most of the

  7. Rapid activation of the bivalent gene Sox21 requires displacement of multiple layers of gene-silencing machinery

    PubMed Central

    Chakravarthy, Harini; Ormsbee, Briana D.; Mallanna, Sunil K.; Rizzino, Angie

    2011-01-01

    The rapid formation of numerous tissues during development is highly dependent on the swift activation of key developmental regulators. Recent studies indicate that many key regulatory genes are repressed in embryonic stem cells (ESCs), yet poised for rapid activation due to the presence of both activating (H3K4 trimethylation) and repressive (H3K27 trimethylation) histone modifications (bivalent genes). However, little is known about bivalent gene regulation. In this study, we investigated the regulation of the bivalent gene Sox21, which is activated rapidly when ESCs differentiate in response to increases in Sox2. Chromatin immunoprecipitation demonstrated that prior to differentiation, the Sox21 gene is bound by a complex array of repressive and activating transcriptional machinery. Upon activation, all identified repressive machinery and histone modifications associated with the gene are lost, but the activating modifications and transcriptional machinery are retained. Notably, these changes do not occur when ESCs differentiate in response to retinoic acid. Moreover, ESCs lacking a functional PRC2 complex fail to activate this gene, apparently due to its association with other repressive complexes. Together, these findings suggest that bivalent genes, such as Sox21, are silenced by a complex set of redundant repressive machinery, which exit rapidly in response to appropriate differentiation signals.—Chakravarthy, H., Ormsbee, B. D., Mallanna, S. K., Rizzino, A. Rapid activation of the bivalent gene Sox21 requires displacement of multiple layers of gene-silencing machinery. PMID:20876214

  8. Novel Cationic Lipids with Enhanced Gene Delivery and Antimicrobial Activity

    PubMed Central

    Fein, David E.; Bucki, Robert; Byfield, Fitzroy; Leszczynska, Katarzyna; Janmey, Paul A.

    2010-01-01

    Cationic lipids facilitate plasmid delivery, and some cationic sterol-based compounds have antimicrobial activity because of their amphiphilic character. These dual functions are relevant in the context of local ongoing infection during intrapulmonary gene transfer for cystic fibrosis. The transfection activities of two cationic lipids, dexamethasone spermine (DS) and disubstituted spermine (D2S), were tested as individual components and mixtures in bovine aortic endothelial cells and A549 cells. The results showed a 3- to 7-fold improvement in transgene expression for mixtures of DS with 20 to 40 mol% D2S. D2S and coformulations with DS, dioleoyl phosphatidylethanolamine, and DNA exhibited potent bactericidal activity against Escherichia coli MG1655, Bacillus subtilis, and Pseudomonas aeruginosa PAO1, which was maintained in bronchoalveolar lavage fluid. Complete bacterial killing was demonstrated at ∼5 μM, including gene delivery formulations, with 2 orders of magnitude higher tolerance before eukaryotic membrane disruption (erythrocyte hemolysis). D2S also exhibited lipopolysaccharide (LPS) scavenging activity resulting in significant inhibition of LPS-mediated activation of human neutrophils with 85 and 65% lower interleukin-8 released at 12 and 24 h, respectively. Mixtures of DS and D2S can improve transfection activity over common lipofection reagents, and D2S has strong antimicrobial action suited for the suppression of bacterial-mediated inflammation. PMID:20573781

  9. Adaptation of muscle gene expression to changes in contractile activity

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Babij, P.; Thomason, D. B.; Wong, T. S.; Morrison, P. R.

    1987-01-01

    A review of the existing literature regarding the effects of different types of physical activities on the gene expression of adult skeletal muscles leads us to conclude that each type of exercise training program has, as a result, a different phenotype, which means that there are multiple mechanisms, each producing a unique phenotype. A portion of the facts which support this position is presented and interpreted here. [Abstract translated from the original French by NASA].

  10. Metronidazole activation and isolation of Clostridium acetobutylicum electron transport genes.

    PubMed Central

    Santangelo, J D; Jones, D T; Woods, D R

    1991-01-01

    An Escherichia coli F19 recA, nitrate reductase-deficient mutant was constructed by transposon mutagenesis and shown to be resistant to metronidazole. This mutant was a most suitable host for the isolation of Clostridium acetobutylicum genes on recombinant plasmids, which activated metronidazole and rendered the E. coli F19 strain sensitive to metronidazole. Twenty-five E. coli F19 clones containing different recombinant plasmids were isolated and classified into five groups on the basis of their sensitivity to metronidazole. The clones were tested for nitrate reductase, pyruvate-ferredoxin oxidoreductase, and hydrogenase activities. DNA hybridization and restriction endonuclease mapping revealed that four of the C. acetobutylicum insert DNA fragments on recombinant plasmids were linked in an 11.1-kb chromosomal fragment. DNA sequencing and amino acid homology studies indicated that this DNA fragment contained a flavodoxin gene which encoded a protein of 160 amino acids that activated metronidazole and made the E. coli F19 mutant very sensitive to metronidazole. The flavodoxin and hydrogenase genes which are involved in electron transfer systems were linked on the 11.1-kb DNA fragment from C. acetobutylicum. Images PMID:1991710

  11. Dynamics of the bacterial flagellar motor: the effects of stator compliance, back steps, temperature, and rotational asymmetry.

    PubMed

    Meacci, Giovanni; Lan, Ganhui; Tu, Yuhai

    2011-04-20

    The rotation of a bacterial flagellar motor (BFM) is driven by multiple stators tethered to the cell wall. Here, we extend a recently proposed power-stroke model to study the BFM dynamics under different biophysical conditions. Our model explains several key experimental observations and reveals their underlying mechanisms. 1), The observed independence of the speed at low load on the number of stators is explained by a force-dependent stepping mechanism that is independent of the strength of the stator tethering spring. Conversely, without force-dependent stepping, an unrealistically weak stator spring is required. 2), Our model with back-stepping naturally explains the observed absence of a barrier to backward rotation. Using the same set of parameters, it also explains BFM behaviors in the high-speed negative-torque regime. 3), From the measured temperature dependence of the maximum speed, our model shows that stator-stepping is a thermally activated process with an energy barrier. 4), The recently observed asymmetry in the torque-speed curve between counterclockwise- and clockwise-rotating BFMs can be quantitatively explained by the asymmetry in the stator-rotor interaction potentials, i.e., a quasilinear form for the counterclockwise motor and a quadratic form for the clockwise motor.

  12. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  13. Sensation-seeking genes and physical activity in youth.

    PubMed

    Wilkinson, A V; Gabriel, K P; Wang, J; Bondy, M L; Dong, Q; Wu, X; Shete, S; Spitz, M R

    2013-03-01

    Many studies examining genetic influences on physical activity (PA) have evaluated the impact of single nucleotide polymorphisms (SNPs) related to the development of lifestyle-related chronic diseases, under the hypothesis that they would be associated with PA. However, PA is a multidetermined behavior and associated with a multitude of health consequences. Thus, examining a broader range of candidate genes associated with a broader range of PA correlates may provide new insights into the genetic underpinnings of PA. In this study, we focus on one such correlate - sensation-seeking behavior. Participants (N = 1130 Mexican origin youth) provided a saliva sample and data on PA and sensation-seeking tendencies in 2008-2009. Participants were genotyped for 630 functional and tagging variants in the dopamine, serotonin and cannabinoid pathways. Overall 30% of participants (males - 37.6% and females - 22.0%) reported ≥60 min of PA on 5 of 7 days. After adjusting for gender, age and population stratification, and applying the Bayesian False Discovery Probability approach for assessing noteworthiness, four gene variants were significantly associated with PA. In a multivariable model, being male, having higher sensation-seeking tendencies and at least one copy of the minor allele for SNPs in angiotensin I-converting enzyme gene [ACE; rs8066276 odds ratio (OR) = 1.44; P = 0.012] and tryptophan hydroxylase 2 gene (TPH2; rs11615016 OR = 1.73; P = 0.021) were associated with increased likelihood of meeting PA recommendations. Participants with at least one copy of the minor allele for SNPs in synaptosomal-associated protein 25 gene (SNAP25; rs363035 OR = 0.53; P = 0.005) and cannabinoid receptor 1 gene (CNR1; rs6454672 OR = 0.62; P = 0.022) have decreased likelihood of meeting PA recommendations. Our findings extend current knowledge of the complex relationship between PA and possible genetic underpinnings.

  14. Flagellar apparatus of south-seeking many-celled magnetotactic prokaryotes.

    PubMed

    Silva, Karen Tavares; Abreu, Fernanda; Almeida, Fernando P; Keim, Carolina Neumann; Farina, Marcos; Lins, Ulysses

    2007-01-01

    Magnetotactic bacteria orient and migrate along geomagnetic field lines. Each cell contains membrane-enclosed, nano-scale, iron-mineral particles called magnetosomes that cause alignment of the cell in the geomagnetic field as the bacteria swim propelled by flagella. In this work we studied the ultrastructure of the flagellar apparatus in many-celled magnetotactic prokaryotes (MMP) that consist of several Gram-negative cells arranged radially around an acellular compartment. Flagella covered the organism surface, and were observed exclusively at the portion of each cell that faced the environment. The flagella were helical tubes never as long as a complete turn of the helix. Flagellar filaments varied in length from 0.9 to 3.8 micro m (average 2.4 +/- 0.5 micro m, n = 150) and in width from 12.0 to 19.5 nm (average 15.9 +/- 1.4 nm, n = 52), which is different from previous reports for similar microorganisms. At the base of the flagella, a curved hook structure slightly thicker than the flagellar filaments was observed. In freeze-fractured samples, macromolecular complexes about 50 nm in diameter, which possibly corresponded to part of the flagella basal body, were observed in both the P-face of the cytoplasmic membrane and the E-face of the outer membrane. Transmission electron microscopy showed that magnetosomes occurred in planar groups in the cytoplasm close and parallel to the organism surface. A striated structure, which could be involved in maintaining magnetosomes fixed in the cell, was usually observed running along magnetosome chains. The coordinated movement of the MMP depends on the interaction between the flagella of each cell with the flagella of adjacent cells of the microorganism.

  15. Analysis of the swimming activity of Pseudomonas aeruginosa by using photonic force microscope

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Han; Chang, Bo-Jui; Huang, Ying-Jung; Fan, Chia-Chieh; Peng, Hwei-Ling; Chi, Sien; Hsu, Long

    2005-08-01

    Swimming activity of flagella is a main factor of the motility of bacteria. Flagella expressed on the surface of bacterial species serve as a primary means of motility including swimming. We propose to use optical tweezers to analyze the swimming activity of bacteria. The sample bacteria in the work is Pseudomonas aeruginosa, and it is a gram-negative bacterium and often causes leading to burn wound infections, urinary-tract infections, and pneumonia. The single polar flagellum of P. aeruginosa has been demonstrated to be important virulence and colonization factor of this opportunistic pathogen. We demonstrate a gene to regulate the bacterial swimming activity in P. aeruginosa PAO1 by biological method. However, the change of flagellar morphology was not observed by electron microscopy analysis, suggesting that the gene regulates the flagellar rotation that could not be detected by biological method. PFM exhibits a spatial resolution of a few nanometers to detect the relative position of the probe at an acquisition rate over 1 MHz. By binding a probe such as a bead or a quantum dot on the flagella, we expect the rotation of the probe due to the flagella could be detected. It is expected that the study of the swimming activity of P. aeruginosa provide potent method for the pathogenic role of the flagella in P. aeruginosa.

  16. Modeling Torque Versus Speed, Shot Noise, and Rotational Diffusion of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Mora, Thierry; Yu, Howard; Wingreen, Ned S.

    2009-12-01

    We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the “knee”) is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.

  17. How Biophysics May Help Us Understand the Flagellar Motor of Bacteria Which Cause Infections.

    PubMed

    Baker, Matthew A B

    2016-01-01

    Motor proteins are molecules which convert chemical energy to mechanical work and are responsible for motility across all levels: for transport within a cell, for the motion of an individual cell in its surroundings, and for movement in multicellular aggregates, such as muscles. The bacterial flagellar motor is one of the canonical examples of a molecular complex made from several motor proteins, which self-assembles on demand and provides the locomotive force for bacteria. This locomotion provides a key aspect of bacteria's prevalence. Here, we outline the biophysics behind the assembly, the energetics, the switching and the rotation of this remarkable nanoscale electric motor that is Nature's first wheel.

  18. The effect of flagellar motor-rotor complexes on twitching motility in P. aeruginosa

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Utada, Andrew; Gibiansky, Maxsim; Xian, Wujing; Wong, Gerard

    2013-03-01

    P. aeruginosa is an opportunistic bacterium responsible for a broad range of biofilm infections. In order for biofilms to form, P. aeruginosa uses different types of surface motility. In the current understanding, flagella are used for swarming motility and type IV pili are used for twitching motility. The flagellum also plays important roles in initial surface attachment and in shaping the architectures of mature biofilms. Here we examine how flagella and pili interact during surface motility, by using cell tracking techniques. We show that the pili driven twitching motility of P. aeruginosa can be affected by the motor-rotor complexes of the flagellar system.

  19. Modeling torque versus speed, shot noise, and rotational diffusion of the bacterial flagellar motor.

    PubMed

    Mora, Thierry; Yu, Howard; Wingreen, Ned S

    2009-12-11

    We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the "knee") is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.

  20. A Delicate Nanoscale Motor Made by Nature—The Bacterial Flagellar Motor

    PubMed Central

    Xue, Ruidong; Ma, Qi

    2015-01-01

    The bacterial flagellar motor (BFM) is a molecular complex ca. 45 nm in diameter that rotates the propeller that makes nearly all bacteria swim. The motor self‐assembles out of ca. 20 different proteins and can not only rotate at up to 50 000 rpm, but can also switch rotational direction in milliseconds and navigate its environment to maneuver, on average, towards regions of greater benefit. The BFM is a pinnacle of evolution that informs and inspires the design of novel nanotechnology in the new era of synthetic biology. PMID:27980978

  1. Three faces of recombination activating gene 1 (RAG1) mutations.

    PubMed

    Patiroglu, Turkan; Akar, Himmet Haluk; Van Der Burg, Mirjam

    2015-12-01

    Severe combined immune deficiency (SCID) is a group of genetic disorder associated with development of T- and/or B-lymphocytes. Recombination-activating genes (RAG1/2) play a critical role on VDJ recombination process that leads to the production of a broad T-cell receptor (TCR) and B-cell receptor (BCR) repertoire in the development of T and B cells. RAG1/2 genes mutations result in various forms of primary immunodeficiency, ranging from classic SCID to Omenn syndrome (OS) to atypical SCID with such as granuloma formation and autoimmunity. Herein, we reported 4 patients with RAG1 deficiency: classic SCID was seen in two patients who presented with recurrent pneumonia and chronic diarrhoea, and failure to thrive. OS was observed in one patient who presented with chronic diarrhoea, skin rash, recurrent lower respiratory infections, and atypical SCID was seen in one patient who presented with Pyoderma gangrenosum (PG) and had novel RAG1 mutation.

  2. Transcriptional activation of ribosomal RNA genes during compensatory renal hypertrophy

    SciTech Connect

    Ouellette, A.J.; Moonka, R.; Zelenetz, A.; Malt, R.A.

    1986-05-01

    The overall rate of rDNA transcription increases by 50% during the first 24 hours of compensatory renal hypertrophy in the mouse. To study mechanisms of ribosome accumulation after uninephrectomy, transcription rates were measured in isolated kidneys by transcriptional runoff. /sup 32/P-labeled nascent transcripts were hybridized to blots containing linearized, denatured cloned rDNA, and hybridization was quantitated autoradiographically and by direct counting. Overall transcriptional activity of rDNA was increased by 30% above control levels at 6 hrs after nephrectomy and by 50% at 12, 18, and 24 hrs after operation. Hybridizing RNA was insensitive to inhibiby alpha-amanitin, and no hybridization was detected to vector DNA. Thus, accelerated rDNA transcription is one regulatory element in the accretion of ribosomes in renal growth, and the regulatory event is an early event. Mechanisms of activation may include enhanced transcription of active genes or induction of inactive DNA.

  3. A numerical study of the effects of fluid rheology and stroke kinematics on flagellar swimming in complex fluids

    NASA Astrophysics Data System (ADS)

    Li, Chuanbin; Guy, Robert; Thomases, Becca

    2016-11-01

    It is observed in experiments that as the fluid rheology is changed, Chlamydomonas reinhardtii exhibits changes in both flagellar kinematics and the swimming speed. To understand this phenomenon, we develop a computational model of the swimmer, using flagellar strokes fit from experimental data. We conduct numerical simulations by changing strokes and fluid rheology independently to dissect the effects of these two factors. We discover that stroke patterns extracted from viscoelastic fluids generate much lower stress and have higher efficiency at the cost of lower swimming speed. We also discover that higher fluid elasticity hinders swimming for a fixed stroke pattern.

  4. Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria.

    PubMed

    Pinnell, Lee J; Dunford, Eric; Ronan, Patrick; Hausner, Martina; Neufeld, Josh D

    2014-07-01

    Bacteria responsible for cellulose hydrolysis in situ are poorly understood, largely because of the relatively recent development of cultivation-independent methods for their detection and characterization. This study combined DNA stable-isotope probing (DNA-SIP) and metagenomics for identifying active bacterial communities that assimilated carbon from glucose and cellulose in Arctic tundra microcosms. Following DNA-SIP, bacterial fingerprint analysis of gradient fractions confirmed isotopic enrichment. Sequenced fingerprint bands and clone library analysis of 16S rRNA genes identified active bacterial taxa associated with cellulose-associated labelled DNA, including Bacteroidetes (Sphingobacteriales), Betaproteobacteria (Burkholderiales), Alphaproteobacteria (Caulobacteraceae), and Chloroflexi (Anaerolineaceae). We also compared glycoside hydrolase metagenomic profiles from bulk soil and heavy DNA recovered from DNA-SIP incubations. Active populations consuming [(13)C]glucose and [(13)C]cellulose were distinct, based on ordinations of light and heavy DNA. Metagenomic analysis demonstrated a ∼3-fold increase in the relative abundance of glycoside hydrolases in DNA-SIP libraries over bulk-soil libraries. The data also indicate that multiple displacement amplification introduced bias into the resulting metagenomic analysis. This research identified DNA-SIP incubation conditions for glucose and cellulose that were suitable for Arctic tundra soil and confirmed that DNA-SIP enrichment can increase target gene frequencies in metagenomic libraries.

  5. Mechanisms guiding Polycomb activities during gene silencing in Arabidopsis thaliana

    PubMed Central

    He, Chongsheng; Huang, Hai; Xu, Lin

    2013-01-01

    Polycomb group (PcG) proteins act in an evolutionarily conserved epigenetic pathway that regulates chromatin structures in plants and animals, repressing many developmentally important genes by modifying histones. PcG proteins can form at least two multiprotein complexes: Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2, respectively). The functions of Arabidopsis thaliana PRCs have been characterized in multiple stages of development and have diverse roles in response to environmental stimuli. Recently, the mechanism that precisely regulates Arabidopsis PcG activity was extensively studied. In this review, we summarize recent discoveries in the regulations of PcG at the three different layers: the recruitment of PRCs to specific target loci, the polyubiquitination and degradation of PRC2, and the antagonism of PRC2 activity by the Trithorax group proteins. Current knowledge indicates that the powerful activity of the PcG pathway is strictly controlled for specific silencing of target genes during plant development and in response to environmental stimuli. PMID:24312106

  6. Rapid activation of the bivalent gene Sox21 requires displacement of multiple layers of gene-silencing machinery.

    PubMed

    Chakravarthy, Harini; Ormsbee, Briana D; Mallanna, Sunil K; Rizzino, Angie

    2011-01-01

    The rapid formation of numerous tissues during development is highly dependent on the swift activation of key developmental regulators. Recent studies indicate that many key regulatory genes are repressed in embryonic stem cells (ESCs), yet poised for rapid activation due to the presence of both activating (H3K4 trimethylation) and repressive (H3K27 trimethylation) histone modifications (bivalent genes). However, little is known about bivalent gene regulation. In this study, we investigated the regulation of the bivalent gene Sox21, which is activated rapidly when ESCs differentiate in response to increases in Sox2. Chromatin immunoprecipitation demonstrated that prior to differentiation, the Sox21 gene is bound by a complex array of repressive and activating transcriptional machinery. Upon activation, all identified repressive machinery and histone modifications associated with the gene are lost, but the activating modifications and transcriptional machinery are retained. Notably, these changes do not occur when ESCs differentiate in response to retinoic acid. Moreover, ESCs lacking a functional PRC2 complex fail to activate this gene, apparently due to its association with other repressive complexes. Together, these findings suggest that bivalent genes, such as Sox21, are silenced by a complex set of redundant repressive machinery, which exit rapidly in response to appropriate differentiation signals.

  7. Direct optical monitoring of flow generated by bacterial flagellar rotation

    SciTech Connect

    Kirchner, Silke R.; Nedev, Spas; Carretero-Palacios, Sol; Lohmüller, Theobald E-mail: feldmann@lmu.de; Feldmann, Jochen E-mail: feldmann@lmu.de; Mader, Andreas; Opitz, Madeleine

    2014-03-03

    We report on a highly sensitive approach to measure and quantify the time dependent changes of the flow generated by the flagella bundle rotation of single bacterial cells. This is achieved by observing the interactions between a silica particle and a bacterium, which are both trapped next to each other in a dual beam optical tweezer. In this configuration, the particle serves as a sensitive detector where the fast-Fourier analysis of the particle trajectory renders, it possible to access information about changes of bacterial activity.

  8. Inhibition of retinoic acid-induced activation of 3' human HOXB genes by antisense oligonucleotides affects sequential activation of genes located upstream in the four HOX clusters.

    PubMed Central

    Faiella, A; Zappavigna, V; Mavilio, F; Boncinelli, E

    1994-01-01

    Most homeobox genes belonging to the Hox family are sequentially activated in embryonal carcinoma cells upon treatment with retinoic acid. Genes located at the 3' end of each one of the four Hox clusters are activated first, whereas upstream Hox genes are activated progressively later. This activation has been extensively studied for human HOX genes in the NT2/D1 cell line and shown to take place at the transcriptional level. To understand the molecular mechanisms of sequential HOX gene activation in these cells, we tried to modulate the expression of 3' HOX genes through the use of antisense oligonucleotides added to the culture medium. We chose the HOXB locus. A 5- to 15-fold reduction of the expression of HOXB1 and HOXB3 was sufficient to produce a significant inhibition of the activation of the upstream HOXB genes, as well as of their paralogs in the HOXA, HOXC, and HOXD clusters. Conversely, no effect was detectable on downstream HOX genes. The extent of this inhibition increased for progressively more-5' genes. The stability of the corresponding mRNAs appeared to be unaffected, supporting the idea that the observed effect might be mediated at the transcriptional level. These data suggest a cascade model of progressive activation of Hox genes, with a 3'-to-5' polarity. Images PMID:7911240

  9. Hormonal activity of polycyclic musks evaluated by reporter gene assay.

    PubMed

    Mori, Taiki; Iida, Mitsuru; Ishibashi, Hiroshi; Kohra, Shinya; Takao, Yuji; Takemasa, Takehiro; Arizono, Koji

    2007-01-01

    Synthetic musk fragrance compounds, such as polycyclic musks (PCMs), are a group of chemicals used extensively as personal care products, and can be found in the environment and the human body. PCMs, such as 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-gamma-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN), are known to have agonistic activities toward human estrogen receptor alpha (hERalpha) and hERbeta, and have antagonistic activity toward the human androgen receptor (hAR), as shown in several reporter gene assays. However, little is known about the interaction of PCMs with the human thyroid hormone receptor (hTR), and the hormonal effects of other PCMs except for HHCB and AHTN. In this study, we focus on the interactions of six PCMs, namely, HHCB, AHTN, 4-acetyl-1,1-dimethyl-6-tert-butyl-indan (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI), 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone (DPMI), and 5-acetyl-1,1,2,6-tetramethyl-3-isopropy-lindan (ATII) with hERalpha, hAR, and hTRbeta by in vitro reporter gene assay using Chinese hamster ovary cells. All the samples were found to be agonists toward hERalpha, whereas no agonistic activities of these PCMs for hAR and hTRbeta were observed. No antagonistic activities for hERalpha and hTRbeta were observed at the concentrations tested. However, several PCMs, namely, HHCB, AHTN, ATII, ADBI, and AHMI, showed dose-dependent antagonistic activities for hAR, and the IC50 values of these compounds were estimated to be 1.0 x 10(-7), 1.5 x 10(-7), 1.4 x 10(-7), 9.8 x 10(-6), and 1.4 x 10(-7) M, respectively. The results suggest that these PCMs interact with hERalpha and hAR but have no hormonal effect on hTRbeta. This is the first report on the agonistic and antagonistic activities of ATII, ADBI, AHMI, and DPMI for hERalpha and hAR as determined by in vitro reporter gene assay using stably transfected Chinese hamster ovary cells.

  10. Complete structure of the bacterial flagellar hook reveals extensive set of stabilizing interactions

    PubMed Central

    Matsunami, Hideyuki; Barker, Clive S.; Yoon, Young-Ho; Wolf, Matthias; Samatey, Fadel A.

