Sample records for flame ionisation detector

  1. Ullage Tank Fuel-Air Mixture Characterisation

    DTIC Science & Technology

    2011-12-01

    247-252 Woodrow, J.E., Seiber, J.N., 1988, ‘Vapor-pressure measurement of complex mixtures by headspace gas chromatography ’, Journal of...Electron Ionisation FAR Fuel to Air Mass Ratio FID Flame Ionisation Detector GC Gas Chromatography HS Headspace MS Mass Spectrometry NIST...Determination of volatile substances in biological headspace gas chromatography ’, Journal of Chromatography A, vol. 674, pp. 25-62 Shepherd, J.E, Krok, J.C

  2. Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography-flame ionisation detector equipped with highly polar ionic liquid capillary column.

    PubMed

    Yoshinaga, Kazuaki; Asanuma, Masaharu; Mizobe, Hoyo; Kojima, Koichi; Nagai, Toshiharu; Beppu, Fumiaki; Gotoh, Naohiro

    2014-10-01

    In this study, the characterisation of all cis- and trans-octadecenoic acid (C18:1) positional isomers in partially hydrogenated vegetable oil (PHVO) and milk fat, which contain several cis- and trans-C18:1 positional isomers, was achieved by gas chromatography-flame ionisation detector equipped with a highly polar ionic liquid capillary column (SLB-IL111). Prior to analysis, the cis- and trans-C18:1 fractions in PHVO and milk fat were separated using a silver-ion cartridge. The resolution of all cis-C18:1 positional isomers was successfully accomplished at the optimal isothermal column temperature of 120 °C. Similarly, the positional isomers of trans-C18:1, except for trans-6-C18:1 and trans-7-C18:1, were separated at 120 °C. The resolution of trans-6-C18:1 and trans-7-C18:1 isomers was made possible by increasing the column temperature to 160 °C. This analytical method is suitable for determining the cis- and trans-C18:1 positional isomers in edible fats and oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. An efficient method for the simultaneous determination of furan, 2-methylfuran and 2-pentylfuran in fruit juices by headspace solid phase microextraction and gas chromatography-flame ionisation detector.

    PubMed

    Hu, Gaofei; Zhu, Yan; Hernandez, Marta; Koutchma, Tatiana; Shao, Suqin

    2016-02-01

    A headspace solid phase microextraction (HS-SPME) procedure followed by gas chromatography-flame ionisation detector (GC-FID) analysis was developed and validated for the simultaneous analysis of furan, 2-methylfuran and 2-pentylfuran from juice samples. Extraction at 32 °C for 20 min with stirring at 600 rpm and NaCl concentration 15% (W/V) was the optimal HS-SPME condition for all the three compounds by using a carboxen/polydimethylsiloxane fused silica fibre (75 μm). The extracted compounds were base line separated on a SPB-1 GC column within 12 min. The relative standard deviations of all analytes were less than 6.7%. The recovery rates were between 90.2% and 110.1%. The limits of detection and limits of quantification were 0.056-0.23 ng/mL and 0.14-0.76 ng/mL, respectively. The results showed that the developed method was sensitive, precise, accurate and robust for the determination of furan, 2-methylfuran and 2-pentylfuran in complex matrices without interferences from other components. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. An investigation of the matrix sensitivity of refinery gas analysis using gas chromatography with flame ionisation detection.

    PubMed

    Ferracci, Valerio; Brown, Andrew S; Harris, Peter M; Brown, Richard J C

    2015-02-27

    The response of a flame ionisation detector (FID) on a gas chromatograph to methane, ethane, propane, i-butane and n-butane in a series of multi-component refinery gas standards was investigated to assess the matrix sensitivity of the instrument. High-accuracy synthetic gas standards, traceable to the International System of Units, were used to minimise uncertainties. The instrument response exhibited a small dependence on the component amount fraction: this behaviour, consistent with that of another FID, was thoroughly characterised over a wide range of component amount fractions and was shown to introduce a negligible bias in the analysis of refinery gas samples, provided a suitable reference standard is employed. No significant effects of the molar volume, density and viscosity of the gas mixtures on the instrument response were observed, indicating that the FID is suitable for the analysis of refinery gas mixtures over a wide range of component amount fractions provided that appropriate drift-correction procedures are employed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Study on essential oils from the leaves of two Vietnamese plants: Jasminum subtriplinerve C.L. Blume and Vitex quinata (Lour) F.N. Williams.

    PubMed

    Dai, Do N; Thang, Tran D; Ogunwande, Isiaka A; Lawal, Oladipupo A

    2016-01-01

    The essential oil constituents of the leaves of Jasminum subtriplinerve (Oleaceae) and Vitex quinata (Verbanaceae) cultivated in Vietnam were analysed by gas chromatography--flame ionisation detector (GC-FID) and gas chromatography--mass spectrometry (GC-MS) techniques. The main constituents identified in J. subtriplinerve were mainly oxygenated monoterpenes represented by linalool (44.2%), α-terpineol (15.5%), geraniol (19.4%) and cis-linalool oxide (8.8%). The quantitative significant components of V. quinata were terpene hydrocarbons comprising of β-pinene (30.1%), β-caryophyllene (26.9%) and β-elemene (7.4%). The chemical compositions of the essential oils are being reported for the first time.

  6. Radiation Effects on LWS Detectors and Deglitching of LWS Data

    NASA Astrophysics Data System (ADS)

    Burgdorf, M.; Harwood, A.; Sidher, S. D.

    Glitches are caused by the effects of ionising particles (either a primary cosmic ray, interplanetary or belt electron, or a secondary generated in the spacecraft structure) on the detectors. There was roughly one glitch per ten seconds per detector during the normal period of LWS operation. These energetic particles cause a sudden jump in the ramp voltage, due to a quantity of charge being dumped on the integrating amplifier. They also cause a change in the detector responsivity which affects the following ramps. Glitches were detected in the automatic pipeline processing for each observation with the LWS that was performed with a standard Astronomical Observation Template. We describe the method with which this deglitching was carried out. Based on the findings from the deglitching algorithms we compare proton and electron fluences with average glitch rates and look for correlations. >From the glitch statistics one can also derive the energy distribution of the ionising radiation that hit the detectors. This energy spectrum agrees roughly with model predictions and therefore shows that it is in principle possible to predict the properties of the ionising radiation to which the detectors of future missions will be exposed. This is important, because for the LWS we found that the effect of an ionising radiation hit on the detectors was rather different, and more severe, than had been predicted before launch: An ionising particle could cause the detector to become unstable and spike spontaneously for some seconds following a hit, resulting in a strongly increased noise and requiring a re-adjustment of the bias levels.

  7. Plural-wavelength flame detector that discriminates between direct and reflected radiation

    NASA Technical Reports Server (NTRS)

    Hall, Gregory H. (Inventor); Barnes, Heidi L. (Inventor); Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor); Smith, Harvey S. (Inventor)

    1997-01-01

    A flame detector employs a plurality of wavelength selective radiation detectors and a digital signal processor programmed to analyze each of the detector signals, and determine whether radiation is received directly from a small flame source that warrants generation of an alarm. The processor's algorithm employs a normalized cross-correlation analysis of the detector signals to discriminate between radiation received directly from a flame and radiation received from a reflection of a flame to insure that reflections will not trigger an alarm. In addition, the algorithm employs a Fast Fourier Transform (FFT) frequency spectrum analysis of one of the detector signals to discriminate between flames of different sizes. In a specific application, the detector incorporates two infrared (IR) detectors and one ultraviolet (UV) detector for discriminating between a directly sensed small hydrogen flame, and reflections from a large hydrogen flame. The signals generated by each of the detectors are sampled and digitized for analysis by the digital signal processor, preferably 250 times a second. A sliding time window of approximately 30 seconds of detector data is created using FIFO memories.

  8. Essential oils Constituents of the leaves of Amomum gagnepainii and Amomum repoense.

    PubMed

    Huong, Le T; Hung, Nguyen V; Chung, Mai V; Dai, Do N; Ogunwande, Isiaka A

    2018-02-01

    The chemical constituents identified in the essential oils hydrodistilled from the leaves of Amomum gagnepainii T.L.Wu, K.Larsen and Turland and Amomum repoense Pierre ex Gagnep (Zingiberaceae) of Vietnam origin are reported. The chemical analyses were performed by means of gas chromatography-flame ionisation detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). The main compounds of A. gagnepainii were farnesyl acetate (18.5%), zerumbone (16.4%) and β-caryophyllene (10.5%). On the other hand, Amomum repoense comprised of monoterpenes dominated by β-pinene (33.5%), (E)-β-ocimene (9.6%), γ-terpinene (9.1%) and α-pinene (8.4%). This is the first report on the essential oils of A. gagnepainii and A. repoense grown in Vietnam or elsewhere.

  9. First Results of Using a UVTron Flame Sensor to Detect Alpha-Induced Air Fluorescence in the UVC Wavelength Range.

    PubMed

    Crompton, Anita J; Gamage, Kelum A A; Bell, Steven; Wilson, Andrew P; Jenkins, Alex; Trivedi, Divyesh

    2017-11-29

    In this work, a robust stand-off alpha detection method using the secondary effects of alpha radiation has been sought. Alpha particles ionise the surrounding atmosphere as they travel. Fluorescence photons produced as a consequence of this can be used to detect the source of the alpha emissions. This paper details experiments carried out to detect this fluorescence, with the focus on photons in the ultraviolet C (UVC) wavelength range (180-280 nm). A detector, UVTron R9533 (Hamamatsu, 325-6, Sunayama-cho, Naka-ku, Hamamatsu City, Shizuoka Pref., 430-8587, Japan), designed to detect the UVC emissions from flames for fire alarm purposes, was tested in various gas atmospheres with a 210 Po alpha source to determine if this could provide an avenue for stand-off alpha detection. The results of the experiments show that this detector is capable of detecting alpha-induced air fluorescence in normal indoor lighting conditions, as the interference from daylight and artificial lighting is less influential on this detection system which operates below the UVA and UVB wavelength ranges (280-315 nm and 315-380 nm respectively). Assuming a standard 1 r 2 drop off in signal, the limit of detection in this configuration can be calculated to be approximately 240 mm, well beyond the range of alpha-particles in air, which indicates that this approach could have potential for stand-off alpha detection. The gas atmospheres tested produced an increase in the detector count, with xenon having the greatest effect with a measured 52% increase in the detector response in comparison to the detector response in an air atmosphere. This type of alpha detection system could be operated at a distance, where it would potentially provide a more cost effective, safer, and faster solution in comparison with traditional alpha detection methods to detect and characterise alpha contamination in nuclear decommissioning and security applications.

  10. First Results of Using a UVTron Flame Sensor to Detect Alpha-Induced Air Fluorescence in the UVC Wavelength Range

    PubMed Central

    Crompton, Anita J.; Wilson, Andrew P.; Jenkins, Alex; Trivedi, Divyesh

    2017-01-01

    In this work, a robust stand-off alpha detection method using the secondary effects of alpha radiation has been sought. Alpha particles ionise the surrounding atmosphere as they travel. Fluorescence photons produced as a consequence of this can be used to detect the source of the alpha emissions. This paper details experiments carried out to detect this fluorescence, with the focus on photons in the ultraviolet C (UVC) wavelength range (180–280 nm). A detector, UVTron R9533 (Hamamatsu, 325-6, Sunayama-cho, Naka-ku, Hamamatsu City, Shizuoka Pref., 430-8587, Japan), designed to detect the UVC emissions from flames for fire alarm purposes, was tested in various gas atmospheres with a 210Po alpha source to determine if this could provide an avenue for stand-off alpha detection. The results of the experiments show that this detector is capable of detecting alpha-induced air fluorescence in normal indoor lighting conditions, as the interference from daylight and artificial lighting is less influential on this detection system which operates below the UVA and UVB wavelength ranges (280–315 nm and 315–380 nm respectively). Assuming a standard 1r2 drop off in signal, the limit of detection in this configuration can be calculated to be approximately 240 mm, well beyond the range of alpha-particles in air, which indicates that this approach could have potential for stand-off alpha detection. The gas atmospheres tested produced an increase in the detector count, with xenon having the greatest effect with a measured 52% increase in the detector response in comparison to the detector response in an air atmosphere. This type of alpha detection system could be operated at a distance, where it would potentially provide a more cost effective, safer, and faster solution in comparison with traditional alpha detection methods to detect and characterise alpha contamination in nuclear decommissioning and security applications. PMID:29186051

  11. Simulation and measurements of the response of an air ionisation chamber exposed to a mixed high-energy radiation field.

    PubMed

    Vincke, Helmut; Forkel-Wirth, Doris; Perrin, Daniel; Theis, Chris

    2005-01-01

    CERN's radiation protection group operates a network of simple and robust ionisation chambers that are installed inside CERN's accelerator tunnels. These ionisation chambers are used for the remote reading of ambient dose rate equivalents inside the machines during beam-off periods. This Radiation Protection Monitor for dose rates due to Induced Radioactivity ('PMI', trade name: PTW, Type 34031) is a non-confined air ionisation plastic chamber which is operated under atmospheric pressure. Besides its current field of operation it is planned to extend the use of this detector in the Large Hadron Collider to measure radiation under beam operation conditions to obtain an indication of the machine performance. Until now, studies of the PMI detector have been limited to the response to photons. In order to evaluate its response to other radiation components, this chamber type was tested at CERF, the high-energy reference field facility at CERN. Six PMI detectors were installed around a copper target being irradiated by a mixed hadron beam with a momentum of 120 GeV c(-1). Each of the chosen detector positions was defined by a different radiation field, varying in type and energy of the incident particles. For all positions, detailed measurements and FLUKA simulations of the detector response were performed. This paper presents the promising comparison between the measurements and simulations and analyses the influence of the different particle types on the resulting detector response.

  12. Development of a numerical model for the electric current in burner-stabilised methane-air flames

    NASA Astrophysics Data System (ADS)

    Speelman, N.; de Goey, L. P. H.; van Oijen, J. A.

    2015-03-01

    This study presents a new model to simulate the electric behaviour of one-dimensional ionised flames and to predict the electric currents in these flames. The model utilises Poisson's equation to compute the electric potential. A multi-component diffusion model, including the influence of an electric field, is used to model the diffusion of neutral and charged species. The model is incorporated into the existing CHEM1D flame simulation software. A comparison between the computed electric currents and experimental values from the literature shows good qualitative agreement for the voltage-current characteristic. Physical phenomena, such as saturation and the diodic effect, are captured by the model. The dependence of the saturation current on the equivalence ratio is also captured well for equivalence ratios between 0.6 and 1.2. Simulations show a clear relation between the saturation current and the total number of charged particles created. The model shows that the potential at which the electric field saturates is strongly dependent on the recombination rate and the diffusivity of the charged particles. The onset of saturation occurs because most created charged particles are withdrawn from the flame and because the electric field effects start dominating over mass based diffusion. It is shown that this knowledge can be used to optimise ionisation chemistry mechanisms. It is shown numerically that the so-called diodic effect is caused primarily by the distance the heavier cations have to travel to the cathode.

  13. Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice.

    PubMed

    Cheong, Mun Wai; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Yu, Bin

    2012-12-15

    Two cultivars (Citrus grandis (L.) Osbeck PO 51 and PO 52) of Malaysian pomelo juices were studied by examining their physicochemical properties (i.e. pH, °Brix and titratable acidity), volatile and non-volatile components (sugars and organic acids). Using solvent extraction and headspace solid-phase microextraction, 49 and 65 volatile compounds were identified by gas chromatography-mass spectrometer/flame ionisation detector, respectively. Compared to pink pomelo juice (cultivar PO 52), white pomelo juice (cultivar PO 51) contained lower amount of total volatiles but higher terpenoids. Descriptive sensory evaluation indicated that white pomelo juice was milder in taste especially acidity. Furthermore, principal component analysis and partial least square regression revealed a strong correlation in pomelo juices between their chemical components and some flavour attributes (i.e. acidic, fresh, peely and sweet). Hence, this research enabled a deeper insight into the flavour of this unique citrus fruit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. 40 CFR 91.304 - Test equipment overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... non-dispersive infrared detector (NDIR) absorption type for carbon monoxide and carbon dioxide analysis; paramagnetic detector (PMD), zirconia (ZRDO), or electrochemical type (ECS) for oxygen analysis; a flame ionization detector (FID) or heated flame ionization detector (HFID) type for hydrocarbon...

  15. 40 CFR 91.304 - Test equipment overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... non-dispersive infrared detector (NDIR) absorption type for carbon monoxide and carbon dioxide analysis; paramagnetic detector (PMD), zirconia (ZRDO), or electrochemical type (ECS) for oxygen analysis; a flame ionization detector (FID) or heated flame ionization detector (HFID) type for hydrocarbon...

  16. 40 CFR 91.304 - Test equipment overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... non-dispersive infrared detector (NDIR) absorption type for carbon monoxide and carbon dioxide analysis; paramagnetic detector (PMD), zirconia (ZRDO), or electrochemical type (ECS) for oxygen analysis; a flame ionization detector (FID) or heated flame ionization detector (HFID) type for hydrocarbon...

  17. 40 CFR 91.304 - Test equipment overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... non-dispersive infrared detector (NDIR) absorption type for carbon monoxide and carbon dioxide analysis; paramagnetic detector (PMD), zirconia (ZRDO), or electrochemical type (ECS) for oxygen analysis; a flame ionization detector (FID) or heated flame ionization detector (HFID) type for hydrocarbon...

  18. 40 CFR 91.304 - Test equipment overview.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... infrared detector (NDIR) absorption type for carbon monoxide and carbon dioxide analysis; paramagnetic detector (PMD), zirconia (ZRDO), or electrochemical type (ECS) for oxygen analysis; a flame ionization detector (FID) or heated flame ionization detector (HFID) type for hydrocarbon analysis; and a...

  19. Analysis of selected volatile organic compounds at background level in South Africa.

    NASA Astrophysics Data System (ADS)

    Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang

    2017-04-01

    Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator

  20. Simultaneous derivatisation and preconcentration of parabens in food and other matrices by isobutyl chloroformate and dispersive liquid-liquid microextraction followed by gas chromatographic analysis.

    PubMed

    Jain, Rajeev; Mudiam, Mohana Krishna Reddy; Chauhan, Abhishek; Ch, Ratnasekhar; Murthy, R C; Khan, Haider A

    2013-11-01

    A simple, rapid and economical method has been proposed for the quantitative determination of parabens (methyl, ethyl, propyl and butyl paraben) in different samples (food, cosmetics and water) based on isobutyl chloroformate (IBCF) derivatisation and preconcentration using dispersive liquid-liquid microextraction in single step. Under optimum conditions, solid samples were extracted with ethanol (disperser solvent) and 200 μL of this extract along with 50 μL of chloroform (extraction solvent) and 10 μL of IBCF was rapidly injected into 2 mL of ultra-pure water containing 150 μL of pyridine to induce formation of a cloudy state. After centrifugation, 1 μL of the sedimented phase was analysed using gas chromatograph-flame ionisation detector (GC-FID) and the peaks were confirmed using gas chromatograph-positive chemical ionisation-mass spectrometer (GC-PCI-MS). Method was found to be linear over the range of 0.1-10 μg mL(-1) with square of correlation coefficient (R(2)) in the range of 0.9913-0.9992. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.029-0.102 μg mL(-1) and 0.095-0.336 μg mL(-1) with a signal to noise ratio of 3:1 and 10:1, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A comprehensive metabolite profiling of Isatis tinctoria leaf extracts.

    PubMed

    Mohn, Tobias; Plitzko, Inken; Hamburger, Matthias

    2009-05-01

    A broad-based characterisation of a pharmacologically active dichloromethane extract from Isatis tinctoria leaves was carried out. For a comprehensive picture we also included the polar constituents of I. tinctoria (MeOH extract) and for comparative purposes, the taxonomically closely related plant I. indigotica. Diode array detector, evaporative light scattering detector, atmospheric pressure chemical ionisation and electrospray ionisation mass spectrometry, and electrospray ionisation time-of-flight mass spectrometry detectors were used in parallel to ensure a wide coverage of secondary metabolites with highly diverging analytical properties. Off-line microprobe nuclear magnetic resonance spectroscopy after peak purification by semi-preparative high-pressure liquid chromatography served for structure elucidation of some minor constituents. More than 65 compounds belonging to various structural classes such as alkaloids, flavonoids, fatty acids, porphyrins, lignans, carotenoids, glucosinolates and cyclohexenones were unambiguously identified, and tentative structures were proposed for additional compounds. Numerous compounds were identified for the first time in the genus Isatis, and an indolic alkaloid was discovered.

  2. Applications of multi-spectral imaging: failsafe industrial flame detector

    NASA Astrophysics Data System (ADS)

    Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath

    2016-05-01

    Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.

  3. 40 CFR 86.317-79 - Hydrocarbon analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flame ionization detector (HFID) analyzer. (b) Option. A non-heated flame ionization detector (FID) that... temperature oven housing the detector and sample-handling components. It shall maintain temperature with 2 °C of the set point. The detector, oven, and sample-handling components within the oven shall be...

  4. 40 CFR 86.317-79 - Hydrocarbon analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flame ionization detector (HFID) analyzer. (b) Option. A non-heated flame ionization detector (FID) that... temperature oven housing the detector and sample-handling components. It shall maintain temperature with 2 °C of the set point. The detector, oven, and sample-handling components within the oven shall be...

  5. 40 CFR 86.317-79 - Hydrocarbon analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flame ionization detector (HFID) analyzer. (b) Option. A non-heated flame ionization detector (FID) that... temperature oven housing the detector and sample-handling components. It shall maintain temperature with 2 °C of the set point. The detector, oven, and sample-handling components within the oven shall be...

  6. 40 CFR 86.317-79 - Hydrocarbon analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flame ionization detector (HFID) analyzer. (b) Option. A non-heated flame ionization detector (FID) that... temperature oven housing the detector and sample-handling components. It shall maintain temperature with 2 °C of the set point. The detector, oven, and sample-handling components within the oven shall be...

  7. The nature of the ionised nebula surrounding the red supergiant W26

    NASA Astrophysics Data System (ADS)

    Wesson, Roger

    2015-08-01

    The red supergiant W26 in the massive star cluster Westerlund 1 is surrounded by a compact ionised nebula. This is unique among RSGs, and the excitation mechanism of the nebula is not yet known - it may be ionised by an unseen compact companion, or by a nearby blue supergiant. We present new observations of the nebula: high resolution spatially resolved spectra taken with FLAMES at the VLT show that the nebula is a ring, with velocities consistent with that expected for red supergiant ejecta, and ruling out the possibility of a Luminous Blue Variable-type eruption preceding the RSG phase as the origin of the nebula. A triangular patch of nebulosity outside the ring appears to be associated with W26, and may be material stripped from the expanding ring by the cumulative cluster wind and radiation field.

  8. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  9. Supercritical CO₂ extraction of volatile oils from Sardinian Foeniculum vulgare ssp. vulgare (Apiaceae): chemical composition and biological activity.

    PubMed

    Piras, Alessandra; Falconieri, Danilo; Porcedda, Silvia; Marongiu, Bruno; Gonçalves, Maria José; Cavaleiro, Carlos; Salgueiro, Ligia

    2014-01-01

    This article reports the results on the composition and antifungal effect of volatile extracts obtained from the aerial parts of Sardinian wild fennel (Foeniculum vulgare Mill.), by supercritical fluid extraction (SFE) and by hydrodistillation (HD). The extracts were analysed by gas chromatography-mass spectrometry for qualitative composition and gas chromatography-flame ionisation detector to establish the percentage of constituents. The main components were fenchone (7.1% vs. 8.8%), estragole (34.9% vs. 42.6%) and (E)-anethole (24.6% vs. 43.4%) in the SFE and HD extract, respectively. Minimum inhibitory concentrations (MICs) were measured according to the reference Clinical and Laboratory Standards Institute (CLSI) broth macrodilution protocols. Minimum lethal concentrations were determined by subsequent subculturing of the same cell suspensions in solid medium. The essential oil was more active against Candida albicans, whereas the supercritical fluid extract possesses higher activity against Candida guillermondii and Cryptococcus neoformans, with MIC values of 0.32 μL/mL.

  10. Sterols as biomarkers in the surface microlayer of the estuarine areas.

    PubMed

    Alsalahi, Murad Ali; Latif, Mohd Talib; Ali, Masni Mohd; Dominick, Doreena; Khan, Md Firoz; Mustaffa, Nur Ili Hamizah; Nadzir, Mohd Shahrul Mohd; Nasher, Essam; Zakaria, Mohamad Pauzi

    2015-04-15

    This study aims to determine the concentration of sterols used as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. Samples were collected during different seasons through the use of a rotation drum. The analysis of sterols was performed using gas chromatography equipped with a flame ionisation detector (GC-FID). The results showed that the concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L(-1). The total sterol concentration was found to be higher in the wet season. Cholesterol was found to be the most abundant sterols component in the SML. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Autonomous long-range open area fire detection and reporting

    NASA Astrophysics Data System (ADS)

    Engelhaupt, Darell E.; Reardon, Patrick J.; Blackwell, Lisa; Warden, Lance; Ramsey, Brian D.

    2005-03-01

    Approximately 5 billion dollars in US revenue was lost in 2003 due to open area fires. In addition many lives are lost annually. Early detection of open area fires is typically performed by manned observatories, random reporting and aerial surveillance. Optical IR flame detectors have been developed previously. They typically have experienced high false alarms and low flame detection sensitivity due to interference from solar and other causes. Recently a combination of IR detectors has been used in a two or three color mode to reduce false alarms from solar, or background sources. A combination of ultra-violet C (UVC) and near infra-red (NIR) detectors has also been developed recently for flame discrimination. Relatively solar-blind basic detectors are now available but typically detect at only a few tens of meters at ~ 1 square meter fuel flame. We quantify the range and solar issues for IR and visible detectors and qualitatively define UV sensor requirements in terms of the mode of operation, collection area issues and flame signal output by combustion photochemistry. We describe innovative flame signal collection optics for multiple wavelengths using UV and IR as low false alarm detection of open area fires at long range (8-10 km/m2) in daylight (or darkness). A circular array detector and UV-IR reflective and refractive devices including cylindrical or toroidal lens elements for the IR are described. The dispersion in a refractive cylindrical IR lens characterizes the fire and allows a stationary line or circle generator to locate the direction and different flame IR "colors" from a wide FOV. The line generator will produce spots along the line corresponding to the fire which can be discriminated with a linear detector. We demonstrate prototype autonomous sensors with RF digital reporting from various sites.

  12. Magnetic monopole search with the MoEDAL test trapping detector

    NASA Astrophysics Data System (ADS)

    Katre, Akshay

    2016-11-01

    IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC) collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.

  13. 30 CFR 22.7 - Specific requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS PORTABLE METHANE DETECTORS § 22.7 Specific requirements. (a) Design. In the... shall be of such design that it will not produce sparks that will ignite an explosive mixture of methane and air. (5) Detectors of the flame type. Methane detectors of the flame type shall be subject to the...

  14. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements...

  15. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements...

  16. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements...

  17. Rapid analytical procedure for determination of mineral oils in edible oil by GC-FID.

    PubMed

    Wrona, Magdalena; Pezo, Davinson; Nerin, Cristina

    2013-12-15

    A procedure for the determination of mineral oils in edible oil has been fully developed. The procedure consists of using a sulphuric acid-impregnated silica gel (SAISG) glass column to eliminate the fat matter. A chemical combustion of the fatty acids takes place, while the mineral oils are not affected by the sulphuric acid. The column is eluted with hexane using a vacuum pump and the final extract is concentrated and analysed by gas chromatography (GC) with flame ionisation detector (FID). The detection limit (LOD) and the quantification limit (LOQ) in hexane were 0.07 and 0.21 μg g(-1) respectively and the LOQ in vegetable oil was 1 μg g(-1). Only a few minutes were necessary for sample treatment to have a clean extract. The efficiency of the process, measured through the recoveries from spiked samples of edible oil was higher than 95%. The procedure has been applied to determine mineral oil in olive oil from the retailed market. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cocaine profiling for strategic intelligence, a cross-border project between France and Switzerland: part II. Validation of the statistical methodology for the profiling of cocaine.

    PubMed

    Lociciro, S; Esseiva, P; Hayoz, P; Dujourdy, L; Besacier, F; Margot, P

    2008-05-20

    Harmonisation and optimization of analytical and statistical methodologies were carried out between two forensic laboratories (Lausanne, Switzerland and Lyon, France) in order to provide drug intelligence for cross-border cocaine seizures. Part I dealt with the optimization of the analytical method and its robustness. This second part investigates statistical methodologies that will provide reliable comparison of cocaine seizures analysed on two different gas chromatographs interfaced with a flame ionisation detectors (GC-FIDs) in two distinct laboratories. Sixty-six statistical combinations (ten data pre-treatments followed by six different distance measurements and correlation coefficients) were applied. One pre-treatment (N+S: area of each peak is divided by its standard deviation calculated from the whole data set) followed by the Cosine or Pearson correlation coefficients were found to be the best statistical compromise for optimal discrimination of linked and non-linked samples. The centralisation of the analyses in one single laboratory is not a required condition anymore to compare samples seized in different countries. This allows collaboration, but also, jurisdictional control over data.

  19. Development of magnetic micro-solid phase extraction for analysis of phthalate esters in packaged food.

    PubMed

    Makkliang, Fonthip; Kanatharana, Proespichaya; Thavarungkul, Panote; Thammakhet, Chongdee

    2015-01-01

    A novel, simple and low cost magnetic multi-walled carbon nanotubes-poly (vinyl alcohol) cryogel-micro-solid phase extraction (magnetic-MWCNTs-PVA cryogel-μ-SPE) sorbent was synthesized by incorporating magnetic particles and MWCNTs into a PVA cryogel. The magnetic-MWCNTs-PVA cryogel-μ-SPE sorbent developed, with a large surface area and macro-porous structure, provided good sorbent-to-sorbent reproducibility (%RSD<8) and each sorbent could be used up to 30 times (%RSD<6). This sorbent was applied for the extraction of dibutyl phthalate (DBP) and di-2-(ethylhexyl) phthalate (DEHP) in packaged food prior to analysis by gas chromatograph coupled with flame ionisation detector (GC-FID). The concentration of DBP and DEHP in hot-water samples from plastic bags were found in the range 0.04-0.15 μg mL(-1) and 0.03-0.20 μg mL(-1), respectively, but only DEHP was found in clear chicken soup samples in the range 0.02-0.07 μg mL(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. QUALITY ASSURANCE STUDY OF MARINE LIPID CLASS DETERMINATION USING CHROMAROD/IATROSCAN( REG. TRADEMARK) THIN-LAYER CHROMATOGRAPHY-FLAME IONIZATION DETECTOR

    EPA Science Inventory

    An Iatroscan thin-layer chromatorgraphy-flame ionization detector has been utilized to quantify lipid classes in marine samples. This method was evaluated relative to established quality assurance (QA) procedures used for the gas chromatographic analysis of PCBs. A method for ext...

  1. Light collection device for flame emission detectors

    DOEpatents

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  2. Simultaneous determination of 16 brominated flame retardants in food and feed of animal origin by fast gas chromatography coupled to tandem mass spectrometry using atmospheric pressure chemical ionisation.

    PubMed

    Bichon, E; Guiffard, I; Vénisseau, A; Lesquin, E; Vaccher, V; Brosseaud, A; Marchand, P; Le Bizec, B

    2016-08-12

    A gas chromatography tandem mass spectrometry method using atmospheric pressure chemical ionisation was developed for the monitoring of 16 brominated flame retardants (7 usually monitored polybromodiphenylethers (PBDEs) and BDE #209 and 8 additional emerging and novel BFRs) in food and feed of animal origin. The developed analytical method has decreased the run time by three compared to conventional strategies, using a 2.5m column length (5% phenyl stationary phase, 0.1mm i.d., 0.1μmf.t.), a pulsed split injection (1:5) with carrier gas helium flow rate at 0.48mLmin(-1) in one run of 20 min. For most BFRs, analytical data were compared with the current analytical strategy relying on GC/EI/HRMS (double sector, R=10000 at 10% valley). Performances in terms of sensitivity were found to meet the Commission recommendation (118/2014/EC) for nBFRs. GC/APCI/MS/MS represents a promising alternative for multi-BFRs analysis in complex matrices, in that it allows the monitoring of a wider list of contaminants in a single injection and a shorter run time. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. AN EVALUATION OF THE BASIC CHARACTERISTICS OF A PLASTIC SCINTILLATING FIBRE DETECTOR IN CT RADIATION FIELDS.

    PubMed

    Terasaki, Kento; Fujibuchi, Toshioh; Toyoda, Takatoshi; Yoshida, Yutaka; Akasaka, Tsutomu; Nohtomi, Akihiro; Morishita, Junji

    2016-12-01

    The ionisation chamber for computed tomography (CT) is an instrument that is most commonly used to measure the computed tomography dose index. However, it has been reported that the 10 cm effective detection length of the ionisation chamber is insufficient due to the extent of the dose distribution outside the chamber. The purpose of this study was to estimate the basic characteristics of a plastic scintillating fibre (PSF) detector with a long detection length of 50 cm in CT radiation fields. The authors investigated position dependence using diagnostic X-ray equipment and dependencies for energy, dose rate and slice thickness using an X-ray CT system. The PSF detector outputs piled up at a count rate of 10 000 counts ms -1 in dose rate dependence study. With calibration, this detector may be useful as a CT dosemeter with a long detection length except for the measurement at high dose rate. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Design of the flame detector based on pyroelectric infrared sensor

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yu, Benhua; Dong, Lei; Li, Kai

    2017-10-01

    As a fire detection device, flame detector has the advantages of short reaction time and long distance. Based on pyroelectric infrared sensor working principle, the passive pyroelectric infrared alarm system is designed, which is mainly used for safety of tunnel to detect whether fire occurred or not. Modelling and Simulation of the pyroelectric Detector Using Labview. An attempt was made to obtain a simple test platform of a pyroelectric detector which would make an excellent basis for the analysis of its dynamic behaviour. After many experiments, This system has sensitive response, high anti-interference ability and safe and reliable performance.

  5. Chemiluminescent photon yields measured in the flame photometric detector on chromatographic peaks containing sulfur, phosphorus, manganese, ruthenium, iron or selenium

    NASA Astrophysics Data System (ADS)

    Aue, Walter A.; Singh, Hameraj

    2001-05-01

    Photon yields — the number of photons generated per analyte atom — are of obvious analytical and mechanistic importance in flame chemiluminescence. However, such numbers are unavailable for spectral detectors in gas chromatography (as well as for most conventional spectroscopic systems). In this study, photon yields have been determined for the chemiluminescence of several elements in the flame photometric detector (FPD). The number of photons generated per atom of FPD-active element was 2×10 -3 for sulfur (emitter S 2*, test compound thianaphthene), 3×10 -3 for phosphorus [HPO*, tris(pentafluorophenyl)phosphine], 8×10 -3 for manganese (Mn*, methylcyclopentadienyl manganese tricarbonyl), 3×10 -3 for ruthenium (emitter unknown, ruthenocene), 4×10 -5 for iron (Fe*, ferrocene) and 2×10 -4 for selenium (Se 2*, dimethylbenzselenazole). Total flows, maximum thermocouple temperatures, and visible flame volumes have also been estimated for each element under signal/noise-optimized conditions in order to provide a database for kinetic calculations.

  6. A comparison of flame ionization and ozone chemiluminescence for the determination of atmospheric hydrocarbons.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, N. A.; Gaffney, J. S.; Environmental Research

    A reactive hydrocarbon analyzer has been constructed on the basis of chemiluminescence reaction with ozone. This detector is designed to operate at varying temperatures which take advantage of the different rates of reaction of the hydrocarbon classes with ozone to yield a measure of their atmospheric reactivity. When operated at high temperatures (170 C), all hydrocarbons will give a chemiluminescence signal. Reported here is a direct comparison of the ozone chemiluminescent detector (operated at a temperature of 170 C) with a flame ionization detector. This comparison was accomplished by connecting a capillary gas chromatograph to each of the two detectorsmore » by means of a switching valve. Twenty-seven compounds representing alkanes, alkenes, aromatics, and oxygenated hydrocarbons (aldehydes, ketones, alcohols, and ethers) were studied. For the compounds studied, analytical sensitivities were 10-1000 times better for the chemiluminescence detector. The results of this comparison indicate that the response of the chemiluminescent detector at 170 C correlates with a total carbon detector (flame ionization detection) and that total response is a measure of total carbon in the sample. The chemiluminescent system will be very useful for gas chromatographic detection of atmospheric hydrocarbons, particularly of oxygenates in complex mixtures.« less

  7. Understanding the contamination of food with mineral oil: the need for a confirmatory analytical and procedural approach.

    PubMed

    Spack, Lionel W; Leszczyk, Gabriela; Varela, Jesus; Simian, Hervé; Gude, Thomas; Stadler, Richard H

    2017-06-01

    The contamination of food by mineral oil hydrocarbons (MOHs) found in packaging is a long-running concern. A main source of MOHs in foods is the migration of mineral oil from recycled board into the packed food products. Consequently, the majority of food manufacturers have taken protective measures, e.g., by using virgin board instead of recycled fibres and, where feasible, introducing functional barriers to mitigate migration. Despite these protective measures, MOHs may still be observed in low amounts in certain food products, albeit due to different entry points across the food supply chain. In this study, we successfully apply gas chromatography coupled to mass spectrometry (GC-MS) to demonstrate, through marker compounds and the profile of the hydrocarbon response, the possible source of contamination using mainly chocolate and cereals as food matrices. The conventional liquid chromatography-one-dimensional GC coupled to a flame ionisation detector (LC-GC-FID) is a useful screening method, but in cases of positive samples it must be complemented by a confirmatory method such as, for example, GC-MS, allowing a verification of mineral oil contamination. The procedural approach proposed in this study entails profile analysis, marker identification, and interpretation and final quantification.

  8. Chemical composition of the essential oil from the leaves of Anaxagorea brevipes (Annonaceae) and evaluation of its bioactivity.

    PubMed

    de Alencar, Danielle Cardoso; Pinheiro, Maria Lúcia Belém; Pereira, José Lamak da Silva; de Carvalho, João Ernesto; Campos, Francinete Ramos; Serain, Alessandra Freitas; Tirico, Ricardo Brunelli; Hernández-Tasco, Alvaro José; Costa, Emmanoel Vilaça; Salvador, Marcos José

    2016-01-01

    The essential oil obtained by hydrodistillation from leaves of Anaxagorea brevipes was analysed by gas chromatography fitted with a flame ionisation detector (GC-FID) and coupled to mass spectrometry (GC-MS). Thirty one components were identified, representing around 75.7% of total oil. The major components were β-eudesmol (13.16%), α-eudesmol (13.05%), γ-eudesmol (7.54%), guaiol (5.12%), caryophyllene oxide (4.18%) and β-bisabolene (4.10%). The essential oil showed antimicrobial activity against Gram-positive bacteria and yeast with the MIC values between 25.0 and 100 μg/mL. The highest antiproliferative activity was observed for the oil against MCF-7 (breast, TGI = 12.8 μg/mL), NCI-H460 (lung, TGI = 13.0 μg/mL) and PC-3 (prostate, TGI = 9.6 μg/mL) cell lines, while against no cancer cell line HaCat (keratinocyte) the TGI was 38.8 μg/mL. The oil exhibited a small antioxidant activity assessed through ORAC-FL assay (517 μmol TE/g). This is the first report regarding the chemical composition and bioactivity of A. brevipes essential oil.

  9. Gamma radiation effects on microbiological, physico-chemical and antioxidant properties of Tunisian millet (Pennisetum Glaucum L.R.Br.).

    PubMed

    Ben Mustapha, Maha; Bousselmi, Mehrez; Jerbi, Taïeb; Ben Bettaïeb, Nasreddine; Fattouch, Sami

    2014-07-01

    Hygienic quality of Tunisian pearl millet flour is always of major concern to consumers as well as all involved in the production, processing and distribution sectors. In the present study, the microbiological and biochemical properties of this food were examined following gamma-radiation. The D10-values for the Total Aerobic Plate Count, yeasts and moulds were respectively 1.5 and 3.7kGy. Furthermore, millet flour is commonly susceptible to mycotoxin contaminations, so the Ochratoxin A residues were also investigated; a reduction of 74% was observed with 10kGy. Moreover, the radiation process did not significantly alter fatty acids composition of the millet flour as obtained with Gas chromatography-flame ionisation detector technic. The peroxide value had increased from 26.16 to 34.43meqO2/kg with 3kGy. At 1kGy, we noticed an important loss of vitamin A of about 88.6%. In contrast, the total phenolic content, the ABTS-RSA and the DPPH-RSA of the radiated millet flour exhibited non-significant changes (p<0.05). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    ERIC Educational Resources Information Center

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  11. Progress in the development of a S-RETGEM-based detector for an early forest fire warning system

    NASA Astrophysics Data System (ADS)

    Charpak, G.; Benaben, P.; Breuil, P.; Martinengo, P.; Nappi, E.; Peskov, V.

    2009-12-01

    We present a prototype of a Strip Resistive Thick GEM (S-RETGEM) photosensitive gaseous detector filled with Ne and ethylferrocene (EF) vapours at a total pressure of 1 atm for an early forest fire detection system. Measurements show that it is one hundred times more sensitive than the best commercial ultraviolet (UV) flame detectors; and therefore, it is able to reliably detect a flame of ~ 1.5 × 1.5 × 1.5 m3 at a distance of about 1 km. An additional and unique feature of this detector is its imaging capability, which in combination with other techniques, may significantly reduce false fire alarms rate when operating in an automatic mode. Preliminary results conducted with air-filled photosensitive gaseous detectors are also presented. The main advantages of this approach include both the simplicity of manufacturing and affordability of construction materials such as plastics and glues specifically reducing detector production cost. The sensitivity of these air-filled detectors at certain conditions may be as high as those filled with Ne and EF. Long-term tests of such sealed detectors indicate a significant progress in this direction. We believe that our detectors utilized in addition to other flame and smoke sensors will exceptionally increase the capability to detect forest fire at a very early stage of development. Our future efforts will be focused on attempts to commercialize such detectors utilizing our aforementioned findings.

  12. Lipid analysis via HPLC with a charged aerosol detector

    USDA-ARS?s Scientific Manuscript database

    Most lipid extracts are a mixture of saturated and unsaturated molecules. Therefore, the most successful HPLC detectors for the quantitative analysis of lipids have involved the use of “universal” or “mass” detectors such as flame ionization detectors (FID) and evaporative light scattering detectors...

  13. 40 CFR 1065.260 - Flame-ionization detector.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system for measuring THC, THCE, or CH4 must meet all of the verifications for hydrocarbon measurement in... flame. (e) Methane. FID analyzers measure total hydrocarbons (THC). To determine nonmethane hydrocarbons...

  14. 40 CFR 1065.260 - Flame-ionization detector.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system for measuring THC, THCE, or CH4 must meet all of the verifications for hydrocarbon measurement in... flame. (e) Methane. FID analyzers measure total hydrocarbons (THC). To determine nonmethane hydrocarbons...

  15. ¹H, ¹³C, ¹⁵N HMBC, and ¹⁹F NMR spectroscopic characterisation of seized flephedrone, cut with benzocaine.

    PubMed

    Alotaibi, Majdah R; Husbands, Stephen M; Blagbrough, Ian S

    2015-03-25

    Flephedrone (4-fluoromethcathinone, 4-FMC) was analysed using (1)H, (13)C, (15)N HMBC, and (19)F observe spectroscopy, gas chromatography-flame ionisation detection (GC-FID), and electrospray ionisation-mass spectrometry (ESI-MS). Analysis of four 4-FMC samples (from a Bristol nightclub in 2013) showed that they all contained benzocaine as the cutting agent present in different amounts from 5 to 12%. Using these methods, we successfully differentiated between flephedrone regioisomers and mephedrone in an analytical method validated for flephedrone as a substituted cathinone. The data show that these now illegal cathinone-derived stimulants (highs) are now being cut; users cannot be certain of the purity of the drug they are taking. Furthermore, there are risks from the pharmaceutically active cutting agents themselves. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. 40 CFR 91.4 - Acronyms and abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CAAA—Clean Air Act Amendments of 1990 CLD—chemiluminescent detector CO—Carbon monoxide CO2—Carbon...—hydrocarbons HCLD—heated chemiluminescent detector HFID—heated flame ionization detector ICI—Independent... OEM—Original engine manufacturer PMD—paramagnetic detector PWC—personal watercraft RPM—revolutions per...

  17. 40 CFR 91.4 - Acronyms and abbreviations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CAAA—Clean Air Act Amendments of 1990 CLD—chemiluminescent detector CO—Carbon monoxide CO2—Carbon...—hydrocarbons HCLD—heated chemiluminescent detector HFID—heated flame ionization detector ICI—Independent... OEM—Original engine manufacturer PMD—paramagnetic detector PWC—personal watercraft RPM—revolutions per...

  18. 40 CFR 91.4 - Acronyms and abbreviations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CAAA—Clean Air Act Amendments of 1990 CLD—chemiluminescent detector CO—Carbon monoxide CO2—Carbon...—hydrocarbons HCLD—heated chemiluminescent detector HFID—heated flame ionization detector ICI—Independent... OEM—Original engine manufacturer PMD—paramagnetic detector PWC—personal watercraft RPM—revolutions per...

  19. 40 CFR 91.4 - Acronyms and abbreviations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CAAA—Clean Air Act Amendments of 1990 CLD—chemiluminescent detector CO—Carbon monoxide CO2—Carbon...—hydrocarbons HCLD—heated chemiluminescent detector HFID—heated flame ionization detector ICI—Independent... OEM—Original engine manufacturer PMD—paramagnetic detector PWC—personal watercraft RPM—revolutions per...

  20. 40 CFR 91.4 - Acronyms and abbreviations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CAAA—Clean Air Act Amendments of 1990 CLD—chemiluminescent detector CO—Carbon monoxide CO2—Carbon...—hydrocarbons HCLD—heated chemiluminescent detector HFID—heated flame ionization detector ICI—Independent... OEM—Original engine manufacturer PMD—paramagnetic detector PWC—personal watercraft RPM—revolutions per...

  1. [Analysis of H2S/PH3/NH3/AsH3/Cl2 by Full-Spectral Flame Photometric Detector].

    PubMed

    Ding, Zhi-jun; Wang, Pu-hong; Li, Zhi-jun; Du, Bin; Guo, Lei; Yu, Jian-hua

    2015-07-01

    Flame photometric analysis technology has been proven to be a rapid and sensitive method for sulfur and phosphorus detection. It has been widely used in environmental inspections, pesticide detection, industrial and agricultural production. By improving the design of the traditional flame photometric detector, using grating and CCD sensor array as a photoelectric conversion device, the types of compounds that can be detected were expanded. Instead of a single point of characteristic spectral lines, full spectral information has been used for qualitative and quantitative analysis of H2S, PH3, NH3, AsH3 and Cl2. Combined with chemometric method, flame photometric analysis technology is expected to become an alternative fast, real-time on-site detection technology to simultaneously detect multiple toxic and harmful gases.

  2. Critical review of the analysis of brominated flame retardants and their environmental levels in Africa.

    PubMed

    Brits, Martin; de Vos, Jayne; Weiss, Jana M; Rohwer, Egmont R; de Boer, Jacob

    2016-12-01

    World-wide, the prevalence of brominated flame retardants (BFRs) is well documented for routine analysis of environmental and biological matrices. There is, however, limited information on these compounds in the African environment and insufficient information on the analytical approaches used to obtain data. This paper presents a review on BFR levels in the African environment and the various analytical methodologies specifically applied in Africa for polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls and alternative-BFRs. The analyses include liquid sample preparation using liquid-liquid and solid phase extraction and solid sample preparation involving Soxhlet extraction, with ultrasound-assisted extraction increasingly being applied. Instrumental detection techniques were limited to gas chromatography coupled with electron capture detector and electron impact ionisation with single quadrupole mass spectrometers. Information on congener profile prevalence in indoor dust, soil, aquatic environment (water, sediment, and aquatic organisms), eggs, wastewater treatment plant compartments, landfills (leachate and sediment) and breast milk are presented. Although PBDEs were inconsistently detected, contamination was reported for all investigated matrices in the African environment. The manifestation in remote regions indicates the ubiquitous prevalence and long-range transport of these compounds. Levels in sediment, and breast milk from some African countries were higher than reported for Asia and Europe. Due to limited data or non-detection of alternative-BFRs, it is unclear whether banned formulations were replaced in Africa. Most of the data reported for BFR levels in Africa were obtained in non-African laboratories or in South Africa and formed the basis for our discussion of reported contamination levels and related methodologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hydrogen Fire Spectroscopy Issues Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  4. Comprehensive characterisation of flame retardants in textile furnishings by ambient high resolution mass spectrometry, gas chromatography-mass spectrometry and environmental forensic microscopy.

    PubMed

    Ionas, Alin C; Ballesteros Gómez, Ana; Uchida, Natsuyo; Suzuki, Go; Kajiwara, Natsuko; Takata, Kyoko; Takigami, Hidetaka; Leonards, Pim E G; Covaci, Adrian

    2015-10-01

    The presence and levels of flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (PFRs), was determined in textile home furnishings, such as carpets and curtains from stores in Belgium. A comprehensive characterisation of FRs in textile was done by ambient high resolution mass spectrometry (qualitative screening), gas chromatography-mass spectrometry (GC-MS) (quantitation), and environmental forensic microscopy (surface distribution). Ambient ionisation coupled to a time-of-flight (TOF) high resolution mass spectrometer (direct probe-TOF-MS) was investigated for the rapid screening of FRs. Direct probe-TOF-MS proved to be useful for a first screening step of textiles to detect FRs below the levels required to impart flame retardancy and to reduce, in this way, the number of samples for further quantitative analysis. Samples were analysed by GC-MS to confirm the results obtained by ambient mass spectrometry and to obtain quantitative information. The levels of PBDEs and PFRs were typically too low to impart flame retardancy. Only high levels of BDE-209 (11-18% by weight) were discovered and investigated in localised hotspots by employing forensic microscopy techniques. Most of the samples were made of polymeric materials known to be inherently flame retarded to some extent, so it is likely that other alternative and halogen-free FR treatments/solutions are preferred for the textiles on the Belgian market. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Simulation of the MoEDAL experiment

    NASA Astrophysics Data System (ADS)

    King, Matthew; MoEDAL Collaboration

    2016-04-01

    The MoEDAL experiment (Monopole and Exotics Detector at the LHC) is designed to directly search for magnetic monopoles and other highly ionising stable or meta-stable particles at the LHC. The MoEDAL detector comprises an array of plastic track detectors and aluminium trapping volumes around the P8 intersection region, opposite from the LHCb detector. TimePix devices are also installed for monitoring of the experiment. As MoEDAL mostly employs passive detectors the software development focusses on particle simulation, rather than digitisation or reconstruction. Here, we present the current status of the MoEDAL simulation software. Specifically, the development of a material description of the detector and simulations of monopole production and propagation at MoEDAL.

  6. End-to-end system test for solid-state microdosemeters.

    PubMed

    Pisacane, V L; Dolecek, Q E; Malak, H; Dicello, J F

    2010-08-01

    The gold standard in microdosemeters has been the tissue equivalent proportional counter (TEPC) that utilises a gas cavity. An alternative is the solid-state microdosemeter that replaces the gas with a condensed phase (silicon) detector with microscopic sensitive volumes. Calibrations of gas and solid-state microdosemeters are generally carried out using radiation sources built into the detector that impose restrictions on their handling, transportation and licensing in accordance with the regulations from international, national and local nuclear regulatory bodies. Here a novel method is presented for carrying out a calibration and end-to-end system test of a microdosemeter using low-energy photons as the initiating energy source, thus obviating the need for a regulated ionising radiation source. This technique may be utilised to calibrate both a solid-state microdosemeter and, with modification, a TEPC with the higher average ionisation energy of a gas.

  7. MoEDAL - a new light on the high-energy frontier

    NASA Astrophysics Data System (ADS)

    Fairbairn, Malcolm; Pinfold, James L.

    2017-01-01

    In 2010, the MoEDAL (MOnopole and Exotics Detector at the LHC) experiment at the Large Hadron Collider (LHC) was unanimously approved by European Centre for Nuclear Research's Research Board to start data taking in 2015. MoEDAL is a pioneering experiment designed to search for highly ionising manifestations of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles. Its groundbreaking physics programme defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; does magnetic charge exist; what is the nature of dark matter; and, how did the Big Bang develop. MoEDAL's purpose is to meet such far-reaching challenges at the frontier of the field. The innovative MoEDAL detector employs unconventional methodologies tuned to the prospect of discovery physics. The largely passive MoEDAL detector, deployed at Point 8 on the LHC ring, has a dual nature. First, it acts like a giant camera, comprised of nuclear track detectors - analysed offline by ultra fast scanning microscopes - sensitive only to new physics. Second, it is uniquely able to trap the particle messengers of physics beyond the Standard Model for further study. MoEDAL's radiation environment is monitored by a state-of-the-art real-time TimePix pixel detector array. A new MoEDAL sub-detector designed to extend MoEDAL reach to mini-charged, minimally ionising particles is under study.

  8. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  9. Comparative Soot Diagnostics Experiment Looks at the Smoky World of Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Griffin, DeVon W.; Gard, Melissa Y.

    1997-01-01

    From an economic standpoint, soot is one of the most important combustion intermediates and products. It is a major industrial product and is the dominant medium for radiant heat transport in most flames used to generate heat and power. The nonbuoyant structure of most flames of practical interest (turbulent flames) makes the understanding of soot processes in microgravity flames important to our ability to predict fire behavior on Earth. In addition, fires in spacecraft are considered a credible possibility. To respond to this risk, NASA has flown fire (or smoke) detectors on Skylab and the space shuttles and included them in the International Space Station design. The design of these detectors, however, was based entirely on normal gravity (1g) data. The detector used in the shuttle fleet is an ionization detector, whereas the system planned for the space station uses forward scattering of near-infrared light. The ionization detector, which is similar to smoke detectors used in homes, has a comparative advantage for submicron particulates. In fact, the space shuttle model uses a separation system that makes it blind to particles larger than a micron (believed to be dust). In the larger size range, the lightscattering detector is most sensitive. Without microgravity smoke data, the difference in the particle size sensitivities of the two detectors cannot be evaluated. As part of the Comparative Soot Diagnostics (CSD) experiment, these systems were tested to determine their response to particulates generated during long periods of low gravity. This experiment provided the first such measurements toward understanding soot processes on Earth and for designing and implementing improved spacecraft smoke detection systems. The objectives of CSD were to examine how particulates form from a variety of sources and to quantify the performance of several diagnostic techniques. The sources tested included four overheated materials (paper, silicone rubber, Teflon-coated (DuPont) wire, and Kapton-coated (DuPont) wires), each tested at three heating rates, and a candle tested at three air velocities. Paper, silicone rubber, and wire insulation, materials found in spacecraft crew cabins, were selected because of their different smoke properties. The candle yielded hydrocarbon soot typical of many 1g flames. Four diagnostic techniques were employed: thermophoretic sampling collected particulates for size analysis; laser light extinction measurements near the source tallied total particulate production; and laser light scattering and ionization detector measurements far from the particulate source provided data for evaluating the performance of smoke detection systems for these particulate sources.

  10. High pressure optical combustion probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod inmore » a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.« less

  11. The VLT-FLAMES Tarantula Survey. XI. A census of the hot luminous stars and their feedback in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Doran, E. I.; Crowther, P. A.; de Koter, A.; Evans, C. J.; McEvoy, C.; Walborn, N. R.; Bastian, N.; Bestenlehner, J. M.; Gräfener, G.; Herrero, A.; Köhler, K.; Maíz Apellániz, J.; Najarro, F.; Puls, J.; Sana, H.; Schneider, F. R. N.; Taylor, W. D.; van Loon, J. Th.; Vink, J. S.

    2013-10-01

    Context. The VLT-FLAMES Tarantula Survey has an extensive view of the copious number of massive stars in the 30 Doradus (30 Dor) star forming region of the Large Magellanic Cloud. These stars play a crucial role in our understanding of the stellar feedback in more distant, unresolved star forming regions. Aims: The first comprehensive census of hot luminous stars in 30 Dor is compiled within a 10 arcmin (150 pc) radius of its central cluster, R136. We investigate the stellar content and spectroscopic completeness of the early type stars. Estimates were made for both the integrated ionising luminosity and stellar wind luminosity. These values were used to re-assess the star formation rate (SFR) of the region and determine the ionising photon escape fraction. Methods: Stars were selected photometrically and combined with the latest spectral classifications. Spectral types were estimated for stars lacking spectroscopy and corrections were made for binary systems, where possible. Stellar calibrations were applied to obtain their physical parameters and wind properties. Their integrated properties were then compared to global observations from ultraviolet (UV) to far-infrared (FIR) imaging as well as the population synthesis code, Starburst99. Results: Our census identified 1145 candidate hot luminous stars within 150 pc of R136 of which >700 were considered to be genuine early type stars and contribute to feedback. We assess the survey to be spectroscopically complete to 85% in the outer regions (>5 pc) but only 35% complete in the region of the R136 cluster, giving a total of 500 hot luminous stars in the census which had spectroscopy. Only 31 were found to be Wolf-Rayet (W-R) or Of/WN stars, but their contribution to the integrated ionising luminosity and wind luminosity was ~40% and ~50%, respectively. Similarly, stars with Minit > 100 M⊙ (mostly H-rich WN stars) also showed high contributions to the global feedback, ~25% in both cases. Such massive stars are not accounted for by the current Starburst99 code, which was found to underestimate the integrated ionising luminosity of R136 by a factor ~2 and the wind luminosity by a factor ~9. The census inferred a SFR for 30 Dor of 0.073 ± 0.04 M⊙ yr-1. This was generally higher than that obtained from some popular SFR calibrations but still showed good consistency with the far-UV luminosity tracer as well as the combined Hα and mid-infrared tracer, but only after correcting for Hα extinction. The global ionising output was also found to exceed that measured from the associated gas and dust, suggesting that ~6+55-6 % of the ionising photons escape the region. Conclusions: When studying the most luminous star forming regions, it is essential to include their most massive stars if one is to determine a reliable energy budget. Photon leakage becomes more likely after including their large contributions to the ionising output. If 30 Dor is typical of other massive star forming regions, estimates of the SFR will be underpredicted if this escape fraction is not accounted for. Based on observations collected at the European Southern Observatory under programme ID 182.D-0222.Appendices are available in electronic form at http://www.aanda.orgFull Tables D1 and D2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A134

  12. 40 CFR 86.1326-90 - Calibration of other equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment requiring calibration is the gas chromatograph and flame ionization detector used in measuring methanol and the high pressure liquid chromatograph (HPLC) and ultraviolet detector for measuring...

  13. 40 CFR 86.1326-90 - Calibration of other equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment requiring calibration is the gas chromatograph and flame ionization detector used in measuring methanol and the high pressure liquid chromatograph (HPLC) and ultraviolet detector for measuring...

  14. 40 CFR 86.1326-90 - Calibration of other equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment requiring calibration is the gas chromatograph and flame ionization detector used in measuring methanol and the high pressure liquid chromatograph (HPLC) and ultraviolet detector for measuring...

  15. 40 CFR 86.1326-90 - Calibration of other equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment requiring calibration is the gas chromatograph and flame ionization detector used in measuring methanol and the high pressure liquid chromatograph (HPLC) and ultraviolet detector for measuring...

  16. Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cao, Zhang; Li, Fangyan; Lin, Yuzhen; Xu, Lijun

    2017-05-01

    Distributions of temperature and H2O concentration in a swirling flame are critical to evaluate the performance of a gas turbine combustor. In this paper, 1D tunable diode laser absorption spectroscopy tomography (1D-TDLAST) was introduced to monitor swirling flames generated from a model swirl injector by simultaneously reconstructing the rotationally symmetric distributions of temperature and H2O concentration. The optical system was sufficiently simplified by introducing only one fan-beam illumination and a linear detector array of 12 equally-spaced photodetectors. The fan-beam illumination penetrated a cross section of interest in the swirling flame and the transmitted intensities were detected by the detector array. With the transmitted intensities in hand, projections were extracted and employed by a 1D tomographic algorithm to reconstruct the distributions of temperature and H2O concentration. The route of the precessing vortex core generated in the swirling flame can be easily inferred from the reconstructed profiles of temperature and H2O concentration at different heights above the nozzle of the swirl injector.

  17. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energymore » measurement.« less

  18. 40 CFR 90.5 - Acronyms and abbreviations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Materials CAA—Clean Air Act CAAA—Clean Air Act Amendments of 1990 CLD—chemiluminescent detector CO—Carbon... per kilowatt hour HC—hydrocarbons HCLD—heated chemiluminescent detector HFID—heated flame ionization detector ICI—independent Commercial Importer NDIR—non-dispersive infrared analyzer NIST—National Institute...

  19. 40 CFR 90.5 - Acronyms and abbreviations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Materials CAA—Clean Air Act CAAA—Clean Air Act Amendments of 1990 CLD—chemiluminescent detector CO—Carbon... per kilowatt hour HC—hydrocarbons HCLD—heated chemiluminescent detector HFID—heated flame ionization detector ICI—independent Commercial Importer NDIR—non-dispersive infrared analyzer NIST—National Institute...

  20. 40 CFR 90.5 - Acronyms and abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Materials CAA—Clean Air Act CAAA—Clean Air Act Amendments of 1990 CLD—chemiluminescent detector CO—Carbon... per kilowatt hour HC—hydrocarbons HCLD—heated chemiluminescent detector HFID—heated flame ionization detector ICI—independent Commercial Importer NDIR—non-dispersive infrared analyzer NIST—National Institute...

  1. 40 CFR 90.5 - Acronyms and abbreviations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Materials CAA—Clean Air Act CAAA—Clean Air Act Amendments of 1990 CLD—chemiluminescent detector CO—Carbon... per kilowatt hour HC—hydrocarbons HCLD—heated chemiluminescent detector HFID—heated flame ionization detector ICI—independent Commercial Importer NDIR—non-dispersive infrared analyzer NIST—National Institute...

  2. 40 CFR 90.5 - Acronyms and abbreviations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Materials CAA—Clean Air Act CAAA—Clean Air Act Amendments of 1990 CLD—chemiluminescent detector CO—Carbon... per kilowatt hour HC—hydrocarbons HCLD—heated chemiluminescent detector HFID—heated flame ionization detector ICI—independent Commercial Importer NDIR—non-dispersive infrared analyzer NIST—National Institute...

  3. Integration of a Fire Detector into a Spacecraft

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.

    1972-01-01

    A detector sensitive to only the ultraviolet radiation emitted by flames has been selected as the basic element of the NASA Skylab fire detection system. It is sensitive to approximately 10(exp -12)W of radiation and will detect small flames at distances in excess of 3m. The performance of the detector was verified by experiments in an aircraft flying zero-gravity parabolas to simulate the characteristics of a fire which the detector must sense. Extensive investigation and exacting design was necessary to exclude all possible sources of false alarms. Optical measurements were made on all the spacecraft windows to determine the amount of solar radiation transmitted. The lighting systems and the onboard experiments also were appraised for ultraviolet emissions. Proton-accelerator tests were performed to determine the interaction of the Earth's trapped radiation belts with the detectors and the design of the instrument was modified to negate these effects.

  4. Gas chromatography with simultaneous detection: Ultraviolet spectroscopy, flame ionization, and mass spectrometry.

    PubMed

    Gras, Ronda; Luong, Jim; Haddad, Paul R; Shellie, Robert A

    2018-05-08

    An effective analytical strategy was developed and implemented to exploit the synergy derived from three different detector classes for gas chromatography, namely ultraviolet spectroscopy, flame ionization, and mass spectrometry for volatile compound analysis. This strategy was achieved by successfully hyphenating a user-selectable multi-wavelength diode array detector featuring a positive temperature coefficient thermistor as an isothermal heater to a gas chromatograph. By exploiting the non-destructive nature of the diode array detector, the effluent from the detector was split to two parallel detectors; namely a quadrupole mass spectrometer and a flame ionization detector. This multi-hyphenated configuration with the use of three detectors is a powerful approach not only for selective detection enhancement but also for improvement in structural elucidation of volatile compounds where fewer fragments can be obtained or for isomeric compound analysis. With the diode array detector capable of generating high resolution gas phase spectra, the information collected provides useful confirmatory information without a total dependence on the chromatographic separation process which is based on retention time. This information-rich approach to chromatography is achieved without incurring extra analytical time, resulting in improvements in compound identification accuracy, analytical productivity, and cost. Chromatographic performance obtained from model compounds was found to be acceptable with a relative standard deviation of the retention times of less than 0.01% RSD, and a repeatability at two levels of concentration of 100 and 1000 ppm (v/v) of less than 5% (n = 10). With this configuration, correlation of data between the three detectors was simplified by having near identical retention times for the analytes studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Influence of high altitude on the burning behaviour of typical combustibles and the related responses of smoke detectors in compartments

    PubMed Central

    Zeng, Yi; Fang, Jun; Zhang, Yong-Ming

    2018-01-01

    The effect of altitude on typical combustible burning and related smoke detector response signals was investigated by comparison experiments at altitudes of 40 m and 3650 m based on EN54 standard tests. Point-type light scattering photoelectric smoke detectors and ionization smoke detectors were used for four kinds of EN54 fire tests, including two kinds of smouldering fires with wood (test fire no. 2 in EN54 standard or TF2) and cotton (TF3), and two kinds of flaming fires with polyurethane (TF4) and n-heptane (TF5). First, the influence of altitude or ambient pressure on mass loss for smouldering combustion (TF2 or TF3) was insignificant, while a significant decrease in the mass burning rate was found for flaming tests (TF4 and TF5) as reported in our previous studies. Second, for photoelectric smoke detectors in flaming fire tests, the effect of altitude was similar to that of the burning rate, whereas for the ionization smoke detectors, the response signal at high altitudes was shown to be ‘enhanced’ by the detection principle of the ionization chamber, leading to an even larger value than at normal altitude for smouldering conditions. Third, to provide a reference for smoke detector design in high-altitude areas, the differences between signal speed in rising and peak values at two locations are discussed. Also, relationship between ion chamber signals and smoke optical densities are presented by utilization of an ionization smoke detector and smoke concentration meter. Moreover, a hierarchical diagram is illustrated to provide a better understanding of the effects of altitude on combustible burning behaviour and the mechanisms of detector response. PMID:29765695

  6. Influence of high altitude on the burning behaviour of typical combustibles and the related responses of smoke detectors in compartments.

    PubMed

    Tu, Ran; Zeng, Yi; Fang, Jun; Zhang, Yong-Ming

    2018-04-01

    The effect of altitude on typical combustible burning and related smoke detector response signals was investigated by comparison experiments at altitudes of 40 m and 3650 m based on EN54 standard tests. Point-type light scattering photoelectric smoke detectors and ionization smoke detectors were used for four kinds of EN54 fire tests, including two kinds of smouldering fires with wood (test fire no. 2 in EN54 standard or TF2) and cotton (TF3), and two kinds of flaming fires with polyurethane (TF4) and n -heptane (TF5). First, the influence of altitude or ambient pressure on mass loss for smouldering combustion (TF2 or TF3) was insignificant, while a significant decrease in the mass burning rate was found for flaming tests (TF4 and TF5) as reported in our previous studies. Second, for photoelectric smoke detectors in flaming fire tests, the effect of altitude was similar to that of the burning rate, whereas for the ionization smoke detectors, the response signal at high altitudes was shown to be 'enhanced' by the detection principle of the ionization chamber, leading to an even larger value than at normal altitude for smouldering conditions. Third, to provide a reference for smoke detector design in high-altitude areas, the differences between signal speed in rising and peak values at two locations are discussed. Also, relationship between ion chamber signals and smoke optical densities are presented by utilization of an ionization smoke detector and smoke concentration meter. Moreover, a hierarchical diagram is illustrated to provide a better understanding of the effects of altitude on combustible burning behaviour and the mechanisms of detector response.

  7. The development of an efficient mass balance approach for the purity assignment of organic calibration standards.

    PubMed

    Davies, Stephen R; Alamgir, Mahiuddin; Chan, Benjamin K H; Dang, Thao; Jones, Kai; Krishnaswami, Maya; Luo, Yawen; Mitchell, Peter S R; Moawad, Michael; Swan, Hilton; Tarrant, Greg J

    2015-10-01

    The purity determination of organic calibration standards using the traditional mass balance approach is described. Demonstrated examples highlight the potential for bias in each measurement and the need to implement an approach that provides a cross-check for each result, affording fit for purpose purity values in a timely and cost-effective manner. Chromatographic techniques such as gas chromatography with flame ionisation detection (GC-FID) and high-performance liquid chromatography with UV detection (HPLC-UV), combined with mass and NMR spectroscopy, provide a detailed impurity profile allowing an efficient conversion of chromatographic peak areas into relative mass fractions, generally avoiding the need to calibrate each impurity present. For samples analysed by GC-FID, a conservative measurement uncertainty budget is described, including a component to cover potential variations in the response of each unidentified impurity. An alternative approach is also detailed in which extensive purification eliminates the detector response factor issue, facilitating the certification of a super-pure calibration standard which can be used to quantify the main component in less-pure candidate materials. This latter approach is particularly useful when applying HPLC analysis with UV detection. Key to the success of this approach is the application of both qualitative and quantitative (1)H NMR spectroscopy.

  8. Assessment of the dietary intake of propylene glycol in the Korean population.

    PubMed

    Lim, Ho Soo; Hwang, Ju Young; Choi, EunA; Lee, Gun Young; Yun, Sang Soon; Kang, TaeSeok

    2016-08-01

    An improved method for the analysis of propylene glycol (PG) in foods using a gas chromatography-flame ionisation detector (GC-FID), with confirmation by GC-MS, was validated by measuring several analytical parameters. The PG concentrations in 1073 products available in Korean markets were determined. PG was detected in 74.1% of the samples, in a concentration range from the limit of detection (n.d., 0.39 μg ml(-1)) to 12,819.9 mg kg(-1). The Korea National Health and Nutrition Examination Survey (KNHANES) 2011-2013 reported the mean intake levels of PG from all sources by the general population and consumers were 26.3 mg day(-1) (0.52 mg kg(-1) day(-1)) and 34.3 mg day(-1) (0.67 mg kg(-1) day(-1)), respectively. The 95th percentile intake levels of the general population and consumers were 123.6 mg day(-1) (2.39 mg kg(-1) day(-1)) and 146.3 mg day(-1) (2.86 mg kg(-1) day(-1)), respectively. In all groups of the general population, breads were the main contributors to the total PG intake. These reports provide a current perspective on the daily intake of PG in the Korean population.

  9. Application of gas chromatography/flame ionization detector-based metabolite fingerprinting for authentication of Asian palm civet coffee (Kopi Luwak).

    PubMed

    Jumhawan, Udi; Putri, Sastia Prama; Yusianto; Bamba, Takeshi; Fukusaki, Eiichiro

    2015-11-01

    Development of authenticity screening for Asian palm civet coffee, the world-renowned priciest coffee, was previously reported using metabolite profiling through gas chromatography/mass spectrometry (GC/MS). However, a major drawback of this approach is the high cost of the instrument and maintenance. Therefore, an alternative method is needed for quality and authenticity evaluation of civet coffee. A rapid, reliable and cost-effective analysis employing a universal detector, GC coupled with flame ionization detector (FID), and metabolite fingerprinting has been established for discrimination analysis of 37 commercial and non-commercial coffee beans extracts. gas chromatography/flame ionization detector (GC/FID) provided higher sensitivity over a similar range of detected compounds than GC/MS. In combination with multivariate analysis, GC/FID could successfully reproduce quality prediction from GC/MS for differentiation of commercial civet coffee, regular coffee and coffee blend with 50 wt % civet coffee content without prior metabolite details. Our study demonstrated that GC/FID-based metabolite fingerprinting can be effectively actualized as an alternative method for coffee authenticity screening in industries. Copyright © 2015. Published by Elsevier B.V.

  10. Comparative Soot Diagnostics: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Griffin, DeVon W.; Gard, Melissa Y.

    1997-01-01

    The motivation for the Comparative Soot Diagnostics (CSD) experiment lies in the broad practical importance of understanding combustion generated particulate. Depending upon the circumstances, particulate matter can affect the durability and performance of combustion equipment, can be a pollutant, can be used to detect fires and, in the form of soot, can be the dominant source of radiant energy from flames. The nonbuoyant structure of most flames of practical interest makes understanding of soot processes in low gravity flames important to our ability to predict fire behavior on earth. These studies also have direct applications to fire safety in human-crew spacecraft, since smoke is the indicator used for automated detection in current spacecraft. In the earliest missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was considered reasonable that the astronauts would rapidly detect any fire. The Skylab module, however, included approximately 20 UV-sensing fire detectors. The Space Shuttle has 9 particle-ionization smoke detectors in the mid-deck and flight deck and Spacelab has six additional particle-ionization smoke detectors. The designated detectors for the ISS are laser-diode, forward-scattering, smoke or particulate detectors. Current plans for the ISS call for two detectors in the open area of the module, and detectors in racks that have both cooling air flow and electrical power. Due to the complete absence of data concerning the nature of particulate and radiant emission from incipient and fully developed low-g fires, all three of these detector systems were designed based upon l-g test data and experience. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew-independent, fire detection grows significantly. To provide this level of protection, more knowledge is needed concerning low-gravity fire phenomena and, in particular, how they might be detected and suppressed. Prior to CSD, no combustion-generated particulate samples had been collected near the flame zone for well-developed microgravity flames. All of the extant data either came from drop tower tests and therefore only corresponded to the early stages of a fire or were collected far from the flame zone. The fuel sources in the drop tower tests were restricted to laminar gas-jet diffusion flames and very rapidly overheated wire insulation. The gas-jet tests indicated, through thermophoretic sampling, (2) that soot primaries and aggregates (groups of primary particles) in low-gravity may be significantly larger than those in normal gravity (1-g). This raises new scientific questions about soot processes as well as practical issues for particulate size sensitivity and detection alarm threshold levels used in on-orbit smoke detectors. Preliminary tests in the 2.2 second drop tower suggest that particulate generated by overheated wire insulation may be larger in low-g than in 1-g. Transmission Electron Microscope (TEM) grids downstream of the fire region in the Wire Insulation Flammability experiment as well as visual observation of long string-like aggregates, further confirm this suggestion. The combined impact of these limited results and theoretical predictions is that, as opposed to extrapolation from l-g data, direct knowledge of low-g combustion particulate is needed for more confident design of smoke detectors for spacecraft. This paper describes the operation and preliminary results of the CSD, a project conceived and developed at NASA Lewis Research Center. The CSD flight experiment was conducted in the Middeck Glovebox Facility (MGBX) on USMP-3. The project is support by NASA Headquarters Microgravity Science and Applications Division and Code Q. The results presented here are from the microgravity portion of the experiment, including the temporal response of the detectors and average sizes of the primary and aggregate particles captured on the thermophoretic probes.

  11. The VLT-FLAMES Tarantula Survey. XVII. Physical and wind properties of massive stars at the top of the main sequence

    NASA Astrophysics Data System (ADS)

    Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R.

    2014-10-01

    The evolution and fate of very massive stars (VMS) is tightly connected to their mass-loss properties. Their initial and final masses differ significantly as a result of mass loss. VMS have strong stellar winds and extremely high ionising fluxes, which are thought to be critical sources of both mechanical and radiative feedback in giant H ii regions. However, how VMS mass-loss properties change during stellar evolution is poorly understood. In the framework of the VLT-Flames Tarantula Survey (VFTS), we explore the mass-loss transition region from optically thin O star winds to denser WNh Wolf-Rayet star winds, thereby testing theoretical predictions. To this purpose we select 62 O, Of, Of/WN, and WNh stars, an unprecedented sample of stars with the highest masses and luminosities known. We perform a spectral analysis of optical VFTS as well as near-infrared VLT/SINFONI data using the non-LTE radiative transfer code CMFGEN to obtain both stellar and wind parameters. For the first time, we observationally resolve the transition between optically thin O star winds and optically thick hydrogen-rich WNh Wolf-Rayet winds. Our results suggest the existence of a "kink" between both mass-loss regimes, in agreement with recent Monte Carlo simulations. For the optically thick regime, we confirm the steep dependence on the classical Eddington factor Γe from previous theoretical and observational studies. The transition occurs on the main sequence near a luminosity of 106.1L⊙, or a mass of 80 ... 90 M⊙. Above this limit, we find that - even when accounting for moderate wind clumping (with fv = 0.1) - wind mass-loss rates are enhanced with respect to standard prescriptions currently adopted in stellar evolution calculations. We also show that this results in substantial helium surface enrichment. Finally, based on our spectroscopic analyses, we are able to provide the most accurate ionising fluxes for VMS known to date, confirming the pivotal role of VMS in ionising and shaping their environments. Appendices are available in electronic form at http://www.aanda.org

  12. Utilizing two detectors in the measurement of trichloroacetic acid in human urine by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2018-05-16

    A reaction headspace gas chromatography (HS-GC) technique was investigated for quantitatively analyzing trichloroacetic acid in human urine. This method is based on the decomposition reaction of trichloroacetic acid under high-temperature conditions. The carbon dioxide and chloroform formed from the decomposition reaction can be respectively detected by the thermal conductivity detection HS-GC and flame ionization detection HS-GC. The reaction can be completed in 60 min at 90°C. This method was used to quantify 25 different human urine samples, which had a range of trichloroacetic acid from 0.52 to 3.47 mg/L. It also utilized two different detectors, the thermal conductivity detector and the flame ionization detector. The present reaction HS-GC method is accurate, reliable and well suitable for batch detection of trichloroacetic acid in human urine. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  14. An improved multiple flame photometric detector for gas chromatography.

    PubMed

    Clark, Adrian G; Thurbide, Kevin B

    2015-11-20

    An improved multiple flame photometric detector (mFPD) is introduced, based upon interconnecting fluidic channels within a planar stainless steel (SS) plate. Relative to the previous quartz tube mFPD prototype, the SS mFPD provides a 50% reduction in background emission levels, an orthogonal analytical flame, and easier more sensitive operation. As a result, sulfur response in the SS mFPD spans 4 orders of magnitude, yields a minimum detectable limit near 9×10(-12)gS/s, and has a selectivity approaching 10(4) over carbon. The device also exhibits exceptionally large resistance to hydrocarbon response quenching. Additionally, the SS mFPD uniquely allows analyte emission monitoring in the multiple worker flames for the first time. The findings suggest that this mode can potentially further improve upon the analytical flame response of sulfur (both linear HSO, and quadratic S2) and also phosphorus. Of note, the latter is nearly 20-fold stronger in S/N in the collective worker flames response and provides 6 orders of linearity with a detection limit of about 2.0×10(-13)gP/s. Overall, the results indicate that this new SS design notably improves the analytical performance of the mFPD and can provide a versatile and beneficial monitoring tool for gas chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  16. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  17. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  18. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  19. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  20. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  1. Development of Multiple-Element Flame Emission Spectrometer Using CCD Detection

    ERIC Educational Resources Information Center

    Seney, Caryn S.; Sinclair, Karen V.; Bright, Robin M.; Momoh, Paul O.; Bozeman, Amelia D.

    2005-01-01

    The full wavelength coverage of charge coupled device (CCD) detector when coupled with an echelle spectrography, the system allows for simultaneously multiple element spectroscopy to be performed. The multiple-element flame spectrometer was built and characterized through the analysis of environmentally significant elements such as Ca, K, Na, Cu,…

  2. Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation.

    PubMed

    Bhardwaj, Swati; Passi, Santosh Jain; Misra, Anoop; Pant, Kamal K; Anwar, Khalid; Pandey, R M; Kardam, Vikas

    2016-12-01

    Heating/frying and reuse of edible fats/oils induces chemical changes such as formation of trans fatty acids (TFAs). The aim of this study was to investigate the effect of heating/frying on formation of TFAs in fats/oils. Using gas chromatography with flame ionisation detector, TFA was estimated in six commonly used fat/oils in India (refined soybean oil, groundnut oil, olive oil, rapeseed oil, clarified butter, partially hydrogenated vegetable oil), before and after subjecting them to heating/frying at 180°C and 220°C. All six fats/oils subjected to heating/frying demonstrated an increase in TFAs (p<0.001), saturated fatty acids (p<0.001) and decrease in cis-unsaturated fatty acids (p<0.001). The absolute increase in TFA content of edible oils (after subjecting to heating/reheating) ranged between 2.30±0.89g/100g and 4.5±1.43g/100g; amongst edible fats it ranged between 2.60±0.38g/100g and 5.96±1.94g/100g. There were no significant differences between the two treatment groups (heating and frying; p=0.892). Considering the undesirable health effects of TFA, appropriate guidelines for heating/re-frying of edible fats/oils by Asian Indians should be devised. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Spectral response of a UV flame sensor for a modern turbojet aircraft engine

    NASA Astrophysics Data System (ADS)

    Schneider, William E.; Minott, George L.

    1989-12-01

    A flame sensor is incorporated into the F404 turbojet's afterburner section in order to monitor operations. The sensor contains a gaseous-discharge-type UV detector tube. Attention is presently given to the results of a study of the relationship between the flame and the sensor at temperatures of up to 400 F, using a double monochromator-based spectroradiometric system optimized for spectral response measurements in the 200-300 nm wavelength range. Modifications have been instituted as a result of these tests which guarantee a sufficiently high sensor output signal level, irrespective of variability in afterburner flame irradiance associated with differences in engine operating conditions.

  4. FIELD ANALYTICAL SCREENING PROGRAM: PCP METHOD - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Field Analytical Screening Program (FASP) pentachlorophenol (PCP) method uses a gas chromatograph (GC) equipped with a megabore capillary column and flame ionization detector (FID) and electron capture detector (ECD) to identify and quantify PCP. The FASP PCP method is design...

  5. Analytical validation applied to simultaneous determination of solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) in urine by headspace extraction and injection on chromatographic system with a flame ionization detector

    NASA Astrophysics Data System (ADS)

    Muna, E. D. M.; Pereira, R. P.

    2016-07-01

    The determination of the volatile organic solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) is applied on toxicological monitoring of employees in various industrial activities. The gas chromatography technique with flame ionization detector and headspace injection system has been applied. The analytical procedure developed allows the simultaneous determination of the above-mentioned solvents and the accuracy of the method was tested following the INMETRO guidelines through the DOQ-CGRE 008 Rev.04-July/2011.

  6. The response of smoke detectors to pyrolysis and combustion products from aircraft interior materials

    NASA Technical Reports Server (NTRS)

    Mckee, R. G.; Alvares, N. J.

    1976-01-01

    The following projects were completed as part of the effort to develop and test economically feasible fire-resistant materials for interior furnishings of aircraft as well as detectors of incipient fires in passenger and cargo compartments: (1) determination of the sensitivity of various contemporary gas and smoke detectors to pyrolysis and combustion products from materials commonly used in aircraft interiors and from materials that may be used in the future, (2) assessment of the environmental limitations to detector sensitivity and reliability. The tests were conducted on three groups of materials by exposure to the following three sources of exposure: radiant and Meeker burner flame, heated coil, and radiant source only. The first test series used radiant heat and flame exposures on easily obtainable test materials. Next, four materials were selected from the first group and exposed to an incandescent coil to provide the conditions for smoldering combustion. Finally, radiant heat exposures were used on advanced materials that are not readily available.

  7. Imaging live humans through smoke and flames using far-infrared digital holography.

    PubMed

    Locatelli, M; Pugliese, E; Paturzo, M; Bianco, V; Finizio, A; Pelagotti, A; Poggi, P; Miccio, L; Meucci, R; Ferraro, P

    2013-03-11

    The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm.

  8. Improved multiple-pass Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Kc, Utsav; Silver, Joel A.; Hovde, David C.; Varghese, Philip L.

    2011-08-01

    An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N2, CO2, O2, and CO in a methane--air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.

  9. Analysis of bacterial fatty acids by flow modulated comprehensive two-dimensional gas chromatography with parallel flame ionization detector/mass spectrometry.

    PubMed

    Gu, Qun; David, Frank; Lynen, Frédéric; Rumpel, Klaus; Xu, Guowang; De Vos, Paul; Sandra, Pat

    2010-06-25

    Comprehensive two-dimensional gas chromatography (GCxGC) offers an interesting tool for profiling bacterial fatty acids. Flow modulated GCxGC using a commercially available system was evaluated, different parameters such as column flows and modulation time were optimized. The method was tested on bacterial fatty acid methyl esters (BAMEs) from Stenotrophomonas maltophilia LMG 958T by using parallel flame ionization detector (FID)/mass spectrometry (MS). The results are compared to data obtained using a thermal modulated GCxGC system. The data show that flow modulated GCxGC-FID/MS method can be applied in a routine environment and offers interesting perspectives for chemotaxonomy of bacteria.

  10. Tandem sulfur chemiluminescence and flame ionization detection with planar microfluidic devices for the characterization of sulfur compounds in hydrocarbon matrices.

    PubMed

    Luong, J; Gras, R; Shellie, R A; Cortes, H J

    2013-07-05

    The detection of sulfur compounds in different hydrocarbon matrices, from light hydrocarbon feedstocks to medium synthetic crude oil feeds provides meaningful information for optimization of refining processes as well as demonstration of compliance with petroleum product specifications. With the incorporation of planar microfluidic devices in a novel chromatographic configuration, sulfur compounds from hydrogen sulfide to alkyl dibenzothiophenes and heavier distributions of sulfur compounds over a wide range of matrices spanning across a boiling point range of more than 650°C can be characterized, using one single analytical configuration in less than 25min. In tandem with a sulfur chemiluminescence detector for sulfur analysis is a flame ionization detector. The flame ionization detector can be used to establish the boiling point range of the sulfur compounds in various hydrocarbon fractions for elemental specific simulated distillation analysis as well as profiling the hydrocarbon matrices for process optimization. Repeatability of less than 3% RSD (n=20) over a range of 0.5-1000 parts per million (v/v) was obtained with a limit of detection of 50 parts per billion and a linear range of 0.5-1000 parts per million with a correlation co-efficient of 0.998. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Fuel Line Based Acoustic Flame-Out Detection System

    NASA Technical Reports Server (NTRS)

    Puster, Richard L. (Inventor); Franke, John M. (Inventor)

    1997-01-01

    An acoustic flame-out detection system that renders a large high pressure combustor safe in the event of a flame-out and possible explosive reignition. A dynamic pressure transducer is placed in the fuel and detects the stabilizing fuel pressure oscillations, caused by the combustion process. An electric circuit converts the signal from the combustion vortices, and transmitted to the fuel flow to a series of pulses. A missing pulse detector counts the pulses and continuously resets itself. If three consecutive pulses are missing, the circuit closes the fuel valve. With fuel denied the combustor is shut down or restarted under controlled conditions.

  12. "Bligh and Dyer" and Folch Methods for Solid-Liquid-Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents.

    PubMed

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-03-27

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are "gold standards" for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid-liquid extraction of yeast ( Yarrowia lipolytica IFP29 ) and subsequent liquid-liquid partition-the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid-liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol-chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.

  13. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents

    PubMed Central

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-01-01

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29) and subsequent liquid–liquid partition—the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity. PMID:28346372

  14. Measurement of trace gases and organic compounds in the smoke plume from a wildfire in Penedono (central Portugal)

    NASA Astrophysics Data System (ADS)

    Vicente, Ana; Alves, Célia; Monteiro, Cristina; Nunes, Teresa; Mirante, Fátima; Evtyugina, Margarita; Cerqueira, Mário; Pio, Casimiro

    2011-09-01

    Gas and particulate fractions were measured simultaneously from a wildfire in Penedono, central Portugal, which occurred in summer 2009. The total volatile hydrocarbons (THC) and carbon oxides (CO 2 and CO) collected in Tedlar bags were measured using automatic analysers with flame ionisation and non-dispersive infrared detectors, respectively. Carbonyls (formaldehyde and acetaldehyde) were sampled from the Tedlar bags in DNHP cartridges and analysed by high-performance liquid chromatography. Fine (PM 2.5) and coarse (PM 2.5-10) smoke particles were collected sequentially, on pre-fired quartz fibre filters, with a portable high-volume sampler. The detailed speciation of organic compounds in smoke samples was carried out by gas chromatography-mass spectrometry. The organic and elemental carbon content of particulate matter was analysed by a thermal-optical transmission technique. Average emission factors of 1.86 ± 0.80 and 0.063 ± 0.066 g kg -1 (dry basis) were obtained for acetaldehyde and formaldehyde, respectively. The THC, CO, CO 2, PM 2.5, PM 10, OC and EC emission factors (g kg -1 fuel burned, dry basis) were 260 ± 88, 268 ± 92, 1200 ± 172, 37 ± 12.2, 40 ± 12.6, 21 ± 6.7 and 0.44 ± 0.21, respectively. The chromatographically resolved organics included n-alkanes, n-alkenes, n-alkanoic acids, n-di-acids, unsaturated fatty acids, phenolic compounds, ketones, steroids, di- and triterpenoids, PAHs, with retene as the major compound, oxygenated PAH and anhydrosugars.

  15. Development of a µ-TPC detector as a standard instrument for low-energy neutron field characterisation.

    PubMed

    Maire, D; Billard, J; Bosson, G; Bourrion, O; Guillaudin, O; Lamblin, J; Lebreton, L; Mayet, F; Médard, J; Muraz, J F; Richer, J P; Riffard, Q; Santos, D

    2014-10-01

    In order to measure the energy and fluence of neutron fields, in the energy range of 8 to 1 MeV, a new primary standard is being developed at the Institute for Radioprotection and Nuclear Safety (IRSN). This project, Micro Time Projection Chamber (µ-TPC), carried out in collaboration with the Laboratoire de Physqique Subatomique et de Cosmologie (LPSC), is based on the nucleus recoil detector principle. The measurement strategy requires track reconstruction of recoiling nuclei down to a few kiloelectronvolts, which can be achieved using a micro-pattern gaseous detector. A gas mixture, mainly isobutane, is used as an n-p converter to detect neutrons within the detection volume. Then electrons, coming from the ionisation of the gas by the proton recoil, are collected by the pixelised anode (2D projection). A self-triggered electronics system is able to perform the anode readout at a 50-MHz frequency in order to give the third dimension of the track. Then, the scattering angle is deduced from this track using algorithms. The charge collection leads to the proton energy, taking into account the ionisation quenching factor. This article emphasises the neutron energy measurements of a monoenergetic neutron field produced at 127 keV. The fluence measurement is not shown in this article. The measurements are compared with Monte Carlo simulations using realistic neutron fields and simulations of the detector response. The discrepancy between experiments and simulations is 5 keV mainly due to the calibration uncertainties of 10 %. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Multi-directional radiation detector using photographic film

    NASA Astrophysics Data System (ADS)

    Junet, L. K.; Majid, Z. A. Abdul; Sapuan, A. H.; Sayed, I. S.; Pauzi, N. F.

    2014-11-01

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation.

  17. Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept

    DOE PAGES

    Faiola, C. L.; Erickson, M. H.; Fricaud, V. L.; ...

    2012-08-10

    Biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere by plants and include isoprene, monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are among the principal factors influencing the oxidative capacity of the atmosphere in forested regions. BVOC emission rates are often measured by collecting samples onto adsorptive cartridges in the field and then transporting these samples to the laboratory for chromatographic analysis. One of the most commonly used detectors in chromatographic analysis is the flame ionization detector (FID). For quantitative analysis with an FID, relative response factors may be estimated using the effective carbon number (ECN) concept. Themore » purpose of this study was to determine the ECN for a variety of terpenoid compounds to enable improved quantification of BVOC measurements. A dynamic dilution system was developed to make quantitative gas standards of VOCs with mixing ratios from 20–55 ppb. For each experiment using this system, one terpene standard was co-injected with an internal reference, n-octane, and analyzed via an automated cryofocusing system interfaced to a gas chromatograph flame ionization detector and mass spectrometer (GC/MS/FID). The ECNs of 16 compounds (14 BVOCs) were evaluated with this approach, with each test compound analyzed at least three times. The difference between the actual carbon number and measured ECN ranged from -24% to -2%. Furthermore, the difference between theoretical ECN and measured ECN ranged from -22% to 9%. Measured ECN values were within 10% of theoretical ECN values for most terpenoid compounds.« less

  18. EVALUATION OF SMOKE AND GAS SENSOR RESPONSES FOR FIRES OF COMMON MINE COMBUSTIBLES

    PubMed Central

    Perera, Inoka Eranda; Litton, Charles D.

    2015-01-01

    Experiments were conducted to evaluate the response characteristics of commercially available gas, smoke, and flame sensors to fires of common combustible mine materials. The experiments were conducted in the large-scale Fire gallery located at the National Institute for Occupational Safety and Health (NIOSH) Lake Lynn Laboratory (LLL) in Fairchance, PA, using Ponderosa Pine, Red Oak, Douglas-fir, high and low volatile coals, PVC and SBR conveyor belt, No. 2 diesel fuel, and diesel exhaust. All the experiments (except those using No. 2 diesel fuel and the diesel exhaust tests) were conducted in a similar manner, with combustible materials heated rapidly by electrical strip heaters producing smoldering fires that quickly transitioned into flaming fires. The sensors included a diffusion-type carbon monoxide (CO) sensor, photoelectric- and ionization-type smoke sensors, a video smoke/flame detector, and an optical flame detector. Simultaneous measurements were obtained for average gas concentrations, smoke mass concentrations, and smoke optical densities in order to quantify the levels of combustion products at the alert and alarm times of the sensors. Because the required sensor alarm levels are 10 ppm and 0.044 m−1 optical density for CO and smoke sensors, respectively, the different sensor alarms are compared to the time at which the CO and smoke reached these alarm levels (1). In addition, the potential impact of using smoke sensors that have met the performance standards from accredited testing laboratories is also evaluated using the response of an Underwriters’ Laboratory (UL)-approved combination photoelectric/ionization smoke detector. The results are discussed relative to fire sensor needs that can have a positive impact on mine fire safety. PMID:26229418

  19. EVALUATION OF SMOKE AND GAS SENSOR RESPONSES FOR FIRES OF COMMON MINE COMBUSTIBLES.

    PubMed

    Perera, Inoka Eranda; Litton, Charles D

    Experiments were conducted to evaluate the response characteristics of commercially available gas, smoke, and flame sensors to fires of common combustible mine materials. The experiments were conducted in the large-scale Fire gallery located at the National Institute for Occupational Safety and Health (NIOSH) Lake Lynn Laboratory (LLL) in Fairchance, PA, using Ponderosa Pine, Red Oak, Douglas-fir, high and low volatile coals, PVC and SBR conveyor belt, No. 2 diesel fuel, and diesel exhaust. All the experiments (except those using No. 2 diesel fuel and the diesel exhaust tests) were conducted in a similar manner, with combustible materials heated rapidly by electrical strip heaters producing smoldering fires that quickly transitioned into flaming fires. The sensors included a diffusion-type carbon monoxide (CO) sensor, photoelectric- and ionization-type smoke sensors, a video smoke/flame detector, and an optical flame detector. Simultaneous measurements were obtained for average gas concentrations, smoke mass concentrations, and smoke optical densities in order to quantify the levels of combustion products at the alert and alarm times of the sensors. Because the required sensor alarm levels are 10 ppm and 0.044 m -1 optical density for CO and smoke sensors, respectively, the different sensor alarms are compared to the time at which the CO and smoke reached these alarm levels (1). In addition, the potential impact of using smoke sensors that have met the performance standards from accredited testing laboratories is also evaluated using the response of an Underwriters' Laboratory (UL)-approved combination photoelectric/ionization smoke detector. The results are discussed relative to fire sensor needs that can have a positive impact on mine fire safety.

  20. Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallec, G.; Bureau, C.; Peu, P.

    2009-07-15

    This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N{sub 2}O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effectmore » on the biogas concentrations (CO{sub 2}, CH{sub 4} and N{sub 2}O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N{sub 2}O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N{sub 2}O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N{sub 2}O releases: 8.1 {+-} 0.16 mg m{sup -2} d{sup -1} (n = 384), 4.2 {+-} 0.14 mg m{sup -2} d{sup -1} (n = 132) and 1.9 {+-} 0.10 mg m{sup -2} d{sup -1} (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N{sub 2}O gaseous surface releases and recirculation events were evidenced. Estimated N{sub 2}O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.« less

  1. Investigation of light scattering as a technique for detecting discrete soot particles in a luminous flame

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.

  2. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Acharya, B.; Alexandre, J.; Bendtz, K.; Benes, P.; Bernabéu, J.; Campbell, M.; Cecchini, S.; Chwastowski, J.; Chatterjee, A.; de Montigny, M.; Derendarz, D.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Frank, M.; Frekers, D.; Garcia, C.; Giacomelli, G.; Hasegan, D.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; King, M. G. L.; Kinoshita, K.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Milstead, D.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Păvălas, G. E.; Pinfold, J. L.; Platkevič, M.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Staszewski, R.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Trzebinski, M.; Tuszynski, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.

    2016-08-01

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nucleartrack detectors with surface area ~18m2, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb-1. No magnetic charge exceeding 0:5 g D (where g D is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤ m ≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1 g D ≤ | g| ≤ 6 g D, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1 g D ≤ | g| ≤ 4 g D. Under the assumption of Drell-Yan cross sections, mass limits are derived for | g| = 2 g D and | g| = 3 g D for the first time at the LHC, surpassing the results from previous collider experiments.

  3. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  4. Childproofing

    MedlinePlus

    ... better safety Burns: Replace traditional flame candles with battery-operated candles. Use knob covers on stoves. Turn ... carbon monoxide detectors throughout your home. Change the batteries twice a year when you change your smoke ...

  5. Properties of a novel linear sulfur response mode in a multiple flame photometric detector.

    PubMed

    Clark, Adrian G; Thurbide, Kevin B

    2014-01-24

    A new linear sulfur response mode was established in the multiple flame photometric detector (mFPD) by monitoring HSO* emission in the red spectral region above 600nm. Optimal conditions for this mode were found by using a 750nm interference filter and oxygen flows to the worker flames of this device that were about 10mL/min larger than those used for monitoring quadratic S2* emission. By employing these parameters, this mode provided a linear response over about 4 orders of magnitude, with a detection limit near 5.8×10(-11)gS/s and a selectivity of sulfur over carbon of about 3.5×10(3). Specifically, the minimum detectable masses for 10 different sulfur analytes investigated ranged from 0.4 to 3.6ng for peak half-widths spanning 4-6s. The response toward ten different sulfur compounds was examined and produced an average reproducibility of 1.7% RSD (n=10) and an average equimolarity value of 1.0±0.1. In contrast to this, a conventional single flame S2* mode comparatively yielded respective values of 6.7% RSD (n=10) and 1.1±0.4. HSO* emission in the mFPD was also found to be relatively much less affected by response quenching due to hydrocarbons compared to a conventional single flame S2* emission mode. Results indicate that this new alternative linear mFPD response mode could be beneficial for sulfur monitoring applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Automatic targeting of plasma spray gun

    DOEpatents

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  7. AlGaN Ultraviolet Detectors for Dual-Band UV Detection

    NASA Technical Reports Server (NTRS)

    Miko, Laddawan; Franz, David; Stahle, Carl M.; Yan, Feng; Guan, Bing

    2010-01-01

    This innovation comprises technology that has the ability to measure at least two ultraviolet (UV) bands using one detector without relying on any external optical filters. This allows users to build a miniature UVA and UVB monitor, as well as to develop compact, multicolor imaging technologies for flame temperature sensing, air-quality control, and terrestrial/counter-camouflage/biosensing applications.

  8. Two multidimensional chromatographic methods for enantiomeric analysis of o,p'-DDT and o,p'-DDD in contaminated soil and air in a malaria area of South Africa.

    PubMed

    Naudé, Yvette; Rohwer, Egmont R

    2012-06-12

    In rural parts of South Africa the organochlorine insecticide DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) is still used for malaria vector control where traditional dwellings are sprayed on the inside with small quantities of technical DDT. Since o,p'-DDT may show enantioselective oestrogenicity and biodegradability, it is important to analyse enantiomers of o,p'-DDT and its chiral degradation product, o,p'-DDD, for both health and environmental-forensic considerations. Generally, chiral analysis is performed using heart-cut multidimensional gas chromatography (MDGC) and, more recently, comprehensive two-dimensional gas chromatography (GC×GC). We developed an off-line gas chromatographic fraction collection (heart-cut) procedure for the selective capturing of the appropriate isomers from a first apolar column, followed by reinjection and separation on a second chiral column. Only the o,p'-isomers of DDT and DDD fractions from the first dimension complex chromatogram (achiral apolar GC column separation) were selectively collected onto a polydimethylsiloxane (PDMS) multichannel open tubular silicone rubber trap by simply placing the latter device on the flame tip of an inactivated flame ionisation detector (FID). The multichannel trap containing the o,p'-heart-cuts was then thermally desorbed into a GC with time-of-flight mass spectrometry detection (GC-TOFMS) for second dimension enantioselective separation on a chiral column (β-cyclodextrin-based). By selectively capturing only the o,p'-isomers from the complex sample chromatogram, (1)D separation of ultra-trace level enantiomers could be achieved on the second chiral column without matrix interference. Here, we present solventless concentration techniques for extraction of DDT from contaminated soil and air, and report enantiomeric fraction (EF) values of o,p'-DDT and o,p'-DDD obtained by a new multidimensional approach for heart-cut gas chromatographic fraction collection for off-line second dimension enantiomeric separation by (1)D GC-TOFMS of selected isomers. This multidimensional method is compared to the complementary technique of comprehensive GC×GC-TOFMS using the same enantioselective column, this time as the first dimension of separation. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. An LMS Programming Scheme and Floating-Gate Technology Enabled Trimmer-Less and Low Voltage Flame Detection Sensor.

    PubMed

    Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio

    2017-06-14

    In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 V RMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame.

  10. An LMS Programming Scheme and Floating-Gate Technology Enabled Trimmer-Less and Low Voltage Flame Detection Sensor

    PubMed Central

    Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio

    2017-01-01

    In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame. PMID:28613250

  11. 40 CFR 86.126-90 - Calibration of other equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... according to good practice. Specific equipment requiring calibration are the gas chromatograph and flame ionization detector used in measuring methanol and the high pressure liquid chromatograph (HPLC) and...

  12. 40 CFR 86.526-90 - Calibration of other equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... necessary according to good practice. Specific equipment requiring calibration is the gas chromatograph and flame ionization detector used in measuring methanol and the high pressure liquid chromatograph (HPLC...

  13. 40 CFR 86.126-90 - Calibration of other equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... according to good practice. Specific equipment requiring calibration are the gas chromatograph and flame ionization detector used in measuring methanol and the high pressure liquid chromatograph (HPLC) and...

  14. 40 CFR 86.526-90 - Calibration of other equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... necessary according to good practice. Specific equipment requiring calibration is the gas chromatograph and flame ionization detector used in measuring methanol and the high pressure liquid chromatograph (HPLC...

  15. Secondary ionisations in a wall-less ion-counting nanodosimeter: quantitative analysis and the effect on the comparison of measured and simulated track structure parameters in nanometric volumes

    NASA Astrophysics Data System (ADS)

    Hilgers, Gerhard; Bug, Marion U.; Gargioni, Elisabetta; Rabus, Hans

    2015-10-01

    The object of investigation in nanodosimetry is the physical characteristics of the microscopic structure of ionising particle tracks, i.e. the sequence of the interaction types and interaction sites of a primary particle and all its secondaries, which reflects the stochastic nature of the radiation interaction. In view of the upcoming radiation therapy with protons and carbon ions, the ionisation structure of the ion track is of particular interest. Owing to limitations in current detector technology, the only way to determine the ionisation cluster size distribution in a DNA segment is to simulate the particle track structure in condensed matter. This is done using dedicated computer programs based on Monte Carlo procedures simulating the interaction of the primary ions with the target. Hence, there is a need to benchmark these computer codes using suitable experimental data. Ionisation cluster size distributions produced in the nanodosimeter's sensitive volume by monoenergetic protons and alpha particles (with energies between 0.1 MeV and 20 MeV) were measured at the PTB ion accelerator facilities. C3H8 and N2 were alternately used as the working gas. The measured data were compared with the simulation results obtained with the PTB Monte-Carlo code PTra [B. Grosswendt, Radiat. Environ. Biophys. 41, 103 (2002); M.U. Bug, E. Gargioni, H. Nettelbeck, W.Y. Baek, G. Hilgers, A.B. Rosenfeld, H. Rabus, Phys. Rev. E 88, 043308 (2013)]. Measured and simulated characteristics of the particle track structure are generally in good agreement for protons over the entire energy range investigated. For alpha particles with energies higher than the Bragg peak energy, a good agreement can also be seen, whereas for energies lower than the Bragg peak energy differences of as much as 25% occur. Significant deviations are only observed for large ionisation cluster sizes. These deviations can be explained by a background consisting of secondary ions. These ions are produced in the region downstream of the extraction aperture by electrons with a kinetic energy of about 2.5 keV, which are themselves released by ions of the "primary" ionisation cluster hitting an electrode in the ion transport system. Including this background of secondary ions in the simulated cluster size distributions leads to a significantly better agreement between measured and simulated data, especially for large ionisation clusters.

  16. The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis.

    PubMed

    Rosenberg, Erwin

    2003-06-06

    The use of mass spectrometry based on atmospheric pressure ionisation techniques (atmospheric pressure chemical ionisation, APCI, and electrospray ionisation, ESI) for speciation analysis is reviewed with emphasis on the literature published in and after 1999. This report accounts for the increasing interest that atmospheric pressure ionisation techniques, and in particular ESI, have found in the past years for qualitative and quantitative speciation analysis. In contrast to element-selective detectors, organic mass spectrometric techniques provide information on the intact metal species which can be used for the identification of unknown species (particularly with MS-MS detection) or the confirmation of the actual presence of species in a given sample. Due to the complexity of real samples, it is inevitable in all but the simplest cases to couple atmospheric pressure MS detection to a separation technique. Separation in the liquid phase (capillary electrophoresis or liquid chromatography in reversed phase, ion chromatographic or size-exclusion mode) is particularly suitable since the available techniques cover a very wide range of analyte polarities and molecular mass. Moreover, derivatisation can normally be avoided in liquid-phase separation. Particularly in complex environmental or biological samples, separation in one dimension is not sufficient for obtaining adequate resolution for all relevant species. In this case, multi-dimensional separation, based on orthogonal separation techniques, has proven successful. ESI-MS is also often used in parallel with inductively coupled plasma MS detection. This review is structured in two parts. In the first, the fundamentals of atmospheric pressure ionisation techniques are briefly reviewed. The second part of the review discusses recent applications including redox species, use of ESI-MS for structural elucidation of metal complexes, characterisation and quantification of small organometallic species with relevance to environment, health and food. Particular attention is given to the characterisation of biomolecules and metalloproteins (metallothioneins and phytochelatins) and to the investigation of the interaction of metals and biomolecules. Particularly in the latter field, ESI-MS is the ideal technique due to the softness of the ionisation process which allows to assume that the detected gas-phase ions are a true representation of the ions or ion-biomolecule complexes prevalent in solution. It is particularly this field, important to biochemistry, physiology and medical chemistry, where we can expect significant developments also in the future.

  17. 40 CFR 89.6 - Reference materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... November 89: Recommended Practice for Engine Testing with Low Temperature Charge Air Cooler Systems in a Dynamometer Test Cell 89.327-96 SAE Paper 770141: Optimization of a Flame Ionization Detector for...

  18. Separation of paralytic shellfish poisoning toxins on Chromarods-SIII by thin-layer chromatography with the Iatroscan (mark 5) and flame thermionic detection.

    PubMed

    Indrasena, W M; Ackman, R G; Gill, T A

    1999-09-10

    Thin-layer chromatography (TLC) on Chromarods-SIII with the Iatroscan (Mark-5) and a flame thermionic detector (FTID) was used to develop a rapid method for the detection of paralytic shellfish poisoning (PSP) toxins. The effect of variation in hydrogen (H2) flow, air flow, scan time and detector current on the FTID peak response for both phosphatidylcholine (PC) and PSP were studied in order to define optimum detection conditions. A combination of hydrogen and air flow-rates of 50 ml/min and 1.5-2.0 l/min respectively, along with a scan time of 40 s/rod and detector current of 3.0 A (ampere) or above were found to yield the best results for the detection of PSP compounds. Increasing the detector current level to as high as 3.3 A gave about 130 times more FTID response than did flame ionization detection (FID), for PSP components. Quantities of standards as small as 1 ng neosaxitoxin (NEO), 5 ng saxitoxin (STX), 5 ng B1-toxins (B1), 2 ng gonyautoxin (GTX) 2/3, 6 ng GTX 1/4 and 6 ng C-toxins (C1/C2) could be detected with the FTID. The method detection limits for toxic shellfish tissues using the FTID were 0.4, 2.1, 0.8 and 2.5 micrograms per g tissue for GTX 2/3, STX, NEO and C toxins, respectively. The FTID response increased with increasing detector current and with increasing the scan time. Increasing hydrogen and air flow-rates resulted in decreasing sensitivity within defined limits. Numerous solvent systems were tested, and, solvent consisting of chloroform: methanol-water-acetic acid (30:50:8:2) could separate C toxins from GTX, which eluted ahead of NEO and STX. Accordingly, TLC/FTID with the Iatroscan (Mark-5) seems to be a promising, relatively inexpensive and rapid method of screening plant and animal tissues for PSP toxins.

  19. 46 CFR 161.002-1 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Number 3260: Flame Radiation Detectors for Automatic Fire Alarm Signaling, September, 1994—161.002-4(b.... IEC 533, Electromagnetic Compatibility of Electrical and Electronic Installations in Ships, 1977—161...

  20. Development of Candidate Chemical Simulant List: The Evaluation of Candidate Chemical Simulants Which May Be Used in Chemically Hazardous Operations

    DTIC Science & Technology

    1982-12-01

    generation FDA Food and Drug Administration (U.S.A.) FEMA Flavoring Extract Manufacturer’s Associatic. FID Flame ionization detector FPD Flame...medicinally in the form of local analgesic or anti-inflammatory ointmer,ts or liniments S (Collins et al., 1971). It was given GRAS status by the Flavor ...methyl salicylate is considered safe for use as a flavoring agent in various foods when added in low concentrations, it has been found to be acutely

  1. Determination of methylamines in air using activated charcoal traps and gas chromatographic analysis with an alkali flame detector (AFD)

    NASA Astrophysics Data System (ADS)

    Fuselli, Sergio; Benedetti, Giorgio; Mastrangeli, Renato

    A method is described for trapping and analysing airborne methylamines (MMA, DMA and TMA) by means of a 20/35 mesh activated charcoal traps and subsequent GLSC analysis of collected sample using 0.1 N NaOH acqueous solution. The method described may be applied to monitoring methylamines in air in industrial areas, with an Alkali Flame Detector; sensitivities of approx. 0.005 ppmv for each of the three methylamines analysed are reached. Trapping efficiency is compared with that of Tenax GC 60/80 mesh and 60/80 Carbopack B which uses thermal desorption of air samples before GLSC analysis. The Tenax GC trap method enables TMA recovery only with a sensitivity of 0.0001 ppmv. Recovery obtained with 60/80 Carbopack B traps is practically zero.

  2. International Symposium on Electrets (ISE 6) (6th) Held in Oxford, England on 1-3 September 1988

    DTIC Science & Technology

    1988-09-01

    detector Heat and other electromagnetic radiation detection Micro- & millimeter waves Nerve excitation studies Optical fibre attenuation Heat generation in...Phenomena in Reslnic Eaters of 241 Photothermoplastic Devices for Application to Holographic Optical Switching J. Datndurand, C. Lacabanne, J.Y. Molsan...328 Ionisation Chambers K. Doughty and I. Fleming t-64 Electro- Optical Behaviour of Ferroelectric Liquid 334 Crystal (FLC) Mixtures H.R. Dilbal, C

  3. Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal.

    PubMed

    Alves, Célia A; Vicente, Ana; Monteiro, Cristina; Gonçalves, Cátia; Evtyugina, Margarita; Pio, Casimiro

    2011-03-15

    On May 2009, both the gas and particulate fractions of smoke from a wildfire in Sever do Vouga, central Portugal, were sampled. Total hydrocarbons and carbon oxides (CO(2) and CO) were measured using automatic analysers with flame ionisation and non-dispersive infrared detectors, respectively. Fine (PM(2.5)) and coarse (PM(2.5-10)) particles from the smoke plume were analysed by a thermal-optical transmission technique to determine the elemental and organic carbon (EC and OC) content. Subsequently, the particle samples were solvent extracted and fractionated by vacuum flash chromatography into different classes of organic compounds. The detailed organic speciation was performed by gas chromatography-mass spectrometry. The CO, CO(2) and total hydrocarbon emission factors (g kg(-1) dry fuel) were 170 ± 83, 1485 ± 147, and 9.8 ± 0.90, respectively. It was observed that the particulate matter and OC emissions are significantly enhanced under smouldering fire conditions. The aerosol emissions were dominated by fine particles whose mass was mainly composed of organic constituents, such as degradation products from biopolymers (e.g. levoglucosan from cellulose, methoxyphenols from lignin). The compound classes also included homologous series (n-alkanes, n-alkenes, n-alkanoic acids and n-alkanols), monosaccharide derivatives from cellulose, steroid and terpenoid biomarkers, and polycyclic aromatic hydrocarbons (PAHs). The most abundant PAH was retene. Even carbon number homologs of monoglycerides were identified for the first time as biomarkers in biomass burning aerosols. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Identification of unknown impurity of azelaic acid in liposomal formulation assessed by HPLC-ELSD, GC-FID, and GC-MS.

    PubMed

    Han, Stanisław; Karłowicz-Bodalska, Katarzyna; Potaczek, Piotr; Wójcik, Adam; Ozimek, Lukasz; Szura, Dorota; Musiał, Witold

    2014-02-01

    The identification of new contaminants is critical in the development of new medicinal products. Many impurities, such as pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, decanedioic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, and tetradecanedioic acid, have been identified in samples of azelaic acid. The aim of this study was to identify impurities observed during the stability tests of a new liposomal dosage form of azelaic acid that is composed of phosphatidylcholine and a mixture of ethyl alcohol and water, using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD), gas chromatography-flame ionisation detection (GC-FID), and gas chromatography-mass spectrometry (GC-MS) methods. During the research and development of a new liposomal formulation of azelaic acid, we developed a method for determining the contamination of azelaic acid using HPLC-ELSD. During our analytical tests, we identified a previously unknown impurity of a liposomal preparation of azelaic acid that appeared in the liposomal formulation of azelaic acid during preliminary stability studies. The procedure led to the conclusion that the impurity was caused by the reaction of azelaic acid with one of the excipients that was applied in the product. The impurity was finally identified as an ethyl monoester of azelaic acid. The identification procedure of this compound was carried out in a series of experiments comparing the chromatograms that were obtained via the following chromatographic methods: HPLC-ELSD, GC-FID, and GC-MS. The final identification of the compound was carried out by GC with MS.