    2016-01-01

    The bacterial flagellar hook is a tubular helical structure made by the polymerization of multiple copies of a protein, FlgE. Here we report the structure of the hook from Campylobacter jejuni by cryo-electron microscopy at a resolution of 3.5 Å. On the basis of this structure, we show that the hook is stabilized by intricate inter-molecular interactions between FlgE molecules. Extra domains in FlgE, found only in Campylobacter and in related bacteria, bring more stability and robustness to the hook. Functional experiments suggest that Campylobacter requires an unusually strong hook to swim without its flagella being torn off. This structure reveals details of the quaternary organization of the hook that consists of 11 protofilaments. Previous study of the flagellar filament of Campylobacter by electron microscopy showed its quaternary structure made of seven protofilaments. Therefore, this study puts in evidence the difference between the quaternary structures of a bacterial filament and its hook. PMID:27811912

  11. Metachronal waves in the flagellar beating of Volvox and their hydrodynamic origin.

    PubMed

    Brumley, Douglas R; Polin, Marco; Pedley, Timothy J; Goldstein, Raymond E

    2015-07-06

    Groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales, routinely exhibiting collective dynamics in the form of metachronal waves. The origin of this behavior--possibly influenced by both mechanical interactions and direct biological regulation--is poorly understood, in large part due to a lack of quantitative experimental studies. Here we characterize in detail flagellar coordination on the surface of the multicellular alga Volvox carteri, an emerging model organism for flagellar dynamics. Our studies reveal for the first time that the average metachronal coordination observed is punctuated by periodic phase defects during which synchrony is partial and limited to specific groups of cells. A minimal model of hydrodynamically coupled oscillators can reproduce semi-quantitatively the characteristics of the average metachronal dynamics, and the emergence of defects. We systematically study the model's behaviour by assessing the effect of changing intrinsic rotor characteristics, including oscillator stiffness and the nature of their internal driving force, as well as their geometric properties and spatial arrangement. Our results suggest that metachronal coordination follows from deformations in the oscillators' limit cycles induced by hydrodynamic stresses, and that defects result from sufficiently steep local biases in the oscillators' intrinsic frequencies. Additionally, we find that random variations in the intrinsic rotor frequencies increase the robustness of the average properties of the emergent metachronal waves.

  12. A “Mechanistic” Explanation of the Multiple Helical Forms Adopted by Bacterial Flagellar Filaments

    PubMed Central

    Calladine, C.R.; Luisi, B.F.; Pratap, J.V.

    2013-01-01

    The corkscrew-like flagellar filaments emerging from the surface of bacteria such as Salmonella typhimurium propel the cells toward nutrient and away from repellents. This kind of motility depends upon the ability of the flagellar filaments to adopt a range of distinct helical forms. A filament is typically constructed from ~ 30,000 identical flagellin molecules, which self-assemble into a tubular structure containing 11 near-longitudinal protofilaments. A “mechanical” model, in which the flagellin building block has the capacity to switch between two principal interfacial states, predicts that the filament can assemble into a “canonical” family of 12 distinct helical forms, each having unique curvature and twist: these include two “extreme” straight forms having left- and right-handed twists, respectively, and 10 intermediate helical forms. Measured shapes of the filaments correspond well with predictions of the model. This report is concerned with two unanswered questions. First, what properties of the flagellin determine which of the 12 discrete forms is preferred? Second, how does the interfacial “switch” work, at a molecular level? Our proposed solution of these problems is based mainly on a detailed examination of differences between the available electron cryo-microscopy structures of the straight L and R filaments, respectively. PMID:23274110

  13. Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1.

    PubMed

    Ruan, Juanfang; Kato, Takayuki; Santini, Claire-Lise; Miyata, Tomoko; Kawamoto, Akihiro; Zhang, Wei-Jia; Bernadac, Alain; Wu, Long-Fei; Namba, Keiichi

    2012-12-11

    The bacterial flagellum is a motility organelle that consists of a rotary motor and a helical propeller. The flagella usually work individually or by forming a loose bundle to produce thrust. However, the flagellar apparatus of marine bacterium MO-1 is a tight bundle of seven flagellar filaments enveloped in a sheath, and it has been a mystery as to how the flagella rotate smoothly in coordination. Here we have used electron cryotomography to visualize the 3D architecture of the sheathed flagella. The seven filaments are enveloped with 24 fibrils in the sheath, and their basal bodies are arranged in an intertwined hexagonal array similar to the thick and thin filaments of vertebrate skeletal muscles. This complex and exquisite architecture strongly suggests that the fibrils counter-rotate between flagella in direct contact to minimize the friction of high-speed rotation of individual flagella in the tight bundle within the sheath to enable MO-1 cells to swim at about 300 µm/s.

  14. The Trypanosome Flagellar Pocket Collar and Its Ring Forming Protein—TbBILBO1

    PubMed Central

    Perdomo, Doranda; Bonhivers, Mélanie; Robinson, Derrick R.

    2016-01-01

    Sub-species of Trypanosoma brucei are the causal agents of human African sleeping sickness and Nagana in domesticated livestock. These pathogens have developed an organelle-like compartment called the flagellar pocket (FP). The FP carries out endo- and exocytosis and is the only structure this parasite has evolved to do so. The FP is essential for parasite viability, making it an interesting structure to evaluate as a drug target, especially since it has an indispensible cytoskeleton component called the flagellar pocket collar (FPC). The FPC is located at the neck of the FP where the flagellum exits the cell. The FPC has a complex architecture and division cycle, but little is known concerning its organization. Recent work has focused on understanding how the FP and the FPC are formed and as a result of these studies an important calcium-binding, polymer-forming protein named TbBILBO1 was identified. Cellular biology analysis of TbBILBO1 has demonstrated its uniqueness as a FPC component and until recently, it was unknown what structural role it played in forming the FPC. This review summarizes the recent data on the polymer forming properties of TbBILBO1 and how these are correlated to the FP cytoskeleton. PMID:26950156

  15. Constant torque in flagellar bacterial motors optimizes space exploration

    NASA Astrophysics Data System (ADS)

    Condat, Carlos A.; di Salvo, Mario E.

    2012-02-01

    Experiments indicate that the torque provided by the bacterial rotary motor is approximately constant over a large range of angular speeds. Constant torque implies that the power spent in active motion is proportional to the instantaneous bacterial speed, if the relation between angular speed and swimming speed is linear. Here we show that a constant torque maximizes the volume of the region explored by a bacterium in a resource-depleted medium. Given that nutrients in the ocean are often concentrated in separate, ephemeral patches, we propose that the observed constancy of the torque may be a trait evolved to maximize bacterial survival in the ocean. We also discuss the dependence of the explored volume with the particular features of the bacterial propulsion mechanism.

  16. A Bayesian Framework for the Classification of Microbial Gene Activity States

    PubMed Central

    Disselkoen, Craig; Greco, Brian; Cook, Kaitlyn; Koch, Kristin; Lerebours, Reginald; Viss, Chase; Cape, Joshua; Held, Elizabeth; Ashenafi, Yonatan; Fischer, Karen; Acosta, Allyson; Cunningham, Mark; Best, Aaron A.; DeJongh, Matthew; Tintle, Nathan

    2016-01-01

    Numerous methods for classifying gene activity states based on gene expression data have been proposed for use in downstream applications, such as incorporating transcriptomics data into metabolic models in order to improve resulting flux predictions. These methods often attempt to classify gene activity for each gene in each experimental condition as belonging to one of two states: active (the gene product is part of an active cellular mechanism) or inactive (the cellular mechanism is not active). These existing methods of classifying gene activity states suffer from multiple limitations, including enforcing unrealistic constraints on the overall proportions of active and inactive genes, failing to leverage a priori knowledge of gene co-regulation, failing to account for differences between genes, and failing to provide statistically meaningful confidence estimates. We propose a flexible Bayesian approach to classifying gene activity states based on a Gaussian mixture model. The model integrates genome-wide transcriptomics data from multiple conditions and information about gene co-regulation to provide activity state confidence estimates for each gene in each condition. We compare the performance of our novel method to existing methods on both simulated data and real data from 907 E. coli gene expression arrays, as well as a comparison with experimentally measured flux values in 29 conditions, demonstrating that our method provides more consistent and accurate results than existing methods across a variety of metrics. PMID:27555837

  17. Structure-activity relationship in cationic lipid mediated gene transfection.

    PubMed

    Niculescu-Duvaz, Dan; Heyes, James; Springer, Caroline J

    2003-07-01

    Non-viral synthetic vectors for gene delivery represent a safer alternative to viral vectors. Their main drawback is the low transfection efficiency, especially in vivo. Among the non-viral vectors currently in use, the cationic liposomes composed of cationic lipids are the most common. This review discusses the physicochemical properties of cationic lipids, the formation, macrostructure and specific parameters of the corresponding formulated liposomes, and the effect of all these parameters on transfection efficiency. The optimisation of liposomal vectors requires both the understanding of the biological variables involved in the transfection process, and the effect of the structural elements of the cationic lipids on these biological variables. The biological barriers relevant for in vitro and in vivo transfection are identified, and solutions to overcome them based on rational design of the cationic lipids are discussed. The review focuses on the relationship between the structure of the cationic lipid and the transfection activity. The structure is analysed in a modular manner. The hydrophobic domain, the cationic head group, the backbone that acts as a scaffold for the other domains, the linkers between backbone, hydrophobic domain and cationic head group, the polyethyleneglycol chains and the targeting moiety are identified as distinct elements of the cationic lipids used in gene therapy. The main chemical functionalities used to built these domains, as well as overall molecular features such as architecture and geometry, are presented. Studies of structure-activity relationships of each cationic lipid domain, including the authors', and the trends identified by these studies, help furthering the understanding of the mechanism governing the formation and behaviour of cationic liposomes in gene delivery, and therefore the rational design of new improved cationic lipids vectors capable of achieving clinical significance.

  18. GeneSet2miRNA: finding the signature of cooperative miRNA activities in the gene lists

    PubMed Central

    Antonov, Alexey V.; Dietmann, Sabine; Wong, Philip; Lutter, Dominik; Mewes, Hans W.

    2009-01-01

    GeneSet2miRNA is the first web-based tool which is able to identify whether or not a gene list has a signature of miRNA-regulatory activity. As input, GeneSet2miRNA accepts a list of genes. As output, a list of miRNA-regulatory models is provided. A miRNA-regulatory model is a group of miRNAs (single, pair, triplet or quadruplet) that is predicted to regulate a significant subset of genes from the submitted list. GeneSet2miRNA provides a user friendly dialog-driven web page submission available for several model organisms. GeneSet2miRNA is freely available at http://mips.helmholtz-muenchen.de/proj/gene2mir/. PMID:19420064

  19. Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: differential gene expression and enzyme activities.

    PubMed

    Hesberg, Christine; Hänsch, Robert; Mendel, Ralf R; Bittner, Florian

    2004-04-02

    Xanthine dehydrogenase from the plant Arabidopsis thaliana was analyzed on molecular and biochemical levels. Whereas most other organisms appear to own only one gene for xanthine dehydrogenase A. thaliana possesses two genes in tandem orientation spaced by 704 base pairs. The cDNAs as well as the proteins AtXDH1 and AtXDH2 share an overall identity of 93% and show high homologies to xanthine dehydrogenases from other organisms. Whereas AtXDH2 mRNA is expressed constitutively, alterations of AtXDH1 transcript levels were observed at various stresses like drought, salinity, cold, and natural senescence, but also after abscisic acid treatment. Transcript alteration did not mandatorily result in changes of xanthine dehydrogenase activities. Whereas salt treatment had no effect on xanthine dehydrogenase activities, cold stress caused a decrease, but desiccation and senescence caused a strong increase of activities in leaves. Because AtXDH1 presumably is the more important isoenzyme in A. thaliana it was expressed in Pichia pastoris, purified, and used for biochemical studies. AtXDH1 protein is a homodimer of about 300 kDa consisting of identical subunits of 150 kDa. Like xanthine dehydrogenases from other organisms AtXDH1 uses hypoxanthine and xanthine as main substrates and is strongly inhibited by allopurinol. AtXDH1 could be activated by the purified molybdenum cofactor sulfurase ABA3 that converts inactive desulfo-into active sulfoenzymes. Finally it was found that AtXDH1 is a strict dehydrogenase and not an oxidase, but is able to produce superoxide radicals indicating that besides purine catabolism it might also be involved in response to various stresses that require reactive oxygen species.

  20. Activation of tissue plasminogen activator gene transcription by Neovastat, a multifunctional antiangiogenic agent.

    PubMed

    Gingras, Denis; Nyalendo, Carine; Di Tomasso, Geneviève; Annabi, Borhane; Béliveau, Richard

    2004-07-16

    We recently reported that Neovastat, an antiangiogenic drug that is currently undergoing Phase III clinical trials for the treatment of non-small cell lung cancer, may inhibit angiogenesis through an increase in tPA activity. Here, we show that Neovastat also stimulates tPA gene transcription in endothelial cells, in a TNFalpha-like manner. RT-PCR analysis and gene reporter assays using the human tPA promoter indicated that upregulation of the tPA gene transcription by both Neovastat and TNFalpha was correlated with the phosphorylation of JNK1/2 and of IkappaB and that SP600125 and BAY11-7082, inhibitors of JNK and IkappaK, respectively, inhibit the increase of tPA gene transcription induced by Neovastat and TNFalpha. These results suggest that Neovastat induces tPA gene transcription through activation of the JNK and NFkappaB signaling pathways, leading to an increase of tPA secretion by endothelial cells. This may lead to the localized destruction of the fibrin provisional matrix that is necessary for neovessel formation and thus contribute to the reported antiangiogenic properties of this compound.

  1. Genome-Wide Identification of Genes Necessary for Biofilm Formation by Nosocomial Pathogen Stenotrophomonas maltophilia Reveals that Orphan Response Regulator FsnR Is a Critical Modulator

    PubMed Central

    Kang, Xiu-Min; Wang, Fang-Fang; Zhang, Huan

    2014-01-01

    Stenotrophomonas maltophilia is a Gram-negative bacterial pathogen of increasing concern to human health. Most clinical isolates of S. maltophilia efficiently form biofilms on biotic and abiotic surfaces, making this bacterium resistant to a number of antibiotic treatments and therefore difficult to eliminate. To date, very few studies have investigated the molecular and regulatory mechanisms responsible for S. maltophilia biofilm formation. Here we constructed a random transposon insertion mutant library of S. maltophilia ATCC 13637 and screened 14,028 clones. A total of 46 nonredundant genes were identified. Mutants of these genes exhibited marked changes in biofilm formation, suggesting that multiple physiological pathways, including extracellular polysaccharide production, purine synthesis, transportation, and peptide and lipid synthesis, are involved in bacterial cell aggregation. Of these genes, 20 putatively contributed to flagellar biosynthesis, indicating a critical role for cell motility in S. maltophilia biofilm formation. Genetic and biochemical evidence demonstrated that an orphan response regulator, FsnR, activated transcription of at least two flagellum-associated operons by directly binding to their promoters. This regulatory protein plays a fundamental role in controlling flagellar assembly, cell motility, and biofilm formation. These results provide a genetic basis to systematically study biofilm formation of S. maltophilia. PMID:25480754

  2. Soluble components of the flagellar export apparatus, FliI, FliJ, and FliH, do not deliver flagellin, the major filament protein, from the cytosol to the export gate.

    PubMed

    Sajó, Ráchel; Liliom, Károly; Muskotál, Adél; Klein, Agnes; Závodszky, Péter; Vonderviszt, Ferenc; Dobó, József

    2014-11-01

    Flagella, the locomotion organelles of bacteria, extend from the cytoplasm to the cell exterior. External flagellar proteins are synthesized in the cytoplasm and exported by the flagellar type III secretion system. Soluble components of the flagellar export apparatus, FliI, FliH, and FliJ, have been implicated to carry late export substrates in complex with their cognate chaperones from the cytoplasm to the export gate. The importance of the soluble components in the delivery of the three minor late substrates FlgK, FlgL (hook-filament junction) and FliD (filament-cap) has been convincingly demonstrated, but their role in the transport of the major filament component flagellin (FliC) is still unclear. We have used continuous ATPase activity measurements and quartz crystal microbalance (QCM) studies to characterize interactions between the soluble export components and flagellin or the FliC:FliS substrate-chaperone complex. As controls, interactions between soluble export component pairs were characterized providing Kd values. FliC or FliC:FliS did not influence the ATPase activity of FliI alone or in complex with FliH and/or FliJ suggesting lack of interaction in solution. Immobilized FliI, FliH, or FliJ did not interact with FliC or FliC:FliS detected by QCM. The lack of interaction in the fluid phase between FliC or FliC:FliS and the soluble export components, in particular with the ATPase FliI, suggests that cells use different mechanisms for the export of late minor substrates, and the major substrate, FliC. It seems that the abundantly produced flagellin does not require the assistance of the soluble export components to efficiently reach the export gate.

  3. Seroprevalence in chickens against campylobacter jejuni flagellar capping protein (FliD) in selected areas of the U.S

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni, a Gram-negative rod, is a zoonotic pathogen associated with human acute bacterial gastroenteritis. Poultry products are regarded as a major source for human infection with this microorganism. We have demonstrated that the flagellar capping protein (FliD) of C. jejuni is highl...

  4. Polyphenols from Chilean Propolis and Pinocembrin Reduce MMP-9 Gene Expression and Activity in Activated Macrophages

    PubMed Central

    Saavedra, Nicolás; Cuevas, Alejandro; Cavalcante, Marcela F.; Dörr, Felipe A.; Saavedra, Kathleen; Zambrano, Tomás; Abdalla, Dulcineia S. P.; Salazar, Luis A.

    2016-01-01

    Polyphenols from diverse sources have shown anti-inflammatory activity. In the context of atherosclerosis, macrophages play important roles including matrix metalloproteinases synthesis involved in degradation of matrix extracellular components affecting the atherosclerotic plaque stability. We prepared a propolis extract and pinocembrin in ethanol solution. Propolis extract was chemically characterized using LC-MS. The effect of treatments on gene expression and proteolytic activity was measured in vitro using murine macrophages activated with LPS. Cellular toxicity associated with both treatments and the vehicle was determined using MTT and apoptosis/necrosis detection assays. MMP-9 gene expression and proteolytic activity were measured using qPCR and zymography, respectively. Thirty-two compounds were identified in the propolis extract, including pinocembrin among its major components. Treatment with either ethanolic extract of propolis or pinocembrin inhibits MMP-9 gene expression in a dose-dependent manner. Similarly, an inhibitory effect was observed in proteolytic activity. However, the effect showed by ethanolic extract of propolis was higher than the effect of pinocembrin, suggesting that MMP-9 inhibition results from a joint contribution between the components of the extract. These data suggest a potential role of polyphenols from Chilean propolis in the control of extracellular matrix degradation in atherosclerotic plaques. PMID:27119082

  5. MBD3 Localizes at Promoters, Gene Bodies and Enhancers of Active Genes

    PubMed Central

    Shimbo, Takashi; Du, Ying; Grimm, Sara A.; Dhasarathy, Archana; Mav, Deepak; Shah, Ruchir R.; Shi, Huidong; Wade, Paul A.

    2013-01-01

    The Mi-2/nucleosome remodeling and histone deacetylase (NuRD) complex is a multiprotein machine proposed to regulate chromatin structure by nucleosome remodeling and histone deacetylation activities. Recent reports describing localization of NuRD provide new insights that question previous models on NuRD action, but are not in complete agreement. Here, we provide location analysis of endogenous MBD3, a component of NuRD complex, in two human breast cancer cell lines (MCF-7 and MDA-MB-231) using two independent genomic techniques: DNA adenine methyltransferase identification (DamID) and ChIP-seq. We observed concordance of the resulting genomic localization, suggesting that these studies are converging on a robust map for NuRD in the cancer cell genome. MBD3 preferentially associated with CpG rich promoters marked by H3K4me3 and showed cell-type specific localization across gene bodies, peaking around the transcription start site. A subset of sites bound by MBD3 was enriched in H3K27ac and was in physical proximity to promoters in three-dimensional space, suggesting function as enhancers. MBD3 enrichment was also noted at promoters modified by H3K27me3. Functional analysis of chromatin indicated that MBD3 regulates nucleosome occupancy near promoters and in gene bodies. These data suggest that MBD3, and by extension the NuRD complex, may have multiple roles in fine tuning expression for both active and silent genes, representing an important step in defining regulatory mechanisms by which NuRD complex controls chromatin structure and modification status. PMID:24385926

  6. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma.

    PubMed Central

    De Vos, P; Lefebvre, A M; Miller, S G; Guerre-Millo, M; Wong, K; Saladin, R; Hamann, L G; Staels, B; Briggs, M R; Auwerx, J

    1996-01-01

    The ob gene product, leptin, is a signaling factor regulating body weight and energy balance. ob gene expression in rodents is increased in obesity and is regulated by feeding patterns and hormones, such as insulin and glucocorticoids. In humans with gross obesity, ob mRNA levels are higher, but other modulators of human ob expression are unknown. In view of the importance of peroxisome proliferator-activated receptor gamma (PPARgamma) in adipocyte differentiation, we analyzed whether ob gene expression is subject to regulation by factors activating PPARs. Treatment of rats with the PPARalpha activator fenofibrate did not change adipose tissue and body weight and had no significant effect on ob mRNA levels. However, administration of the thiazolidinedione BRL49653, a PPARgamma ligand, increased food intake and adipose tissue weight while reducing ob mRNA levels in rats in a dose-dependent manner. The inhibitory action of the thiazolidinedione BRL49653 on ob mRNA levels was also observed in vitro. Thiazolidinediones reduced the expression of the human ob promoter in primary adipocytes, however, in undifferentiated 3T3-L1 preadipocytes lacking endogenous PPARgamma, cotransfection of PPARgamma was required to observe the decrease. In conclusion, these data suggest that PPARgamma activators reduce ob mRNA levels through an effect of PPARgamma on the ob promoter. PMID:8770873

  7. Coordinated Switching of Bacterial Flagellar Motors: Evidence for Direct Motor-Motor Coupling?

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Tu, Yuhai

    2013-04-01

    The swimming of Escherichia coli is powered by its multiple flagellar motors. Each motor spins either clockwise or counterclockwise, under the control of an intracellular regulator, CheY-P. There can be two mechanisms (extrinsic and intrinsic) to coordinate the switching of bacterial motors. The extrinsic one arises from the fact that different motors in the same cell sense a common input (CheY-P) which fluctuates near the motors’ response threshold. An alternative, intrinsic mechanism is direct motor-motor coupling which makes synchronized switching energetically favorable. Here, we develop simple models for both mechanisms and uncover their different hallmarks. A quantitative comparison to the recent experiments suggests that the direct coupling mechanism may be accountable for the observed sharp correlation between motors in a single Escherichia coli. Possible origins of this coupling (e.g., hydrodynamic interaction) are discussed.

  8. From organelle to protein gel: a 6-wk laboratory project on flagellar proteins.

    PubMed

    Mitchell, Beth Ferro; Graziano, Mary R

    2006-01-01

    Research suggests that undergraduate students learn more from lab experiences that involve longer-term projects. We have developed a one-semester laboratory sequence aimed at sophomore-level undergraduates. In designing this curriculum, we focused on several educational objectives: 1) giving students a feel for the scientific research process, 2) introducing them to commonly used lab techniques, and 3) building skills in both data analysis and scientific writing. Over the course of the semester, students carry out two project-based lab experiences and write two substantial lab reports modeled on primary literature. Student assessment data indicate that this lab curriculum achieved these objectives. This article describes the first of these projects, which uses the biflagellate alga Chlamydomonas reinhardtii to introduce students to the study of flagellar motility, protein synthesis, microtubule polymerization, organelle assembly, and protein isolation and characterization.

  9. A common assembly module in injectisome and flagellar type III secretion sorting platforms

    NASA Astrophysics Data System (ADS)

    Notti, Ryan Q.; Bhattacharya, Shibani; Lilic, Mirjana; Stebbins, C. Erec

    2015-05-01

    Translocating proteins across the double membrane of Gram-negative bacteria, type III secretion systems (T3SS) occur in two evolutionarily related forms: injectisomes, delivering virulence factors into host cells, and the flagellar system, secreting the polymeric filament used for motility. While both systems share related elements of a cytoplasmic sorting platform that facilitates the hierarchical secretion of protein substrates, its assembly and regulation remain unclear. Here we describe a module mediating the assembly of the sorting platform in both secretion systems, and elucidate the structural basis for segregation of homologous components among these divergent T3SS subtypes sharing a common cytoplasmic milieu. These results provide a foundation for the subtype-specific assembly of T3SS sorting platforms and will support further mechanistic analysis and anti-virulence drug design.

  10. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  11. Behavioral science and the study of gene-nutrition and gene-physical activity interactions in obesity research.

    PubMed

    Faith, Myles S

    2008-12-01

    This report summarizes emerging opportunities for behavioral science to help advance the field of gene-environment and gene-behavior interactions, based on presentations at The National Cancer Institute (NCI) Workshop, "Gene-Nutrition and Gene-Physical Activity Interactions in the Etiology of Obesity." Three opportunities are highlighted: (i) designing potent behavioral "challenges" in experiments, (ii) determining viable behavioral phenotypes for genetics studies, and (iii) identifying specific measures of the environment or environmental exposures. Additional points are underscored, including the need to incorporate novel findings from neuroimaging studies regarding motivation and drive for eating and physical activity. Advances in behavioral science theory and methods can play an important role in advancing understanding of gene-brain-behavior relationships in obesity onset.