  5. Carbon isotope ratios of selected volatiles in Citrus sinensis and in orange-flavoured food.

    PubMed

    Schipilliti, Luisa; Bonaccorsi, Ivana; Cotroneo, Antonella; Dugo, Paola; Mondello, Luigi

    2015-11-01

    Twenty genuine samples of industrially cold-pressed sweet orange essential oils, were analysed by gas chromatography-combustion-isotope ratio mass spectrometry to determine the values of the carbon isotope ratios (δ(13)C(VPDB)) of selected volatiles and assess the corresponding range of authenticity. Successively, four commercial orange-flavoured products were analysed under identical conditions to evaluate the authenticity of the orange flavour. The samples were extracted by solid-phase microextraction under optimised conditions. The evaluation was performed by using an internal standard procedure to neglect the contribution due to the original environment to the isotopic abundance of (13)C. The composition of the volatile fraction of the essential oils and of the flavoured products was determined by gas chromatography coupled to mass spectrometry with linear retention indices, and by gas chromatography with a flame ionisation detector. The δ(13)C(VPDB) values of seven secondary metabolites determined here were successfully used to characterise genuine orange essential oil. These values were used to evaluate the quality of orange-flavoured products, revealing the presence of compounds of different origin, not compatible with the values of genuine orange secondary metabolites. This study provides the range of authenticity of δ(13)C(VPDB) of seven different secondary metabolites in sweet orange genuine essential oil, useful for evaluating the genuineness of orange flavour. In accord with a previous study on different essential oils, the values determined here can be successfully applied for the evaluation of a large number of flavoured food stuffs and correlated with their origins. © 2014 Society of Chemical Industry.

  6. An important step forward in continuous spectroscopic imaging of ionising radiations using ASICs

    NASA Astrophysics Data System (ADS)

    Fessler, P.; Coffin, J.; Eberlé, H.; de Raad Iseli, C.; Hilt, B.; Huss, D.; Krummenacher, F.; Lutz, J. R.; Prévot, G.; Renouprez, A.; Sigward, M. H.; Schwaller, B.; Voltolini, C.

    1999-01-01

    Characterization results are given for an original ASIC allowing continuous acquisition of ionising radiation images in spectroscopic mode. Ionising radiation imaging in general and spectroscopic imaging in particular must primarily be guided by the attempt to decrease statistical noise, which requires detection systems designed to allow very high counting rates. Any source of dead time must therefore be avoided. Thus, the use of on-line corrections of the inevitable dispersion of characteristics between the large number of electronic channels of the detection system, shall be precluded. Without claiming to achieve ultimate noise levels, the work described is focused on how to prevent good individual acquisition channel noise performance from being totally destroyed by the dispersion between channels without introducing dead times. With this goal, we developed an automatic charge amplifier output voltage offset compensation system which operates regardless of the cause of the offset (detector or electronic). The main performances of the system are the following: the input equivalent noise charge is 190 e rms (input non connected, peaking time 500 ns), the highest gain is 255 mV/fC, the peaking time is adjustable between 200 ns and 2 μs and the power consumption is 10 mW per channel. The agreement between experimental data and theoretical simulation results is excellent.

  7. Contaminant Mass Transfer During Boiling in Fractured Geologic Media

    DTIC Science & Technology

    2011-04-01

    on GC-ECD. Bromide was measured on a Dionex AS50 ion chromatography system equipped with a CD25 conductivity detector and a Dionex guard column...EDB Dibromethane EPICS Equilibrium Partitioning In Closed Systems FID Flame Ionized Detector GC Gas Chromatography IC Ion Chromatography ...International). Bromide was measured from filtered samples with a Dionex ion chromatograph (IC) with an AS11/AG11 column. The eluant for bromide

  8. 24 CFR 200.926a - Residential building code comparison items.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...

  9. 24 CFR 200.926a - Residential building code comparison items.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...

  10. 24 CFR 200.926a - Residential building code comparison items.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...

  11. 24 CFR 200.926a - Residential building code comparison items.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...

  12. 24 CFR 200.926a - Residential building code comparison items.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...

  13. EPA Method 614: The Determination of Organophosphorus Pesticides in Municipal and Industrial Wastewater

    EPA Pesticide Factsheets

    Method 614 describes procedures for preparation and analysis of samples for determination of organophosphate pesticides in industrial and municipal discharges using a GC with a phosphorus-specific flame photometric detector (FPD).

  14. Qualification of coolants and cooling pipes for future high-energy-particle detectors

    NASA Astrophysics Data System (ADS)

    Ilie, Sorin; Tavlet, Marc

    2001-12-01

    In the next generation of high-energy-particle detectors to be installed at the Large Hadron Collider (LHC) at CERN, materials and components will be exposed to a significant level of ionising radiation. Silicon detectors and related electronics will have to be cooled down to -20 °C and therefore appropriate cooling fluids and cooling pipes have to be selected. Analytical methods such as UV-visible and FT-IR spectrometries, electronic microscopy and gas chromatography were used to characterise the radiation-induced effects on some organic coolants irradiated with both gamma and neutron fields. Some impurities were identified as a major source for radio-induced polymerisation and also for hydrofluoric acid (HF) evolution. Mechanical tests were performed to assess the operability of the rubber hoses and plastic pipes. Possible synergistic effects between the pipe material and the environment had to be considered.

  15. The first bump-bonded pixel detectors on CVD diamond

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V. G.; Pan, L. S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G.; RD42 Collaboration

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 μm was observed, consistent with expectations given the detector pitch.

  16. CERN@school: demonstrating physics with the Timepix detector

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Bithray, H.; Cook, J.; Coupe, A.; Eddy, D.; Fickling, R. L.; McKenna, J.; Parker, B.; Paul, A.; Shearer, N.

    2015-10-01

    This article shows how the Timepix hybrid silicon pixel detector, developed by the Medipix2 Collaboration, can be used by students and teachers alike to demonstrate some key aspects of any well-rounded physics curriculum with CERN@school. After an overview of the programme, the detector's capabilities for measuring and visualising ionising radiation are examined. The classification of clusters - groups of adjacent pixels - is discussed with respect to identifying the different types of particles. Three demonstration experiments - background radiation measurements, radiation profiles and the attenuation of radiation - are described; these can used as part of lessons or as inspiration for independent research projects. Results for exemplar data-sets are presented for reference, as well as details of ongoing research projects inspired by these experiments. Interested readers are encouraged to join the CERN@school Collaboration and so contribute to achieving the programme's aim of inspiring the next generation of scientists and engineers.

  17. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector has successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of themore » timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design value of 1%. The determination of the global energy scale was performed with an uncertainty of 4%. © 2010 CERN for the benefit of the ATLAS collaboration.« less

  18. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2010-12-08

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector has successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of themore » timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design value of 1%. The determination of the global energy scale was performed with an uncertainty of 4%. © 2010 CERN for the benefit of the ATLAS collaboration.« less

  19. Mixing fuel particles for space combustion research using acoustics

    NASA Technical Reports Server (NTRS)

    Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

    1988-01-01

    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20 sec low gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

  20. Mixing fuel particles for space combustion research using acoustics

    NASA Technical Reports Server (NTRS)

    Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

    1988-01-01

    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20-sec low-gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

  1. Altitude characteristics of selected air quality analyzers

    NASA Technical Reports Server (NTRS)

    White, J. H.; Strong, R.; Tommerdahl, J. B.

    1979-01-01

    The effects of altitude (pressure) on the operation and sensitivity of various air quality analyzers frequently flown on aircraft were analyzed. Two ozone analyzers were studied at altitudes from 600 to 7500 m and a nitrogen oxides chemiluminescence detector and a sulfur dioxide flame photometric detector were studied at altitudes from 600 to 3000 m. Calibration curves for altitude corrections to the sensitivity of the instruments are presented along with discussion of observed instrument behavior.

  2. Benchmarking of candidate detectors for multiresidue analysis of pesticides by comprehensive two-dimensional gas chromatography.

    PubMed

    Engel, Erwan; Ratel, Jérémy; Blinet, Patrick; Chin, Sung-Tong; Rose, Gavin; Marriott, Philip J

    2013-10-11

    The present study discusses the relevance, performance and complementarities of flame photometric detector in phosphorus (FPD/P) and sulfur (FPD/S) modes, micro electron capture detector (μECD), nitrogen phosphorus detector (NPD), flame ionization detector (FID) and time-of-flight mass spectrometer (TOF/MS) for the comprehensive two-dimensional gas chromatography (GC×GC) analysis of pesticides. A mix of 41 pesticides including organophosphorus pesticides, synthetic pyrethroids and fungicides was investigated in order to benchmark GC×GC systems in terms of linearity (R(2)), limits of detection (LOD), and peak shape measures (widths and asymmetries). A mixture of pesticides which contained the heteroatoms phosphorus, sulfur, nitrogen and one or several halogens, was used to acquire a comparative data set to monitor relative detector performances. GC×GC datasets were systematically compared to their GC counterpart acquired with an optimized one-dimensional GC configuration. Compared with FID, considered the most appropriate detector in terms of suitability for GC×GC, the element-selective detector FPD/P and μECD best met the peak widths (0.13-0.27s for FPD/P; 0.22-0.26s for μECD) and tailing factors (0.99-1.66 for FPD/P; 1.32-1.52 for μECD); NPD exhibited similar peak widths (0.23-0.30s), but exceeded those of the above detectors for tailing factors (1.97-2.13). These three detectors had improved detection limits of 3-7 times and 4-20 times lower LODs in GC×GC mode compared with FID and TOF-MS, respectively. In contrast FPD/S had poor peak shape (tailing factor 3.36-5.12) and much lower sensitivity (10-20 fold lower compared to FPD/P). In general, element-selective detectors with favorable detection metrics can be considered viable alternatives for pesticide determination using GC×GC in complex matrices. The controversial issue of sensitivity enhancement in GC×GC was considered for optimized GC and GC×GC operation. For all detectors, we found no significant LOD enhancement in GC×GC. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Search for heavy long-lived multi-charged particles in pp collisions at √s = 8  TeV using the ATLAS detector

    DOE PAGES

    None

    2015-08-08

    In this study, a search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2012 at √s = 8 TeV from pp collisions corresponding to an integrated luminosity of 20.3 fb -1 are examined. Particles producing anomalously high ionisation, consistent with long-lived massive particles with electric charges from |q| = 2e to |q| = 6e are searched for. No signal candidate events are observed, and 95% confidence level cross-section upper limits are interpreted as lower mass limits for a Drell–Yan production model. The mass limits range between 660 and 785 GeV.

  4. The utilisation of two detectors for the determination of water in honey using headspace gas chromatography.

    PubMed

    Frink, Lillian A; Armstrong, Daniel W

    2016-08-15

    A headspace gas chromatography (HSGC) method was developed for the determination of water content in honey. This method was shown to work with five different honey varieties which had a range of water from 14-16%. It also utilised two different detectors, the thermal conductivity detector (TCD) and the barrier discharge ionisation detector (BID). This method needs no heating pretreatment step as in the current leading method, (i.e. the measurement of refractive index). The solvent-free procedure negates the possibility of solvent-compound interactions as well as solubility limitations, as is common with Karl Fischer titrations. It was also apparent that the classic loss on drying method consistently and substantially produced results that were lower than the correct values. This approach is shown to be rapid, with an analysis time of 4 min when using the TCD detector and under 3 min when utilising the BID detector. HSGC is feasible for the determination of water due to the new PEG-linked geminal dicationic ionic-liquid-coated GC capillary column. In addition it provides accurate and precise determinations of the water content in honey. When using the sensitive BID detector, other trace volatile compounds are observed as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector

    NASA Technical Reports Server (NTRS)

    O'Hara, Dean; Singh, Hanwant B.

    1988-01-01

    The response of a newly available mercuric oxide Reduction Gas Detector (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more sensitive than an FID (Flame Ionization Detector) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more sensitive than an FID. The detector is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.

  6. Next generation fire suppressants

    NASA Technical Reports Server (NTRS)

    Brown, Jerry A.

    1995-01-01

    Spectrex, Inc., located in Cedar Grove, NJ is a manufacturer of fire detection and suppression equipment. Spectrex is one of the original pioneers in high speed fire detection and suppression systems for combat vehicles. Spectrex has installed fire suppressions systems in thousands of combat vehicles and ships throughout the world. Additionally, they manufacture flame explosion detectors, ship damage control systems, and optical gas and vapor detectors. The culmination of several years of research and development has recently produced an innovative electro-optical continuous monitoring systems called SharpEye 20/20I IR(sup 3) and SAFEYE that provide fast and reliable gas, vapor, aerosol, flame, and explosion detection. SharpEye 20/20I IR(sup 3) is a self-contained triple spectrum flame detector which scans for oscillating IR radiation (1 to 10 Hz) in the spectral bands ranging from 4.0 to 5.0 microns and uses programmed algorithms to check the ratio and correlation of data received by the three sensors to make the system highly immune to false alarms. It is extremely sensitive as it can detect a 1 x 1 square foot gasoline pan fire at 200 feet in less than 3 seconds. The sensitivity is user programmable, offering 4 ranges of detection. SAFEYE is comprised of a selected number of multispectral ban microprocessors controlled detectors which are in communication with one or more radiation sources that is projected along a 600 feet optical path. The signals from the selected narrow bands are processed and analyzed by highly sophisticated algorithms. It is ideal for high risk, remote, large areas such as petroleum and chemical manufacturing sites, waste dumps, aircraft cargo bays, and ship compartments. The SAFEYE will perform direct readings of the presence or rate of rise of concentrations of gases, vapors, or aerosols at the range of parts per million and provide alarms at various set points at different levels of concentrations.

  7. Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method

    NASA Astrophysics Data System (ADS)

    Ghezelbash, Mahsa; Majd, Abdollah Eslami; Darbani, Seyyed Mohammad Reza; Mousavi, Seyyed Jabbar; Ghasemi, Ali; Tehrani, Masoud Kavosh

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique is used to record some plasma emissions of different laminar diffusion methanol, ethanol, and n-propanol alcohol flames, to investigate the shapes, structures (i.e., reactants and products zones), kind, and quality of burning in different areas. For this purpose, molecular bands of CH, CH*, C2, CN, and CO as well as atomic and ionic lines of C, H, N, and O are identified, simultaneously. Experimental results indicate that the CN and C2 emissions have highest intensity in LIBS spectrum of n-propanol flame and the lowest in methanol. In addition, lowest content of CO pollution and better quality of burning process in n-propanol fuel flame toward ethanol and methanol are confirmed by comparison between their CO molecular band intensities. Moreover, variation of the signal intensity from these three flames with that from a known area of burner plate is compared. Our findings in this research advance the prior results in time-integrated LIBS combustion application and suggesting that LIBS can be used successfully with the CCD detector as a non-gated analytical tool, given its simple instrumentation needs, real-time capability applications of molecular detection in laminar diffusion flame samples, requirements.

  8. Validation of QuEChERS method for the determination of 36 pesticide residues in fruits and vegetables from Ghana, using gas chromatography with electron capture and pulsed flame photometric detectors.

    PubMed

    Donkor, Augustine; Osei-Fosu, Paul; Nyarko, Stephen; Kingsford-Adaboh, Robert; Dubey, Brajesh; Asante, Isaac

    2015-01-01

    In this study, "Quick, Easy, Cheap, Effective, Rugged and Safe" 'QuEChERS' method was modified for the determination of 36 pesticides fortified at (0.01-1.0) mg kg(-1) in three vegetables and a fruit (lettuce, carrot, tomatoes and pineapples respectively) from Ghana. The method involved extraction with acetonitrile, phase separation with primary secondary amine and magnesium sulfate; the final injection solution was reconstituted in ethyl acetate. Organochlorine and synthetic pyrethroids residues were detected with electron capture detector whereas organophosphorus, pulsed flame photometric detector was used. The recoveries at different concentration levels (0.01, 0.1 and 1.0 mg kg(-1)) were in the range of 83% and 93% with relative standard deviation ranging from 2% to 10% (n = 5) and the coefficient of determination (R(2)) was greater than 0.99 for all the 36 pesticides. The method was successfully tested on 120 real samples from Accra markets and this proved to be useful for monitoring purposes particularly in laboratories that have no gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry.

  9. Determination of organophosphorus flame retardants in fish by pressurized liquid extraction using aqueous solutions and solid-phase microextraction coupled with gas chromatography-flame photometric detector.

    PubMed

    Gao, Zhanqi; Deng, Yuehua; Yuan, Wenting; He, Huan; Yang, Shaogui; Sun, Cheng

    2014-10-31

    A novel method was developed for the determination of organophosphorus flame retardants (PFRs) in fish. The method consists of a combination of pressurized liquid extraction (PLE) using aqueous solutions and solid-phase microextraction (SPME), followed by gas chromatography-flame photometric detector (GC-FPD). The experimental parameters that influenced extraction efficiency were systematically evaluated. The optimal responses were observed by extracting 1g of fish meat with the solution of water:acetonitrile (90:10, v/v) at 150°C for 5min and acid-washed silica gel used as lipid sorbent. The obtained extract was then analyzed by SPME coupled with GC-FPD without any additional clean-up steps. Under the optimal conditions, the proposed procedure showed a wide linear range (0.90-5000ngg(-1)) obtained by analyzing the spiked fish samples with increasing concentrations of PFRs and correlation coefficient (R) ranged from 0.9900 to 0.9992. The detection limits (S/N=3) were in the range of 0.010-0.208ngg(-1) with standard deviations (RSDs) ranging from 2.0% to 9.0%. The intra-day and inter-day variations were less than 9.0% and 7.8%, respectively. The proposed method was successfully applied to the determination of PFRs in real fish samples with recoveries varying from 79.8% to 107.3%. The results demonstrate that the proposed method is highly effective for analyzing PFRs in fish samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Referred Air Method 25E: Determination of a Vapor Phase Organic Concentration in Waste Samples

    EPA Pesticide Factsheets

    This method is applicable for determining the vapor pressure of waste. The headspace vapor of the sample is analyzed for carbon content by a headspace analyzer, which uses a flame ionization detector (FID).

  11. Performance evaluation of different diamond-like carbon samples as charge state conversion surfaces for neutral atom imaging detectors in space applications

    NASA Astrophysics Data System (ADS)

    Brigitte Neuland, Maike; Allenbach, Marc; Föhn, Martina; Wurz, Peter

    2017-04-01

    The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionised. Regarding the constraints of weight, volume and power consumption, the technique of surface ionisation complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionised by passing through a foil, are ionised by scattering on a charge state conversion surface [1]. Since more than 30 years intense research work is done to find and optimise suitable materials for use as charge state conversion surfaces for space application. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Regarding these parameters, diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness [2]. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Building on the successes of the IBEX mission [3], the follow up mission IMAP (InterstellarMApping Probe) will take up to further explore the boundaries of the heliosphere. The IMAP mission is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [4]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour deposition (CVD) method, regarding their ionisation efficiency, scattering and reflexion properties. Experiments were carried out at the ILENA facility at the University of Bern [5] with hydrogen and oxygen atoms, which are the species of main interest in magnetospheric research [1]. We compare the results of earlier investigations of a metallised CVD sample [6] to our latest measurements of a Boron-doped CVD diamond sample. We additionally measured the B-concentration in the sample to prove our predictions of the B-concentration needed to reach sufficient conductibility for the sample not getting electrostatically charged during instrument operation. The results of narrower scattering cones and higher ionisation efficiency show that diamond-like carbon still is the preferred material for charge state conversion surfaces and that new surface technologies offer improved diamond conversion surfaces with different properties and hence the possibility for improvement of the performance of neutral atom imaging instruments. References: [1] P. Wurz, Detection of Energetic Neutral Atoms, in The Outer Heliosphere: Beyond the Planets, Copernicus Gesellschaft e.V., Katlenburg-Lindau, Germany, 2000, p. 251-288. [2] P. Wurz, R. Schletti, M.R. Aellig, Surf. Sci. 373(1997), 56-66. [3] D.J. McComas et al., Geophys. Res. Lett. 38(2011), L18101. [4] N.A. Schwadron et al., J. of Phys.. Conf. Series 767(2016): 012025 [5] P. Wahlström, J.A. Scheer, A. Riedo, P. Wurz and M. Wieser, J. Spacecr. Rockets 50 (2013): 402-410. [6] M.B. Neuland, J.A. Scheer, A. Riedo and P. Wurz, Appl. Surf. Sci. 313(2014):293-303.

  12. Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways.

    PubMed

    Litton, Charles D; Perera, Inoka Eranda

    2012-07-01

    Large-scale experiments were conducted in an above-ground gallery to simulate typical fires that develop along conveyor belt transport systems within underground coal mines. In the experiments, electrical strip heaters, imbedded ~5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-meter-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe located approximately 20 m downstream of the coal for continuous measurement of CO, CO 2 , and O 2 as the fire progressed through the stages of smoldering coal, flaming coal, and flaming conveyor belt. Also located approximately 20 m from the fire origin and approximately 0.5 m below the roof of the gallery were two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles. Located upstream of the fire origin and also along the wall of the gallery at approximately 14 m and 5 m upstream were two video cameras capable of both smoke and flame detection. During the experiments, alarm times of the smoke detectors and video cameras were measured while the smoke obscuration and total smoke mass were continually measured. Twelve large-scale experiments were conducted using three different types of fire-resistant conveyor belts and four air velocities for each belt. The air velocities spanned the range from 1.0 m/s to 6.9 m/s. The results of these experiments are compared to previous large-scale results obtained using a smaller fire gallery and much narrower (1.07-m) conveyor belts to determine if the fire detection criteria previously developed (1) remained valid for the wider conveyor belts. Although some differences between these and the previous experiments did occur, the results, in general, compare very favorably. Differences are duly noted and their impact on fire detection discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spagliardi, Fabio

    Liquid argon Time Projection Chambers (LArTPCs) are becoming widely used as neutrino detectors because of their image-like event reconstruction which enables precision neutrino measurements. They primarily use ionisation charge to reconstruct neutrino events. It has been shown, however, that the scintillation light emitted by liquid argon could be exploited to improve their performance. As the neutrino measurements planned in the near future require large-scale experiments, their construction presents challenges in terms of both charge and light collection. In this dissertation we present solutions developed to improve the performance in both aspects of these detectors. We present a new wire tensioningmore » measurement method that allows a remote measurement of the tension of the large number wires that constitute the TPC anode. We also discuss the development and installation of WLS-compound covered foils for the SBND neutrino detector at Fermilab, which is a technique proposed t o augment light collection in LArTPCs. This included preparing a SBND-like mesh cathode and testing it in the Run III of LArIAT, a test beam detector also located at Fermilab. Finally, we present a study aimed at understanding late scintillation light emitted by recombining positive argon ions using LArIAT data, which could affect large scale surface detectors.« less

  14. Determination of C6-C10 aromatic hydrocarbons in water by purge-and-trap capillary gas chromatography

    USGS Publications Warehouse

    Eganhouse, R.P.; Dorsey, T.F.; Phinney, C.S.; Westcott, A.M.

    1993-01-01

    A method is described for the determination of the C6-C10 aromatic hydrocarbons in water based on purge-and-trap capillary gas chromatography with flame ionization and mass spectrometric detection. Retention time data and 70 eV mass spectra were obtained for benzene and all 35 C7-C10 aromatic hydrocarbons. With optimized chromatographic conditions and mass spectrometric detection, benzene and 33 of the 35 alkylbenzenes can be identified and measured in a 45-min run. Use of a flame ionization detector permits the simultaneous determination of benzene and 26 alkylbenzenes.

  15. [Statistical process control applied to intensity modulated radiotherapy pretreatment controls with portal dosimetry].

    PubMed

    Villani, N; Gérard, K; Marchesi, V; Huger, S; François, P; Noël, A

    2010-06-01

    The first purpose of this study was to illustrate the contribution of statistical process control for a better security in intensity modulated radiotherapy (IMRT) treatments. This improvement is possible by controlling the dose delivery process, characterized by pretreatment quality control results. So, it is necessary to put under control portal dosimetry measurements (currently, the ionisation chamber measurements were already monitored by statistical process control thanks to statistical process control tools). The second objective was to state whether it is possible to substitute ionisation chamber with portal dosimetry in order to optimize time devoted to pretreatment quality control. At Alexis-Vautrin center, pretreatment quality controls in IMRT for prostate and head and neck treatments were performed for each beam of each patient. These controls were made with an ionisation chamber, which is the reference detector for the absolute dose measurement, and with portal dosimetry for the verification of dose distribution. Statistical process control is a statistical analysis method, coming from industry, used to control and improve the studied process quality. It uses graphic tools as control maps to follow-up process, warning the operator in case of failure, and quantitative tools to evaluate the process toward its ability to respect guidelines: this is the capability study. The study was performed on 450 head and neck beams and on 100 prostate beams. Control charts, showing drifts, both slow and weak, and also both strong and fast, of mean and standard deviation have been established and have shown special cause introduced (manual shift of the leaf gap of the multileaf collimator). Correlation between dose measured at one point, given with the EPID and the ionisation chamber has been evaluated at more than 97% and disagreement cases between the two measurements were identified. The study allowed to demonstrate the feasibility to reduce the time devoted to pretreatment controls, by substituting the ionisation chamber's measurements with those performed with EPID, and also that a statistical process control monitoring of data brought security guarantee. 2010 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  16. Parametric study of flame radiation characteristics of a tubular-can combustor

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.; Claus, R. W.; Neely, G. M.

    1983-01-01

    A series of combustor tests were conducted with a tubular-can combustor to study flame radiation characteristics and effects with parametric variations in combustor operating conditions. Two alternate combustor assemblies using a different fuel nozzle were compared. Spectral and total radiation detectors were positioned at three stations along the length of the combustor can. Data were obtained for a range of pressures from 0.34 to 2.07 MPa (50 to 300 psia), inlet temperatures from 533 to 700K (500 to 800 F), for Jet A (13.9 deg hydrogen) and ERBS (12.9% hydrogen) fuels, and with fuel-air ratios nominally from 0.008 to 0.021. Spectral radiation data, total radiant heat flux data, and liner temperature data are presented to illustrate the flame radiation characteristics and effects in the primary, secondary, and tertiary combustion zones.

  17. Assessment of exposure to polycyclic aromatic hydrocarbons in engine rooms by measurement of urinary 1-hydroxypyrene.

    PubMed Central

    Moen, B E; Nilsson, R; Nordlinder, R; Ovrebø, S; Bleie, K; Skorve, A H; Hollund, B E

    1996-01-01

    OBJECTIVE: Machinists have an increased risk of lung cancer and bladder cancer, and this may be caused by exposure to carcinogenic compounds such as asbestos and polycyclic aromatic hydrocarbons (PAHs) in the engine room. The aim of this study was to investigate the exposure of engine room personnel to PAHs, with 1-hydroxypyrene in urine as a biomarker. METHODS: Urine samples from engine room personnel (n = 51) on 10 ships arriving in different harbours were collected, as well as urine samples from a similar number of unexposed controls (n = 47) on the same ships. Urinary 1-hydroxypyrene was quantitatively measured by high performance liquid chromatography. The exposure to PAHs was estimated by a questionnaire answered by the engine room personnel. On two ships, air monitoring of PAHs in the engine room was performed at sea. Both personal monitoring and area monitoring were performed. The compounds were analysed by gas chromatography of two types (with a flame ionisation detector and with a mass spectrometer). RESULTS: Significantly more 1-hydroxypyrene was found in urine of personnel who had been working in the engine room for the past 24 hours, than in that of the unexposed seamen. The highest concentrations of 1-hydroxypyrene were found among engine room personnel who had experienced oil contamination of the skin during their work in the engine room. Stepwise logistic regression analysis showed a significant relation between the concentrations of 1-hydroxypyrene, smoking, and estimated exposure to PAHs. No PAHs were detected in the air samples. CONCLUSION: Engine room personnel who experience skin exposure to oil and oil products are exposed to PAHs during their work. This indicates that dermal uptake of PAHs is the major route of exposure. PMID:8943834

  18. Experiments with the Skylab fire detectors in zero gravity

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.

    1972-01-01

    The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.

  19. 40 CFR 91.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... periodic optimization of detector response. Prior to introduction into service and at least annually... nitrogen. (2) One of the following procedures is required for FID or HFID optimization: (i) The procedure outlined in Society of Automotive Engineers (SAE) paper No. 770141, “Optimization of Flame Ionization...

  20. Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter

    NASA Technical Reports Server (NTRS)

    Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)

    2001-01-01

    The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.

  1. Analysis of triacylglycerols on porous graphitic carbon by high temperature liquid chromatography.

    PubMed

    Merelli, Bérangère; De Person, Marine; Favetta, Patrick; Lafosse, Michel

    2007-07-20

    The retention behaviour of several triacylglycerols (TAGs) and fats on Hypercarb, a porous graphitic carbon column (PGC), was investigated in liquid chromatography (LC) under isocratic elution mode with an evaporative light scattering detector (ELSD). Mixtures of chloroform/isopropanol were selected as mobile phase for a suitable retention time to study the influence of temperature. The retention was different between PGC and non-aqueous reversed phase liquid chromatography (NARP-LC) on octadecyl phase. The retention of TAGs was investigated in the interval 30-70 degrees C. Retention was greatly affected by temperature: it decreases as the column temperature increases. Selectivity of TAGs was also slightly influenced by the temperature. Moreover, this chromatographic method is compatible with a mass spectrometer (MS) detector by using atmospheric pressure chemical ionisation (APCI): same fingerprints of cocoa butter and shea butter were obtained with LC-ELSD and LC-APCI-MS. These preliminary results showed that the PGC column could be suitable to separate quickly triacylglycerols in high temperature conditions coupled with ELSD or MS detector.

  2. 40 CFR 89.319 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... start-up and basic operating adjustment using the appropriate fuel (see § 89.312(e)) and zero-grade air... flow. Heated Flame Ionization Detectors (HFIDs) must be at their specified operating temperature. One.... (1) Adjust analyzer to optimize performance. (2) Zero the hydrocarbon analyzer with zero-grade air...

  3. ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Šuljić, M.

    2016-11-01

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (2019-2020) of the CERN Large Hadron Collider (LHC) . The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of ~10 m2, thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The ALPIDE chip, based on TowerJazz 180 nm CMOS Imaging Process, is being developed for this purpose. A particular process feature, the deep p-well, is exploited so the full CMOS logic can be implemented over the active sensor area without impinging on the deposited charge collection. ALPIDE is implemented on silicon wafers with a high resistivity epitaxial layer. A single chip measures 15 mm by 30 mm and contains half a million pixels distributed in 512 rows and 1024 columns. In-pixel circuitry features amplification, shaping, discrimination and multi-event buffering. The readout is hit driven i.e. only addresses of hit pixels are sent to the periphery. The upgrade of the ITS presents two different sets of requirements for sensors of the inner and of the outer layers due to the significantly different track density, radiation level and active detector surface. The ALPIDE chip fulfils the stringent requirements in both cases. The detection efficiency is higher than 99%, fake-hit probability is orders of magnitude lower than the required 10-6 and spatial resolution within the required 5 μm. This performance is to be maintained even after a total ionising does (TID) of 2.7 Mrad and a non-ionising energy loss (NIEL) fluence of 1.7 × 1013 1 MeV neq/cm2, which is above what is expected during the detector lifetime. Readout rate of 100 kHz is provided and the power density of ALPIDE is less than 40 mW/cm2. This contribution will provide a summary of the ALPIDE features and main test results.

  4. Comparative Soot Diagnostics: 1 Year Report

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Griffin, DeVon W.; Gard, Melissa Y.

    1998-01-01

    The motivation for the Comparative Soot Diagnostics (CSD) experiment lies in the broad practical importance of understanding combustion generated particulate. Depending upon the circumstances, particulate matter can affect the durability and performance of combustion equipment, can be a pollutant, can be used to detect fires and, in the form of soot, can be the dominant source of radiant energy from flames. Bright sooty fires are desirable for efficient energy extraction in furnaces and power equipment. In contrast, soot-enhanced radiation is undesirable in many propulsion systems (e.g. jet engines). The non-buoyant structure of most flames of practical interest (turbulent) makes understanding of soot processes in low gravity flames important to our ability to predict fire behavior on earth. These studies also have direct applications to fire safety in human-crew spacecraft, since smoke is the indicator used for automated detection in current spacecraft. In addition, recent tests conducted on MIR showed that a candle in a truly quiescent spacecraft environment can burn for tens of minutes. Consequently, this test and many earlier tests have demonstrated that fires in spacecraft can be considered a credible risk. In anticipation of this risk, NASA has included fire detectors on Skylab, smoke detectors on the Space Shuttle (STS), and smoke detectors in the design for the International Space Station (ISS). In the CSD experiment, these smoke detectors were tested using, quasi-steady, low-gravity, particulate generating materials. Samples of the particulate were also obtained from these low-gravity sources. This experiment provides the first such measurements aimed toward understanding of soot processes here on earth and for the testing and design of advanced spacecraft smoke detection systems. This paper describes the operation and preliminary results of the CSD experiment which was was conducted in the Middeck Glovebox Facility (MGBX) on USMP-3. The objectives of CSD are to examine the particulate emission from a variety of pyrolyzing and combusting sources and to quantify the performance of several particulate-sensing diagnostic techniques. This paper presents the results of the microgravity portion of the CSD experiment. The results include the temporal response of the detectors and average sizes of the primary and aggregate particles captured on the thermophoretic probes. Complete assessment of the microgravity data and its combination with the normal-gravity data are still in process.

  5. Characterisation of ionisation chambers for a mixed radiation field and investigation of their suitability as radiation monitors for the LHC.

    PubMed

    Theis, C; Forkel-Wirth, D; Perrin, D; Roesler, S; Vincke, H

    2005-01-01

    Monitoring of the radiation environment is one of the key tasks in operating a high-energy accelerator such as the Large Hadron Collider (LHC). The radiation fields consist of neutrons, charged hadrons as well as photons and electrons with energy spectra extending from those of thermal neutrons up to several hundreds of GeV. The requirements for measuring the dose equivalent in such a field are different from standard uses and it is thus necessary to investigate the response of monitoring devices thoroughly before the implementation of a monitoring system can be conducted. For the LHC, it is currently foreseen to install argon- and hydrogen-filled high-pressure ionisation chambers as radiation monitors of mixed fields. So far their response to these fields was poorly understood and, therefore, further investigation was necessary to prove that they can serve their function well enough. In this study, ionisation chambers of type IG5 (Centronic Ltd) were characterised by simulating their response functions by means of detailed FLUKA calculations as well as by calibration measurements for photons and neutrons at fixed energies. The latter results were used to obtain a better understanding and validation of the FLUKA simulations. Tests were also conducted at the CERF facility at CERN in order to compare the results with simulations of the response in a mixed radiation field. It is demonstrated that these detectors can be characterised sufficiently enough to serve their function as radiation monitors for the LHC.

  6. Intercomparison of photon dose measurements at the 8 MeV electron accelerator

    NASA Astrophysics Data System (ADS)

    Angelescu, T.; Ghiordănescu, N.; Băl ţă ţeanu, N.; Labău, V.; Vasilescu, A.

    1997-02-01

    Measurements of dose with thermoluminescent detectors (TLD) and an ionisation chamber were performed in the range of 5-70 Gy in the electron bremsstrahlung field with a maximum energy of 8 MeV of the Bucharest linear accelerator. Previous calibration was done with a 60Co source. The results of the intercomparison were used in dosimetry of the n - γ field of the ΣΣ irradiation facility, with a photon spectrum similar to the 8 MeV bremsstrahlung field [T. Angelescu et al., Nucl. Instr. and Meth. A 378 (1996) 594].

  7. Field test of optical and electrical fire detectors in simulated fire scenes in a cable tunnel

    NASA Astrophysics Data System (ADS)

    Fan, Dian; Ding, Hongjun; Wang, Dorothy Y.; Jiang, Desheng

    2014-06-01

    This paper presents the testing results of three types of fire detectors: electrical heat sensing cable, optical fiber Raman temperature sensing detector, and optical fiber Bragg grating (FBG) temperature sensing detector, in two simulated fire scenes in a cable tunnel. In the small-scale fire with limited thermal radiation and no flame, the fire alarm only comes from the heat sensors which directly contact with the heat source. In the large-scale fire with about 5 °C/min temperature rising speed within a 3-m span, the fire alarm response time of the fiber Raman sensor and FBG sensors was about 30 seconds. The test results can be further used for formulating regulation for early fire detection in cable tunnels.

  8. 30 CFR 75.506 - Electric face equipment; requirements for permissibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...' approval schedules, and if it is in permissible condition: (1) Multiple-Shot Blasting Units, part 7 subpart...; (4) Flame Safety Lamps; (5) Portable Methane Detectors, part 22; (6) Telephone and Signaling Devices, part 23; (7) Single-Shot Blasting Units; (8) Lighting Equipment for Illuminating Underground Workings...

  9. 30 CFR 75.506 - Electric face equipment; requirements for permissibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...' approval schedules, and if it is in permissible condition: (1) Multiple-Shot Blasting Units, part 7 subpart...; (4) Flame Safety Lamps; (5) Portable Methane Detectors, part 22; (6) Telephone and Signaling Devices, part 23; (7) Single-Shot Blasting Units; (8) Lighting Equipment for Illuminating Underground Workings...

  10. 30 CFR 75.506 - Electric face equipment; requirements for permissibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...' approval schedules, and if it is in permissible condition: (1) Multiple-Shot Blasting Units, part 7 subpart...; (4) Flame Safety Lamps; (5) Portable Methane Detectors, part 22; (6) Telephone and Signaling Devices, part 23; (7) Single-Shot Blasting Units; (8) Lighting Equipment for Illuminating Underground Workings...

  11. 40 CFR 90.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Initial and periodic optimization of detector response. Prior to initial use and at least annually... nitrogen. (2) Use of one of the following procedures is required for FID or HFID optimization: (i) The procedure outlined in Society of Automotive Engineers (SAE) paper No. 770141, “Optimization of a Flame...

  12. 30 CFR 75.506 - Electric face equipment; requirements for permissibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...' approval schedules, and if it is in permissible condition: (1) Multiple-Shot Blasting Units, part 7 subpart...; (4) Flame Safety Lamps; (5) Portable Methane Detectors, part 22; (6) Telephone and Signaling Devices, part 23; (7) Single-Shot Blasting Units; (8) Lighting Equipment for Illuminating Underground Workings...

  13. 30 CFR 75.506 - Electric face equipment; requirements for permissibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...' approval schedules, and if it is in permissible condition: (1) Multiple-Shot Blasting Units, part 7 subpart...; (4) Flame Safety Lamps; (5) Portable Methane Detectors, part 22; (6) Telephone and Signaling Devices, part 23; (7) Single-Shot Blasting Units; (8) Lighting Equipment for Illuminating Underground Workings...

  14. Growth dynamics of specific spoilage organisms and associated spoilage biomarkers in chicken breast stored aerobically

    USDA-ARS?s Scientific Manuscript database

    This study was performed to identify and quantify selected volatile spoilage biomarkers in a headspace over chicken breast using solid phase microextraction (SPME) combined with gas chromatography-mass spectrometry-flame ionization detectors (GC-MS/FID). The chicken breast samples were aerobically s...

  15. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  16. 78 FR 11126 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... using capillary gas liquid chromatography (GLC) with flame ionization detector (FID). Contact: Andrew...) purification. Detection and quantitation are conducted by gas chromatograph equipped with nitrogen phosphorus... pressure liquid chromatography/triple stage quadrupole mass spectrometry (LC/MS/MS) using the stable...

  17. Search in 8 TeV proton-proton collisions with the MoEDAL monopole-trapping test array

    NASA Astrophysics Data System (ADS)

    Pinfold, J.; Soluk, R.; Lacarrère, D.; Katre, A.; Mermod, P.; Bendtz, K.; Milstead, D.

    2014-06-01

    The magnetic monopole appears in theories of spontaneous gauge symmetry breaking and its existence would explain the quantisation of electric charge. MoEDAL is the latest approved LHC experiment, designed to search directly for monopoles produced in high-energy collisions. It has now taken data for the first time. The MoEDAL detectors are based on two complementary techniques: nuclear-track detectors are sensitive to the high-ionisation signature expected from a monopole, and the magnetic monopole trapper (MMT) relies on the stopping and trapping of monopoles inside an aluminium array which is then analysed with a superconducting magnetometer. The first results obtained with the MoEDAL MMT test array deployed in 2012 are presented. This experiment probes monopoles carrying a multiple of the fundamental unit magnetic charge for the first time at the LHC.

  18. iPadPix—A novel educational tool to visualise radioactivity measured by a hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Keller, O.; Schmeling, S.; Müller, A.; Benoit, M.

    2016-11-01

    With the ability to attribute signatures of ionising radiation to certain particle types, pixel detectors offer a unique advantage over the traditional use of Geiger-Müller tubes also in educational settings. We demonstrate in this work how a Timepix readout chip combined with a standard 300μm pixelated silicon sensor can be used to visualise radioactivity in real-time and by means of augmented reality. The chip family is the result of technology transfer from High Energy Physics at CERN and facilitated by the Medipix Collaboration. This article summarises the development of a prototype based on an iPad mini and open source software detailed in ref. [1]. Appropriate experimental activities that explore natural radioactivity and everyday objects are given to demonstrate the use of this new tool in educational settings.

  19. Comparison of the performance of different instruments in the stray neutron field around the CERN Proton Synchrotron.

    PubMed

    Aza, Eleni; Caresana, Marco; Cassell, Christopher; Colombo, Valeria; Damjanovic, Sanja; Gilardoni, Simone; Manessi, Giacomo Paolo; Pangallo, Michel; Perrin, Daniel; Silari, Marco

    2014-10-01

    This paper discusses an intercomparison campaign carried out in several locations around the CERN Proton Synchrotron. The locations were selected in order to perform the measurements in different stray field conditions. Various neutron detectors were employed: ionisation chambers, conventional and extended range rem counters, both commercial and prototype ones, including a novel instrument called LUPIN, specifically conceived to work in pulsed fields. The attention was focused on the potential differences in the instrument readings due to dead-time losses that are expected to affect most commercial units. The results show that the ionisation chambers and LUPIN agree well with the expected H*(10) values, as derived from FLUKA simulations, showing no relevant underestimations even in strongly pulsed fields. On the contrary, the dead-time losses of the other rem counters induced an underestimation in pulsed fields that was more important for instruments characterised by a higher dead time. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Electronics and triggering challenges for the CMS High Granularity Calorimeter

    NASA Astrophysics Data System (ADS)

    Lobanov, A.

    2018-02-01

    The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0.2 fC-10 pC), low noise (~2000 e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~20 mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing the data from the HGCAL imposes equally large challenges on the off-detector electronics, both for the hardware and incorporated algorithms. We present an overview of the complete electronics architecture, as well as the performance of prototype components and algorithms.

  1. Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways

    PubMed Central

    Litton, Charles D.; Perera, Inoka Eranda

    2015-01-01

    Large-scale experiments were conducted in an above-ground gallery to simulate typical fires that develop along conveyor belt transport systems within underground coal mines. In the experiments, electrical strip heaters, imbedded ~5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-meter-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe located approximately 20 m downstream of the coal for continuous measurement of CO, CO2, and O2 as the fire progressed through the stages of smoldering coal, flaming coal, and flaming conveyor belt. Also located approximately 20 m from the fire origin and approximately 0.5 m below the roof of the gallery were two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles. Located upstream of the fire origin and also along the wall of the gallery at approximately 14 m and 5 m upstream were two video cameras capable of both smoke and flame detection. During the experiments, alarm times of the smoke detectors and video cameras were measured while the smoke obscuration and total smoke mass were continually measured. Twelve large-scale experiments were conducted using three different types of fire-resistant conveyor belts and four air velocities for each belt. The air velocities spanned the range from 1.0 m/s to 6.9 m/s. The results of these experiments are compared to previous large-scale results obtained using a smaller fire gallery and much narrower (1.07-m) conveyor belts to determine if the fire detection criteria previously developed (1) remained valid for the wider conveyor belts. Although some differences between these and the previous experiments did occur, the results, in general, compare very favorably. Differences are duly noted and their impact on fire detection discussed. PMID:26566298

  2. The Implementation and Demonstration of Flame Detection and Wireless Communications in a Consumer Appliance to Improve Fire Detection Capabilities

    DTIC Science & Technology

    2007-06-08

    Temperature Detectors (RTDs), thermistors , bimetallic devices, liquid expansion devices, and change-of-state devices. Liquid expansion, change-of...sterilization lamps, halogen lamps, direct or reflected sunlight on the sensor, electrical or welding sparks, radiation sources and high 7 Figure 1, Standard

  3. Identification of sulphur volatiles and GC-olfactometry aroma profiling in two fresh tomato cultivars

    USDA-ARS?s Scientific Manuscript database

    Ten sulphur volatiles were observed in two Florida tomato cultivars (‘Tasti-Lee’ and ‘FL 47’) harvested at three maturity stages (breaker, turning, and pink) using gas chromatography with a pulsed flame photometric detector (GC-PFPD). Eight PFPD peaks were identified using retention values from auth...

  4. Lipids and Fatty Acids in Algae: Extraction, Fractionation into Lipid Classes, and Analysis by Gas Chromatography Coupled with Flame Ionization Detector (GC-FID).

    PubMed

    Guihéneuf, Freddy; Schmid, Matthias; Stengel, Dagmar B

    2015-01-01

    Despite the number of biochemical studies exploring algal lipids and fatty acid biosynthesis pathways and profiles, analytical methods used by phycologists for this purpose are often diverse and incompletely described. Potential confusion and potential variability of the results between studies can therefore occur due to change of protocols for lipid extraction and fractionation, as well as fatty acid methyl esters (FAME) preparation before gas chromatography (GC) analyses. Here, we describe a step-by-step procedure for the profiling of neutral and polar lipids using techniques such as solid-liquid extraction (SLE), thin-layer chromatography (TLC), and gas chromatography coupled with flame ionization detector (GC-FID). As an example, in this protocol chapter, analyses of neutral and polar lipids from the marine microalga Pavlova lutheri (an EPA/DHA-rich haptophyte) will be outlined to describe the distribution of fatty acid residues within its major lipid classes. This method has been proven to be a reliable technique to assess changes in lipid and fatty acid profiles in several other microalgal species and seaweeds.

  5. Validation of QuEChERS based method for determination of fenitrothion residues in tomatoes by gas chromatography-flame photometric detector: Decline pattern and risk assessment.

    PubMed

    Malhat, Farag; Boulangé, Julien; Abdelraheem, Ehab; Abd Allah, Osama; Abd El-Hamid, Rania; Abd El-Salam, Shokr

    2017-08-15

    A simple and rapid gas chromatography with flame photometric detector (GC-FPD) determination method was developed to detect residue levels and investigate the dissipation pattern and safe use of fenitrothion in tomatoes. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) using an ethyl acetate-based extraction, followed by a dispersive solid-phase extraction (d-SPE) with primary-secondary amine (PSA) and graphite carbon black (GCB) for clean up, was applied prior to GC-FPD analysis. The method showed satisfactory linearity, recovery and precision. The limits of detection (LOD) and quantification (LOQ) were 0.005 and 0.01mg/kg, respectively. The residue levels of fenitrothion were best described by first order kinetics with a half-life of 2.2days in tomatoes. The potential health risks posed by fenitrothion were not significant, based on supervised residue trial data. The current findings could provide guidance for safe and reasonable use of fenitrothion in tomatoes and prevent health problems to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. NMT - A new individual ion counting method: Comparison to a Faraday cup

    NASA Astrophysics Data System (ADS)

    Burton, Michael; Gorbunov, Boris

    2018-03-01

    Two sample detectors used to analyze the emission from Gas Chromatography (GC) columns are the Flame Ionization Detector (FID) and the Electron Capture Detector (ECD). Both of these detectors involve ionization of the sample molecules and then measuring electric current in the gas using a Faraday cup. In this paper a newly discovered method of ion counting, Nanotechnology Molecular Tagging (NMT) is tested as a replacement to the Faraday cup in GCs. In this method the effective physical volume of individual molecules is enlarged up to 1 billion times enabling them to be detected by an optical particle counter. It was found that the sensitivity of NMT was considerably greater than the Faraday cup. The background in the NMT was circa 200 ions per cm3, corresponding to an extremely low electric current ∼10-17 A.

  7. Optimizations of packed sorbent and inlet temperature for large volume-direct aqueous injection-gas chromatography to determine high boiling volatile organic compounds in water.

    PubMed

    Yu, Bofan; Song, Yonghui; Han, Lu; Yu, Huibin; Liu, Yang; Liu, Hongliang

    2014-08-22

    For the expanded application area, fast trace analysis of certain high boiling point (i.e., 150-250 °C) volatile organic compounds (HVOCs) in water, a large volume-direct aqueous injection-gas chromatography (LV-DAI-GC) method was optimized for the following parameters: packed sorbent for sample on-line pretreatment, inlet temperature and detectors configuration. Using the composite packed sorbent self-prepared with lithium chloride and a type of diatomite, the method enabled safe injection of an approximately 50-100 μL sample at an inlet temperature of 150 °C in the splitless mode and separated HVOCs from water matrix in 2 min. Coupled with a flame ionization detector (FID), an electron capture detector (ECD) and a flame photometric detector (FPD), the method could simultaneously quantify 27 HVOCs that belong to seven subclasses (i.e., halogenated aliphatic hydrocarbons, chlorobenzenes, nitrobenzenes, anilines, phenols, polycyclic aromatic hydrocarbons and organic sulfides) in 26 min. Injecting a 50 μL sample without any enrichment step, such as cryotrap focusing, the limits of quantification (LOQs) for the 27 HVOCs was 0.01-3 μg/L. Replicate analyses of the 27 HVOCs spiked source and river water samples exhibited good precision (relative standard deviations ≤ 11.3%) and accuracy (relative errors ≤ 17.6%). The optimized LV-DAI-GC was robust and applicable for fast determination and automated continuous monitoring of HVOCs in surface water. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Evaluation of the equivalence ratio of the reacting mixture using intensity ratio of chemiluminescence in laminar partially premixed CH{sub 4}-air flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Yong Ki; Jeon, Chung Hwan; Chang, Young June

    An experimental study was performed to investigate the effects of partially premixing, varying the equivalence ratios from 0.79 to 9.52, on OH*, CH* and C{sub 2}* in laminar partially premixed flames. The signals from the electronically excited states of OH*, CH* and C{sub 2}* were detected through interference filters using a photo multiplier tube, which were processed to the intensity ratios (C{sub 2}*/CH*, C{sub 2}*/OH* and CH*/OH*) to determine a correlation with the local equivalence ratios. Furthermore, the consistency between the results of the tomographic reconstruction; Abel inversion technique, image with CCD (Couple Charged Detector) camera and the local radicalmore » intensity with PMT was investigated. The results demonstrated that (1) the flames at F=<1.36 exhibited classical double flame structure, at F>=4.76, the flames exhibited non-premixed-like flame structure and the intermediate flames at 1.36

  9. Microcombustor

    DOEpatents

    Gardner, Timothy J.; Manginelli, Ronald P.; Lewis, Patrick R.; Frye-Mason, Gregory C.; Colburn, Chris

    2004-09-07

    A microcombustor comprises a microhotplate and a catalyst for sustained combustion on the microscale. The microhotplate has very low heat capacity and thermal conductivity that mitigate large heat losses arising from large surface-to-volume ratios typical of the microdomain. The heated catalyst enables flame ignition and stabilization, permits combustion with lean fuel/air mixtures, extends a hydrocarbon's limits of flammability, and lowers the combustion temperature. The reduced operating temperatures enable a longer microcombustor lifetime and the reduced fuel consumption enables smaller fuel supplies, both of which are especially important for portable microsystems applications. The microcombustor can be used for on-chip thermal management and for sensor applications, such as heating of a micro gas chromatography column and for use as a micro flame ionization detector.

  10. Fire safety practices in the Shuttle and the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1993-01-01

    The Shuttle reinforces its policy of fire-preventive measures with onboard smoke detectors and Halon 1301 fire extinguishers. The forthcoming Space Station Freedom will have expanded fire protection with photoelectric smoke detectors, radiation flame detectors, and both fixed and portable carbon dioxide fire extinguishers. Many design and operational issues remain to be resolved for Freedom. In particular, the fire-suppression designs must consider the problems of gas leakage in toxic concentrations, alternative systems for single-failure redundancy, and commonality with the corresponding systems of the Freedom international partners. While physical and engineering requirements remain the primary driving forces for spacecraft fire-safety technology, there are, nevertheless, needs and opportunities for the application of microgravity combustion knowledge to improve and optimize the fire-protective systems.

  11. Alpha particle spectroscopy using FNTD and SIM super-resolution microscopy.

    PubMed

    Kouwenberg, J J M; Kremers, G J; Slotman, J A; Wolterbeek, H T; Houtsmuller, A B; Denkova, A G; Bos, A J J

    2018-06-01

    Structured illumination microscopy (SIM) for the imaging of alpha particle tracks in fluorescent nuclear track detectors (FNTD) was evaluated and compared to confocal laser scanning microscopy (CLSM). FNTDs were irradiated with an external alpha source and imaged using both methodologies. SIM imaging resulted in improved resolution, without increase in scan time. Alpha particle energy estimation based on the track length, direction and intensity produced results in good agreement with the expected alpha particle energy distribution. A pronounced difference was seen in the spatial scattering of alpha particles in the detectors, where SIM showed an almost 50% reduction compared to CLSM. The improved resolution of SIM allows for more detailed studies of the tracks induced by ionising particles. The combination of SIM and FNTDs for alpha radiation paves the way for affordable and fast alpha spectroscopy and dosimetry. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  12. Alpha Particle Detection Using Alpha-Induced Air Radioluminescence: A Review and Future Prospects for Preliminary Radiological Characterisation for Nuclear Facilities Decommissioning

    PubMed Central

    Crompton, Anita J.; Jenkins, Alex

    2018-01-01

    The United Kingdom (UK) has a significant legacy of nuclear installations to be decommissioned over the next 100 years and a thorough characterisation is required prior to the development of a detailed decommissioning plan. Alpha radiation detection is notoriously time consuming and difficult to carry out due to the short range of alpha particles in air. Long-range detection of alpha particles is therefore highly desirable and this has been attempted through the detection of secondary effects from alpha radiation, most notably the air-radioluminescence caused by ionisation. This paper evaluates alpha induced air radioluminescence detectors developed to date and looks at their potential to develop a stand-off, alpha radiation detector which can be used in the nuclear decommissioning field in daylight conditions to detect alpha contaminated materials. PMID:29597340

  13. Status of the DRIFT-II Directional Dark Matter Detector

    NASA Astrophysics Data System (ADS)

    Ghag, Chamkaur

    2006-10-01

    DRIFT is a directional dark matter detection programme that utilises the fact that as the Earth rotates and revolves around the Sun, an annual and diurnal signal modulation could be detected as a result of relative motion between the Earth and the non-rotating WIMP halo. This would provide very strong evidience of WIMPs since such a signal could not be mimicked by background sources. DRIFT II is an array of gas filled time projection chambers (TPCs) with Multi Wire Proportional Counter (MWPC) readout. Signals from different types of events differ greatly, between nuclear and electron recoils for example, due to the amount of ionisation initially produced and recombination times. This provides phenomenal discrimination capabilities. The first module of the DRIFT-II detector was successfully installed underground at Boulby Mine, N. Yorkshire early last year and has proven very stable, collecting high quality calibration and WIMP data. Since then a second module has been installed and is also currently operational. This presentation will describe the status of the detector and will focus on the determination of neutron efficiency and gamma rejection factors.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In this study, a search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2012 at √s = 8 TeV from pp collisions corresponding to an integrated luminosity of 20.3 fb -1 are examined. Particles producing anomalously high ionisation, consistent with long-lived massive particles with electric charges from |q| = 2e to |q| = 6e are searched for. No signal candidate events are observed, and 95% confidence level cross-section upper limits are interpreted as lower mass limits for a Drell–Yan production model. The mass limits range between 660 and 785 GeV.

  15. Two-Band Pyrometers Detect Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Collins, J. David; Youngquist, Robert C.; Simmons, Stephen M.

    1993-01-01

    Two-band infrared pyrometers detect small hydrogen fires at greater distances in full daylight being developed. Detectors utilize part of infrared spectrum in which signals from hydrogen flames 10 to the 3rd power to 10 to the 4th power times as intense as ultraviolet region of current detectors. Utilize low-loss infrared lenses for focusing and for limiting fields of view to screen out spurious signals from nearby sources. Working distances of as much as 100 meters possible. Portable, battery-powered unit gives audible alarm, in form of increase in frequency of tone, when aimed at hydrogen fire.

  16. Site Investigation Report. 161st Air Refueling Group, Arizona National Guard, Sky Harbor International Airport and Papago Military Reservation, Phoenix, Arizona. Volume 1. Report, Tables and Figures

    DTIC Science & Technology

    1992-11-01

    Tennessee 37831-7606 NTIS GP’A t managed by O-C T MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY 1Y under contract DE -ACO5...conductivity ECD electron capture detector S K • , . , i F.xii S List of Acronyms (Continued) S EM electromagnetic induction Energy Systems Martin Marietta...Energy Sytems, Inc. EWA East Washington Area FID flame ionization detector 9 Fr/DAY feet per day FS feasibility scudy FSP field sampling plan GC gas

  17. 78 FR 49774 - Petitions for Modification of Application of Existing Mandatory Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... the well. (7) Calibrate the methane monitors on the longwall, continuous mining machine, or cutting..., test methane levels with a hand- held methane detector at least every 10 minutes from the time that... methane levels are less than 1.0 percent in all areas that will be exposed to flames and sparks from the...

  18. Push-Pull Tests for Evaluating the Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

    DTIC Science & Technology

    2006-09-01

    Z39-18 i COST & PERFORMANCE REPORT ESTCP Project: ER-9921 TABLE OF CONTENTS Page 1.0 EXECUTIVE SUMMARY...31 iv ACRONYMS AND ABBREVIATIONS ACFEE Air Force Center for Environmental Excellence Br bromine BTEX benzene...ESTCP Environmental Security Technology Certification Program FID flame ionization detector GC gas chromatography HP Hewlett-Packard IC

  19. Push-Pull Tests for Evaluating the Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons: Cost & Performance Report

    DTIC Science & Technology

    2006-09-01

    Std Z39-18 i COST & PERFORMANCE REPORT ESTCP Project: ER-9921 TABLE OF CONTENTS Page 1.0 EXECUTIVE SUMMARY...31 iv ACRONYMS AND ABBREVIATIONS ACFEE Air Force Center for Environmental Excellence Br bromine BTEX...Agency ESTCP Environmental Security Technology Certification Program FID flame ionization detector GC gas chromatography HP Hewlett-Packard

  20. 40 CFR 1065.260 - Flame-ionization detector.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentrations on a carbon number basis of one, C1. For measuring THC or THCE you must use a FID analyzer. For... § 1065.205. Note that your FID-based system for measuring THC, THCE, or CH4 must meet all the... bias. (c) Heated FID analyzers. For measuring THC or THCE from compression-ignition engines, two-stroke...

  1. 40 CFR 1065.260 - Flame-ionization detector.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentrations on a carbon number basis of one, C1. For measuring THC or THCE you must use a FID analyzer. For... § 1065.205. Note that your FID-based system for measuring THC, THCE, or CH4 must meet all the... verification in § 1065.307. (c) Heated FID analyzers. For measuring THC or THCE from compression-ignition...

  2. 40 CFR 1065.260 - Flame-ionization detector.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentrations on a carbon number basis of one, C1. For measuring THC or THCE you must use a FID analyzer. For... § 1065.205. Note that your FID-based system for measuring THC, THCE, or CH4 must meet all the... bias. (c) Heated FID analyzers. For measuring THC or THCE from compression-ignition engines, two-stroke...

  3. Diesel Engine Air Emissions Reduction Technologies

    DTIC Science & Technology

    2010-04-01

    Hour GC/MS Gas Chromatography /Mass Spectroscopy GC/FID Gas Chromatography /Flame Ionization Detector g/mile Gram per Mile HAP Hazardous Air...Pollutant HC Hydrocarbon HPLC/UV High Performance Liquid Chromatography / Ultraviolet KPa Kilo-Pascals NDIR Non Dispersive Infrared... Chromatography (GC) where the samples were collected on DNPH cartridges. Portable versions of these instruments were available and employed for

  4. An Analytical System Designed to Measure Multiple Malodorous Compounds Related to Kraft Mill Activities.

    ERIC Educational Resources Information Center

    Mulik, J. D.; And Others

    Reported upon in this research study is the development of two automated chromatographs equipped with flame photometric detectors for the qualitative and quantitative analysis of both low- and high-molecular weight sulfur compounds in kraft mill effluents. In addition the study sought to determine the relationship between total gaseous sulfur and…

  5. Comparison of element-specific capillary chromotography detectors for the identification of heteroatomic species in coal liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, S.C.; Bartle, K.D.; Holden, K.M.L.

    1994-12-31

    A series of heteroatom-rich coal and coal-derived liquids have been analysed using gas chromatography (GC) in combination with three different element-selective detectors. Selected chromatograms, including a supercritical extract (Mequinenza lignite) and aromatic fractions isolated from coal tar pitch samples are presented. In each case a series of sulphur- and/or nitrogen-containing compounds have been identified using either flame photometric detection (GC/FID/FPD) or nitrogen-phosphorous detection (GC/FID/NPD) and the information compared with that obtained from a GC coupled to an atomic emission detector (GC-AED). Preliminary results have demonstrated the relative response characteristics of each detector and their respective ability to acquire qualitative andmore » quantitative information in interfering background matrices. Further, due to the unique capabilities of GC-AED, a number of dual heteroatomic (sulphur-oxygen and nitrogen-oxygen) compounds have been identified.« less

  6. Flame detector operable in presence of proton radiation

    NASA Technical Reports Server (NTRS)

    Walker, D. J.; Turnage, J. E.; Linford, R. M. F.; Cornish, S. D. (Inventor)

    1974-01-01

    A detector of ultraviolet radiation for operation in a space vehicle which orbits through high intensity radiation areas is described. Two identical ultraviolet sensor tubes are mounted within a shield which limits to acceptable levels the amount of proton radiation reaching the sensor tubes. The shield has an opening which permits ultraviolet radiation to reach one of the sensing tubes. The shield keeps ultraviolet radiation from reaching the other sensor tube, designated the reference tube. The circuitry of the detector subtracts the output of the reference tube from the output of the sensing tube, and any portion of the output of the sensing tube which is due to proton radiation is offset by the output of the reference tube. A delay circuit in the detector prevents false alarms by keeping statistical variations in the proton radiation sensed by the two sensor tubes from developing an output signal.

  7. Cable tunnel fire experiment study based on linear optical fiber fire detectors

    NASA Astrophysics Data System (ADS)

    Fan, Dian; Ding, Hongjun

    2013-09-01

    Aiming at exiting linear temperature fire detection technology including temperature sensing cable, fiber Raman scattering, fiber Bragg grating, this paper establish an experimental platform in cable tunnel, set two different experimental scenes of the fire and record temperature variation and fire detector response time in the processing of fire simulation. Since a small amount of thermal radiation and no flame for the beginning of the small-scale fire, only directly contacting heat detectors can make alarm response and the rest of other non- contact detectors are unable to respond. In large-scale fire, the alarm response time of the fiber Raman temperature sensing fire detector and fiber Bragg grating temperature sensing fire detector is about 30 seconds, and depending on the thermocouples' record the temperature over the fire is less than 35° in first 60 seconds of large-scale fire, while the temperature rising is more than 5°/min within the range of +/- 3m. According to the technical characteristics of the three detectors, the engineering suitability of the typical linear heat detectors in cable tunnels early fire detection is analyzed, which provide technical support for the preparation of norms.

  8. Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE).

    PubMed

    Fischer, Axel; Oehm, Claudia; Selle, Michael; Werner, Peter

    2005-11-01

    Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 microg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany. Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC). Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0). Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions prevail. MTBE is often recalcitrant under anaerobic conditions, at least in the presence of other carbon sources. The abiotic hydrolysis of MTBE seems to be of secondary importance (on site), but it might be possible to enhance it with catalysts. MTBE only seems to be recalcitrant under particular conditions. In some cases, the degradation of MTBE on contaminated sites could be supported by oxygen. Enhanced hydrolysis could also be an alternative.

  9. Online measurement of fluence and position for protontherapy beams

    NASA Astrophysics Data System (ADS)

    Benati, C.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cornelius, I.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Guérin, L.; La Rosa, A.; Luparia, A.; Marchetto, F.; Martin, F.; Meyroneinc, S.; Peroni, C.; Pittà, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2004-09-01

    Tumour therapy with proton beams has been used for several decades in many centres with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV.This kind of treatments need high-resolution monitor systems and for this reason we have developed a 256-strip segmented ionisation chamber, each strip being 400 μm wide, with a total sensitive area 13×13 cm2. The Centre de Protontherapie de Orsay (CPO) has been operational since 1991 and features a synchrocyclotron used for eye and head and neck tumours with proton beams up to 200 MeV. The monitor system has to work on a large surface and for this purpose we have designed a pixel-segmented ionisation chamber, each pixel being 5×5 mm2, for a total active area of 16×16 cm2. The results obtained with two prototypes of the pixel and strip chambers demonstrate that the detectors allow the measurement of fluence and centre of gravity as requested by clinical specifications.

  10. Feasibility and application of an HPLC/UVD to determine dinotefuran and its shorter wavelength metabolites residues in melon with tandem mass confirmation.

    PubMed

    Rahman, Md Musfiqur; Park, Jong-Hyouk; Abd El-Aty, A M; Choi, Jeong-Heui; Yang, Angel; Park, Ki Hun; Nashir Uddin Al Mahmud, Md; Im, Geon-Jae; Shim, Jae-Han

    2013-01-15

    A new analytical method was developed for dinotefuran and its metabolites, MNG, UF, and DN, in melon using high-performance liquid chromatography (HPLC) coupled with an ultraviolet detector (UVD). Due to shorter wavelength, lower sensitivity to UV detection, and high water miscibility of some metabolites, QuEChERs acetate-buffered version was modified for extraction and purification. Mobile phases with different ion pairing or ionisation agents were tested in different reverse phase columns, and ammonium bicarbonate buffer was found as the best choice to increase the sensitivity of target analytes to the UV detector. After failure of dispersive SPE clean-up with primary secondary amine, different solid phase extraction cartridges (SPE) were used to check the protecting capability of analytes against matrix interference. Finally, samples were extracted with a simple and rapid method using acetonitrile and salts, and purified through C(18)SPE. The method was validated at two spiking levels (three replicates for each) in the matrix. Good recoveries were observed for all of the analytes and ranged between 70.6% and 93.5%, with relative standard deviations of less than 10%. Calibration curves were linear over the calibration ranges for all the analytes with r(2)≥ 0.998. Limits of detection ranged from 0.02 to 0.05 mg kg(-1), whereas limits of quantitation ranged from 0.06 to 0.16 mg kg(-1) for dinotefuran and its metabolites. The method was successfully applied to real samples, where dinotefuran and UF residues were found in the field-incurred melon samples. Residues were confirmed via LC-tandem mass spectrometry (LC-MS/MS) in positive-ion electrospray ionisation (ESI(+)) mode. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Surface damage characterization of FBK devices for High Luminosity LHC (HL-LHC) operations

    NASA Astrophysics Data System (ADS)

    Moscatelli, F.; Passeri, D.; Morozzi, A.; Dalla Betta, G.-F.; Mattiazzo, S.; Bomben, M.; Bilei, G. M.

    2017-12-01

    The very high fluences (e.g. up to 2×1016 1 MeV neq/cm2) and total ionising doses (TID) of the order of 1 Grad, expected at the High Luminosity LHC (HL-LHC), impose new challenges for the design of effective, radiation resistant detectors. Ionising energy loss is the dominant effect for what concerns SiO2 and SiO2/Si interface radiation damage. In particular, surface damage can create a positive charge layer near the SiO2/Si interface and interface traps along the SiO2/Si interface, which strongly influence the breakdown voltage, the inter-electrode isolation and capacitance, and might also impact the charge collection properties of silicon sensors. To better understand in a comprehensive framework the complex and articulated phenomena related to surface damage at these very high doses, measurements on test structures have been carried out in this work (e.g. C-V and I-V). In particular, we have studied the properties of the SiO2 layer and of the SiO2/Si interface, using MOS capacitors, gated diodes (GD) and MOSFETs manufactured by FBK on high-resistivity n-type and p-type silicon, before and after irradiation with X-rays in the range from 50 krad(SiO2) to 20 Mrad(SiO2). Relevant parameters have been determined for all the tested devices, converging in the oxide charge density NOX, the surface generation velocity s0 and the integrated interface-trap density NIT dose-dependent values. These parameters have been extracted to both characterize the technology as a function of the dose and to be used in TCAD simulations for the surface damage effect modeling and the analysis and optimization of different classes of detectors for the next HEP experiments.

  12. KSC-00pp1297

    NASA Image and Video Library

    2000-09-12

    KENNEDY SPACE CENTER, Fla. -- A long view of Launch Complex 39 is caught by the early morning sun. Left of center is Launch Pad 39A with Space Shuttle Discovery. At its left is the 300,000-gallon water tank that is part of the sound suppression system. Hoses from the tank can be seen coiling under the pad, next to the opening of the flame trench, part of the flame detector system. In the foreground is a retention pond; another is at right center. At far right, the ball-shaped structure is a 850,000-gallon storage tank for the cryogenic liquid oxygen, one of the propellants of the orbiter’s main engines. On the horizon can be seen the 525-foot tall Vehicle Assembly Building

  13. Use of active personal dosimeters in hospitals: EURADOS survey.

    PubMed

    Ciraj-Bjelac, Olivera; Carinou, Eleftheria; Vanhavere, Filip

    2018-06-01

    Considering that occupational exposure in medicine is a matter of growing concern, active personal dosimeters (APDs) are also increasingly being used in different fields of application of ionising radiation in medicine. An extensive survey to collect relevant information regarding the use of APDs in medical imaging applications of ionising radiation was organised by the EURADOS (European Radiation Dosimetry Group) Working Group 12. The objective was to collect data about the use of APDs and to identify the basic problems in the use of APDs in hospitals. APDs are most frequently used in interventional radiology and cardiology departments (54%), in nuclear medicine (29%), and in radiotherapy (12%). Most types of APDs use silicon diodes as the detector; however, in many cases their calibration is not given proper attention, as radiation beam qualities in which they are calibrated differ significantly from those in which they are actually used. The survey revealed problems related to the use of APDs, including their reliability in pulsed x-ray fields that are widely used in hospitals. Guidance from regulatory authorities and professional organisations on the testing and calibration of APDs used in hospital would likely improve the situation.

  14. Investigation of mechanical dissipation in CO2 laser-drawn fused silica fibres and welds

    NASA Astrophysics Data System (ADS)

    Heptonstall, Alastair; Barton, Mark; Cantley, Caroline; Cumming, Alan; Cagnoli, Geppo; Hough, James; Jones, Russell; Kumar, Rahul; Martin, Iain; Rowan, Sheila; Torrie, Calum; Zech, Steven

    2010-02-01

    The planned upgrades to the LIGO gravitational wave detectors include monolithic mirror suspensions to reduce thermal noise. The mirrors will be suspended using CO2 laser-drawn fused silica fibres. We present here measurements of mechanical dissipation in synthetic fused silica fibres drawn using a CO2 laser. The level of dissipation in the surface layer is investigated and is found to be at a similar level to fibres produced using a gas flame. Also presented is a method for examining dissipation at welded interfaces, showing clear evidence of the existence of this loss mechanism which forms an additional component of the total detector thermal noise. Modelling of a typical detector suspension configuration shows that the thermal noise contribution from this loss source will be negligible.

  15. IBIC characterisation of novel detectors for single atom doping of quantum computer devices

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Pakes, Chris I.; George, Damien P.; Hearne, Sean M.; Dzurak, Andrew S.; Gauja, Eric; Stanley, F.; Clark, R. G.

    2003-09-01

    Single ion implantation and online detection is highly desirable for the emerging application, in which single 31P ions need to be inserted in prefabricated silicon cells to construct solid-state quantum bits (qubits). In order to fabricate qubit arrays, we have developed novel detectors that employ detector electrodes adjacent to the prefabricated cells that can detect single keV ion strikes appropriate for the fabrication of shallow phosphorus arrays. The method utilises a high purity silicon substrate with very high resistivity, a thin SiO 2 surface layer, nanometer masks for the lateral positioning single phosphorus implantation, biased electrodes applied to the surface of the silicon and sensitive electronics that can detect the charge transient from single keV ion strikes. A TCAD (Technology Computer Aided Design) software package was applied in the optimisation of the device design and simulation of the detector performance. Here we show the characterisation of these detectors using ion beam induced charge (IBIC) with a focused 2 MeV He ions in a nuclear microprobe. The IBIC imaging method in a nuclear microprobe allowed us to measure the dead-layer thickness of the detector structure (required to be very thin for successful detection of keV ions), and the spatial distribution of the charge collection efficiency around the entire region of the detector. We show that our detectors have near 100% charge collection efficiency for MeV ions, extremely thin dead-layer thickness (about 7 nm) and a wide active region extending laterally from the electrodes (10-20 μm) where qubit arrays can be constructed. We demonstrate that the device can be successfully applied in the detection of keV ionisation energy from single events of keV X-rays and keV 31P ions.

  16. Fuel Composition Analysis of Endothermically Heated JP-8 Fuel for Use in a Pulse Detonation Engine

    DTIC Science & Technology

    2008-06-01

    detonation engine (PDE) was extracted via zeolite catalyst coated concentric tube-counter flow heat exchangers to produce supercritical pyrolytic conditions...gas chromatography flame ionization and thermal conductivity detectors ............................................. 68 Table B.1. Elemental bias... chromatography ...................... 98 Table D.1b. Products found in the liquid sample by gas chromatography (continued) ... 99 Table D.1c

  17. 40 CFR 86.111-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... systems for analysis of total hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled... train (and for THC plus methanol for methanol-fueled diesel-cycle vehicles) is shown as part of Figure... B94-7, consists of a flame ionization detector (FID) (heated, 235 °±15 °F (113 °±8 °C) for methanol...

  18. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum fuel or a non-heated flame ionization detector may be used. (3) Methanol-fueled engines require...); or (iii) Omitting the duct and performing the exhaust gas dilution function at the engine exhaust... two steps to a temperature never greater than 125 °F (51.7 °C) at the primary sample filter. A backup...

  19. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum fuel or a non-heated flame ionization detector may be used. (3) Methanol-fueled engines require...); or (iii) Omitting the duct and performing the exhaust gas dilution function at the engine exhaust... two steps to a temperature never greater than 125 °F (51.7 °C) at the primary sample filter. A backup...

  20. Aerial surveillance for gas and liquid hydrocarbon pipelines using a flame ionization detector (FID)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riquetti, P.V.; Fletcher, J.I.; Minty, C.D.

    1996-12-31

    A novel application for the detection of airborne hydrocarbons has been successfully developed by means of a highly sensitive, fast responding Flame Ionization Detector (FID). The traditional way to monitor pipeline leaks has been by ground crews using specific sensors or by airborne crews highly trained to observe anomalies associated with leaks during periodic surveys of the pipeline right-of-way. The goal has been to detect leaks in a fast and cost effective way before the associated spill becomes a costly and hazardous problem. This paper describes a leak detection system combined with a global positioning system (GPS) and a computerizedmore » data output designed to pinpoint the presence of hydrocarbons in the air space of the pipeline`s right of way. Fixed wing aircraft as well as helicopters have been successfully used as airborne platforms. Natural gas, crude oil and finished products pipelines in Canada and the US have been surveyed using this technology with excellent correlation between the aircraft detection and in situ ground detection. The information obtained is processed with a proprietary software and reduced to simple coordinates. Results are transferred to ground crews to effect the necessary repairs.« less

  1. Evaluation of volatiles from Ampelopsis brevipedunculata var. heterophylla using GC-olfactometry, GC-MS and GC-pulsed flame photometric detector.

    PubMed

    Nakamura, Atsuhiko; Miyazawa, Mitsuo

    2013-01-01

    Ampelopsis brevipedunculata var. heterophylla is extensively cultivated in Asia, and the dried leaves and branches have a characteristic odor and have been used as a tea. To investigate the odorants contributing to the characteristic odor of A. brevipedunculata var. heterophylla, the aroma extraction dilution analysis method was performed through gas chromatography olfactometry. In addition, volatile sulfur compounds were evaluated using pulsed flame photometric detector. As a result, 86 compounds were identified in the oils of leaves and 78 in branches, accounting for 80.0% and 68.3%, respectively, of the compounds identified. The main compounds in the essential oil of leaves were palmitic acid (12.5%), phenylacetaldehyde (4.1%) and hexahydrofarnesyl acetone (3.9%). On the other hand, the essential oil of branches contained palmitic acid (12.7%), terpinen-4-ol (4.4%) and α-cadinol (3.7%). The total number of odor-active compounds identified in the leaf and branch oils was 39. The most odorous compounds of leaves and branches of A. brevipedunculata var. heterophylla were (E, Z)-2,6-nonadienal (melon, green odor), (E)-2-nonenal (grassy odor), phenylacetaldehyde (honey-like) and (E)-linalool oxide (woody odor).

  2. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.

  3. Standardisation and half-life of 89Zr.

    PubMed

    García-Toraño, E; Peyrés, V; Roteta, M; Mejuto, M; Sánchez-Cabezudo, A; Romero, E

    2018-04-01

    The nuclide 89 Zr is being tested for the labelling of compounds with long blood circulation times. It decays by beta plus emission (22.8%) and by electron capture (77.2%) to 89 Y. Its half-life has been determined by following the decay rate with two measurement systems; an Ionisation Chamber and an HPGe detector. The combination of six results gives a value of T 1/2 = 78.333 (38) h, slightly lower than the DDEP recommended value of 78.42 (13) h. This radionuclide has also been standardised by liquid scintillation counting, 4πγ counting and coincidence techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characterization and Modeling of a Water-based Liquid Scintillator

    DOE PAGES

    L. J. Bignell; Beznosko, D.; Diwan, M. V.; ...

    2015-12-15

    We characterised Water-based Liquid Scintillator (WbLS) using low energy protons, UV-VIS absorbance, and fluorescence spectroscopy. We have also developed and validated a simulation model that describes the behaviour of WbLS in our detector configurations for proton beam energies of 210 MeV, 475 MeV, and 2 GeV and for two WbLS compositions. These results have enabled us to estimate the light yield and ionisation quenching of WbLS, as well as to understand the influence of the wavelength shifting of Cherenkov light on our measurements. These results are relevant to the suitability of WbLS materials for next generation intensity frontier experiments.

  5. Smoke detection in low-G fires

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Griffin, Devon W.; Gard, Melissa Y.; Hoy, Michael

    1995-01-01

    Fires in spacecraft are considered a credible risk. To respond to this risk, NASA flew fire detectors on Skylab and the Space Shuttle (STS) and included them in the design for International Space Station Alpha (ISSA). In previous missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was not considered credible that the astronauts could fail to observe a fire. The Skylab nodule included approximately 20 UV fire detectors. The space shuttle has 9 ionization detectors in the mid deck and flight deck and Spacelab has six additional ionization detectors. The planned detectors for ISSA are laser-diode, forward-scattering, smoke or particulate detectors. Current plans for the ISSA call for two detectors in the open area of the module and detectors in racks that have both cooling air flow and electrical power. Due to the complete absence of data concerning the nature of particulate and radiant emission from low-g fires, all three of these detector systems were designed based upon 1-g test data. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew independent, fire detection grows significantly. This requires more knowledge concerning low-gravity fires and how they might be detected. To date, no combustion-generated particulate samples have been collected for well-developed microgravity flames. All of the extant data come from drop tower tests and therefore only correspond to the early stages of a fire. The fuel sources were restricted to laminar gas-jet diffusion flames and rapidly overheated wire insulation. These gas-jet drop tower tests indicate, through thermophoretic sampling, that soot primaries and aggregates (groups of primary particles) in micro-g may be significantly larger than those in normal-g (ng). This raises new scientific questions about soot processes as well as practical issues for particulate detection/alarm threshold levels used in on-orbit smoke detectors. Furthermore, it is widely speculated but unverified that the aggregates will grow to very large scales in a microgravity fire of longer duration than available on the ground. Preliminary tests in the 2.2 second drop tower suggest that particulate generated by overheated wire insulation will also be larger in microgravity than in normal gravity. TEM grids downstream of the fire region in the WIF experiment as well as visual observation of long string-like aggregates, further confirm this suggestion. The combined impact of these limited results and theoretical predictions is that direct knowledge of low-g combustion particulate as opposed to extrapolation from 1-g data is needed for a more confident design of smoke detectors for spacecraft.

  6. Novel detectors for silicon based microdosimetry, their concepts and applications

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Anatoly B.

    2016-02-01

    This paper presents an overview of the development of semiconductor microdosimetry and the most current (state-of-the-art) Silicon on Insulator (SOI) detectors for microdosimetry based mainly on research and development carried out at the Centre for Medical Radiation Physics (CMRP) at the University of Wollongong with collaborators over the last 18 years. In this paper every generation of CMRP SOI microdosimeters, including their fabrication, design, and electrical and charge collection characterisation are presented. A study of SOI microdosimeters in various radiation fields has demonstrated that under appropriate geometrical scaling, the response of SOI detectors with the well-known geometry of microscopically sensitive volumes will record the energy deposition spectra representative of tissue cells of an equivalent shape. This development of SOI detectors for microdosimetry with increased complexity has improved the definition of microscopic sensitive volume (SV), which is modelling the deposition of ionising energy in a biological cell, that are led from planar to 3D SOI detectors with an array of segmented microscopic 3D SVs. The monolithic ΔE-E silicon telescope, which is an alternative to the SOI silicon microdosimeter, is presented, and as an example, applications of SOI detectors and ΔE-E monolithic telescope for microdosimetery in proton therapy field and equivalent neutron dose measurements out of field are also presented. An SOI microdosimeter "bridge" with 3D SVs can derive the relative biological effectiveness (RBE) in 12C ion radiation therapy that matches the tissue equivalent proportional counter (TEPC) quite well, but with outstanding spatial resolution. The use of SOI technology in experimental microdosimetry offers simplicity (no gas system or HV supply), high spatial resolution, low cost, high count rates, and the possibility of integrating the system onto a single device with other types of detectors.

  7. Precision tracking with a single gaseous pixel detector

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N. P.; de Jong, P.; Kluit, R.

    2015-09-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips. Using wafer post-processing we add a spark-protection layer and a grid to create an amplification region above the chip, allowing individual electrons released above the grid by the passage of ionising radiation to be recorded. The electron creation point is measured in 3D, using the pixel position for (x, y) and the drift time for z. The track can be reconstructed by fitting a straight line to these points. In this work we have used a pixel-readout-chip which is a small-scale prototype of Timepix3 chip (designed for both silicon and gaseous detection media). This prototype chip has several advantages over the existing Timepix chip, including a faster front-end (pre-amplifier and discriminator) and a faster TDC which reduce timewalk's contribution to the z position error. Although the chip is very small (sensitive area of 0.88 × 0.88mm2), we have built it into a detector with a short drift gap (1.3 mm), and measured its tracking performance in an electron beam at DESY. We present the results obtained, which lead to a significant improvement for the resolutions with respect to Timepix-based detectors.

  8. Estimating radiated flux density from wildland fires using the raw output of limited bandpass detectors

    Treesearch

    Robert L. Kremens; Matthew B. Dickinson

    2015-01-01

    We have simulated the radiant emission spectra from wildland fires such as would be observed at a scale encompassing the pre-frontal fuel bed, the flaming front and the zone of post-frontal combustion and cooling. For these simulations, we developed a 'mixed-pixel' model where the fire infrared spectrum is estimated as the linear superposition of spectra of...

  9. Innovative Technology Development for Comprehensive Air Quality Characterization from Open Burning

    DTIC Science & Technology

    2012-04-01

    Burning/Open Detonation (OB/OD) has been used as a safe, effective , and economic way to demilitarize munitions for energetic material disposal. Field...target analyte i (lb/lb i in ordnance) ERDC-CERL Engineer Research Development Center, Construction Engineering Research Laboratory GC/FID gas ...chromatograph(y) - flame ionization detector GC/MS gas chromatography/mass spectrometry GPS global positioning system ISO International Organization for

  10. Determination of Poly-β-Hydroxybutyrate and Poly-β-Hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography

    PubMed Central

    Comeau, Yves; Hall, Kenneth J.; Oldham, William K.

    1988-01-01

    A convenient gas-liquid chromatography procedure to quantify poly-β-hydroxybutyrate and poly-β-hydroxyvalerate in activated sludge was developed by combining lyophilization of the samples, purification of the chloroform phase by water reextraction, and the use of capillary columns. With a flame ionization detector the sensitivity was estimated at 10−5 g/liter. PMID:16347745

  11. Effects of bovine pregnancy on the fatty acid composition of milk: the significance for humans needs.

    PubMed

    Barreiro, R; Regal, P; Díaz-Bao, M; Vázquez, B I; Cepeda, A

    2017-04-01

    Milk from 40 Holstein dairy cows was collected from two different farms in Galicia (Spain). The differences in the fatty acid composition of two groups of cows, 20 pregnant and 20 non-pregnant, was studied to determine whether pregnancy status is a determinant factor that can alter the fatty acid profile of milk. Gas-chromatography (GC) coupled to flame ionisation detection (FID) was used for the determination of the fatty acids. Differences in the milk fatty acids between pregnant and non-pregnant cows were pronounced showing statistically significant differences for some fatty acids and the total saturated and monounsaturated fatty acids. Milk from non-pregnant cows was lower in saturated fatty acids and higher in monounsaturated fatty acids (unlike milk from pregnant cows). The effects of the consumption of bovine milk, particularly milk fat, on human health have been studied in depth and sometimes are associated with negative effects, but milk has also several beneficial characteristics linked to some fatty acids.

  12. Measurements of C6-C8 hydrocarbons at a UK rural site during January 1999. Site evaluation and correlations between species.

    PubMed

    Hopkins, J R; Barnett, C J; Lewis, A C; Seakins, P W

    2003-02-01

    Ambient concentrations of C6-C8 aromatic hydrocarbons and n-heptane, determined by gas chromatography with flame ionisation detection, are presented from a winter campaign during January 1999 at a rural site near Leeds. Absolute concentrations are significantly lower than those obtained from the only designated UK rural site (Harwell) in the automated UK hydrocarbon network. Both absolute and relative concentrations of hydrocarbons measured at the site have been interpreted in terms of the arriving back-trajectories. The site is subject to two main airflows during the winter months; relatively polluted air from the southwest and much cleaner air from the northwest. Ratios of hydrocarbon concentrations show evidence of significant chemical processing consistent with chemical removal by OH. Uncertainties in the ages of the trajectories prevent a reliable estimation of the average OH concentration over the trajectory. The dependence of the variance of the hydrocarbon concentrations with their lifetime with respect to removal by OH does not show the expected behaviour.

  13. A Discussion about Ionising and Non-Ionising Radiation and the Critical Issue of Mobile Phones

    ERIC Educational Resources Information Center

    Kontomaris, Stylianos-Vasileios; Malamou, Anna

    2018-01-01

    Electromagnetic radiation is one of the most important issues affecting peoples' lives today. The misunderstanding of students and the general population of the effects of electromagnetic radiation is a problem which must be eliminated. Thus, a discussion about ionising and non-ionising radiation focusing on the crucial issue of radiation emitted…

  14. A methodology for dosimetry audit of rotational radiotherapy using a commercial detector array.

    PubMed

    Hussein, Mohammad; Tsang, Yatman; Thomas, Russell A S; Gouldstone, Clare; Maughan, David; Snaith, Julia A D; Bolton, Steven C; Nisbet, Andrew; Clark, Catharine H

    2013-07-01

    To develop a methodology for the use of a commercial detector array in dosimetry audits of rotational radiotherapy. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were asked to create a rotational radiotherapy treatment plan for a three-dimensional treatment-planning-system (3DTPS) test and audited. Phantom measurements using a commercial 2D ionisation chamber (IC) array were compared with measurements using 0.125 cm(3) IC, Gafchromic film and alanine pellets in the same plane. Relative and absolute gamma index (γ) comparisons were made for Gafchromic film and 2D-Array planes, respectively. Comparisons between individual detectors within the 2D-Array against the corresponding IC and alanine measurement showed a statistically significant concordance correlation coefficient (both ρc>0.998, p<0.001) with mean difference of -1.1 ± 1.1% and -0.8 ± 1.1%, respectively, in a high dose PTV. In the γ comparison between the 2D-Array and film it was that the 2D-Array was more likely to fail planes where there was a dose discrepancy due to the absolute analysis performed. It has been found that using a commercial detector array for a dosimetry audit of rotational radiotherapy is suitable in place of standard systems of dosimetry. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Simultaneous Determination of Miconazole Nitrate and Metronidazole in Different Pharmaceutical Dosage Forms by Gas Chromatography and Flame Ionization Detector (GC-FID).

    PubMed

    Ashour, Safwan; Kattan, Nuha

    2010-03-01

    A simple, rapid and precise gas chromatographic method has been developed for the simultaneous determination of miconazole nitrate (MIZ) and metronidazole (MNZ) in tablets and ovules, using a capillary column AE.SE-54 (15 m × 0.53 mm, i.d.) and nitrogen as a carrier gas at a flow rate of 9 mL min(-1). The oven temperature was programmed at 140°C for 3 min, with a rise of 40°C min(-1) up to 180°C (held for 2 min) and then increased to a final temperature of 250°C. The injector and detector port temperatures were maintained at 260°C. Detection was carried out using flame ionization detector. Results of assay and recovery studies were statistically evaluated for its accuracy and precision. The retention times were about 3.50 and 12.90 min for MNZ and MIZ, respectively. Linearity ranges were 50.0-6030.0 and 62.5-2000.0 μg mL(-1) for MNZ and MIZ, with limit of detection values of 2.5 and 3.1 μg mL(-1), respectively. Correlation coefficients (R(2)) of the regression equations were greater than 0.999 in all cases. No interference from any components of pharmaceutical dosage forms or degradation products was observed. According to the validation results, the proposed method was found to be specific, accurate, precise and could be applied to the simultaneous quantitative analysis of MIZ and MNZ in tablets and ovules.

  16. Development of an in situ calibration technique for combustible gas detectors

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Wynveen, R. A.; Lance, N., Jr.; Lantz, J. B.

    1977-01-01

    This paper describes the development of an in situ calibration procedure for combustible gas detectors (CGD). The CGD will be a necessary device for future space vehicles as many subsystems in the Environmental Control/Life Support System utilize or produce hydrogen (H2) gas. Existing calibration techniques are time-consuming and require support equipment such as an environmental chamber and calibration gas supply. The in situ calibration procedure involves utilization of a water vapor electrolysis cell for the automatic in situ generation of a H2/air calibration mixture within the flame arrestor of the CGD. The development effort concluded with the successful demonstration of in situ span calibrations of a CGD.

  17. Ionising sources in the coma of 67P probed by Rosetta

    NASA Astrophysics Data System (ADS)

    Heritier, Kevin; Galand, Marina; Henri, Pierre; Eriksson, Anders; Odelstad, Elias; Altwegg, Kathrin; Beth, Arnaud; Broiles, Thomas; Burch, Jim; Carr, Christopher; Cupido, Emanuele; Glassmeier, Karl-Heinz; Nilsson, Hans; Richter, Ingo; Rubin, Martin; Vallieres, Xavier; Vigren, Erik

    2017-04-01

    An ionospheric model has been developed in order to quantify the ion number density in the coma of 67P/Churyumov-Gerasimenko. The model is driven by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Cometary Pressure Sensor (COPS) neutral density and assumes isentropic expansion for the neutral density profile. The two ionisation sources considered are photo-ionisation by solar extreme ultraviolet (EUV) radiation and electron-impact ionisation. The EUV radiation is estimated from fluxes measured by the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/ Solar EUV Experiment (SEE), taking into account the phase shift and the heliocentric distance ratio; between Earth and comet 67P. The electron-impact ionisation production rates are derived from Rosetta Plasma Consortium (RPC)-Ion and Electron Sensor (IES) integrated electron fluxes and corrected for the S/C potential from RPC/LAngmuir Probe (LAP) measurements. Our results are compared with in situ measurements of the plasma density from RPC-Mutual Impedance Probe (MIP) and RPC-LAP. There is a good agreement between the modelled and RPC observed electron densities. The ionospheric model enables to distinguish the relative contributions of the different sources to the total cometary plasma. At high heliocentric distances, electron-impact ionisation becomes the dominant ionisation source and is enhanced over the winter hemisphere. As the solar activity has decreased since the beginning of the mission in 2014, the relative importance of photo-ionisation has decreased as well. However, at low heliocentric distances, photo-ionisation seems to be the most dominant ionising source, in particular through the perihelion period in summer 2015.

  18. A discussion about ionising and non-ionising radiation and the critical issue of mobile phones

    NASA Astrophysics Data System (ADS)

    Kontomaris, Stylianos-Vasileios; Malamou, Anna

    2018-01-01

    Electromagnetic radiation is one of the most important issues affecting peoples’ lives today. The misunderstanding of students and the general population of the effects of electromagnetic radiation is a problem which must be eliminated. Thus, a discussion about ionising and non-ionising radiation focusing on the crucial issue of radiation emitted by mobile phones is presented.

  19. Electron Impact Ionization Cross Sections in Rb and Cs.

    NASA Astrophysics Data System (ADS)

    Reddish, T. J.; Lukomski, M.; Sutton, S.; Kedzierski, W.; McConkey, J. W.; Bartschat, K.; Bartlett, P. L.; Stelbovics, A. T.; Bray, I.

    2006-05-01

    We present a new atom trapping technique for determining absolute, total ionisation cross sections (TICS) out of an excited atom. The novel feature of this method is in utilizing Doppler cooling of neutral atoms to determine ionisation cross sections. This fluorescence-monitoring experiment, which is a variant of the `trap loss' technique, has enabled us to obtain the experimental electron impact ionisation cross sections out of the Cs 6^2P3/2 excited state between 7 - 400 eV. New CCC, R-Matrix with Pseudo-States (RMPS), and Born approximation single ionisation cross sections (SICS) are also presented for both the ground and excited states of Cs and Rb, and compared with the available experimental data. The comparison of the results reveals the importance of the autoionisation and multiple ionisation contributions to the TICS. The autoionisation contribution appears to be substantial for ionisation out of the Cs 6^2P and Rb 5^2P excited states; ˜ 3-4 larger than the direct ionisation contribution predicted by CCC at ˜ 30-50 eV. This surprising result shows the importance of multi-electron processes in determining the ionisation cross sections of heavy alkali atoms.

  20. Analysis of trifluralin, methyl paraoxon, methyl parathion, fenvalerate and 2,4-D dimethylamine in pond water using solid-phase extraction

    USGS Publications Warehouse

    Swineford, D.M.; Belisle, A.A.

    1989-01-01

    A method was developed for the simultaneous extraction of trifluralin, methyl paraoxon, methyl parathion, fenvalerate, and 2,4-D dimethylamine salt in pond water using a solid-phase C18 column. After elution from the C18 column, the eluate was analyzed on a capillary gas chromatograph equipped with an electron-capture or flame photometric detector.

  1. How do air ions reflect variations in ionising radiation in the lower atmosphere in a boreal forest?

    NASA Astrophysics Data System (ADS)

    Chen, Xuemeng; Kerminen, Veli-Matti; Paatero, Jussi; Paasonen, Pauli; Manninen, Hanna E.; Nieminen, Tuomo; Petäjä, Tuukka; Kulmala, Markku

    2016-11-01

    Most of the ion production in the atmosphere is attributed to ionising radiation. In the lower atmosphere, ionising radiation consists mainly of the decay emissions of radon and its progeny, gamma radiation of the terrestrial origin as well as photons and elementary particles of cosmic radiation. These types of radiation produce ion pairs via the ionisation of nitrogen and oxygen as well as trace species in the atmosphere, the rate of which is defined as the ionising capacity. Larger air ions are produced out of the initial charge carriers by processes such as clustering or attachment to pre-existing aerosol particles. This study aimed (1) to identify the key factors responsible for the variability in ionising radiation and in the observed air ion concentrations, (2) to reveal the linkage between them and (3) to provide an in-depth analysis into the effects of ionising radiation on air ion formation, based on measurement data collected during 2003-2006 from a boreal forest site in southern Finland. In general, gamma radiation dominated the ion production in the lower atmosphere. Variations in the ionising capacity came from mixing layer dynamics, soil type and moisture content, meteorological conditions, long-distance transportation, snow cover attenuation and precipitation. Slightly similar diurnal patterns to variations in the ionising capacity were observed in air ion concentrations of the cluster size (0.8-1.7 nm in mobility diameters). However, features observed in the 0.8-1 nm ion concentration were in good connection to variations of the ionising capacity. Further, by carefully constraining perturbing variables, a strong dependency of the cluster ion concentration on the ionising capacity was identified, proving the functionality of ionising radiation in air ion production in the lower atmosphere. This relationship, however, was only clearly observed on new particle formation (NPF) days, possibly indicating that charges after being born underwent different processes on NPF days and non-event days and also that the transformation of newly formed charges to cluster ions occurred in a shorter timescale on NPF days than on non-event days.

  2. Effects of ionised or chelated water-soluble mineral mixture supplementation on growth performance, nutrient digestibility, blood characteristics, meat quality and intestinal microbiota in broilers.

    PubMed

    Upadhaya, S D; Lee, B R; Kim, I H

    2016-04-01

    An experiment was conducted to study the effects of dietary supplementation of water-soluble ionised or chelated mineral mixture on growth performance, nutrient digestibility, blood characteristics, relative organ weight, meat quality and excreta microflora in broilers. A total of 408 Arbor Acres broilers (17 birds in 8 replicate pens) were randomly allocated into one of the following three treatments: (1) Control/basal diet (CON), (2) T1 (basal diet + 0.5% ionised mineral mixture solution, pH 3.0) and (3) T2 (basal diet + 0.5% chelated mineral mixture solution, pH 3.0). The body weight gain was greater and feed conversion ratio was lower in broilers supplemented with ionised or chelated mineral liquid complex compared to CON during the grower and overall phase of the experiment. No significant effect in the concentration of Ca and P in the blood was observed in birds supplemented with ionised or chelated mineral mixture solution. No adverse effects were observed in organ weight and meat quality with ionised or chelated mineral mixture supplementation. Regarding intestinal microbiota counts there was a reduction of Escherichia coli counts in the small intestine in ionised mineral supplemented birds. In the large intestine, E. coli as well as Salmonella populations were reduced in ionised mineral supplemented birds. In conclusion, ionised or chelated minerals have partial positive effects in improving growth performance and reducing pathogenic bacteria load in the gastro-intestinal tract.

  3. Simultaneous flame ionization and absorbance detection of volatile and nonvolatile compounds by reversed-phase liquid chromatography with a water mobile phase.

    PubMed

    Bruckner, C A; Ecker, S T; Synovec, R E

    1997-09-01

    A flame ionization detector (FID) is used to detect volatile organic compounds that have been separated by water-only reversed-phase liquid chromatography (WRP-LC). The mobile phase is 100% water at room temperature, without use of organic solvent modifiers. An interface between the LC and detector is presented, whereby a helium stream samples the vapor of volatile components from individual drops of the LC eluent, and the vapor-enriched gas stream is sent to the FID. The design of the drop headspace cell is simple because the water-only nature of the LC separation obviates the need to do any organic solvent removal prior to gas phase detection. Despite the absence of organic modifier, hydrophobic compounds can be separated in a reasonable time due to the low phase volume ratio of the WRP-LC columns. The drop headspace interface easily handles LC flows of 1 mL/min, and, in fact, compound detection limits are improved at faster liquid flow rates. The transfer efficiency of the headspace interface was estimated at 10% for toluene in water at 1 mL/min but varies depending on the volatility of each analyte. The detection system is linear over more than 5 orders of 1-butanol concentration in water and is able to detect sub-ppb amounts of o-xylene and other aromatic compounds in water. In order to analyze volatile and nonvolatile analytes simultaneously, the FID is coupled in series to a WRP-LC system with UV absorbance detection. WRP-LC improves UV absorbance detection limits because the absence of organic modifier allows the detector to be operated in the short-wavelength UV region, where analytes generally have significantly larger molar absorptivities. The selectivity the headspace interface provides for flame ionization detection of volatiles is demonstrated with a separation of 1-butanol, 1,1,2-trichloroethane (TCE), and chlorobenzene in a mixture of benzoic acid in water. Despite coelution of butanol and TCE with the benzoate anion, the nonvolatile benzoate anion does not appear in the FID signal, allowing the analytes of interest to be readily detected. The complementary selectivity of UV-visible absorbance detection and this implementation of flame ionization detection allows for the analysis of volatile and nonvolatile components of complex samples using WRP-LC without the requirement that all the components of interest be fully resolved, thus simplifying the sample preparation and chromatographic requirements. This instrument should be applicable to routine automated water monitoring, in which repetitive injection of water samples onto a gas chromatograph is not recommended.

  4. Effect of Biodiesel on Diesel Engine Nitrogen Oxide and Other Regulated Emissions

    DTIC Science & Technology

    2007-12-01

    Tedlar bags followed by gas chromatography —flame ionization detector (FID) analysis using a modified Auto/ Oil protocol. For a more detailed...content soy hybrids, using other vegetable oils with a higher oil content or using yellow grease that is often available at low (approximately $0.05 per lb...fueled vehicle APG Aberdeen Proving Ground AO/AQIRP Auto/ Oil Air Quality Improvement Research Program ASTM American Society of Testing and

  5. Radiation hardness and timing studies of a monolithic TowerJazz pixel design for the new ATLAS Inner Tracker

    NASA Astrophysics Data System (ADS)

    Riegel, C.; Backhaus, M.; Van Hoorne, J. W.; Kugathasan, T.; Musa, L.; Pernegger, H.; Riedler, P.; Schaefer, D.; Snoeys, W.; Wagner, W.

    2017-01-01

    A part of the upcoming HL-LHC upgrade of the ATLAS Detector is the construction of a new Inner Tracker. This upgrade opens new possibilities, but also presents challenges in terms of occupancy and radiation tolerance. For the pixel detector inside the inner tracker, hybrid modules containing passive silicon sensors and connected readout chips are presently used, but require expensive assembly techniques like fine-pitch bump bonding. Silicon devices fabricated in standard commercial CMOS technologies, which include part or all of the readout chain, are also investigated offering a reduced cost as they are cheaper per unit area than traditional silicon detectors. If they contain the full readout chain, as for a fully monolithic approach, there is no need for the expensive flip-chip assembly, resulting in a further cost reduction and material savings. In the outer pixel layers of the ATLAS Inner Tracker, the pixel sensors must withstand non-ionising energy losses of up to 1015 n/cm2 and offer a timing resolution of 25 ns or less. This paper presents test results obtained on a monolithic test chip, the TowerJazz 180nm Investigator, towards these specifications. The presented program of radiation hardness and timing studies has been launched to investigate this technology's potential for the new ATLAS Inner Tracker.

  6. Dissipative instability in a partially ionised prominence plasma slab

    NASA Astrophysics Data System (ADS)

    Ballai, I.; Pintér, B.; Oliver, R.; Alexandrou, M.

    2017-07-01

    Aims: We aim to investigate the nature of dissipative instability appearing in a prominence planar thread filled with partially ionised plasma in the incompressible limit. The importance of partial ionisation is investigated in terms of the ionisation factor and the wavelength of sausage and kink waves propagating in the slab. Methods: In order to highlight the role of partial ionisation, we have constructed models describing various situations we can meet in solar prominence fine structure. Matching the solutions for the transversal component of the velocity and total pressure at the interfaces between the prominence slab and surrounding plasmas, we derived a dispersion relation whose imaginary part describes the evolution of the instability. Results were obtained in the limit of weak dissipation. We have investigated the appearance of instabilities in prominence dark plumes using single and two-fluid approximations. Results: Using simple analytical methods, we show that dissipative instabilities appear for flow speeds that are less than the Kelvin-Helmholtz instability threshold. The onset of instability is determined by the equilibrium flow strength, the ionisation factor of the plasma, the wavelength of waves and the ion-neutral collisional rate. For a given wavelength and for ionisation degrees closer to a neutral gas, the propagating waves become unstable for a narrow band of flow speeds, meaning that neutrals have a stabilising effect. Our results show that the partially ionised plasma describing prominence dark plumes becomes unstable only in a two-fluid (charged particles-neutrals) model, that is for periods that are smaller than the ion-neutral collision time. Conclusions: The present study improves our understanding of the complexity of dynamical processes and stability of solar prominences and the role partial ionisation in destabilising the plasma. We showed the necessity of two-fluid approximation when discussing the nature of instabilities: waves in a single fluid approximation show a great deal of stability. Our results clearly show that the problem of partial ionisation introduces new aspects of plasma stability with consequences on the evolution of partially ionised plasmas and solar prominences, in particular.

  7. The fate of sulfur in mild gasification liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, R.A.; Koncar, G.J.; Babu, S.P.

    1991-01-01

    This investigation addresses the determination of sulfur distribution in mild gasification liquids produced from untreated coal and from modified in two ways to reduce sulfur in the products: (a) physical mixing with a sulfur scavenger (CaO), and (b) pretreatment with aqueous alkali followed by mixing with CaO. Coal pyrolysis in the presence of CaO has previously been investigated, (3,5) showing that CaO can be effective in reducing the sulfur content of the fuel gas, and possibly that of the product liquids. Pretreatment of coals with alkaline chemicals has also been studied,(6,7) showing reduced sulfur and other changes in the liquidmore » products.(8) Data on sulfur distribution in the liquid products could be useful for understanding the chemistry of alkali pretreatment and CaO interaction with coal sulfur during pyrolysis. In this work, a pyrolysis-gas chromatography (Py-GC) technique that simulates mild gasification on a milligram scale was used in conjunction with a carbon-specific flame ionization detector (FID) and a sulfur-specific flame photometric detector (FPD) to determine the sulfur distribution in oils/tars from Illinois No. 6 coal. A low-resolution packed GC column was employed to resolve oils/tars by carbon number, with ranges selected to approximate distillation fractions which might be recovered from a commercial mild gasification process. Oils/tars up to C{sub 18} were also collected from the pyro-probe effluent into dichloromethane for off-line study using a high-resolution GC with atomic emission detector (GC/AED) and with GC-mass spectrometry (GC/MS) to measure specific sulfur compounds. 9 refs., 1 tab.« less

  8. The ionisation parameter of star-forming galaxies evolves with the specific star formation rate

    NASA Astrophysics Data System (ADS)

    Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan

    2018-04-01

    We investigate the evolution of the ionisation parameter of star-forming galaxies using a high-redshift (z ˜ 1.5) sample from the FMOS-COSMOS survey and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR) and specific star formation rate (sSFR) are matched to the high-redshift sample we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionisation parameter of each sample. We find an evolution in the ionisation parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z < 0.3, star-forming galaxies we show that high ionisation parameters are directly linked to high sSFRs and are not simply the byproduct of an evolution in metallicity. Our results are physically consistent with the definition of the ionisation parameter, a measure of the hydrogen ionising photon flux relative to the number density of hydrogen atoms.

  9. Volatile organic compounds in Gulf of Mexico sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, T.J.

    1988-01-01

    Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1) planktonic and benthic fauna and flora; (2) terrestrial material from riverine and atmospheric deposition; (3) anthropogenic inputs: (4) upward migration of hydrocarbons; and (5) transport by bottom currents or slumping. Detected organo-sulfur compounds include alkylated sulfides, thiophene, alkylated thiophenes, andmore » benzothiophenes. Benzothiophenes are petroleum related. Low molecular weight organo-sulfur compounds result from the biological oxidation of organic matter. A lack of organosulfur compounds in the reducing environment of the Orca Basin may result from a lack of free sulfides which are necessary for their production.« less

  10. Particle and Smoke Detection on ISS for Next Generation Smoke Detectors

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary; Yuan, Zeng-guang; Sheredy, William; Funk, Greg

    2007-01-01

    Rapid fire detection requires the ability to differentiate fire signatures from background conditions and nuisance sources. Proper design of a fire detector requires detailed knowledge of all of these signal sources so that a discriminating detector can be designed. Owing to the absence of microgravity smoke data, all current spacecraft smoke detectors were designed based upon normal-g conditions. The removal of buoyancy reduces the velocities in the high temperature zones in flames, increasing the residence time of smoke particles and consequently allowing longer growth time for the particles. Recent space shuttle experiments confirmed that, in some cases, increased particles sizes are seen in low-gravity and that the relative performance of the ISS (International Space Station) and space-shuttle smoke-detectors changes in low-gravity; however, sufficient particle size information to design new detectors was not obtained. To address this issue, the SAME (Smoke Aerosol Measurement Experiment) experiment is manifested to fly on the ISS in 2007. The SAME experiment will make measurements of the particle size distribution of the smoke particulate from several typical spacecraft materials providing quantitative design data for spacecraft smoke detectors. A precursor experiment (DAFT: Dust Aerosol measurement Feasibility Test) flew recently on the ISS and provided the first measurement of the background smoke particulate levels on the ISS. These background levels are critical to the design of future smoke detectors. The ISS cabin was found to be a very clean environment with particulate levels substantially below the space shuttle and typical ground-based environments.

  11. [Morphology determination of multi-needle bipolar corona discharge by OES].

    PubMed

    Chen, Hai-Feng; Su, Peng-Hao; Zhu, Yi-Min

    2009-01-01

    Using the method of OES (optical emission spectrum) for measuring N2 emission spectrum, the spacial distribution of energetic electrons in multi-needle bipolar corona discharge at atmospheric pressure was investigated. According to the distribution of N2 second positive band's intensity ISPB, the outline of ionisation region was drawn accurately. The relationship between ISPB and discharge current I was obtained through the sum of ISPB. There are two ionisation regions in the multi-needle bipolar corona discharge. One is near the HV electrode and the other is near the grounded electrode. The ionisation region exists around the needlepoint within 2-3 mm. The volume of ionisation region becomes big with the applied voltage U increasing. The ionisation region of negative corona is bigger than that of positive corona. Near the HV discharge electrode, the outline of electron avalanche is similar to the configuration of electric field lines in the ionisation region, so the electron avalanche along the axis direction of needle develops farther than that along the radial direction. The electric field in the migration area is weak, and the distribution of space charges is large along the radial direction. The sum of ISPB in each ionisation region is second order linear with I, but the quadratic coefficient is very small. So the sum of ISPB is nearly linear with I, the distribution of ISPB is corresponding to the density distribution of energetic electrons. So the charged particles forming the discharge current in ionisation region are electrons. No emission spectrum of N2 can be measured in migration area, so there is no energetic electron. The energetic electrons only exist in ionisation region and the charged particles in migration area are ions.

  12. The Cost Effectiveness of Flame Sprayed Coatings for Shipboard Corrosion Control

    DTIC Science & Technology

    1990-06-01

    the substrate. 2. Existing condition of the surface to be painted. 3. Type of exposure. 4. Past history of the surface to be presened. 5. Practical... Psychrometer (B) Holiday Detector (Portable) (P) Wet Film Thickness Gauge (p) Dry Film Thickness Gauge (P) Air Compressor and Dryer (P) Battery Operated...34, typical. 3. Utility Requirements None 4. Estimated Cost $140 61 Y. 1. 2. 3. 4. PORTABLE ELECTRIC PSYCHROMETER Intended Use (B) To measure relative

  13. Needle trap extraction for GC analysis of formic and acetic acids in aqueous solution.

    PubMed

    Lee, Xinqing; Huang, Daikuan; Lou, Dawei; Pawliszyn, Janusz

    2012-07-01

    Formic and acetic acids are ubiquitous in the environment, food, and most of the natural products. Extraction of the acids from aqueous solution is required for their isotope analysis by the gas chromatography-isotope ratio mass spectrometry. To this objective, we have previously developed a purge-and-trap technique using the dynamic solid-phase microextraction technology, the NeedlEX. The extraction efficiency, however, remains unexamined. Here, we address this question using the flame ionization detector and isotope ratio mass spectrometer while comparing it with that of the CAR/PDMS fiber. The results show that the NeedlEX is applicable at a wide range of concentration through coordination of purge volume given the minimum amount 3.7 ng and 1.8 ng of formic and acetic, respectively, is extracted. The efficiency of NeedlEX was 6-7 times lower than the fiber at 1000 μg/mL depending on the analyte. It is, however, superior to the latter at 10 μg/mL or less owing to its lower detection limit. The extraction efficiency of both acids is equivalent in molar amount. This is, however, disguised by the different response of the flame ionization detector. The isotope ratio mass spectrometor overcomes this problem but is compromised by relatively large errors. These results are particularly useful for isotopic analysis of carboxylic acids. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Analysis and pollution sources speculations of toxic gases in a secondary fiber paper mill.

    PubMed

    Tong, Xin; Liu, Zhang; Chen, Xiao Q; Shen, Wen H

    2016-11-09

    This paper quantitatively investigates the compositions of the gaseous pollutants in the ambient air of a secondary fiber paper mill. Total volatile organic compounds (TVOC), formaldehyde (HCHO), sulfur compounds (H2S), and hydrocarbon compounds (CxHy) were analyzed on six sampling sites with photo-ionisation detector, acetylacetone spectrophotometric method, and gas detector. The results revealed that, the high levels of TVOC and CxHy were detected at the wet end of paper machine and the office area, respectively; all the H2S contents on the six sites exceeded the limit (0.06 mg m(-3)) seriously; the HCHO concentrations at other five sites were out of the limit (0.10 mg m(-3)) except for the wastewater treatment plant. Furthermore, the necessary discussions about the possible pollution sources were considered on the process flow, the chemical agents used, and the ambient conditions in the paper mill. For the sake of air pollution control in paper mills, these remarkable results and analysis lay some technical basis in the following researches that should attract more attentions.

  15. First experiences with the LHC BLM sanity checks

    NASA Astrophysics Data System (ADS)

    Emery, J.; Dehning, B.; Effinger, E.; Nordt, A.; Sapinski, M. G.; Zamantzas, C.

    2010-12-01

    The reliability concerns have driven the design of the Large Hardron Collider (LHC) Beam Loss Monitoring (BLM) system from the early stage of the studies up to the present commissioning and the latest development of diagnostic tools. To protect the system against non-conformities, new ways of automatic checking have been developed and implemented. These checks are regularly and systematically executed by the LHC operation team to ensure that the system status is after each test "as good as new". The sanity checks are part of this strategy. They are testing the electrical part of the detectors (ionisation chamber or secondary emission detector), their cable connections to the front-end electronics, further connections to the back-end electronics and their ability to request a beam abort. During the installation and in the early commissioning phase, these checks have shown their ability to find also non-conformities caused by unexpected failure event scenarios. In every day operation, a non-conformity discovered by this check inhibits any further injections into the LHC until the check confirms the absence of non-conformities.