  12. A strategy to establish a gene-activated matrix on titanium using gene vectors protected in a polylactide coating.

    PubMed

    Kolk, Andreas; Haczek, Cornelia; Koch, Christian; Vogt, Stephan; Kullmer, Martin; Pautke, Christoph; Deppe, Herbert; Plank, Christian

    2011-10-01

    Bioactive implants are promising tools in regenerative medicine. Here we describe a versatile procedure for preparing a gene-activated matrix on titanium. Lyophilized copolymer-protected gene vectors (COPROGs) suspended in poly(d,l-lactide) (PDLLA) solutions in ethyl acetate were used to varnish solid surfaces. The gene-activated PDLLA surfaces were first established on polypropylene 96-well plates. Vector release from these surfaces in aqueous buffer, cell viability and gene transfer efficiency to NIH 3T3 fibroblasts was strongly dependent on the vector dose and its ratio to PDLLA film thickness. A detailed analysis of these relationships allowed establishing correlations which can be used to calculate suitable combinations of COPROGs and PDLLA yielding optimal gene transfer efficiency. This was verified with COPROG-activated PDLLA coatings on titanium foils. HEK 293 and mesenchymal stem cells expressed the BMP-2 gene comprised in the gene-activated surface in a manner that was consistent with the predicted dose-response and toxicity profiles found in NIH 3T3 cells. The systematic procedure presented here for identifying optimal coating compositions can be applied to any combination of vector type and coating material.

  13. Setting limits on homeotic gene function: restraint of Sex combs reduced activity by teashirt and other homeotic genes.

    PubMed Central

    Andrew, D J; Horner, M A; Petitt, M G; Smolik, S M; Scott, M P

    1994-01-01

    Each of the homeotic genes of the HOM or HOX complexes is expressed in a limited domain along the anterior-posterior axis. Each homeotic protein directs the formation of characteristic structures, such as wings or ribs. In flies, when a heat shock-inducible homeotic gene is used to produce a homeotic protein in all cells of the embryo, only some cells respond by altering their fates. We have identified genes that limit where the homeotic gene Sex combs reduced (Scr) can affect cell fates in the Drosophila embryo. In the abdominal cuticle Scr is prevented from inducing prothoracic structures by the three bithorax complex (BX-C) homeotic genes. However, two of the BX-C homeotic genes, Ultrabithorax (Ubx) and abdominal-A (abd-A), have no effect on the ability of Scr to direct the formation of salivary glands. Instead, salivary gland induction by Scr is limited in the trunk by the homeotic gene teashirt (tsh) and in the last abdominal segment by the third BX-C gene, Abdominal-B (AbdB). Therefore, spatial restrictions on homeotic gene activity differ between tissues and result both from the regulation of homeotic gene transcription and from restraints on where homeotic proteins can function. Images PMID:7907545

  14. A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus

    PubMed Central

    Sun, Ren; Lin, Su-Fang; Gradoville, Lyndle; Yuan, Yan; Zhu, Fanxiu; Miller, George

    1998-01-01

    Herpesviruses exist in two states, latency and a lytic productive cycle. Here we identify an immediate-early gene encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV)/human herpesvirus eight (HHV8) that activates lytic cycle gene expression from the latent viral genome. The gene is a homologue of Rta, a transcriptional activator encoded by Epstein–Barr virus (EBV). KSHV/Rta activated KSHV early lytic genes, including virus-encoded interleukin 6 and polyadenylated nuclear RNA, and a late gene, small viral capsid antigen. In cells dually infected with Epstein–Barr virus and KSHV, each Rta activated only autologous lytic cycle genes. Expression of viral cytokines under control of the KSHV/Rta gene is likely to contribute to the pathogenesis of KSHV-associated diseases. PMID:9724796

  15. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation

    PubMed Central

    Horlbeck, Max A; Gilbert, Luke A; Villalta, Jacqueline E; Adamson, Britt; Pak, Ryan A; Chen, Yuwen; Fields, Alexander P; Park, Chong Yon; Corn, Jacob E; Kampmann, Martin; Weissman, Jonathan S

    2016-01-01

    We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA (Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that incorporates chromatin, position, and sequence features to accurately predict highly effective single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general strategy for identifying Cas9 target sites. DOI: http://dx.doi.org/10.7554/eLife.19760.001 PMID:27661255

  16. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  17. Aurora kinase B activity is modulated by thyroid hormone during transcriptional activation of pituitary genes.

    PubMed

    Tardáguila, Manuel; González-Gugel, Elena; Sánchez-Pacheco, Aurora

    2011-03-01

    Covalent histone modifications clearly play an essential role in ligand-dependent transcriptional regulation by nuclear receptors. One of the predominant mechanisms used by nuclear receptors to activate or repress target-gene transcription is the recruitment of coregulatory factors capable of covalently modify the amino terminal ends of histones. Here we show that the thyroid hormone (T3) produces a rapid increase in histone H3Ser10 phosphorylation (H3Ser10ph) concomitant to the rapid displacement of the heterochromatin protein 1β (HP1β) to the nuclear periphery. Moreover, we found that T3-mediated pituitary gene transcription is associated with an increase in H3Ser10ph. Interestingly, the Aurora kinase B inhibitor ZM443979 abolishes the effect of T3 on H3Ser10ph, blocks HP1β delocalization, and significantly reduces ligand-dependent transactivation. Similar effects were shown when Aurora kinase B expression was abrogated in small interfering RNA assays. In an effort to understand the underlying mechanism by which T3 increases H3Ser10ph, we demonstrate that liganded thyroid hormone receptor directly interacts with Aurora kinase B, increasing its kinase activity. Moreover, using chromatin immunoprecipitation assays, we have shown that Aurora kinase B participates of a mechanism that displaces HP1β from promoter region, thus preparing the chromatin for the transcriptional activation of T3 regulated genes. Our findings reveal a novel role for Aurora kinase B during transcriptional initiation in GO/G1, apart from its well-known mitotic activity.

  18. Network activity-independent coordinated gene expression program for synapse assembly.

    PubMed

    Valor, Luis M; Charlesworth, Paul; Humphreys, Lawrence; Anderson, Chris N G; Grant, Seth G N

    2007-03-13

    Global biological datasets generated by genomics, transcriptomics, and proteomics provide new approaches to understanding the relationship between the genome and the synapse. Combined transcriptome analysis and multielectrode recordings of neuronal network activity were used in mouse embryonic primary neuronal cultures to examine synapse formation and activity-dependent gene regulation. Evidence for a coordinated gene expression program for assembly of synapses was observed in the expression of 642 genes encoding postsynaptic and plasticity proteins. This synaptogenesis gene expression program preceded protein expression of synapse markers and onset of spiking activity. Continued expression was followed by maturation of morphology and electrical neuronal networks, which was then followed by the expression of activity-dependent genes. Thus, two distinct sequentially active gene expression programs underlie the genomic programs of synapse function.

  19. Xenoestrogenic gene expression: structural features of active polycyclic aromatic hydrocarbons.

    PubMed

    Schultz, T Wayne; Sinks, Glendon D

    2002-04-01

    Estrogenicity was assessed using the Saccharomyces cerevisiae-based Lac-Z reporter assay and was reported as the logarithm of the inverse of the 50% molar beta-galactosidase activity (log[EC50(-1)]). In an effort to quantify the relationship between molecular structure of polycyclic aromatic hydrocarbons (PAHs) and estrogenic gene expression, a series of PAHs were evaluated. With noted exceptions, the results of these studies indicate that the initial two-dimensional structural warning for estrogenicity, the superpositioning of a hydroxylated aromatic system on the phenolic A-ring of 17-beta-estradiol, can be extended to the PAHs. This two-dimensional-alignment criterion correctly identified estrogenicity of 22 of the 29 PAHs evaluated. Moreover, the estrogenic potency of these compounds was directly related to the size of the hydrophobic backbone. The seven compounds classified incorrectly by this structural feature were either dihydroxylated naphthalenes or aromatic nitrogen-heterocyclic compounds; all such compounds were false positives. Results with dihydroxylated naphthalenes reveal derivatives that were nonestrogenic when superimposed on the phenolic A-ring of 17-beta-estradiol had the second hydroxyl group in the position of the C-ring or were catechol-like in structure. Structural alerts for nitrogen-heterocyclic compounds must take into account the position of the hydroxyl group and the in-ring nitrogen atom; compounds with the hydroxyl group and nitrogen atom involved with the same ring were observed to be nonactive.

  20. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, Eric E.; Roessler, Paul G.

    1999-01-01

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.

  1. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, E.E.; Roessler, P.G.

    1999-07-27

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities. 8 figs.

  2. Providencia stuartii genes activated by cell-to-cell signaling and identification of a gene required for production or activity of an extracellular factor.

    PubMed

    Rather, P N; Ding, X; Baca-DeLancey, R R; Siddiqui, S

    1999-12-01

    By utilizing reporter transposons, five Providencia stuartii genes that are activated by the accumulation of self-produced extracellular signals have been identified. These genes have been designated cma for conditioned medium activated. The presence of conditioned medium from stationary-phase cultures grown in rich media resulted in the premature activation of each gene in cells at early log phase, with activation values ranging from 6- to 26-fold. Preparation of conditioned medium from an M9 salts medium and fractionation by gel filtration chromatography resulted in fractions within the included volume which activated three of the cma fusions. In addition, depending on the reporter fusion, peak activity was found in different fractions. The partially purified factors activated in a dose-dependent manner. Characterization of the factors activating the cma fusions indicated that they were stable to heat, alkali, and acid. Furthermore, for each cma fusion, factor activity was not reproduced by the addition of homoserine lactone, homocysteine thiolactone, pyruvate, Casamino Acids, or alpha-ketoglutarate. The identities of three cma genes have been determined and revealed physiological roles in amino acid biosynthesis and nutrient import. To begin to address the pathways for production of or response to the extracellular factors, we have identified a locus, aarA, that is required for the activation of four cma fusions. The AarA product was required for factor activity in extracellular supernatants, indicating a possible role in biosynthesis or export.

  3. The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori

    PubMed Central

    2010-01-01

    Background Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. Results Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. Conclusions We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion. PMID:20377912

  4. Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii.

    PubMed Central

    Piperno, G; Huang, B; Luck, D J

    1977-01-01

    Flagellar polypeptides of Chlamydomonas reinhardtii were analyzed in two-dimensions by isoelectric focusing and electrophoresis in the presence of sodium dodecyl sulfate. In addition to flagellar tubulin, over 130 polypeptides were resolved and 100 of these were identified as axonemal components in wild-type organisms. Flagella of two nonconditional paralyzed mutants, pf 14 and pf 1, were also analyzed and, at the same time, electron microscopic studies were carried out. pf 14 flagella, which completely lack radial spokes and associated spokeheads, are missing 12 polypeptides. Six of these polypeptides are also missing from pf 1 flagella in which spokes are clearly present but spoke heads appear to be absent. Images PMID:266200

  5. The great escape: Active genes on inactive sex chromosomes and their evolutionary implications.

    PubMed

    Sin, Ho-Su; Namekawa, Satoshi H

    2013-09-01

    Epigenetic mechanisms precisely regulate sex chromosome inactivation as well as genes that escape the silencing process. In male germ cells, DNA damage response factor RNF8 establishes active epigenetic modifications on the silent sex chromosomes during meiosis, and activates escape genes during a state of sex chromosome-wide silencing in postmeiotic spermatids. During the course of evolution, the gene content of escape genes in postmeiotic spermatids recently diverged on the sex chromosomes. This evolutionary feature mirrors the epigenetic processes of sex chromosomes in germ cells. In this article, we describe how epigenetic processes have helped to shape the evolution of sex chromosome-linked genes. Furthermore, we compare features of escape genes on sex chromosomes in male germ cells to escape genes located on the single X chromosome silenced during X-inactivation in females, clarifying the distinct evolutionary implications between male and female escape genes.

  6. Detecting microRNA activity from gene expression data

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources. PMID:20482775

  7. Therapeutic antibody gene transfer: an active approach to passive immunity.

    PubMed

    Bakker, Joost M; Bleeker, Wim K; Parren, Paul W H I

    2004-09-01

    Advances in gene transfer approaches are enabling the possibility of applying therapeutic antibodies using DNA. In particular gene transfer in combination with electroporation is promising and can result in generating in vivo antibody concentrations in the low therapeutic range. However, several important problems need to be dealt with before antibody gene transfer can become a valuable supplement to the current therapies. As antibody production following gene transfer is difficult to control, the danger of inducing autoimmune conditions or uncontrollable side effects occurs in cases in which autologous antigens are targeted. It is suggested that the most promising area of application therefore appears to be infectious disease in which heterologous antigens are targeted and concerns for long-term antibody exposure are minimal. Finally, genes encoding fully human antibodies will enhance long-term expression and decrease problems linked to immunogenicity.

  8. IFT57 stabilizes the assembled intraflagellar transport complex and mediates transport of motility-related flagellar cargo.

    PubMed

    Jiang, Xue; Hernandez, Daniel; Hernandez, Catherine; Ding, Zhaolan; Nan, Beiyan; Aufderheide, Karl; Qin, Hongmin

    2017-03-01

    Intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia. Recent biochemical studies have shown that IFT complex B (IFT-B) is comprised of two subcomplexes, IFT-B1 and IFT-B2. The IFT-B2 subunit IFT57 lies at the interface between IFT-B1 and IFT-B2. Here, using a Chlamydomonasreinhardtii mutant for IFT57, we tested whether IFT57 is required for IFT-B complex assembly by bridging IFT-B1 and IFT-B2 together. In the ift57-1 mutant, levels of IFT57 and other IFT-B proteins were greatly reduced at the whole-cell level. However, strikingly, in the protease-free flagellar compartment, while the level of IFT57 was reduced, the levels of other IFT particle proteins were not concomitantly reduced but were present at the wild-type level. The IFT movement of the IFT57-deficient IFT particles was also unchanged. Moreover, IFT57 depletion disrupted the flagellar waveform, leading to cell swimming defects. Analysis of the mutant flagellar protein composition showed that certain axonemal proteins were altered. Taken together, these findings suggest that IFT57 does not play an essential structural role in the IFT particle complex but rather functions to prevent it from degradation. Additionally, IFT57 is involved in transporting specific motility-related proteins.

  9. Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter predivisional cell.

    PubMed Central

    Jenal, U; Shapiro, L

    1996-01-01

    Flagellar biogenesis and release are developmental events tightly coupled to the cell cycle of Caulobacter crescentus. A single flagellum is assembled at the swarmer pole of the predivisional cell and is released later in the cell cycle. Here we show that the MS-ring monomer FliF, a central motor component that anchors the flagellum in the cell membrane, is synthesized only in the predivisional cell and is integrated into the membrane at the incipient swarmer cell pole, where it initiates flagellar assembly. FliF is proteolytically turned over during swarmer-to-stalked cell differentiation, coinciding with the loss of the flagellum, suggesting that its degradation is coupled to flagellar release. The membrane topology of FliF was determined and a region of the cytoplasmic C-terminal domain was shown to be required for the interaction with a component of the motor switch. The very C-terminal end of FliF contains a turnover determinant, required for the cell cycle-dependent degradation of the MS-ring. The cell cycle-dependent proteolysis of FliF and the targeting of FliF to the swarmer pole together contribute to the asymmetric localization of the MS-ring in the predivisional cell. Images PMID:8665847

  10. Structure of Salmonella FlhE, conserved member of a flagellar Type III secretion operon

    SciTech Connect

    Lee, Jaemin; Monzingo, Arthur F.; Keatinge-Clay, Adrian T.; Harshey, Rasika M.

    2014-12-26

    In this paper, the bacterial flagellum is assembled by a multicomponent transport apparatus categorized as a type III secretion system. The secretion of proteins that assemble into the flagellum is driven by the proton motive force. The periplasmic protein FlhE is a member of the flhBAE operon in the majority of bacteria where FlhE is found. FlhA and FlhB are established components of the flagellar type III secretion system. The absence of FlhE results in a proton leak through the flagellar system, inappropriate secretion patterns, and cell death, indicating that FlhE regulates an important aspect of proper flagellar biosynthesis. We isolated FlhE from the periplasm of Salmonella and solved its structure to 1.5 Å resolution. The structure reveals a β-sandwich fold, with no close structural homologs. Finally, possible roles of FlhE, including that of a chaperone, are discussed.

  11. The alpha-tubulin gene family expressed during cell differentiation in Naegleria gruberi

    PubMed Central

    1988-01-01

    Genes that direct the programmed synthesis of flagellar alpha-tubulin during the differentiation of Naegleria gruberi from amebae to flagellates have been cloned, and found to be novel with respect to gene organization, sequence, and conservation. The flagellar alpha- tubulin gene family is represented in the genome by about eight homologous DNA segments that are exceptionally similar and yet are neither identical nor arrayed in a short tandem repeat. The coding regions of three of these genes have been sequenced, two from cDNA clones and one from an intronless genomic gene. These three genes encode an identical alpha-tubulin that is conserved relative to the alpha-tubulins of other organisms except at the carboxyl terminus, where the protein is elongated by two residues and ends in a terminal glutamine instead of the canonical tyrosine. In spite of the protein conservation, the Naegleria DNA sequence has diverged markedly from the alpha-tubulin genes of other organisms, a counterexample to the idea that tubulin genes are conserved. alpha-Tubulin mRNA homologous to this gene family has not been detected in amebae. This mRNA increases markedly in abundance during the first hour of differentiation, and then decreases even more rapidly with a half-life of approximately 8 min. The abundance of physical alpha-tubulin mRNA rises and subsequently falls in parallel with the abundance of translatable flagellar tubulin mRNA and with the in vivo rate of flagellar tubulin synthesis, which indicates that flagellar tubulin synthesis is directly regulated by the relative rates of transcription and mRNA degradation. PMID:2838492

  12. New mutations in flagellar motors identified by whole genome sequencing in Chlamydomonas

    PubMed Central

    2013-01-01

    Background The building of a cilium or flagellum requires molecular motors and associated proteins that allow the relocation of proteins from the cell body to the distal end and the return of proteins to the cell body in a process termed intraflagellar transport (IFT). IFT trains are carried out by kinesin and back to the cell body by dynein. Methods We used whole genome sequencing to identify the causative mutations for two temperature-sensitive flagellar assembly mutants in Chlamydomonas and validated the changes using reversion analysis. We examined the effect of these mutations on the localization of IFT81, an IFT complex B protein, the cytoplasmic dynein heavy chain (DHC1b), and the dynein light intermediate chain (D1bLIC). Results The strains, fla18 and fla24, have mutations in kinesin-2 and cytoplasmic dynein, respectively. The fla18 mutation alters the same glutamic acid (E24G) mutated in the fla10-14 allele (E24K). The fla18 strain loses flagella at 32?C more rapidly than the E24K allele but less rapidly than the fla10-1 allele. The fla18 mutant loses its flagella by detachment rather than by shortening. The fla24 mutation falls in cytoplasmic dynein and changes a completely conserved amino acid (L3243P) in an alpha helix in the AAA5 domain. The fla24 mutant loses its flagella by shortening within 6 hours at 32?C. DHC1b protein is reduced by 18-fold and D1bLIC is reduced by 16-fold at 21?C compared to wild-type cells. We identified two pseudorevertants (L3243S and L3243R), which remain flagellated at 32?C. Although fla24 cells assemble full-length flagella at 21?C, IFT81 protein localization is dramatically altered. Instead of localizing at the basal body and along the flagella, IFT81 is concentrated at the proximal end of the flagella. The pseudorevertants show wild-type IFT81 localization at 21?C, but proximal end localization of IFT81 at 32?C. Conclusions The change in the AAA5 domain of the cytoplasmic dynein in fla24 may block the recycling of IFT

  13. Gene editing activity on extrachromosomal arrays in C. elegans transgenics.

    PubMed

    Falgowski, Kerry A; Kmiec, Eric B

    2011-04-15

    Gene editing by modified single-stranded oligonucleotides is a strategy aimed at inducing single base changes into the genome, generating a permanent genetic change. The work presented here explores gene editing capabilities in the model organism Caenorhabditis elegans. Current approaches to gene mutagenesis in C. elegans have been plagued by non-specificity and thus the ability to induce precise, directed alterations within the genome of C. elegans would offer a platform upon which structure/function analyses can be carried out. As such, several in vivo assay systems were developed to evaluate gene editing capabilities in C. elegans. Fluorescence was chosen as the selectable endpoint as fluorescence can be easily detected through the transparent worm body even from minimal expression. Two tissue specific fluorescent expression vectors containing either a GFP or mCherry transgene were mutagenized to create a single nonsense mutation within the open reading frame of each respective fluorescent gene. These served as the target site to evaluate the frequency of gene editing on extrachromosomal array transgenic lines. Extrachromosomal arrays can carry hundreds of copies of the transgene, therefore low frequency events (like those in the gene editing reaction) may be detected. Delivery of the oligonucleotide was accomplished by microinjection into the gonads of young adult worms in an effort to induce repair of the mutated fluorescent gene in the F1 progeny. Despite many microinjections on the transgenic strains with varying concentrations of ODNs, no gene editing events were detected. This result is consistent with the previous research, demonstrating the difficulties encountered in targeting embryonic stem cells and the pronuclei of single-celled embryos.

  14. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases.

    PubMed

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-03-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

  15. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    PubMed Central

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-01-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals. PMID:26950874

  16. RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids

    PubMed Central

    Sin, Ho-Su; Barski, Artem; Zhang, Fan; Kartashov, Andrey V.; Nussenzweig, Andre; Chen, Junjie; Andreassen, Paul R.; Namekawa, Satoshi H.

    2012-01-01

    Sex chromosomes are uniquely subject to chromosome-wide silencing during male meiosis, and silencing persists into post-meiotic spermatids. Against this background, a select set of sex chromosome-linked genes escapes silencing and is activated in post-meiotic spermatids. Here, we identify a novel mechanism that regulates escape gene activation in an environment of chromosome-wide silencing in murine germ cells. We show that RNF8-dependent ubiquitination of histone H2A during meiosis establishes active epigenetic modifications, including dimethylation of H3K4 on the sex chromosomes. RNF8-dependent active epigenetic memory, defined by dimethylation of H3K4, persists throughout meiotic division. Various active epigenetic modifications are subsequently established on the sex chromosomes in post-meiotic spermatids. These RNF8-dependent modifications include trimethylation of H3K4, histone lysine crotonylation (Kcr), and incorporation of the histone variant H2AFZ. RNF8-dependent epigenetic programming regulates escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Kcr accumulates at transcriptional start sites of sex-linked genes activated in an RNF8-dependent manner, and a chromatin conformational change is associated with RNF8-dependent epigenetic programming. Furthermore, we demonstrate that this RNF8-dependent pathway is distinct from that which recognizes DNA double-strand breaks. Our results establish a novel connection between a DNA damage response factor (RNF8) and epigenetic programming, specifically in establishing active epigenetic modifications and gene activation. PMID:23249736

  17. Somatic Activation of rasK Gene in a Human Ovarian Carcinoma

    NASA Astrophysics Data System (ADS)

    Feig, L. A.; Bast, R. C.; Knapp, R. C.; Cooper, G. M.

    1984-02-01

    A tumor isolate from a patient with serous cystadenocarcinoma of the ovary contained an activated rasK gene detected by transfection of NIH/3T3 cells. In contrast, DNA from normal cells of the same patient lacked transforming activity, indicating that activation of this transforming gene was the consequence of somatic mutation in the neoplastic cells. The transforming gene product displayed an electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels that differed from the mobilities of rasK transforming proteins in other tumors, indicating that a previously undescribed mutation was responsible for activation of rasK in this ovarian carcinoma.

  18. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    PubMed

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  19. Activation of cryptic 3' splice sites within introns of cellular genes following gene entrapment.

    PubMed

    Osipovich, Anna B; White-Grindley, Erica K; Hicks, Geoffrey G; Roshon, Michael J; Shaffer, Christian; Moore, Jason H; Ruley, H Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3'-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3' splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3' splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3' splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3' splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3' splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3' splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3' processing and polyadenylation of cellular transcripts.

  20. Activation of cryptic 3′ splice sites within introns of cellular genes following gene entrapment

    PubMed Central

    Osipovich, Anna B.; White-Grindley, Erica K.; Hicks, Geoffrey G.; Roshon, Michael J.; Shaffer, Christian; Moore, Jason H.; Ruley, H. Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3′-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3′ splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3′ splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3′ splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3′ splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3′ splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3′ splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3′ processing and polyadenylation of cellular transcripts. PMID:15155860

  1. Independent Control of the Static and Dynamic Components of the Chlamydomonas Flagellar Beat.

    PubMed

    Geyer, Veikko F; Sartori, Pablo; Friedrich, Benjamin M; Jülicher, Frank; Howard, Jonathon

    2016-04-25

    When the green alga Chlamydomonas reinhardtii swims, it uses the breaststroke beat of its two flagella to pull itself forward [1]. The flagellar waveform can be decomposed into a static component, corresponding to an asymmetric time-averaged shape, and a dynamic component, corresponding to the time-varying wave [2]. Extreme lightening conditions photoshock the cell, converting the breaststroke beat into a symmetric sperm-like beat, which causes a reversal of the direction of swimming [3]. Waveform conversion is achieved by a reduction in magnitude of the static component, whereas the dynamic component remains unchanged [2]. The coupling between static and dynamic components, however, is poorly understood, and it is not known whether the static component requires the dynamic component or whether it can exist independently. We used isolated and reactivated axonemes [4] to investigate the relation between the two beat components. We discovered that, when reactivated in the presence of low ATP concentrations, axonemes displayed the static beat component in absence of the dynamic component. Furthermore, we found that the amplitudes of the two components depend on ATP in qualitatively different ways. These results show that the decomposition into static and dynamic components is not just a mathematical concept but that the two components can independently control different aspects of cell motility: the static component controls swimming direction, whereas the dynamic component provides propulsion.