  16. Finding Interstellar Particle Impacts on Stardust Aluminium Foils: The Safe Handling, Imaging, and Analysis of Samples Containing Femtogram Residues

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Westphal, A. J.; Stadermann, F. J.; Armes, S. P.; Ball, A. D.; Borg, J.; Bridges, J. C.; Brownlee, D. E.; Burchell, M. J.; Chater, R. J.; hide

    2010-01-01

    Impact ionisation detectors on a suite of spacecraft have shown the direction, velocity, flux and mass distribution of smaller ISP entering the Solar System. During the aphelion segments of the Stardust flight, a dedicated collector surface was oriented to intercept ISP of beta = 1, and returned to Earth in January 2006. In this paper we describe the probable appeareance and size of IS particle craters from initial results of experimental impacts and numerical simulation, explain how foils are being prepared and mounted for crater searching by automated acquisition of high magnification electron images (whilst avoiding contamination of the foils) and comment on appropriate analytical techniques for Preliminary Examination (PE).

  17. Electronic nicotine delivery systems: regulatory and safety challenges: Singapore perspective.

    PubMed

    Cheah, Nuan Ping; Chong, Norman Wee Lin; Tan, Jing; Morsed, Faridatul Akmam; Yee, Shen Kuan

    2014-03-01

    Many electronic nicotine delivery systems (ENDS) are marketed as safer tobacco alternative products or effective cessation therapies. ENDS samples were evaluated for design features, including nicotine and glycols content. This could be useful in developing a legal framework to handle ENDS. Identification of the nicotine, glycerol and propylene glycol (PPG) contents was conducted using gas chromatography mass spectrometry with quantification performed using flame ionisation techniques. Varying nicotine amounts were found in ENDS cartridges which were labelled with the same concentration. Chemicals such as PPG and glycerol were found to be present in the nicotine-containing liquid of the cartridges. ENDS varied in their contents and packaging information. Limited information was available on the contents of nicotine and other chemicals present in a variety of ENDS sampled. Based on samples tested in this study, many contain misleading information on product ingredients. The results show poor consistency between actual nicotine content analysed on ENDS cartridges and the amount labelled. These findings raise safety and efficacy concerns for current and would-be recreational users or those trying to quit smoking.

  18. Analysis of pecan nut (Carya illinoinensis) unsaponifiable fraction. Effect of ripening stage on phytosterols and phytostanols composition.

    PubMed

    Bouali, Intidhar; Trabelsi, Hajer; Herchi, Wahid; Martine, Lucy; Albouchi, Ali; Bouzaien, Ghaith; Sifi, Samira; Boukhchina, Sadok; Berdeaux, Olivier

    2014-12-01

    Changes in 4-desmethylsterol, 4-monomethylsterol, 4,4-dimethylsterol and phytostanol composition were quantitatively and qualitatively investigated during the ripening of three varieties of Tunisian-grown pecan nuts (Mahan, Moore and Burkett). These components have many health benefits, especially in lowering LDL-cholesterol and preventing heart disease. The phytosterol composition of whole pecan kernel was quantified by Gas Chromatography-Flame Ionisation Detection (GC-FID) and identified by Gas Chromatography-Mass Spectrometry (GC-MS). Fifteen phytosterols and one phytostanol were quantified. The greatest amount of phytosterols (2852.5mg/100g of oil) was detected in Mahan variety at 20 weeks after the flowering date (WAFD). Moore had the highest level of phytostanols (7.3mg/100g of oil) at 20 WAFD. Phytosterol and phytostanol contents showed a steep decrease during pecan nut development. Results from the quantitative characterisation of pecan nut oils revealed that β-sitosterol, Δ5-avenasterol, and campesterol were the most abundant phytosterol compounds at all ripening stages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon

    NASA Astrophysics Data System (ADS)

    Baudis, Laura; Biondi, Yanina; Capelli, Chiara; Galloway, Michelle; Kazama, Shingo; Kish, Alexander; Pakarha, Payam; Piastra, Francesco; Wulf, Julien

    2018-05-01

    A small-scale, two-phase (liquid/gas) xenon time projection chamber ( Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal ^83{m} Kr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 μ s. The relative energy resolution, σ /E, is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.

  20. Spectrometre de masse a ionisation Penning selective: Elimination des corrections necessaires a la determination du rapport isotopique de l'hydrogene

    NASA Astrophysics Data System (ADS)

    Letarte, Sylvain

    Dans le but d'ameliorer la precision avec laquelle le rapport isotopique de l'hydrogene peut etre determine, un spectrometre de masse a ionisation Penning a ete construit pour provoquer l'ionisation selective de l'hydrogene moleculaire et de l'hydrure de deuterium a partir d'un melange gazeux. L'utilisation d'atomes dans des etats d'excitation metastable s'est averee une solution adequate pour reponde a cette attente. L'emploi de l'helium, a l'interieur d'une source d'atomes metastables construit specifiquement pour ce travail, ne permet pas d'obtenir un spectre de masse compose uniquement des deux molecules d'interet. L'ionisation de ces dernieres provient de deux processus distincts, soient l'ionisation Penning et l'ionisation par bombardement electronique. Contrairement a l'helium, il a ete demontre que le neon metastable est un candidat ideal pour produire l'ionisation selective de type Penning. Le nombre d'ions produits est directement proportionnel au courant de la decharge electrique et de la pression d'operation de la source d'atomes metastables. Ces resultats demontrent le potentiel d'un tel spectrometre de masse pour ameliorer la precision a laquelle le rapport isotopique peut etre determine comparativement aux autres techniques existantes.

  1. Nurses', physicians' and radiographers' perceptions of the safety of a nurse prescribing of ionising radiation initiative: A cross-sectional survey.

    PubMed

    Hyde, Abbey; Coughlan, Barbara; Naughton, Corina; Hegarty, Josephine; Savage, Eileen; Grehan, Jennifer; Kavanagh, Eoin; Moughty, Adrian; Drennan, Jonathan

    2016-06-01

    A new initiative was introduced in Ireland following legislative changes that allowed nurses with special training to prescribe ionising radiation (X-ray) for the first time. A small number of studies on nurse prescribing of ionising radiation in other contexts have found it to be broadly as safe as ionising radiation prescribing by physicians. Sociological literature on perceptions of safety indicates that these tend to be shaped by the ideological position of the professional rather than based on objective evidence. To describe, compare and analyse perceptions of the safety of a nurse prescribing of ionising radiation initiative across three occupational groups: nursing, radiography and medicine. A cross-sectional survey design. Participants were drawn from a range of clinical settings in Ireland. Respondents were 167 health professionals comprised of 49 nurses, 91 radiographers, and 27 physicians out of a total of 300 who were invited to participate. Non-probability sampling was employed and the survey was targeted specifically at health professionals with a specific interest in, or involvement with, the development of the nurse prescribing of ionising radiation initiative in Ireland. Comparisons of perspectives on the safety of nurse prescribing of ionising radiation across the three occupational groups captured by questionnaire were analysed using the Kruskal-Wallis H test. Pairwise post hoc tests were conducted using the Mann-Whitney U test. While the majority of respondents from all three groups perceived nurse prescribing of ionising radiation to be safe, the extent to which this view was held varied. A higher proportion of nurses was found to display confidence in the safety of nurse prescribing of ionising radiation compared to physicians and radiographers with differences between nurses' perceptions and those of the other two groups being statistically significant. That an occupational patterning emerged suggests that perceptions about safety and risk of nurse prescribing of ionising radiation are socially constructed according to the vantage point of the professional and may not reflect objective measures of safety. These findings need to be considered more broadly in the context of ideological barriers to expanding the role of nurses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cosmic-ray ionisation of dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Vaupre, Solenn

    2015-07-01

    Cosmic rays (CR) are of tremendous importance in the dynamical and chemical evolution of interstellar molecular clouds, where stars and planets form. CRs are likely accelerated in the shells of supernova remnants (SNR), thus molecular clouds nearby can be irradiated by intense fluxes of CRs. CR protons have two major effects on dense molecular clouds: 1) when they encounter the dense medium, high-energy protons (>280 MeV) create pions that decay into gamma-rays. This process makes SNR-molecular cloud associations intense GeV and/or TeV sources whose spectra mimic the CR spectrum. 2) at lower energies, CRs penetrate the cloud and ionise the gas, leading to the formation of molecular species characteristic of the presence of CRs, called tracers of the ionisation. Studying these tracers gives information on low-energy CRs that are unaccessible to any other observations. I studied the CR ionisation of molecular clouds next to three SNRs: W28, W51C and W44. These SNRs are known to be interacting with the nearby clouds, from the presence of shocked gas, OH masers and pion-decay induced gamma-ray emission. My work includes millimeter observations and chemical modeling of tracers of the ionisation in these dense molecular clouds. In these three regions, we determined an enhanced CR ionisation rate, supporting the hypothesis of an origin of the CRs in the SNR nearby. The evolution of the CR ionisation rate with the distance to the SNR brings valuable constraints on the propagation properties of low-energy CRs. The method used relies on observations of the molecular ions HCO+ and DCO+, which shows crucial limitations at high ionisation. Therefore, I investigated, both through modeling and observations, the chemical abundances of several other species to try and identity alternative tracers of the ionisation. In particular, in the W44 region, observations of N2H+ bring additional constraints on the physical conditions, volatile abundances in the cloud, and the ionisation state. This research brought valuable insight in to the CR induced chemistry in the interstellar medium. It also brought new perspectives of interdisciplinary research towards the understanding of CRs, from millimeter to gamma-ray observations.

  3. Toward Portable Breath Acetone Analysis for Diabetes Detection

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  4. Quantitative carbon detector for enhanced detection of molecules in foods, pharmaceuticals, cosmetics, flavors, and fuels.

    PubMed

    Beach, Connor A; Krumm, Christoph; Spanjers, Charles S; Maduskar, Saurabh; Jones, Andrew J; Dauenhauer, Paul J

    2016-03-07

    Analysis of trace compounds, such as pesticides and other contaminants, within consumer products, fuels, and the environment requires quantification of increasingly complex mixtures of difficult-to-quantify compounds. Many compounds of interest are non-volatile and exhibit poor response in current gas chromatography and flame ionization systems. Here we show the reaction of trimethylsilylated chemical analytes to methane using a quantitative carbon detector (QCD; the Polyarc™ reactor) within a gas chromatograph (GC), thereby enabling enhanced detection (up to 10×) of highly functionalized compounds including carbohydrates, acids, drugs, flavorants, and pesticides. Analysis of a complex mixture of compounds shows that the GC-QCD method exhibits faster and more accurate analysis of complex mixtures commonly encountered in everyday products and the environment.

  5. European Code against Cancer 4th Edition: Ionising and non-ionising radiation and cancer.

    PubMed

    McColl, Neil; Auvinen, Anssi; Kesminiene, Ausrele; Espina, Carolina; Erdmann, Friederike; de Vries, Esther; Greinert, Rüdiger; Harrison, John; Schüz, Joachim

    2015-12-01

    Ionising radiation can transfer sufficient energy to ionise molecules, and this can lead to chemical changes, including DNA damage in cells. Key evidence for the carcinogenicity of ionising radiation comes from: follow-up studies of the survivors of the atomic bombings in Japan; other epidemiological studies of groups that have been exposed to radiation from medical, occupational or environmental sources; experimental animal studies; and studies of cellular responses to radiation. Considering exposure to environmental ionising radiation, inhalation of naturally occurring radon is the major source of radiation in the population - in doses orders of magnitude higher than those from nuclear power production or nuclear fallout. Indoor exposure to radon and its decay products is an important cause of lung cancer; radon may cause approximately one in ten lung cancers in Europe. Exposures to radon in buildings can be reduced via a three-step process of identifying those with potentially elevated radon levels, measuring radon levels, and reducing exposure by installation of remediation systems. In the 4th Edition of the European Code against Cancer it is therefore recommended to: "Find out if you are exposed to radiation from naturally high radon levels in your home. Take action to reduce high radon levels". Non-ionising types of radiation (those with insufficient energy to ionise molecules) - including extremely low-frequency electric and magnetic fields as well as radiofrequency electromagnetic fields - are not an established cause of cancer and are therefore not addressed in the recommendations to reduce cancer risk. Copyright © 2015 International Agency for Research on Cancer. Published by Elsevier Ltd. All rights reserved.

  6. A numerical tool for the calculation of non-equilibrium ionisation states in the solar corona and other astrophysical plasma environments

    NASA Astrophysics Data System (ADS)

    Bradshaw, S. J.

    2009-07-01

    Context: The effects of non-equilibrium processes on the ionisation state of strongly emitting elements in the solar corona can be extremely difficult to assess and yet they are critically important. For example, there is much interest in dynamic heating events localised in the solar corona because they are believed to be responsible for its high temperature and yet recent work has shown that the hottest (≥107 K) emission predicted to be associated with these events can be observationally elusive due to the difficulty of creating the highly ionised states from which the expected emission arises. This leads to the possibility of observing instruments missing such heating events entirely. Aims: The equations describing the evolution of the ionisaton state are a very stiff system of coupled, partial differential equations whose solution can be numerically challenging and time-consuming. Without access to specialised codes and significant computational resources it is extremely difficult to avoid the assumption of an equilibrium ionisation state even when it clearly cannot be justified. The aim of the current work is to develop a computational tool to allow straightforward calculation of the time-dependent ionisation state for a wide variety of physical circumstances. Methods: A numerical model comprising the system of time-dependent ionisation equations for a particular element and tabulated values of plasma temperature as a function of time is developed. The tabulated values can be the solutions of an analytical model, the output from a numerical code or a set of observational measurements. An efficient numerical method to solve the ionisation equations is implemented. Results: A suite of tests is designed and run to demonstrate that the code provides reliable and accurate solutions for a number of scenarios including equilibration of the ion population and rapid heating followed by thermal conductive cooling. It is found that the solver can evolve the ionisation state to recover exactly the equilibrium state found by an independent, steady-state solver for all temperatures, resolve the extremely small ionisation/recombination timescales associated with rapid temperature changes at high densities, and provide stable and accurate solutions for both dominant and minor ion population fractions. Rapid heating and cooling of low to moderate density plasma is characterised by significant non-equilibrium ionisation conditions. The effective ionisation temperatures are significantly lower than the electron temperature and the values found are in close agreement with the previous work of others. At the very highest densities included in the present study an assumption of equilibrium ionisation is found to be robust. Conclusions: The computational tool presented here provides a straightforward and reliable way to calculate ionisation states for a wide variety of physical circumstances. The numerical code gives results that are accurate and consistent with previous studies, has relatively undemanding computational requirements and is freely available from the author.

  7. Graphene oxide based sol-gel stainless steel fiber for the headspace solid-phase microextraction of organophosphate ester flame retardants in water samples.

    PubMed

    Jin, Tingting; Cheng, Jing; Cai, Cuicui; Cheng, Min; Wu, Shiju; Zhou, Hongbin

    2016-07-29

    In this paper, graphene oxide was coated onto a stainless steel wire through sol-gel technique and it was used as a solid phase microextraction (SPME) fiber. The prepared fiber was characterized by scanning electron microscopy (SEM), which displayed that the fiber had crinkled surface and porous structure The application of the fiber was evaluated through the headspace SPME of nine organophosphate ester flame retardants (OPFRs) with different characteristics in water samples followed by gas chromatography and nitrogen-phosphorous detector (GC/NPD). The major factors influencing the extraction efficiency, including the extraction and desorption conditions, were studied and optimized. Under the optimum conditions, the proposed method was evaluated, and applied to the analysis of organophosphate ester flame retardants in real environmental water samples. The results demonstrated the HS-SPME method based on GO sol-gel fiber had good linearity (R>0.9928), and limits of detection (1.4-135.6ngL(-1)), high repeatability (RSD<9.8%) and good recovery (76.4-112.4%). The GO based sol-gel fiber displayed bigger extraction capability than the commercial PDMS fiber and the pure sol-gel fiber for both polar and apolar organophosphate esters, especially for the OPFRs containing benzene rings. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electron impact ionisation cross section for organoplatinum compounds

    NASA Astrophysics Data System (ADS)

    Mahato, Dibyendu; Naghma, Rahla; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby

    2016-11-01

    This article reports electron impact ionisation cross sections for platinum-based drugs viz., cisplatin (H6N2Cl2Pt), carboplatin (C6H12N2O4Pt), oxaliplatin (C8H14N2O4Pt), nedaplatin (C2H8N2O3Pt) and satraplatin (C10H22ClN2O4Pt) complexes used in the cancer chemotherapy. The multi-scattering centre spherical complex optical potential formalism is used to obtain the inelastic cross section for these large molecules upon electron impact. The ionisation cross section is derived from the inelastic cross section employing complex scattering potential-ionisation contribution method. Comparison is made with previous results, where ever available and overall a reasonable agreement is observed. This is the first attempt to report total ionisation cross sections for nedaplatin and satraplatin complexes.

  9. GC/MS Analysis of the Essential Oil of Vernonia cinerea.

    PubMed

    Joshi, Rajesh K

    2015-07-01

    The hydro-distilled essential oil obtained from the roots of V. cinerea Less. (Asteraceae) was investigated by gas chromatography equipped with flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Twenty-five constituents were identified, which represented 97.4% of the total oil. The major compounds were α-muurolene (30.7%), β-caryophyllene (9.6%), α-selinene (8.7%), cyperene (6.7%) and α-gurjunene (6.5%). The essential oil was dominated by sesquiterpene hydrocarbons (87.8%).

  10. Development of New Decon Green (registered trademark): A How-To Guide for the Rapid Decontamination of CARC Paint

    DTIC Science & Technology

    2008-09-01

    sodium carbonate, and extracted with 2-mL chloroform. The chloroform layer was analyzed for residual agent by Gas Chromatography /Atomic Emission...agent remaining on the panel. Solutions were analyzed by Gas Chromatography /Flame-Ionization Detector (GC/FID) to determine the amounts of agent...transferred to glass scintillation vials. A 100-µL aliquot of the DEP was diluted with 900-µL chloroform (1:10 dilution) in a Gas Chromatography

  11. Halogenated flame retardants: do the fire safety benefits justify the risks?

    PubMed

    Shaw, Susan D; Blum, Arlene; Weber, Roland; Kannan, Kurunthachalam; Rich, David; Lucas, Donald; Koshland, Catherine P; Dobraca, Dina; Hanson, Sarah; Birnbaum, Linda S

    2010-01-01

    Since the 1970s, an increasing number of regulations have expanded the use of brominated and chlorinated flame retardants. Many of these chemicals are now recognized as global contaminants and are associated with adverse health effects in animals and humans, including endocrine and thyroid disruption, immunotoxicity, reproductive toxicity, cancer, and adverse effects on fetal and child development and neurologic function. Some flame retardants such as polybrominated diphenyl ethers (PBDEs) have been banned or voluntarily phased out by manufacturers because of their environmental persistence and toxicity, only to be replaced by other organohalogens of unknown toxicity. Despite restrictions on further production in some countries, consumer products previously treated with banned retardants are still in use and continue to release toxic chemicals into the environment, and the worldwide use of organohalogen retardants continues to increase. This paper examines major uses and known toxic effects of commonly-used organohalogen flame retardants, replacements for those that have been phased out, their combustion by-products, and their effectiveness at reducing fire hazard. Policy and other solutions to maintain fire safety while reducing toxicity are suggested. The major conclusions are: (1) Flammability regulations can cause greater adverse environmental and health impacts than fire safety benefits. (2) The current options for end-of-life disposal of products treated with organohalogens retardants are problematic. (3) Life-cycle analyses evaluating benefits and risks should consider the health and environmental effects of the chemicals, as well as their fire safety impacts. (4) Most fire deaths and most fire injuries result from inhaling carbon monoxide, irritant gases, and soot. The incorporation of organohalogens can increase the yield of these toxic by-products during combustion. (5) Fire-safe cigarettes, fire-safe candles, child-resistant lighters, sprinklers, and smoke detectors can prevent fires without the potential adverse effects of flame retardant chemicals. (6) Alternatives to organohalogen flame retardant chemicals include using less flammable materials, design changes, and safer chemicals. To date, before evaluating their health and environmental impacts, many flame retardant chemicals have been produced and used, resulting in high levels of human exposure. As a growing literature continues to find adverse impacts from such chemicals, a more systematic approach to their regulation is needed. Before implementing new flammability standards, decision-makers should evaluate the potential fire safety benefit versus the health and environmental impacts of the chemicals, materials, or technologies likely to be used to meet the standard. Reducing the use of toxic or untested flame retardant chemicals in consumer products can protect human and animal health and the global environment without compromising fire safety.

  12. Selective laser ionisation of radionuclide 63Ni

    NASA Astrophysics Data System (ADS)

    Tsvetkov, G. O.; D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Firsov, V. A.; Panchenko, V. Ya.

    2017-02-01

    We report a search for a scheme of selective laser stepwise ionisation of radionuclide 63Ni by radiation of a dye laser pumped by a copper vapour laser. A three-stage scheme is found with ionisation through an autoionising state (AIS): 3d 84s2 3F4(E = 0) → 3d 94p 1Fo3(31030.99 cm-1) → 3d 94d 2[7/2]4(49322.56 cm-1) → AIS(67707.61 cm-1) which, by employing saturated radiation intensities provides the ionisation selectivity of above 1200 for 63Ni.

  13. Occurrence of organohalogens at the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Tubbesing, Christoph; Kotte, Karsten; Keppler, Frank; Krause, Torsten; Bahlmann, Enno; Schöler, Heinfried

    2013-04-01

    Most arid and semi-arid regions are characterized by evaporites, which are assured sources for volatile organohalogens (VOX) [1]. These compounds play an important role in tropospheric and stratospheric chemistry. The Dead Sea between Israel and Jordan is the world's most famous and biggest all-season water covered salt lake. In both countries chemical plants like the Dead Sea Works and the Arab Potash Company are located at the southern part of the Dead Sea and mine various elements such as bromine and magnesium. Conveying sea water through constructed evaporation pans multifarious salts are enriched and precipitated. In contrast, the Northern basin and main part of the Dead Sea has remained almost untouched by industrial salt production. Its fresh water supply from the Jordan River is constantly decreasing, leading to further increased salinity. During a HALOPROC campaign (Natural Halogenation Processes in the Environment) we collected various samples including air, soils, sediments, halophytic plants, ground- and seawater from the Northern and Southern basin of the Israeli side of the Dead Sea. These samples were investigated for the occurrence of halocarbons using different analytical techniques. Most samples were analyzed for volatile organohalogens such as haloalkanes using gas chromatography- mass spectrometry (GC-MS). Interestingly, there is a strong enrichment of trihalomethanes (THM), especially all chlorinated and brominated ones and also the iodinated compound dichloroiodomethane were found in the Southern basin. In addition, volatile organic carbons (VOC) such as ethene and some other alkenes were analyzed by a gas chromatography-flame ionisation detector (GC-FID) to obtain further information about potential precursors of halogenated compounds. Halophytic plants were investigated for their potential to release chloromethane and bromomethane but also for their stable carbon and hydrogen isotope composition. For this purpose, a plant chamber was constructed to encase branches of halophytic plants to estimate their organohalogen emissions using adsorbent tubes or vacuum cans, respectively. Our results show that several halocarbons are ubiquitous at the Dead Sea basin and their formation depends on environmental factors such as salinity and vegetation. [1] Kotte et al., 2012, Biogeosciences, 9, 1225-1235

  14. Timing performance of the silicon PET insert probe

    PubMed Central

    Studen, A.; Burdette, D.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Kagan, H.; Lacasta, C.; Linhart, V.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.

    2010-01-01

    Simulation indicates that PET image could be improved by upgrading a conventional ring with a probe placed close to the imaged object. In this paper, timing issues related to a PET probe using high-resistivity silicon as a detector material are addressed. The final probe will consist of several (four to eight) 1-mm thick layers of silicon detectors, segmented into 1 × 1 mm2 pads, each pad equivalent to an independent p + nn+ diode. A proper matching of events in silicon with events of the external ring can be achieved with a good timing resolution. To estimate the timing performance, measurements were performed on a simplified model probe, consisting of a single 1-mm thick detector with 256 square pads (1.4 mm side), coupled with two VATAGP7s, application-specific integrated circuits. The detector material and electronics are the same that will be used for the final probe. The model was exposed to 511 keV annihilation photons from an 22Na source, and a scintillator (LYSO)–PMT assembly was used as a timing reference. Results were compared with the simulation, consisting of four parts: (i) GEANT4 implemented realistic tracking of electrons excited by annihilation photon interactions in silicon, (ii) calculation of propagation of secondary ionisation (electron–hole pairs) in the sensor, (iii) estimation of the shape of the current pulse induced on surface electrodes and (iv) simulation of the first electronics stage. A very good agreement between the simulation and the measurements were found. Both indicate reliable performance of the final probe at timing windows down to 20 ns. PMID:20215445

  15. Timing performance of the silicon PET insert probe.

    PubMed

    Studen, A; Burdette, D; Chesi, E; Cindro, V; Clinthorne, N H; Cochran, E; Grosicar, B; Kagan, H; Lacasta, C; Linhart, V; Mikuz, M; Stankova, V; Weilhammer, P; Zontar, D

    2010-01-01

    Simulation indicates that PET image could be improved by upgrading a conventional ring with a probe placed close to the imaged object. In this paper, timing issues related to a PET probe using high-resistivity silicon as a detector material are addressed. The final probe will consist of several (four to eight) 1-mm thick layers of silicon detectors, segmented into 1 x 1 mm(2) pads, each pad equivalent to an independent p + nn+ diode. A proper matching of events in silicon with events of the external ring can be achieved with a good timing resolution. To estimate the timing performance, measurements were performed on a simplified model probe, consisting of a single 1-mm thick detector with 256 square pads (1.4 mm side), coupled with two VATAGP7s, application-specific integrated circuits. The detector material and electronics are the same that will be used for the final probe. The model was exposed to 511 keV annihilation photons from an (22)Na source, and a scintillator (LYSO)-PMT assembly was used as a timing reference. Results were compared with the simulation, consisting of four parts: (i) GEANT4 implemented realistic tracking of electrons excited by annihilation photon interactions in silicon, (ii) calculation of propagation of secondary ionisation (electron-hole pairs) in the sensor, (iii) estimation of the shape of the current pulse induced on surface electrodes and (iv) simulation of the first electronics stage. A very good agreement between the simulation and the measurements were found. Both indicate reliable performance of the final probe at timing windows down to 20 ns.

  16. Peter J Derrick and the Grand Scale 'Magnificent Mass Machine' mass spectrometer at Warwick.

    PubMed

    Colburn, A W; Derrick, Peter J; Bowen, Richard D

    2017-12-01

    The value of the Grand Scale 'Magnificent Mass Machine' mass spectrometer in investigating the reactivity of ions in the gas phase is illustrated by a brief analysis of previously unpublished work on metastable ionised n-pentyl methyl ether, which loses predominantly methanol and an ethyl radical, with very minor contributions for elimination of ethane and water. Expulsion of an ethyl radical is interpreted in terms of isomerisation to ionised 3-pentyl methyl ether, via distonic ions and, possibly, an ion-neutral complex comprising ionised ethylcyclopropane and methanol. This explanation is consistent with the closely similar behaviour of the labelled analogues, C 3 H 7 CH 2 CD 2 OCH 3 +. and C 3 H 7 CD 2 CH 2 OCH 3 +. , and is supported by the greater kinetic energy release associated with loss of ethane from ionised n-propyl methyl ether compared to that starting from directly generated ionised 3-pentyl methyl ether.

  17. Detection of secondary and backscattered electrons for 3D imaging with multi-detector method in VP/ESEM.

    PubMed

    Slówko, Witold; Wiatrowski, Artur; Krysztof, Michał

    2018-01-01

    The paper considers some major problems of adapting the multi-detector method for three-dimensional (3D) imaging of wet bio-medical samples in Variable Pressure/Environmental Scanning Electron Microscope (VP/ESEM). The described method pertains to "single-view techniques", which to create the 3D surface model utilise a sequence of 2D SEM images captured from a single view point (along the electron beam axis) but illuminated from four directions. The basis of the method and requirements resulting from them are given for the detector systems of secondary (SE) and backscattered electrons (BSE), as well as designs of the systems which could work in variable conditions. The problems of SE detection with application of the Pressure Limiting Aperture (PLA) as the signal collector are discussed with respect to secondary electron backscattering by a gaseous environment. However, the authors' attention is turned mainly to the directional BSE detection, realized in two ways. The high take off angle BSE were captured through PLA with use of the quadruple semiconductor detector placed inside the intermediate chamber, while BSE starting at lower angles were detected by the four-folded ionization device working in the sample chamber environment. The latter relied on a conversion of highly energetic BSE into low energetic SE generated on walls and a gaseous environment of the deep discharge gap oriented along the BSE velocity direction. The converted BSE signal was amplified in an ionising avalanche developed in the electric field arranged transversally to the gap. The detector system operation is illustrated with numerous computer simulations and examples of experiments and 3D images. The latter were conducted in a JSM 840 microscope with its combined detector-vacuum equipment which could extend capabilities of this high vacuum instrument toward elevated pressures (over 1kPa) and environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. CERN@school: bringing CERN into the classroom

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Cook, J.; Coupe, A.; Fickling, R. L.; Parker, B.; Shearer, N.

    2016-04-01

    CERN@school brings technology from CERN into the classroom to aid with the teaching of particle physics. It also aims to inspire the next generation of physicists and engineers by giving participants the opportunity to be part of a national collaboration of students, teachers and academics, analysing data obtained from detectors based on the ground and in space to make new, curiosity-driven discoveries at school. CERN@school is based around the Timepix hybrid silicon pixel detector developed by the Medipix 2 Collaboration, which features a 300 μm thick silicon sensor bump-bonded to a Timepix readout ASIC. This defines a 256-by-256 grid of pixels with a pitch of 55 μm, the data from which can be used to visualise ionising radiation in a very accessible way. Broadly speaking, CERN@school consists of a web portal that allows access to data collected by the Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment in space and the student-operated Timepix detectors on the ground; a number of Timepix detector kits for ground-based experiments, to be made available to schools for both teaching and research purposes; and educational resources for teachers to use with LUCID data and detector kits in the classroom. By providing access to cutting-edge research equipment, raw data from ground and space-based experiments, CERN@school hopes to provide the foundation for a programme that meets the many of the aims and objectives of CERN and the project's supporting academic and industrial partners. The work presented here provides an update on the status of the programme as supported by the UK Science and Technology Facilities Council (STFC) and the Royal Commission for the Exhibition of 1851. This includes recent results from work with the GridPP Collaboration on using grid resources with schools to run GEANT4 simulations of CERN@school experiments.

  19. Strong optical field ionisation of solids

    NASA Astrophysics Data System (ADS)

    McDonald, C. R.; Ben Taher, A.; Brabec, T.

    2017-11-01

    Population transfer from the valence to conduction band in the presence of an intense laser field is explored theoretically in semiconductors and dielectrics. Experiments performed on dielectrics exposed to an intense laser field have divulged a population dynamics between valence and conduction band that differs from that observed in semiconductors. Our paper explores two aspects of ionisation in solids. (i) Contemporary ionisation theories do not take account of the coupling between the valence and conduction bands resulting in the absence the dynamic Stark shift. Our single-particle analysis identifies the absence of the dynamic Stark shift as a possible cause for the contrasting ionisation behaviours observed in dielectric and semiconductor materials. The dynamic Stark shift results in an increased bandgap as the laser intensity is increased. This suppresses ionisation to an extent where the main population dynamics results from virtual oscillations in the conduction band population. The dynamic Stark shift mainly affects larger bandgap materials which can be exposed to decidedly higher laser intensities. (ii) In the presence of laser dressed virtual population of the conduction band, elastic collisions potentially transmute virtual into real population resulting in ionisation. This process is explored in the context of the relaxation time approximation.

  20. New isotope technologies in environmental physics

    NASA Astrophysics Data System (ADS)

    Povinec, P. P.; Betti, M.; Jull, A. J. T.; Vojtyla, P.

    2008-02-01

    As the levels of radionuclides observed at present in the environment are very low, high sensitive analytical systems are required for carrying out environmental investigations. We review recent progress which has been done in low-level counting techniques in both radiometrics and mass spectrometry sectors, with emphasis on underground laboratories, Monte Carlo (GEANT) simulation of background of HPGe detectors operating in various configurations, secondary ionisation mass spectrometry, and accelerator mass spectrometry. Applications of radiometrics and mass spectrometry techniques in radioecology and climate change studies are presented and discussed as well. The review should help readers in better orientation on recent developments in the field of low-level counting and spectrometry, and to advice on construction principles of underground laboratories, as well as on criteria how to choose low or high energy mass spectrometers for environmental investigations.

  1. Evaluation of comprehensive two-dimensional gas chromatography with flame photometric detection: potential application for sulfur speciation in shale oil.

    PubMed

    Mitrevski, Blagoj; Amer, Mohammad W; Chaffee, Alan L; Marriott, Philip J

    2013-11-25

    Flame photometric detection in the sulfur channel has been evaluated for sulfur speciation and quantification in comprehensive two-dimensional gas chromatography [GC × GC-FPD(S)] for S-compound speciation in shale extracts. Signal non-linearity and potential quenching effects were reportedly major limitations of this detector for analysis of sulfur in complex matrices. However, reliable linear relationships with correlation coefficient >0.99 can be obtained if the sum of the square root of each modulation slice in GC × GC is plotted vs. sulfur concentration. Furthermore, the quenching effects are reduced due to essentially complete separation of S-containing components from the hydrocarbon matrix. An increase of S/N of up to 150 times has been recorded for benzothiophene and dibenzothiophene in GC × GC-FPD when compared to GC-FPD due to the modulation process. As a consequence, 10 times lower detection limits were observed in the former mode. The applicability of the method was demonstrated using shale oil sample extracts. Three sulfur classes were completely separated and the target class (thiophenes) was successfully quantified after the rest of the sample was diverted to the second detector by using a heart-cut strategy. Based on the proposed method, 70% of the sulfur in the shale oil was assigned to the thiophenes, 24% to benzothiophenes, and 5% to dibenzothiophene compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Real-time alkali monitoring system

    DOEpatents

    Goff, David R.; Romanosky, Robert R.; Hensel, Peter

    1990-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium emission line, may be detected in the presence of interfering background radiation. A combustion flame is fed by a diverted portion of a process stream and the common end of a bifurcated or quadfurcated fiber optic light guide is adapted to collect light from the flame. The light is guided through the branches of the fiber optic cable to bandpass filters, one of which is adapted to each of the branches of the fiber optic light guide. The bandpass filters are centered at wavelengths corresponding to the emission lines to be detected and two separate filters are required for each species being detected. The first filter has a bandwidth of about 3 nms and the second filter has a bandwidth of about 10 nms. Light detectors are located to view the light passing through the bandpass filters and amplifiers are connected to receive signals from the light detectors. The amplifier corresponding to the bandpass filter having the narrower bandwidth is preset to scale the signal by a factor equal to the ratio of the wide and narrow bandwidths of the bandpass filters. This scaling produces a scaled signal from which the difference between the scaled signal on the other signal can be calculated to produce a signal having an amplitude directly proportional to the concentration of the species of interest and independent of background radiation.

  3. Ethanol concentration in 56 refillable electronic cigarettes liquid formulations determined by headspace gas chromatography with flame ionization detector (HS-GC-FID).

    PubMed

    Poklis, Justin L; Wolf, Carl E; Peace, Michelle R

    2017-10-01

    Personal battery-powered vaporizers or electronic cigarettes were developed as an alternative to traditional cigarettes. The modern electronic cigarettes were patented in 2004 by Hon Lik in China. In May 2016, the US Food and Drug Administration (FDA) imposed regulatory statutes on e-cigarettes and their liquid formulations (e-liquids); prior to that, they were unregulated. E-liquids are typically composed of propylene glycol and/or glycerin, flavouring component(s), and active ingredient(s), such as nicotine. Fifty-six commercially available e-liquids, purchased from various sources, contained a variety of flavours and active ingredients. A headspace gas chromatography with flame ionization detector (HS-GC-FID) method was used to analyze these e-liquids for volatiles content. Only one of the e-liquids listed ethanol as a component. The chromatographic separation of volatiles was performed on a Restek BAC-1 column. A linear calibration was generated for ethanol with limits of detection and quantification (LOD/LOQ) of 0.05 mg/mL. Ethanol concentrations in the 56 e-liquids ranged from none detected to 206 mg/mL. The ethanol determined in these products may have been used in flavourants or a solvent; the reason for inclusion cannot be fully ascertained. The implications of vaporizing ethanol as an e-liquid component are unknown. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Investigation of the profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii using gas chromatography coupled with flame ionization detector.

    PubMed

    Ifeanacho, Mercy O; Ikewuchi, Catherine C; Ikewuchi, Jude C

    2017-05-01

    The profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii was investigated using gas chromatography coupled with flame ionization detector. The leaves and stems had high flavonoids and benzoic acid derivatives content, and moderate levels of lignans and hydroxycinnamates. Twenty-eight known flavonoids were detected, which consisted mainly of kaempferol (41.93% in leaves and 47.97% in stems), (+)-catechin (17.12% in leaves and 16.11% in stems), quercetin (13.83% in leaves and 9.39% in stems), luteolin (7.34% in leaves and 7.71% in stems), and artemetin (6.53% in leaves and 4.83% in stems). Of the six known hydroxycinnamates detected, chlorogenic acid (80.79% in leaves and 87.56% in stems) and caffeic acid (18.98% in leaves and 12.30% in stems) were the most abundant, while arctigenin (77.81% in leaves and 83.40% in stems) and retusin (13.82% in leaves and 10.59% in stems) were the most abundant of the nine known lignans detected. Twelve known benzoic acid derivatives were detected, consisting mainly of ellagic acid (65.44% in leaves and 72.89% in stems), p-hydroxybenzoic acid (25.10% in leaves and 18.95% in stems), and vanillic acid (8.80% in leaves and 7.30% in stems). The rich phytochemical profile of the leaves and stems is an indication of their ability to serve as sources of nutraceuticals.

  5. Reactions of the ionized enol tautomer of acetanilide: elimination of HNCO via a novel rearrangement.

    PubMed

    Heydorn, Lisa N; Carter, Lynn M; Bowen, Richard D; Terlouw, Johan K

    2003-01-01

    The reactions of ionised acetanilide, C(6)H(5)NH(=O)CH(3)(.+), and its enol, C(6)H(5)NH(OH)=CH(2)(.+), have been studied by a combination of tandem mass spectrometric and computational methods. These two isomeric radical cations have distinct chemistries at low internal energies. The keto tautomer eliminates exclusively CH(2)=C=O to give ionised aniline. In contrast, the enol tautomer loses H-N=C=O, via an unusual skeletal rearrangement, to form predominantly ionised methylene cyclohexadiene. Hydrogen atom loss also occurs from the enol tautomer, with the formation of protonated oxindole. The mechanisms for H-N=C=O and hydrogen atom loss both involve cyclisation; the former proceeds via a spiro transition state formed by attachment of the methylene group to the ipso position, whereas the latter entails the formation of a five-membered ring by attachment to the ortho position. The behaviour of labelled analogues reveals that these two processes have different site selectivities. Hydrogen atom loss involves a reverse critical energy and is subject to an isotope effect. Surprisingly, attempts to promote the enolisation of ionised acetanilide by proton-transport catalysis were unsuccessful. In a reversal of the usual situation for ionised carbonyl compounds, ionised acetanilide is actually more stable than its enol tautomer. The enol tautomer was resistant to proton-transport catalysed ketonisation to ionised acetanilide, possibly because the favoured geometry of the encounter complex with the base molecule is inappropriate for facilitating tautomerisation.

  6. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    PubMed

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.

  7. Methyl oleate as matrix simulacrum for the simultaneous determination of metals in biodiesel samples by flame atomic emission spectroscopy.

    PubMed

    Cerai Ferreira, Conny; Malta Costa, Letícia; Sanches Barbeira, Paulo Jorge

    2015-06-01

    A measurement procedure for direct and simultaneous quantification of Na, K and Ca in biodiesel by flame atomic emission spectroscopy (FAES) was developed. A lab-made device was constructed by coupling a nebulizer/combustion system from a commercial photometer to a continuous emission detector in a spectral range of 255 to 862 nm. Instrumental optimizations were carried out evaluating the most important variables, such as gas flow rates and sample introduction temperature, indicating that a temperature of 50°C enhances the analytical signals and assures good precision. The direct analysis method was properly validated and presented limits of quantification of 0.09, 0.07 and 0.43 μg kg(-1) for Na, K and Ca, respectively. Accuracy of the proposed procedure was checked by comparing the results with those obtained by the standard procedure described in ABNT NBR 15556 and the standard addition method. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Limitations of silicon diodes for clinical electron dosimetry.

    PubMed

    Song, Haijun; Ahmad, Munir; Deng, Jun; Chen, Zhe; Yue, Ning J; Nath, Ravinder

    2006-01-01

    This work investigates the relevance of several factors affecting the response of silicon diode dosemeters in depth-dose scans of electron beams. These factors are electron energy, instantaneous dose rate, dose per pulse, photon/electron dose ratio and electron scattering angle (directional response). Data from the literature and our own experiments indicate that the impact of these factors may be up to +/-15%. Thus, the different factors would have to cancel out perfectly at all depths in order to produce true depth-dose curves. There are reports of good agreement between depth-doses measured with diodes and ionisation chambers. However, our measurements with a Scantronix electron field detector (EFD) diode and with a plane-parallel ionisation chamber show discrepancies both in the build-up and in the low-dose regions, with a ratio up to 1.4. Moreover, the absolute sensitivity of two diodes of the same EFD model was found to differ by a factor of 3, and this ratio was not constant but changed with depth between 5 and 15% in the low-dose regions of some clinical electron beams. Owing to these inhomogeneities among diodes even of the same model, corrections for each factor would have to be diode-specific and beam-specific. All these corrections would have to be determined using parallel plane chambers, as recommended by AAPM TG-25, which would be unrealistic in clinical practice. Our conclusion is that in general diodes are not reliable in the measurement of depth-dose curves of clinical electron beams.

  9. Search for metastable heavy charged particles with large ionisation energy loss in pp collisions at $${\\sqrt{s} = 8}$$ s = 8 TeV using the ATLAS experiment

    DOE PAGES

    Aad, G.

    2015-09-03

    Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as R-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data samplemore » corresponding to an integrated luminosity of \\(18.4\\) fb\\(^{-1}\\) of pp collisions at \\(\\sqrt{s} = 8\\) TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on R-hadrons and chargino production are set. Gluino R-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95 \\(\\%\\) confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.« less

  10. Radiation environment at aviation altitudes and in space.

    PubMed

    Sihver, L; Ploc, O; Puchalska, M; Ambrožová, I; Kubančák, J; Kyselová, D; Shurshakov, V

    2015-06-01

    On the Earth, protection from cosmic radiation is provided by the magnetosphere and the atmosphere, but the radiation exposure increases with increasing altitude. Aircrew and especially space crew members are therefore exposed to an increased level of ionising radiation. Dosimetry onboard aircraft and spacecraft is however complicated by the presence of neutrons and high linear energy transfer particles. Film and thermoluminescent dosimeters, routinely used for ground-based personnel, do not reliably cover the range of particle types and energies found in cosmic radiation. Further, the radiation field onboard aircraft and spacecraft is not constant; its intensity and composition change mainly with altitude, geomagnetic position and solar activity (marginally also with the aircraft/spacecraft type, number of people aboard, amount of fuel etc.). The European Union Council directive 96/29/Euroatom of 1996 specifies that aircrews that could receive dose of >1 mSv y(-1) must be evaluated. The dose evaluation is routinely performed by computer programs, e.g. CARI-6, EPCARD, SIEVERT, PCAire, JISCARD and AVIDOS. Such calculations should however be carefully verified and validated. Measurements of the radiation field in aircraft are thus of a great importance. A promising option is the long-term deployment of active detectors, e.g. silicon spectrometer Liulin, TEPC Hawk and pixel detector Timepix. Outside the Earth's protective atmosphere and magnetosphere, the environment is much harsher than at aviation altitudes. In addition to the exposure to high energetic ionising cosmic radiation, there are microgravity, lack of atmosphere, psychological and psychosocial components etc. The milieu is therefore very unfriendly for any living organism. In case of solar flares, exposures of spacecraft crews may even be lethal. In this paper, long-term measurements of the radiation environment onboard Czech aircraft performed with the Liulin since 2001, as well as measurements and simulations of dose rates on and outside the International Space Station were presented. The measured and simulated results are discussed in the context of health impact. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Radiation safety.

    PubMed

    Skinner, Sarah

    2013-06-01

    Diagnostic radiology procedures, such as computed tomography (CT) and X-ray, are an increasing source of ionising radiation exposure to our community. Exposure to ionising radiation is associated with increased risk of malignancy, proportional to the level of exposure. Every diagnostic test using ionising radiation needs to be justified by clinical need. General practitioners need a working knowledge of radiation safety so they can adequately inform their patients of the risks and benefits of diagnostic imaging procedures.

  12. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    PubMed

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Ionised gas kinematics in bipolar H II regions

    NASA Astrophysics Data System (ADS)

    Dalgleish, Hannah S.; Longmore, Steven N.; Peters, Thomas; Henshaw, Jonathan D.; Veitch-Michaelis, Joshua L.; Urquhart, James S.

    2018-05-01

    Stellar feedback plays a fundamental role in shaping the evolution of galaxies. Here we explore the use of ionised gas kinematics in young, bipolar H II regions as a probe of early feedback in these star-forming environments. We have undertaken a multi-wavelength study of a young, bipolar H II region in the Galactic disc, G316.81-0.06, which lies at the centre of a massive (˜103 M⊙) infrared-dark cloud filament. It is still accreting molecular gas as well as driving a ˜0.2 pc ionised gas outflow perpendicular to the filament. Intriguingly, we observe a large velocity gradient (47.81 ± 3.21 km s-1 pc-1) across the ionised gas in a direction perpendicular to the outflow. This kinematic signature of the ionised gas shows a reasonable correspondence with the simulations of young H II regions. Based on a qualitative comparison between our observations and these simulations, we put forward a possible explanation for the velocity gradients observed in G316.81-0.06. If the velocity gradient perpendicular to the outflow is caused by rotation of the ionised gas, then we infer that this rotation is a direct result of the initial net angular momentum in the natal molecular cloud. If this explanation is correct, this kinematic signature should be common in other young (bipolar) H II regions. We suggest that further quantitative analysis of the ionised gas kinematics of young H II regions, combined with additional simulations, should improve our understanding of feedback at these early stages.

  14. Screening of inorganic gases released from firework-rockets by a gas chromatography/whistle-accelerometer method.

    PubMed

    Chen, Kuan-Fu; Wu, Hui-Hsin; Lin, Chien-Hung; Lin, Cheng-Huang

    2013-08-30

    The use of an accelerometer for detecting inorganic gases in gas chromatography (GC) is described. A milli-whistle was connected to the outlet of the GC capillary and was used instead of a classical GC detector. When the GC carrier gases and the sample gases pass through the milli-whistle, a sound is produced, leading to vibrational changes, which can be recorded using an accelerometer. Inorganic gases, including SO2, N2 and CO2, which are released from traditional Chinese firework-rockets at relatively high levels as the result of burning the propellant and explosive material inside could be rapidly determined using the GC/whistle-accelerometer system. The method described herein is safe, the instrumentation is compact and has potential to be modified so as to be portable for use in the field. It also can be used in conjunction with FID (flame ionization detector) or TCD (thermal conductivity detector), in which either no response for FID (CO2, N2, NO2, SO2, etc.) or helium gas is needed for TCD, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses.

    PubMed

    Shinde, Suhas; Devaiah, Shivakumar; Kilaru, Aruna

    2017-01-01

    In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.

  16. Deconvolution of gas chromatographic data

    NASA Technical Reports Server (NTRS)

    Howard, S.; Rayborn, G. H.

    1980-01-01

    The use of deconvolution methods on gas chromatographic data to obtain an accurate determination of the relative amounts of each material present by mathematically separating the merged peaks is discussed. Data were obtained on a gas chromatograph with a flame ionization detector. Chromatograms of five xylenes with differing degrees of separation were generated by varying the column temperature at selected rates. The merged peaks were then successfully separated by deconvolution. The concept of function continuation in the frequency domain was introduced in striving to reach the theoretical limit of accuracy, but proved to be only partially successful.

  17. Gas-liquid chromatographic method for determining ethylenethiourea in potatoes, spinach, applesauce, and milk: collaborative study.

    PubMed

    Onley, H H

    1977-09-01

    Eight laboratories collaboratively tested a gas-liquid chromatographic method for determining ethylenetiourea (ETU) in potatoes, spinach, applesauce, and milk. In the determinative step, ETU is converted to the S-butyl derivative (2-n-butylmercapto-2-imidazoline) which is detected by a flame photometric detector, sulfur mode. For unknown fortification levels of 0.06, 0.12, and 0.30 ppm, the collaborators reported an overall average recovery range of 85-97% in the various commodities. The method has been adopted as interim official first action.

  18. An improved light hydrocarbon analysis system. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamontagne, R.A.

    1982-05-11

    A system for extracting and measuring ambient levels of C1-C4 hydrocarbons and carbon monoxide (CO) in seawater is described. The analytical instrument is a gas chromatograph with flame ionization detectors that incorporates a catalytic conversion of CO to CH4 (methane). The samples are concentrated prior to introduction to the chromatographic system. The volatile hydrocarbons are extracted from the seawater by the use of a helium flow stream and concentrated on dry ice-acetone cold traps. Air samples can be processed in a similar way.

  19. VizieR Online Data Catalog: MYStIX: the Chandra X-ray sources (Kuhn+, 2013)

    NASA Astrophysics Data System (ADS)

    Kuhn, M. A.; Getman, K. V.; Broos, P. S.; Townsley, L. K.; Feigelson, E. D.

    2013-11-01

    X-ray observations were made with the imaging array on the Advanced CCD Imaging Spectrometer (ACIS-I) on board the Chandra X-Ray Observatory. This array of four CCD detectors subtends 17'x17' on the sky. Data were acquired from the Chandra Data Archive from 2001 Jan to Mar 2008 for 10 MYStIX fields (Flame Nebula, RCW 36, NGC 2264, Rosette Nebula, Lagoon Nebula, NGC 2362, DR 21, RCW 38, Trifid Nebula and NGC 1893); see table1. (2 data files).

  20. Investigation of diamond-like carbon samples as a charge state conversion surface for neutral atom imaging detectors in space applications

    NASA Astrophysics Data System (ADS)

    Brigitte Neuland, Maike; Riedo, Andreas; Scheer, Jürgen; Wurz, Peter

    2014-05-01

    The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionized. Regarding the constraints of weight, volume and power consumption, the technique of surface ionization complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionized by passing through a foil, are ionized by scattering on a charge state conversion surface. Since more than 30 years intense research work is done to find suitable materials for use as charge state conversion surfaces. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Against all expectations, insulators showed very promising characteristics for serving as conversion surfaces. Particularly diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Energy resolved maps of neutral atoms from the IBEX mission revealed phenomena of the interaction between heliosphere and local interstellar medium (LISM) that demand for new theory and explanations [McComas et al., 2011]. Building on the successes of the IBEX mission, a follow up mission concept to further explore the boundaries of the heliosphere already exists. The Interstellar MApping Probe (IMAP) is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [McComas et al.]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour and pulsed laser deposition method, regarding their ionisation efficiency, scattering and reflexion properties. Experiments were carried out at the ILENA facility [Wahlström et al., 2013] with hydrogen and oxygen atoms, which are the species of main interest in magnetospheric research [Wurz et al., 1997]. Results of very narrow scattering cones and sufficient ionisation efficiency show that diamond-like carbon still is the preferred material for charge state conversion surfaces. But our measurements show that new surface technologies offer improved diamond conversion surfaces with different properties and hence the possibility for improvement of the performance of neutral atom imaging instruments. References: [McComas et al., 2011] D.J. McComas, H.O. Funsten, S.A. Fuselier, W.S. Lewis, E. Möbius and N.A. Schwadron, IBEX observations of Heliospheric energetic neutral atoms: Current understanding and future directions, Geophys. Res. Lett. 38, L18101, 2011 [McComas et al.] Interstellar Mapping Probe (IMAP) mission concept: Illuminating the dark boundaries at the edge of our solar system, decadal survey white paper [Wahlström et al., 2013] P. Wahlström, J.A. Scheer, A. Riedo, P. Wurz and M. Wieser, J. Spacecr. Rockets 50 (2), 402-410 [Wurz et al., 1997] P. Wurz, R. Schletti, M.R. Aellig, Hydrogen and oxygen negative ion production by surface ionization using diamond surfaces, Surf. Sci. 373, 56-66, 1997.

  1. Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations

    NASA Astrophysics Data System (ADS)

    Zellweger, Christoph; Emmenegger, Lukas; Firdaus, Mohd; Hatakka, Juha; Heimann, Martin; Kozlova, Elena; Spain, T. Gerard; Steinbacher, Martin; van der Schoot, Marcel V.; Buchmann, Brigitte

    2016-09-01

    Until recently, atmospheric carbon dioxide (CO2) and methane (CH4) measurements were made almost exclusively using nondispersive infrared (NDIR) absorption and gas chromatography with flame ionisation detection (GC/FID) techniques, respectively. Recently, commercially available instruments based on spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared (FTIR) spectroscopy have become more widely available and affordable. This resulted in a widespread use of these techniques at many measurement stations. This paper is focused on the comparison between a CRDS "travelling instrument" that has been used during performance audits within the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO) with instruments incorporating other, more traditional techniques for measuring CO2 and CH4 (NDIR and GC/FID). We demonstrate that CRDS instruments and likely other spectroscopic techniques are suitable for WMO/GAW stations and allow a smooth continuation of historic CO2 and CH4 time series. Moreover, the analysis of the audit results indicates that the spectroscopic techniques have a number of advantages over the traditional methods which will lead to the improved accuracy of atmospheric CO2 and CH4 measurements.

  2. Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas

    NASA Astrophysics Data System (ADS)

    Ross, A. E.; McKenzie, D. R.

    2016-04-01

    Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present.

  3. Ultrasonic-assisted incorporation of nano-encapsulated omega-3 fatty acids to enhance the fatty acid profile of pork meat.

    PubMed

    Ojha, K Shikha; Perussello, Camila A; García, Carlos Álvarez; Kerry, Joseph P; Pando, Daniel; Tiwari, Brijesh K

    2017-10-01

    In this study, ultrasound was employed to enhance the diffusion of microencapsulated fatty acids into pork meat. Nanovesicles of fish oil composed of 42% EPA (eicosapentanoic acid) and 16% DHA (docosahexanoic acid) were prepared using two different commercial Pronanosome preparations (Lipo-N and Lipo-CAT; which yield cationic and non-cationic nanovesicles, respectively). The thin film hydration (TFH) methodology was employed for encapsulation. Pork meat (Musculus semitendinosus) was submerged in the nanovesicles suspension and subjected to ultrasound (US) treatment at 25kHz for either 30 or 60min. Samples were analysed for fatty acid composition using gas chromatography-flame ionisation (GC-FID). The content of long-chain PUFAs, especially omega-3, was found to increase following the US treatment which was higher for Lipo-CAT compared to Lipo-N nanovesicles. Samples subjected to Lipo-N had higher atherogenic and thrombogenic indices, indicating higher levels of saturated fatty acids compared to the Lipo-CAT. The omega-6/omega-3 ratio in pork meat was significantly reduced following the US treatment, thus indicating an improved fatty acid profile of pork. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Variation in the volatile terpenoids of two industrially important basil (Ocimum basilicum L.) cultivars during plant ontogeny in two different cropping seasons from India.

    PubMed

    Verma, Ram Swaroop; Padalia, Rajendra Chandra; Chauhan, Amit

    2012-02-01

    Two Ocimum basilicum cultivars, 'Vikarsudha' and 'CIM-Saumya', grown in the Kumaon region of western Himalaya were evaluated for their essential oil yield and composition at different stages of plant growth during two distinct cropping seasons (spring-summer and rain-autumn). The highest yield of essential oil was obtained at full bloom stage in both cultivars in both cropping seasons. The essential oils obtained from different stages in two cropping seasons were analysed by capillary gas chromatography with flame ionisation detection, and gas chromatography-mass spectrometry. The major component of cultivar 'Vikarsudha' was methyl chavicol (84.3-94.3%), while for cultivar 'CIM-Saumya' the main components were methyl chavicol (62.5-77.6%) and linalool (14.4-34.1%). This study clearly indicated that cultivar, cropping season, plant ontogeny and plant part had significant effects on the yield and quality of the essential oil of O. basilicum. Further, the amount of methyl chavicol in the cultivars grown in this region was higher than in cultivars from other parts of India. Copyright © 2011 Society of Chemical Industry.

  5. Assessing the performance under ionising radiation of lead tungstate scintillators for EM calorimetry in the CLAS12 Forward Tagger

    NASA Astrophysics Data System (ADS)

    Fegan, S.; Auffray, E.; Battaglieri, M.; Buchanan, E.; Caiffi, B.; Celentano, A.; Colaneri, L.; D`Angelo, A.; De Vita, R.; Dormenev, V.; Fanchini, E.; Lanza, L.; Novotny, R. W.; Parodi, F.; Rizzo, A.; Sokhan, D.; Tarasov, I.; Zonta, I.