  2. Bacterial flagellar motility on hydrated rough surfaces controlled by aqueous film thickness and connectedness

    PubMed Central

    Tecon, Robin; Or, Dani

    2016-01-01

    Recent studies have shown that rates of bacterial dispersion in soils are controlled by hydration conditions that define size and connectivity of the retained aqueous phase. Despite the ecological implications of such constraints, microscale observations of this phenomenon remain scarce. Here, we quantified aqueous film characteristics and bacterial flagellated motility in response to systematic variations in microhydrological conditions on porous ceramic surfaces that mimic unsaturated soils. We directly measured aqueous film thickness and documented its microscale heterogeneity. Flagellar motility was controlled by surface hydration conditions, as cell velocity decreased and dispersion practically ceased at water potentials exceeding –2 kPa (resulting in thinner and disconnected liquid films). The fragmentation of aquatic habitats was delineated indirectly through bacterial dispersal distances within connected aqueous clusters. We documented bacterial dispersal radii ranging from 100 to 10 μm as the water potential varied from 0 to –7 kPa, respectively. The observed decrease of flagellated velocity and dispersal ranges at lower matric potentials were in good agreement with mechanistic model predictions. Hydration-restricted habitats thus play significant role in bacterial motility and dispersal, which has potentially important impact on soil microbial ecology and diversity. PMID:26757676

  3. Coupling between Switching Regulation and Torque Generation in Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Bai, Fan; Minamino, Tohru; Wu, Zhanghan; Namba, Keiichi; Xing, Jianhua

    2012-04-01

    The bacterial flagellar motor plays a crucial role in both bacterial locomotion and chemotaxis. Recent experiments reveal that the switching dynamics of the motor depend on the rotation speed of the motor, and thus the motor torque, nonmonotonically. Here we present a unified mathematical model which treats motor torque generation based on experimental torque-speed curves and the torque-dependent switching based on the conformational spread model. The model successfully reproduces the observed switching rate as a function of the rotation speed, and provides a generic physical explanation independent of most details. A stator affects the switching dynamics through two mechanisms: accelerating the conformational flipping rate of individual rotor-switching units, which contributes most when the stator works at a high torque and thus a low speed; and influencing a larger number of rotor-switching units within unit time, whose contribution is the greatest when the motor rotates at a high speed. Consequently, the switching rate shows a maximum at intermediate speed, where the above two mechanisms find an optimal output. The load-switching relation may serve as a mechanism for sensing the physical environment, similar to the chemotaxis mechanism for sensing the chemical environment. It may also coordinate the switch dynamics of motors within the same cell.

  4. Coupling between Switching Regulation and Torque Generation in Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Xing, Jianhua; Bai, Fan; Minamino, Tohru; Wu, Zhanghan; Namba, Keiichi

    2013-03-01

    The bacterial flagellar motor plays a crucial role in both bacterial locomotion and chemotaxis. Recent experiments reveal that the switching dynamics of the motor depend on the rotation speed of the motor, and thus the motor torque, nonmonotonically. Here we present a unified mathematical model that treats motor torque generation based on experimental torque-speed curves and the torque-dependent switching based on the Ising type conformational spread model. The model successfully reproduces the observed switching rate as a function of the rotation speed, and provides a generic physical explanation independent of most details. A stator affects the switching dynamics through two mechanisms: accelerating the conformational flipping rate of individual rotor-switching units, which contributes most when the stator works at a high torque and thus a low speed; and influencing a larger number of rotor-switching units within unit time, whose contribution is the greatest when the motor rotates at a high speed. Consequently, the switching rate shows a maximum at intermediate speed, where the above two mechanisms find an optimal output. The load-switching relation may serve as a mechanism for sensing the physical environment, similar to the chemotaxis mechanism for sensing the chemical environment.

  5. Identification of α-11 giardin as a flagellar and surface component of Giardia lamblia.

    PubMed

    Kim, Juri; Lee, Hye Yeon; Lee, Mi-Ae; Yong, Tai-Soon; Lee, Kyu-Ho; Park, Soon-Jung

    2013-10-01

    Giardia lamblia is a protozoan pathogen with distinct cytoskeletal structures, including median bodies and eight flagella. In this study, we examined components comprising G. lamblia flagella. Crude flagellar extracts were prepared from G. lamblia trophozoites, and analyzed by two-dimensional (2-D) gel electrophoresis. The 19 protein spots were analyzed by MALDI-TOF mass spectrometry, identifying ten metabolic enzymes, six distinct giardins, Giardia trophozoite antigen 1, translational initiation factor eIF-4A, and an extracellular signal-regulated kinase 2. Among the identified proteins, we studied α-11 giardin which belongs to a group of cytoskeletal proteins specific to Giardia. Western blot analysis and real-time PCR indicated that expression of α-11 giardin is not significantly increased during encystation of G. lamblia. Immunofluorescence assays using anti-α-11 giardin antibodies revealed that α-11 giardin protein mainly localized to the plasma membranes and basal bodies of the anterior flagella of G. lamblia trophozoites, suggesting that α-11 giardin is a genuine component of the G. lamblia cytoskeleton.

  6. A SAS-6-like protein suggests that the Toxoplasma conoid complex evolved from flagellar components.

    PubMed

    de Leon, Jessica Cruz; Scheumann, Nicole; Beatty, Wandy; Beck, Josh R; Tran, Johnson Q; Yau, Candace; Bradley, Peter J; Gull, Keith; Wickstead, Bill; Morrissette, Naomi S

    2013-07-01

    SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.

  7. Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor.

    PubMed

    Yuan, Junhua; Fahrner, Karen A; Turner, Linda; Berg, Howard C

    2010-07-20

    Cells of Escherichia coli are able to swim up gradients of chemical attractants by modulating the direction of rotation of their flagellar motors, which spin alternately clockwise (CW) and counterclockwise (CCW). Rotation in either direction has been thought to be symmetric and exhibit the same torques and speeds. The relationship between torque and speed is one of the most important measurable characteristics of the motor, used to distinguish specific mechanisms of motor rotation. Previous measurements of the torque-speed relationship have been made with cells lacking the response regulator CheY that spin their motors exclusively CCW. In this case, the torque declines slightly up to an intermediate speed called the "knee speed" after which it falls rapidly to zero. This result is consistent with a "power-stroke" mechanism for torque generation. Here, we measure the torque-speed relationship for cells that express large amounts of CheY and only spin their motors CW. We find that the torque decreases linearly with speed, a result remarkably different from that for CCW rotation. We obtain similar results for wild-type cells by reexamining data collected in previous work. We speculate that CCW rotation might be optimized for runs, with higher speeds increasing the ability of cells to sense spatial gradients, whereas CW rotation might be optimized for tumbles, where the object is to change cell trajectories. But why a linear torque-speed relationship might be optimum for the latter purpose we do not know.

  8. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward

    PubMed Central

    Lele, Pushkar P.; Roland, Thibault; Shrivastava, Abhishek; Chen, Yihao; Berg, Howard C.

    2016-01-01

    Caulobacter crescentus, a monotrichous bacterium, swims by rotating a single right-handed helical filament. CW motor rotation thrusts the cell forward 1, a mode of motility known as the pusher mode; CCW motor rotation pulls the cell backward, a mode of motility referred to as the puller mode 2. The situation is opposite in E. coli, a peritrichous bacterium, where CCW rotation of multiple left-handed filaments drives the cell forward. The flagellar motor in E. coli generates more torque in the CCW direction than the CW direction in swimming cells 3,4. However, monotrichous bacteria including C. crescentus swim forward and backward at similar speeds, prompting the assumption that motor torques in the two modes are the same 5,6. Here, we present evidence that motors in C. crescentus develop higher torques in the puller mode than in the pusher mode, and suggest that the anisotropy in torque-generation is similar in two species, despite the differences in filament handedness and motor bias (probability of CW rotation). PMID:27499800

  9. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backwards

    NASA Astrophysics Data System (ADS)

    Lele, Pushkar P.; Roland, Thibault; Shrivastava, Abhishek; Chen, Yihao; Berg, Howard C.

    2016-02-01

    The bacterium Caulobacter crescentus swims by rotating a single right-handed helical filament. These cells have two swimming modes: a pusher mode, in which clockwise (CW) rotation of the filament thrusts the cell body forwards, and a puller mode, in which counterclockwise (CCW) rotation pulls it backwards. The situation is reversed in Escherichia coli, a bacterium that rotates several left-handed filaments CCW to drive the cell body forwards. The flagellar motor in E. coli generates more torque in the CCW direction than the CW direction in swimming cells. However, C. crescentus and other bacteria with single filaments swim forwards and backwards at similar speeds, prompting the assumption that motor torques in the two modes are the same. Here, we present evidence that motors in C. crescentus develop higher torques in the puller mode than in the pusher mode, and suggest that the anisotropy in torque generation is similar in the two species, despite the differences in filament handedness and motor bias.

  10. Resonance in the response of the bacterial flagellar motor to thermal oscillations

    NASA Astrophysics Data System (ADS)

    Demir, Mahmut; Salman, Hanna

    2017-02-01

    We have studied the dynamics of the Escherichia coli flagellar motor's angular velocity in response to thermal oscillations. We find that the oscillations' amplitude of the motor's angular velocity exhibits resonance when the temperature is oscillated at frequencies around 4 Hz. This resonance appears to be due to the existence of a natural mode of oscillation in the state of the motor, specifically in the torque generated by the motor. Natural modes of oscillation in torque generation cannot result from random fluctuations in the state of the motor. Their presence points to the existence of a coupling mechanism between the magnitude of the torque generated by the motor and the rates of transition between the different states of the motor components responsible for torque generation. The results presented here show resonance response in torque generation to external perturbations. They are explained with a simple phenomenological model, which can help future studies identify the source of the feedback mechanism between the torque and the interactions responsible for its generation. It can also help us to quantitatively estimate the strength of these interactions and how they are affected by the magnitude of the torque they generate.

  11. Immunomagnetic Separation and Coagglutination of Vibrio parahaemolyticus with Anti-Flagellar Protein Monoclonal Antibody▿

    PubMed Central

    Datta, S.; Janes, M. E.; Simonson, J. G.

    2008-01-01

    Mice were immunized by injection of Vibrio parahaemolyticus ATCC 17802 polar flagellin in order to produce monoclonal antibodies (mAbs). mAbs were analyzed by anti-H enzyme-linked immunosorbent assay using V. parahaemolyticus polar flagellar cores. The mAb exhibiting the highest anti-H titer was coated onto Cowan I Staphylococcus aureus cells at a concentration of 75 μg/ml cell suspension and used for slide coagglutination. Of 41 isolates identified genetically as V. parahaemolyticus, 100% coagglutinated with the anti-H mAb within 30 s, and the mAb did not react with 30 isolates identified as Vibrio vulnificus. A strong coagglutination reaction with V. parahaemolyticus ATCC 17802 was still observed when the S. aureus cells were armed with as little as 15 μg of mAb/ml S. aureus cell suspension. At this concentration, the mAb cross-reacted with three other Vibrio species, suggesting that they share an identical H antigen or antigens. The anti-H mAb was then used to optimize an immunomagnetic separation protocol which exhibited from 35% to about 45% binding of 102 to 103 V. parahaemolyticus cells in phosphate-buffered saline. The mAb would be useful for the rapid and selective isolation, concentration, and detection of V. parahaemolyticus cells from environmental sources. PMID:18753337

  12. Crystallization of FcpA from Leptospira, a novel flagellar protein that is essential for pathogenesis.

    PubMed

    San Martin, Fabiana; Mechaly, Ariel E; Larrieux, Nicole; Wunder, Elsio A; Ko, Albert I; Picardeau, Mathieu; Trajtenberg, Felipe; Buschiazzo, Alejandro

    2017-03-01

    The protein FcpA is a unique component of the flagellar filament of spirochete bacteria belonging to the genus Leptospira. Although it plays an essential role in translational motility and pathogenicity, no structures of FcpA homologues are currently available in the PDB. Its three-dimensional structure will unveil the novel motility mechanisms that render pathogenic Leptospira particularly efficient at invading and disseminating within their hosts, causing leptospirosis in humans and animals. FcpA from L. interrogans was purified and crystallized, but despite laborious attempts no useful X ray diffraction data could be obtained. This challenge was solved by expressing a close orthologue from the related saprophytic species L. biflexa. Three different crystal forms were obtained: a primitive and a centred monoclinic form, as well as a hexagonal variant. All forms diffracted X-rays to suitable resolutions for crystallographic analyses, with the hexagonal type typically reaching the highest limits of 2.0 Å and better. A variation of the quick-soaking procedure resulted in an iodide derivative that was instrumental for single-wavelength anomalous diffraction methods.

  13. Utility of recombinant flagellar calcium-binding protein for serodiagnosis of Trypanosoma cruzi infection.

    PubMed Central

    Godsel, L M; Tibbetts, R S; Olson, C L; Chaudoir, B M; Engman, D M

    1995-01-01

    The protozoan Trypanosoma cruzi is the causative agent of Chagas' disease, a major public health problem in Latin America and of growing concern in the United States as the number of infected immigrants increases. There is currently no testing of U.S. blood products for T. cruzi infection, and the best tests available, although highly sensitive, are not of high enough specificity to be useful for widespread screening of the blood supply in this country. Among the parasite antigens detected by sera of infected humans and mice, those in the range of 24 to 26 kDa are particularly reactive. With an aim of developing a sensitive, specific, recombinant antigen-based serologic test for T. cruzi infection, we used two antibody reagents specific for these 24- to 26-kDa antigens to isolate cDNA clones from a T. cruzi expression library. One clone was found to encode a previously characterized T. cruzi antigen, a 24-kDa flagellar calcium-binding protein (FCaBP). Recombinant FCaBP was found to be a sensitive, specific reagent for distinguishing T. cruzi-infected individuals from uninfected persons, and it therefore could potentially be used for screening purposes, especially if combined with other recombinant T. cruzi antigens that have similarly high degrees of diagnostic sensitivity and specificity. PMID:7559952

  14. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Waters, Amanda J.; West, Patrick T.; Stitzer, Michelle; Hirsch, Candice N.; Ross-Ibarra, Jeffrey; Springer, Nathan M.

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as “junk” DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize. PMID:25569788

  15. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    PubMed

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  16. ihfA Gene of the Bacterium Myxococcus xanthus and Its Role in Activation of Carotenoid Genes by Blue Light

    PubMed Central

    Moreno, Alberto J.; Fontes, Marta; Murillo, Francisco J.

    2001-01-01

    Myxococcus xanthus responds to blue light by producing carotenoids. Several regulatory genes are known that participate in the light action mechanism, which leads to the transcriptional activation of the carotenoid genes. We had already reported the isolation of a carotenoid-less, Tn5-induced strain (MR508), whose mutant site was unlinked to the indicated regulatory genes. Here, we show that ΩMR508::Tn5 affects all known light-inducible promoters in different ways. It blocks the activation of two of them by light but makes the activity of a third one light independent. The ΩMR508 locus has been cloned and sequenced. The mutation had occurred at the promoter of a gene we propose is the M. xanthus ortholog of ihfA. This encodes the α subunit of the histone-like integration host factor protein. An in-frame deletion within ihfA causes the same effects as the ΩMR508::Tn5 insertion. Like other IhfA proteins, the deduced amino acid sequence of M. xanthus IhfA shows much similarity to HU, another histone-like protein. Sequence comparison data, however, and the finding that the M. xanthus gene is preceded by gene pheT, as happens in other gram-negative bacteria, strongly argue for the proposed orthology relationship. The M. xanthus ihfA gene shows some unusual features, both from structural and physiological points of view. In particular, the protein is predicted to have a unique, long acidic extension at the carboxyl terminus, and it appears to be necessary for normal cell growth and even vital for a certain wild-type strain of M. xanthus. PMID:11133949

  17. Regulation of Gene33 expression by insulin requires MEK-ERK activation.

    PubMed

    Keeton, Adam B; Xu, Jie; Franklin, J Lee; Messina, Joseph L

    2004-09-17

    Gene33 and its human homologue, mitogen inducible gene-6/receptor-associated late transducer (mig-6, RALT), is a 53-kDa soluble protein that was identified as a hepatic gene regulated by glucocorticoids and insulin. Its mRNA is expressed in numerous tissues in addition to the liver. Mitogen inducibility of Gene33 mRNA has been described in several experimental systems. Recent reports have suggested a role for Gene33 in inhibition of proliferation induced by factors that bind to members of the ErbB family of receptors. In the present work, we examine the regulation of Gene33 protein by insulin in hepatoma cells of rat (H4IIE) and human (HepG2/Hep3B) origin. Inhibition of MEK1 significantly inhibited extracellularly regulated kinase (ERK)1/2 activation and insulin-regulated Gene33 transcription and protein levels in H4IIE cells. Inhibition of phosphatidylinositol 3-kinase (PI3-K) activity alone did not significantly alter transcription of Gene33. In Hep3B and HepG2 cells, insulin did not significantly induce either ERK1/2 activation or Gene33 expression. This work suggests that the MEK-ERK, but not the phosphatidylinositol 3-kinase (PI3-K), pathway plays a direct role in insulin regulation of Gene33 transcription and protein expression.

  18. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    PubMed

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms.

  19. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity

    PubMed Central

    Ahmed, Afsar U.; Williams, Bryan R. G.; Hannigan, Gregory E.

    2015-01-01

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding. PMID:26569329

  20. Laughter up-regulates the genes related to NK cell activity in diabetes.

    PubMed

    Hayashi, Takashi; Tsujii, Satoru; Iburi, Tadao; Tamanaha, Tamiko; Yamagami, Keiko; Ishibashi, Rieko; Hori, Miyo; Sakamoto, Shigeko; Ishii, Hitoshi; Murakami, Kazuo

    2007-12-01

    To elucidate the sustainable effects of laughter on gene expression, we recruited type 2 diabetic patients who were in-patient for receiving self-management education and examined time-dependent regulation for gene expression by laughter. Two-day experiment was performed. On one day, the patients watched comic video and laughed together with hospital staffs. On the other day, they participated in an inpatient diabetes educational program. Blood samples were collected before and 1.5, 4 h after watching comic video or spending lecture time, and changes in gene expression were comprehensively analyzed by microarray technique. Of the 41,000 genes analyzed, the laughter relatively up-regulated 39 genes, among which, 27 genes were relatively increased in the expression for all the observation period after watching comic video. By functional classification of these genes, 14 genes were found to be related to natural killer cell activity. No genes were included that are directly involved in blood glucose regulation, though successive suppression of postprandial blood glucose levels was observed. These results suggest that the laughter influences the expression of many genes classified into immune responses, and may contribute to amelioration of postprandial blood glucose elevation through a modulation of NK cell activity caused by up-regulation of relating genes.

  1. Impact of physical activity and doping on epigenetic gene regulation.

    PubMed

    Schwarzenbach, Heidi

    2011-10-01

    To achieve success in sports, many athletes consume doping substances, such as anabolic androgenic steroids and growth hormones, and ignore the negative influence of these drugs on their health. Apart from the unethical aspect of doping in sports, it is essential to consider the tremendous risk it represents to their physical condition. The abuse of pharmaceuticals which improve athletic performance may alter the expression of specific genes involved in muscle and bone metabolism by epigenetic mechanisms, such as DNA methylation and histone modifications. Moreover, excessive and relentless training to increase the muscle mass, may also have an influence on the health of the athletes. This stress releases neurotransmitters and growth factors, and may affect the expression of endogenous genes by DNA methylation, too. This paper focuses on the relationship between epigenetic mechanisms and sports, highlights the potential consequences of abuse of doping drugs on gene expression, and describes methods to molecularly detect epigenetic changes of gene markers reflecting the physiological or metabolic effects of doping agents.

  2. Activation and Characterization of a Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster

    PubMed Central

    Luo, Yunzi; Huang, Hua; Liang, Jing; Wang, Meng; Lu, Lu; Shao, Zengyi; Cobb, Ryan E.; Zhao, Huimin

    2014-01-01

    Polycyclic tetramate macrolactams (PTMs) are a widely distributed class of natural products with important biological activities. However, many of them have not been characterized. Here we apply a plug and play synthetic biology strategy to activate a cryptic PTM biosynthetic gene cluster SGR810-815 from Streptomyces griseus and discover three potential PTMs. This gene cluster is highly conserved in phylogenetically diverse bacterial strains and contains an unusual hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) which resembles iterative PKSs known in fungi. To further characterize this gene cluster, we use the same synthetic biology approach to create a series of gene deletion constructs and elucidate the biosynthetic steps for the formation of the polycyclic system. The strategy we employ bypasses the traditional laborious processes to elicit gene cluster expression and should be generally applicable to many other silent or cryptic gene clusters for discovery and characterization of new natural products. PMID:24305602

  3. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    NASA Astrophysics Data System (ADS)

    Golubnitchaya-Labudová, O.; Portele, A.; Vaçata, V.; Lubec, G.; Rink, H.; Höfer, M.

    1997-10-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating domains in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the insert of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9.

  4. Lymphocyte activation gene 3 and coronary artery disease

    PubMed Central

    Golden, Diana; Kolmakova, Antonina; Sura, Sunitha; Vella, Anthony T.; Manichaikul, Ani; Wang, Xin-Qun; Bielinski, Suzette J.; Taylor, Kent D.; Chen, Yii-Der Ida; Rich, Stephen S.

    2016-01-01

    BACKGROUND: The lipoprotein scavenger receptor BI (SCARB1) rs10846744 noncoding variant is significantly associated with atherosclerotic disease independently of traditional cardiovascular risk factors. We identified a potentially novel connection between rs10846744, the immune checkpoint inhibitor lymphocyte activation gene 3 (LAG3), and atherosclerosis. METHODS: In vitro approaches included flow cytometry, lipid raft isolation, phosphosignaling, cytokine measurements, and overexpressing and silencing LAG3 protein. Fasting plasma LAG3 protein was measured in hyperalphalipoproteinemic (HALP) and Multi-Ethnic Study of Atherosclerosis (MESA) participants. RESULTS: In comparison with rs10846744 reference (GG homozygous) cells, LAG3 protein levels by flow cytometry (P < 0.001), in lipid rafts stimulated and unstimulated (P = 0.03), and phosphosignaling downstream of B cell receptor engagement of CD79A (P = 0.04), CD19 (P = 0.04), and LYN (P = 0.001) were lower in rs10846744 risk (CC homozygous) cells. Overexpressing LAG3 protein in risk cells and silencing LAG3 in reference cells confirmed its importance in phosphosignaling. Secretion of TNF-α was higher (P = 0.04) and IL-10 was lower (P = 0.04) in risk cells. Plasma LAG3 levels were lower in HALP carriers of the CC allele (P < 0.0001) and by race (P = 0.004). In MESA, race (P = 0.0005), age (P = 0.003), lipid medications (P = 0.03), smoking history (P < 0.0001), and rs10846744 genotype (P = 0.002) were independent predictors of plasma LAG3. In multivariable regression models, plasma LAG3 was significantly associated with HDL-cholesterol (HDL-C) (P = 0.007), plasma IL-10 (P < 0.0001), and provided additional predictive value above the Framingham risk score (P = 0.04). In MESA, when stratified by high HDL-C, plasma LAG3 was associated with coronary heart disease (CHD) (odds ratio 1.45, P = 0.004). CONCLUSION: Plasma LAG3 is a potentially novel independent predictor of HDL-C levels and CHD risk. FUNDING: This work was

  5. Lymphocyte activation gene 3 and coronary artery disease.

    PubMed

    Golden, Diana; Kolmakova, Antonina; Sura, Sunitha; Vella, Anthony T; Manichaikul, Ani; Wang, Xin-Qun; Bielinski, Suzette J; Taylor, Kent D; Chen, Yii-Der Ida; Rich, Stephen S; Rodriguez, Annabelle

    2016-10-20

    BACKGROUND: The lipoprotein scavenger receptor BI (SCARB1) rs10846744 noncoding variant is significantly associated with atherosclerotic disease independently of traditional cardiovascular risk factors. We identified a potentially novel connection between rs10846744, the immune checkpoint inhibitor lymphocyte activation gene 3 (LAG3), and atherosclerosis. METHODS: In vitro approaches included flow cytometry, lipid raft isolation, phosphosignaling, cytokine measurements, and overexpressing and silencing LAG3 protein. Fasting plasma LAG3 protein was measured in hyperalphalipoproteinemic (HALP) and Multi-Ethnic Study of Atherosclerosis (MESA) participants. RESULTS: In comparison with rs10846744 reference (GG homozygous) cells, LAG3 protein levels by flow cytometry (P < 0.001), in lipid rafts stimulated and unstimulated (P = 0.03), and phosphosignaling downstream of B cell receptor engagement of CD79A (P = 0.04), CD19 (P = 0.04), and LYN (P = 0.001) were lower in rs10846744 risk (CC homozygous) cells. Overexpressing LAG3 protein in risk cells and silencing LAG3 in reference cells confirmed its importance in phosphosignaling. Secretion of TNF-α was higher (P = 0.04) and IL-10 was lower (P = 0.04) in risk cells. Plasma LAG3 levels were lower in HALP carriers of the CC allele (P < 0.0001) and by race (P = 0.004). In MESA, race (P = 0.0005), age (P = 0.003), lipid medications (P = 0.03), smoking history (P < 0.0001), and rs10846744 genotype (P = 0.002) were independent predictors of plasma LAG3. In multivariable regression models, plasma LAG3 was significantly associated with HDL-cholesterol (HDL-C) (P = 0.007), plasma IL-10 (P < 0.0001), and provided additional predictive value above the Framingham risk score (P = 0.04). In MESA, when stratified by high HDL-C, plasma LAG3 was associated with coronary heart disease (CHD) (odds ratio 1.45, P = 0.004). CONCLUSION: Plasma LAG3 is a potentially novel independent predictor of HDL-C levels and CHD risk. FUNDING: This work was

  6. The Non-Flagellar Type III Secretion System Evolved from the Bacterial Flagellum and Diversified into Host-Cell Adapted Systems

    PubMed Central

    Abby, Sophie S.; Rocha, Eduardo P. C.