    2015-07-01

    The well-established technology of electromagnetic calorimetry using Lead Tungstate crystals has recently seen an upheaval, with the closure of one of the most experienced large-scale suppliers of such crystals, the Bogoroditsk Technical Chemical Plant (BTCP), which was instrumental in the development of mass production procedures for PWO-II, the current benchmark for this scintillator. Obtaining alternative supplies of Lead Tungstate crystals matching the demanding specifications of contemporary calorimeter devices now presents a significant challenge to detector research and development programmes. In this paper we describe a programme of assessment carried out for the selection, based upon the performance under irradiation, of Lead Tungstate crystals for use in the Forward Tagger device, part of the CLAS12 detector in Hall B at Jefferson Lab. The crystals tested were acquired from SICCAS, the Shanghai Institute of Ceramics, Chinese Academy of Sciences. The tests performed are intended to maximise the performance of the detector within the practicalities of the crystal manufacturing process. Results of light transmission, before and after gamma ray irradiation, are presented and used to calculate dk, the induced radiation absorption coefficient, at 420 nm, the peak of the Lead Tungstate emission spectrum. Results for the SICCAS crystals are compared with identical measurements carried out on Bogoroditsk samples, which were acquired for the Forward Tagger development program before the closure of the facility. Also presented are a series of tests performed to determine the feasibility of recovering radiation damage to the crystals using illumination from an LED, with such illumination available in the Forward Tagger from a light monitoring system integral to the detector.

  6. Clinical implementation of MOSFET detectors for dosimetry in electron beams.

    PubMed

    Bloemen-van Gurp, Esther J; Minken, Andre W H; Mijnheer, Ben J; Dehing-Oberye, Cary J G; Lambin, Philippe

    2006-09-01

    To determine the factors converting the reading of a MOSFET detector placed on the patient's skin without additional build-up to the dose at the depth of dose maximum (D(max)) and investigate their feasibility for in vivo dose measurements in electron beams. Factors were determined to relate the reading of a MOSFET detector to D(max) for 4 - 15 MeV electron beams in reference conditions. The influence of variation in field size, SSD, angle and field shape on the MOSFET reading, obtained without additional build-up, was evaluated using 4, 8 and 15 MeV beams and compared to ionisation chamber data at the depth of dose maximum (z(max)). Patient entrance in vivo measurements included 40 patients, mostly treated for breast tumours. The MOSFET reading, converted to D(max), was compared to the dose prescribed at this depth. The factors to convert MOSFET reading to D(max) vary between 1.33 and 1.20 for the 4 and 15 MeV beams, respectively. The SSD correction factor is approximately 8% for a change in SSD from 95 to 100 cm, and 2% for each 5-cm increment above 100 cm SSD. A correction for fields having sides smaller than 6 cm and for irregular field shape is also recommended. For fields up to 20 x 20 cm(2) and for oblique incidence up to 45 degrees, a correction is not necessary. Patient measurements demonstrated deviations from the prescribed dose with a mean difference of -0.7% and a standard deviation of 2.9%. Performing dose measurements with MOSFET detectors placed on the patient's skin without additional build-up is a well suited technique for routine dose verification in electron beams, when applying the appropriate conversion and correction factors.

  7. Ionised gas structure of 100 kpc in an over-dense region of the galaxy group COSMOS-Gr30 at z 0.7

    NASA Astrophysics Data System (ADS)

    Epinat, B.; Contini, T.; Finley, H.; Boogaard, L. A.; Guérou, A.; Brinchmann, J.; Carton, D.; Michel-Dansac, L.; Bacon, R.; Cantalupo, S.; Carollo, M.; Hamer, S.; Kollatschny, W.; Krajnović, D.; Marino, R. A.; Richard, J.; Soucail, G.; Weilbacher, P. M.; Wisotzki, L.

    2018-01-01

    We report the discovery of a 104 kpc2 gaseous structure detected in [O II]λλ3727, 3729 in an over-dense region of the COSMOS-Gr30 galaxy group at z 0.725 with deep MUSE Guaranteed Time Observations. We estimate the total amount of diffuse ionised gas to be of the order of ( 5 ± 3) × 1010 M⊙ and explore its physical properties to understand its origin and the source(s) of the ionisation. The MUSE data allow the identification of a dozen group members that are embedded in this structure through emission and absorption lines. We extracted spectra from small apertures defined for both the diffuse ionised gas and the galaxies. We investigated the kinematics and ionisation properties of the various galaxies and extended gas regions through line diagnostics (R23, O32, and [O III]/Hβ) that are available within the MUSE wavelength range. We compared these diagnostics to photo-ionisation models and shock models. The structure is divided into two kinematically distinct sub-structures. The most extended sub-structure of ionised gas is likely rotating around a massive galaxy and displays filamentary patterns that link some galaxies. The second sub-structure links another massive galaxy that hosts an active galactic nucleus (AGN) to a low-mass galaxy, but it also extends orthogonally to the AGN host disc over 35 kpc. This extent is likely ionised by the AGN itself. The location of small diffuse regions in the R23 vs. O32 diagram is compatible with photo-ionisation. However, the location of three of these regions in this diagram (low O32, high R23) can also be explained by shocks, which is supported by their high velocity dispersions. One edge-on galaxy shares the same properties and may be a source of shocks. Regardless of the hypothesis, the extended gas seems to be non-primordial. We favour a scenario where the gas has been extracted from galaxies by tidal forces and AGN triggered by interactions between at least the two sub-structures. Based on observations made with ESO telescopes at the Paranal Observatory under programs 094.A-0247 and 095.A-0118.

  8. Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules'

    PubMed Central

    Draper, John; Enot, David P; Parker, David; Beckmann, Manfred; Snowdon, Stuart; Lin, Wanchang; Zubair, Hassan

    2009-01-01

    Background Metabolomics experiments using Mass Spectrometry (MS) technology measure the mass to charge ratio (m/z) and intensity of ionised molecules in crude extracts of complex biological samples to generate high dimensional metabolite 'fingerprint' or metabolite 'profile' data. High resolution MS instruments perform routinely with a mass accuracy of < 5 ppm (parts per million) thus providing potentially a direct method for signal putative annotation using databases containing metabolite mass information. Most database interfaces support only simple queries with the default assumption that molecules either gain or lose a single proton when ionised. In reality the annotation process is confounded by the fact that many ionisation products will be not only molecular isotopes but also salt/solvent adducts and neutral loss fragments of original metabolites. This report describes an annotation strategy that will allow searching based on all potential ionisation products predicted to form during electrospray ionisation (ESI). Results Metabolite 'structures' harvested from publicly accessible databases were converted into a common format to generate a comprehensive archive in MZedDB. 'Rules' were derived from chemical information that allowed MZedDB to generate a list of adducts and neutral loss fragments putatively able to form for each structure and calculate, on the fly, the exact molecular weight of every potential ionisation product to provide targets for annotation searches based on accurate mass. We demonstrate that data matrices representing populations of ionisation products generated from different biological matrices contain a large proportion (sometimes > 50%) of molecular isotopes, salt adducts and neutral loss fragments. Correlation analysis of ESI-MS data features confirmed the predicted relationships of m/z signals. An integrated isotope enumerator in MZedDB allowed verification of exact isotopic pattern distributions to corroborate experimental data. Conclusion We conclude that although ultra-high accurate mass instruments provide major insight into the chemical diversity of biological extracts, the facile annotation of a large proportion of signals is not possible by simple, automated query of current databases using computed molecular formulae. Parameterising MZedDB to take into account predicted ionisation behaviour and the biological source of any sample improves greatly both the frequency and accuracy of potential annotation 'hits' in ESI-MS data. PMID:19622150

  9. Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 GHz

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Benoit, A.; Bourrion, O.; Calvo, M.; Coiffard, G.; D'Addabbo, A.; Goupy, J.; Le Sueur, H.; Macías-Pérez, J.; Monfardini, A.

    2016-07-01

    This work intends to give the state-of-the-art of our knowledge of the performance of lumped element kinetic inductance detectors (LEKIDs) at millimetre wavelengths (from 80 to 180 GHz). We evaluate their optical sensitivity under typical background conditions that are representative of a space environment and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100 and 150 GHz (Δν/ν about 0.3). Their sensitivities were characterised in the laboratory using a dedicated closed-cycle 100 mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays was evaluated by exposing the LEKID arrays to alpha particles (241Am) and X sources (109Cd), with a read-out sampling frequency similar to those used for Planck HFI (about 200 Hz), and also with a high resolution sampling level (up to 2 MHz) to better characterise and interpret the observed glitches. In parallel, we developed an analytical model to rescale the results to what would be observed by such a LEKID array at the second Lagrangian point. We show that LEKID arrays behave adequately in space-like conditions with a measured noise equivalent power close to the cosmic microwave background photon noise and an impact of cosmic rays smaller with respect to those observed with Planck satellite detectors.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, W.; Bergauer, T.; Brondolin, E.

    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment’s silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up tomore » $$\\Phi _{eq} = 2 \\times 10^{16}$$  cm$$^{-2}$$ , and an ionising dose of $${\\approx } 5$$  MGy after an integrated luminosity of 3000 fb$$^{-1}$$ . Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. Here in this article, the results obtained from the characterisation of 100 and 200 μm thick p-bulk pad diodes and strip sensors irradiated up to fluences of $$\\Phi _{eq} = 1.3 \\times 10^{16}$$  cm$$^{-2}$$ are shown.« less

  11. Development of the infrared instrument for gas detection

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Wei; Chen, Chia-Ray

    2017-08-01

    MWIR (Mid-Wave Infrared) spectroscopy shows a large potential in the current IR devices market, due to its multiple applications, such as gas detection, chemical analysis, industrial monitoring, combustion and flame characterization. It opens this technique to the fields of application, such as industrial monitoring and control, agriculture and environmental monitoring. However, a major barrier, which is the lack of affordable specific key elements such a MWIR light sources and low cost uncooled detectors, have held it back from its widespread use. In this paper an uncooled MWIR detector combined with image enhancement technique is reported. This investigation shows good results in gas leakage detection test. It also verify the functions of self-developed MWIR lens and optics. A good agreement in theoretical design and experiment give us the lessons learned for the potential application in infrared satellite technology. A brief discussions will also be presented in this paper.

  12. The effectiveness of photocatalytic ionisation disinfection of filter materials.

    PubMed

    Pietrzak, Katarzyna; Gutarowska, Beata

    2013-01-01

    The purpose of this study was to determine the effectiveness of photocatalytic ionisation as a disinfection method for filter materials contaminated by microorganisms, and to assess how air relative humidity (RH), time and microbe type influence the effectiveness of this disinfection. In the quantitative analysis of a used car air filter, bacterial contamination equalled 1.2 x 10(5) cfu/cm2, fungal contamination was 3.8 x 10(6) cfu/cm2, and the isolated microorganisms were Aspergillus niger, Bacillus megaterium, Cladosporium herbarum, Cryptococcus laurenti, Micrococcus sp., Rhodotorula glutinis and Staphylococcus cohnii. In the model experiment, three isolates (C. herbarum, R. glutinis, S. cohnii) and 3 ATCC species (A. niger, E. coli, S. aureus) were used for photocatalytic ionisation disinfection. The conditions of effective photocatalytic ionisation disinfection (R > or = 99.9%) were established as 2-3 h at RH = 77% (bacteria) and 6-24 h at RH = 53% (fungi). RH has an influence on the effectiveness of the photocatalytic disinfection process; the highest effectiveness was obtained for bacteria at RH = 77%, with results 5% higher than for RH = 49%. The studies show that the sensitivity of microorganisms to photocatalytic ionisation disinfection is ordered as follows: Gram-positive bacteria (S. cohnii, S. aureus), Gram-negative bacteria (E. coli), yeasts (R. glutinis), and moulds (C. herbarum, A. niger). Of all the mathematical models used for the description of death dynamics after photocatalytic ionisation disinfection, the Chick-Watson model is the most useful, but for more resistant microorganisms, the delayed Chick-Watson model is highly recommended. It therefore seems, that the presented disinfection method of photocatalytic ionisation can be successfully used to clean filtration materials.

  13. Medical exposure to ionising radiation and the risk of brain tumours: Interphone study group, Germany.

    PubMed

    Blettner, Maria; Schlehofer, Brigitte; Samkange-Zeeb, Florence; Berg, Gabriele; Schlaefer, Klaus; Schüz, Joachim

    2007-09-01

    The role of exposure to low doses of ionising radiation in the aetiology of brain tumours has yet to be clarified. The objective of this study was to investigate the association between medically or occupationally related exposure to ionising radiation and brain tumours. We used self-reported medical and occupational data collected during the German part of a multinational case-control study on mobile phone use and the risk of brain tumours (Interphone study) for the analyses. For any exposure to medical ionising radiation we found odds ratios (ORs) of 0.63 (95% confidence interval (CI)=0.48-0.83), 1.08 (95% CI=0.80-1.45) and 0.97 (95% CI=0.54-1.75) for glioma, meningioma and acoustic neuroma, respectively. Elevated ORs were found for meningioma (OR 2.32, 95% CI: 0.90-5.96) and acoustic neuroma (OR 6.45, 95% CI: 0.62-67.16) for radiotherapy to the head and neck regions. We did not find any significant increased risk of brain tumours for exposure to medical ionising radiation.

  14. Investigation of colloidal graphite as a matrix for matrix-assisted laser desorption/ionisation mass spectrometry of low molecular weight analytes.

    PubMed

    Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J

    2016-07-01

    The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Identification of carbohydrates by matrix-free material-enhanced laser desorption/ionisation mass spectrometry.

    PubMed

    Hashir, Muhammad Ahsan; Stecher, Guenther; Bakry, Rania; Kasemsook, Saowapak; Blassnig, Bernhard; Feuerstein, Isabel; Abel, Gudrun; Popp, Michael; Bobleter, Ortwin; Bonn, Guenther K

    2007-01-01

    Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a sensitive mass spectrometric technique which utilises acidic materials as matrices for laser energy absorption, desorption and ionisation of analytes. These matrix materials produce background signals particularly in the low-mass range and make the detection and identification of small molecules difficult and nearly impossible. To overcome this problem this paper introduces matrix-free material-enhanced laser desorption/ionisation mass spectrometry (mf-MELDI-MS) for the screening and analysis of small molecules such as carbohydrates. For this purpose, 4,4'-azo-dianiline was immobilised on silica gel enabling the absorption of laser energy sufficient for successful desorption and ionisation of low molecular weight compounds. The particle and pore sizes, the solvent system for suspension and the sample preparation procedures have been optimised. The newly synthesised MELDI material delivered excellent spectra with regard to signal-to-noise ratio and detection sensitivity. Finally, wheat straw degradation products and Salix alba L. plant extracts were analysed proving the high performance and excellent behaviour of the introduced material. Copyright (c) 2007 John Wiley & Sons, Ltd.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jornet, N; Carrasco de Fez, P; Jordi, O

    Purpose: To evaluate the accuracy in total scatter factor (Sc,p) determination for small fields using commercial plastic scintillator detector (PSD). The manufacturer's spectral discrimination method to subtract Cerenkov light from the signal is discussed. Methods: Sc,p for field sizes ranging from 0.5 to 10 cm were measured using PSD Exradin (Standard Imaging) connected to two channel electrometer measuring the signals in two different spectral regions to subtract the Cerenkov signal from the PSD signal. A Pinpoint ionisation chamber 31006 (PTW) and a non-shielded semiconductor detector EFD (Scanditronix) were used for comparison. Measures were performed for a 6 MV X-ray beam.more » The Sc,p are measured at 10 cm depth in water for a SSD=100 cm and normalized to a 10'10 cm{sup 2} field size at the isocenter. All detectors were placed with their symmetry axis parallel to the beam axis.We followed the manufacturer's recommended calibration methodology to subtract the Cerenkov contribution to the signal as well as a modified method using smaller field sizes. The Sc,p calculated by using both calibration methodologies were compared. Results: Sc,p measured with the semiconductor and the PinPoint detectors agree, within 1.5%, for field sizes between 10'10 and 1'1 cm{sup 2}. Sc,p measured with the PSD using the manufacturer's calibration methodology were systematically 4% higher than those measured with the semiconductor detector for field sizes smaller than 5'5 cm{sup 2}. By using a modified calibration methodology for smalls fields and keeping the manufacturer calibration methodology for fields larger than 5'5cm{sup 2} field Sc,p matched semiconductor results within 2% field sizes larger than 1.5 cm. Conclusion: The calibration methodology proposed by the manufacturer is not appropriate for dose measurements in small fields. The calibration parameters are not independent of the incident radiation spectrum for this PSD. This work was partially financed by grant 2012 of Barcelona board of the AECC.« less

  17. Development and validation of a headspace gas chromatographic method for the determination of residual solvents in arterolane (RBx11160) maleate bulk drug

    PubMed Central

    Gupta, Abhishek; Singh, Yogendra; Srinivas, Kona S.; Jain, Garima; Sreekumar, V. B.; Semwal, Vinod Prasad

    2010-01-01

    Objective: Arterolane maleate is an antimalarial drug currently under Phase III clinical evaluation, and presents a simple, economical and scalable synthesis, and does not suffer from safety problems. Arterolane maleate is more active than artemisinin; and is cheap to produce. It has a longer lifetime in the plasma, so it stays active longer in the body. To provide quality control over the manufacture of any API, it is essential to develop highly selective analytical methods. In the current article we are reporting the development and validation of a rapid and specific Head space gas chromatographic (HSGC) method for the determination of organic volatile impurities (residual solvents) in Arterolane Maleate bulk drug. Materials and Methods: The method development and its validation were performed on Perkin Elmer's gas chromatographic system equipped with Flame Ionization detector and head space analyzer. The method involved a thermal gradient elution of ten residual solvents present in arterolane maleate salt in RTx-624, 30 m × 0.32 mm, 1.8 μ column using nitrogen gas as a carrier. The flow rate was 0.5 ml/min and flame ionization detector (FID) was used. Results: During method validation, parameters such as precision, linearity, accuracy, limit of quantification and detection and specificity were evaluated, which remained within acceptable limits. Conclusions: The method has been successfully applied for the quantification of the amount of residual solvents present in arterolane maleate bulk drug.The method presents a simple and reliable solution for the routine quantitative analysis of residual solvents in Arterolane maleate bulk drug. PMID:21814428

  18. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4 and 10 microns. Thus this study suggests that, using confocal microscopy, 3D imaging of neutron tracks in SSNTDs is feasible. (1) Wertheim D, Gillmore G, Brown L, Petford N. A new method of imaging particle tracks in solid state nuclear track detectors. J Microsc. 2010; 237: 1-6.

  19. Ionisation in turbulent magnetic molecular clouds. I. Effect on density and mass-to-flux ratio structures

    NASA Astrophysics Data System (ADS)

    Bailey, Nicole D.; Basu, Shantanu; Caselli, Paola

    2017-05-01

    Context. Previous studies show that the physical structures and kinematics of a region depend significantly on the ionisation fraction. These studies have only considered these effects in non-ideal magnetohydrodynamic simulations with microturbulence. The next logical step is to explore the effects of turbulence on ionised magnetic molecular clouds and then compare model predictions with observations to assess the importance of turbulence in the dynamical evolution of molecular clouds. Aims: In this paper, we extend our previous studies of the effect of ionisation fractions on star formation to clouds that include both non-ideal magnetohydrodynamics and turbulence. We aim to quantify the importance of a treatment of the ionisation fraction in turbulent magnetised media and investigate the effect of the turbulence on shaping the clouds and filaments before star formation sets in. In particular, here we investigate how the structure, mass and width of filamentary structures depend on the amount of turbulence in ionised media and the initial mass-to-flux ratio. Methods: To determine the effects of turbulence and mass-to-flux ratio on the evolution of non-ideal magnetised clouds with varying ionisation profiles, we have run two sets of simulations. The first set assumes different initial turbulent Mach values for a fixed initial mass-to-flux ratio. The second set assumes different initial mass-to-flux ratio values for a fixed initial turbulent Mach number. Both sets explore the effect of using one of two ionisation profiles: step-like (SL) or cosmic ray only (CR-only). We compare the resulting density and mass-to-flux ratio structures both qualitatively and quantitatively via filament and core masses and filament fitting techniques (Gaussian and Plummer profiles). Results: We find that even with almost no turbulence, filamentary structure still exists although at lower density contours. Comparison of simulations shows that for turbulent Mach numbers above 2, there is little structural difference between the SL and CR-only models, while below this threshold the ionisation structure significantly affects the formation of filaments. This holds true for both sets of models. Analysis of the mass within cores and filaments shows that the mass decreases as the degree of turbulence increases. Finally, observed filaments within the Taurus L1495/B213 complex are best reproduced by models with supercritical mass-to-flux ratios and/or at least mildly supersonic turbulence, however, our models show that the sterile fibres observed within Taurus may occur in highly ionised, subcritical environments. Conclusions: From the analysis of the simulations, we conclude that in the presence of low turbulent velocities, the ionisation structure of the medium still plays a role in shaping the structure of the cloud, however, above Mach 2, the differences between the two profiles become indistinguishable. However, differences may be present in the underlying velocity structure. Kinematics studies will be the focus of the next paper in this series. Regions with fertile fibres likely indicate a trans- or supercritical mass-to-flux ratio within the region while sterile fibres are likely subcritical and transient.

  20. Recombination in liquid filled ionisation chambers with multiple charge carrier species: Theoretical and numerical results

    NASA Astrophysics Data System (ADS)

    Aguiar, P.; González-Castaño, D. M.; Gómez, F.; Pardo-Montero, J.

    2014-10-01

    Liquid-filled ionisation chambers (LICs) are used in radiotherapy for dosimetry and quality assurance. Volume recombination can be quite important in LICs for moderate dose rates, causing non-linearities in the dose rate response of these detectors, and needs to be corrected for. This effect is usually described with Greening and Boag models for continuous and pulsed radiation respectively. Such models assume that the charge is carried by two different species, positive and negative ions, each of those species with a given mobility. However, LICs operating in non-ultrapure mode can contain different types of electronegative impurities with different mobilities, thus increasing the number of different charge carriers. If this is the case, Greening and Boag models can be no longer valid and need to be reformulated. In this work we present a theoretical and numerical study of volume recombination in parallel-plate LICs with multiple charge carrier species, extending Boag and Greening models. Results from a recent publication that reported three different mobilities in an isooctane-filled LIC have been used to study the effect of extra carrier species on recombination. We have found that in pulsed beams the inclusion of extra mobilities does not affect volume recombination much, a behaviour that was expected because Boag formula for charge collection efficiency does not depend on the mobilities of the charge carriers if the Debye relationship between mobilities and recombination constant holds. This is not the case in continuous radiation, where the presence of extra charge carrier species significantly affects the amount of volume recombination.

  1. Determination of Energy of a Clinical Electron Beam as Part of a Routine Quality Assurance and Audit System

    NASA Astrophysics Data System (ADS)

    Hernández-Bello, Jimmy; D'Souza, Derek; Rossenberg, Ivan

    2002-08-01

    A method to determine the electron beam energy and an electron audit based on the current IPEM electron Code of Practice has been devised. During the commissioning on the new Varian 2100CD linear accelerator in The Middlesex Hospital, two methods were devised for the determination of electron energy. The first method involves the use of a two-depth method, whereby the ratio of ionisation (presented as a percentage) measured by an ion chamber at two depths in solid water is used to compare against the baseline ionisation depth value for that energy. The second method involves the irradiation of an X-ray film in solid water to obtain a depth dose curve and, hence determine the half value depth and practical range of the electrons. The results showed that the two-depth method has a better accuracy, repeatability, reliability and consistency than the X-ray method. The results for the electron audit showed that electron absolute outputs are obtained from ionisation measurements in solid water, where the energy-range parameters such as practical range and the depth at which ionisation is 50% of that at the maximum for the depth-ionisation curve are determined.

  2. Ionisation in ultra-cool, cloud forming extrasolar planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane; the LEAP Team

    2015-04-01

    Transit spectroscopy provides evidence that extrasolare planets are covered in clouds, a finding that has been forecast by cloud model simulations 15 years ago. Atmospheres are strongly affected by clouds through their large opacity and their chemical activity. Cloud formation models allow to predict cloud particle sizes, their chemical composition and the composition of the remaining atmospheric gas (Woitke & Helling 2004, A&A 414; Helling & Woitke 2006, A&A 455), for example, as input for radiative transfer codes like Drift-Phoenix (Witte et al. 2009; A&A 506). These cloud particles are charged and can discharge, for example in form of lighting (Helling et al. 2013, ApJ 767; Bailey et al. 2014, ApJ 784). Earth observations demonstrate that lighting effects not only the local chemistry but also the electron budget of the atmosphere. This talk will present our work on cloud formation modelling and ionisation processes in cloud forming atmospheres. An hierarchy of ionisation processes leads to a vertically inhomogenously ionised atmosphere which has implications for planetary mass loss and global circulation pattern of planetary atmospheres. Processes involved, like Cosmic Ray ionisation, do also activate the local chemistry such that large hydrocarbon molecules form (Rimmer et al. 2014, IJAsB 13).

  3. Development and applications of laser-induced incandescence

    NASA Technical Reports Server (NTRS)

    Vanderwal, Randy L.; Dietrich, Daniel L.; Zhou, Zhiquang; Choi, Mun Y.

    1995-01-01

    Several NASA-funded investigations focus on soot processes and radiative influences of soot in diffusion flames given their simplicity, practical significance, and potential for theoretical modeling. Among the physical parameters characterizing soot, soot volume fraction, f(sub v), a function of particle size and number density, is often of chief practical interest in these investigations, as this is the geometrical property that directly impacts radiative characteristics and the temperature field of the flame and is basic to understanding soot growth and oxidation processes. Diffusion flames, however, present a number of challenges to the determination of f(sub v) via traditional extinction measurements. Laser-induced incandescence (LII) possesses several advantages compared to line-of-sight extinction techniques for determination of f(sub v). Since LII is not a line-of-sight technique, similar to fluorescence, it possesses geometric versatility allowing spatially resolved measurements of f(sub v) in real time in nonaxisymmetric systems without using deconvolution techniques. The spatial resolution of LII is determined by the detector and imaging magnification used. Neither absorption by polycyclic aromatic hydrocarbons (PAH's) nor scattering contributes to the signal. Temporal capabilities are limited only by the laser pulse and camera gate duration, with measurements having been demonstrated with 10 ns resolution. Because of these advantages, LII should be applicable to a variety of combustion processes involving both homogeneous and heterogeneous phases. Our work has focussed on characterization of the technique as well as exploration of its capabilities and is briefly described.

  4. Video System Highlights Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.

    1992-01-01

    Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.

  5. Biomark/Organic Analysis with Time-of-Flight Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Waite, J. Hunter, Jr.

    2004-01-01

    The concept of a Comprehensive 2-Dimensional Gas Chromatography coupled with Time-of-Flight Mass Spectrometry (GCxGC-TOWS) for the analysis of organic compounds has been proven with commercially available instrumentation (LECO Corp). The performance of a GCxGC instrument has been characterized in various stages using two independent breadboard systems. The GCxGC separation systems, including the thermal modulator, have been miniaturized to the size of a benchtop configuration. One breadboard system employs a Flame Ionization Detector (FID), whereas the second breadboard system employs a Time-of-Fight mass spectrometer (TOFWS) as a detection system.

  6. Chemical Composition of the Essential Oil from the Fresh Fruits of Xylopia laevigata and its Cytotoxic Evaluation.

    PubMed

    Costa, Emmanoel Vilaça; da Silva, Thanany Brasil; Costa, Cinara Oliveira D'Souza; Soares, Milena Botelho Pereira; Bezerra, Daniel Pereira

    2016-03-01

    The essential oil obtained by hydrodistillation from the fresh fruits of Xylopia laevigata was analyzed by gas chromatography using a flame ionization detector (GC-FID) coupled to a mass spectrometer (GC-MS). Monoterpenes predominated, forming 95.0% of the total essential oil. The major constituents identified were limonene (56.2%), α-pinene (28.0%), and β-pinene (5.5%). Cytotoxic activity against tumor cell lines and non-tumor cells was also investigated; however, neither the essential oil nor its major constituents evaluated presented any cytotoxic activity (IC₅₀ > 25.0 µg mL⁻¹).

  7. Establishment of analysis method for methane detection by gas chromatography

    NASA Astrophysics Data System (ADS)

    Liu, Xinyuan; Yang, Jie; Ye, Tianyi; Han, Zeyu

    2018-02-01

    The study focused on the establishment of analysis method for methane determination by gas chromatography. Methane was detected by hydrogen flame ionization detector, and the quantitative relationship was determined by working curve of y=2041.2x+2187 with correlation coefficient of 0.9979. The relative standard deviation of 2.60-6.33% and the recovery rate of 96.36%∼105.89% were obtained during the parallel determination of standard gas. This method was not quite suitable for biogas content analysis because methane content in biogas would be over the measurement range in this method.

  8. Quantum coherence in photo-ionisation with tailored XUV pulses

    NASA Astrophysics Data System (ADS)

    Carlström, Stefanos; Mauritsson, Johan; Schafer, Kenneth J.; L'Huillier, Anne; Gisselbrecht, Mathieu

    2018-01-01

    Ionisation with ultrashort pulses in the extreme ultraviolet (XUV) regime can be used to prepare an ion in a superposition of spin-orbit substates. In this work, we study the coherence properties of such a superposition, created by ionising xenon atoms using two phase-locked XUV pulses at different frequencies. In general, if the duration of the driving pulse exceeds the quantum beat period, dephasing will occur. If however, the frequency difference of the two pulses matches the spin-orbit splitting, the coherence can be efficiently increased and dephasing does not occur.

  9. Concentration-dependent effect of hypocalcaemia on in vitro clot strength in patients at risk of bleeding: a retrospective cohort study.

    PubMed

    Ho, K M; Yip, C B

    2016-02-01

    It is uncertain whether hypocalcaemia is associated with an increased risk of bleeding. This study assessed the dose-related relationship between ionised calcium concentrations and in vitro clot strength measured by maximum amplitude (MA) on the thromboelastograph (TEG). A total of 610 patients who were at risk of bleeding or had active bleeding between 2010 and 2014 were considered in this retrospective cohort study. A scatter plot with Pearson correlation coefficient (r) and multiple linear regression was used to assess the dose-related relationship between ionised calcium concentrations and MA on the TEG. The mean ionised calcium of the patients was 1·10 mmol L(-1) (interquartile range: 1·04-1·17) and 235 (38·5%) of them had hypocalcaemia (<1·1 mmol L(-1) ). Hypocalcaemia was more common in patients with significant coexisting coagulopathy. Ionised calcium concentrations (r = 0·285, 95% confidence interval (CI) 0·211-0·356, P = 0·001), as well as fibrinogen concentrations, platelet counts, international normalised ratio (INR) and activated Partial Thromboplastin Time (aPTT), had a significant linear correlation with the MA on the TEG. Ionised calcium concentrations and its interaction term with platelet count were both significantly associated with the MA on the TEG (slope of the regression line 1·1 per 0·1 mmol L(-1) increment, 95%CI 0·3 to 1·9, P = 0·011), after adjusting for fibrinogen concentrations, platelet counts, INR and aPTT. Ionised calcium concentrations had a concentration-dependent association with in vitro clot strength after adjusting for other coagulation abnormalities in patients with coexisting coagulopathy. Maintaining a normal ionised calcium concentration, >1 mmol L(-1) , during critical bleeding is recommended. © 2016 British Blood Transfusion Society.

  10. Theoretical considerations on the optogalvanic detection of laser induced fluorescence in atmospheric pressure atomizers

    NASA Astrophysics Data System (ADS)

    Omenetto, N.; Smith, B. W.; Winefordner, J. D.

    1989-01-01

    Several theoretical considerations are given on the potential and practical capabilities of a detector of fluorescence radiation whose operating principle is based on a multi-step excitation-ionization scheme involving the fluorescence photons as the first excitation step. This detection technique, which was first proposed by MATVEEVet al. [ Zh. Anal Khim.34, 846 (1979)], combines two independent atomizers, one analytical cell for the excitation of the sample fluorescence and one cell, filled with pure analyte atomic vapor, acting as the ionization detector. One laser beam excites the analyte fluorescence in the analytical cell and one (or two) laser beams are used to ionize the excited atoms in the detector. Several different causes of signal and noise are evaluated, together with a discussion on possible analytical atom reservoirs (flames, furnaces) and laser sources which could be used with this approach. For properly devised conditions, i.e. optical saturation of the fluorescence and unity ionization efficiency, detection limits well below pg/ml in solution and well below femtograms as absolute amounts in furnaces can be predicted. However, scattering problems, which are absent in a conventional laser-enhanced ionization set-up, may be important in this approach.

  11. Status of the "new" AMS facility in Trondheim

    NASA Astrophysics Data System (ADS)

    Nadeau, Marie-Josée; Vaernes, Einar; Svarva, Helene Løvstrand; Larsen, Eiliv; Gulliksen, Steinar; Klein, Matthias; Mous, Dirk J. W.

    2015-10-01

    The Radiocarbon Laboratory of the Norwegian University of Science and Technology (NTNU) in Trondheim has a long history, dating back to the 1950s. Its relatively new AMS facility is based on a 1 MV Tandetron from High Voltage Engineering Europa B.V. that is equipped with a hybrid solid/gas SO-110 ion source, a low energy spectrometer supporting sequential injection, a high energy analysis system consisting of a magnet and an electrostatic deflector, allowing insertion of an absorber foil for isobar suppression, and a two dimensional gas ionisation detector (E and ΔE). The system is at present capable of measuring 10Be, 14C, and 26Al and can be easily modified to measure isotopes of higher masses. Acceptance tests results for 10Be1+, 14C2+, 26Al1+, and 26Al3+ are presented. The laboratory measures only 14C at present and the routine procedures are described. The system has demonstrated a very low background (70,000 14C years BP or 2·10-16 on Alfa Aesar 40795 graphite powder, -200 mesh, 99.9995%) for 14C when charge state 2+ is measured and the interference of Li ions in the detector is minimal. Some ion optical peculiarities of the system are also discussed.

  12. Characterisation of nucleosides and nucleobases in Mactra veneriformis by high performance liquid chromatography coupled with diode array detector-mass spectrometry (HPLC-DAD-MS).

    PubMed

    Liu, Rui; Ji, Jing; Wang, Lingchong; Chen, Shiyong; Guo, Sheng; Wu, Hao

    2012-11-15

    Mactra veneriformis has been used as sea food and traditional Chinese medicine (TCM) for thousands of years in China. In the present study, a high performance liquid chromatograph coupled with photodiode array detector and electrospray ionisation-mass spectrometer (HPLC-DAD-ESI-MS) method was established for detection of the nucleosides and nucleobases in M. veneriformis from four aquaticultural area of Jiangsu during different harvest time of one year. The validated method was successfully applied to identifying 10 nucleosides and nucleobases in 48 M. veneriformis samples. Quantitative analysis showed that nucleosides and nucleobases are rich in all M. veneriformis samples. However, their contents vary in different areas and harvest times. Principal component analysis (PCA) was used to classify the 48 samples based on the contents of the nucleosides and nucleobases. As a result, the samples could be mainly clustered into four groups, which was similar as aquaticultural areas classification. Based on the results, present method might be applicable for the quality control of M. veneriformis, or even other marine shellfish aquiculture and their products, and the quality of M. veneriformis might be more related with aquaticultural areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis.

    PubMed

    Gugger, Muriel; Lenoir, Séverine; Berger, Céline; Ledreux, Aurélie; Druart, Jean-Claude; Humbert, Jean-François; Guette, Catherine; Bernard, Cécile

    2005-06-01

    The first identification of anatoxin-a in a French lotic system is reported. Rapid deaths of dogs occurred in 2003 after the animals drank water from the shoreline of the La Loue River in eastern France. Sediments, stones and macrophytes surfaces at the margin of the river were covered by a thick biofilm containing large quantities of several benthic species of filamentous, non-heterocystous cyanobacteria. Known cyanotoxins, such as microcystins, saxitoxins and anatoxins were screened from biofilm samples by biochemical and analytical assays. A compound with similar UV spectra to the anatoxin-a standard was detected by high-performance liquid chromatography (HPLC) coupled with photo-diode array detector. This toxin was further identified by HPLC coupled with a UV detector and by electrospray ionisation-Quadrupole-Time-Of-Flight mass spectrometer, and confirmed by tandem mass spectrometry. These two techniques were necessary to discriminate anatoxin-a in phenylalanine-containing matrices such as liver samples of poisoned dogs. The toxin and the aromatic amino acid, phenylalanine, present the same pseudomolecular ion at m/z 166, but have differing fragmentation patterns, retention times and UV spectra. Finally, several cyanobacterial strains were isolated from the green biofilm and tested for anatoxin-a production. Phormidium favosum was identified as a new anatoxin-a producing species.

  14. Asic developments for radiation imaging applications: The medipix and timepix family

    NASA Astrophysics Data System (ADS)

    Ballabriga, Rafael; Campbell, Michael; Llopart, Xavier

    2018-01-01

    Hybrid pixel detectors were developed to meet the requirements for tracking in the inner layers at the LHC experiments. With low input capacitance per channel (10-100 fF) it is relatively straightforward to design pulse processing readout electronics with input referred noise of ∼ 100 e-rms and pulse shaping times consistent with tagging of events to a single LHC bunch crossing providing clean 'images' of the ionising tracks generated. In the Medipix Collaborations the same concept has been adapted to provide practically noise hit free imaging in a wide range of applications. This paper reports on the development of three generations of readout ASICs. Two distinctive streams of development can be identified: the Medipix ASICs which integrate data from multiple hits on a pixel and provide the images in the form of frames and the Timepix ASICs who aim to send as much information about individual interactions as possible off-chip for further processing. One outstanding circumstance in the use of these devices has been their numerous successful applications, thanks to a large and active community of developers and users. That process has even permitted new developments for detectors for High Energy Physics. This paper reviews the ASICs themselves and details some of the many applications.

  15. Electron-induced scattering dynamics of Boron, Aluminium and Gallium trihalides in the intermediate energy domain

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby

    2018-05-01

    This article is focused on the calculation of electron-induced ionisation and total scattering cross sections by Boron, Aluminium and Gallium trihalide molecules in the intermediate energy domain. The computational formalism, spherical complex optical potential has been employed for the study of these two scattering cross sections. The ionisation cross section has been derived from the inelastic cross section using a semi-empirical method called complex scattering potential-ionisation contribution (CSP-ic) method. We have also calculated the ionisation cross section using the BEB theory with Hartree-Fock and density functional theory (DFT- ωB97XD) orbitals so that a comparison can be made with the cross sections predicted by CSP-ic method. For this theoretical study, we have also calculated polarisability and bond length of some targets which were not found in literature using DFT/B3LYP in Gaussian 09 software.

  16. MEASUREMENTS OF THE IONISING RADIATION LEVEL AT A NUCLEAR MEDICINE FACILITY PERFORMING PET/CT EXAMINATIONS.

    PubMed

    Tulik, P; Kowalska, M; Golnik, N; Budzynska, A; Dziuk, M

    2017-05-01

    This paper presents the results of radiation level measurements at workplaces in a nuclear medicine facility performing PET/CT examinations. This study meticulously determines the staff radiation exposure in a PET/CT facility by tracking the path of patient movement. The measurements of the instantaneous radiation exposure were performed using an electronic radiometer with a proportional counter that was equipped with the option of recording the results on line. The measurements allowed for visualisation of the staff's instantaneous exposure caused by a patient walking through the department after the administration of 18F-FDG. An estimation of low doses associated with each working step and the exposure during a routine day in the department was possible. The measurements were completed by determining the average radiation level using highly sensitive thermoluminescent detectors. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    DOE PAGES

    Adam, W.; Bergauer, T.; Brondolin, E.; ...

    2017-08-22

    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment’s silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up tomore » $$\\Phi _{eq} = 2 \\times 10^{16}$$  cm$$^{-2}$$ , and an ionising dose of $${\\approx } 5$$  MGy after an integrated luminosity of 3000 fb$$^{-1}$$ . Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. Here in this article, the results obtained from the characterisation of 100 and 200 μm thick p-bulk pad diodes and strip sensors irradiated up to fluences of $$\\Phi _{eq} = 1.3 \\times 10^{16}$$  cm$$^{-2}$$ are shown.« less

  18. Experimental programme on absolute fission fragment yields with the lohengrin spectrometer: New optical and statistical methodologies

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Chebboubi; Grégoire, Kessedjian; Olivier, Serot; Sylvain, Julien-Laferriere; Christophe, Sage; Florence, Martin; Olivier, Méplan; David, Bernard; Olivier, Litaize; Aurélien, Blanc; Herbert, Faust; Paolo, Mutti; Ulli, Köster; Alain, Letourneau; Thomas, Materna; Michal, Rapala

    2017-09-01

    The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. In the past with the LOHENGRIN spectrometer of the ILL, priority has been given for the studies in the light fission fragment mass range. The LPSC in collaboration with ILL and CEA has developed a measurement program on symmetric and heavy mass fission fragment distributions. The combination of measurements with ionisation chamber and Ge detectors is necessary to describe precisely the heavy fission fragment region in mass and charge. Recently, new measurements of fission yields and kinetic energy distributions are has been made on the 233U(nth,f) reaction. The focus of this work has been on the new optical and statistical methodology and the self-normalization of the data to provide new absolute measurements, independently of any libraries, and the associated experimental covariance matrix.

  19. Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb-1 of proton-proton collision data at √{ s} = 13 TeV

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adersberger, M.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanisch, S.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2016-09-01

    A search for heavy long-lived charged R-hadrons is reported using a data sample corresponding to 3.2 fb-1 of proton-proton collisions at √{ s} = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived R-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.

  20. Microbolometer spectrometer opens hoist of new applications

    NASA Astrophysics Data System (ADS)

    Leijtens, J.; Smorenburg, C.; Escudero, I.; Boslooper, E.; Visser, H.; Helden, W. v.; Breussin, F.

    2017-11-01

    Current Thermal infra red ( 7..14μm) multispectral imager instruments use cryogenically cooled Mercury Cadmium Telluride (MCT or HgCdTe) detectors. This causes the instruments to be bulky, power hungry and expensive. For systems that have medium NETD (Noise Equivalent Temperature Difference) requirements and can operate with high speed optics (<1.5), room temperature microbolometer performance has increased enough to enable people to design multispectral instruments based on this new detector technology. Because microbolometer technology has been driven by the military need for inexpensive, reliable and small thermal imagers, microbolometer based detectors are almost exclusively available in 2D format, and performance is still increasing. Building a spectrometer for the 7 to 12 μm wavelength region using microbolometers has been discarded until now, based on the expected NETD performance. By optimising the throughput of the optical system, and using the latest improvements in detector performance, TNO TPD has been able to design a spectrometer that is able to provide co-registered measurements in the 7 to 12 μm wavelength region yielding acceptable NETD performance. Apart from the usual multispectral imaging, the concept can be used for several other applications, among which imaging in both the 3 to 5 and 7 to 12 μm atmospheric windows at the same time (forest fire detection and military recognisance) or wideband flame analysis (Nox detection in industrial ovens).

  1. Ionising radiation risk disclosure: When should radiographers assume a duty to inform?

    PubMed

    Younger, C W E; Douglas, C; Warren-Forward, H

    2018-05-01

    Autonomy is a fundamental patient right for ethical practice, and informed consent is the mechanism by which health care professionals ensure this right has been respected. The ethical notion of informed consent has evolved alongside legal developments. Under Australian law, a provider who fails to disclose risk may be found to be in breach of a duty of disclosure, potentially facing legal consequences if the patient experiences harm that is attributable to an undisclosed risk. These consequences may include the common law tort of negligence. Ionising radiation, in the form of a medical imaging examination, has the potential to cause harm. However, stochastic effects cannot be attributable to a specific ionising radiation event. What then is the role of the Australian medical imaging service provider in disclosing ionising radiation risk? The ethical and legal principles of informed consent, and the duty of information provision to the patient are investigated. These general principles are then applied to the specific and unusual case of ionising radiation, and what responsibilities apply to the medical imaging provider. Finally, the legal, professional and ethical duties of the radiographer to disclose information to their patients are investigated. Australian law is unclear as to whether a radiographer has a common law responsibility to disclose radiation risk. There is ambiguity as to whether stochastic ionising radiation risk could be considered a legal disclosure responsibility. While it is unlikely that not disclosing risk will have medicolegal consequences, doing so represents sound ethical practice. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  2. Optimized point dose measurement for monitor unit verification in intensity modulated radiation therapy using 6 MV photons by three different methodologies with different detector-phantom combinations: A comparative study

    PubMed Central

    Sarkar, Biplab; Ghosh, Bhaswar; Sriramprasath; Mahendramohan, Sukumaran; Basu, Ayan; Goswami, Jyotirup; Ray, Amitabh

    2010-01-01

    The study was aimed to compare accuracy of monitor unit verification in intensity modulated radiation therapy (IMRT) using 6 MV photons by three different methodologies with different detector phantom combinations. Sixty patients were randomly chosen. Zero degree couch and gantry angle plans were generated in a plastic universal IMRT verification phantom and 30×30×30 cc water phantom and measured using 0.125 cc and 0.6 cc chambers, respectively. Actual gantry and couch angle plans were also measured in water phantom using 0.6 cc chamber. A suitable point of measurement was chosen from the beam profile for each field. When the zero-degree gantry, couch angle plans and actual gantry, couch angle plans were measured by 0.6 cc chamber in water phantom, the percentage mean difference (MD) was 1.35%, 2.94 % and Standard Deviation (SD) was 2.99%, 5.22%, respectively. The plastic phantom measurements with 0.125 cc chamber Semiflex ionisation chamber (SIC) showed an MD=4.21% and SD=2.73 %, but when corrected for chamber-medium response, they showed an improvement, with MD=3.38 % and SD=2.59 %. It was found that measurements with water phantom and 0.6cc chamber at gantry angle zero degree showed better conformity than other measurements of medium-detector combinations. Correction in plastic phantom measurement improved the result only marginally, and actual gantry angle measurement in a flat- water phantom showed higher deviation. PMID:20927221

  3. ZEPLIN-III direct dark matter search : final results and measurements in support of next generation instruments

    NASA Astrophysics Data System (ADS)

    Reichhart, Lea

    2013-12-01

    Astrophysical observations give convincing evidence for a vast non-baryonic component, the so-called dark matter, accounting for over 20% of the overall content of our Universe. Direct dark matter search experiments explore the possibility of interactions of these dark matter particles with ordinary baryonic matter via elastic scattering resulting in single nuclear recoils. The ZEPLIN-III detector operated on the basis of a dualphase (liquid/gas) xenon target, recording events in two separate response channels { scintillation and ionisation. These allow discrimination between electron recoils (from background radiation) and the signal expected from Weakly Interacting Massive Particle (WIMP) elastic scatters. Following a productive first exposure, the detector was upgraded with a new array of ultra-low background photomultiplier tubes, reducing the electron recoil background by over an order of magnitude. A second major upgrade to the detector was the incorporation of a tonne-scale active veto detector system, surrounding the WIMP target. Calibration and science data taken in coincidence with ZEPLIN-III showed rejection of up to 30% of the dominant electron recoil background and over 60% of neutron induced nuclear recoils. Data taking for the second science run finished in May 2011 with a total accrued raw fiducial exposure of 1,344 kg days. With this extensive data set, from over 300 days of run time, a limit on the spin-independent WIMP-nucleon cross-section of 4.8 10-8 pb near 50 GeV/c2 WIMP mass with 90% confidence was set. This result combined with the first science run of ZEPLIN-III excludes the scalar cross-section above 3.9 10-8 pb. Studying the background data taken by the veto detector allowed a calculation of the neutron yield induced by high energy cosmic-ray muons in lead of (5.8 0.2) 10-3 neutrons/muon/(g/cm2) for a mean muon energy of 260 GeV. Measurements of this kind are of great importance for large scale direct dark matter search experiments and future rare event searches in general. Finally, this work includes a comprehensive measurement of the energy dependent quenching factor for low energy nuclear recoils in a plastic scintillator, such as from the ZEPLIN-III veto detector, increasing accuracy for future simulation packages featuring large scale plastic scintillator detector systems.

  4. Oxygen speciation in upgraded fast pyrolysis bio-oils by comprehensive two-dimensional gas chromatography.

    PubMed

    Omais, Badaoui; Crepier, Julien; Charon, Nadège; Courtiade, Marion; Quignard, Alain; Thiébaut, Didier

    2013-04-21

    Biomass fast pyrolysis is considered as a promising route to produce liquid for the transportation field from a renewable resource. However, the derived bio-oils are mainly oxygenated (45-50%w/w O on a wet basis) and contain almost no hydrocarbons. Therefore, upgrading is necessary to obtain a liquid with lower oxygen content and characterization of oxygenated compounds in these products is essential to assist conversion reactions. For this purpose, comprehensive two-dimensional gas chromatography (GC × GC) can be investigated. Oxygen speciation in such matrices is hampered by the large diversity of oxygenated families and the complexity of the hydrocarbon matrix. Moreover, response factors must be taken into account for oxygenate quantification as the Flame Ionisation Detector (FID) response varies when a molecule contains heteroatoms. To conclude, no distillation cuts were accessible and the analysis had to cover a large range of boiling points (30-630 °C). To take up this analytical challenge, a thorough optimization approach was developed. In fact, four GC × GC column sets were investigated to separate oxygenated compounds from the hydrocarbon matrix. Both model mixtures and the upgraded biomass flash pyrolysis oil were injected using GC × GC-FID to reach a suitable chromatographic separation. The advantages and drawbacks of each column combination for oxygen speciation in upgraded bio-oils are highlighted in this study. Among the four sets, an original polar × semi-polar column combination was selected and enabled the identification by GC × GC-ToF/MS of more than 40 compounds belonging to eight chemical families: ketones, furans, alcohols, phenols, carboxylic acids, guaiacols, anisols, and esters. For quantification purpose, the GC × GC-FID chromatogram was divided into more than 60 blobs corresponding to the previously identified analyte and hydrocarbon zones. A database associating each blob to a molecule and its specific response factor (determined by standards injection at different concentrations) was created. A detailed molecular quantification by GC × GC-FID was therefore accessible after integration of the corrected normalized areas. This paper aims to present a detail level in terms of characterization of oxygenated compounds in upgraded bio-oils which to our knowledge has never been reached so far. It is based on an original column set selection and an extremely accurate quantification procedure.

  5. Milk vitamin D in relation to the 'adequate intake' for 0-6-month-old infants: a study in lactating women with different cultural backgrounds, living at different latitudes.

    PubMed

    Stoutjesdijk, Eline; Schaafsma, Anne; Nhien, Nguyen V; Khor, Geok Lin; Kema, Ido P; Hollis, Bruce W; Dijck-Brouwer, D A Janneke; Muskiet, Frits A J

    2017-11-01

    Breast-fed infants are susceptible to vitamin D deficiency rickets. The current vitamin D 'adequate intake' (AI) for 0-6-month-old infants is 10 µg/d, corresponding with a human milk antirachitic activity (ARA) of 513 IU/l. We were particularly interested to see whether milk ARA of mothers with lifetime abundant sunlight exposure reaches the AI. We measured milk ARA of lactating mothers with different cultural backgrounds, living at different latitudes. Mature milk was derived from 181 lactating women in the Netherlands, Curaçao, Vietnam, Malaysia and Tanzania. Milk ARA and plasma 25-hydroxyvitamin D (25(OH)D) were analysed by liquid-chromatography-MS/MS; milk fatty acids were analysed by GC-flame ionisation detector (FID). None of the mothers reached the milk vitamin D AI. Milk ARA (n; median; range) were as follows: Netherlands (n 9; 46 IU/l; 3-51), Curaçao (n 10; 31 IU/l; 5-113), Vietnam: Halong Bay (n 20; 58 IU/l; 23-110), Phu Tho (n 22; 28 IU/l; 1-62), Tien Giang (n 20; 63 IU/l; 26-247), Ho-Chi-Minh-City (n 18; 49 IU/l; 24-116), Hanoi (n 21; 37 IU/l; 11-118), Malaysia-Kuala Lumpur (n 20; 14 IU/l; 1-46) and Tanzania-Ukerewe (n 21; 77 IU/l; 12-232) and Maasai (n 20; 88 IU/l; 43-189). We collected blood samples of these lactating women in Curaçao, Vietnam and from Tanzania-Ukerewe, and found that 33·3 % had plasma 25(OH)D levels between 80 and 249·9 nmol/l, 47·3 % between 50 and 79·9 nmol/l and 19·4 % between 25 and 49·9 nmol/l. Milk ARA correlated positively with maternal plasma 25(OH)D (range 27-132 nmol/l, r 0·40) and milk EPA+DHA (0·1-3·1 g%, r 0·20), and negatively with latitude (2°S-53°N, r -0·21). Milk ARA of mothers with lifetime abundant sunlight exposure is not even close to the vitamin D AI for 0-6-month-old infants. Our data may point at the importance of adequate fetal vitamin D stores.

  6. Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production

    NASA Astrophysics Data System (ADS)

    Whalley, Lisa K.; Stone, Daniel; Bandy, Brian; Dunmore, Rachel; Hamilton, Jacqueline F.; Hopkins, James; Lee, James D.; Lewis, Alastair C.; Heard, Dwayne E.

    2016-02-01

    Near-continuous measurements of hydroxyl radical (OH) reactivity in the urban background atmosphere of central London during the summer of 2012 are presented. OH reactivity behaviour is seen to be broadly dependent on air mass origin, with the highest reactivity and the most pronounced diurnal profile observed when air had passed over central London to the east, prior to measurement. Averaged over the entire observation period of 26 days, OH reactivity peaked at ˜ 27 s-1 in the morning, with a minimum of ˜ 15 s-1 during the afternoon. A maximum OH reactivity of 116 s-1 was recorded on one day during morning rush hour. A detailed box model using the Master Chemical Mechanism was used to calculate OH reactivity, and was constrained with an extended measurement data set of volatile organic compounds (VOCs) derived from a gas chromatography flame ionisation detector (GC-FID) and a two-dimensional GC instrument which included heavier molecular weight (up to C12) aliphatic VOCs, oxygenated VOCs and the biogenic VOCs α-pinene and limonene. Comparison was made between observed OH reactivity and modelled OH reactivity using (i) a standard suite of VOC measurements (C2-C8 hydrocarbons and a small selection of oxygenated VOCs) and (ii) a more comprehensive inventory including species up to C12. Modelled reactivities were lower than those measured (by 33 %) when only the reactivity of the standard VOC suite was considered. The difference between measured and modelled reactivity was improved, to within 15 %, if the reactivity of the higher VOCs (⩾ C9) was also considered, with the reactivity of the biogenic compounds of α-pinene and limonene and their oxidation products almost entirely responsible for this improvement. Further improvements in the model's ability to reproduce OH reactivity (to within 6 %) could be achieved if the reactivity and degradation mechanism of unassigned two-dimensional GC peaks were estimated. Neglecting the contribution of the higher VOCs (⩾ C9) (particularly α-pinene and limonene) and model-generated intermediates increases the modelled OH concentrations by 41 %, and the magnitude of in situ ozone production calculated from the production of RO2 was significantly lower (60 %). This work highlights that any future ozone abatement strategies should consider the role that biogenic emissions play alongside anthropogenic emissions in influencing London's air quality.

  7. [Study for the revision of analytical method for tris (2,3-dibromopropyl) phosphate with restriction in textiles].

    PubMed

    Mimura, Mayumi; Nakashima, Harunobu; Yoshida, Jin; Yoshida, Toshiaki; Kawakami, Tsuyoshi; Isama, Kazuo

    2014-01-01

    The official analytical method for tris(2,3-dibromopropyl)phosphate (TDBPP), which is banned from use in textile products by the "Act on Control of Household Products Containing Harmful Substances", requires revision. This study examined an analytical method for TDBPP by GC/MS using a capillary column. Thermal decomposition of TDBPP was observed by GC/MS measurement using capillary column, unlike in the case of gas chromatography/flame photometric detector (GC/FPD) measurement based on a direct injection method using a capillary megabore column. A quadratic curve, Y=2572X(1.416), was obtained for the calibration curve of GC/FPD in the concentration range 2.0-100 μg/mL. The detection limit was 1.0 μg/mL under S/N=3. The reproducibility for repetitive injections was satisfactory. A pretreatment method was established using methanol extraction, followed by liquid-liquid partition and purification with a florisil cartridge column. The recovery rate of this method was ~100%. TDBPP was not detected in any of the five commercial products that this study analyzed. To understand the cause of TDBPP decomposition during GC/MS (electron ionization; EI) measurement using capillary column, GC/MS (chemical ionization; CI), GC/FPD, and gas chromatography/flame ionization detector (GC/FID) measurements were conducted. It was suggested that TDBPP might thermally decompose both during GC injection, especially through a splitless injection method, and in the column or ion sources. To attempt GC/MS measurement, an injection part comprising quartz liner was used and the column length was halved (15 m); thus, only one peak could be obtained.

  8. Determination of phthalate esters in drinking water and edible vegetable oil samples by headspace solid phase microextraction using graphene/polyvinylchloride nanocomposite coated fiber coupled to gas chromatography-flame ionization detector.