    2012-01-01

    Type 3 secretion systems (T3SSs) are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS), which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems. PMID:23028376

  7. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    DOEpatents

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  8. Mobilisation of Ca2+ stores and flagellar regulation in human sperm by S-nitrosylation: a role for NO synthesised in the female tract

    PubMed Central

    Machado-Oliveira, Gisela; Lefièvre, Linda; Ford, Christopher; Herrero, M Belen; Barratt, Christopher; Connolly, Thomas J; Nash, Katherine; Morales-Garcia, Aduen; Kirkman-Brown, Jackson; Publicover, Steve

    2009-01-01

    Summary Generation of NO by nitric oxide synthase (NOS) is implicated in gamete interaction and fertilisation. Exposure of human spermatozoa to NO donors caused mobilisation of stored Ca2+ by a mechanism that did not require activation of guanylate cyclase but was mimicked by S-nitroso-glutathione (GSNO; an S-nitrosylating agent). Application of dithiothreitol, to reduce protein –SNO groups, rapidly reversed the actions of NO and GSNO on [Ca2+]i. The effects of NO, GSNO and dithiothreitol on sperm protein S-nitrosylation, assessed using the biotin switch method, closely paralleled their actions on [Ca2+]i. Immunofluorescent staining revealed constitutive and inducible NOS in human oviduct and cumulus (the cellular layer investing the oocyte). 4,5-diaminofluorescein (DAF) staining demonstrated production of NO by these tissues. Incubation of human sperm with oviduct explants induced sperm protein S-nitrosylation resembling that induced by NO donors and GSNO. Progesterone (a product of cumulus cells) also mobilises stored Ca2+ in human sperm. Pre-treatment of sperm with NO greatly enhanced the effect of progesterone on [Ca2+]i, resulting in a prolonged increase in flagellar excursion. We conclude that NO regulates mobilisation of stored Ca2+ in human sperm by protein S-nitrosylation, that this action is synergistic with progesterone and that this synergism is potentially highly significant in gamete interactions leading to fertilisation. PMID:18842814

  9. Chlamydomonas IFT70/CrDYF-1 is a core component of IFT particle complex B and is required for flagellar assembly.

    PubMed

    Fan, Zhen-Chuan; Behal, Robert H; Geimer, Stefan; Wang, Zhaohui; Williamson, Shana M; Zhang, Haili; Cole, Douglas G; Qin, Hongmin

    2010-08-01

    DYF-1 is a highly conserved protein essential for ciliogenesis in several model organisms. In Caenorhabditis elegans, DYF-1 serves as an essential activator for an anterograde motor OSM-3 of intraflagellar transport (IFT), the ciliogenesis-required motility that mediates the transport of flagellar precursors and removal of turnover products. In zebrafish and Tetrahymena DYF-1 influences the cilia tubulin posttranslational modification and may have more ubiquitous function in ciliogenesis than OSM-3. Here we address how DYF-1 biochemically interacts with the IFT machinery by using the model organism Chlamydomonas reinhardtii, in which the anterograde IFT does not depend on OSM-3. Our results show that this protein is a stoichiometric component of the IFT particle complex B and interacts directly with complex B subunit IFT46. In concurrence with the established IFT protein nomenclature, DYF-1 is also named IFT70 after the apparent size of the protein. IFT70/CrDYF-1 is essential for the function of IFT in building the flagellum because the flagella of IFT70/CrDYF-1-depleted cells were greatly shortened. Together, these results demonstrate that IFT70/CrDYF-1 is a canonical subunit of IFT particle complex B and strongly support the hypothesis that the IFT machinery has species- and tissue-specific variations with functional ramifications.

  10. In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements

    NASA Astrophysics Data System (ADS)

    Kozma, Peter; Kozma, Daniel; Nemeth, Andrea; Jankovics, Hajnalka; Kurunczi, Sandor; Horvath, Robert; Vonderviszt, Ferenc; Fried, Miklos; Petrik, Peter

    2011-06-01

    In this study, we have reconstructed the statistical 3D structure of hundreds of nanometers thick surface immobilized flagellar filament protein layers in their native environment, in buffer solution. The protein deposition onto the surface activated Ta 2O 5 film was performed in a flow cell, and the immobilization process was followed by in situ spectroscopic ellipsometry. A multilayer optical model was developed, in that the protein layer was described by five effective medium sublayers. Applying this method, an in-depth analysis of the protein layer formation was performed. Based on the kinetics in the distribution of the surface mass density, the statistical properties of the filamentous film could be determined computationally as a function of the measurement time. It was also demonstrated that the 3D structure of the protein layer can be reconstructed based on the calculated in-depth mass density profile. The computational investigation revealed that the filaments can be classified into two individual groups in approximately equal ratio according to their orientation. In the first group the filaments are close to laying position, whereas in the second group they are in a standing position, resulting in a significantly denser sublayer close to the substrate than at a larger distance.

  11. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.

  12. Cluster Analysis of Tumor Suppressor Genes in Canine Leukocytes Identifies Activation State

    PubMed Central

    Daly, Julie-Anne; Mortlock, Sally-Anne; Taylor, Rosanne M.; Williamson, Peter

    2015-01-01

    Cells of the immune system undergo activation and subsequent proliferation in the normal course of an immune response. Infrequently, the molecular and cellular events that underlie the mechanisms of proliferation are dysregulated and may lead to oncogenesis, leading to tumor formation. The most common forms of immunological cancers are lymphomas, which in dogs account for 8%–20% of all cancers, affecting up to 1.2% of the dog population. Key genes involved in negatively regulating proliferation of lymphocytes include a group classified as tumor suppressor genes (TSGs). These genes are also known to be associated with progression of lymphoma in humans, mice, and dogs and are potential candidates for pathological grading and diagnosis. The aim of the present study was to analyze TSG profiles in stimulated leukocytes from dogs to identify genes that discriminate an activated phenotype. A total of 554 TSGs and three gene set collections were analyzed from microarray data. Cluster analysis of three subsets of genes discriminated between stimulated and unstimulated cells. These included 20 most upregulated and downregulated TSGs, TSG in hallmark gene sets significantly enriched in active cells, and a selection of candidate TSGs, p15 (CDKN2B), p18 (CDKN2C), p19 (CDKN1A), p21 (CDKN2A), p27 (CDKN1B), and p53 (TP53) in the third set. Analysis of two subsets suggested that these genes or a subset of these genes may be used as a specialized PCR set for additional analysis. PMID:27478369

  13. Effect Of Simulated Microgravity On Activated T Cell Gene Transcription

    NASA Technical Reports Server (NTRS)

    Morrow, Maureen A.

    2003-01-01

    Studies of T lymphocytes under the shear stress environment of clinorotation have demonstrated an inhibition of activation in response to TCR mediated signaling. These results mimic those observed during space flight. This work investigates the molecular signaling events of T lymphocyte activation with clinorotation. Purified human T lymphocytes and the T cell clone Jurkat exhibit an uncoupling of signaling as mediated through the TCR. Activation of the transcription factor AP-1 is inhibited while activation of NFAT occurs. NFAT dephosphorylation and activation is dependent on sustained Ca(++) influx. Alternatively, AP-1, which consists of two transcription factors, jun and fos, is activated by PKC and Ras mediated pathways. TCR signaling is known to be dependent on cytoskeletal rearrangements, in particular, raft aggregation is critical. Raft aggregation, as mediated through GM, crosslinking, overcomes the inhibition of T lymphocyte activation with clinorotation, indicating that the block is occurring upstream of raft aggregation. Clinorotation is shown to have an effect similar to a weak TCR signal.

  14. Identification of two peanut germin-like genes and the potential superoxide dismutase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germin and germin-like protein (GLP) genes are members of large multigene families. These genes have been reported to play a role directly or indirectly in plant defense response. A number of GLPs have been demonstrated to have superoxidase dismutase (SOD) or oxalate oxidase (OxO) activity, leading ...

  15. The alternative sigma factor HrpL negatively modulates the flagellar system in the phytopathogenic bacterium Erwinia amylovora under hrp-inducing conditions.

    PubMed

    Cesbron, Sophie; Paulin, Jean-Pierre; Tharaud, Michel; Barny, Marie-Anne; Brisset, Marie-Noëlle

    2006-04-01

    In this work we present evidence of an opposite regulation in the phytopathogenic bacteria Erwinia amylovora between the virulence-associated Type III secretion system (TTSS) and the flagellar system. Using loss-of-function mutants we show that motility enhanced the virulence of wild-type bacteria relative to a nonmotile mutant when sprayed on apple seedlings with unwounded leaves. Then we demonstrated through analyses of motility, flagellin export and visualization of flagellar filament that HrpL, the positive key regulator of the TTSS, also down-regulates the flagellar system. Such a dual regulation mediated by an alternative sigma factor of the TTSS appears to be a level of regulation between virulence and motility not yet described among Proteobacteria.

  16. Quantitative structure-activity relationships and docking studies of calcitonin gene-related peptide antagonists.

    PubMed

    Kyani, Anahita; Mehrabian, Mohadeseh; Jenssen, Håvard

    2012-02-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression. The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model resulted in an extremely robust and highly predictive model with calibration, leave-one-out and leave-20-out validation R(2) of 0.9194, 0.9103, and 0.9214, respectively. We performed docking of the most potent calcitonin gene-related peptide antagonists with the calcitonin gene-related peptide receptor and demonstrated that peptide antagonists act by blocking access to the peptide-binding cleft. We also demonstrated the direct contact of residues 28-37 of the calcitonin gene-related peptide antagonists with the receptor. These results are in agreement with the conclusions drawn from the quantitative structure-activity relationship model, indicating that both electrostatic and steric factors should be taken into account when designing novel calcitonin gene-related peptide antagonists.

  17. Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process.

    PubMed

    Yu, Jie; Liu, Dongfang; Li, Kexun

    2015-03-01

    The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.

  18. From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK.

    PubMed

    Gourlay, Louise J; Thomas, Rachael J; Peri, Claudio; Conchillo-Solé, Oscar; Ferrer-Navarro, Mario; Nithichanon, Arnone; Vila, Jordi; Daura, Xavier; Lertmemongkolchai, Ganjana; Titball, Richard; Colombo, Giorgio; Bolognesi, Martino

    2015-04-01

    Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a potentially fatal infection that is endemic in Southeast Asia and Northern Australia that is poorly controlled by antibiotics. Research efforts to identify antigenic components for a melioidosis vaccine have led to the identification of several proteins, including subunits forming the flagella that mediate bacterial motility, host colonization, and virulence. This study focuses on the B. pseudomallei flagellar hook-associated protein (FlgK(Bp)), and provides the first insights into the 3D structure of FlgK proteins as targets for structure-based antigen engineering. The FlgK(Bp) crystal structure (presented here at 1.8-Å resolution) reveals a multidomain fold, comprising two small β-domains protruding from a large elongated α-helical bundle core. The evident structural similarity to flagellin, the flagellar filament subunit protein, suggests that, depending on the bacterial species, flagellar hook-associated proteins are likely to show a conserved, elongated α-helical bundle scaffold coupled to a variable number of smaller domains. Furthermore, we present immune serum recognition data confirming, in agreement with previous findings, that recovered melioidosis patients produce elevated levels of antibodies against FlgK(Bp), in comparison with seronegative and seropositive healthy subjects. Moreover, we show that FlgK(Bp) has cytotoxic effects on cultured murine macrophages, suggesting an important role in bacterial pathogenesis. Finally, computational epitope prediction methods applied to the FlgK(Bp) crystal structure, coupled with in vitro mapping, allowed us to predict three antigenic regions that locate to discrete protein domains. Taken together, our results point to FlgK(Bp) as a candidate for the design and production of epitope-containing subunits/domains as potential vaccine components.

  19. Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load.

    PubMed

    Lo, Chien-Jung; Leake, Mark C; Pilizota, Teuta; Berry, Richard M

    2007-07-01

    Many bacterial species swim using flagella. The flagellar motor couples ion flow across the cytoplasmic membrane to rotation. Ion flow is driven by both a membrane potential (V(m)) and a transmembrane concentration gradient. To investigate their relation to bacterial flagellar motor function we developed a fluorescence technique to measure V(m) in single cells, using the dye tetramethyl rhodamine methyl ester. We used a convolution model to determine the relationship between fluorescence intensity in images of cells and intracellular dye concentration, and calculated V(m) using the ratio of intracellular/extracellular dye concentration. We found V(m) = -140 +/- 14 mV in Escherichia coli at external pH 7.0 (pH(ex)), decreasing to -85 +/- 10 mV at pH(ex) 5.0. We also estimated the sodium-motive force (SMF) by combining single-cell measurements of V(m) and intracellular sodium concentration. We were able to vary the SMF between -187 +/- 15 mV and -53 +/- 15 mV by varying pH(ex) in the range 7.0-5.0 and extracellular sodium concentration in the range 1-85 mM. Rotation rates for 0.35-microm- and 1-microm-diameter beads attached to Na(+)-driven chimeric flagellar motors varied linearly with V(m). For the larger beads, the two components of the SMF were equivalent, whereas for smaller beads at a given SMF, the speed increased with sodium gradient and external sodium concentration.

  20. Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis.

    PubMed

    Kajikawa, Akinobu; Satoh, Eiichi; Leer, Rob J; Yamamoto, Shigeki; Igimi, Shizunobu

    2007-05-04

    A recombinant Lactobacillus casei expressing a flagellar antigen from Salmonella enterica serovar Enteritidis was constructed and evaluated as a mucosal vaccine. Intragastric immunization of the recombinant strain conferred protective immunity against Salmonella infection in mice. This immunization did not result in antigen-specific antibody in either feces or sera but induced the release of IFN-gamma on restimulation of primed lymphocytes ex vivo. The results suggested that the protective efficacy provided by flagellin-expressing L. casei is mainly attributable to cell-mediated immune responses. In addition, an adjuvant-type effect of the antigen delivery system with L. casei was also observed.

  1. Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2006-03-01

    Microglia are the resident antigen-presenting cells within the central nervous system (CNS), and they serve immune-like functions in protecting the brain against injury and invading pathogens. By contrast, activated microglia can secrete numerous reactants that damage neurons. The pathogenesis of various neurodegenerative diseases has been associated with microglial activation, but the signaling pathways that program a neuronally protective or destructive phenotype in microglia are not known. To increase the understanding of microglial activation, microarray analysis was used to profile the transcriptome of BV-2 microglial cells after activation. Microglia were activated by lipopolysaccharide, the HIV neurotoxic protein TAT, and dopamine quinone, each of which has been linked to dopamine neuronal damage. We identified 210 of 9882 genes whose expression was differentially regulated by all activators (116 increased and 94 decreased in expression). Gene ontology analysis assigned up-regulated genes to a number of specific biological processes and molecular functions, including immune response, inflammation, and cytokine/chemokine activity. Genes down-regulated in expression contribute to conditions that are permissive of microglial migration, lowered adhesion to matrix, lessened phagocytosis, and reduction in receptors that oppose chemotaxis and inflammation. These results elaborate a broad profile of microglial genes whose expression is altered by conditions associated with both neurodegenerative diseases and microglial activation.

  2. Potato tuber cytokinin oxidase/dehydrogenase genes: biochemical properties, activity, and expression during tuber dormancy progression.

    PubMed

    Suttle, Jeffrey C; Huckle, Linda L; Lu, Shunwen; Knauber, Donna C

    2014-03-15

    The enzymatic and biochemical properties of the proteins encoded by five potato cytokinin oxidase/dehydrogenase (CKX)-like genes functionally expressed in yeast and the effects of tuber dormancy progression on StCKX expression and cytokinin metabolism were examined in lateral buds isolated from field-grown tubers. All five putative StCKX genes encoded proteins with in vitro CKX activity. All five enzymes were maximally active at neutral to slightly alkaline pH with 2,6-dichloro-indophenol as the electron acceptor. In silico analyses indicated that four proteins were likely secreted. Substrate dependence of two of the most active enzymes varied; one exhibiting greater activity with isopentenyl-type cytokinins while the other was maximally active with cis-zeatin as a substrate. [(3)H]-isopentenyl-adenosine was readily metabolized by excised tuber buds to adenine/adenosine demonstrating that CKX was active in planta. There was no change in apparent in planta CKX activity during either natural or chemically forced dormancy progression. Similarly although expression of individual StCKX genes varied modestly during tuber dormancy, there was no clear correlation between StCKX gene expression and tuber dormancy status. Thus although CKX gene expression and enzyme activity are present in potato tuber buds throughout dormancy, they do not appear to play a significant role in the regulation of cytokinin content during tuber dormancy progression.

  3. SUMO functions in constitutive transcription and during activation of inducible genes in yeast.

    PubMed

    Rosonina, Emanuel; Duncan, Sarah M; Manley, James L

    2010-06-15

    Transcription factors represent one of the largest groups of proteins regulated by SUMO (small ubiquitin-like modifier) modification, and their sumoylation is usually associated with transcriptional repression. To investigate whether sumoylation plays a general role in regulating transcription in yeast, we determined the occupancy of sumoylated proteins at a variety of genes by chromatin immunoprecipitation (ChIP) using an antibody that recognizes the yeast SUMO peptide. Surprisingly, we detected sumoylated proteins at all constitutively transcribed genes tested but not at repressed genes. Ubc9, the SUMO conjugation enzyme, was not present on these genes, but its inactivation reduced SUMO at the constitutive promoters and modestly decreased RNA polymerase II levels. In contrast, activation of the inducible GAL1, STL1, and ARG1 genes caused not only a striking accumulation of SUMO at all three promoter regions, but also recruitment of Ubc9, indicating that gene activation involves sumoylation of promoter-bound factors. However, Ubc9 inactivation, while reducing sumoylation at the induced promoters, paradoxically resulted in increased transcription. Providing an explanation for this, the reduced sumoylation impaired the cell's ability to appropriately shut off transcription of the induced ARG1 gene, indicating that SUMO can facilitate transcriptional silencing. Our findings thus establish unexpected roles for sumoylation in both constitutive and activated transcription, and provide a novel mechanism for regulating gene expression.

  4. Ectopic Activation of Germline and Placental Genes Identifies Aggressive Metastasis-Prone Lung Cancers

    PubMed Central

    Rousseaux, Sophie; Debernardi, Alexandra; Jacquiau, Baptiste; Vitte, Anne-Laure; Vesin, Aurélien; Nagy-Mignotte, Hélène; Moro-Sibilot, Denis; Brichon, Pierre-Yves; Lantuejoul, Sylvie; Hainaut, Pierre; Laffaire, Julien; de Reyniès, Aurélien; Beer, David G.; Timsit, Jean-François; Brambilla, Christian; Brambilla, Elisabeth; Khochbin, Saadi

    2016-01-01

    Activation of normally silent tissue-specific genes and the resulting cell “identity crisis” are the unexplored consequences of malignant epigenetic reprogramming. We designed a strategy for investigating this reprogramming, which consisted of identifying a large number of tissue-restricted genes that are epigenetically silenced in normal somatic cells and then detecting their expression in cancer. This approach led to the demonstration that large-scale “off-context” gene activations systematically occur in a variety of cancer types. In our series of 293 lung tumors, we identified an ectopic gene expression signature associated with a subset of highly aggressive tumors, which predicted poor prognosis independently of the TNM (tumor size, node positivity, and metastasis) stage or histological subtype. The ability to isolate these tumors allowed us to reveal their common molecular features characterized by the acquisition of embryonic stem cell/germ cell gene expression profiles and the down-regulation of immune response genes. The methodical recognition of ectopic gene activations in cancer cells could serve as a basis for gene signature–guided tumor stratification, as well as for the discovery of oncogenic mechanisms, and expand the understanding of the biology of very aggressive tumors. PMID:23698379

  5. Targeting c-Myc-activated genes with a correlation method: Detection of global changes in large gene expression network dynamics

    PubMed Central

    Remondini, D.; O'Connell, B.; Intrator, N.; Sedivy, J. M.; Neretti, N.; Castellani, G. C.; Cooper, L. N.

    2005-01-01

    This work studies the dynamics of a gene expression time series network. The network, which is obtained from the correlation of gene expressions, exhibits global dynamic properties that emerge after a cell state perturbation. The main features of this network appear to be more robust when compared with those obtained with a network obtained from a linear Markov model. In particular, the network properties strongly depend on the exact time sequence relationships between genes and are destroyed by random temporal data shuffling. We discuss in detail the problem of finding targets of the c-myc protooncogene, which encodes a transcriptional regulator whose inappropriate expression has been correlated with a wide array of malignancies. The data used for network construction are a time series of gene expression, collected by microarray analysis of a rat fibroblast cell line expressing a conditional Myc-estrogen receptor oncoprotein. We show that the correlation-based model can establish a clear relationship between network structure and the cascade of c-myc-activated genes. PMID:15867157

  6. Activity-dependent regulation of genes implicated in X-linked non-specific mental retardation.

    PubMed

    Boda, B; Mas, C; Muller, D

    2002-01-01

    X-linked forms of non-specific mental retardation are complex disorders, for which mutations in several genes have recently been identified. These include OPHN1, GDI1, PAK3, IL1RAPL, TM4SF2, FMR2 and RSK2. To investigate the mechanisms through which alterations of these gene products could result in cognitive impairment, we analyzed their expression using quantitative PCR technique in two in vitro models of activity-dependent gene regulation: kainate-induced seizures and long-term synaptic potentiation (LTP). We found that the level of expression of four genes, PAK3, IL1RAPL, RSK2 and TM4SF2, was significantly up-regulated following kainate treatment. Furthermore we observed a significant increase in mRNA levels of PAK3 and IL1RAPL following LTP induction. These results suggest a possible role for these four genes in activity-dependent brain plasticity.

  7. The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH.

    PubMed

    Minamino, Tohru; González-Pedrajo, Bertha; Kihara, May; Namba, Keiichi; Macnab, Robert M

    2003-07-01

    Salmonella FliI is the ATPase that drives flagellar protein export. It normally exists as a complex together with the regulatory protein FliH. A fliH null mutant was slightly motile, with overproduction of FliI resulting in substantial improvement of its motility. Mutations in the cytoplasmic domains of FlhA and FlhB, which are integral membrane components of the type III flagellar export apparatus, also resulted in substantially improved motility, even at normal FliI levels. Thus, FliH, though undoubtedly important, is not essential.

  8. NF-Y activates genes of metabolic pathways altered in cancer cells.

    PubMed

    Benatti, Paolo; Chiaramonte, Maria Luisa; Lorenzo, Mariangela; Hartley, John A; Hochhauser, Daniel; Gnesutta, Nerina; Mantovani, Roberto; Imbriano, Carol; Dolfini, Diletta

    2016-01-12

    The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells.

  9. A gene encoding a new cold-active lipase from an Antarctic isolate of Penicillium expansum.

    PubMed

    Mohammed, Suja; Te'o, Junior; Nevalainen, Helena

    2013-08-01

    Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12-C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5'- and 3'-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.

  10. The flagellar regulator TviA reduces pyroptosis by Salmonella enterica serovar Typhi.

    PubMed

    Winter, Sebastian E; Winter, Maria G; Atluri, Vidya; Poon, Victor; Romão, Everton L; Tsolis, Renée M; Bäumler, Andreas J

    2015-04-01

    To discern virulent from innocuous microbes, the innate immune system senses events associated with bacterial access to immunoprivileged sites such as the host cell cytosol. One such pathway is triggered by the cytosolic delivery of flagellin, the major subunit of the flagellum, by bacterial secretion systems. This leads to inflammasome activation and subsequent proinflammatory cell death (pyroptosis) of the infected phagocyte. In this study, we demonstrate that the causative agent of typhoid fever, Salmonella enterica serovar Typhi, can partially subvert this critical innate immune recognition event. The transcriptional regulator TviA, which is absent from Salmonella serovars associated with human gastroenteritis, repressed the expression of flagellin during infection of human macrophage-like (THP-1) cells. This mechanism allowed S. Typhi to dampen inflammasome activation, leading to reduced interleukin-1β (IL-1β) secretion and diminished cell death. Likewise, the introduction of the tviA gene in nontyphoidal Salmonella enterica serovar Typhimurium reduced flagellin-induced pyroptosis. These data suggest that gene regulation of virulence factors enables S. Typhi to evade innate immune recognition by concealing a pathogen-induced process from being sensed by the inflammasome.

  11. Intricate regulation of tyrosine hydroxylase activity and gene expression.

    PubMed

    Kumer, S C; Vrana, K E

    1996-08-01

    Tyrosine hydroxylase catalyzes the rate-limiting step in the biosynthesis of the catecholamines dopamine, norepinephrine, and epinephrine. Therefore, the regulation of tyrosine hydroxylase enzyme number and intrinsic enzyme activity represents the central means for controlling the synthesis of these important biogenic amines. An intricate scheme has evolved whereby tyrosine hydroxylase activity is modulated by nearly every documented form of regulation. Beginning with the genomic DNA, evidence exists for the transcriptional regulation of tyrosine hydroxylase mRNA levels, alternative RNA processing, and the regulation of RNA stability. There is also experimental support for the role of both translational control and enzyme stability in establishing steady-state levels of active tyrosine hydroxylase protein. Finally, mechanisms have been proposed for feedback inhibition of the enzyme by catecholamine products, allosteric modulation of enzyme activity, and phosphorylation-dependent activation of the enzyme by various different kinase systems. Given the growing literature suggesting that different tissues regulate tyrosine hydroxylase mRNA levels and activity in different ways, regulatory mechanisms provide not only redundancy but also diversity in the control of catecholamine biosynthesis.

  12. Screening for novel human genes associated with CRE pathway activation with cell microarray.

    PubMed

    Tian, Linjie; Wang, Pingzhang; Guo, Jinhai; Wang, Xinyu; Deng, Weiwei; Zhang, Chenying; Fu, Dongxu; Gao, Xia; Shi, Taiping; Ma, Dalong

    2007-07-01

    In this study, cell microarray technology is used to identify novel human genes associated with CRE pathway activation. By reverse transfection, expression plasmids containing full-length cDNAs were cotransfected with the reporter plasmid pCRE-d2EGFP to monitor the activation of the CRE pathway via enhanced green fluorescence protein (EGFP) expression. Of the 575 predominantly novel genes screened, 22 exhibited relatively higher EGFP fluorescence compared with a negative control. After a functional validation with a dual luciferase reporter system that included both cis- and trans-luciferase assays, 4 of the 22 genes (RNF41, C8orf32, C6orf208, and MEIS3P1) were confirmed as CRE-pathway activators. Western blot analysis revealed that RNF41 can promote CREB phosphorylation. These results demonstrate the successful combination of cell microarray technology with this reporting system and the potential of this tool to characterize functions of novel genes in a highly parallel format.

  13. The evolution of drug-activated nuclear receptors: one ancestral gene diverged into two xenosensor genes in mammals

    PubMed Central

    Handschin, Christoph; Blättler, Sharon; Roth, Adrian; Looser, Renate; Oscarson, Mikael; Kaufmann, Michel R; Podvinec, Michael; Gnerre, Carmela; Meyer, Urs A

    2004-01-01

    Background Drugs and other xenobiotics alter gene expression of cytochromes P450 (CYP) by activating the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in mammals. In non-mammalian species, only one xenosensor gene has been found. Using chicken as a model organism, the aim of our study was to elucidate whether non-mammalian species only have one or two xenosensors like mammals. Results To explore the evolutionary aspect of this divergence, we tried to identify additional xenobiotic sensing nuclear receptors in chicken using various experimental approaches. However, none of those revealed novel candidates. Ablation of chicken xenobiotic receptor (CXR) function by RNAi or dominant-negative alleles drastically reduced drug-induction in a chicken hepatoma cell line. Subsequently, we functionally and structurally characterized CXR and compared our results to PXR and CAR. Despite the high similarity in their amino acid sequence, PXR and CAR have very distinct modes of activation. Some aspects of CXR function, e.g. direct ligand activation and high promiscuity are very reminiscent of PXR. On the other hand, cellular localization studies revealed common characteristics of CXR and CAR in terms of cytoplasmic-nuclear distribution. Finally, CXR has unique properties regarding its regulation in comparison to PXR and CAR. Conclusion Our finding thus strongly suggest that CXR constitutes an ancestral gene which has evolved into PXR and CAR in mammals. Future studies should elucidate the reason for this divergence in mammalian versus non-mammalian species. PMID:15479477

  14. Controlling nuclear JAKs and STATs for specific gene activation by IFN{gamma}

    SciTech Connect

    Noon-Song, Ezra N.; Ahmed, Chulbul M.; Dabelic, Rea; Canton, Johnathan; Johnson, Howard M.

    2011-07-08

    Highlights: {yields} Gamma interferon (IFN{gamma}) and its receptor subunit, IFNGR1, interact with the promoter region of IFN{gamma}-associated genes along with transcription factor STAT1{alpha}. {yields} We show that activated Janus kinases pJAK2 and pJAK1 also associate with IFNGR1 in the nucleus. {yields} The activated Janus kinases are responsible for phosphorylation of tyrosine 41 on histone H3, an important epigenetic event for specific gene activation. -- Abstract: We previously showed that gamma interferon (IFN{gamma}) and its receptor subunit, IFNGR1, interacted with the promoter region of IFN{gamma}-activated genes along with transcription factor STAT1{alpha}. Recent studies have suggested that activated Janus kinases pJAK2 and pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFN{gamma}. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFN{gamma} treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The {beta}-actin gene, which is not activated by IFN{gamma}, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFN{gamma} treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFN{gamma} treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFN

  15. Active and inactive genes localize preferentially in the periphery of chromosome territories

    PubMed Central

    1996-01-01

    The intranuclear position of a set of genes was analyzed with respect to the territories occupied by the whole chromosomes in which these genes are localized. Genes and their respective chromosome territories were simultaneously visualized in three-dimensionally preserved nuclei applying dual color fluorescence in situ hybridization. Three coding (DMD, MYH7, and HBB) and two noncoding sequences (D1Z2 and an anonymous sequence) were analyzed in four different cell types, including cells where DMD and MYH7 are actively transcribed. Spatial analysis by confocal laser scanning microscopy revealed that the genes are preferentially located in the periphery of chromosome territories. This positioning was independent from the activity of the genes. In contrast, the non-expressed anonymous fragment was found randomly distributed or localized preferentially in the interior of the corresponding chromosome territory. Furthermore, the distribution of the analyzed genes within the territorial peripheries was found to be highly characteristic for each gene, and, again, independent from its expression. The impact of these findings with regard to the three- dimensional arrangement of the linear DNA string within chromosome territories, as well as with respect to a putative nuclear subcompartment confining gene expression, are discussed. PMID:8947544

  16. Gene expression analysis during acute hepatitis C virus infection associates dendritic cell activation with viral clearance.

    PubMed

    Zabaleta, Aintzane; Riezu-Boj, Jose-Ignacio; Larrea, Esther; Villanueva, Lorea; Lasarte, Juan Jose; Guruceaga, Elizabeth; Fisicaro, Paola; Ezzikouri, Sayeh; Missale, Gabriele; Ferrari, Carlo; Benjelloun, Soumaya; Prieto, Jesús; Sarobe, Pablo

    2016-05-01

    Viral clearance during acute hepatitis C virus (HCV) infection is associated with the induction of potent antiviral T-cell responses. Since dendritic cells (DC) are essential in the activation of primary T-cell responses, gene expression was analyzed in DC from patients during acute HCV infection. By using microarrays, gene expression was compared in resting and activated peripheral blood plasmacytoid (pDC) and myeloid (mDC) DC from acute HCV resolving patients (AR) and from patients who become chronically infected (ANR), as well as in healthy individuals (CTRL) and chronically-infected patients (CHR). For pDC, a high number of upregulated genes was found in AR patients, irrespective of DC stimulation. However, for mDC, most evident differences were detected after DC stimulation, again corresponding to upregulated genes in AR patients. Divergent behavior of ANR was also observed when analyzing DC from CTRL and CHR, with ANR patients clustering again apart from these groups. These differences corresponded to metabolism-associated genes and genes belonging to pathways relevant for DC activation and cytokine responses. Thus, upregulation of relevant genes in DC during acute HCV infection may determine viral clearance, suggesting that dysfunctional DC may be responsible for the lack of efficient T-cell responses which lead to chronic HCV infection.

  17. A conserved flagellar pocket exposed high mannose moiety is used by African trypanosomes as a host cytokine binding molecule.

    PubMed

    Magez, S; Radwanska, M; Stijlemans, B; Xong, H V; Pays, E; De Baetselier, P

    2001-09-07

    Trypanosomes use antigenic variation of their variant-specific surface glycoprotein (VSG) coat as defense against the host immune system. However, in order to sustain their growth, they need to expose conserved epitopes, allowing host macromolecule binding and receptor-mediated endocytosis. Here we show that Trypanosoma brucei uses the conserved chitobiose-oligomannose (GlcNAc(2)-Man(5-9)) moieties of its VSG as a binding ligand for tumor necrosis factor (TNF), a host cytokine with lectin-like properties. As endocytosis in trypanosomes is restricted to the flagellar pocket, we show that soluble flagellar pocket extracts, and in particular soluble VSG, inhibit the binding of (125)I-TNF to trypanosomes. The interaction between TNF and VSG is confirmed by affinity chromatography, biosensor, and dot-blot affinity measurements, and soluble VSG inhibition of TNF-mediated trypanolysis. In all approaches, removal of N-linked carbohydrates abrogates the TNF-VSG interaction. In addition, synthetic high mannose oligosaccharides can block TNF-VSG interactions, and a VSG glycopeptide carrying the GlcNAc(2)-Man(5-9) moiety is shown to inhibit TNF-mediated trypanosome killing in mixed parasite/macrophage cell cultures. Together, these results support the observation that TNF plays a role in growth control of trypanosomes and, moreover, suggest that, by the use of conserved VSG carbohydrates as lectin-binding epitopes, trypanosomes can limit the necessity to express large numbers of invariant surface exposed receptors.

  18. A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex

    PubMed Central

    Sivadas, Priyanka; Dienes, Jennifer M.; St. Maurice, Martin; Meek, William D.

    2012-01-01

    A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH–RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs. PMID:23148234

  19. Modulation of activation-associated host cell gene expression by the apicomplexan parasite Theileria annulata

    PubMed Central

    Durrani, Zeeshan; Weir, William; Pillai, Sreerekha; Kinnaird, Jane; Shiels, Brian

    2012-01-01

    Summary Infection of bovine leucocytes by Theileria annulata results in establishment of transformed, infected cells. Infection of the host cell is known to promote constitutive activation of pro-inflammatory transcription factors that have the potential to be beneficial or detrimental. In this study we have compared the effect of LPS activation on uninfected bovine leucocytes (BL20 cells) and their Theileria-infected counterpart (TBL20). Gene expression profiles representing activated uninfected BL20 relative to TBL20 cells were also compared. The results show that while prolonged stimulation with LPS induces cell death and activation of NF-κB in BL20 cells, the viability of Theileria-infected cells was unaffected. Analysis of gene expression networks provided evidence that the parasite establishes tight control over pathways associated with cellular activation by modulating reception of extrinsic stimuli and by significantly altering the expression outcome of genes targeted by infection-activated transcription factors. Pathway analysis of the data set identified novel candidate genes involved in manipulation of cellular functions associated with the infected transformed cell. The data indicate that the T. annulata parasite can irreversibly reconfigure host cell gene expression networks associated with development of inflammatory disease and cancer to generate an outcome thatis beneficial to survival and propagation of the infected leucocyte. PMID:22533473

  20. Physical activity-associated gene expression signature in nonhuman primate motor cortex.

    PubMed

    Mitchell, Amanda C; Leak, Rehana K; Garbett, Krassimira; Zigmond, Michael J; Cameron, Judy L; Mirnics, Károly

    2012-03-01

    It has been established that weight gain and weight loss are heavily influenced by activity level. In this study, we hypothesized that the motor cortex exhibits a distinct physical activity-associated gene expression profile, which may underlie changes in weight associated with movement. Using DNA microarrays we profiled gene expression in the motor cortex of a group of 14 female rhesus monkeys (Macaca mulatta) with a wide range of stable physical activity levels. We found that neuronal growth factor signaling and nutrient sensing transcripts in the brain were highly correlated with physical activity. A follow-up of AKT3 expression changes (a gene at the apex of neuronal survival and nutrient sensing) revealed increased protein levels of total AKT, phosphorylated AKT, and forkhead box O3 (FOXO3), one of AKT's main downstream effectors. In addition, we successfully validated three other genes via quantitative polymerase chain reaction (qPCR) (cereblon (CRBN), origin recognition complex subunit 4-like, and pyruvate dehydrogenase 4 (PDK4)). We conclude that these genes are important in the physical activity-associated pathway in the motor cortex, and may be critical for physical activity-associated changes in body weight and neuroprotection.

  1. Evolution of the perlecan/HSPG2 gene and its activation in regenerating Nematostella vectensis.

    PubMed

    Warren, Curtis R; Kassir, Elias; Spurlin, James; Martinez, Jerahme; Putnam, Nicholas H; Farach-Carson, Mary C

    2015-01-01

    The heparan sulfate proteoglycan 2 (HSPG2)/perlecan gene is ancient and conserved in all triploblastic species. Its presence maintains critical cell boundaries in tissue and its large (up to ~900 kDa) modular structure has prompted speculation about the evolutionary origin of the gene. The gene's conservation amongst basal metazoans is unclear. After the recent sequencing of their genomes, the cnidarian Nematostella vectensis and the placozoan Trichoplax adhaerens have become favorite models for studying tissue regeneration and the evolution of multicellularity. More ancient basal metazoan phyla include the poriferan and ctenophore, whose evolutionary relationship has been clarified recently. Our in silico and PCR-based methods indicate that the HSPG2 gene is conserved in both the placozoan and cnidarian genomes, but not in those of the ctenophores and only partly in poriferan genomes. HSPG2 also is absent from published ctenophore and Capsaspora owczarzaki genomes. The gene in T. adhaerens is encoded as two separate but genetically juxtaposed genes that house all of the constituent pieces of the mammalian HSPG2 gene in tandem. These genetic constituents are found in isolated genes of various poriferan species, indicating a possible intronic recombinatory mechanism for assembly of the HSPG2 gene. Perlecan's expression during wound healing and boundary formation is conserved, as expression of the gene was activated during tissue regeneration and reformation of the basement membrane of N. vectensis. These data indicate that the complex HSPG2 gene evolved concurrently in a common ancestor of placozoans, cnidarians and bilaterians, likely along with the development of differentiated cell types separated by acellular matrices, and is activated to reestablish these tissue borders during wound healing.

  2. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    PubMed Central

    Lux, Andreas; Salway, Fiona; Dressman, Holly K; Kröner-Lux, Gabriele; Hafner, Mathias; Day, Philip JR; Marchuk, Douglas A; Garland, John

    2006-01-01

    Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT). Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling. PMID:16594992

  3. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression.

    PubMed

    Kauffmann, Hans Martin; Pfannschmidt, Sylvia; Zöller, Heike; Benz, Anke; Vorderstemann, Birgit; Webster, Jeanette I; Schrenk, Dieter

    2002-02-28

    In the present study, we investigated the inducibility of the drug conjugate transporter genes MRP1 and MRP2 by redox-active compounds such as tertiary butylated hydroquinone (tBHQ) and quercetin and by chemicals known to activate the pregnane X receptor (PXR) such as rifampicin and clotrimazol and by the metalloid compound arsenite. The human MRP2 gene was found to be inducible in HepG2 cells by rifampicin, clotrimazol, arsenite and tBHQ. As MRP1 expression is extremely low in HepG2 cells, its inducibility was studied in MCF-7 cells. However, only tBHQ and quercetin acted as inducers, but not the other compounds investigated. Reporter gene assays demonstrated that proximal promoter regions of the genes contribute to the induction by tBHQ, quercetin (MRP1) and clotrimazol (MRP2). However, the deletion of binding sites supposed to mediate the induction process (a PXR-binding element-like sequence for the clotrimazol effect and an ARE (antioxidative response element) for the tBHQ/quercetin effect) did not result in a significant decrease in the induction factor indicating that other parts of the promoter are probably involved in the induction process. In summary, expression of both genes can be up-regulated by redox-active compounds, while the other compounds tested induced only MRP2 but not MRP1 expression.

  4. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data

    PubMed Central

    Berchtold, Evi; Csaba, Gergely; Zimmer, Ralf

    2016-01-01

    Several methods predict activity changes of transcription factors (TFs) from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score), which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal) i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score. PMID:27723775

  5. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  6. Nostoc commune UTEX 584 gene expressing indole phosphate hydrolase activity in Escherichia coli.

    PubMed Central

    Xie, W Q; Whitton, B A; Simon, J W; Jäger, K; Reed, D; Potts, M

    1989-01-01

    A gene encoding an enzyme capable of hydrolyzing indole phosphate was isolated from a recombinant gene library of Nostoc commune UTEX 584 DNA in lambda gt10. The gene (designated iph) is located on a 2.9-kilobase EcoRI restriction fragment and is present in a single copy in the genome of N. commune UTEX 584. The iph gene was expressed when the purified 2.9-kilobase DNA fragment, free of any vector sequences, was added to a cell-free coupled transcription-translation system. A polypeptide with an Mr of 74,000 was synthesized when the iph gene or different iph-vector DNA templates were expressed in vitro. When carried by different multicopy plasmids and phagemids (pMP005, pBH6, pB8) the cyanobacterial iph gene conferred an Iph+ phenotype upon various strains of Escherichia coli, including a phoA mutant. Hydrolysis of 5-bromo-4-chloro-3-indolyl phosphate was detected in recombinant E. coli strains grown in phosphate-rich medium, and the activity persisted in assay buffers that contained phosphate. In contrast, indole phosphate hydrolase activity only developed in cells of N. commune UTEX 584, when they were partially depleted of phosphorus, and the activity associated with these cells was suppressed partially by the addition of phosphate to assay buffers. Indole phosphate hydrolase activity was detected in periplasmic extracts from E. coli (Iph+) transformants. Images PMID:2536677

  7. Epigenomic Modifications Predict Active Promoters and Gene Structure in Toxoplasma gondii

    PubMed Central

    Gissot, Mathieu; Kelly, Krystyna A; Ajioka, James W; Greally, John M; Kim, Kami

    2007-01-01

    Mechanisms of gene regulation are poorly understood in Apicomplexa, a phylum that encompasses deadly human pathogens like Plasmodium and Toxoplasma. Initial studies suggest that epigenetic phenomena, including histone modifications and chromatin remodeling, have a profound effect upon gene expression and expression of virulence traits. Using the model organism Toxoplasma gondii, we characterized the epigenetic organization and transcription patterns of a contiguous 1% of the T. gondii genome using custom oligonucleotide microarrays. We show that methylation and acetylation of histones H3 and H4 are landmarks of active promoters in T. gondii that allow us to deduce the position and directionality of gene promoters with >95% accuracy. These histone methylation and acetylation “activation” marks are strongly associated with gene expression. We also demonstrate that the pattern of histone H3 arginine methylation distinguishes certain promoters, illustrating the complexity of the histone modification machinery in Toxoplasma. By integrating epigenetic data, gene prediction analysis, and gene expression data from the tachyzoite stage, we illustrate feasibility of creating an epigenomic map of T. gondii tachyzoite gene expression. Further, we illustrate the utility of the epigenomic map to empirically and biologically annotate the genome and show that this approach enables identification of previously unknown genes. Thus, our epigenomics approach provides novel insights into regulation of gene expression in the Apicomplexa. In addition, with its compact genome, genetic tractability, and discrete life cycle stages, T. gondii provides an important new model to study the evolutionarily conserved components of the histone code. PMID:17559302

  8. UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme.

    PubMed Central

    McGrath, J P; Jentsch, S; Varshavsky, A

    1991-01-01

    All known functions of ubiquitin are mediated through its covalent attachment to other proteins. The post-translational formation of ubiquitin--protein conjugates is preceded by an ATP-requiring step in which the carboxyl terminus of ubiquitin is adenylated and subsequently joined, through a thiolester bond, to a cysteine residue in the ubiquitin-activating enzyme, also known as E1. We report the isolation and functional analysis of the gene (UBA1) for the ubiquitin-activating enzyme of the yeast Saccharomyces cerevisiae. UBA1 encodes a 114 kd protein whose amino acid sequence contains motifs characteristic of nucleotide-binding sites. Expression of catalytically active UBA1 protein in E. coli, which lacks the ubiquitin system, confirmed that the yeast UBA1 gene encodes a ubiquitin-activating enzyme. Deletion of the UBA1 gene is lethal, demonstrating that the formation of ubiquitin--protein conjugates is essential for cell viability. Images PMID:1989885

  9. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  10. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium.

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R; Aleksunes, Lauren M; Thomas, Russell S; Applegate, Dawn; Klaassen, Curtis D; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  11. Characterization of Calflagin, a Flagellar Calcium-Binding Protein from Trypanosoma congolense

    PubMed Central

    Eyford, Brett A.; Kaufman, Laura; Salama-Alber, Orly; Loveless, Bianca; Pope, Matthew E.; Burke, Robert D.; Matovu, Enock; Boulanger, Martin J.; Pearson, Terry W.

    2016-01-01

    Background Identification of species-specific trypanosome molecules is important for laboratory- and field-based research into epidemiology and disease diagnosis. Although Trypanosoma congolense is the most important trypanosome pathogen of cattle in Africa, no species-specific molecules found in infective bloodstream forms (BSF) of the parasites have been identified, thus limiting development of diagnostic tests. Methods Immuno-mass spectrometric methods were used to identify a protein that is recognized by a T. congolense-specific monoclonal antibody (mAb) Tc6/42.6.4. The identified molecule was expressed as a recombinant protein in E. coli and was tested in several immunoassays for its ability to interact with the mAb. The three dimensional structure of the protein was modeled and compared to crystal- and NMR-structures of the homologous proteins from T. cruzi and T. brucei respectively, in order to examine structural differences leading to the different immunoreactivity of the T. congolense molecule. Enzyme-linked immunosorbent assays (ELISA) were used to measure antibodies produced by trypanosome-infected African cattle in order to assess the potential for use of T. congolense calflagin in a serodiagnostic assay. Results The antigen recognized by the T. congolense-specific mAb Tc6/42.6.4 was identified as a flagellar calcium-binding protein, calflagin. The recombinant molecule showed immunoreactivity with the T. congolense-specific mAb confirming that it is the cognate antigen. Immunofluorescence experiments revealed that Ca2+ modulated the localization of the calflagin molecule in trypanosomes. Structural modelling and comparison with calflagin homologues from other trypanosomatids revealed four non-conserved regions on the surface of the T. congolense molecule that due to differences in surface chemistry and structural topography may form species-specific epitopes. ELISAs using the recombinant calflagin as antigen to detect antibodies in trypanosome

  12. Transcriptional activation of the human cytotoxic serine protease gene CSP-B in T lymphocytes.

    PubMed Central

    Hanson, R D; Ley, T J

    1990-01-01

    The cytotoxic serine protease B (CSP-B) gene is activated during cytotoxic T-lymphocyte maturation. In this report, we demonstrate that the PEER T-cell line (bearing gamma/delta T-cell receptors) accumulates CSP-B mRNA following exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) and N6-2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (bt2cAMP) because of transcriptional activation of the CSP-B gene. TPA and bt2cAMP act synergistically to induce CSP-B expression, since neither agent alone causes activation of CSP-B transcription or mRNA accumulation. Chromatin upstream from the CSP-B gene is resistant to DNase I digestion in untreated PEER cells, but becomes sensitive following TPA-bt2cAMP treatment. Upon activation of PEER cells, a DNase I-hypersensitive site forms upstream from the CSP-B gene within a region that is highly conserved in the mouse. Transient transfection of CSP-B promoter constructs identified two regulatory regions in the CSP-B 5'-flanking sequence, located at positions -609 to -202 and positions -202 to -80. The region from -615 to -63 is sufficient to activate a heterologous promoter in activated PEER cells, but activation is orientation specific, suggesting that this region behaves as an upstream promoter element rather than a classical enhancer. Consensus AP-1, AP-2, and cAMP response elements are found upstream from the CSP-B gene (as are several T-cell-specific consensus elements), but the roles of these elements in CSP-B gene activation have yet to be determined. Images PMID:2233710

  13. Hypermethylation of Wnt antagonist gene promoters and activation of Wnt pathway in myelodysplastic marrow cells.

    PubMed

    Masala, Erico; Valencia, Ana; Buchi, Francesca; Nosi, Daniele; Spinelli, Elena; Gozzini, Antonella; Sassolini, Francesca; Sanna, Alessandro; Zecchi, Sandra; Bosi, Alberto; Santini, Valeria

    2012-10-01

    We observed aberrant gene methylation of Wnt antagonists: sFRP1, sFRP2, sFRP4, sFRP5 and DKK1 in marrow cells of 55 MDS cases. Methylation of Wnt antagonist genes was associated with activation of the Wnt signaling pathway, consistent with the up-regulation of the Wnt downstream genes TCF1 and LEF1. Azacitidine exposure induced demethylation of Wnt-antagonist gene promoters and reduction of the non-phosphorylated β-catenin (NPBC) which is prevalent during Wnt pathway inactivation. Presence of ≥5% of bone marrow blasts was associated with methylation of sFRP1 and DKK1 and with methylation of more than two of the five Wnt antagonist genes.

  14. The New State of the Art: Cas9 for Gene Activation and Repression

    PubMed Central

    La Russa, Marie F.