    PubMed

    Amanzadeh, Hatam; Yamini, Yadollah; Moradi, Morteza; Asl, Yousef Abdossalmi

    2016-09-23

    In the current study, a graphene/polyvinylchloride nanocomposite was successfully coated on a stainless steel substrate by a simple dip coating process and used as a novel headspace solid phase microextraction (HS-SPME) fiber for the extraction of phthalate esters (PEs) from drinking water and edible vegetable oil samples. The prepared SPME fibers exhibited high extractability for PEs (due to the dominant role of π-π stacking interactions and hydrophobic effects) yielding good sensitivity and precision when followed by a gas chromatograph with a flame ionization detector (GC-FID). The optimization strategy of the extraction process was carried out using the response surface method based on a central composite design. The developed method gave a low limit of detection (0.06-0.08μgL(-1)) and good linearity (0.2-100μgL(-1)) for the determination of the PEs under the optimized conditions (extraction temperature, 70±1°C; extraction time, 35min; salt concentration, 30% w/v; stirring rate, 900rpm; desorption temperature, 230°C; and desorption time, 4min) whereas the repeatability and fiber-to-fiber reproducibility were in the range 6.1-7.8% and 8.9-10.2%, respectively. Finally, the proposed method was successfully applied to the analysis of PEs in drinking water and edible oil samples with good recoveries (87-112%) and satisfactory precisions (RSDs<8.3%), indicating the absence of matrix effects in the proposed HS-SPME method. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review.

    PubMed

    Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han

    2017-01-01

    In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development, optimization, validation and application of faster gas chromatography - flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils.

    PubMed

    Zubair, Abdulrazaq; Pappoe, Michael; James, Lesley A; Hawboldt, Kelly

    2015-12-18

    This paper presents an important new approach to improving the timeliness of Total Petroleum Hydrocarbon (TPH) analysis in the soil by Gas Chromatography - Flame Ionization Detector (GC-FID) using the CCME Canada-Wide Standard reference method. The Canada-Wide Standard (CWS) method is used for the analysis of petroleum hydrocarbon compounds across Canada. However, inter-laboratory application of this method for the analysis of TPH in the soil has often shown considerable variability in the results. This could be due, in part, to the different gas chromatography (GC) conditions, other steps involved in the method, as well as the soil properties. In addition, there are differences in the interpretation of the GC results, which impacts the determination of the effectiveness of remediation at hydrocarbon-contaminated sites. In this work, multivariate experimental design approach was used to develop and validate the analytical method for a faster quantitative analysis of TPH in (contaminated) soil. A fractional factorial design (fFD) was used to screen six factors to identify the most significant factors impacting the analysis. These factors included: injection volume (μL), injection temperature (°C), oven program (°C/min), detector temperature (°C), carrier gas flow rate (mL/min) and solvent ratio (v/v hexane/dichloromethane). The most important factors (carrier gas flow rate and oven program) were then optimized using a central composite response surface design. Robustness testing and validation of model compares favourably with the experimental results with percentage difference of 2.78% for the analysis time. This research successfully reduced the method's standard analytical time from 20 to 8min with all the carbon fractions eluting. The method was successfully applied for fast TPH analysis of Bunker C oil contaminated soil. A reduced analytical time would offer many benefits including an improved laboratory reporting times, and overall improved clean up efficiency. The method was successfully applied for the analysis of TPH of Bunker C oil in contaminated soil. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  11. Correlation of the ionisation response at selected points of IC sensitive regions with SEE sensitivity parameters under pulsed laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordienko, A V; Mavritskii, O B; Egorov, A N

    2014-12-31

    The statistics of the ionisation response amplitude measured at selected points and their surroundings within sensitive regions of integrated circuits (ICs) under focused femtosecond laser irradiation is obtained for samples chosen from large batches of two types of ICs. A correlation between these data and the results of full-chip scanning is found for each type. The criteria for express validation of IC single-event effect (SEE) hardness based on ionisation response measurements at selected points are discussed. (laser applications and other topics in quantum electronics)

  12. The influence of non-ionisable excipients on precipitation parameters measured using the CheqSol method.

    PubMed

    Etherson, Kelly; Halbert, Gavin; Elliott, Moira

    2016-09-01

    The aim of this study was to determine the influence of non-ionisable excipients hydroxypropyl-β-cyclodextrin (HPβCD) and poloxamers 407 and 188 on the supersaturation and precipitation kinetics of ibuprofen, gliclazide, propranolol and atenolol induced through solution pH shifts using the CheqSol method. The drug's kinetic and intrinsic aqueous solubilities were measured in the presence of increasing excipient concentrations using the CheqSol method. Experimental data rate of change of pH with time was also examined to determine excipient-induced parachute effects and influence on precipitation rates. The measured kinetic and intrinsic solubilities provide a determination of the influence of each excipient on supersaturation index, and the area under the CheqSol curve can measure the parachute capability of excipients. The excipients influence on precipitation kinetics can be measured with novel parameters; for example, the precipitation pH or percentage ionised drug at the precipitation point, which provide further information on the excipient-induced changes in precipitation performance. This method can therefore be employed to measure the influence of non-ionisable excipients on the kinetic solubility behaviour of supersaturated solutions of ionisable drugs and to provide data, which discriminates between excipient systems during precipitation. © 2016 Royal Pharmaceutical Society.

  13. Gamma hydroxybutyric acid (GHB) concentrations in humans and factors affecting endogenous production.

    PubMed

    Elliott, Simon P

    2003-04-23

    The endogenous nature of the drug of abuse gamma hydroxybutyric acid (GHB) has caused various interpretative problems for toxicologists. In order to obtain data for the presence of endogenous GHB in humans and to investigate any factors that may affect this, a volunteer study was undertaken. The GHB concentrations in 119 urine specimens from GHB-free subjects and 25 urine specimens submitted for toxicological analysis showed maximal urinary GHB concentrations of 3mg/l. Analysis of 15 plasma specimens submitted for toxicological analysis detected no measurable GHB (less than 2.5mg/l). Studies in a male and female volunteer in which different dietary food groups were ingested at weekly intervals, showed significant creatinine-independent intra-individual fluctuation with overall urine GHB concentrations between 0 and 2.55, and 0 and 2.74mg/l, respectively. Urinary concentrations did not appear to be affected by the particular dietary groups studied. The concentrations measured by gas chromatography with flame ionisation detection (GC-FID) and gas chromatography with mass spectrometry (GC-MS) lend further support to the proposed urinary and plasma interpretative cut-offs of 10 and 4mg/l, respectively, where below this it is not possible to determine whether any GHB detected is endogenous or exogenous in nature.

  14. Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas

    PubMed Central

    Ross, A. E.; McKenzie, D. R.

    2016-01-01

    Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present. PMID:27046237

  15. Rapid detection of nicotine from breath using desorption ionisation on porous silicon.

    PubMed

    Guinan, T M; Abdelmaksoud, H; Voelcker, N H

    2017-05-04

    Desorption ionisation on porous silicon (DIOS) was used for the detection of nicotine from exhaled breath. This result represents proof-of-principle of the ability of DIOS to detect small molecular analytes in breath including biomarkers and illicit drugs.

  16. Selective area deposited n-Al0.5Ga0.5N channel field effect transistors with high solar-blind ultraviolet photo-responsivity

    NASA Astrophysics Data System (ADS)

    Muhtadi, S.; Hwang, S.; Coleman, A.; Asif, F.; Lunev, A.; Chandrashekhar, M. V. S.; Khan, A.

    2017-04-01

    We report on AlGaN field effect transistors over AlN/sapphire templates with selective area grown n-Al0.5Ga0.5N channel layers for which a field-effect mobility of 55 cm2/V-sec was measured. Using a pulsed plasma enhanced chemical vapor deposition deposited 100 A thick SiO2 layer as the gate-insulator, the gate-leakage currents were reduced by three orders of magnitude. These devices with or without gate insulators are excellent solar-blind ultraviolet detectors, and they can be operated either in the photoconductive or the photo-voltaic modes. In the photo-conductive mode, gain arising from hole-trapping in the depletion region leads to steady-state photoresponsivity as high as 1.2 × 106A/W at 254 nm, which drops sharply below 290 nm. A hole-trapping limited detector response time of 34 ms, fast enough for real-time flame-detection and imaging applications, was estimated.

  17. Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars.

    PubMed

    Dartnell, Lewis R; Page, Kristian; Jorge-Villar, Susana E; Wright, Gary; Munshi, Tasnim; Scowen, Ian J; Ward, John M; Edwards, Howell G M

    2012-04-01

    Raman spectroscopy has proven to be a very effective approach for the detection of microorganisms colonising hostile environments on Earth. The ExoMars rover, due for launch in 2018, will carry a Raman laser spectrometer to analyse samples of the martian subsurface collected by the probe's 2-m drill in a search for similar biosignatures. The martian surface is unprotected from the flux of cosmic rays, an ionising radiation field that will degrade organic molecules and so diminish and distort the detectable Raman signature of potential martian microbial life. This study employs Raman spectroscopy to analyse samples of two model organisms, the cyanobacterium Synechocystis sp. PCC 6803 and the extremely radiation resistant polyextremophile Deinococcus radiodurans, that have been exposed to increasing doses of ionising radiation. The three most prominent peaks in the Raman spectra are from cellular carotenoids: deinoxanthin in D. radiodurans and β-carotene in Synechocystis. The degradative effect of ionising radiation is clearly seen, with significant diminishment of carotenoid spectral peak heights after 15 kGy and complete erasure of Raman biosignatures by 150 kGy of ionising radiation. The Raman signal of carotenoid in D. radiodurans diminishes more rapidly than that of Synechocystis, believed to be due to deinoxanthin acting as a superior scavenger of radiolytically produced reactive oxygen species, and so being destroyed more quickly than the less efficient antioxidant β-carotene. This study highlights the necessity for further experimental work on the manner and rate of degradation of Raman biosignatures by ionising radiation, as this is of prime importance for the successful detection of microbial life in the martian near subsurface.

  18. Greenhouse gas measurements from a UK network of tall towers: technical description and first results

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran M.; Grant, Aoife; O'Doherty, Simon; Young, Dickon; Manning, Alistair J.; Stavert, Ann R.; Spain, T. Gerard; Salameh, Peter K.; Harth, Christina M.; Simmonds, Peter G.; Sturges, William T.; Oram, David E.; Derwent, Richard G.

    2018-03-01

    A network of three tall tower measurement stations was set up in 2012 across the United Kingdom to expand measurements made at the long-term background northern hemispheric site, Mace Head, Ireland. Reliable and precise in situ greenhouse gas (GHG) analysis systems were developed and deployed at three sites in the UK with automated instrumentation measuring a suite of GHGs. The UK Deriving Emissions linked to Climate Change (UK DECC) network uses tall (165-230 m) open-lattice telecommunications towers, which provide a convenient platform for boundary layer trace gas sampling. In this paper we describe the automated measurement system and first results from the UK DECC network for CO2, CH4, N2O, SF6, CO and H2. CO2 and CH4 are measured at all of the UK DECC sites by cavity ring-down spectroscopy (CRDS) with multiple inlet heights at two of the three tall tower sites to assess for boundary layer stratification. The short-term precisions (1σ on 1 min means) of CRDS measurements at background mole fractions for January 2012 to September 2015 is < 0.05 µmol mol-1 for CO2 and < 0.3 nmol mol-1 for CH4. Repeatability of standard injections (1σ) is < 0.03 µmol mol-1 for CO2 and < 0.3 nmol mol-1 for CH4 for the same time period. N2O and SF6 are measured at three of the sites, and CO and H2 measurements are made at two of the sites, from a single inlet height using gas chromatography (GC) with an electron capture detector (ECD), flame ionisation detector (FID) or reduction gas analyser (RGA). Repeatability of individual injections (1σ) on GC and RGA instruments between January 2012 and September 2015 for CH4, N2O, SF6, CO and H2 measurements were < 2.8 nmol mol-1, < 0.4 nmol mol-1, < 0.07 pmol mol-1, < 2 nmol mol-1 and < 3 nmol mol-1, respectively. Instrumentation in the network is fully automated and includes sensors for measuring a variety of instrumental parameters such as flow, pressures, and sampling temperatures. Automated alerts are generated and emailed to site operators when instrumental parameters are not within defined set ranges. Automated instrument shutdowns occur for critical errors such as carrier gas flow rate deviations. Results from the network give good spatial and temporal coverage of atmospheric mixing ratios within the UK since early 2012. Results also show that all measured GHGs are increasing in mole fraction over the selected reporting period and, except for SF6, exhibit a seasonal trend. CO2 and CH4 also show strong diurnal cycles, with night-time maxima and daytime minima in mole fractions.

  19. Characterisation of organometallic and coordination compounds by solvent-free matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    PubMed

    Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2008-01-01

    Insoluble or low solubility organometallic and coordination compounds have been characterised by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, with solvent-free sample preparation being the key step toward successful analysis.

  20. Matrix-free mass spectrometric imaging using laser desorption ionisation Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Goodwin, Richard J A; Pitt, Andrew R; Harrison, David; Weidt, Stefan K; Langridge-Smith, Pat R R; Barrett, Michael P; Logan Mackay, C

    2011-04-15

    Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Dosimetry audit of radiotherapy treatment planning systems.

    PubMed

    Bulski, Wojciech; Chełmiński, Krzysztof; Rostkowska, Joanna

    2015-07-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. A new measurement of the half-life of (166m)Ho.

    PubMed

    Nedjadi, Y; Bailat, C; Caffari, Y; Froidevaux, P; Wastiel, C; Kivel, N; Guenther-Leopold, I; Triscone, G; Jaquenod, F; Bochud, F

    2012-09-01

    The work presented here is a new and precise measurement of the half-life of (166m)Ho by determining the activity concentration, using an ionisation chamber calibrated for this nuclide, and measuring the number of (166m)Ho atoms using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Since the isotope (166)Er interferes with the mass spectrometric measurement, Er has to be eliminated from the (166m)Ho radioactive solution. The elimination was achieved using ion-exchange chromatography with the cation exchange resin Dowex AG 50W-X8 and 2-Hydroxybutanoic acid as the mobile phase. After a first transit through the chromatographic column, the purified (166m)Ho eluate was spiked with natural Er to get a resulting Er isotopic composition close to that of natural Er at better than 99.5%, and then it underwent two further separations to eliminate the Er. The activity concentration of this Er-free radioactive (166m)Ho solution was measured in our reference ionisation chamber calibrated for this nuclide by means of the 4πβ(PC)-γ and 4πβ(PS)-4πγ coincidence techniques and integral counting with a well-type NaI(Tl) detector and Monte Carlo efficiencies. An aliquot of this standardized solution was sent to the Paul Scherrer Institute (PSI) for mass concentration determination using an isotope dilution MC-ICP-MS approach. The mass concentration of (166m)Ho in this solution was determined with 0.25% relative standard uncertainty. This value was corroborated by two other independent measurements. The new half-life of (166m)Ho, 1132.6(39) years (k=1), is compatible with the value determined in 1965, but is 5.6% shorter and about 43 times more precise. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Ionised outflows in z ~ 2.4 quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2015-08-01

    Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, P.ID: 086.B-0579(A).

  4. The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs

    NASA Astrophysics Data System (ADS)

    Dahlgren, H.; Semeter, J. L.; Marshall, R. A.; Zettergren, M.

    2013-07-01

    High-resolution optical observations of a substorm expansion show dynamic auroral rays with surges of luminosity traveling up the magnetic field lines. Observed in ground-based imagers, this phenomenon has been termed auroral flames, whereas the rocket signatures of the corresponding energy dispersions are more commonly known as field-aligned bursts. In this paper, observations of auroral flames obtained at 50 frames/s with a scientific-grade Complementary Metal Oxide Semiconductor (CMOS) sensor (30° × 30° field of view, 30 m resolution at 120 km) are used to provide insight into the nature of the precipitating electrons similar to high-resolution particle detectors. Thanks to the large field of view and high spatial resolution of this system, it is possible to obtain a first-order estimate of the temporal evolution in altitude of the volume emission rate from a single sensor. The measured volume emission rates are compared with the sum of modeled eigenprofiles obtained for a finite set of electron beams with varying energy provided by the TRANSCAR auroral flux tube model. The energy dispersion signatures within each auroral ray can be analyzed in detail during a fraction of a second. The evolution of energy and flux of the precipitation shows precipitation spanning over a large range of energies, with the characteristic energy dropping from 2.1 keV to 0.87 keV over 0.2 s. Oscillations at 2.4 Hz in the magnetic zenith correspond to the period of the auroral flames, and the acceleration is believed to be due to Alfvenic wave interaction with electrons above the ionosphere.

  5. Sudden death caused by 1,1-difluoroethane inhalation.

    PubMed

    Xiong, Zhenggang; Avella, Joseph; Wetli, Charles V

    2004-05-01

    A 20-year-old man was found dead on the floor next to a computer, with a nearly full can of "CRC Duster" dust remover located next to the deceased on the floor, and an empty can of the same product on the computer desk. Toxicologic evaluation using either gas chromatography/mass spectrometry (GC/MS) or gas chromatography/flame ionization detector (GC/FID) method identified the active ingredient 1,1-difluoroethane (Freon 152a) in all tissues analyzed. Tissue distribution studies revealed highest concentration in central blood, lung, and liver. It is believed that the 1,1-difluoroethane inhalation was the cause of death.

  6. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil

    PubMed Central

    2013-01-01

    Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. Conclusions High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry. PMID:23452327

  7. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    PubMed

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry.

  8. The vapour of imidazolium-based ionic liquids: a mass spectrometry study.

    PubMed

    Deyko, A; Lovelock, K R J; Licence, P; Jones, R G

    2011-10-06

    Eight common dialkylimidazolium-based ionic liquids have been successfully evaporated in ultra-high vacuum and their vapours analysed by line of sight mass spectrometry using electron ionisation. The ionic liquids investigated were 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide, [C(n)C(1)Im][Tf(2)N] (where n = 2, 4, 6, 8), 1-alkyl-3-methylimidazolium tetrafluoroborate, [C(n)C(1)Im][BF(4)] (where n = 4, 8), 1-butyl-3-methylimidazolium octylsulfate, [C(4)C(1)Im][C(8)OSO(3)] and 1-butyl-3-methylimidazolium tetrachloroferrate, [C(4)C(1)Im][FeCl(4)]. All ionic liquids studied here evaporated as neutral ion pairs; no evidence of decomposition products in the vapour phase were observed. Key fragment cations of the ionised vapour of the ionic liquids are identified. The appearance energies, E(app), of the parent cation were measured and used to estimate the ionisation energies, E(i), for the vapour phase neutral ion pairs. Measured ionisation energies ranged from 10.5 eV to 13.0 eV. Using both the identity and E(app) values, the fragmentation pathways for a number of fragment cations are postulated. It will be shown that the enthalpy of vaporisation, Δ(vap)H, can successfully be measured using more than one fragment cation, although caution is required as many fragment cations can also be formed by ionisation of decomposition products.

  9. The vacuum-ultraviolet photoelectron spectra of CH2F2 and CH2Cl2 revisited

    NASA Astrophysics Data System (ADS)

    Tuckett, Richard; Harvey, Jonelle; Hemberger, Patrick; Bodi, Andras

    2015-09-01

    The threshold photoelectron spectrum (TPES) of difluoromethane and dichloromethane has been recorded at the Swiss Light Source with a resolution of 2 meV or 16 cm-1. Electronic and vibronic transitions are simulated and assigned with the help of Franck-Condon (FC) calculations based on coupled cluster electronic structure calculations for the equilibrium geometries and harmonic vibrational frequencies of the neutrals, and of the ground and excited electronic states of the cations. Notwithstanding a high-resolution pulsed-field ionisation study on CH2F2 (Forysinski et al., 2010) in which a number of transitions to the X∼+ state have been recorded with unprecedented accuracy, we report the first complete vibrationally resolved overview of the low-lying electronic states of CH2X2+, X = F or Cl. Hydrogen atom loss from CH2F2+ occurs at low energy, making the ground state rather anharmonic and interpretation of the X∼+ band challenging in the harmonic approximation. By Franck-Condon fits, the adiabatic ionisation energies to the A∼+ 2B2, C∼+ 2A2 and D∼+ 2B2 states have been determined as 14.3 ± 0.1, 15.57 ± 0.01 and 18.0 ± 0.1 eV, respectively. The first band in the CH2Cl2 TPES is complex for a different reason, as it is the result of two overlapping ionic states, X∼+ 2B2 and A∼+ 2B1, with derived ionisation energies of 11.0 ± 0.2 and 11.317 ± 0.006 eV, and dominated by an extended progression in the CCl2 bend (in X∼+) and a short progression in the CCl2 symmetric stretch (in A∼+), respectively. Furthermore, even though Koopmans' approximation holds for the vertical ionisations, the X∼+ state of CH2Cl2+ is stabilized by geometry relaxation and corresponds to ionisation from the (HOMO-1) orbital. That is, the first two vertical ionisation energies are in the same order as the negative of the orbital energies of the highest occupied orbitals, but the adiabatic ionisation energy corresponding to electron removal from the (HOMO-1) is lower than the adiabatic ionisation energy corresponding to electron removal from the HOMO. The second band in the spectrum could be analysed to identify the vibrational progressions and determine adiabatic ionisation energies of 12.15 and 12.25 eV for the B∼+ 2A1 and C∼+ 2A2 states. A comparison of the assignment of electronic states with the literature is made difficult by the fact that the B1 and B2 irreducible representations in C2v symmetry depend on the principal plane, i.e. whether the CX2 moiety is in the xz or the yz plane, which is often undefined in older papers.

  10. Particle Morphology and Elemental Composition of Smoke Generated by Overheating Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2015-01-01

    Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.

  11. Headspace solid-phase microextraction and gas chromatographic analysis of low-molecular-weight sulfur volatiles with pulsed flame photometric detection and quantification by a stable isotope dilution assay.

    PubMed

    Ullrich, Sebastian; Neef, Sylvia K; Schmarr, Hans-Georg

    2018-02-01

    Low-molecular-weight volatile sulfur compounds such as thiols, sulfides, disulfides as well as thioacetates cause a sulfidic off-flavor in wines even at low concentration levels. The proposed analytical method for quantification of these compounds in wine is based on headspace solid-phase microextraction, followed by gas chromatographic analysis with sulfur-specific detection using a pulsed flame photometric detector. Robust quantification was achieved via a stable isotope dilution assay using commercial and synthesized deuterated isotopic standards. The necessary chromatographic separation of analytes and isotopic standards benefits from the inverse isotope effect realized on an apolar polydimethylsiloxane stationary phase of increased film thickness. Interferences with sulfur-specific detection in wine caused by sulfur dioxide were minimized by addition of propanal. The method provides adequate validation data, with good repeatability and limits of detection and quantification. It suits the requirements of wine quality management, allowing the control of oenological treatments to counteract an eventual formation of excessively high concentration of such malodorous compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Quantitative Species Measurements in Microgravity Combustion Flames using Near-Infrared Diode Lasers

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1999-01-01

    Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for characterizing dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Unfortunately, combustion is highly complicated by fluid mechanical and chemical kinetic processes, requiring the use of numerical modeling to compare with carefully designed experiments. More sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion as well as provide accurate feedback to improve the predictive capabilities of the models. Diode lasers are a natural choice for use under the severe conditions of low gravity experiments. Reliable, simple solid state operation at low power satisfies the operational restrictions imposed by drop towers, aircraft and space-based studies. Modulation wavelength absorption spectroscopy (WMS) provides a means to make highly sensitive and quantitative measurements of local gas concentration and, in certain cases, temperature. With near-infrared diode lasers, detection of virtually all major combustion species with extremely rapid response time is possible in an inexpensive package. Advancements in near-infrared diode laser fabrication technology and concurrent development of optical fibers for these lasers led to their use in drop towers. Since near-infrared absorption line strengths for overtone and combination vibrational transitions are weaker than the mid-infrared fundamental bands, WMS techniques are applied to increase detection sensitivity and allow measurement of the major combustion gases. In the first microgravity species measurement, Silver et al. mounted a fiber-coupled laser at the top of the NASA 2.2-sec drop tower and piped the light through a single-mode fiber to the drop rig. A fiber splitter divided the light into eight channels that directed the laser beam across a methane or propane diffusion jet flame. The light beams were recaptured by a set of gradient index lenses, coupled back into separate fiber optic lines, and transmitted back to detectors and electronics in the instrument package. In these experiments a 6-mm od fiber cable (containing the nine optical fibers) fell with the drop rig. Using separate detection and demodulation channels, spatial and temporal (up to 20 Hz) maps of water vapor and methane concentrations were obtained at differing heights in the flames. While this apparatus was useful from a demonstration standpoint, several drawbacks needed attention before useful scientific measurements could be obtained. First, eight lines of sight are somewhat insufficient for detailing the spatial profiles of the gas. Second, multiple detection channels operating in parallel are both expensive and present a challenge for accurate calibration. As a result, a newer scanning system was developed in our first contract under this program. The primary characteristic of this system is that it contains a single detection channel and achieves "continuous" spatial resolution by scanning the laser beam across the flame region, then directing this beam onto a single detector. Thus spatial measurements are converted to a temporal series of data. The true spatial resolution is limited only by the beam diameter and width of the sweep. In these experiments the beam is focused to about 1-mm diameter and scans across a region up to 4-cm wide.

  13. Fire protection for launch facilities using machine vision fire detection

    NASA Astrophysics Data System (ADS)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  14. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, D.R.; Notestein, J.E.

    1985-01-04

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interfering blackbody radiation by greater than 20 dB.

  15. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, David R.; Notestein, John E.

    1986-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interferring blackbody radiation by greater than 20 dB.

  16. Evaluation of a novel helium ionization detector within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography.

    PubMed

    Franchina, Flavio A; Maimone, Mariarosa; Sciarrone, Danilo; Purcaro, Giorgia; Tranchida, Peter Q; Mondello, Luigi

    2015-07-10

    The present research is focused on the use and evaluation of a novel helium ionization detector, defined as barrier discharge ionization detector (BID), within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography (FM GC×GC). The performance of the BID device was compared to that of a flame ionization detector (FID), under similar FM GC×GC conditions. Following development and optimization of the FM GC×GC method, the BID was subjected to fine tuning in relation to acquisition frequency and discharge flow. Moreover, the BID performance was measured and compared to that of the FID, in terms of extra-column band broadening, sensitivity and dynamic range. The comparative study was carried out by using standard compounds belonging to different chemical classes, along with a sample of diesel fuel. Advantages and disadvantages of the BID system, also within the context of FM GC×GC, are critically discussed. In general, the BID system was characterized by a more limited dynamic range and increased sensitivity, compared to the FID. Additionally, BID and FID contribution to band broadening was found to be similar under the operational conditions applied. Particular attention was devoted to the behaviour of the FM GC×GC-BID system toward saturated and aromatic hydrocarbons, for a possible future use in the field of mineral-oil food contamination research. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Fire protection for launch facilities using machine vision fire detection

    NASA Technical Reports Server (NTRS)

    Schwartz, Douglas B.

    1993-01-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  18. An experimental study of the effect of a pilot flame on technically pre-mixed, self-excited combustion instabilities

    NASA Astrophysics Data System (ADS)

    O'Meara, Bridget C.

    Combustion instabilities are a problem facing the gas turbine industry in the operation of lean, pre-mixed combustors. Secondary flames known as "pilot flames" are a common passive control strategy for eliminating combustion instabilities in industrial gas turbines, but the underlying mechanisms responsible for the pilot flame's stabilizing effect are not well understood. This dissertation presents an experimental study of a pilot flame in a single-nozzle, swirl-stabilized, variable length atmospheric combustion test facility and the effect of the pilot on combustion instabilities. A variable length combustor tuned the acoustics of the system to excite instabilities over a range of operating conditions without a pilot flame. The inlet velocity was varied from 25 -- 50 m/s and the equivalence ratio was varied from 0.525 -- 0.65. This range of operating conditions was determined by the operating range of the combustion test facility. Stability at each operating condition and combustor length was characterized by measurements of pressure oscillations in the combustor. The effect of the pilot flame on the magnitude and frequency of combustor stability was then investigated. The mechanisms responsible for the pilot flame effect were studied using chemiluminescence flame images of both stable and unstable flames. Stable flame structure was investigated using stable flame images of CH* chemiluminescence emission. The effect of the pilot on stable flame metrics such as flame length, flame angle, and flame width was investigated. In addition, a new flame metric, flame base distance, was defined to characterize the effect of the pilot flame on stable flame anchoring of the flame base to the centerbody. The effect of the pilot flame on flame base anchoring was investigated because the improved stability with a pilot flame is usually attributed to improved flame anchoring through the recirculation of hot products from the pilot to the main flame base. Chemiluminescence images of unstable flames were used to identify several instability mechanisms and infer how these mechanisms are affected by the pilot flame. Flame images of cases in which the pilot flame did not eliminate the instability were investigated to understand why the pilot flame is not effective in certain cases. The phase of unstable pilot flame oscillations was investigated to determine how the phase of pilot flame oscillations may affect its ability to interfere with instability mechanisms in the main flame. A forced flame response study was conducted to determine the effect of inlet velocity oscillation amplitude on the pilot flame. The flame response was characterized by measurements of velocity oscillations in the injector and chemiluminescence intensity oscillations determined from flame images. As the forcing amplitude increases, the pilot flame's effect on the flame transfer function magnitude becomes weaker. Flame images show that as the forcing amplitude increases, the pilot flame oscillations increase, leading to an ineffective pilot. The results of the flame response portion of this study highlight the effect of instability amplitude on the ability of a pilot flame to eliminate a combustion instability.

  19. An automated approach to detecting signals in electroantennogram data

    USGS Publications Warehouse

    Slone, D.H.; Sullivan, B.T.

    2007-01-01

    Coupled gas chromatography/electroantennographic detection (GC-EAD) is a widely used method for identifying insect olfactory stimulants present in mixtures of volatiles, and it can greatly accelerate the identification of insect semiochemicals. In GC-EAD, voltage changes across an insect's antenna are measured while the antenna is exposed to compounds eluting from a gas chromatograph. The antenna thus serves as a selective GC detector whose output can be compared to that of a "general" GC detector, commonly a flame ionization detector. Appropriate interpretation of GC-EAD results requires that olfaction-related voltage changes in the antenna be distinguishable from background noise that arises inevitably from antennal preparations and the GC-EAD-associated hardware. In this paper, we describe and compare mathematical algorithms for discriminating olfaction-generated signals in an EAD trace from background noise. The algorithms amplify signals by recognizing their characteristic shape and wavelength while suppressing unstructured noise. We have found these algorithms to be both powerful and highly discriminatory even when applied to noisy traces where the signals would be difficult to discriminate by eye. This new methodology removes operator bias as a factor in signal identification, can improve realized sensitivity of the EAD system, and reduces the number of runs required to confirm the identity of an olfactory stimulant. ?? 2007 Springer Science+Business Media, LLC.

  20. Measurements of atmospheric carbonyl sulfide during the NASA Chemical Instrumentation Test and Evaluation Project: Implications for the global COS budget

    NASA Technical Reports Server (NTRS)

    Johnson, James E.; Bandy, Alan R.; Thornton, Donald C.; Bates, Timothy S.

    1993-01-01

    Atmospheric carbonyl sulfide COS concentrations were measured by three analytical systems during the Chemical Instrumentation Test and Evaluation (CITE 3) project. The three systems all used cryogenic sample preconcentration and gas chromatographic (GC) separation but differed in the method of detection. The FPD system used a flame photometric detector, the MS system used a mass selective detector, and the ECD-S system used a fluorinating catalyst followed by an electron capture detector. With the FPD system, we found a mean COS concentration of 510 ppt over the North Atlantic and 442 ppt over the Tropical Atlantic. With the ECD-S system, we found a mean COS concentration of 489 ppt over the North Atlantic and 419 ppt over the Tropical Atlantic. All three systems registered a latitudinal gradient in atmospheric COS of between 1.6 and 2.0 ppt per degree of latitude, with increasing COS concentrations northward which was similar to the gradient measured by Bingemer et al. (1990). It is difficult to reconcile the measured latitudinal concentration gradient with present theories of the global COS budget since the largest sink of COS is thought to be a flux to land plants, most of which are in the northern hemisphere.

  1. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  2. The interaction of excited atoms and few-cycle laser pulses

    PubMed Central

    Calvert, J. E.; Xu, Han; Palmer, A. J.; Glover, R. D.; Laban, D. E.; Tong, X. M.; Kheifets, A. S.; Bartschat, K.; Litvinyuk, I. V.; Kielpinski, D.; Sang, R. T.

    2016-01-01

    This work describes the first observations of the ionisation of neon in a metastable atomic state utilising a strong-field, few-cycle light pulse. We compare the observations to theoretical predictions based on the Ammosov-Delone-Krainov (ADK) theory and a solution to the time-dependent Schrödinger equation (TDSE). The TDSE provides better agreement with the experimental data than the ADK theory. We optically pump the target atomic species and measure the ionisation rate as the a function of different steady-state populations in the fine structure of the target state which shows significant ionisation rate dependence on populations of spin-polarised states. The physical mechanism for this effect is unknown. PMID:27666403

  3. Exploring the Powerful Ionised Wind in the Seyfert Galaxy PG1211+143

    NASA Astrophysics Data System (ADS)

    Pounds, Ken

    2013-10-01

    Highly-ionised high-speed winds in AGN (UFOs) were first detected with XMM-Newton a decade ago, and are now established as a key factor in the study of SMBH accretion, and in the growth and metal enrichment of their host galaxies. However, information on the ionisation and dynamical structure, and the ultimate fate of UFOs remains very limited. We request a 600ks extended XMM-Newton study of the prototype UFO PG1211+143 in AO-13, to obtain high quality EPIC and RGS spectra, to map the flow structure and variability, while seeking evidence for the anticipated interaction with the ISM and possible conversion of the energetic wind to a momentum-driven flow.

  4. The interaction of excited atoms and few-cycle laser pulses.

    PubMed

    Calvert, J E; Xu, Han; Palmer, A J; Glover, R D; Laban, D E; Tong, X M; Kheifets, A S; Bartschat, K; Litvinyuk, I V; Kielpinski, D; Sang, R T

    2016-09-26

    This work describes the first observations of the ionisation of neon in a metastable atomic state utilising a strong-field, few-cycle light pulse. We compare the observations to theoretical predictions based on the Ammosov-Delone-Krainov (ADK) theory and a solution to the time-dependent Schrödinger equation (TDSE). The TDSE provides better agreement with the experimental data than the ADK theory. We optically pump the target atomic species and measure the ionisation rate as the a function of different steady-state populations in the fine structure of the target state which shows significant ionisation rate dependence on populations of spin-polarised states. The physical mechanism for this effect is unknown.

  5. XCAMS: The compact 14C accelerator mass spectrometer extended for 10Be and 26Al at GNS Science, New Zealand

    NASA Astrophysics Data System (ADS)

    Zondervan, A.; Hauser, T. M.; Kaiser, J.; Kitchen, R. L.; Turnbull, J. C.; West, J. G.

    2015-10-01

    A detailed description is given of the 0.5 MV tandem accelerator mass spectrometry (AMS) system for 10Be, 14C, 26Al, installed in early 2010 at GNS Science, New Zealand. Its design follows that of previously commissioned Compact 14C-only AMS (CAMS) systems based on the Pelletron tandem accelerator. The only basic departure from that design is an extension of the rare-isotope achromat with a 45° magnet and a two-anode gas-ionisation detector, to provide additional filtering for 10Be. Realised performance of the three AMS modes is discussed in terms of acceptance-test scores, 14C Poisson and non-Poisson errors, and 10Be detection limit and sensitivity. Operational details and hardware improvements, such as 10Be beam transport and particle detector setup, are highlighted. Statistics of repeat measurements of all graphitised 14C calibration cathodes since start-up show that 91% of their total uncertainty values are less than 0.3%, indicating that the rare-isotope beamline extension has not affected precision of 14C measurement. For 10Be, the limit of detection in terms of the isotopic abundance ratio 10Be/9Be is 6 × 10-15 at at-1 and the total efficiency of counting atoms in the sample cathode is 1/8500 (0.012%).

  6. Experimental studies of the emissions characteristics of nonpremixed gas-air flames of various configurations

    NASA Astrophysics Data System (ADS)

    Bandaru, Ramarao Venkat

    2000-10-01

    Flow structure plays an important role in the mixing and chemical reaction processes in turbulent jet diffusion flames, which in turn influence the formation of pollutants. Fundamental studies on pollutant formation have mainly focussed on vertical, straight jet, turbulent flames. However, in many practical combustion systems such as boilers and furnaces, flames of various configurations are used. In the present study, along with vertical straight jet flames, pollutant emissions characteristics of crossflow flames and precessing jet flames are studied. In vertical, straight jet flames, in-flame temperature and NO concentration measurements were made to ascertain the influence of flame radiation on NO x emissions observed in earlier studies. Radiation affects flame temperatures and this is seen in the measured temperature fields in, undiluted and diluted, methane and ethylene flames. Measured NO distribution fields in undiluted methane and ethylene flames inversely correlated with the temperature, and thereby explaining the observed relationship between flame radiation and NO x emissions. Flames in most practical combustion devices have complex mixing characteristics. One such configuration is the crossflow flame, where the flame is subjected to a crossflow stream. The presence of twin counter-rotating vortices in the flames leading to increased entrainment rates and shorter residence times (i.e. shorter flame lengths). The variation of NOx emissions characteristics of crossflow flames from those of straight jet flames depends on the sooting propensity of the fuel used. Additionally, the nearfield region of the flame (i.e., region near the burner exit) has a strong influence on the CO and unburned hydrocarbon emissions, and on the NO2-to-NO x ratios. Another flame configuration used in the present study is the precessing jet flame. In the practical implementation of this unique flame configuration, the fuel jet precesses about the burner axis due to natural fluid mechanical instability occurring inside the burner at a sudden expansion. Studies have shown that these flames emit up to 70% less NOx than straight jet flames. In precessing jet flames, the turbulent mixing scales are several times larger than those of straight jet flames.

  7. Ambient ionisation mass spectrometry for in situ analysis of intact proteins

    PubMed Central

    Kocurek, Klaudia I.; Griffiths, Rian L.

    2018-01-01

    Abstract Ambient surface mass spectrometry is an emerging field which shows great promise for the analysis of biomolecules directly from their biological substrate. In this article, we describe ambient ionisation mass spectrometry techniques for the in situ analysis of intact proteins. As a broad approach, the analysis of intact proteins offers unique advantages for the determination of primary sequence variations and posttranslational modifications, as well as interrogation of tertiary and quaternary structure and protein‐protein/ligand interactions. In situ analysis of intact proteins offers the potential to couple these advantages with information relating to their biological environment, for example, their spatial distributions within healthy and diseased tissues. Here, we describe the techniques most commonly applied to in situ protein analysis (liquid extraction surface analysis, continuous flow liquid microjunction surface sampling, nano desorption electrospray ionisation, and desorption electrospray ionisation), their advantages, and limitations and describe their applications to date. We also discuss the incorporation of ion mobility spectrometry techniques (high field asymmetric waveform ion mobility spectrometry and travelling wave ion mobility spectrometry) into ambient workflows. Finally, future directions for the field are discussed. PMID:29607564

  8. Matrix-free mass spectrometric imaging using laser desorption ionisation Fourier transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Goodwin, Richard J A; Pitt, Andrew R; Harrison, David; Weidt, Stefan K; Langridge-Smith, Pat R R; Barrett, Michael P; Logan Mackay, C

    2011-01-01

    Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21416534

  9. Improving serum calcium test ordering according to a decision algorithm.

    PubMed

    Faria, Daniel K; Taniguchi, Leandro U; Fonseca, Luiz A M; Ferreira-Junior, Mario; Aguiar, Francisco J B; Lichtenstein, Arnaldo; Sumita, Nairo M; Duarte, Alberto J S; Sales, Maria M

    2018-05-18

    To detect differences in the pattern of serum calcium tests ordering before and after the implementation of a decision algorithm. We studied patients admitted to an internal medicine ward of a university hospital on April 2013 and April 2016. Patients were classified as critical or non-critical on the day when each test was performed. Adequacy of ordering was defined according to adherence to a decision algorithm implemented in 2014. Total and ionised calcium tests per patient-day of hospitalisation significantly decreased after the algorithm implementation; and duplication of tests (total and ionised calcium measured in the same blood sample) was reduced by 49%. Overall adequacy of ionised calcium determinations increased by 23% (P=0.0001) due to the increase in the adequacy of ionised calcium ordering in non-critical conditions. A decision algorithm can be a useful educational tool to improve adequacy of the process of ordering serum calcium tests. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Ambient ionisation mass spectrometry for the characterisation of polymers and polymer additives: a review.

    PubMed

    Paine, Martin R L; Barker, Philip J; Blanksby, Stephen J

    2014-01-15

    The purpose of this review is to showcase the present capabilities of ambient sampling and ionisation technologies for the analysis of polymers and polymer additives by mass spectrometry (MS) while simultaneously highlighting their advantages and limitations in a critical fashion. To qualify as an ambient ionisation technique, the method must be able to probe the surface of solid or liquid samples while operating in an open environment, allowing a variety of sample sizes, shapes, and substrate materials to be analysed. The main sections of this review will be guided by the underlying principle governing the desorption/extraction step of the analysis; liquid extraction, laser ablation, or thermal desorption, and the major component investigated, either the polymer itself or exogenous compounds (additives and contaminants) present within or on the polymer substrate. The review will conclude by summarising some of the challenges these technologies still face and possible directions that would further enhance the utility of ambient ionisation mass spectrometry as a tool for polymer analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Laminar diffusion flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than more practical turbulent diffusion flames. Certainly, understanding flame processes within laminar diffusion flames must precede understanding these processes in more complex turbulent diffusion flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar jet diffusion flame shapes (luminous flame boundaries) have been of particular interest since the classical study of Burke and Schumann because they are a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Thus, consideration of laminar flame shapes is undertaken in the following, emphasizing conditions where effects of gravity are small, due to the importance of such conditions to practical applications. Another class of interesting properties of laminar diffusion flames are their laminar soot and smoke point properties (i.e., the flame length, fuel flow rate, characteristic residence time, etc., at the onset of soot appearance in the flame (the soot point) and the onset of soot emissions from the flame (the smoke point)). These are useful observable soot properties of nonpremixed flames because they provide a convenient means to rate several aspects of flame sooting properties: the relative propensity of various fuels to produce soot in flames; the relative effects of fuel structure, fuel dilution, flame temperature and ambient pressure on the soot appearance and emission properties of flames; the relative levels of continuum radiation from soot in flames; and effects of the intrusion of gravity (or buoyant motion) on emissions of soot from flames. An important motivation to define conditions for soot emissions is that observations of laminar jet diffusion flames in critical environments, e.g., space shuttle and space station facilities, cannot involve soot emitting flames in order to ensure that test chamber windows used for experimental observations are not blocked by soot deposits, thereby compromising unusually valuable experimental results. Another important motivation to define conditions where soot is present in diffusion flames is that flame chemistry, transport and radiation properties are vastly simplified when soot is absent, making such flames far more tractable for detailed numerical simulations than corresponding soot-containing flames. Motivated by these observations, the objectives of this phase of the investigation were as follows: (1) Observe flame-sheet shapes (the location of the reaction zone near phi=1) of nonluminous (soot free) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of flame-sheet shapes for these conditions; (2) Observe luminous flame boundaries of luminous (soot-containing) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of luminous flame boundaries for these conditions. In order to fix ideas here, maximum luminous flame boundaries at the laminar smoke point conditions were sought, i.e., luminous flame boundaries at the laminar smoke point; (3) Observe effects of coflow on laminar soot- and smoke-point conditions because coflow has been proposed as a means to control soot emissions and minimize the presence of soot in diffusion flames.

  12. Flame Shapes of Luminous NonBuoyant Laminar Coflowing Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.

    1999-01-01

    Laminar diffusion flames are of interest as model flame systems that are more tractable for analysis and experiments than practical turbulent diffusion flames. Certainly understanding laminar flames must precede understanding more complex turbulent flames while man'y laminar diffusion flame properties are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Motivated by these observations, the shapes of laminar flames were considered during the present investigation. The present study was limited to nonbuoyant flames because most practical flames are not buoyant. Effects of buoyancy were minimized by observing flames having large flow velocities at small pressures. Present methods were based on the study of the shapes of nonbu,3yant round laminar jet diffusion flames of Lin et al. where it was found that a simple analysis due to Spalding yielded good predictions of the flame shapes reported by Urban et al. and Sunderland et al.

  13. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies.

    PubMed

    Van Hoeck, Arne; Horemans, Nele; Nauts, Robin; Van Hees, May; Vandenhove, Hildegarde; Blust, Ronny

    2017-04-01

    Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A modification of the Hammett equation for predicting ionisation constants of p-vinyl phenols.

    PubMed

    Sipilä, Julius; Nurmi, Harri; Kaukonen, Ann Marie; Hirvonen, Jouni; Taskinen, Jyrki; Yli-Kauhaluoma, Jari

    2005-01-01

    Currently there are several compounds used as drugs or studied as new chemical entities, which have an electron withdrawing group connected to a vinylic double bond in a phenolic or catecholic core structure. These compounds share a common feature--current computational methods utilizing the Hammett type equation for the prediction of ionisation constants fail to give accurate prediction of pK(a)'s for compounds containing the vinylic moiety. The hypothesis was that the effect of electron-withdrawing substituents on the pK(a) of p-vinyl phenols is due to the delocalized electronic structure of these compounds. Thus, this effect should be additive for multiple substituents attached to the vinylic double bond and quantifiable by LFER-based methods. The aim of this study was to produce an improved equation with a reduced tendency to underestimate the effect of the double bond on the ionisation of the phenolic hydroxyl. To this end a set of 19 para-substituted vinyl phenols was used. The ionisation constants were measured potentiometrically, and a training set of 10 compounds was selected to build a regression model (r2 = 0.987 and S.E. = 0.09). The average error with an external test set of six compounds was 0.19 for our model and 1.27 for the ACD-labs 7.0. Thus, we have been able to significantly improve the existing model for prediction of the ionisation constants of substituted p-vinyl phenols.

  15. Triple flames and flame stabilization

    NASA Technical Reports Server (NTRS)

    Broadwell, James E.

    1994-01-01

    It is now well established that when turbulent jet flames are lifted, combustion begins, i.e., the flame is stabilized, at an axial station where the fuel and air are partially premixed. One might expect, therefore, that the beginning of the combustion zone would be a triple flame. Such flames have been described; however, other experiments provide data that are difficult to reconcile with the presence of triple flames. In particular, laser images of CH and OH, marking combustion zones, do not exhibit shapes typical of triple flames, and, more significantly, the lifted flame appears to have a propagation speed that is an order of magnitude higher than the laminar flame speed. The speed of triple flames studied thus far exceeds the laminar value by a factor less than two. The objective of the present task is the resolution of the apparent conflict between the experiments and the triple flame characteristics, and the clarification of the mechanisms controlling flame stability. Being investigated are the resolution achieved in the experiments, the flow field in the neighborhood of the stabilization point, propagation speeds of triple flames, laboratory flame unsteadiness, and the importance of flame ignition limits in the calculation of triple flames that resemble lifted flames.

  16. Candle Flames in Non-Buoyant Atmospheres

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Shu, Y.; Tien, J. S.

    1999-01-01

    This paper addresses the behavior of a candle flame in a long-duration, quiescent microgravity environment both on the space Shuttle and the Mir Orbiting Station (OS). On the Shuttle, the flames became dim blue after an initial transient where there was significant yellow (presumably soot) in the flame. The flame lifetimes were typically less than 60 seconds. The safety-mandated candlebox that contained the candle flame inhibited oxygen transport to the flame and thus limited the flame lifetime. 'Me flames on the Mir OS were similar, except that the yellow luminosity persisted longer into the flame lifetime because of a higher initial oxygen concentration. The Mir flames burned for as long as 45 minutes. The difference in the flame lifetime between the Shuttle and Mir flames was primarily the redesigned candlebox that did not inhibit oxygen transport to the flame. In both environments, the flame intensity and the height-to-width ratio gradually decreased as the ambient oxygen content in the sealed chamber slowly decreased. Both sets of experiments showed spontaneous, axisymmetric flame oscillations just prior to extinction. The paper also presents a numerical model of candle flame. The model is detailed in the gas-phase, but uses a simplified liquid/wick phase. 'Me model predicts a steady flame with a shape and size quantitatively similar to the Shuttle and Mir flames. ne model also predicts pre-extinction flame oscillations if the decrease in ambient oxygen is small enough.

  17. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    NASA Astrophysics Data System (ADS)

    Chambron, J.; Arntz, Y.; Eclancher, B.; Scheiber, Ch; Siffert, P.; Hage Hali, M.; Regal, R.; Kazandjian, A.; Prat, V.; Thomas, S.; Warren, S.; Matz, R.; Jahnke, A.; Karman, M.; Pszota, A.; Nemeth, L.

    2000-07-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cm×15 cm detection matrix of 2304 CdTe detector elements, 2.83 mm×2.83 mm×2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an infarct in intensive care units, as well as in neurology to detect the grade of a cerebral vascular insult, in pregnancy to detect a pulmonary capillary embolism, or in presurgical oncology to identify sentinel lymph nodes. The physical tests and the clinical imaging capabilities of the experimental device which have been performed by IPB (France) and SHC (Hungary), agree with the expected performances better than those of a cardiac conventional γ- camera except for dynamic studies.

  18. Fire Hazards from Combustible Ammunition, Methodology Development. Phase I

    DTIC Science & Technology

    1980-06-01

    5.3 Flame Length , Flame Diameter and Mass Burning Rate 37 5.4 Flame Emissive Power 41 5.5 Fire Plume Axial Gas Velocity 41 5.6 Flame Temperature...B.2 Exit Velocity 93 B.3 Rate of Energy Flow 93 B.4 Chamber Characteristics 94 B.5 Flame Length 95 B.6 Flame Lift Angle 95 B.7 Summary 97...Viewing Flame in Test Series 5 17. Flame Length Scaling 18. Scaling Trends for Mass Burning Rate 19. Effective Flame Emissive Power versus Flame

  19. Simulations of normal and inverse laminar diffusion flames under oxygen enhancement and gravity variation

    NASA Astrophysics Data System (ADS)

    Bhatia, P.; Katta, V. R.; Krishnan, S. S.; Zheng, Y.; Sunderland, P. B.; Gore, J. P.

    2012-10-01

    Steady-state global chemistry calculations for 20 different flames were carried out using an axisymmetric Computational Fluid Dynamics (CFD) code. Computational results for 16 flames were compared with flame images obtained at the NASA Glenn Research Center. The experimental flame data for these 16 flames were taken from Sunderland et al. [4] which included normal and inverse diffusion flames of ethane with varying oxidiser compositions (21, 30, 50, 100% O2 mole fraction in N2) stabilised on a 5.5 mm diameter burner. The test conditions of this reference resulted in highly convective inverse diffusion flames (Froude numbers of the order of 10) and buoyant normal diffusion flames (Froude numbers ∼0.1). Additionally, six flames were simulated to study the effect of oxygen enhancement on normal diffusion flames. The enhancement in oxygen resulted in increased flame temperatures and the presence of gravity led to increased gas velocities. The effect of gravity-variation and oxygen enhancement on flame shape and size of normal diffusion flames was far more pronounced than for inverse diffusion flames. For normal-diffusion flames, their flame-lengths decreased (1 to 2 times) and flames-widths increased (2 to 3 times) when going from earth-gravity to microgravity, and flame height decreased by five times when going from air to a pure oxygen environment.

  20. Flame and Soot Boundaries of Laminar Jet Diffusion Flames. Appendix A

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2002-01-01

    The shapes (flame-sheet and luminous-flame boundaries) or steady weakly buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K. ambient pressures of 4-50 kPa, jet-exit Reynolds numbers of 3-54, initial air/fuel velocity ratios of 0-9, and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at microgravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary-layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 of the lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions because of the presence of luminous soot particles in the fuel-lean region of the flames.

  1. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)

    2001-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  2. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  3. Bromine in plastic consumer products - Evidence for the widespread recycling of electronic waste.

    PubMed

    Turner, Andrew; Filella, Montserrat

    2017-12-01

    A range of plastic consumer products and components thereof have been analysed by x-ray fluorescence (XRF) spectrometry in a low density mode for Br as a surrogate for brominated flame retardant (BFR) content. Bromine was detected in about 42% of 267 analyses performed on electronic (and electrical) samples and 18% of 789 analyses performed on non-electronic samples, with respective concentrations ranging from 1.8 to 171,000μgg -1 and 2.6 to 28,500μgg -1 . Amongst the electronic items, the highest concentrations of Br were encountered in relatively small appliances, many of which predated 2005 (e.g. a fan heater, boiler thermostat and smoke detector, and various rechargers, light bulb collars and printed circuit boards), and usually in association with Sb, a component of antimony oxide flame retardant synergists, and Pb, a heavy metal additive and contaminant. Amongst the non-electronic samples, Br concentrations were highest in items of jewellery, a coffee stirrer, a child's puzzle, a picture frame, and various clothes hangers, Christmas decorations and thermos cup lids, and were often associated with the presence of Sb and Pb. These observations, coupled with the presence of Br at concentrations below those required for flame-retardancy in a wider range of electronic and non-electronic items, are consistent with the widespread recycling of electronic plastic waste. That most Br-contaminated items were black suggests the current and recent demand for black plastics in particular is met, at least partially, through this route. Given many Br-contaminated items would evade the attention of the end-user and recycler, their disposal by conventional municipal means affords a course of BFR entry into the environment and, for food-contact items, a means of exposure to humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Examining Pre-Service Teachers' Use of Atomic Models in Explaining Subsequent Ionisation Energy Values

    ERIC Educational Resources Information Center

    Wheeldon, Ruth

    2012-01-01

    Chemistry students' explanations of ionisation energy phenomena often involve a number of non-scientific or inappropriate ideas being used to form causality arguments. Research has attributed this to many science teachers using these ideas themselves (Tan and Taber, in "J Chem Educ" 86(5):623-629, 2009). This research extends this work by…

  5. Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb -1 of proton–proton collision data at s = 13   TeV

    DOE PAGES

    Aaboud, M.

    2016-07-19

    A search for heavy long-lived charged R -hadrons is reported using a data sample corresponding to 3.2 fb -1 of proton–proton collisions at s=13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Lastly, upper limits at 95% confidence level are provided on the production cross section of long-lived R -hadrons in the mass range from 600more » GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.« less

  6. Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb -1 of proton–proton collision data at s = 13   TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.

    A search for heavy long-lived charged R -hadrons is reported using a data sample corresponding to 3.2 fb -1 of proton–proton collisions at s=13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Lastly, upper limits at 95% confidence level are provided on the production cross section of long-lived R -hadrons in the mass range from 600more » GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.« less

  7. Physics reach of MoEDAL at LHC: magnetic monopoles, supersymmetry and beyond

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.; Mitsou, Vasiliki A.

    2017-12-01

    MoEDAL is a pioneering experiment designed to search for highly ionising messengers of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles, that are predicted to exist in a plethora of models beyond the Standard Model. Its ground-breaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as, are there extra dimensions or new symmetries, what is the mechanism for the generation of mass, does magnetic charge exist, what is the nature of dark matter, and, how did the big-bang develop at the earliest times. MoEDAL's purpose is to meet such far-reaching challenges at the frontier of the field. The physics reach of the existing MoEDAL detector is discussed, giving emphasis on searches for magnetic monopoles, supersymmetric (semi)stable partners, doubly charged Higgs bosons, and exotic structures such as black-hole remnants in models with large extra spatial dimensions and D-matter in some brane theories.

  8. Search for ionisation density effects in the radiation absorption stage in LiF:Mg,Ti.

    PubMed

    Nail, I; Horowitz, Y S; Oster, L; Brandan, M E; Rodríguez-Villafuerte, M; Buenfil, A E; Ruiz-Trejo, C; Gamboa-Debuen, I; Avila, O; Tovar, V M; Olko, P; Ipe, N

    2006-01-01

    Optical absorption (OA) dose-response of LiF:Mg,Ti (TLD-100) is studied as a function of electron energy (ionisation density) and irradiation dose. Contrary to the situation in thermoluminescence dose-response where the supralinearity is strongly energy-dependent, no dependence of the OA dose filling constants on energy is observed. This result is interpreted as indicating a lack of competitive process in the radiation absorption stage. The lack of an energy dependence of the dose filling constant also suggests that the charge carrier migration distances are sufficiently large to smear out the differences in the non-uniform distribution of ionisation events created by the impinging gamma/electron radiation of various energies.

  9. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    An Apple IIe microcomputer is being used to collect data and to control a pyrolysis system. Pyrolysis data for bitumen and kerogen are widely used to estimate source rock maturity. For a detailed analysis of kinetic parameters, however, data must be obtained more precisely than for routine pyrolysis. The authors discuss the program which controls the temperature ramp of the furnace that heats the sample, and collects data from a thermocouple in the furnace and from the flame ionization detector measuring evolved hydrocarbons. These data are stored on disk for later use by programs that display the results of themore » experiment or calculate kinetic parameters. The program is written in Applesoft BASIC with subroutines in Apple assembler for speed and efficiency.« less

  11. Gas chromatographic determination of 1,4-dioxane at low parts-per-million levels in glycols.

    PubMed

    Pundlik, M D; Sitharaman, B; Kaur, I

    2001-02-01

    1,4-Dioxane is a flammable liquid and tends to form explosive peroxides. Its formation in glycols (low parts-per-million levels), which are used as dehumidifying agents in refineries, may take place by condensation. 1,4-Dioxane thus formed gets distilled over with benzene in the refinery process. Therefore, it is necessary to identify and determine the levels of 1,4-dioxane in glycols as well as benzene. Gas chromatography (GC) is probably the best technique for this purpose. GC analysis may be carried out using a flame ionization detector. Results show that 1,4-dioxane can be comfortably determined down to 2 ppm in glycols and benzene.