    2015-01-01

    CRISPR-Cas9 technology has rapidly changed the landscape for how biologists and bioengineers study and manipulate the genome. Derived from the bacterial adaptive immune system, CRISPR-Cas9 has been coopted and repurposed for a variety of new functions, including the activation or repression of gene expression (termed CRISPRa or CRISPRi, respectively). This represents an exciting alternative to previously used repression or activation technologies such as RNA interference (RNAi) or the use of gene overexpression vectors. We have only just begun exploring the possibilities that CRISPR technology offers for gene regulation and the control of cell identity and behavior. In this review, we describe the recent advances of CRISPR-Cas9 technology for gene regulation and outline advantages and disadvantages of CRISPRa and CRISPRi (CRISPRa/i) relative to alternative technologies. PMID:26370509

  15. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor.

    PubMed

    Dupuy, Bruno; Mani, Nagraj; Katayama, Seiichi; Sonenshein, Abraham L

    2005-02-01

    Expression of the plasmid-encoded Clostridium perfringens gene for bacteriocin BCN5 was shown to depend in vivo and in vitro on the activity of UviA protein. UviA, also plasmid-encoded, proved to be an RNA polymerase sigma factor and was also partly autoregulatory. The uviA gene has two promoters; one provided a UviA-independent, basal level of gene expression while the stronger, UviA-dependent promoter was only utilized after the cell experienced DNA damage. As a result, BCN5 synthesis is induced by treatment with UV light or mitomycin C. UviA is related to a special class of sigma factors found to date only in Clostridium species and responsible for activating transcription of toxin genes in Clostridium difficile, Clostridium tetani, and Clostridium botulinum.

  16. The circadian Clock gene regulates acrosin activity of sperm through serine protease inhibitor A3K

    PubMed Central

    Cheng, Shuting; Liang, Xin; Wang, Yuhui; Jiang, Zhou; Liu, Yanyou; Hou, Wang; Li, Shiping; Zhang, Jing

    2015-01-01

    Our previous study found that CLOCK knockdown in the testes of male mice led to a reduced fertility, which might be associated with the lower acrosin activity. In this present study, we examined the differential expression in proteins of CLOCK knockdown sperm. Clock gene expression was knocked down in cells to confirm those differentially expressions and serine protease inhibitor SERPINA3K was identified as a potential target. The up-regulated SERPINA3K revealed an inverse relationship with Clock knockdown. Direct treatment of normal sperm with recombinant SERPINA3K protein inhibited the acrosin activity and reduced in vitro fertilization rate. The luciferase reporter gene assay showed that the down-regulated of Clock gene could activate the Serpina3k promoter, but this activation was not affected by the mutation of E-box core sequence. Co-IP demonstrated a natural interaction between SERPIAN3K and RORs (α and β). Taken together, these results demonstrated that SERPINA3K is involved in the Clock gene-mediated male fertility by regulating acrosin activity and provide the first evidence that SERPINA3K could be regulated by Clock gene via retinoic acid-related orphan receptor response elements. PMID:26264441

  17. High intensity focused ultrasound-induced gene activation in sublethally injured tumor cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Kon, Takashi; Li, Chuanyuan; Zhong, Pei

    2005-11-01

    Cultured human cervical cancer (HeLa) and rat mammary carcinoma (R3230Ac) cells were transfected with vectors encoding green fluorescent protein (GFP) under the control of hsp70B promoter. Aliquots of 10-μl transfected cells (5×107 cells/ml) were placed in 0.2-ml thin-wall polymerase chain reaction tubes and exposed to 1.1-MHz high intensity focused ultrasound (HIFU) at a peak negative pressure P-=2.68 MPa. By adjusting the duty cycle of the HIFU transducer, the cell suspensions were heated to a peak temperature from 50 to 70 °C in 1-10 s. Exposure dependent cell viability and gene activation were evaluated. For a 5-s HIFU exposure, cell viability dropped from 95% at 50 °C to 13% at 70 °C. Concomitantly, gene activation in sublethally injured tumor cells increased from 4% at 50 °C to 41% at 70 °C. A similar trend was observed at 60 °C peak temperature as the exposure time increased from 1 to 5 s. Further increase of exposure duration to 10 s led to significantly reduced cell viability and lower overall gene activation in exposed cells. Altogether, maximum HIFU-induced gene activation was achieved at 60 °C in 5 s. Under these experimental conditions, HIFU-induced gene activation was found to be produced primarily by thermal rather than mechanical stresses.

  18. A trypanosome metacyclic VSG gene promoter with two functionally distinct, life cycle stage-specific activities.

    PubMed

    Graham, S V; Wymer, B; Barry, J D

    1998-04-15

    In the mammalian bloodstream, African trypanosomes express the variant surface glycoprotein (VSG), continual switching of which allows evasion of the host immune response. Bloodstream VSG genes are transcribed from polycistronic bloodstream expression sites with promoters which are located 45-60 kb upstream. These promoters are not exclusively stage-regulated, being active in the insect midgut stage where VSG is not expressed. However, the metacyclic VSG (M-VSG) genes, a small subset activated when VSG synthesis begins in the metacyclic stage in the tsetse fly salivary glands, are transcriptionally activated specifically in that stage from promoters <3 kb upstream. Using deletion mapping and transient transfection, we show that the entire 1.22 M-VSG gene promoter region (171 bp) is required for full activity in metacyclic-derived trypanosomes. However, a subsidiary, bloodstream stage-specific activity is present in its 5' half which directs transcription initiation very close to the initiation site used in metacyclic-derived trypanosomes. Our results imply that the M-VSG gene promoter is longer and more complex than other VSG gene promoters.

  19. SATB1 packages densely-looped, transciptionally-active chromatinfor coordinated expression of cytokine genes

    SciTech Connect

    Cai, Shutao; Lee, Charles C.; Kohwi-Shigematsu, Terumi

    2006-05-23

    SATB1 is an important regulator of nuclear architecture that anchors specialized DNA sequences onto its cage-like network and recruits chromatin remodeling/modifying factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4, and Il13 from the 200kb cytokine gene cluster region of mouse chromosome 11 during T-helper 2 (Th2)-cell activation. We show that upon cell activation, SATB1 is rapidly induced to form a unique transcriptionally-active chromatin structure that includes the cytokine gene region. Chromatin is folded into numerous small loops all anchored by SATB1, is histone H3 acetylated at lysine 9/14, and associated with Th2-specific factors, GATA3, STAT6, c-Maf, the chromatin-remodeling enzyme Brg-1, and RNA polymerase II across the 200kb region. Before activation, the chromatin displays some of these features, such as association with GATA3 and STAT6, but these were insufficient for cytokine gene expression. Using RNA interference (RNAi), we show that upon cell activation, SATB1 is not only required for chromatin folding into dense loops, but also for c-Maf induction and subsequently for Il4, Il5, and Il13 transcription. Our results show that SATB1 is an important determinant for chromatin architecture that constitutes a novel higher-order, transcriptionally-active chromatin structure upon Th2-cell activation.

  20. Trithorax group proteins: switching genes on and keeping them active.

    PubMed

    Schuettengruber, Bernd; Martinez, Anne-Marie; Iovino, Nicola; Cavalli, Giacomo

    2011-11-23

    Cellular memory is provided by two counteracting groups of chromatin proteins termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate transcription and are perhaps best known because of the involvement of the TrxG protein MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow of their more famous counterparts, the PcG proteins. Recent advances have improved our understanding of TrxG protein function and demonstrated that the heterogeneous group of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, senescence, DNA damage and stem cell biology.

  1. Structural and Functional Characterization of PseC, an Aminotransferase Involved in the Biosynthesis of Pseudaminic Acid, an Essential Flagellar Modification in Helicobacter Pylori

    SciTech Connect

    Schoenhofen,I.; Lunin, V.; Julien, J.; Li, Y.; Ajamian, E.; Matte, A.; Cygler, M.; Brisson, J.; Aubry, A.; et al.

    2006-01-01

    Helicobacter pylori flagellin is heavily glycosylated with the novel sialic acid-like nonulosonate, pseudaminic acid (Pse). The glycosylation process is essential for assembly of functional flagellar filaments and consequent bacterial motility. As motility is a key virulence factor for this and other important pathogens, the Pse biosynthetic pathway offers potential for novel therapeutic targets. From recent NMR analyses, we determined that the conversion of UDP-a-D-GlcNAc to the central intermediate in the pathway, UDP-4-amino-4,6-dideoxy-{beta}-L-AltNAc, proceeds by formation of UDP-2-acetamido-2,6-dideoxy-{beta}-L-arabino-4-hexulose by the dehydratase/epimerase PseB (HP0840) followed with amino transfer by the aminotransferase, PseC (HP0366). The central role of PseC in the H. pylori Pse biosynthetic pathway prompted us to determine crystal structures of the native protein, its complexes with pyridoxal phosphate alone and in combination with the UDP-4-amino-4,6-dideoxy-{beta}-L-AltNAc product, the latter being converted to the external aldimine form in the enzyme's active site. In the binding site, the AltNAc sugar ring adopts a 4C1 chair conformation which is different from the predominant 1C4 form found in solution. The enzyme forms a homodimer where each monomer contributes to the active site, and these structures have permitted the identification of key residues involved in stabilization, and possibly catalysis, of the {beta}-L-arabino intermediate during the amino transfer reaction. The essential role of Lys183 in the catalytic event was confirmed by site-directed mutagenesis. This work presents for the first time a nucleotide-sugar aminotransferase co-crystallized with its natural ligand, and in conjunction with the recent functional characterization of this enzyme, will assist in elucidating the aminotransferase reaction mechanism within the Pse biosynthetic pathway.

  2. Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species.

    PubMed

    Ogaki, Mayara Baptistucci; Rocha, Katia Real; Terra, MÁrcia Regina; Furlaneto, MÁrcia Cristina; Maia, Luciana Furlaneto

    2016-06-28

    In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene(+) strains") were screened for antimicrobial activity. A total of 82.5% of the Gene(+) strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.

  3. Bacillus subtilis Bactofilins Are Essential for Flagellar Hook- and Filament Assembly and Dynamically Localize into Structures of Less than 100 nm Diameter underneath the Cell Membrane

    PubMed Central

    El Andari, Jihad; Altegoer, Florian; Bange, Gert; Graumann, Peter L.

    2015-01-01

    Bactofilins are a widely conserved protein family implicated in cell shape maintenance and in bacterial motility. We show that the bactofilins BacE and BacF from Bacillus subtilis are essential for motility. The proteins are required for the establishment of flagellar hook- and filament structures, but apparently not for the formation of basal bodies. Functional YFP fusions to BacE and to BacF localize as discrete assemblies at the B. subtilis cell membrane, and have a diameter of 60 to 70 nm. BacF assemblies are relatively static, and partially colocalize with flagellar basal bodies, while BacE assemblies are fewer per cell than those of BacF and are highly mobile. Tracking of BacE foci showed that the assemblies arrest at a single point for a few hundred milliseconds, showing that a putative interaction with flagellar structures would be transient and fast. When overexpressed or expressed in a heterologous cell system, bactofilins can form filamentous structures, and also form multimers as purified proteins. Our data reveal a propensity for bactofilins to form filaments, however, in B. subtilis cells, bactofilins assemble into defined size assemblies that show a dynamic localization pattern and play a role in flagellar assembly. PMID:26517549

  4. The 3D Structure of the Apical Complex and Association with the Flagellar Apparatus Revealed by Serial TEM Tomography in Psammosa pacifica, a Distant Relative of the Apicomplexa

    PubMed Central

    Okamoto, Noriko; Keeling, Patrick J.

    2014-01-01

    The apical complex is one of the defining features of apicomplexan parasites, including the malaria parasite Plasmodium, where it mediates host penetration and invasion. The apical complex is also known in a few related lineages, including several non-parasitic heterotrophs, where it mediates feeding behaviour. The origin of the apical complex is unclear, and one reason for this is that in apicomplexans it exists in only part of the life cycle, and never simultaneously with other major cytoskeletal structures like flagella and basal bodies. Here, we used conventional TEM and serial TEM tomography to reconstruct the three dimensional structure of the apical complex in Psammosa pacifica, a predatory relative of apicomplexans and dinoflagellates that retains the archetype apical complex and the flagellar apparatus simultaneously. The P. pacifica apical complex is associated with the gullet and consists of the pseudoconoid, micronemes, and electron dense vesicles. The pseudoconoid is a convex sheet consisting of eight short microtubules, plus a band made up of microtubules that originate from the flagellar apparatus. The flagellar apparatus consists of three microtubular roots. One of the microtubular roots attached to the posterior basal body is connected to bypassing microtubular strands, which are themselves connected to the extension of the pseudoconoid. These complex connections where the apical complex is an extension of the flagellar apparatus, reflect the ancestral state of both, dating back to the common ancestor of apicaomplexans and dinoflagellates. PMID:24392150

  5. Genes Involved in Interleukin-1 Receptor Type II Activities Are Associated With Asthmatic Phenotypes

    PubMed Central

    Madore, Anne-Marie; Vaillancourt, Vanessa T.; Bouzigon, Emmanuelle; Sarnowski, Chloé; Monier, Florent; Dizier, Marie-Hélène; Demenais, Florence

    2016-01-01

    Purpose Interleukin-1 (IL-1) plays a key role in inflammation and immunity and its decoy receptor, IL-1R2, has been implicated in transcriptomic and genetic studies of asthma. Methods Two large asthma family collections, the French-Canadian Saguenay—Lac-St-Jean (SLSJ) study and the French Epidemiological Study on the Genetics and Environment of Asthma (EGEA), were used to investigate the association of SNPs in 10 genes that modulate IL-1R2 activities with asthma, allergic asthma, and atopy. Gene-gene interactions were also tested. Results One SNP in BACE2 was associated with allergic asthma in the SLSJ study and replicated in the EGEA study before statistical correction for multiple testing. Additionally, two SNPs in the MMP2 gene were replicated in both studies prior to statistical correction and reached significance in the combined analysis. Moreover, three gene-gene interactions also survived statistical correction in the combined analyses (BACE1-IL1RAP in asthma and allergic asthma and IL1R1-IL1RAP in atopy). Conclusions Our results highlight the relevance of genes involved in the IL-1R2 activity in the context of asthma and asthma-related traits. PMID:27334786

  6. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster.

    PubMed

    Thanapipatsiri, Anyarat; Gomez-Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J; Al-Bassam, Mahmoud; Chandra, Govind; Thamchaipenet, Arinthip; Challis, Gregory L; Bibb, Mervyn J

    2016-11-17

    Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one-vemR-that encodes a transcriptional activator of the large ATP-binding LuxR-like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co-expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin-producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases.

  7. Organization of human ACAT-2 gene and its cell-type-specific promoter activity.

    PubMed

    Song, B L; Qi, W; Yang, X Y; Chang, C C; Zhu, J Q; Chang, T Y; Li, B L

    2001-03-30

    Acyl-CoA:cholesterol acyltransferase (ACAT) plays important roles in cellular cholesterol homeostasis. Two ACAT genes exist in mammals. We report here the genomic organization of human ACAT-2 gene and analysis of its promoter activity in various cell lines. The human ACAT-2 gene spans over 18 kb and contains 15 exons. Three transcription start sites and one poly(A) site are identified by the 5'/3'-RACE. In addition, the human ACAT-2 gene is linked to the insulin-like growth factor binding protein 6 (IGFBP-6) gene in a head-to-tail manner with a small intergenic region of about 1.2 kb. The 5'-flanking region of human ACAT-2 gene contains many potential cis-acting elements for multiple transcriptional regulatory factors but lacks TATA and CCAAT boxes. Using promoter-luciferase reporter assays, we demonstrate the transcriptional activity of ACAT-2 gene promoter is high in Caco-2 cells, especially after these cells become postconfluent and behave as intestinal enterocytes.

  8. Genome-wide distribution of Auts2 binding localizes with active neurodevelopmental genes.

    PubMed

    Oksenberg, N; Haliburton, G D E; Eckalbar, W L; Oren, I; Nishizaki, S; Murphy, K; Pollard, K S; Birnbaum, R Y; Ahituv, N

    2014-09-02

    The autism susceptibility candidate 2 gene (AUTS2) has been associated with multiple neurological diseases including autism spectrum disorders (ASDs). Previous studies showed that AUTS2 has an important neurodevelopmental function and is a suspected master regulator of genes implicated in ASD-related pathways. However, the regulatory role and targets of Auts2 are not well known. Here, by using ChIP-seq (chromatin immunoprecipitation followed by deep sequencing) and RNA-seq on mouse embryonic day 16.5 forebrains, we elucidated the gene regulatory networks of Auts2. We find that the majority of promoters bound by Auts2 belong to genes highly expressed in the developing forebrain, suggesting that Auts2 is involved in transcriptional activation. Auts2 non-promoter-bound regions significantly overlap developing brain-associated enhancer marks and are located near genes involved in neurodevelopment. Auts2-marked sequences are enriched for binding site motifs of neurodevelopmental transcription factors, including Pitx3 and TCF3. In addition, we characterized two functional brain enhancers marked by Auts2 near NRXN1 and ATP2B2, both ASD-implicated genes. Our results implicate Auts2 as an active regulator of important neurodevelopmental genes and pathways and identify novel genomic regions that could be associated with ASD and other neurodevelopmental diseases.

  9. Different chromatin structures along the spacers flanking active and inactive Xenopus rRNA genes.

    PubMed Central

    Lucchini, R; Sogo, J M

    1992-01-01

    The accessibility of DNA in chromatin to psoralen was assayed to compare the chromatin structure of the rRNA coding and spacer regions of the two related frog species Xenopus laevis and Xenopus borealis. Isolated nuclei from tissue culture cells were photoreacted with psoralen, and the extent of cross-linking in the different rDNA regions was analyzed by using a gel retardation assay. In both species, restriction fragments from the coding regions showed two distinct extents of cross-linking, indicating the presence of two types of chromatin, one that contains nucleosomes and represents the inactive gene copies, and the other one which is more cross-linked and corresponds to the transcribed genes. A similar cross-linking pattern was obtained with restriction fragments from the enhancer region. Analysis of fragments including these sequences and the upstream portions of the genes suggests that active genes are preceded by nonnucleosomal enhancer regions. The spacer regions flanking the 3' end of the genes gave different results in the two frog species. In X. borealis, all these sequences are packaged in nucleosomes, whereas in X. laevis a distinct fraction, presumably those flanking the active genes, show a heterogeneous chromatin structure. This disturbed nucleosomal organization correlates with the presence of a weaker terminator at the 3' end of the X. laevis genes compared with those of X. borealis, which allows polymerases to transcribe into the downstream spacer. Images PMID:1406621

  10. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster

    PubMed Central

    Thanapipatsiri, Anyarat; Gomez‐Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J.; Al‐Bassam, Mahmoud; Chandra, Govind

    2016-01-01

    Abstract Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one—vemR—that encodes a transcriptional activator of the large ATP‐binding LuxR‐like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co‐expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin‐producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases. PMID:27605017

  11. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD

    PubMed Central

    Colton, Carol A; Mott, Ryan T; Sharpe, Hayley; Xu, Qing; Van Nostrand, William E; Vitek, Michael P

    2006-01-01

    Background Microglia are associated with neuritic plaques in Alzheimer disease (AD) and serve as a primary component of the innate immune response in the brain. Neuritic plaques are fibrous deposits composed of the amyloid beta-peptide fragments (Abeta) of the amyloid precursor protein (APP). Numerous studies have shown that the immune cells in the vicinity of amyloid deposits in AD express mRNA and proteins for pro-inflammatory cytokines, leading to the hypothesis that microglia demonstrate classical (Th-1) immune activation in AD. Nonetheless, the complex role of microglial activation has yet to be fully explored since recent studies show that peripheral macrophages enter an "alternative" activation state. Methods To study alternative activation of microglia, we used quantitative RT-PCR to identify genes associated with alternative activation in microglia, including arginase I (AGI), mannose receptor (MRC1), found in inflammatory zone 1 (FIZZ1), and chitinase 3-like 3 (YM1). Results Our findings confirmed that treatment of microglia with anti-inflammatory cytokines such as IL-4 and IL-13 induces a gene profile typical of alternative activation similar to that previously observed in peripheral macrophages. We then used this gene expression profile to examine two mouse models of AD, the APPsw (Tg-2576) and Tg-SwDI, models for amyloid deposition and for cerebral amyloid angiopathy (CAA) respectively. AGI, MRC1 and YM1 mRNA levels were significantly increased in the Tg-2576 mouse brains compared to age-matched controls while TNFα and NOS2 mRNA levels, genes commonly associated with classical activation, increased or did not change, respectively. Only TNFα mRNA increased in the Tg-SwDI mouse brain. Alternative activation genes were also identified in brain samples from individuals with AD and were compared to age-matched control individuals. In AD brain, mRNAs for TNFα, AGI, MRC1 and the chitinase-3 like 1 and 2 genes (CHI3L1; CHI3L2) were significantly increased

  12. Alpha tubulin genes from Leishmania braziliensis: genomic organization, gene structure and insights on their expression

    PubMed Central

    2013-01-01

    Background Alpha tubulin is a fundamental component of the cytoskeleton which is responsible for cell shape and is involved in cell division, ciliary and flagellar motility and intracellular transport. Alpha tubulin gene expression varies according to the morphological changes suffered by Leishmania in its life cycle. However, the objective of studying the mechanisms responsible for the differential expression has resulted to be a difficult task due to the complex genome organization of tubulin genes and to the non-conventional mechanisms of gene regulation operating in Leishmania. Results We started this work by analyzing the genomic organization of α-tubulin genes in the Leishmania braziliensis genome database. The genomic organization of L. braziliensis α-tubulin genes differs from that existing in the L. major and L. infantum genomes. Two loci containing α-tubulin genes were found in the chromosomes 13 and 29, even though the existence of sequence gaps does not allow knowing the exact number of genes at each locus. Southern blot assays showed that α-tubulin locus at chromosome 13 contains at least 8 gene copies, which are tandemly organized with a 2.08-kb repetition unit; the locus at chromosome 29 seems to contain a sole α-tubulin gene. In addition, it was found that L. braziliensis α-tubulin locus at chromosome 13 contains two types of α-tubulin genes differing in their 3′ UTR, each one presumably containing different regulatory motifs. It was also determined that the mRNA expression levels of these genes are controlled by post-transcriptional mechanisms tightly linked to the growth temperature. Moreover, the decrease in the α-tubulin mRNA abundance observed when promastigotes were cultured at 35°C was accompanied by parasite morphology alterations, similar to that occurring during the promastigote to amastigote differentiation. Conclusions Information found in the genome databases indicates that α-tubulin genes have been reorganized in a drastic

  13. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.

    PubMed

    Mikhail, Cyril; Vaucher, Angélique; Jimenez, Sonia; Tafti, Mehdi

    2017-01-24

    Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality.

  14. Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator.

    PubMed Central

    Sheehan, B; Klarsfeld, A; Msadek, T; Cossart, P

    1995-01-01

    PrfA is a pleiotropic activator of virulence gene expression in the pathogenic bacterium Listeria monocytogenes. Several lines of evidence have suggested that a hierarchy of virulence gene activation by PrfA exists. This hypothesis was investigated by assessing the ability of PrfA to activate the expression of virulence gene fusions to lacZ in Bacillus subtilis. Expression of PrfA in this heterologous host was sufficient for activation of transcription at the hly, plcA, mpl, and actA promoters. Activation was most efficient at the divergently transcribed hly and plcA promoters. The putative PrfA binding site shared by these promoters is perfectly symmetrical and appears to represent the optimum sequence for target gene activation by PrfA. The activation of actA and mpl expression was considerably weaker and occurred more slowly than that observed at the hly and plcA promoters, suggesting that greater quantities of PrfA are required for productive interaction at these promoters. Interestingly, expression of an inlA-lacZ transcriptional fusion was very poorly activated by PrfA in B. subtilis, suggesting that other Listeria factors, in addition to PrfA, are required for PrfA-mediated activation at this promoter. Further support for the involvement of such factors was obtained by constructing and analyzing a prfA deletion mutant of L. monocytogenes. We observed that, in contrast to that of the other genes of the PrfA regulon, expression of inlA is only partially dependent on PrfA. PMID:7592422

  15. Identification of the nik Gene Cluster of Brucella suis: Regulation and Contribution to Urease Activity

    PubMed Central

    Jubier-Maurin, Véronique; Rodrigue, Agnès; Ouahrani-Bettache, Safia; Layssac, Marion; Mandrand-Berthelot, Marie-Andrée; Köhler, Stephan; Liautard, Jean-Pierre

    2001-01-01

    Analysis of a Brucella suis 1330 gene fused to a gfp reporter, and identified as being induced in J774 murine macrophage-like cells, allowed the isolation of a gene homologous to nikA, the first gene of the Escherichia coli operon encoding the specific transport system for nickel. DNA sequence analysis of the corresponding B. suis nik locus showed that it was highly similar to that of E. coli except for localization of the nikR regulatory gene, which lies upstream from the structural nikABCDE genes and in the opposite orientation. Protein sequence comparisons suggested that the deduced nikABCDE gene products belong to a periplasmic binding protein-dependent transport system. The nikA promoter-gfp fusion was activated in vitro by low oxygen tension and metal ion deficiency and was repressed by NiCl2 excess. Insertional inactivation of nikA strongly reduced the activity of the nickel metalloenzyme urease, which was restored by addition of a nickel excess. Moreover, the nikA mutant of B. suis was functionally complemented with the E. coli nik gene cluster, leading to the recovery of urease activity. Reciprocally, an E. coli strain harboring a deleted nik operon recovered hydrogenase activity by heterologous complementation with the B. suis nik locus. Taking into account these results, we propose that the nik locus of B. suis encodes a nickel transport system. The results further suggest that nickel could enter B. suis via other transport systems. Intracellular growth rates of the B. suis wild-type and nikA mutant strains in human monocytes were similar, indicating that nikA was not essential for this step of infection. We discuss a possible role of nickel transport in maintaining enzymatic activities which could be crucial for survival of the bacteria under the environmental conditions encountered within the host. PMID:11133934

  16. Gyrase activity and number of copies of the gyrase B subunit gene in Haemophilus influenzae.

    PubMed Central

    Cabrera-Juárez, E; Setlow, J K

    1985-01-01

    Gyrase activities in extracts of various strains of Haemophilus influenzae can differ by more than an order of magnitude (J. K. Setlow, E. Cabrera-Juárez, W. L. Albritton, D. Spikes, and A. Mutschler, J. Bacteriol. 164:525-534, 1985). Measurements of in vitro activity and copy number indicated that most of these differences arose from variations in the number of copies of the gene for the gyrase B subunit, with some strains containing multicopy plasmids coding for that subunit. The quantitative relationship between gyrase and copy number depended on the mutations in the plasmids and in the host. The gyrase and copy number were considerably lower in plasmid-bearing strains carrying the prophage HP1c1. Two mutations affecting gyrase that are apparently regulatory caused an increase in gyrase without a concomitant increase in copy number. The possibility that the in vivo gyrase activity did not reflect the in vitro data was explored by measurement of alkaline phosphatase and ATPase activity in the extracts. Alkaline phosphatase activity increased with increasing gyrase activity measured in vitro, but ATPase activity did not. We conclude that extra supercoiling enhanced transcription of the alkaline phosphatase gene but not the ATPase gene and that it is unlikely that there is much discrepancy between gyrase activity assayed in vitro and the activity in the cell. PMID:2997116

  17. Involvement of Trichoderma Trichothecenes in the Biocontrol Activity and Induction of Plant Defense-Related Genes

    PubMed Central

    Malmierca, M. G.; Cardoza, R. E.; Alexander, N. J.; McCormick, S. P.; Hermosa, R.; Monte, E.