  12. A quantitative headspace-solid-phase microextraction-gas chromatography-flame ionization detector method to analyze short chain free fatty acids in rat feces.

    PubMed

    Fiorini, Dennis; Boarelli, Maria Chiara; Gabbianelli, Rosita; Ballini, Roberto; Pacetti, Deborah

    2016-09-01

    This study sought to develop and validate a quantitative method to analyze short chain free fatty acids (SCFAs) in rat feces by solid-phase microextraction and gas chromatography (SPME-GC) using the salt mixture ammonium sulfate and sodium dihydrogen phosphate as salting out agent. Conditioning and extraction time, linearity, limits of detection and quantification, repeatability, and recovery were evaluated. The proposed method allows quantification with improved sensitivity as compared with other methods exploiting SPME-GC. The method has been applied to analyze rat fecal samples, quantifying acetic, propionic, isobutyric, butyric, isopentanoic, pentanoic, and hexanoic acids. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. STS-104 Atlantis on pad after RSS rollback

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- This view from above Space Shuttle Atlantis reduces the workers below to appearing like ants. Seen below the Shuttle is the opening over the exhaust hole containing flame detectors. On either side of the Atlantis, in front of the wings, are two tail service masts. The masts support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft T-0 umbilicals. Launch on mission STS-104 is scheduled for 5:04 a.m. July 12. The launch is the 10th assembly flight to the International Space Station. Along with a crew of five, Atlantis will carry the joint airlock module as primary payload.

  14. Candle Flames in Microgravity Experiment

    NASA Image and Video Library

    1992-07-09

    Closeup view inside glovebox showing a candle flame. The Candle Flames in Microgravity experiment is carried onboard Columbia to examine whether candle flames can be sustained in space; to study the interaction and physical properties of diffusion flames. In space, where buoyancy-driven convection is reduced, the role diffusion plays in sustaining candle flames can be isolated. Results have implications for other diffusion flame studies. Diffusion flames are the most common type of flame on Earth.

  15. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  16. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal gravity.

  17. Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity.

  18. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity,

  19. Suppression of Soot Formation and Shapes of Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.

    2001-01-01

    Laminar nonpremixed (diffusion) flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than practical turbulent flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Finally, laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame shape predictions. Motivated by these observations, the shapes of round hydrocarbon-fueled laminar jet diffusion flames were considered, emphasizing conditions where effects of buoyancy are small because most practical flames are not buoyant. Earlier studies of shapes of hydrocarbon-fueled nonbuoyant laminar jet diffusion flames considered combustion in still air and have shown that flames at the laminar smoke point are roughly twice as long as corresponding soot-free (blue) flames and have developed simple ways to estimate their shapes. Corresponding studies of hydrocarbon-fueled weakly-buoyant laminar jet diffusion flames in coflowing air have also been reported. These studies were limited to soot-containing flames at laminar smoke point conditions and also developed simple ways to estimate their shapes but the behavior of corresponding soot-free flames has not been addressed. This is unfortunate because ways of selecting flame flow properties to reduce soot concentrations are of great interest; in addition, soot-free flames are fundamentally important because they are much more computationally tractable than corresponding soot-containing flames. Thus, the objectives of the present investigation were to observe the shapes of weakly-buoyant laminar jet diffusion flames at both soot-free and smoke point conditions and to use the results to evaluate simplified flame shape models. The present discussion is brief.

  20. On the critical flame radius and minimum ignition energy for spherical flame initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zheng; Burke, M. P.; Ju, Yiguang

    2011-01-01

    Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis numbermore » larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.« less

  1. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  2. An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications.

    PubMed

    McCartney, Mitchell M; Zrodnikov, Yuriy; Fung, Alexander G; LeVasseur, Michael K; Pedersen, Josephine M; Zamuruyev, Konstantin O; Aksenov, Alexander A; Kenyon, Nicholas J; Davis, Cristina E

    2017-08-25

    We have developed a simple-to-manufacture microfabricated gas preconcentrator for MEMS-based chemical sensing applications. Cavities and microfluidic channels were created using a wet etch process with hydrofluoric acid, portions of which can be performed outside of a cleanroom, instead of the more common deep reactive ion etch process. The integrated heater and resistance temperature detectors (RTDs) were created with a photolithography-free technique enabled by laser etching. With only 28 V DC (0.1 A), a maximum heating rate of 17.6 °C/s was observed. Adsorption and desorption flow parameters were optimized to be 90 SCCM and 25 SCCM, respectively, for a multicomponent gas mixture. Under testing conditions using Tenax TA sorbent, the device was capable of measuring analytes down to 22 ppb with only a 2 min sample loading time using a gas chromatograph with a flame ionization detector. Two separate devices were compared by measuring the same chemical mixture; both devices yielded similar peak areas and widths (fwhm: 0.032-0.033 min), suggesting reproducibility between devices.

  3. Determination of sulfur and nitrogen compounds during the processing of dry fermented sausages and their relation to amino acid generation.

    PubMed

    Corral, Sara; Leitner, Erich; Siegmund, Barbara; Flores, Mónica

    2016-01-01

    The identification of odor-active sulfur and nitrogen compounds formed during the processing of dry fermented sausages was the objective of this study. In order to elucidate their possible origin, free amino acids (FAAs) were also determined. The volatile compounds present in the dry sausages were extracted using solvent assisted flavor evaporation (SAFE) and monitored by one and two-dimensional gas chromatography with different detectors: mass spectrometry (MS), nitrogen phosphorous (NPD), flame photometric (FPD) detectors, as well as gas chromatography-olfactometry. A total of seventeen sulfur and nitrogen compounds were identified and quantified. Among them, 2-acetyl-1-pyrroline was the most potent odor active compound, followed by methional, ethylpyrazine and 2,3-dihydrothiophene characterized by toasted, cooked potato, and nutty notes. The degradation of FAAs, generated during processing, was related to the production of aroma compounds, such as methionine forming methional and benzothiazole while ornithine was the precursor compound for 2-acetyl-1-pyrroline and glycine for ethylpyrazine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Origanum vulgare subsp. hirtum essential oil prevented biofilm formation and showed antibacterial activity against planktonic and sessile bacterial cells.

    PubMed

    Schillaci, Domenico; Napoli, Edoardo Marco; Cusimano, Maria Grazia; Vitale, Maria; Ruberto, Andgiuseppe

    2013-10-01

    Essential oils from six different populations of Origanum vulgare subsp. hirtum were compared for their antibiofilm properties. The six essential oils (A to F) were characterized by a combination of gas chromatography with flame ionization detector and gas chromatography with mass spectrometer detector analyses. All oils showed weak activity against the planktonic form of a group of Staphylococcus aureus strains and against a Pseudomonas aeruginosa ATCC 15442 reference strain. The ability to inhibit biofilm formation was investigated at sub-MIC levels of 200, 100, and 50 m g/ml by staining sessile cells with safranin. Sample E showed the highest average effectiveness against all tested strains at 50 m g/ml and had inhibition percentages ranging from 30 to 52%. In the screening that used preformed biofilm from the reference strain P. aeruginosa, essential oils A through E were inactive at 200 m g/ml; F was active with a percentage of inhibition equal to 53.2%. Oregano essential oil can inhibit the formation of biofilms of various food pathogens and food spoilage organisms.

  5. An integrated GPS-FID system for airborne gas detection of pipeline right-of-ways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehue, H.L.; Sommer, P.

    1996-12-31

    Pipeline integrity, safety and environmental concerns are of prime importance in the Canadian natural gas industry. Terramatic Technology Inc. (TTI) has developed an integrated GPS/FID gas detection system known as TTI-AirTrac{trademark} for use in airborne gas detection (AGD) along pipeline right-of-ways. The Flame Ionization Detector (FID), which has traditionally been used to monitor air quality for gas plants and refineries, has been integrated with the Global Positioning System (GPS) via a 486 DX2-50 computer and specialized open architecture data acquisition software. The purpose of this technology marriage is to be able to continuously monitor air quality during airborne pipeline inspection.more » Event tagging from visual surveillance is used to determine an explanation of any delta line deviations (DLD). These deviations are an indication of hydrocarbon gases present in the plume that the aircraft has passed through. The role of the GPS system is to provide mapping information and coordinate data for ground inspections. The ground based inspection using a handheld multi gas detector will confirm whether or not a leak exists.« less

  6. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.

    1999-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  7. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames. Appendix H

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Ross, Howard B. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness, Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding; this approach provided successful correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  8. Further investigations of the effect of pressure on retention in ultra-high-pressure liquid chromatography.

    PubMed

    Fallas, Morgane M; Neue, Uwe D; Hadley, Mark R; McCalley, David V

    2010-01-15

    In this study, we investigated further the large increases in retention with pressure that we observed previously in RP-LC especially for ionised solutes. These findings were initially confirmed on a conventional silica C(18) column, which gave extremely similar results to the hybrid C(18) phase originally used. Large increases in retention factor of approximately 50% for a pressure increase of 500 bar were also shown for high MW polar but neutral solutes. However, experiments with the same bases in ionised and non-ionised forms suggest that somewhat greater pressure-induced retention increases are found for ionised solutes. Retention increases with pressure were found to be considerably smaller for a C(1) column compared with a C(18) column; decreases in retention with increasing pressure were noted for ionised bases when using a bare silica column in the hydrophilic interaction chromatography (HILIC) mode. These observations are consistent with the partial loss of the solvation layer in RP-LC as the solute is forced into the hydrophobic environment of the stationary phase, and consequent reduction in the solute molar volume, while the water layer on the surface of a HILIC packing increases the hydration of a basic analyte. Finally, retention changes with pressure in RP-LC can also be observed at a mobile phase pH close to the solute pK(a), due to changes in pK(a) with pressure. However, this effect has no influence on the results of most of our studies. 2009 Elsevier B.V. All rights reserved.

  9. Application of comprehensive multidimensional gas chromatography combined with time-of-flight mass spectrometry (GC x GC-TOFMS) for high resolution analysis of hop essential oil.

    PubMed

    Roberts, Mark T; Dufour, Jean-Pierre; Lewis, Alastair C

    2004-04-01

    The selection and quality of hops is a major determinant in beer flavour. Brewers acknowledge that distinctive characteristics of different hop varieties can be traced to the composition of their essential oils. The difficulty in characterising complex mixtures such as hop oil using 1-D chromatography is that many compounds co-elute. With the introduction of comprehensive multidimensional capillary gas chromatography (GC x GC), there is a tremendous improvement in the separation power or peak capacity. Recent work using GC x GC with flame ionisation detection has suggested that there may be over 1,000 compounds in hop oil. This work describes the use of GC x GC combined with TOFMS detection (Leco Pegasus 4D instrument) to analyse Target hop oil. The TOFMS spectral acquisition rate of 60 Hz provided sufficient spectra per peak (2-D peak base width of 0.1-0.2 s) for identification (119 components were identified with 45 previously unreported compounds). When analysing results, an advantage of GC x GC coupled to TOFMS is that 2-D chromatograms can be viewed for individual masses that are characteristic of particular functional groups. This allows the analyst to view the various homologous series of compounds although in certain cases coelution may still be present as shown by the esters with mass 75.

  10. Procedure for the determination of retinol and alpha-tocopherol in poultry tissues using capillary gas chromatography with solvent venting injection.

    PubMed

    Maraschiello, C; García Regueiro, J A

    1998-08-28

    A procedure designed for the determination of retinol (vitamin A) and alpha-tocopherol (vitamin E) in poultry tissues has been developed. The procedure involves lipid extraction, saponification, solid-phase clean-up and capillary gas chromatography (cGC). Retinol and alpha-tocopherol were determined separately by cGC-flame ionisation detection using a fused-silica open tubular capillary column, 30 m x 0.25 mm I.D. coated with 5% phenylmethylsilicone and with a film thickness of 0.25 micron. Solvent extraction followed by saponification were sufficient to provide a purified extract which was directly analyzed for retinol by cGC in the solvent venting mode. However, in order to accurately determine alpha-tocopherol by cGC, further purification of the extract by solid-phase extraction was necessary. A silica SPE column was used to remove interfering cholesterol from the extract. alpha-Tocopherol was analyzed in its derivatized form. Absolute and relative recoveries for both vitamins from spiked samples were evaluated. Absolute and relative recoveries ranging from 80 to 95% were obtained for both compounds. 5 alpha-Cholestane and alpha-tocopheryl acetate were used as internal standards. Poultry muscle meat and liver tissue were analyzed for their retinol and alpha-tocopherol content and the peaks detected by cGC were confirmed by cGC-mass spectrometry.

  11. Release of EPA and DHA from salmon oil - a comparison of in vitro digestion with human and porcine gastrointestinal enzymes.

    PubMed

    Aarak, K E; Kirkhus, B; Holm, H; Vogt, G; Jacobsen, M; Vegarud, G E

    2013-10-01

    In the present study, we hypothesised whether in vitro digestion of salmon oil would release different amounts of PUFA depending on the origin of the lipolytic enzymes used. For this purpose, in vitro digestion of salmon oil (SO) was performed using human duodenal juice (HDJ) or a commercial enzyme preparation consisting of porcine pancreatin and bile (PB). The lipolytic effect was determined by measuring the release of fatty acids (FA) using solid-phase extraction and GC-flame ionisation detection, withdrawing samples every 20 min during digestion. The amount of FA released indicated that a plateau was reached after 80 min with approximately similar amounts of FA detected using both HDJ and PB (379 (sd 18) and 352 (sd 23) mg/g SO, respectively). However, the release of 18 : 2, EPA (20 : 5) and DHA (22 : 6) was significantly different during in vitro digestion. At 80 min, HDJ and PB released 43 and 33% of 18 : 2, 14 and 9% of EPA and 11 and 9% of DHA, respectively. Both enzyme preparations released approximately the same amounts of the other FA analysed. The effect of the addition of bile salts (BS) was significantly different in the two enzyme systems, where porcine pancreatin highly responded to the increase in BS concentration, in contrast to HDJ.

  12. The comparison of solid phase microextraction-GC and static headspace-GC for determination of solvent residues in vegetable oils.

    PubMed

    Ligor, Magdalena; Buszewski, Bogusław

    2008-02-01

    The objective of these investigations has been the determination of volatile organic compounds including residue solvents present in vegetable oil samples. Some olive oil, rape oil, sunflower oil, soy-bean oil, pumpkin oil, grape oil, rice oil as well as hazel-nut oil samples were analysed. Among residue solvents the following compounds have been mentioned: acetone, n-hexane, benzene, and toluene. Some experiments for the solid phase microextraction (SPME)-GC-flame ionisation detection (FID) were performed to examine extraction conditions such as fiber exposure time, temperature of extraction, and temperature of desorption. Various SPME fibers such as polydimethylsiloxane, Carboxen/polydimethylsiloxane and polydimethylsiloxane/divinylbenzene coatings were used for the isolation of tested compounds from vegetable oil samples. After optimisation of SPME, real vegetable oil samples were examined using SPME-GC/MS. Based on preliminary experiments the qualitative and quantitative analyses for the determination of acetone, n-hexane, benzene and toluene were performed by SPME-GC-FID and static head-space (SHS)-GC-FID methods. The regression coefficients for calibration curves for the examined compounds were R(2) > or = 0.992. This shows that the used method is linear in the examined concentration range (0.005-0.119 mg/kg for SPME-GC-FID and 0.003-0.728 mg/kg for SHS-GC-FID). Chemical properties of analysed vegetable oils have been characterised by chemometric procedure (cluster analysis).

  13. Analysis of honeybush tea (Cyclopia spp.) volatiles by comprehensive two-dimensional gas chromatography using a single-stage thermal modulator.

    PubMed

    Ntlhokwe, Gaalebalwe; Tredoux, Andreas G J; Górecki, Tadeusz; Edwards, Matthew; Vestner, Jochen; Muller, Magdalena; Erasmus, Lené; Joubert, Elizabeth; Christel Cronje, J; de Villiers, André

    2017-07-01

    The applicability of comprehensive two-dimensional gas chromatography (GC×GC) using a single-stage thermal modulator was explored for the analysis of honeybush tea (Cyclopia spp.) volatile compounds. Headspace solid phase micro-extraction (HS-SPME) was used in combination with GC×GC separation on a non-polar × polar column set with flame ionisation (FID) detection for the analysis of fermented Cyclopia maculata, Cyclopia subternata and Cyclopia genistoides tea infusions of a single harvest season. Method optimisation entailed evaluation of the effects of several experimental parameters on the performance of the modulator, the choice of columns in both dimensions, as well as the HS-SPME extraction fibre. Eighty-four volatile compounds were identified by co-injection of reference standards. Principal component analysis (PCA) showed clear differentiation between the species based on their volatile profiles. Due to the highly reproducible separations obtained using the single-stage thermal modulator, multivariate data analysis was simplified. The results demonstrate both the complexity of honeybush volatile profiles and the potential of GC×GC separation in combination with suitable data analysis techniques for the investigation of the relationship between sensory properties and volatile composition of these products. The developed method therefore offers a fast and inexpensive methodology for the profiling of honeybush tea volatiles. Graphical abstract Surface plot obtained for the GC×GC-FID analysis of honeybush tea volatiles.

  14. Field Effects of Buoyancy on a Premixed Turbulent Flame Studied by Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.

    2003-01-01

    Typical laboratory flames for the scientific investigation of flame/turbulence interactions are prone to buoyancy effects. Buoyancy acts on these open flame systems and provides upstream feedbacks that control the global flame properties as well as local turbulence/flame interactions. Consequently the flame structures, stabilization limits, and turbulent reaction rates are directly or indirectly coupled with buoyancy. The objective of this study is to characterize the differences between premixed turbulent flames pointing upwards (1g), pointing downwards (-1g), and in microgravity (mg). The configuration is an inverted conical flame stabilized by a small cone-shaped bluff body that we call CLEAN Flames (Cone-Stabilized Lean Flames). We use two laser diagnostics to capture the velocity and scalar fields. Particle image velocimetry (PIV) measures the mean and root mean square velocities and planar imaging by the flame fronts method outlines the flame wrinkle topology. The results were obtained under typical conditions of small domestic heating systems such as water heaters, ovens, and furnaces. Significant differences between the 1g and -1g flames point to the need for including buoyancy contributions in theoretical and numerical calculations. In Earth gravity, there is a complex coupling of buoyancy with the turbulent flow and heat release in the flame. An investigation of buoyancy-free flames in microgravity will provide the key to discern gravity contributions. Data obtained in microgravity flames will provide the benchmark for interpreting and analyzing 1g and -1g flame results.

  15. Rayleigh-Taylor Unstable Flames -- Fast or Faster?

    NASA Astrophysics Data System (ADS)

    Hicks, E. P.

    2015-04-01

    Rayleigh-Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate both models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.

  16. Experimental and LES investigation of premixed methane/air flame propagating in a tube with a thin obstacle

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Guo, Shilong; Li, Yanchao; Zhang, Yutao

    2017-03-01

    In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame-vortex interaction. In addition, the transition from "corrugated flamelets" to "thin reaction zones" is observed in the simulation.

  17. Exploring Learners' Conceptual Resources: Singapore a Level Students' Explanations in the Topic of Ionisation Energy

    ERIC Educational Resources Information Center

    Taber, Keith S.; Tan, Kim Chwee Daniel

    2007-01-01

    This paper describes findings from a study to explore Singapore A-level (Grades 11 and 12, 16-19 yr old) students' understanding of ionisation energy, an abstract and complex topic that is featured in school chemistry courses. Previous research had reported that students in the United Kingdom commonly use alternative notions based on the perceived…

  18. Characterisation of semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Pawlowicz, L.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    Hole and electron mobilities as functions of temperature and ionised impurity concentration are calculated for GaAs. It is shown that these calculations, when used to analyse electrical properties of semi-insulating GaAs, enable an assessment of the Fermi energy position and ionised impurity concentration to be made. In contrast to previous work, the analysis does not require any phenomenological assumptions.

  19. Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng

    2015-09-01

    Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.

  20. Flame Spread Along Free Edges of Thermally Thin Samples in Microgravity

    NASA Technical Reports Server (NTRS)

    Mell, W. E.; Olson, S. L.; Kashiwagi, T.

    2000-01-01

    The effects of imposed flow velocity on flame spread along open edges of a thermally thin cellulosic sample in microgravity are studied experimentally and theoretically. In this study, the sample is ignited locally at the middle of the 4 cm wide sample and subsequent flame spread reaches both open edges of the sample. The following flame behaviors are observed in the experiments and predicted by the numerical calculation; in order of increased imposed flow velocity: (1) ignition but subsequent flame spread is not attained, (2) flame spreads upstream (opposed mode) without any downstream flame, and (3) the upstream flame and two separate downstream flames traveling along the two open edges (concurrent mode). Generally, the upstream and downstream edge flame spread rates are faster than the central flame spread rate for an imposed flow velocity of up to 5 cm/s. This is due to greater oxygen supply from the outer free stream to the edge flames than the central flames, For the upstream edge flame, the greater oxygen supply results in a flame spread rate that is nearly independent of, or decreases gradually, with the imposed flow velocity. The spread rate of the downstream edge, however, increases significantly with the imposed flow velocity.

  1. Investigations into the chemical structure based selectivity of the microfabricated nitrogen-phosphorus detector

    DOE PAGES

    Brocato, Terisse A.; Hess, Ryan F.; Moorman, Matthew; ...

    2015-10-28

    The nitrogen and phosphorus atoms are constituents of some of the most toxic chemical vapors. Nitrogen-phosphorus gas chromatograph detectors (NPDs) rely on selective ionization of such compounds using ionization temperatures typically greater than 600 °C. NPDs have previously been reported to be 7*10 4× and 10 5× more sensitive for nitrogen and phosphorus, respectively, than for carbon. Presented here is an investigation of the structure-based selectivity of a microfabricated nitrogen-phosphorus detector (μNPD). The μNPD presented here is smaller than a dime and can be placed in a system that is 1/100th the size of a commercial NPD. Comparison of responsesmore » of such devices to homologous anilines (p-methoxyaniline, p-fluoroaniline, and aniline) revealed that detection selectivity, determined by the ratio of μNPD to nonselective flame ionization detector (FID) peak areas, is correlated with acid disassociation pK a values for the respective analine. Selectivity was determined to be greatest for p-methoxyaniline, followed by p-fluoroaniline, with aniline having the smallest response. The limit of detection for a nitrogen containing chemical, p-methoxyaniline, using the μNPD was determined to be 0.29 ng compared to 59 ng for a carbon chemical containing no nitrogen or phosphorus, 1,3,5-trimethybenzene. The μNPD presented here has increased detection for nitrogen and phosphorus compared to the FID and with a slight increase in detection of carbon compounds compared to commercial NPD's sensitivity to nitrogen and carbon.« less

  2. Temperature-dependent ozone chemiluminescence: A new approach for hydrocarbon monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, N.; Gaffney, J.

    1996-12-31

    Ozone chemiluminescent reactions have been used for some time to detect oxides of nitrogen, ozone, and olefins in air quality studies. Current procedures use non-methane hydrocarbon analyzers based on the flame ionization detector (FID), which quantitate total non-methane hydrocarbons but do not differentiate between the wide variety of volatile organic classes and oxygenates. The other methodology that has been used, gas chromatography/mass spectroscopy (GC/MS), can measure a variety of individual hydrocarbon species and classes, but it is costly, time-consuming, and labor intensive and is not amenable to real-time measurements. Presented here is preliminary research aimed at the development of anmore » alternative to FID and GC/MS: the ozone chemiluminescent detector (OCD) for measurement of a variety of hydrocarbon species and classes by use of the temperature dependence of ozone chemiluminescent reactions. Responses for various hydrocarbon classes obtained with an OCD operated at 170 C or the FID were compared. The results indicate that the OCD detector responds like a total carbon detector at this temperature, with sensitivities 10-100 times higher than those of a FID. Use of the temperature dependence of the chemiluminescent reaction and prereactors will apparently make a real-time hydrocarbon analyzer based on this approach feasible for determination of high-, moderate-, and low-reactivity hydrocarbon levels in ambient air. The OCD approach may be very useful in determining oxygenate emissions from motor vehicles, particularly alternative fuels. The OCD may also be useful in monitoring of ambient air for natural hydrocarbon emissions.« less

  3. "Smoke": Characterization Of Smoke Particulate For Spacecraft Fire Detection

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Mulholland, George W.; Yang, Jiann; Cleary, Thomas G.; Yuan, Zeng-Guang

    2003-01-01

    The "Smoke" experiment is a flight definition investigation that seeks to increase our understanding of spacecraft fire detection through measurements of particulate size distributions of preignition smokes from typical spacecraft materials. Owing to the catastrophic risk posed by even a very small fire in a spacecraft, the design goal for spacecraft fire detection is to detect the fire as quickly as possible, preferably in the preignition phase before a real flaming fire has developed. Consequently the target smoke for detection is typically not soot (typical of established hydrocarbon fires) but instead, pyrolysis products, and recondensed polymer particles. At the same time, false alarms are extremely costly as the crew and the ground team must respond quickly to every alarm. The U.S. Space Shuttle (STS: Space Transportation System) and the International Space Station (ISS) both use smoke detection as the primary means of fire detection. These two systems were designed in the absence of any data concerning low-gravity smoke particle (and background dust) size distributions. The STS system uses an ionization detector coupled with a sampling pump and the ISS system is a forward light scattering detector operating in the near IR. These two systems have significantly different sensitivities with the ionization detector being most sensitive (on a mass concentration basis) to smaller particulate and the light scattering detector being most sensitive to particulate that is larger than 1 micron. Since any smoke detection system has inherent size sensitivity characteristics, proper design of future smoke detection systems will require an understanding of the background and alarm particle size distributions that can be expected in a space environment.

  4. Laminar soot processes

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Lin, K.-C.; Faeth, G. M.

    1995-01-01

    Soot processes within hydrocarbon fueled flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, the present investigation is studying soot processes in laminar diffusion and premixed flames in order to better understand the soot and thermal radiation emissions of luminous flames. Laminar flames are being studied due to their experimental and computational tractability, noting the relevance of such results to practical turbulent flames through the laminar flamelet concept. Weakly-buoyant and nonbuoyant laminar diffusion flames are being considered because buoyancy affects soot processes in flames while most practical flames involve negligible effects of buoyancy. Thus, low-pressure weakly-buoyant flames are being observed during ground-based experiments while near atmospheric pressure nonbuoyant flames will be observed during space flight experiments at microgravity. Finally, premixed laminar flames also are being considered in order to observe some aspects of soot formation for simpler flame conditions than diffusion flames. The main emphasis of current work has been on measurements of soot nucleation and growth in laminar diffusion and premixed flames.

  5. Precipitation-Static-Reduction Research

    DTIC Science & Technology

    1943-03-31

    if» 85 z \\ PRECIPITATION-STATIC-REDUCTION RESEARCH study of the effects of flame length , flame spacing, and burner spacing on B shows that there...unod: Flame length *. The visual length of the flame from the burner tip to the flame tip when examined in a darkened room against a black background...Postlve and Negative Flames The use of the second flame-conduction coefficient, B, facilitates considerably the study of the effect of flame length , spacing

  6. Experimental study on the flame behaviors of premixed methane/air mixture in horizontal rectangular ducts

    NASA Astrophysics Data System (ADS)

    Chen, Dongliang; Sun, Jinhua; Chen, Sining; Liu, Yi; Chu, Guanquan

    2007-01-01

    In order to explore the flame propagation characteristics and tulip flame formation mechanism of premixed methane/air mixture in horizontal rectangular ducts, the techniques of Schlieren and high-speed video camera are used to study the flame behaviors of the premixed gases in a closed duct and opened one respectively, and the propagation characteristics in both cases and the formation mechanism of the tulip flame are analyzed. The results show that, the propagation flame in a closed duct is prior to form a tulip flame structure than that in an opened duct, and the tulip flame structure formation in a closed duct is related to the flame propagation velocity decrease. The sharp decrease of the flame propagation velocity is one of the reasons to the tulip flame formation, and the decrease of the flame propagation velocity is due to the decrease of the burned product flow velocity mainly.

  7. Public health implications of components of plastics manufacture. Flame retardants.

    PubMed Central

    Pearce, E M; Liepins, R

    1975-01-01

    The four processes involved in the flammability of materials are described and related to the various flame retardance mechanisms that may operate. Following this the four practical approaches used in improving flame retardance of materials are described. Each approach is illustrated with a number of typical examples of flame retardants or synthetic procedures used. This overview of flammability, flame retardance, and flame retardants used is followed by a more detailed examination of most of the plastics manufactured in the United States during 1973, their consumption patterns, and the primary types of flame retardants used in the flame retardance of the most used plastics. The main types of flame retardants are illustrated with a number of typical commercial examples. Statistical data on flame retardant market size, flame retardant growth in plastics, and price ranges of common flame retardants are presented. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. PMID:1175568

  8. Propagation of a Free Flame in a Turbulent Gas Stream

    NASA Technical Reports Server (NTRS)

    Mickelsen, William R; Ernstein, Norman E

    1956-01-01

    Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.

  9. Effects of Buoyancy on Lean Premixed V-Flames Part I: Laminar and Turblent Flame Structure

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit; Kostiuk, Larry W.

    1998-01-01

    Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in +g, -g, and micro g under flow conditions that span the regimes of momentum domination (Ri < 0. 1) and buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and -g flame angles decrease with Ri (i.e., increasing Re) and converge to the microgravity flame angle at the momentum limit (Ri - 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and -g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and -g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in -g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy effects on flame instability mechanisms. It seems to be associated with the field effects of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in -g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.

  10. Characteristics of Non-Premixed Turbulent Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.

    2001-01-01

    This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.

  11. Airborne laser-spark for ambient desorption/ionisation.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die Desorption als auch die Ionisation erfolgen hierbei durch ein laserbetriebenes Luftplasma. Die Abwesenheit fester oder flüssiger Elektroden hat zur Folge, dass die Methode weder unter chemischen Interferenzen noch unter Verschleiß durch Korrosionsbrand oder abgetragenes Elektrodenmaterial leidet. Insgesamt betrachtet herrscht in dem Plasma Elektroneutralität, wodurch Aufladungseffekte minimiert werden, die andernfalls zu einer langfristigenÄderung der Flugbahnen von Ionen während der Experimente führen kann. In dem Ansatz eine freischwebende Luftentladung bei Atmosphärendruck zu verwenden agiert die Luft nicht nur als Plasmamedium sondert dient zusätzlich als Badgas für die stoßinduzierte Kühlung der entstehenden Ionen. Die Ionisierung der Analytmoleküle erfolgt nicht unmittelbar im Plasma sondern in dessen direkter Umgebung durch Wechselwirkung mit freigesetzten ionischen Luftspezies, freien Elektronen oder Photonen im kurzwelligen ultravioletten Bereich. Jede Laserentladung erzeugt eine hörbare Stoßwelle, in welcher neu produzierte reaktive Spezies freigesetzt werden, welche sich konzentrisch ausbreiten, so dass eine Diffusion der Analytmoleküle ins heiße Innere des Plasmas verhindert wird. Daraus folgt, dass im Interaktionsvolumen zwischen Plasma und Analyt der Temperaturgrenzwert für eine thermische Dissoziation oder Fragmentierung der Moleküle nicht überschritten wird. Experimentell konnte belegt werden, dass das vorgestellte Ionisierungsschema sehr unselektiv bezüglich der chemischen Analytklasse ist und kaum Fragmentierungsprodukte beobachtet werden können. Messungen einer breitgefächerten Auswahl unterschiedlicher Testsubstanzen, wie beispielsweise polarer und unpolarer Kohlenwasserstoffe, Zuckern, niedermolekularer pharmazeutischer Wirkstoffe, sowie natürlicher Biomoleküle in Lebensmittelproben unmittelbar aus ihren komplexen Matrizes, führten zu aussagekräftigen Massenspektren. Zumal das Lasermedium feuchte Luft ist, scheint der Reaktionsmechanismus dem anderer Atmosphärendruckionisierungsmethoden zuähneln.

  12. Real Time Quantitative 3-D Imaging of Diffusion Flame Species

    NASA Technical Reports Server (NTRS)

    Kane, Daniel J.; Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or ground-based facilities such as drop towers, provides a unique setting for study of combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Even the use of so-called 'limiting cases' or the construction of 1-D or 2-D models and experiments fail to make the analysis of combustion simultaneously simple and accurate. Ideally, to bridge the gap between chemistry and fluid mechanics in microgravity combustion, species concentrations and temperature profiles are needed throughout the flame. However, restrictions associated with performing measurements in reduced gravity, especially size and weight considerations, have generally limited microgravity combustion studies to the capture of flame emissions on film or video laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated studies are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the computational models. While there have been a myriad of fluid mechanical visualization studies in microgravity combustion, little experimental work has been completed to obtain reactant and product concentrations within a microgravity flame. This is largely due to the fact that traditional sampling methods (quenching microprobes using GC and/or mass spec analysis) are too heavy, slow, and cumbersome for microgravity experiments. Non-intrusive optical spectroscopic techniques have - up until now - also required excessively bulky, power hungry equipment. However, with the advent of near-IR diode lasers, the possibility now exists to obtain reactant and product concentrations and temperatures non-intrusively in microgravity combustion studies. Over the past ten years, Southwest Sciences has focused its research on the high sensitivity, quantitative detection of gas phase species using diode lasers. Our research approach combines three innovations in an experimental system resulting in a new capability for nonintrusive measurement of major combustion species. FM spectroscopy or high frequency Wavelength Modulation Spectroscopy (WMS) have recently been applied to sensitive absorption measurements at Southwest Sciences and in other laboratories using GaAlAs or InGaAsP diode lasers in the visible or near-infrared as well as lead-salt lasers in the mid-infrared spectral region. Because these lasers exhibit essentially no source noise at the high detection frequencies employed with this technique, the achievement of sensitivity approaching the detector shot noise limit is possible.

  13. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Abid, M.; Aung, K.; Ronney, P. D.; Sharif, J. A.; Wu, M.-S.

    1999-01-01

    Several topics relating to combustion limits in premixed flames at reduced gravity have been studied. These topics include: (1) flame balls; (2) numerical simulation of flame ball and planar flame structure and stability; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells.

  14. RAYLEIGH–TAYLOR UNSTABLE FLAMES—FAST OR FASTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, E. P., E-mail: eph2001@columbia.edu

    2015-04-20

    Rayleigh–Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate bothmore » models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.« less

  15. Coupling of wrinkled laminar flames with gravity

    NASA Technical Reports Server (NTRS)

    Bedat, Benoit; Kostiuk, Larry W.; Cheng, Robert K.

    1995-01-01

    The overall objective of our research is to understand flame-gravity coupling processes in laminar and low turbulent Reynolds number, Re(sub l), premixed flames (i.e. wrinkled- laminar flames). The approach we have developed is to compare the flowfields and mean flame properties under different gravitational orientations. Key to our study is the investigation of microgravity (mu g) flames. These mu g experiments provide vital information to reconcile the differences between flames in normal gravity (+g, flame pointing upward) and reverse gravity (-g, flame pointing downwards). Traditionally, gravity effects are assumed to be insignificant or circumvented in the laboratory, therefore, not much is available in the literature on the behavior of -g flames.

  16. Solid-phase extraction and separation procedure for trace aluminum in water samples and its determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

    PubMed

    Ciftci, Harun; Er, Cigdem

    2013-03-01

    In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.

  17. Flow injection/atomic absorption spectrometric determination of zineb in commercial formulations of pesticide based on slurry sampling.

    PubMed

    Cassella, Ricardo J; Salim, Verĵnica A; Garrigues, Salvador; Santelli, Ricardo E; de la Guardia, Miguel

    2002-11-01

    This paper reports on a new strategy for the slurry sampling determination of dithiocarbamate pesticide zineb [[ethylenebis(dithiocarbamato)]zinc] employing a FIA system with a flame atomic absorption spectrometry detector. In the flow system, an on-line alkaline hydrolysis of the pesticide is performed, allowing the release of Zn(II) ions to the solution, which are easily detected by a flame AAS technique. Several parameters that could affect the performance of the analytical methodology were studied, such as the concentration of NH3(aq) used in the hydrolysis step, the effect of the presence of Triton X-100 on the sensitivity and precision, and the FIA parameters (carrier flow rate and mixing coil volume). Under optimized conditions, aqueous slurries containing 2.5 to 25 microg ml(-1) zineb provided good linear calibration fits. From the obtained data, a detection limit (3sigma) of 1.0 microg ml(-1) zineb was found and a repeatability of 2.7% was obtained from 12 measurements of a slurry containing 2.5 microg m(-1) zineb. On the other hand, a precision (reproducibility) of 7.8% was achieved from three determinations of a sample containing 128 mg g(-1) of the pesticide. Also, the developed system provides a sampling frequency of 72 h(-1).

  18. Improvement of mineral oil saturated and aromatic hydrocarbons determination in edible oil by liquid-liquid-gas chromatography with dual detection.

    PubMed

    Zoccali, Mariosimone; Barp, Laura; Beccaria, Marco; Sciarrone, Danilo; Purcaro, Giorgia; Mondello, Luigi

    2016-02-01

    Mineral oils, which are mainly composed of saturated hydrocarbons and aromatic hydrocarbons, are widespread food contaminants. Liquid chromatography coupled to gas chromatography with flame ionization detection represents the method of choice to determine these two families. However, despite the high selectivity of this technique, the presence of olefins (particularly squalene and its isomers) in some samples as in olive oils, does not allow the correct quantification of the mineral oil aromatic hydrocarbons fraction, requiring additional off-line tools to eliminate them. In the present research, a novel on-line liquid chromatography coupled to gas chromatography method is described for the determination of hydrocarbon contamination in edible oils. Two different liquid chromatography columns, namely a silica one (to retain the bulk of the matrix) and a silver-ion one (which better retains the olefins), were coupled in series to obtain the mineral oil aromatic hydrocarbons hump free of interfering peaks. Furthermore, the use of a simultaneous dual detection, flame ionization detector and triple quadrupole mass spectrometer allowed us not only to quantify the mineral oil contamination, but also to evaluate the presence of specific markers (i.e. hopanes) to confirm the petrogenic origin of the contamination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Effects of Angular Orientation on Flame Spread over Thin Materials

    DTIC Science & Technology

    1999-12-01

    Notation 7 5 Upward Spread With Burnout 8 6a Observed Flame Lengths on Napkins, Increments 2.5 cm 9 6b Observed Flame Lengths on Pet Film, Increments...Frequency of Extinguishment During Flame Spread 21 15 Flame Spread Velocity 21 VI 16 Flame Length Measured Parallel to the Surface 22 17 Comparison of... flame length (Lf) were measured from a video recording of the test. Despite erratic burn fronts with discontinuous flaming regions, the maximum

  20. Design for gas chromatography-corona discharge-ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2012-11-20

    A corona discharge ionization-ion mobility spectrometry (CD-IMS) with a novel sample inlet system was designed and constructed as a detector for capillary gas chromatography. In this design, a hollow needle was used instead of a solid needle which is commonly used for corona discharge creation, helping us to have direct axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in a reaction of effluents with reactant ions on the upstream side of the corona discharge ionization source. Using this sample introduction design, higher ionization efficiency was achieved relative to the entrance direction through the side of the drift tube. In addition, the volume of the ionization region was reduced to minimize the resistance time of compounds in the ionization source, increasing chromatographic resolution of the instrument. The effects of various parameters such as drift gas flow, makeup gas flow, and column tip position inside the needle were investigated. The designed instrument was exhaustively validated in terms of sensitivity, resolution, and reproducibility by analyzing the standard solutions of methyl isobutyl ketone, heptanone, nonanone, and acetophenone as the test compounds. The results obtained by CD-IMS detector were compared with those of the flame ionization detector, which revealed the capability of the proposed GC-IMS for two-dimensional separation (based on the retention time and drift time information) and identification of an analyte in complex matrixes.

  1. An investigation of plasma enhanced combustion

    NASA Astrophysics Data System (ADS)

    Kim, Woo Kyung

    This study examines the use of plasma discharges in flame stabilization. Three different types of plasma discharges are applied to a lifted jet diffusion flame in coflow, and evaluated for their abilities to enhance flame stabilization. A single electrode corona discharge (SECD) is found to maintain the flame at a 20 % higher coflow speed than that without the discharge. A dielectric barrier discharge (DBD) results in flame stabilization at up to 50 % higher coflow speed. Finally, an ultra short-pulsed repetitive discharge (USRD) is found to increase the stability limit by nearly ten-fold. The stabilization process is sensitive to the positioning of the discharge in the flow field, and the optimal position of the discharge is mapped into mixture fraction space. The result shows that the local mixture fraction at the optimal position is much leaner than that of a conventional lifted jet flame. Parametric studies are conducted in a plasma-assisted methane/air premixed flame system using USRD. Criteria for optimal electrode selection are suggested. Platinum provides the best result at low frequency operation (< 20 kHz) but tungsten shows better performance at high frequency operation (> 20 kHz). The increase in the flame stability limit is also investigated. The flame stability limit extends from an equivalence ratio of 0.7 to 0.47. Nitric oxide (NO) concentration in the premixed flame is measured. The discharge is a potential source of NO. Under certain conditions, we observed the presence of a cold pre-flame, located between the discharge and the main flame. It is found that the pre-flame partially consumes some NO. The flame kernel structure and ignition mechanism of plasma-assisted premixed combustion are discussed. It is observed that the pre-flame has an abundance of OH radicals. The key physics of the flame ignition is the diffusion of an OH stream (from the pre-flame) into the surrounding combustible mixture to form the main flame. Lastly, the proposed flame kernel structure is numerically validated using the OPPDIF code. The simulation shows that possibly three reaction zones, one pre-flame and two main flames, exist in this flame configuration.

  2. Polydisperse effects in jet spray flames

    NASA Astrophysics Data System (ADS)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  3. Radiant extinction of gaseous diffusion flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.

    1995-01-01

    The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel type, etc.) is important for spacecraft fire safety. Thus, the objective is to experimentally and theoretically investigate the radiation-induced extinction of diffusion flames in microgravity and determine the effect of flame radiation on the 'weak' microgravity diffusion flame.

  4. Effects of H{sub 2} enrichment on the propagation characteristics of CH{sub 4}-air triple flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briones, Alejandro M.; Aggarwal, Suresh K.; Katta, Viswanath R.

    The effects of H{sub 2} enrichment on the propagation of laminar CH{sub 4}-air triple flames in axisymmetric coflowing jets are numerically investigated. A comprehensive, time-dependent computational model, which employs a detailed description of chemistry and transport, is used to simulate the transient ignition and flame propagation phenomena. Flames are ignited in a jet-mixing layer far downstream of the burner. Following ignition, a well-defined triple flame is formed that propagates upstream along the stoichiometric mixture fraction line with a nearly constant displacement velocity. As the flame approaches the burner, it transitions to a double flame, and subsequently to a burner-stabilized nonpremixedmore » flame. Predictions are validated using measurements of the displacement flame velocity. As the H{sub 2} concentration in the fuel blend is increased, the displacement flame velocity and local triple flame speed increase progressively due to the enhanced chemical reactivity, diffusivity, and preferential diffusion caused by H{sub 2} addition. In addition, the flammability limits associated with the triple flames are progressively extended with the increase in H{sub 2} concentration. The flame structure and flame dynamics are also markedly modified by H{sub 2} enrichment, which substantially increases the flame curvature and mixture fraction gradient, as well as the hydrodynamic and curvature-induced stretch near the triple point. For all the H{sub 2}-enriched methane-air flames investigated in this study, there is a negative correlation between flame speed and stretch, with the flame speed decreasing almost linearly with stretch, consistent with previous studies. The H{sub 2} addition also modifies the flame sensitivity to stretch, as it decreases the Markstein number (Ma), implying an increased tendency toward diffusive-thermal instability (i.e. Ma {yields} 0). These results are consistent with the previously reported experimental results for outwardly propagating spherical flames burning a mixture of natural gas and hydrogen. (author)« less

  5. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit

    1997-01-01

    Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to characterize microgravity (micro g) premixed flames. The results are used to derive appropriate scaling parameters for guiding the development of theoretical models to include the effects of buoyancy. Knowledge gain from the analysis will also contribute to further understanding of the elliptical nature of premixed flames. Our current emphasis is to examine the momentum limit above which the effects of buoyancy would become insignificant. This is accomplished by comparing the flowfields and the mean properties of normal gravity flames (+g), and reversed gravity flames (-g, up-side-down flames) at different flow velocities and turbulence intensities. Microgravity (micro g) flames experiments provide the key reference data to reconcile the differences between flames in +g and -g. As flame configuration has significant impact on premixed flames characteristics we have studied axi-symmetric conical flames and plane-symmetric rod-stabilized v-flames. The two configurations produce distinct features that dictates how the flames couple with buoyancy. In a conical flame, the hot products plume completely envelopes the flame cone and shields the flame from direct interaction with the ambient air. The plume originates at the burner rim and generates a divergent flowfield. In comparison, the products region of v-flames forms between the twin flame sheets and it is convergent towards the center-plane. Interaction with ambient air is limited to the two end regions of the stabilized rod and beyond the flame sheets.

  6. Sooting turbulent jet flame: characterization and quantitative soot measurements

    NASA Astrophysics Data System (ADS)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  7. Soot Formation in Purely-Curved Premixed Flames and Laminar Flame Speeds of Soot-Forming Flames

    NASA Technical Reports Server (NTRS)

    Buchanan, Thomas; Wang, Hai

    2005-01-01

    The research addressed here is a collaborative project between University of Delaware and Case Western Reserve University. There are two basic and related scientific objectives. First, we wish to demonstrate the suitability of spherical/cylindrical, laminar, premixed flames in the fundamental study of the chemical and physical processes of soot formation. Our reasoning is that the flame standoff distance in spherical/cylindrical flames under microgravity can be substantially larger than that in a flat burner-stabilized flame. Therefore the spherical/cylindrical flame is expected to give better spatial resolution to probe the soot inception and growth chemistry than flat flames. Second, we wish to examine the feasibility of determining the laminar flame speed of soot forming flames. Our basic assumption is that under the adiabatic condition (in the absence of conductive heat loss), the amount and dynamics of soot formed in the flame is unique for a given fuel/air mixture. The laminar flame speed can be rigorously defined as long as the radiative heat loss can be determined. This laminar flame speed characterizes the flame soot formation and dynamics in addition to the heat release rate. The research involves two integral parts: experiments of spherical and cylindrical sooting flames in microgravity (CWRU), and the computational counterpart (UD) that aims to simulate sooting laminar flames, and the sooting limits of near adiabatic flames. The computations work is described in this report, followed by a summary of the accomplishments achieved to date. Details of the microgra+ experiments will be discussed in a separate, final report prepared by the co-PI, Professor C-J. Sung of CWRU. Here only a brief discussion of these experiments will be given.

  8. Unsteady Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Berhan, S.; Chernovsky, M.; Sacksteder, Kurt R.

    2001-01-01

    The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and (mu-g) flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional; (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in mu-g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in mu-g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.

  9. Flames in vortices & tulip-flame inversion

    NASA Astrophysics Data System (ADS)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  10. Laminar Premixed and Diffusion Flames (Ground-Based Study)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Ground-based studies of soot processes in laminar flames proceeded in two phases, considering laminar premixed flames and laminar diffusion flames, in turn. The test arrangement for laminar premixed flames involved round flat flame burners directed vertically upward at atmospheric pressure. The test arrangement for laminar jet diffusion flames involved a round fuel port directed vertically upward with various hydrocarbon fuels burning at atmospheric pressure in air. In both cases, coflow was used to prevent flame oscillations and measurements were limited to the flame axes. The measurements were sufficient to resolve soot nucleation, growth and oxidation rates, as well as the properties of the environment needed to evaluate mechanisms of these processes. The experimental methods used were also designed to maintain capabilities for experimental methods used in corresponding space-based experiments. This section of the report will be limited to consideration of flame structure for both premixed and diffusion flames.

  11. Investigation of the impact of higher molecular weight organics on OH reactivity in London

    NASA Astrophysics Data System (ADS)

    Holmes, Rachel; Hamilton, Jacqueline; Hopkins, Jimmy; Lee, James; Lidster, Richard; Lewis, Alistair

    2014-05-01

    Volatile organic compounds (VOCs) play an important role in the formation of pollution in the air, particularly in the boundary layer of the atmosphere. VOCs in an urban atmosphere react with radical species to form ozone (O3), which at ground levels can pose a significant threat to health.[1] Air quality models have been developed to predict the effect of emissions on air quality. Numerous studies of urban environments show discrepancies between measured and predicted estimates of the lifetime of OH radicals. One possibility is that the magnitude of VOCs as a sink for reactive species is underestimated in models, including unmeasured and larger aromatic species. To study some of these additional compounds we have developed a method using comprehensive two dimensional gas chromatography coupled to a flame ionisation detector (GC×GC-FID). GC×GC is a hyphenated technique where two columns are coupled together via a modulator, providing two discrete separations of each species based on boiling point and polarity.[2] This provides a high resolution method, with increased separation power and improved peak capacity when compared to many single column systems.[3] This technique was used in conjunction with a dual channel GC (DC-GC) during the Clean Air for London (ClearfLo) project to increase the speciation of the complex air matrix. Target compounds were in the range C1 to C13+ VOCs, including oxygenates, aromatics, saturated and unsaturated aliphatics. Calculations of the pseudo first order OH reactivity indicates that higher carbon number VOCs may account for some of the missing OH sinks in comparison to emission inventory estimates. During summer measurements the role of biogenic VOCs increases, with isoprene and monoterpenes acting as important OH sinks. Including these should enhance the prediction capability of air quality models. This can then lead to the introduction of new policies for the reduction of pollution precursors and hopefully result in improved air quality. References 1. Atkinson, R., Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 2000. 34(12-14): p. 2063-2101. 2. Hamilton, J.F., Using Comprehensive Two-Dimensional Gas Chromatography to Study the Atmosphere. Journal of Chromatographic Science, 2010. 48(4): p. 274-. 3. Lidster, R.T., J.F. Hamilton, and A.C. Lewis, The application of two total transfer valve modulators for comprehensive two-dimensional gas chromatography of volatile organic compounds. Journal of Separation Science, 2011. 34(7): p. 812-821.

  12. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front

    NASA Astrophysics Data System (ADS)

    Kheirkhah, S.; Gülder, Ö. L.

    2013-05-01

    Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.

  13. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    NASA Astrophysics Data System (ADS)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  14. Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers

    NASA Astrophysics Data System (ADS)

    Dowdell, S.; Tyler, M.; McNamara, J.; Sloan, K.; Ceylan, A.; Rinks, A.

    2016-12-01

    Plane-parallel ionisation chambers are regularly used to conduct relative dosimetry measurements for therapeutic kilovoltage beams during commissioning and routine quality assurance. This paper presents the first quantification of the polarity effect in kilovoltage photon beams for two types of commercially available plane-parallel ionisation chambers used for such measurements. Measurements were performed at various depths along the central axis in a solid water phantom and for different field sizes at 2 cm depth to determine the polarity effect for PTW Advanced Markus and Roos ionisation chambers (PTW-Freiburg, Germany). Data was acquired for kilovoltage beams between 100 kVp (half-value layer (HVL)  =  2.88 mm Al) and 250 kVp (HVL  =  2.12 mm Cu) and field sizes of 3-15 cm diameter for 30 cm focus-source distance (FSD) and 4  ×  4 cm2-20  ×  20 cm2 for 50 cm FSD. Substantial polarity effects, up to 9.6%, were observed for the Advanced Markus chamber compared to a maximum 0.5% for the Roos chamber. The magnitude of the polarity effect was observed to increase with field size and beam energy but was consistent with depth. The polarity effect is directly influenced by chamber design, with potentially large polarity effects for some plane-parallel ionisation chambers. Depending on the specific chamber used, polarity corrections may be required for output factor measurements of kilovoltage photon beams. Failure to account for polarity effects could lead to an incorrect dose being delivered to the patient.

  15. Do nuisance alarms decrease functionality of smoke alarms near the kitchen? Findings from a randomised controlled trial.

    PubMed

    Yang, Jingzhen; Jones, Michael P; Cheng, Gang; Ramirez, Marizen; Taylor, Craig; Peek-Asa, Corinne

    2011-06-01

    Many home fires begin in the kitchen. Kitchen smoke alarms are more likely to produce nuisance alarms, but few previous studies have examined the role of alarm sensor and battery types on the functionality of smoke alarms located nearest to the kitchen. Data were analysed from a 2×2 factorial randomised controlled trial conducted in rural Iowa homes (n=628). Enrolled households were randomly assigned into one of four smoke alarm/battery combinations: ionisation/zinc, ionisation/lithium, photoelectric/zinc and photoelectric/lithium. Alarm functionality was determined using a smoke test. Alarm type and battery type were compared using an intent-to-treat analysis. Logistic regression was used to identify factors that might impact the functionality of smoke alarms located nearest to the kitchen 42 months after installation. Photoelectric alarms with lithium batteries had the highest rate of functionality (90.2%), whereas ionisation alarms with carbon/zinc batteries had the lowest (76.5%). Forty-two months following installation, 6.4% more of photoelectric alarms were functional than ionisation alarms, and 7.9% more of alarms with lithium batteries were functional than those with carbon/zinc batteries. Logistic regression revealed that when the indicator of nuisance alarms was included, the effect of alarm type became statistically insignificant and ionisation alarms were less likely to be functional at 42 months, partly due to increased nuisance alarms. Alarm type is an important consideration for certain locations. Photoelectric alarms may be more appropriate for installation nearest to the kitchen despite their increased cost. These findings can help guide consumer choices to increase protection against home fire-related injuries and deaths.

  16. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    NASA Astrophysics Data System (ADS)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  17. Occupational exposure to ionising radiation and mortality among workers of the former Spanish Nuclear Energy Board.

    PubMed Central

    Rodríguez Artalejo, F; Castaño Lara, S; de Andrés Manzano, B; García Ferruelo, M; Iglesias Martín, L; Calero, J R

    1997-01-01

    OBJECTIVES: Firstly, to ascertain whether mortality among workers of the former Spanish Nuclear Energy Board (Junta de Energía Nuclear-JEN) was higher than that for the Spanish population overall; and secondly, if this were so, to ascertain whether this difference was associated with exposure to ionising radiation. METHODS: A retrospective follow up of a cohort of 5657 workers was carried out for the period 1954-92. Cohort mortality was compared with that for the Spanish population overall, with standardised mortality ratios (SMRs) adjusted for sex, age, and calendar period. Also, Poisson models were used to analyse mortality from lung cancer in the cohort by level of exposure to ionising radiation. RESULTS: Workers' median and mean cumulative exposures were 4.04 and 11.42 mSv, respectively. Mean annual exposure was 1.33 mSv. Excess mortality due to bone tumours was found for the cohort as a whole (six deaths observed; SMR 2.95; 95% confidence interval (95% CI) 1.08 to 6.43). Among miners, excess mortality was found for non-malignant respiratory diseases (SMR 2.94; 95% CI 2.27 to 3.75), and for lung cancer bordering on statistical significance (SMR 1.50; 95% CI 0.96 to 2.23; P = 0.055). Relative risks of dying of lung cancer from ionising radiation in the dose quartiles 2, 3, and 4 versus the lowest dose quartile, were 1.00, 1.64, and 0.94, respectively. CONCLUSIONS: Excess mortality from lung cancer was found among JEN miners. Nevertheless, no clear relation was found between mortality from lung cancer and level of exposure to ionising radiation in the JEN cohort. Continued follow up of the cohort is required to confirm excess mortality from bone tumours. PMID:9155782

  18. Fully kinetic simulations of magnetic reconnection in partially ionised gases

    NASA Astrophysics Data System (ADS)

    Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.

    2016-12-01

    Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.

  19. Occupational exposure to ionising radiation and mortality among workers of the former Spanish Nuclear Energy Board.

    PubMed

    Rodríguez Artalejo, F; Castaño Lara, S; de Andrés Manzano, B; García Ferruelo, M; Iglesias Martín, L; Calero, J R

    1997-03-01

    Firstly, to ascertain whether mortality among workers of the former Spanish Nuclear Energy Board (Junta de Energía Nuclear-JEN) was higher than that for the Spanish population overall; and secondly, if this were so, to ascertain whether this difference was associated with exposure to ionising radiation. A retrospective follow up of a cohort of 5657 workers was carried out for the period 1954-92. Cohort mortality was compared with that for the Spanish population overall, with standardised mortality ratios (SMRs) adjusted for sex, age, and calendar period. Also, Poisson models were used to analyse mortality from lung cancer in the cohort by level of exposure to ionising radiation. Workers' median and mean cumulative exposures were 4.04 and 11.42 mSv, respectively. Mean annual exposure was 1.33 mSv. Excess mortality due to bone tumours was found for the cohort as a whole (six deaths observed; SMR 2.95; 95% confidence interval (95% CI) 1.08 to 6.43). Among miners, excess mortality was found for non-malignant respiratory diseases (SMR 2.94; 95% CI 2.27 to 3.75), and for lung cancer bordering on statistical significance (SMR 1.50; 95% CI 0.96 to 2.23; P = 0.055). Relative risks of dying of lung cancer from ionising radiation in the dose quartiles 2, 3, and 4 versus the lowest dose quartile, were 1.00, 1.64, and 0.94, respectively. Excess mortality from lung cancer was found among JEN miners. Nevertheless, no clear relation was found between mortality from lung cancer and level of exposure to ionising radiation in the JEN cohort. Continued follow up of the cohort is required to confirm excess mortality from bone tumours.

  20. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

Top