    2012-01-01

    Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a genomic organization differing from that of the Fusarium tri clusters. Here we describe the isolation of Trichoderma arundinaceum IBT 40837 transformants which have a disrupted or silenced tri4 gene, a gene encoding a cytochrome P450 monooxygenase that oxygenates trichodiene to give rise to isotrichodiol, and the effect of tri4 gene disruption and silencing on the expression of other tri genes. Our results indicate that the tri4 gene disruption resulted in a reduced antifungal activity against Botrytis cinerea and Rhizoctonia solani and also in a reduced ability to induce the expression of tomato plant defense-related genes belonging to the salicylic acid (SA) and jasmonate (JA) pathways against B. cinerea, in comparison to the wild-type strain, indicating that HA plays an important function in the sensitization of Trichoderma-pretreated plants against this fungal pathogen. Additionally, the effect of the interaction of T. arundinaceum with B. cinerea or R. solani and with tomato seedlings on the expressions of the tri genes was studied. PMID:22562989

  18. Inhibiting AP-1 activity alters cocaine induced gene expression and potentiates sensitization

    PubMed Central

    Paletzki, Ronald F.; Myakishev, Max V.; Polesskaya, Oksana; Orosz, Andras; Hyman, Steven E.; Vinson, Charles

    2008-01-01

    We have expressed A-FOS, an inhibitor of AP-1 DNA binding, in adult mouse striatal neurons. We observe normal behavior including locomotion and exploratory activities. Following a single injection of cocaine, locomotion increased similarly in both the A-FOS expressing and littermate controls. However, following repeated injections of cocaine, the A-FOS expressing mice showed increased locomotion relative to littermate controls, an increase that persisted following a week of withdrawal and subsequent cocaine administration. These results indicate that AP-1 suppresses this behavioral responses to cocaine. We analyzed mRNA from the striatum before and 4 and 24 hours after a single cocaine injection in both A-FOS and control striata using Affymetrix microarrays (430 2.0 Array) to identify genes mis-regulated by A-FOS that may mediate the increased locomotor sensitization to cocaine. A-FOS expression did not change gene expression in the basal state or 4 hours following cocaine treatment relative to controls. However, 24 hours after an acute cocaine treatment, 84 genes were identified that were differentially expressed between the A-FOS and control mice. 56 gene are down regulated while 28 genes are up regulated including previously identified candidates for addiction including BDNF and Per1. Using a random sample of identified genes, quantitative PCR was used to verify the microarray studies. The chromosomal location of these 84 genes was compared to human genome scans of addiction to identify potential genes in humans that are involved in addiction. PMID:18355967

  19. Child dopamine active transporter 1 genotype and parenting: evidence for evocative gene-environment correlations.

    PubMed

    Hayden, Elizabeth P; Hanna, Brigitte; Sheikh, Haroon I; Laptook, Rebecca S; Kim, Jiyon; Singh, Shiva M; Klein, Daniel N

    2013-02-01

    The dopamine active transporter 1 (DAT1) gene is implicated in psychopathology risk. Although the processes by which this gene exerts its effects on risk are poorly understood, a small body of research suggests that the DAT1 gene influences early emerging negative emotionality, a marker of children's psychopathology risk. As child negative emotionality evokes negative parenting practices, the DAT1 gene may also play a role in gene-environment correlations. To test this model, children (N = 365) were genotyped for the DAT1 gene and participated in standardized parent-child interaction tasks with their primary caregiver. The DAT1 gene 9-repeat variant was associated with child negative affect expressed toward the parent during parent-child interactions, and parents of children with a 9-repeat allele exhibited more hostility and lower guidance/engagement than parents of children without a 9-repeat allele. These gene-environment associations were partially mediated by child negative affect toward the parent. The findings implicate a specific polymorphism in eliciting negative parenting, suggesting that evocative associations play a role in elevating children's risk for emotional trajectories toward psychopathology risk.

  20. SWI/SNF enzymes promote SOX10- mediated activation of myelin gene expression.

    PubMed

    Marathe, Himangi G; Mehta, Gaurav; Zhang, Xiaolu; Datar, Ila; Mehrotra, Aanchal; Yeung, Kam C; de la Serna, Ivana L

    2013-01-01

    SOX10 is a Sry-related high mobility (HMG)-box transcriptional regulator that promotes differentiation of neural crest precursors into Schwann cells, oligodendrocytes, and melanocytes. Myelin, formed by Schwann cells in the peripheral nervous system, is essential for propagation of nerve impulses. SWI/SNF complexes are ATP dependent chromatin remodeling enzymes that are critical for cellular differentiation. It was recently demonstrated that the BRG1 subunit of SWI/SNF complexes activates SOX10 expression and also interacts with SOX10 to activate expression of OCT6 and KROX20, two transcriptional regulators of Schwann cell differentiation. To determine the requirement for SWI/SNF enzymes in the regulation of genes that encode components of myelin, which are downstream of these transcriptional regulators, we introduced SOX10 into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, BRM or BRG1. Dominant negative BRM and BRG1 have mutations in the ATP binding site and inhibit gene activation events that require SWI/SNF function. Ectopic expression of SOX10 in cells derived from NIH 3T3 fibroblasts led to the activation of the endogenous Schwann cell specific gene, myelin protein zero (MPZ) and the gene that encodes myelin basic protein (MBP). Thus, SOX10 reprogrammed these cells into myelin gene expressing cells. Ectopic expression of KROX20 was not sufficient for activation of these myelin genes. However, KROX20 together with SOX10 synergistically activated MPZ and MBP expression. Dominant negative BRM and BRG1 abrogated SOX10 mediated activation of MPZ and MBP and synergistic activation of these genes by SOX10 and KROX20. SOX10 was required to recruit BRG1 to the MPZ locus. Similarly, in immortalized Schwann cells, BRG1 recruitment to SOX10 binding sites at the MPZ locus was dependent on SOX10 and expression of dominant negative BRG1 inhibited expression of MPZ and MBP in these cells. Thus, SWI/SNF enzymes cooperate with SOX10 to

  1. Customized Regulation of Diverse Stress Response Genes by the Multiple Antibiotic Resistance Activator MarA

    PubMed Central

    2017-01-01

    Stress response networks frequently have a single upstream regulator that controls many downstream genes. However, the downstream targets are often diverse, therefore it remains unclear how their expression is specialized when under the command of a common regulator. To address this, we focused on a stress response network where the multiple antibiotic resistance activator MarA from Escherichia coli regulates diverse targets ranging from small RNAs to efflux pumps. Using single-cell experiments and computational modeling, we showed that each downstream gene studied has distinct activation, noise, and information transmission properties. Critically, our results demonstrate that understanding biological context is essential; we found examples where strong activation only occurs outside physiologically relevant ranges of MarA and others where noise is high at wild type MarA levels and decreases as MarA reaches its physiological limit. These results demonstrate how a single regulatory protein can maintain specificity while orchestrating the response of many downstream genes. PMID:28060821

  2. Customized Regulation of Diverse Stress Response Genes by the Multiple Antibiotic Resistance Activator MarA.

    PubMed

    Rossi, Nicholas A; Dunlop, Mary J

    2017-01-01

    Stress response networks frequently have a single upstream regulator that controls many downstream genes. However, the downstream targets are often diverse, therefore it remains unclear how their expression is specialized when under the command of a common regulator. To address this, we focused on a stress response network where the multiple antibiotic resistance activator MarA from Escherichia coli regulates diverse targets ranging from small RNAs to efflux pumps. Using single-cell experiments and computational modeling, we showed that each downstream gene studied has distinct activation, noise, and information transmission properties. Critically, our results demonstrate that understanding biological context is essential; we found examples where strong activation only occurs outside physiologically relevant ranges of MarA and others where noise is high at wild type MarA levels and decreases as MarA reaches its physiological limit. These results demonstrate how a single regulatory protein can maintain specificity while orchestrating the response of many downstream genes.

  3. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1.

    PubMed

    Ramirez, Kevin; Chandler, Katherine J; Spaulding, Christina; Zandi, Sasan; Sigvardsson, Mikael; Graves, Barbara J; Kee, Barbara L

    2012-06-29

    Multiple transcription factors guide the development of mature functional natural killer (NK) cells, yet little is known about their function. We used global gene expression and genome-wide binding analyses combined with developmental and functional studies to unveil three roles for the ETS1 transcription factor in NK cells. ETS1 functions at the earliest stages of NK cell development to promote expression of critical transcriptional regulators including T-BET and ID2, NK cell receptors (NKRs) including NKp46, Ly49H, and Ly49D, and signaling molecules essential for NKR function. As a consequence, Ets1(-/-) NK cells fail to degranulate after stimulation through activating NKRs. Nonetheless, these cells are hyperresponsive to cytokines and have characteristics of chronic stimulation including increased expression of inhibitory NKRs and multiple activation-associated genes. Therefore, ETS1 regulates a broad gene expression program in NK cells that promotes target cell recognition while limiting cytokine-driven activation.

  4. Gene activation properties of a mouse DNA sequence isolated by expression selection.

    PubMed Central

    von Hoyningen-Huene, V; Norbury, C; Griffiths, M; Fried, M

    1986-01-01

    The MES-1 element was previously isolated from restricted total mouse cellular DNA by "expression selection"--the ability to reactivate expression of a test gene devoid of its 5' enhancer sequences. Mes-1 has been tested in long-term transformation and short-term CAT expression assays. In both assays MES-1 is active independent of orientation and at a distance when placed 5' to the test gene. The element is active with heterologous promoters and functions efficiently in both rat and mouse cells. MES-1 activates expression by increasing transcription from the test gene's own start (cap) site. Thus the expression selection technique can be used for the isolation of DNA sequences with enhancer-like properties from total cellular DNA. Images PMID:3016657

  5. Amplification of the groESL operon in Pseudomonas putida increases siderophore gene promoter activity.

    PubMed

    Venturi, V; Wolfs, K; Leong, J; Weisbeek, P J

    1994-10-17

    Pseudobactin 358 is the yellow-green fluorescent siderophore [microbial iron(III) transport agent] produced by Pseudomonas putida WCS358 under iron-limiting conditions. The genes encoding pseudobactin 358 biosynthesis are iron-regulated at the level of transcription. In this study, the molecular characterization is reported of a cosmid clone of WCS358 DNA that can stimulate, in an iron-dependent manner, the activity of a WCS358 siderophore gene promoter in the heterologous Pseudomonas strain A225. The functional region in the clone was identified by subcloning, transposon mutagenesis and DNA sequencing as the groESL operon of strain WCS358. This increase in promoter activity was not observed when the groESL genes of strain WCS358 were integrated via a transposon vector into the genome of Pseudomonas A225, indicating that multiple copies of the operon are necessary for the increase in siderophore gene promoter activity. Amplification of the Escherichia coli and WCS358 groESL genes also increased iron-regulated promoter activity in the parent strain WCS358. The groESL operon codes for the chaperone proteins GroES and GroEL, which are responsible for mediating the folding and assembly of many proteins.

  6. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity.

    PubMed

    Lee, Karen J I; Calder, Grant M; Hindle, Christopher R; Newman, Jacob L; Robinson, Simon N; Avondo, Jerome J H Y; Coen, Enrico S

    2016-12-26

    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale.

  7. Changes in cathepsin gene expression and relative enzymatic activity during gilthead sea bream oogenesis.

    PubMed

    Carnevali, O; Cionna, C; Tosti, L; Cerdà, J; Gioacchini, G

    2008-01-01

    The aim of this study was to provide evidence on the modulation of lysosomal enzymes in terms of both gene expression and enzymatic activity during follicle maturation. For this purpose three lysosomal enzymes, cathepsins B, D, and L, were studied in relation to yolk formation and degradation, during the main phases of ovarian follicle growth in the pelagophil species, the sea bream Sparus aurata. Specific attention was focused on the gene expression quantification method, on the assay of enzymatic activities, and on the relationship between the proteolytic cleavage of yolk proteins (YPs), cathepsin gene expression and cathepsin activities. For the gene expression study, the cathepsins B-like and L-like mRNAs were isolated and partially or fully characterized, respectively; the sequences were used as design specific primers for the quantification of cathepsin gene expression by real-time PCR, in follicles at different stages of maturation. The enzymatic assays for cathepsins B, D, and L were optimized in terms of specificity, sensitivity and reliability, using specific substrates and inhibitors. In ovulated eggs, the lipovitellin I (LV I) was degraded and the changes in electrophoretic pattern were preceded by an increase in the activity of a cysteine proteinase, cathepsin L, and its mRNA. Cathepsin B did not appear to be involved in YP changes during the final maturation stage.

  8. Characterization of human TCR Vbeta gene promoter. Role of the dodecamer motif in promoter activity.

    PubMed

    Deng, X; Sun, G R; Zheng, Q; Li, Y

    1998-09-11

    During T-lymphocyte development, the T-cell antigen receptor (TCR) gene expression is controlled by its promoter and enhancer elements and regulated in tissue- and development stage-specific manner. To uncover the promoter function and to define positive and negative regulatory elements in TCR gene promoters, the promoter activities from 13 human TCR Vbeta genes were determined by the transient transfection system and luciferase reporter assay. Although most of the TCR Vbeta gene promoters that we tested are inactive by themselves, some promoters were found to be constitutively strong. Among them, Vbeta6.7 is the strongest. 5'-Deletion and fragmentation experiments have narrowed the full promoter activity of Vbeta6.7 to a fragment of 147 base pairs immediately 5' to the transcription initiation site. A decanucleotide motif with the consensus sequence AGTGAYRTCA has been found to be conserved in most TCR Vbeta gene promoters. There are three such decamer motifs in the promoter region of Vbeta6.7, and the contribution of each such motif to the promoter activity has been examined. Further site-directed mutagenesis analyses showed that: 1) when two Ts in the decamer were mutated, the promoter activity was totally abolished; 2) when two additional nucleotides 3' to the end of decamer were mutated, the promoter activity was decreased to two-thirds of the full level; and 3) when the element with the sequence AGTGATGTCACT was inserted into other promoters, the original weak promoters become very strong. Taken together, our data suggest that the positive regulatory element in Vbeta6.7 should be considered a dodecamer rather than a decamer and that it confers strong basal transcriptional activity on TCR Vbeta genes.

  9. Structural Insights into Membrane Targeting by the Flagellar Calcium-binding Protein (FCaBP) a Myristoylated and Palmitoylated Calcium Sensor in Trypanosoma cruzi

    SciTech Connect

    J Wingard; J Ladner; M Vanarotti; A Fisher; H Robinson; K Buchanan; D Engman; J Ames

    2011-12-31

    The flagellar calcium-binding protein (FCaBP) of the protozoan Trypanosoma cruzi is targeted to the flagellar membrane where it regulates flagellar function and assembly. As a first step toward understanding the Ca{sup 2+}-induced conformational changes important for membrane-targeting, we report here the x-ray crystal structure of FCaBP in the Ca{sup 2+}-free state determined at 2.2{angstrom} resolution. The first 17 residues from the N terminus appear unstructured and solvent-exposed. Residues implicated in membrane targeting (Lys-19, Lys-22, and Lys-25) are flanked by an exposed N-terminal helix (residues 26-37), forming a patch of positive charge on the protein surface that may interact electrostatically with flagellar membrane targets. The four EF-hands in FCaBP each adopt a 'closed conformation' similar to that seen in Ca{sup 2+}-free calmodulin. The overall fold of FCaBP is closest to that of grancalcin and other members of the penta EF-hand superfamily. Unlike the dimeric penta EF-hand proteins, FCaBP lacks a fifth EF-hand and is monomeric. The unstructured N-terminal region of FCaBP suggests that its covalently attached myristoyl group at the N terminus may be solvent-exposed, in contrast to the highly sequestered myristoyl group seen in recoverin and GCAP1. NMR analysis demonstrates that the myristoyl group attached to FCaBP is indeed solvent-exposed in both the Ca{sup 2+}-free and Ca{sup 2+}-bound states, and myristoylation has no effect on protein structure and folding stability. We propose that exposed acyl groups at the N terminus may anchor FCaBP to the flagellar membrane and that Ca{sup 2+}-induced conformational changes may control its binding to membrane-bound protein targets..

  10. Analysis of the Borrelia burgdorferi GeHo fla gene and antigenic characterization of its gene product.

    PubMed Central

    Gassmann, G S; Jacobs, E; Deutzmann, R; Göbel, U B

    1991-01-01

    The fla gene of Borrelia burgdorferi GeHo was analyzed and expressed in Escherichia coli. The structural gene encodes a flagellar protein of 336 amino acids. Comparative sequence analysis of the amino acid sequence revealed a high degree of sequence conservation with flagellins from both phylogenetically related and unrelated bacteria. The antigenic properties of the B. burgdorferi Fla protein were studied by synthesizing overlapping octapeptides, which were screened by using a battery of different monoclonal and polyclonal antibodies from various species directed against native and denatured flagellar proteins. No single species-independent immunodominant epitope could be located. However, immunoreactive oligopeptides clustered within the variable middle region (N-180 to I-260). This region could constitute a candidate antigen for more specific and sensitive serodiagnosis of Lyme borreliosis. Images PMID:1704884

  11. Methylation of the mouse hprt gene differs on the active and inactive X chromosomes.

    PubMed Central

    Lock, L F; Melton, D W; Caskey, C T; Martin, G R

    1986-01-01

    It has been proposed that DNA methylation is involved in the mechanism of X inactivation, the process by which equivalence of levels of X-linked gene products is achieved in female (XX) and male (XY) mammals. In this study, Southern blots of female and male DNA digested with methylation-sensitive restriction endonucleases and hybridized to various portions of the cloned mouse hprt gene were compared, and sites within the mouse hprt gene were identified that are differentially methylated in female and male cells. The extent to which these sites are methylated when carried on the active and inactive X chromosomes was directly determined in a similar analysis of DNA from clonal cell lines established from a female embryo derived from a mating of two species of mouse, Mus musculus and Mus caroli. The results revealed two regions of differential methylation in the mouse hprt gene. One region, in the first intron of the gene, includes four sites that are completely unmethylated when carried on the active X and extensively methylated when carried on the inactive X. These same sites are extensively demethylated in hprt genes reactivated either spontaneously or after 5-azacytidine treatment. The second region includes several sites in the 3' 20kilobases of the gene extending from exon 3 to exon 9 that show the converse pattern; i.e., they are completely methylated when carried on the active X and completely unmethylated when carried on the inactive X. At least one of these sites does not become methylated after reactivation of the gene. The results of this study, together with the results of previous studies by others of the human hprt gene, indicate that these regions of differential methylation on the active and inactive X are conserved between mammalian species. Furthermore, the data described here are consistent with the idea that at least the sites in the 5' region of the gene play a role in the X inactivation phenomenon and regulation of expression of the mouse hprt

  12. Mediator Kinase Inhibition Further Activates Super-Enhancer Associated Genes in AML

    PubMed Central

    Nitulescu, Ioana I.; Tangpeerachaikul, Anupong; Poss, Zachary C.; Da Silva, Diogo H.; Caruso, Brittany T.; Arefolov, Alexander; Fadeyi, Olugbeminiyi; Christie, Amanda L.; Du, Karrie; Banka, Deepti; Schneider, Elisabeth V.; Jestel, Anja; Zou, Ge; Si, Chong; Ebmeier, Christopher C.; Bronson, Roderick T.; Krivtsov, Andrei V.; Myers, Andrew G.; Kohl, Nancy E.; Kung, Andrew L.; Armstrong, Scott A.; Lemieux, Madeleine E.; Taatjes, Dylan J.; Shair, Matthew D.

    2015-01-01

    Super-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors (TFs), and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling TFs and oncogenes 1, 2. BRD4 and CDK7 are positive regulators of SE-mediated transcription3,4,5. In contrast, negative regulators of SE-associated genes have not been well described. Here we report that Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We determined that the natural product cortistatin A (CA) selectively inhibited Mediator kinases, had antileukaemic activity in vitro and in vivo, and disproportionately induced upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the TFs CEBPA, IRF8, IRF1 and ETV6 6, 7, 8. The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has antileukaemic activity. Individually increasing or decreasing expression of these TFs suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types and can be pharmacologically targeted as a therapeutic approach to AML. PMID:26416749

  13. Identification and characterization of genes related to cellulolytic activity in basidiomycetes.

    PubMed

    Volpini, A F N; Thomazine, T; Umeo, S H; Pereira, G A; Linde, G A; Valle, J S; Colauto, N B; Barcellos, F G; Souza, S G H

    2016-09-16

    Enzymes produced by basidiomycetes that are involved in the cellulose degradation process, and their respective codifying genes, must be identified to facilitate the development of novel biotechnological strategies and applications in the agro-industry. The objective of this study was to identify prospective cellulase-producing genes and characterize their cellulolytic activity, in order to elucidate the potential biotechnological applications (with respect to vegetal residues) of basidiomycetes. The basidiomycete strains Lentinula edodes U8-1, Lentinus crinitus U9-1, and Schizophyllum commune U6-7 were analyzed in this study. The cellulolytic activities of these fungi were evaluated based on the halo formation in carboxymethyl cellulose culture medium after dyeing with Congo red. The presence of cellulase-codifying genes (cel7A, cel6B, cel3A, and egl) in these fungal strains was also evaluated. L. edodes and S. commune presented the highest cellulolytic halo to mycelial growth radius ratio, followed by L. crinitus. Four genes were amplified in the L. edodes strain, whereas three and one genes were isolated from L. crinitus and S. commune, respectively. The cel6B gene (L. edodes) presented the conserved domain glyco_hydro_6 and characterized as cellobiohydrolase gene. The results of this study contribute to the existing knowledge on cellulases in basidiomycetes, and serve as a basis for future studies on the expression of these genes and the characterization of the catalytic activity of these enzymes. This allows for better utilization of these fungi in degrading vegetal fibers from agro-industrial residues and in other biotechnological applications.

  14. A Flagellar Glycan-Specific Protein Encoded by Campylobacter Phages Inhibits Host Cell Growth

    PubMed Central

    Javed, Muhammad Afzal; Sacher, Jessica C.; van Alphen, Lieke B.; Patry, Robert T.; Szymanski, Christine M.

    2015-01-01

    We previously characterized a carbohydrate binding protein, Gp047, derived from lytic Campylobacter phage NCTC 12673, as a promising diagnostic tool for the identification of Campylobacter jejuni and Campylobacter coli. We also demonstrated that this protein binds specifically to acetamidino-modified pseudaminic acid residues on host flagella, but the role of this protein in the phage lifecycle remains unknown. Here, we report that Gp047 is capable of inhibiting C. jejuni growth both on solid and liquid media, an activity, which we found to be bacteriostatic. The Gp047 domain responsible for bacterial growth inhibition is localized to the C-terminal quarter of the protein, and this activity is both contact- and dose-dependent. Gp047 gene homologues are present in all Campylobacter phages sequenced to date, and the resulting protein is not part of the phage particle. Therefore, these results suggest that either phages of this pathogen have evolved an effector protein capable of host-specific growth inhibition, or that Campylobacter cells have developed a mechanism of regulating their growth upon sensing an impending phage threat. PMID:26694450

  15. Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers